is space time? a spatio-temporal theory of transitional turbulence

Predrag Cvitanović
Matt Gudorf, Nazmi Burak Budanur, Li Han, Rana Jafari, Adrien K. Saremi, and Boris Gutkin

Quantum-Classical Transition in Many-Body Systems: Indistinguishability, Interference and Interactions
Max Planck Institute for the Physics of Complex Systems, Dresden

February 13, 2017

overview

- what this talk is about
(2) "turbulence" in small domains
(3) "turbulence" in infinite spatial domains
(7) space is time
(6) bye bye, dynamics

this talk is about ${ }^{1}$

how to solve

strongly nonlinear field theories

[^0]
do clouds solve PDEs?

do clouds integrate Navier-Stokes equations?

do clouds satisfy Navier-Stokes equations?
yes!
they satisfy them locally, everywhere and at all times

© "turbulence" in small domains

(2) "turbulence" in infinite spatial domains
(3) space is time
(a) bye bye, dynamics

goal : go from equations to turbulence

Navier-Stokes equations

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\frac{1}{R} \nabla^{2} \mathbf{v}-\nabla p+\mathbf{f}, \quad \nabla \cdot \mathbf{v}=0
$$

velocity field $\mathbf{v} \in \mathbb{R}^{3}$; pressure field p; driving force \mathbf{f}

describe turbulence

starting from the equations (no statistical assumptions)

example : pipe flow ${ }^{2}$

amazing data! amazing numerics!

[^1]
dynamical description of turbulence

state space

a manifold $\mathcal{M} \in \mathbb{R}^{d}: d$ numbers determine the state of the system

representative point

$x(t) \in \mathcal{M}$
a state of physical system at instant in time
integrate forward in time
trajectory $x(t)=f^{t}\left(x_{0}\right)=$ representative point time t later

plane Couette : so far, S円ी』\| computational cells ${ }^{3}$

velocity field visualization

John F Gibson (U New Hampshire)
Jonathan Halcrow (Google)
P. C. (Georgia Tech)

[^2]
can visualize 61,506 dimensional state space of turbulent flow

equilibria of turbulent plane Couette flow, their unstable manifolds, and myriad of turbulent videos mapped out as one happy family

plane Couette state space $10^{5} \rightarrow 3 D$

equilibria, periodic orbits, their (un)stable manifolds shape the turbulence
unable to compute invariant solutions for large spatial domains ${ }^{4}$

solutions on large domains are too unstable

[^3]© "turbulence" in small domains

- "turbulence" in infinite spatial domains
(3) space is time
(9) bye bye, dynamics

next: large space-time domains

example : complex Ginzburg-Landau on a large domain

[horizontal] space x
[up] time evolution
codeinthehole.com/static/tutorial/coherent.html

challenge : describe $(x, t) \in(-\infty, \infty) \times(-\infty, \infty)$

continuous symmetries : space, time translations

spacetime discretization

1) chaos and a single kitten

example of a "small domain dynamics" : kicked rotor

an electron circling an atom, subject to a discrete time sequence of angle-dependent kicks $F\left(x_{t}\right)$

Taylor, Chirikov and Greene standard map

$$
\begin{aligned}
& x_{t+1}=x_{t}+p_{t+1} \quad \bmod 1 \\
& p_{t+1}=p_{t}+F\left(x_{t}\right)
\end{aligned}
$$

\rightarrow chaos in Hamiltonian systems

standard map

example of chaos in a Hamiltonian system

the simplest example : a single kitten in time

force $F(x)=K x$ linear in the displacement $x, K \in \mathbb{Z}$

$$
\begin{aligned}
& x_{t+1}=x_{t}+p_{t+1} \quad \bmod 1 \\
& p_{t+1}=p_{t}+K x_{t} \quad \bmod 1
\end{aligned}
$$

Continuous Automorphism of the Torus, or (after same algebra, replacing $K \rightarrow s$, etc)

Hamiltonian cat map

a linear, area preserving map of a 2-torus onto itself

$$
\binom{x_{t+1}}{p_{t+1}}=A\binom{x_{t}}{p_{t}} \quad \bmod 1, \quad A=\left(\begin{array}{cc}
s-1 & 1 \\
s-2 & 1
\end{array}\right)
$$

for integer $s=\operatorname{tr} A>2$ the map is hyperbolic \rightarrow a fully chaotic Hamiltonian dynamical system

cat map in Lagrangian form ${ }^{5}$

replace momentum by velocity

$$
p_{t+1}=\left(x_{t+1}-x_{t}\right) / \Delta t
$$

dynamics in $\left(x_{t}, x_{t-1}\right)$ state space is particularly simple
2-step difference equation

$$
x_{t+1}-s x_{t}+x_{t-1}=-m_{t}
$$

unique integer m_{t} ensures that
x_{t} lands in the unit interval at every time step t
nonlinearity : mod 1 operation, encoded in
$m_{t} \in \mathcal{A}, \quad \mathcal{A}=$ finite alphabet of possible values for m_{t}

[^4]
example : $s=3$ cat map symbolic dynamics

cat map stretches the unit square translations by

$$
m_{0} \in \mathcal{A}=\{\underline{1}, 0,1,2\}=\{\text { red, green, blue },
$$

return stray kittens back to the torus

cat map $\left(x_{0}, x_{1}\right)$ state space partition

(a) 4 regions labeled by m_{0}., obtained from $\left(x_{-1}, x_{0}\right)$ state space by one iteration
(b) 14 regions, 2 -steps past $m_{-1} m_{0}$.
(c) 44 regions, 3 -steps past $m_{-2} m_{-1} m_{0}$.
(d) 4 regions labeled by future . m_{1}
(e) 14 regions, 2-steps future.$m_{1} m_{2}$
(f) 44 regions, 3 -steps future block $m_{3} m_{2} m_{1}$.

2) chaos and the spatiotemporally infinite cat

N-particle system

spatiotemporal cat map ${ }^{6}$

Consider a 1-dimensional spatial lattice, with field $x_{n, t}$ (the angle of a kicked rotor "particle" at instant t) at site n.
require
(0) each site couples to its nearest neighbors $x_{n \pm 1, t}$
(1) invariance under spatial translations
(2) invariance under spatial reflections
(3) invariance under the space-time exchange
obtain
2-dimensional coupled cat map lattice

$$
x_{n, t+1}+x_{n, t-1}-s x_{n, t}+x_{n+1, t}+x_{n-1, t}=-m_{n, t}
$$

[^5]
herding cats : a Euclidean field theory ${ }^{7}$

convert the spatial-temporal differences to discrete derivatives discrete d-dimensional Euclidean space-time Laplacian in $d=1$ and $d=2$ dimensions
$\square x_{t}=x_{t+1}-2 x_{t}+x_{t-1}$
$\square x_{n, t}=x_{n, t+1}+x_{n, t-1}-4 x_{n, t}+x_{n+1, t}+x_{n-1, t}$
\rightarrow the cat map equations generalized to
d-dimensional spatiotemporal cat map

$$
(\square-s+2 d) x_{z}=m_{z}
$$

where $x_{z} \in \mathbb{T}^{1}, \quad m_{z} \in \mathcal{A}$ and $z \in \mathbb{Z}^{d}=$ lattice site label

[^6]
deep insight, derived from observing kittens

an insight that applies to all coupled-map lattices, and all PDEs with translational symmetries
a d-dimensional spatiotemporal pattern $\left\{x_{z}\right\}=\left\{x_{z}, z \in \mathbb{Z}^{d}\right\}$
is labelled by a d-dimensional spatiotemporal block of symbols $\left\{m_{z}\right\}=\left\{m_{z}, z \in \mathbb{Z}^{d}\right\}$,
rather than a single temporal symbol sequence
(as is done when describing a small coupled few-"particle" system, or a small computational domain).

"periodic orbits" are now invariant d-tori

1 time, 0 space dimensions

a state space point is periodic if its orbit returns to it after a finite time T; in time direction such orbit tiles the time axis by infinitely many repeats

1 time, $d-1$ space dimensions

a state space point is spatiotemporally periodic if it belongs to an invariant d-torus \mathcal{R}, i.e., a block $\mathrm{M}_{\mathcal{R}}$ that tiles the lattice state M periodically, with period ℓ_{j} in j th lattice direction
an example of invariant 2-tori :
shadowing, symbolic dynamics space

2d symbolic representation of two invariant 2-tori shadowing each other within the shared block $\mathrm{M}_{\mathcal{R}}=\mathrm{M}_{\mathcal{R}_{0}} \cup \mathrm{M}_{\mathcal{R}_{1}}$ (blue)

- border \mathcal{R}_{1} (thick black), interior \mathcal{R}_{0} (thin black)
- symbols outside \mathcal{R} differ

shadowing, state space

(left) state space points $\left(x_{0, t}, x_{0, t-1}\right)$ of the two invariant 2-tori (right) zoom into the small rectangular area interior points $\in \mathcal{R}_{0}$ (large green), (small red) circles border points $\in \mathcal{R}_{1}$ (large violet), (small magenta) squares within the interior of the shared block,
the shadowing is exponentially good

conclusion

space, time merely parametrize a given invariant solution
what matters is
the enumeration of distinct invariant solutions
(1) "turbulence" in small domains
(2) "turbulence" in infinite spatial domains

3 space is time
(a) bye bye, dynamics

yes, lattice schmatiz, but

does it work for PDEs?

chronotope 8

In literary theory and philosophy of language, the chronotope is how configurations of time and space are represented in language and discourse.

- Wikipedia : Chronotope
- Mikhail Mikhailovich Bakhtin (1937)

[^7]
space-time complex Ginzburg-Landau on a large domain

a nearly recurrent chronotope

must have ${ }^{9}$: 2D symbolic dynamics $\in(-\infty, \infty) \times(-\infty, \infty)$

${ }^{9}$ B. Gutkin and V. Osipov, Nonlinearity 29, 325-356 (2016).

(1+1) space-time dimensional "Navier-Stokes"

computationally not ready yet to explore the inertial manifold of $(1+3)$-dimensional turbulence - start instead with
$(1+1)$-dimensional

Kuramoto-Sivashinsky time evolution equation

$$
u_{t}+u \nabla u=-\nabla^{2} u-\nabla^{4} u, \quad x \in[-L / 2, L / 2]
$$

describes spatially extended systems such as

- flame fronts in combustion
- reaction-diffusion systems
- ...

a test bed : Kuramoto-Sivashinsky on a large domain

[horizontal] space $x \in[0, L] \quad$ [up] time evolution

- turbulent behavior
- simpler physical, mathematical and computational setting than Navier-Stokes

compact space, infinite time cylinder

so far: Navier-Stokes on compact spatial domains, all times

compact space, infinite time Kuramoto-Sivashinsky

in terms of discrete spatial Fourier modes
N ordinary differential equations (ODEs) in time

$$
\dot{\tilde{u}}_{k}(t)=\left(q_{k}^{2}-q_{k}^{4}\right) \tilde{u}_{k}(t)-i \frac{q_{k}}{2} \sum_{k^{\prime}=0}^{N-1} \tilde{u}_{k^{\prime}}(t) \tilde{u}_{k-k^{\prime}}(t)
$$

evolution of Kuramoto-Sivashinsky on small $L=22$ cell

horizontal: $x \in[-11,11]$
vertical: time
color: magnitude of $u(x, t)$

is space time?

compact time, infinite space cylinder

space evolution, periodic time

compact time, infinite space Kuramoto-Sivashinsky ${ }^{10}$

$$
\begin{aligned}
u_{t} & =-u u_{x}-u_{x x}-u_{x x x x} \\
u^{(0)} & \equiv u, \quad u^{(1)} \equiv u_{x}, \quad u^{(2)} \equiv u_{x x}, \quad u^{(3)} \equiv u_{x x x}
\end{aligned}
$$

periodic boundary condition in time $u(x, t)=u(x, t+T)$

evolve $u(t, x)$ in $x, 4$ equations, 1 st order in spatial derivatives

$$
\begin{aligned}
& u_{x}^{(0)}=u^{(1)}, \quad u_{x}^{(1)}=u^{(2)}, \quad u_{x}^{(2)}=u^{(3)} \\
& u_{x}^{(3)}=-u_{t}^{(0)}-u^{(2)}-u^{(0)} u^{(1)}
\end{aligned}
$$

initial values $u\left(x_{0}, t\right), u_{x}\left(x_{0}, t\right), u_{x x}\left(x_{0}, t\right), u_{x x x}\left(x_{0}, t\right)$, for all $t \in[0, T)$ at a space point x_{0}

[^8]
a time-invariant equilibrium, spatial periodic orbit

evolution of $E Q_{1}$: (a) in time, (b) in space initial condition for the spatial integration is the time strip $u\left(x_{0}, t\right), t=[0, T)$, where time period $T=0$, spatial x period is $L=22$.
chronotope :
a finite $(1+D)$-dimensional symbolic dynamics rectangle

make it doubly periodic

compact space and time chronotope

periodic spacetime : 2-torus

a spacetime invariant 2-torus ${ }^{11}$

(a) old : time evolution.
(b) new : space evolution
$x=[0, L]$ initial condition : time periodic line $t=[0, T]$
Gudorf 2016

[^9]
zeta function for a field theory ? much like Ising model ${ }^{12,13}$

"periodic orbits" are now spacetime tilings

$$
Z(s) \approx \sum_{p} \frac{e^{-A_{p} s}}{\left|\operatorname{det}\left(1-J_{p}\right)\right|}
$$

count all tori / spacetime tilings : each of area $A_{p}=L_{p} T_{p}$
symbolic dynamics : $(1+D)$-dimensional essential to encoded shadowing
at this time : this zeta is still but a dream

[^10]
conclusion

space, time coordinates merely parametrize a given invariant solution
what matters is
the enumeration of distinct invariant solutions
unable to integrate the equations for times beyond Lyapunov time
unable to integrate the equations for large spatial domains spatial integration is ill-posed, wildly unstable ${ }^{14}$
(1) "turbulence" in small domains
(2) "turbulence" in infinite spatial domains
(3) space is time

- bye bye, dynamics

computing spacetime solutions

A R R I V A L

kiss your DNS codes

goodbye

for long time and/or space integrations
they never worked and could never work

life outside of time

the trouble:
forward time-integration codes too unstable
multishooting inspiration: replace a guess that a point is on the periodic orbit by a guess of the entire orbit.
an example is "Newton descent" : a variational method to drive the initial guess toward the exact solution.
\rightarrow
a variational method for finding spatio-temporally periodic solutions of classical field theories ${ }^{15}$

[^11]
1d example : variational principle for any periodic orbit ${ }^{16,17}$

N guess points $\rightarrow \infty$ points along a smooth loop (snapshots of the pattern at successive time instants)

[^12]
a guess loop vs. the desired solution

loop defines tangent vector \tilde{v}
periodic orbit defined by velocity field $v(x)$

extremal principle for a general flow

loop tangent $\tilde{v}(\tilde{x}) \neq v(\tilde{x})$
periodic orbit $\tilde{v}(\tilde{x}), v(\tilde{x})$ aligned

cost function

$$
F^{2}[\tilde{x}]=\oint_{L} d s(\tilde{v}-v)^{2} ; \quad \tilde{v}=\tilde{v}(\tilde{x}(s, \tau)), \quad v=v(\tilde{x}(s, \tau))
$$

penalizes misorientation of the loop tangent $\tilde{v}(\tilde{x})$ relative to the true dynamical flow $v(\tilde{x})$

Newton descent

cost minimization
drives
initial guess $L(0)$

$$
\begin{gathered}
\vec{p}=L(\infty)
\end{gathered}
$$

as fictitious time $\tau \rightarrow \infty$

the answer is

scalability

in the spirit of this workshop

compute locally, adjust globally

Computing literature : parallelizing spatiotemporal computation is FLOPs intensive, but more robust than integration forward in time ${ }^{18}$

how do clouds solve field equations?

do clouds integrate Navier-Stokes equations?

at any spacetime point Navier-Stokes equations describe the local tangent space
they satisfy them locally, everywhere and at all times

- small computational domains reduce "turbulence" to "single particle" chaos
(2) consider instead turbulence in infinite spatiatemporal domains
O theory : classify all spatiotemporal tilings
O numerics : parallelize spatiotemporal computations
there is no more time
there is only enumeration of spacetime solutions

bonus slide : each chronotope is a fixed point

discretize $u_{n, m}=u\left(x_{n}, t_{m}\right)$ over NM points of spatiotemporal periodic lattice $x_{n}=n T / N, t_{m}=m T / M$, Fourier transform :

$$
\tilde{u}_{k, \ell}=\frac{1}{N M} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} u_{n, m} e^{-i\left(q_{k} x_{n}+\omega_{\ell} t_{m}\right)}, \quad q_{k}=\frac{2 \pi k}{L}, \omega_{\ell}=\frac{2 \pi \ell}{T}
$$

Kuramoto-Sivashinsky is no more a PDE / ODE, but a fixed point problem of determining all invariant unstable 2-tori

$$
\left[-i \omega_{\ell}-\left(q_{k}^{2}-q_{k}^{4}\right)\right] \tilde{u}_{k, \ell}+i \frac{q_{k}}{2} \sum_{k^{\prime}=0}^{N-1} \sum_{m^{\prime}=0}^{M-1} \tilde{u}_{k^{\prime}, m^{\prime}} \tilde{u}_{k-k^{\prime}, m-m^{\prime}}=0
$$

Newton method for a NM-dimensional fixed point :
invert 1 - J,
where J is the 2-torus Jacobian matrix, yet to be elucidated

bonus slide : dynamical zeta function for a field theory

trace formula for a field theory
TURBULENT Q.F.T. 2
∞ of spacetime tilings

$$
Z(s) \approx \sum_{p} \frac{e^{-A_{p} s}}{\left|\operatorname{det}\left(1-J_{p}\right)\right|}
$$

tori / plane tilings each of area $A_{p}=L_{p} T_{p}$

(observable) $=\sum_{\text {set }}^{\text {fructad }} \frac{e^{i S_{n}^{\prime}\left[\phi_{e}\right] / \hbar}}{\sqrt{\frac{\partial^{2} s}{\partial \phi_{i}^{2} \phi_{j}}}}$
learn to count $+\begin{gathered}\text { weigh unstable } \\ \text { saddils }\end{gathered}$

what is next for the students of Landau's Theoretical Minimum? take the course!

student raves :
$\ldots 10^{6}$ times harder than any other online course...

References I

固 P. Cvitanović and Y . Lan, in Correlations and fluctuations in qcd : proceedings of $10^{\text {th }}$ international workshop on multiparticle production, edited by N. Antoniou (2003),
pp. 313-325.
图 J. F. Gibson, J. Halcrow, and P. Cvitanović, J. Fluid Mech. 611, 107-130 (2008).
E B. Gutkin, L. Han, R. Jafari, A. K. Saremi, and
P. Cvitanović, A linear symbolic dynamics for coupled cat maps lattices, In preparation, 2016.
R B. Gutkin and V. Osipov, Nonlinearity 29, 325-356 (2016).
B. B. Hof, C. W. H. van Doorne, J. Westerweel, F. T. M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R. R. Kerswell, and F. Waleffe, Science 305, 1594-1598 (2004).

References II

E Y．Ihara，J．Math．Society of Japan 18，219－235（1966）．
（ M．Kac and J．C．Ward，Phys．Rev．88，1332－1337 （1952）．

三
Y．Lan，C．Chandre，and P．Cvitanović，Phys．Rev．E 74， 046206 （2006）．
國 Y．Lan and P．Cvitanović，Phys．Rev．E 69， 016217 （2004）．
（ S．Lepri，A．Politi，and A．Torcini，J．Stat．Phys．82， 1429－1452（1996）．
（ M．Gudorf，N．B．Budanur，and P．Cvitanović，Is space time？A spatio－temporal theory of transitional turbulence， In preparationi， 2017.
軎 I．Percival and F．Vivaldi，Physica D 27，373－386（1987）．

References III

E Q. Wang, S. A. Gomez, P. J. Blonigan, A. L. Gregory, and E. Y. Qian, Phys. Fluids 25, 110818 (2013).

R A. P. Willis, M. Farazmand, K. Y. Short, N. B. Budanur, and P. Cvitanović, "Relative periodic orbits form the backbone of turbulent pipe flow", In preparation., 2015.

[^0]: ${ }^{1}$ references in this presentation are hyperlinked

[^1]: ${ }^{2}$ B. Hof et al., Science 305, 1594-1598 (2004).

[^2]: ${ }^{3}$ J. F. Gibson et al., J. Fluid Mech. 611, 107-130 (2008).

[^3]: ${ }^{4}$ A. P. Willis et al., "Relative periodic orbits form the backbone of turbulent pipe flow", In preparation., 2015.

[^4]: 5. Percival and F. Vivaldi, Physica D 27, 373-386 (1987).
[^5]: 6^{6} B. Gutkin and V. Osipov, Nonlinearity 29, 325-356 (2016).

[^6]: ${ }^{7}$ B. Gutkin et al., A linear symbolic dynamics for coupled cat maps lattices, In preparation, 2016.

[^7]: ${ }^{8}$ S. Lepri et al., J. Stat. Phys. 82, 1429-1452 (1996).

[^8]: ${ }^{10} \mathrm{M}$. Gudorf et al., Is space time? A spatio-temporal theory of transitional turbulence, In preparationi, 2017.

[^9]: ${ }^{11}$ M.Gudorf et al., Is space time? A spatio-temporal theory of transitional turbulence, In preparationi, 2017.

[^10]: ${ }^{12}$ M. Kac and J. C. Ward, Phys. Rev. 88, 1332-1337 (1952).
 ${ }^{13}$ Y. Ihara, J. Math. Society of Japan 18, 219-235 (1966).

[^11]: Y. Lan et al., Phys. Rev. E 74, 046206 (2006).

[^12]: ${ }^{16}$ Y. Lan and P. Cvitanović, Phys. Rev. E 69, 016217 (2004).
 ${ }^{17} \mathrm{P}$. Cvitanović and Y . Lan, in Correlations and fluctuations in qcd : proceedings of $10^{\text {th }}$ international workshop on multiparticle production, edited by N. Antoniou (2003), pp. 313-325.

