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Motivation

Why ultracold atoms?
I large number of bosons/fermions close to zero temperature
I easy to manipulate with optical fields
I optical lattices, reduced dimensional systems
I control of the type and strength of interactions
I precise measurements
I great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008



Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Why ultracold atoms?
I large number of bosons/fermions close to zero temperature
I easy to manipulate with optical fields
I optical lattices, reduced dimensional systems
I control of the type and strength of interactions
I precise measurements
I great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008



Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Why ultracold atoms?
I large number of bosons/fermions close to zero temperature
I easy to manipulate with optical fields
I optical lattices, reduced dimensional systems
I control of the type and strength of interactions
I precise measurements
I great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008



Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Why ultracold atoms?
I large number of bosons/fermions close to zero temperature
I easy to manipulate with optical fields
I optical lattices, reduced dimensional systems
I control of the type and strength of interactions
I precise measurements
I great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008



Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Why ultracold atoms?
I large number of bosons/fermions close to zero temperature
I easy to manipulate with optical fields
I optical lattices, reduced dimensional systems
I control of the type and strength of interactions
I precise measurements
I great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008



Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Why ultracold atoms?
I large number of bosons/fermions close to zero temperature
I easy to manipulate with optical fields
I optical lattices, reduced dimensional systems
I control of the type and strength of interactions
I precise measurements
I great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008



Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Realization of Lieb-Liniger model

I low density, quasi-1D gas with short-range interactions

I V (x) ≈ g1Dδ(x)

I control over g to probe different regimes achieved using
Feshbach resonances

I realization of Tonks-Girardeau gas: Kinoshita, Wenger, and
Weiss, Science 2004; Paredes et al, Nature 2004;

I intense studies in Innsbruck (prof. Hans Christoph Nägerl) see
Florian Meinert′s talk for more recent experimental results
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Cold atoms in quasi-1D traps: beyond the zero-range approximation

Cold atomic collisions

Interactions & Feshbach resonances
I neutral, closed-shell atoms - van der Waals interactions

V (r)
r→∞−→ −C6

r6

I length R6 = (2µC6/~2)1/4 or ā ≈ 0.477R6; E6 = ~2/2µR2
6

I collision energy E ∼nK, very dilute gas, s-wave scattering is
enough (bosons)

I scattering length a3D = limk→0

(
− tan δ(k)

k

)
can be tuned

using Feshbach resonances (see Chin et al, RMP 2010)



Cold atoms in quasi-1D traps: beyond the zero-range approximation

Cold atomic collisions

Interactions & Feshbach resonances
I neutral, closed-shell atoms - van der Waals interactions

V (r)
r→∞−→ −C6

r6

I length R6 = (2µC6/~2)1/4 or ā ≈ 0.477R6; E6 = ~2/2µR2
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Cold atomic collisions

Interactions & Feshbach resonances

I scattering length a3D = abg

(
1− ∆

B−B0

)
I universal weakly bound state Eb ∝ 1/a2

Figure: Scattering length and bound state energy near a Feshbach
resonance (Chin et al, RMP 2010).
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Cold atomic collisions

Introducing the pseudopotential

I replace the interaction by pseudopotential which reproduces
scattering properties

Veff =
2π~2a3D

µ
δ(r)

∂

∂r
r

I energy dependence can be included using effective range

k cot δ3D(k) = − 1

a3D(k)
= − 1

a3D
+

1

2
r3Dk

2 + . . .

I energy-dependent pseudopotential for trapped particles
V (r) = −2π~2

µ
tan δ3D(k)

k δ(r) ∂∂r r
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Cold atomic collisions

Introducing the pseudopotential

Figure: Energy dependence of the phase shift (Chin et al, RMP 2010)
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Scattering in a waveguide

Energy and length scales

I transverse harmonic confinement Utr = 1
2µω

2ρ2

I new length scale d =
√

~
µω , energy scale ~ω

I typically d � R6
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Scattering in a waveguide

Solving energy-dependent problem

I start with Schrödinger equation(
− ~2

2µ
∇2 + V (r) +

1

2
µω2ρ2

)
ψ = Eψ

I asymptotic boundary conditions

ψ
r→∞−→ ψnm(ρ)e ipz +

∑
n′m′

f
(+)
nm,n′m′(p)ψn′m′e ip

′|z|

I odd part vanishes (bosons)

I restrict to lowest transverse mode

I extract the scattering amplitude f (+)

Olshanii, PRL 1999; Naidon et al, NJP 2007; Idziaszek et al, NJP 2015
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Scattering in a waveguide

1D physics

I one-dimensional phase shift δ1D

f (+)(p) = − 1

1 + i cot δ1D(p)

I 1D even scattering length

a
(+)
1D (p) =

1

p tan δ1D(p)

I effective interaction strength in 1D Veff(x) = g1Dδ(x)

g1D(p) = − ~2

µa1D(p)

(note that g3D = 2π~2a3D
µ )
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Scattering in a waveguide

Energy-dependent interaction strength

I general result for a1D(p) (C = −ζ(1/2)) (Olshanii, Naidon)

a1D(p) = − d2

2a3D(k)

(
1− C a3D(k)

d

)
I incorporate energy dependence

a3D(k) ≈ a3D

1− k2r3Da3D/2

I include zero-point energy of the transverse oscillator!
k2 = p2 + 2/d2

I low energy expansion g1D(p) = g1D(1 + g ′p2) + . . .

I g1D = 2~2

µd

(
d
a3D
− C − r3D

d

)−1

I corrections g ′ = r3Dd
2

(
d
a3D
− C − r3D

d

)−1
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Scattering in a waveguide

Numerical verification

Figure: Naidon, NJP 2007; Bergeman, PRL 2003, Lennard-Jones
potential

theory remains valid for d & ā, independently of a3D
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Scattering in a waveguide

Transmission coefficient

convenient analysis in terms of transmission coefficient

r e-ipx t eipx
eipx

T (p) = |1 + f |2 = 1
1+tan2 δ1D(p)



Cold atoms in quasi-1D traps: beyond the zero-range approximation

Scattering in a waveguide

Role of effective range

-5 0 5 10

0.2

0.6

1.

a3D/a

T

Figure: Wide trap d = 20ā, wide resonance - typical conditions in
Innsbruck experiment
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Scattering in a waveguide

Wide vs. narrow resonances
I role of closed-channel contribution close to the Feshbach

resonance
I “pole strength“ sres =

abg
ā
δµ∆
Ē

I large sres - open channel-dominated (“broad“)
I sres � 1 “narrow“ resonance
I effective range at the broad resonance - single-channel formula

r3D =
Γ(1/4)2ā

6π2

(
1− 2ā

a3D
+

2ā2

a2
3D

)
I narrow resonances - nonuniversal behavior

r3D ≈
v + r0(a3D − aex)2

a2
3D

Bo Gao, PRA 1998; Blackley et al, PRA 2014
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6π2

(
1− 2ā
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6π2

(
1− 2ā
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Scattering in a waveguide

Role of effective range

Cs, ∼ 47G resonance with very small sres
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Figure: left: d = 20ā, right: d = 5ā

Theory without effective range corrections fails!
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Scattering in a waveguide

Role of effective range II
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Figure: g1D with (blue) and without corrections for two different narrow
resonances at a3D = 10ā; note that red curve remains the same!
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Generalized Lieb-Liniger model

Introducing the GLL

I length scale ` =
√

2|g ′| associated with the correction

I V (x)ψ(x) = g1Dδ(x)
(
1− g ′∂2

x

)
ψ(x)

I discretize the derivative

I resulting effective model
V (x) = c0δ(x) + c`(δ(x − `) + δ(x + `))
c0 = 2g1D , c` = −g1D/2 or c0 = 0, c` = g1D/2 depending on
the sign of g ′

I mapping on the Lieb-Liniger model for dilute system

ceff = c0 + 2c` +

mc``
~2

(
2c0 + 2c` + mc0c``

~2 +
mc2

0 `

2~2

)
1− m2c0c``2

2~4 − mc`l
~2

I ceff 6= c0 + 2c`, unit transmission possible for finite interactions

Veksler and Fishman, J. Phys. A 2016
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Generalized Lieb-Liniger model

validity of GLL
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Figure: Transmission for two narrow resonances; GLL denoted by black
dashed line
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Conclusions & outlook

I atomic interactions in traps need to include finite energy
corrections

I can be described in terms of universal quantities

I effective range affects the stability of the trapped gas

I relevant especially for narrow resonances
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