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1. Introduction and Motivation



Introduction and Motivation

An exquisite control over the external and internal
degrees of freedom of atoms developed over decades
lead to the realization of Bose-Einstein Condensation in
dilute alkali gases at nK temperatures.

Worldwide ~ 170 atom trap experiments
Condensed Species:
H,Li,Na, K, Rb,Cs,Yb,He*,Cr, ..., Dy

Key tools available:

e Laser and evaporative cooling

o Magnetic, electric and optical dipole traps
e Optical lattices and atom chips
Q

Feshbach resonances (mag-opt-conf) for tuning of
L. interaction
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Introduction and Motivation

Enormous degree of control concerning preparation,
processing and detection of ultracold atoms !

Weak to strongly correlated many-body systems:

o BEC nonlinear mean-field physics (solitons, vortices,
collective modes,...)

a Strongly correlated many-body physics (quantum
phases: MI etc.; Kondo- and impurity physics,
disorder, Hubbard model physics, high T.
superconductors,...)

Few-body regime:
o Novel mechanisms of transport and tunneling

o Atomtronics (Switches, diodes, transistors, ....)
L° Quantum information processing

In particular: Links between these regimes !

—p.6/45



Introduction: Some facts

Finite, and in particular 'stronger’ interactions:
@ Correlations are ubiquitous

o A multiconfigurational ansatz is necessary

U(ry,...,ry,t) = Zciq)i(rla s TN, )
— |deal laboratory for exploring the dynamics of
correlations (beyond mean-field):

e Preparation of correlated initial states

e Spreading of localized/delocalized correlations ?

e Time-dependent ‘'management’ and control of correlations ?
e Is there universality in correlation dynamics ?
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Introduction and Motivation

Calls for a versatile tool to explore the (nonequilibrium)
guantum dynamics of ultracold bosons: Wish list

o Take account of all correlations (numerically exact)
a Applies to different dimensionality
Time-dependent Hamiltonian: Driving

Q
o Weak to strong interactions (short and long-range)
e Few- to many-body systems

Q

Mixed systems: different species, mixed
dimensionality

Efficient and fast
LQ_
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Introduction and Motivation

Multi-Layer Multi-Configuration Time-Dependent Hartree
for Bosons (ML-MCTDHB) is a significant step in this
direction !

In the following: Some selected diverse applications to
ultracold bosonic systems.
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2. Methodology: The ML-MCTDHB
Approach



The ML-MCTDHB Method

@ aim: numerically exact solution of the time-dependent Schrédinger equation

for a quite general class of interacting many-body systems

@ history: [H-D Meyer.WIREs Comp. Mol. Sci. 2, 351 (2012).]
MCTDH (1990): few distinguishable DOFs, quantum molecular dynamics
ML-MCTDH (2003): more distinguishable DOFs, distinct subsystems
MCTDHF (2003): indistinguishable fermions
MCTDHB (2007): indistinguishable bosons

@ idea:

use a time-dependent, optimally moving basis in the many-body Hilbert space

instantaneous
subspaces
Y p
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Hierarchy within ML-MCTDHB

We make an ansatz for the state of the total system | W) with time-dependencies on
different layers:

S
op laver [ 1) = 0Ly - S0Z, vy () @ 147 (1)

species layer |1pl(f)(t)) = > AN, Cg;ﬁ(t) 172) (t)

particle layer |¢,(€U)(t)> = Z?;l Bg,l(t)qu>

@ Mc Lachlan variational principle: Propagate the ansatz |¥;) = [T ({\:})), A\ € C
according to id| W) = |©¢)  with |©;) € span{ % |¥({){}))} minimizing the
t

error functional  |||©:) — H|¥)||2
[AD McLachlan. Mol. Phys. 8, 39 (1963).]

@ In this sense, we obtain a variationally optimally moving basis!

©

Dynamical truncation of Hilbert space on all layers

@ Single species, single orbital on particle layer — Gross-Pitaevskii equation !
L (Nonlinear excitations: Solitons, vortices,...)
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The ML-MCTDHB equations of motion

@ top layer EOM:

M- Mg

S S
0 Ay, ig = > e Zw;” A S Sy Ay

Jj1=1 jg=1

with ... (%) = [4{0) ® ... @ [4))

= system of coupled linear ODEs with time-dependent coefficients due to the
time-dependence in |zp§.")(t)) and |¢§.a)(t))

= reminiscent of the Schrddinger equation in matrix representation

@ species layer EOM:

B0 = (I~ P) 35S (o) Mg )y
j,k=1m|Ny

3

L = system of coupled non-linear ODEs with time-dependent coefficients due to the
time-dependence of the |¢§.")(t)> and of the top layer coefficients
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The ML-MCTDHB equations of motion

@ particle layer EOM:

16 = (1 — PRty S [(per) oy ()70l

7,k=1

= system of coupled non-linear partial integro-differential equations
(ODEs, if projected on |u,(f)>, respectively) with time-dependent
coefficients due to time-dependence of the C7 _ and A;, .. i
Lowest layer representations:

@_ Discrete Variable Representation (DVR):
implemented DVRs: harmonic, sine (hardwall b.c.), exponential (periodic b.c.),
radial harmonic, Laguerre

@ Fast Fourier Transform

Stationary states via improved relaxation involving imaginary time propagation !

L S Krénke, L Cao, O Vendrell, P S, New J. Phys. 15, 063018 (2013).
L Cao, S Krénke, O Vendrell, P S, J. Chem. Phys. 139, 134103 (2013).
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3. Collective dynamics at the
crossover from few- to many-body
systems



Collective Dynamics...

Follow a bottom-up approach in the emergence of
collective dynamics with increasing atom number: From

few to many.
Prototype example and first application of ML-MCTDHB.

Quench-induced breathing dynamics of ultracold bosons
In @ harmonic trap.

Answer the question:

o Discrete structure and frequency spectrum transform
iInto collective behaviour

e Correlations change the simple mean-field picture

=
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Start with two atoms...

901 ‘

801

- | e Beating and breathing
: | dynamics of < X? >

50F @

FT[ St] [a.u.]

“ 1'150 50 100 150: 2 TWO domlnant peaks In a

30/ t [HO-U]

background of frequencies:
Relative + CM motion

e Relative motion breathing
mode frequency varies with
g whereas CM one not.

o 2 4 6 8 10 12 14 16 18
g HO-U]

L Rich breathing spectrum: Infinite sets of bands around 2n{)
- but strongly suppressed !
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A more detailed view...

C Il Il Il Il Il Il Il Il Il §|
0 2 4 6 8 10 12 14 16 18 20
g @2 [HO-U]

e Full breathing/beating mode spectrum up to 20
guanta at any interaction strength up to =~ 61.

e Inset: detailed view on the lowest band.

e Frequencies: woy; 21 2527 Which refers to the frequency
arising from <(I>2[gb2i‘ X ‘¢2J¢2j>.
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Moving up to 140 atoms...
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o CM breathing mode becomes
strongly suppressed

e Breathing of the relative motion
becomes dominant !

e Breathing mode frequency with

varying particle number for var-
lous interaction strength ¢
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Moving up to 140 atoms...
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e Many-body versus mean-field breathing mode frequency.

Eee: R. Schmitz, S. Krénke, L. Cao and P.S., PRA 88, 043601 (2013)
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4. Multi-mode quench dynamics in
optical lattices



Main features

Focus: Correlated non-equilibrium dynamics of in
one-dimensional finite lattices following a sudden
interaction quench from weak (SF) to strong interactions!

Phenomenology: Emergence of density-wave tunneling,
breathing and cradle-like processes.

Mechanisms: Interplay of intrawell and interwell dynamics
iInvolving higher excited bands.

Resonance phenomena: Coupling of density-wave and
cradle modes leads to a corresponding beating
phenomenon !

= Effective Hamiltonian description and tunability.
L Incommensurate filling factor v > 1(v < 1)
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Post quench dynamics....

Fluctuations dp(x,t) of the one-body density for weaker
(a) and stronger (b) quench: Spatiotemporal oscillations.
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Mode analysis

a Density tunneling mode: Global ’envelope’ breathing
a ldentification of relevant tunneling branches
(number state analysis)

o Fidelity analysis shows 3 relevant frequencies:
pair and triple mode processes

a Transport of correlations and dynamical bunching
antibunching transitions

e On-site breathing and craddle mode: Similar analysis
possible involving now higher excitations

=
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Craddle and tunneling mode interaction

(b)

w/Aw

05 1 15 2 25 3 35 4 45 0 20 40 60 80 100
59 t

Fourier spectrum of the intrawell-asymmetry Apy (w):

- N W A O o N o o X

Avoided crossing of tunneling and craddle mode !

= Beating of the craddle mode - resonant enhancement.
Ls.l. Mistakidis, L. Cao and P. S., JPB 47, 225303 (2014), PRA 91, 033611 (2015)
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5. Many-body processes in black and
grey matter-wave solitons



Setup and preparation

e N weakly interacting bosons in a one-dimensional
box

o Initial many-body state: Little depletion, density and
phase as close as possible to dark soliton in the
dominant natural orbital

a Preparation: Robust phase and density engineering
scheme.
CARR ET AL, PRL 103, 140403 (2009); PRA 80, 053612
(2009); PRA 63, 051601 (2001); RUOSTEKOSKI ET AL, PRL
104, 194192 (2010)

=
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Density dynamics

e Reduced one-body density
P1 (SIZ, t)
03 @ N =100, v=0.04

e Black (top) and grey
(bottom) soliton

oot @ M =4 optimized orbitals

e Inset: Mean-field theory
(GPE)

e Slower filling process of
density dip for moving soli-
ton

0.00

t (units of 7)
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c(t)/c(0)

Evolution of contrast and depletion

1.0
0.8
0.6
- ®
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0.2 B=071

L
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@ Relative contrast ¢(t)/c(0) of dark

=

2 3 4 5
t (units of 7)

solitons for various 8 = *

(c(t) =

max pj (an)_pl (:I?f 7t)

max p1(2,0) 1 p1 (25 ,1)

)

t (units of 7)

@ Dynamics of quantum depletion
d(t) =1 — max; A\;(t) € [0,1] and
evolution of the natural populations
Ai(t) for B = 0.0 (solid black lines)

and 8 = 0.5 (dashed dotted red lines).

p1(t) = M N (1) @i ()X (D)
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Natural orbital dynamics

10.036

10.024

x (units of &)

0.012

0.000

10.090

10.060

0.030

x (units of &)

0123456'

o 1 2

t (units of 7) t (units of 7)

L @ Density and phase (inset) evolution of the dominant and second domi-
nant natural orbital. (a,b) black soliton (c,d) grey soliton 5 = 0.5.
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e Two-body correlation function gs(x1, z2;t) for a black soliton
(first row) and a grey soliton 5 = 0.5 (second) at times

t = 0.0 (first column), t = 2.57 (second) and ¢ = 57 (third).
S. Kréonke and P.S., PRA 91, 053614 (2015)
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6. Atom-ion hybrid systems:
Structure and dynamics



Experiment:

o B. Ruff, T. Kroker, J. Franz, T. Lampe, M. Neundorf, J.
Simonet, P. Wessels, K. Sengstock and M. Drescher

Theory:
a J. Schurer, A. Negretti and P. Schmelcher

=
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Motivation

Focusing on the physics of ions in a gas of trapped
ultracold atoms: Hybrid atom-ion systems.

o Controlled state-dependent atom-ion scattering

e Novel tunneling and state-dependent transport
processes

a Spin-dependent interactions

e Emulate condensed matter systems on a finite scale,
including dynamics: polarons, charge-phonon
coupling, ... PRL 111, 080501 (2013)

e Mesoscopic molecular ions and ion-induced density
bubbles - PRL 89, 093001 (2002); PRA 81, 041601 (2010)
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Challenges and Developments

e Atom-ion interaction introduces an additional length

scale R* = /25t

e 'Molecular bound states

e Our toolbox: ML-MCTDHB

o Modelling of ultracold atom-ion collisions:

a Quantum defect theory links defect parameters to
asymptotic scattering properties: Covering a
broad range of scattering behaviour

= Model potential: V(z) = Vpe 7% — 1

44 1
z—l—w

—p.35/45



= KEnergy

First: Static strongly trapped ion 1

Ground state of a localized ion in a cloud of ultracold

atoms in a harmonic trap

J. SCHURER ET AL, PRA 90, 033601 (2014)

E/N (units of E*)

Thomas-Fermi profile

80

harmonic case
- - -ionic case
60+

z (units of R™*)

1 E/N

Eint/N

= Ekin/N
Eion/N

0 50 100 150 200

Energetical contributions

0.1 0.2 0 0.1 0.2 0 0.1 0.2
t (units of i/ E*)
Expansion dynamics of the density ~ p.36/45



Next: Sudden creation of the ion

Laser pulse creates an ion immersed into a bosonic

ensemble of atoms

E/h (kHz)

Effective potential, ion-bound

and trap states

J. SCHURER ET AL,
NJP 17, 083024

L(201 5)

w (units of E*/h)
o
3

)
"
1
1
1
D
1
1

= s & = P Excitation spectrum

20 40 60 80 100 120 140
o (mnite of F*/h)

o
o

N
- N
o

o

(units of R*)

4
I
N

ot
o1

E/N (u1c131ts of E*)
p(z)/N (units of 1/R*)

-50 0
1

0 0.2 0.4 0.6 0.8
t (units of A/ E™)

Time evolution of the density and energies per particle
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Recent progress: Background

1

Impact of many-body correlations on the dynamics of an

lon-controlled bosonic Josephson junction

Bosonic Josephson junction: Rabi oscillations versus
macroscopic quantum self-trapping - suppression of

tunneling.

Add an ion: Coupling between the wells can be
controlled by the ionic spin state. lon-bosons
entanglement.

Unknown impact of many-
— body correlations on this
process !

R. GERRITSMA ET AL,
PRL 109, 083024 (2012)

=

E,

il

T

AIAVA

wiwav;

YANE
:
l4

]

TA

— p.38/45



Ion controlled bosonic Josephson junction

Controlled tunneling dynamics for the many-body
interacting case: Bosonic ensemble is chosen in the
self-trapping regime.

Tunneling regime Self-trapping regime
lon state 1 lon state 2

—_

51

z (units of R¥)
p(z)/N (units of 1/R*)
z (units of R*)

o
o
p(z)/N (units of 1/R*)

0 20 40 60 80 100
t (units of h/E*) t (units of 7/ E™)

One-body density p(z, t) as well as left well p;, and right well pr occupation

.o Principally: lon-controlled BJJ is still operational
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Ion controlled bosonic Josephson junction

— 1

—_

z (units of R¥)
e
[6)}
p(z)/N (units of 1/R*)
z (units of R*)
o
o
(6] ]
p/N
o
o
p(z)/N (units of 1/R*)

S ' '
io 0

0 20 40 60 80 100 0 20 40 60 80 100
t (units of h/E*) t (units of 7/ E™)

One-body density p(z,t) as well as left well p;, and right well pr occupation

e Major interaction effects present:

o Damping of low frequency oscillations (collapse
and revival): Singlet analysis with two relevant
modes.

a Fast frequency oscillations: In p;, and pr, mostly
due to the ion-bound component. Many modes

L. participate.
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Ion controlled bosonic Josephson junction

Build up of correlations: Natural population analysis
indicates degree of fragmentation !

Tunneling regime Self-trapping regime

—_— ] A
e~ 0 = e~ 0 =
& _5 = & _5 =
- 3 5 z = 3 5 :
= 20 0538 20 0.53
< P a 5 3 < S a 5 3
10 /3 5 Z, 10 =75 <
N ~ N ~
0] i — /— 0 =
S S
; -5 x ; -5 =
0 50 100 0 50 100 O & 0 50 100 0 50 100 ° &

t (units of h/E*) t (units of h/EX) t (units of h/E*) t (units of h/EX)

Hierarchy Of natura| OrbitaIS J. SCHURER, PRA 93, 063602 (2016); HIGHLIGHTED

1. Orbital: Expected TR and STR behaviour
2. Orbital: Mirror image

L3. Orbital: lon bound state dominated contribution

= Entanglement protocol !
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In progress: Mesoscopic charged molecules in a BEC

Challenges:

Q

Q

Include Motion of lon
Many-Body Bound States

Main Observations:

Q

Formation of lonic Molecule

e Stabilizing by Shell-Structure

Q

Q

=

e Formation of Thomas-Fermi Bath

Formation
Dissociation
Strong Self-Localization of lon

Molecule |, =i

Ionization

Molecule

n Bath 0.2

15

z (units of R*)
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7. Concluding remarks



Conclusions

o« ML-MCTDHB is a versatile efficient tool for the
nonequilibrium dynamics of ultracold bosons.

o Few- to many-body systems can be covered: Shown
here for the emergence of collective behaviour.

e Many-mode correlation dynamics: From quench to
driving.

e Beyond mean-field effects in nonlinear excitations.

a Open systems dynamics, impurity and polaron
dynamics, etc.

e Mixtures !
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Thank you for your attention !



