

Spin-chain inspired symmetry and many-particle interference

Robert Keil, Christoph Dittel, Thomas Kauten, Gregor Weihs

Institute of Experimental Physics, University of Innsbruck, Austria

Malte C. Tichy

Department of Physics and Astronomy, University of Aarhus, Denmark

Armando Perez-Leija, Diego Guzman, Maxime Lebugle, Steffen Weimann, Alexander Szameit

Institute of Applied Physics, University of Jena/Institute for Physics, University of Rostock, Germany

VILLUM FONDEN

Introduction – Symmetries in Physics

Rotational symmetry:

Potential of atomic nucleus:

Introduction – Symmetries in Physics

Translational invariance:

Introduction – Symmetries in Biology

Taxonomy of animals

Bilateral Mirror symmetry

(Bilateria)

http://www.starfish.ch/

http://www.wirbellosen-aquarium.de/

http://www.weinbergschnecke.info/

http://www.india.com/

Radial symmetry (Cnidaria)

http://www.fotos.sc/

http://www.ostsee-urlaube.de/

→ Symmetries simplify our description of nature

photonik

Outline

- Introduction Symmetries
- Symmetries in multi-particle interference
- Spin-chains for perfect state transfer and their optical representation
- Many-photon dynamics in state transfer lattices
 - Suppression law
 - Multi-photon experiments

بالم محم مامر															niversitä: nsbruck
photonik															
photonics														S	S.H

Outline

- Introduction Symmetries
- Symmetries in multi-particle interference
- Spin-chains for perfect state transfer and their optical representation
- Many-photon dynamics in state transfer lattices
 - Suppression law
 - Multi-photon experiments

															niversität
photonik														iñ	nsbruck
priotoriik	 	 	1	 1	 		 	 	 	 		 			
photonics															- AND

Two-particle interference

Photons on a beam splitter:

Zeilinger, Am. J. Phys. **49**, 882 (1981) Campos *et al.* Phys. Rev. A **40**, 1371 (1989)

Two-Particle Interference:

Two-particle interference

Hong-Ou-Mandel experiment

photonik

photonics

• Vary distinguishability of photons (bosons)

 \rightarrow Widely used to measure indistinguishability of photons

Hong et al., Phys. Rev. Lett. 59, 2044 (1987)

Multi-particle interference

N bosons in *M*-port scattering matrix *U*:

• Mode occupation:

How many particles in each mode?

 $\vec{r} = (2,0,...,1)$ $\vec{s} = (1,1,...,1)$ (length *M*)

• Mode assignment:

photonik

photonics

Which mode occupied by each particle?

 $\vec{d}(\vec{r}) = (1,1,M) \ \vec{d}(\vec{s}) = (1,2,M)$ (length N)

Tichy et al. J. Phys. B: At. Mol. Opt. Phys. 47, 103001 (2014)

9

Multi-particle interference

ightarrow Sum over all permutations of input-output mode combinations

Bosons:

photonik

photonics

 $P_{\rm B}(\vec{r},\vec{s}) \propto \left| \sum_{\vec{\sigma} \in S_{\vec{d}}(\vec{s})} \prod_{j=1}^{N} U_{d_j(\vec{r}),\sigma_j} \right|^2 \propto |\operatorname{perm}(V)|^2$ Permutations of $\vec{d}(\vec{s})$ Submatrix of occupied input-/output-modes

 \rightarrow O(N!) summands

universität innsbruck

Tichy et al. J. Phys. B: At. Mol. Opt. Phys. 47, 103001 (2014)

Multi-particle interference

Fermions:

photonik photonicz

 $P_{\rm F}(\vec{r},\vec{s}) \propto |\det(V)|^2$

Distinguishable:

 $P_{\rm D}(\vec{r},\vec{s}) \propto {\rm perm}|V|^2$

Tichy et al. J. Phys. B: At. Mol. Opt. Phys. 47, 103001 (2014)

Bosons in random unitaries:

High computational complexity (best algorithm O(2^N)/output state)

ightarrow Boson sampling problem

Aaronson & Arkhipov, Theory Comput. 9, 143 (2013)

\rightarrow Experiments with photons:

Broome *et al.*, Science **339**, 794 (2013) Spring *et al.*, Science **339**, 798 (2013) Crespi *et al.*, Nat. Phot. **7**, 545 (2013) Tillmann *et al.*, Nat. Phot. **7**, 540 (2013)

Certification of indistinguishability:

Carolan *et al.*, Nat. Phot. **8**, 621 (2014) Spagnolo *et al.*, Nat. Phot. **8**, 615 (2014) Carolan *et al.*, Science **349**, 711 (2015)

$\binom{M+N-1}{N}$ output states

Distinguishability transition:

Tillmann et al., Phys. Rev. X 5, 041015 (2015)

Scalability:

Bentivegna *et al.*, Sci. Adv. **1**, 1400255 (2016) Loredo *et al.*, arXiv:1603.00054 (2016) He *et al.*, arXiv:1603.04127 (2016) Wang *et al.*, arXiv:1612.06956 (2016)

Symmetries in Multi-particle interference

Symmetries in the unitary:

Beam splitter

$$\vec{r} = (1,1)$$

$$\vec{s} = (1,1)$$

$$U \propto \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cong \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

$$\vec{s} = (1,1)$$

$$P_{\rm B}(\vec{r},\vec{s}) = 0$$

$$\vec{P}_{\rm B}(\vec{r},\vec{s}) = 0$$

$$\vec{P}_{\rm B}(\vec{r},\vec{s}) = 0$$

$$\vec{P}_{\rm B}(\vec{r},\vec{s}) = 0$$

$$\vec{P}_{\rm B}(\vec{r},\vec{s}) = 0$$

 \rightarrow Generalisation to more complex scenarios?

Multiport beamsplitter:

photonik

otonics

Lim *et al.,* New J. Phys. **7,** 155 (2005) Tichy *et al.,* Phys. Rev. Lett. **104,** 220405 (2010)

$$U_{j,k} \propto e^{irac{2\pi}{M}jk}$$

+ \vec{r} cyclically symmetric (periodicity)

→ Fourier **suppression law**:

 $\sim \frac{N-1}{N}$ of output states vanish (know which)

- \rightarrow Analytic formula for suppressed states
- ightarrow Simplifies the general calculation

Tichy et al., New J. Phys. 14, 093015 (2012)

Symmetries in Multi-particle interference

Fourier suppression – Experimental realisation:

Other known symmetry-induced suppression laws:

\rightarrow Sylvester interferometer

Crespi, Phys. Rev. A 91, 013811 (2015)

Outline

- Introduction Symmetries
- Symmetries in multi-particle interference
- Spin-chains for perfect state transfer and their optical representation
- Many-photon dynamics in state transfer lattices
 - Suppression law
 - Multi-photon experiments

nhotonik															i i	iniversität nnsbruck
рпотопік																
photonics															C.	

Perfect state transfer

photonik

Transport of a quantum state across static system

- Hamiltonian H transferring the state by its internal dynamics
- Appropriate choice of $H \rightarrow \underline{Coherent transport}$
- <u>No external control</u> in the transfer region → <u>isolation</u> from the environment possible → good <u>coherence</u>

Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)

Kay, Int. J. Quant. Inf. 8, 641 (2010)

Transfer Hamiltonian

Ferromagnetic coupled spin-1/2-chain:

$$i \frac{d\alpha_n}{dt} + J_{n-1}\alpha_{n-1} + J_n\alpha_{n+1} = 0$$
 $\alpha_n \equiv \langle \Psi | n \rangle$ $|n\rangle$... excitation of n^{th} spin

Nearest neighbour coupling

Transfer condition:

photonik

photonics

$$\alpha_n(t=0) = \delta_{n,1} \to \alpha_n(t=t_{\rm f}) = \delta_{n,M}$$

Optimal Hamiltonian provided by coupling distribution:

 $J_n = \frac{\pi}{2t_{\rm f}} \sqrt{n(M-n)}$

Mirror symmetry

 $n \leftrightarrow M - n$

Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)

Kay, Int. J. Quant. Inf. **8,** 641 (2010)

Evanescent coupling in optics

Light guided in optical waveguides with refractive index profile n(y):

76.8%

22.8%

30

20

25

Waveguide fabrication

- Direct waveguide inscription by ultrashort laser pulses
- Permanent refractive index increase

Observation technique for coherent light

Fluorescence images

Observation of coherent transport

84%

• Fluorescence signal from coherent light excitation

- Optimal transfer @ $z = z_f$
- Mirror-symmetry

photonics

Perez-Leija et al., Phys. Rev. A 87, 012309 (2013)

Observation of coherent transport

- Fluorescence signal from coherent light excitation
- Optimal transfer @ $z = z_f$
- Mirror-symmetry
- Multi-particle interference @ $z = z_{\rm f}/2$

 \rightarrow Which-way interference

photonik bhotonics

Perez-Leija et al., Phys. Rev. A 87, 012309 (2013)

Observation of coherent transport

photonik

photonics

- Fluorescence signal from coherent light excitation
- Optimal transfer @ $z = z_f$
- Mirror-symmetry

Perez-Leija et al., Phys. Rev. A 87, 012309 (2013)

• Multi-particle interference @ $z = z_{\rm f}/2$

 \rightarrow Which-way interference

Universitä

Two-photon interference

 $\vec{d}(\vec{r}) = (1, M)$

$$\vec{d}(\vec{s}) = (k, l)$$

Two-photon correlation function:

$$\Gamma_{k,l} = \left\langle \hat{a}_k^{\dagger} \hat{a}_l^{\dagger} \hat{a}_l \hat{a}_k \right\rangle = \left(1 + \delta_{k,l} \right) P_{\rm B}(\vec{r},\vec{s})$$

Analytic solution:

$$\Gamma_{k,l} = \begin{cases} 0, k-l \text{ odd} \\ 2^{4-2M} \binom{M-1}{k-1} \binom{M-1}{l-1}, k-l \text{ even} \end{cases}$$

<u>Theory:</u>

→ Half of the output states with zero probability

photonik bhotonics Perez-Leija et al., Phys. Rev. A 87, 012309 (2013)

Two-photon correlation

Coherent states, phase randomised:

photonics

$$M = 8$$

Theory:

 \rightarrow Half of the output states with zero probability

 \rightarrow Suppression law \rightarrow How to generalise for N photons and relate to the symmetry?

Perez-Leija et al., Phys. Rev. A 87, 012309 (2013)

Keil et al., Phys. Rev. A 81, 023834 (2010)

Outline

- Introduction Symmetries
- Symmetries in multi-particle interference
- Spin-chains for perfect state transfer and their optical representation
- Many-photon dynamics in state transfer lattices
 - Suppression law
 - Multi-photon experiments

nhotonik															i	iniversität nnsbruck
рпотопік																
photonics																

Symmetry of the state transfer lattice

Symmetry relations:

photonik

 $k \leftrightarrow M - k + 1$

$$P_m^{a,b}(0) = (-1)^m P_m^{b,a}(0) \Rightarrow u_{M-k+1,m} = (-1)^{m-1} u_{k,m}$$

\rightarrow Symmetry of the unitary:

$$\forall k, m: U_{M-k+1,m} = e^{i\phi(M)}(-1)^{m-k}U_{k,m}$$
global phase factor

→ Parity dependent mirror (anti-) symmetry

Dittel et al., 31st SFB FoQuS Meeting, 2015

Parity-symmetric arrays

$$U_{M-k+1,m} = e^{i\phi(M)}(-1)^{m-k}U_{k,m}$$

Symmetry of the input state:

$$r_j = r_{M-j+1}$$

→ Generalisation of the beam splitter symmetry to *M* modes

Suppression Law

$$\operatorname{mod}\left[\sum_{j=1}^{N} d_{j}(\vec{s}) + N, 2\right] = 1 \Rightarrow P_{\mathrm{B}}(\vec{r}, \vec{s}) = 0$$

Output states with an **odd number of bosons** in **even labelled modes** are strictly suppressed

Example N = 2, M = 2: $\vec{s} = (1,1)$ $\vec{s} = (1,2)$ $\vec{s} = (1,2)$ $\vec{s} = (2,0)$ $\vec{s} = (2,0)$ $\vec{d}(\vec{s}) = (1,1)$ $\vec{d}(\vec{s}) = (1,1)$ $\vec{s} = (2,0)$ $\vec{d}(\vec{s}) = (1,1)$ $\vec{d}(\vec{s}) = (1,1)$ $\vec{d}(\vec{s}) = (1,1)$

Example N = 6, M = 4:

$$\vec{s}_{1} = (0, 5, 0, 1) \qquad 5 + 1 = 6 \implies P_{B}(\vec{r}, \vec{s}_{1}) = ? \qquad \text{Allowed event} \\ \vec{s}_{2} = (1, 4, 0, 1) \qquad 4 + 1 = 5 \implies P_{B}(\vec{r}, \vec{s}_{2}) = 0 \qquad \text{Suppressed event}$$

photonik

Dittel et al., 31st SFB FoQuS Meeting, 2015

Suppression Law - Characteristics

- Suppression relies on *N*-particle interference
- ightarrow Requires full indistinguishability
- Analytic result → Computable also for very large systems

Outline

- Introduction Symmetries
- Symmetries in multi-particle interference
- Spin-chains for perfect state transfer and their optical representation
- Many-photon dynamics in state transfer lattices
 - Suppression law
 - Multi-photon experiments

nhotonik															universitä Innsbruck
рпотопік															
photonics															E CONT

Experimental setup

- Pulsed Ti:Sapphire pump laser at 808 nm, 200 fs, 76 MHz
- Frequency doubled , ca. 400 mW @ 404 nm
- BBO crystal for type-II parametric fluorescence (SPDC)
- Distinguishability adjusted by time-delay

photonik

photonics

• Heralded collection of non-colliding 3-Photon events

Dittel et al., 31st SFB FoQuS Meeting, 2015

Experimental results

Experimental results

→ <u>Next steps</u>: More precise unitary, N = 4 photons from upgraded source (type-I SPDC, brighter, 90% HOM-visibility)

Conclusion

photonik

photonics

- Multi-particle interference governed by • single-particle dynamics + exchange statistics
- Boson interference hard to calculate ٠ classically \rightarrow Boson sampling
- Symmetries can help to reduce complexity of **Boson scattering**
- Spin-chain for perfect state transfer \rightarrow Mirror ٠ symmetry
- Waveguide lattice for multi-photon ٠ interference → Suppression law for symmetric inputs

Thank you for your attention!

0.05

Output $d(\vec{s})$

36

ohotonics by otonik

