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LMotivation

Why ultracold atoms?

large number of bosons/fermions close to zero temperature
easy to manipulate with optical fields

optical lattices, reduced dimensional systems

control of the type and strength of interactions

precise measurements

great toolkit for quantum simulations
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Figure: Bloch, Dalibard and Zwerger, RMP 2008
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Realization of Lieb-Liniger model

> low density, quasi-1D gas with short-range interactions

» V(x) =~ g1pd(x)

» control over g to probe different regimes achieved using
Feshbach resonances

» realization of Tonks-Girardeau gas: Kinoshita, Wenger, and
Weiss, Science 2004; Paredes et al, Nature 2004;

» intense studies in Innsbruck (prof. Hans Christoph Nagerl) see
Florian Meinert’s talk for more recent experimental results
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LCold atomic collisions

Interactions & Feshbach resonances

» neutral, closed-shell atoms - van der Waals interactions
V(r) =% -S
r
> length Re = (211Co/h?)Y/* or 3 ~ 0.477Rs; E = 1?/2uR?
» collision energy E ~nK, very dilute gas, s-wave scattering is
enough (bosons)
> scattering length azp = limy_q <—%) can be tuned

using Feshbach resonances (see Chin et al, RMP 2010)
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Interactions & Feshbach resonances

» scattering length a3p = ay,g <1 — B_ABO>
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Figure: Scattering length and bound state energy near a Feshbach
resonance (Chin et al, RMP 2010).
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Interactions & Feshbach resonances

» scattering length a3p = ay,g <1 — B_ABJ

> universal weakly bound state Ej o 1/a?
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Figure: Scattering length and bound state energy near a Feshbach
resonance (Chin et al, RMP 2010).
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LCold atomic collisions

Introducing the pseudopotential

» replace the interaction by pseudopotential which reproduces
scattering properties

27rh2a3D 0
V = — o
off . o(r) arr

» energy dependence can be included using effective range

1 1 1
kCOt(53D(k) = _33D(k) = —g + §r3Dk2 + ...

» energy-dependent pseudopotential for trapped particles
2
V(r) = — 22 endo® ) 2
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LCold atomic collisions

Introducing the pseudopotential
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Figure: Energy dependence of the phase shift (Chin et al, RMP 2010)
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Energy and length scales

> transverse harmonic confinement U, = %uw2p2

h

> new length scale d = ot

energy scale hw
> typically d > R
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LSv:attelring in a waveguide

Solving energy-dependent problem

» start with Schrodinger equation

- 1 59
(—ZV +V(r)+§uw p)l/J—E¢

v

asymptotic boundary conditions

= Yom(p) 'PZ+an(;)nm Yt €2

v

odd part vanishes (bosons)

restrict to lowest transverse mode

v

v

extract the scattering amplitude (+)
Olshanii, PRL 1999; Naidon et al, NJP 2007; Idziaszek et al, NJP 2015
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LScattering in a waveguide

1D physics
» one-dimensional phase shift d1p

1

G P
f (P) 1+ iCOt(SlD(p)

» 1D even scattering length

(+) 1
a =—
1D (P) ptan 61D(p)
» effective interaction strength in 1D V g(x) = g1pd(x)
h2

ng(P) = _MalD(P)

2
(note that gzp = %ﬂ)
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LSv:attelring in a waveguide

Energy-dependent interaction strength
» general result for a1p(p) (C = —¢(1/2)) (Olshanii, Naidon)

2 a
aip(p) = _ﬁ(k) (1 - C%(k))

> incorporate energy dependence

a3p
k) ~
asp (k) 1— k?rpasp/?2

v

include zero-point energy of the transverse oscillator!
k?* = p® +2/d?
low energy expansion gip(p) = gip(1+g'p?) + ...
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LSv:attelring in a waveguide

Energy-dependent interaction strength
» general result for a1p(p) (C = —¢(1/2)) (Olshanii, Naidon)
N d2 a3D(k)
10(P) = =520 (1 Ty )
> incorporate energy dependence

a
33D(k) 3D

= 1-— k2r3Da3D/2

> include zero-point energy of the transverse oscillator!
k? = p? +2/d?
> low energy expansion gip(p) = gip(1l +g'p?) + ...

-1
_22(d _o_rmp
>ng—Md (33D C d

» corrections g’ = ’33‘1 (% _C— "E;TD)
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LScattering in a waveguide

Numerical verification
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Figure: Naidon, NJP 2007; Bergeman, PRL 2003, Lennard-Jones
potential

theory remains valid for d 2 3, independently of asp
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LScattering in a waveguide

Transmission coefficient

convenient analysis in terms of transmission coefficient

r e P t e
e

— 2 _ 1
T(p) - |1 + f| — 14tan2;p(p)
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Role of effective range
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Figure: Wide trap d = 204, wide resonance - typical conditions in
Innsbruck experiment
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LScattering in a waveguide

Wide vs. narrow resonances

» role of closed-channel contribution close to the Feshbach

resonance
w“ M abg A
pole strength* s,cs = f—%

large syes - open channel-dominated (“broad*)
Sres € 1 “narrow” resonance

vV v vy

effective range at the broad resonance - single-channel formula

r(1/4)%a 25 23
Rp = T l——+ -
s asp asp
> narrow resonances - nonuniversal behavior

v+ rno(asp — aex)2

Bp ~ 5
3p

Bo Gao, PRA 1998; Blackley et al, PRA 2014
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LScattering in a waveguide

Role of effective range

Cs, ~ 47G resonance with very small speg

0.6 0.01

0.2 0.0001
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Figure: left: d = 203, right: d =53

Theory without effective range corrections fails!
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LScattering in a waveguide

Role of effective range |l
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Figure: g1p with (blue) and without corrections for two different narrow
resonances at azp = 103; note that red curve remains the same!
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length scale ¢ = \/2|g’| associated with the correction
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discretize the derivative

vV vV v v

resulting effective model

V(x) = cod(x) + co(0(x — £) + d(x + £))

¢ =2gip, &« = —gip/2 or g =0, ¢ = g1p/2 depending on
the sign of g’
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LGeneraIized Lieb-Liniger model

Introducing the GLL

length scale ¢ = \/2|g’| associated with the correction
V(x)¥(x) = g1pd(x) (1 — g'0%) ()

discretize the derivative

vV vV v v

resulting effective model

V(x) = cod(x) + co(0(x — £) + d(x + £))

¢ =2gip, &« = —gip/2 or g =0, ¢ = g1p/2 depending on
the sign of g’

> mapping on the Lieb-Liniger model for dilute system

20
mhcﬂ <2C0 +2¢c + mcocef + 4’222 )

Ceff = Q0 + 2Cg + 1_ m2coc 2 el

2n4 2

> Coff # Cp+2¢y, unit transmission possible for finite interactions

Veksler and Fishman, J. Phys. A 2016
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LGeneraIized Lieb-Liniger model

validity of GLL

-30 0 30 60
aszpla

Figure: Transmission for two narrow resonances; GLL denoted by black
dashed line
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LConclusions

Conclusions & outlook

> atomic interactions in traps need to include finite energy
corrections

» can be described in terms of universal quantities
» effective range affects the stability of the trapped gas

» relevant especially for narrow resonances
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