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Two-photon interference at a beam splitter
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“It is not the photons that interfere physically, it is their probability amplitudes that 
interfere – and probability amplitudes can be defined equally well for arbitrary 
numbers of photons”

ONE HUNDRED YEARS OF LIGHT QUANTA Nobel 
Lecture, December 8, 2005 by Roy J. Glauber



Interference of probability amplitudes

G($)(t"#, t$# ) =
1
2
		 	+

𝑟
𝑟
𝐀" t$1 	𝐀2 t"# 													− 			𝐀1 t"1 	𝐀2 t$1 		

$

+

1 1’

2 2’

1

2 2’

−

1’

				𝐀" t$1 	

𝐀2 t"# 𝐀1 t"1 	

𝐀2 t$1

=
1
2 𝑝𝑒𝑟𝑚	

−	𝐀1 t"1 𝐀2 t"1
𝐀1 t$# 𝐀2 t$1

$



3!=6 interfering 3-photon probability amplitudes

+ +

So far single-boson  interference… 

“Each  photon  then  interferes  only  with  itself. 
Interference between two different photons  
never  occurs”. 
 
P. A. M. Dirac, Nobel Prize in Physics in 1933 

“It  is  worth  recalling  at  this  point  that  interference  simply  means  that  the  probability  
amplitudes for alternative and indistinguishable histories must be added together 
algebraically. It is not the photons that interfere physically, it is their probability amplitudes 
that interfere – and probability amplitudes can be defined equally well for arbitrary numbers 
of  photons” 

ONE HUNDRED YEARS OF LIGHT QUANTA Nobel Lecture, 
December 8, 2005 by Roy J. Glauber 

+ +

Three-photon interference



N! interfering N-photon probability amplitudes: 
N! simultaneous computational tasks!
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Quantum Computational Supremacy

ØZooming in on arbitrary 
N-Photon State Evolutions

ØN-Photon Entanglement Generation

ØMulti-Boson Computational Speed-Up



Quantum Computational Supremacy

ØZooming in on arbitrary 
N-Photon State Evolutions



Multiboson Correlation Interferometry with arbitrary single-photon pure states
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We provide a compact full description of multiboson correlation measurements of arbitrary order
N in passive linear interferometers with arbitrary input single-photon pure states. We give evidence,
even for non-identical photons, of the tremendous computational power of multiphoton quantum in-
terference at the heart of the complexity of multiboson correlation sampling at the output of random
linear interferometers. Moreover, our results describe general multiboson correlation landscapes for
an arbitrary number of input single photons and arbitrary interferometers. In particular, we use two
different schemes to demonstrate, respectively, arbitrary-order quantum beat interference and 100%
visibility entanglement correlations even for input photons distinguishable in their frequencies.

Motivation . Multiboson interference based on cor-
related measurements is a fundamental phenomenon in
atomic, molecular and optical physics with numerous
applications in quantum information processing [1, 2],
quantum metrology [3, 4], and imaging [5]. The well-
known two-boson interference “dip” [6–9] is recorded
when two single bosons impinge on a balanced beam
splitter and joint detections are performed at the out-
put channels. The dip is a manifestation of the destruc-
tive quantum interference between the two-boson quan-
tum paths corresponding to both bosons being reflected
or transmitted. Recent works [10–23] have demon-
strated the feasibility of multiboson experiments based
on higher-order correlation measurements well beyond
two-boson experiments, which are crucial towards quan-
tum networks of arbitrary dimensions and the demon-
stration that boson sampling devices are probably hard
to reproduce classically [24–26].

At the same time, the advent of fast detectors and the
production of single photons with arbitrary temporal and
spectral properties [27–29] make it possible to fully inves-
tigate the temporal dynamics of multiphoton interference
via time-resolving correlation measurements [30] by us-
ing atom-cavity systems [31], nitrogen vacancy centers in
diamonds [32, 33], atomic ions [34] and remote organic
molecules [35]. Two-photon quantum interference as a
function of the detection time has been observed [31] in
the form of quantum beats for single photons even when
the relative central frequency is larger than their band-
widths. Moreover, the possibility to encode and retrieve
an entire time-dependent quantum alphabet with high
fidelity [36, 37] within a given photon spectrum is impor-
tant for cluster-state quantum computing [38], quantum
cryptographic schemes [39], and enhanced time metrol-
ogy [40, 41].

Finally, higher-order multiphoton interference based
on polarization correlation measurements has been
widely used for the generation of multiqubit entangle-
ment [42, 43] and tests of quantum nonlocality [44]. This
has triggered the implementation of many quantum in-
formation applications, including quantum dense coding
protocols [45], entanglement swapping, and teleportation
[46, 47], entanglement distribution between distant mat-

ter qubits such as ions [48] and atomic ensembles [49].
Despite all these remarkable achievements, there is

still no full quantum optical description of time and/or
polarization-resolving correlation measurements of arbi-
trary order in linear multiboson interferometers with in-
put bosons in an arbitrary internal state. In this letter,
we wholly perform such a description and unravel the
intimate connection between the fundamental physics of
multiboson interference and its computational power.

Although here we consider photonic networks, our re-
sults are relevant for any interferometric network with
bosonic sources, including atoms [8, 9], plasmons [50] and
mesoscopic many-body systems [51], and can be easily ex-
tended to Fock states of an arbitrary number of bosons
[52] as well as to different input states [53, 54].

Multiboson Correlation Interferometry . Let us
introduce the following general multiphoton correlation
experiment based on time and polarization resolving
measurements (see Fig. 1): N single photons are pre-
pared at the N input ports of a linear interferometer with
2M � 2N ports [55]. At the output of the interferome-
ter, we consider all possible correlated detection events,
at given times and polarizations, of the N photons at any
N -port sample D of the M output ports [56].

If S describes the set of occupied input ports, the N -
photon input state is

|Si ..
=

O
s2S

|1[⇠s]is
O
s/2S

|0is, (1)

where, using an arbitrary polarization basis {e1, e2}, the
single-photon multimode states are defined as

|1[⇠s]is ..
=

X
�=1,2

1Z
0

d! (e� · ⇠s(!)) â†s,�(!)|0is, (2)

with the creation operator â†s,�(!) for the frequency mode
! and the polarization � [55, 57]. The direction, mag-
nitude, and phase of the complex spectral distribution
⇠s(!) (with normalization condition

R
d! |⇠s(!)|2 = 1)

define the polarization, the frequency spectrum, and the
time of emission of the photon, respectively.
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Photons of different colors: 
no time-resolved detections

No multiphoton interference 
Different colors:



Photons of different colors: time-resolved detections

Zooming in on arbitrary 
N-photon state evolution

Ø Three-Photon “Dip”
Ø Quantum Beats

Detection integration time:
V. Tamma and S. Laibacher, Phys. Rev. Lett. 114, 243601 (2015)



Quantum Computational Supremacy

ØZooming in on arbitrary 
N-photon State Evolutions

ØN-Photon Entanglement Generation

ØMulti-Boson Computational Speed-Up



2M-port linear
interferometer
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Figure 1. General boson sampling interferometer. N single bosons are injected into an N -port subset S of the M input ports

of a linear interferometer. They can be detected at the output in any possible sample D containing N of the M output ports.
For each output port sample D and given input configuration S, the evolution through the interferometer is fully described by

an N ⇥N submatrix U(D,S) of the original M ⇥M interferometer random matrix U .

2. Interferometer description

We consider the linear interferometer in Fig. 1. For a set S of occupied input ports, the input state

|Si ..=
O
s2S

|1[⇠s]is
O
s/2S

|0is, (1)

is defined by N single-photon pure states

|1[⇠s]is ..=
X
�=1,2

Z 1

0
d! (e� · ⇠s(!)) â†s,�(!)|0is, (2)

with the creation operator â†s,�(!) for the frequency mode ! and the polarization mode � [13].
The magnitude, phase and direction of the complex spectral distribution ⇠s(!) (normalized asR
d! |⇠s(!)|2 = 1) correspond to the frequency spectrum, the time of emission, and the polarization

of the photon, respectively.
After the evolution in the interferometer, in the condition of equal propagation times �t along

any possible path, an N -photon detection can occur in any N -port sample D. The rate of an N -
fold detection event at detection times {td}d2D and in the polarizations {pd}d2D is given by the
Nth-order Glauber correlation function [14]

G(D,S)
{td,pd}

..= hS|
Y
d2D

⇣
p⇤
d · Ê

(�)
d (td)

⌘⇣
pd · Ê

(+)
d (td)

⌘
|Si, (3)

where pd · Ê
(+)
d (td) are the pd-polarized components of the electric field operators

Ê(+)
d (td) =

X
s2S

Ud,sÊ
(+)
s (td ��t), (4)

with d 2 D, written in terms of the operators Ê(+)
s (td � �t) at the input ports s 2 S, and the

N ⇥N submatrix

U (D,S) ..= [Ud,s]d2D
s2S

(5)
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with

Ø Identical photons
Ø Random unitary transformation U 
Ø M >> N ≥ 30
Ø Sampling measurements 

(no time-resolved detections)

Boson sampling 
with identical bosons 
hard to simulate classically



Interference-type 
matrices:

N-boson 
indistinguishability
factors:

with

Pairwise state distinguishability

May 1, 2015 Journal of Modern Optics Test

of the random unitary M ⇥ M matrix U describing the interferometer. We refer to [1] for the
full description of the physics of multi-photon correlation interferometry in arbitrary linear net-
works arising from the correlation function in Eq. (3), which describes all the interfering N -photon
detection amplitudes for an N-photon detection event [14].

3. Boson sampling based on “non-resolving” measurements

Here, we discuss only the case of measurements which do not resolve the detection times and
polarizations, resulting in an average over these degrees of freedom. This is the type of measurement
considered in the initial formulation of the boson sampling problem introduced in [7]. In this case,
we obtain the probability [1]

Pav(D;S) ..=
X

{pd}2{e1,e2}⌦N

Z 1

�1

⇣ Y
d2D

dtd
⌘
G(D,S)

{td,pd} (6)

to detect the N photons injected in the ports S at the output ports D, where {e1, e2} is an arbitrary
polarization basis.
It is useful to define the interference-type matrices

A(D,S)
⇢

..= [U⇤
d,sUd,⇢(s)]d2D

s2S
. (7)

and the indistinguishability weights

f⇢(S) ..=
Y
s2S

g(s, ⇢(s)), (8)

with a permutation ⇢ from the symmetric group ⌃N , and with the two-photon indistinguishability
factors

g(s, s0) =

Z 1

�1
d! ⇠s(!) · ⇠s0(!). (9)

As shown in [1] the probability of an N -fold detection in the sample D can be expressed, in the
narrow-bandwidth approximation, as

Pav(D;S) =
X
⇢2⌃N

f⇢(S) permA(D,S)
⇢ =

X
⇢2⌃N

f⇢(S)
X
�2⌦

"Y
s2S

U⇤
�(s),s

Y
s2S

U�(s),⇢(s)

#
, (10)

where ⌦ is the group of bijective functions � between the sets S and D.
The probability Pav(D;S) in Eq. (10) associated with the detection of N photons in the N -port

sample D comprises N ! contributions for each permutation ⇢ 2 ⌃N . Each contribution contains all
N ! terms

Q
s2S U⇤

�(s),sU�(s),⇢(s) arising from the interference of the interferometer-dependent multi-

photon amplitudes
Q

s2S U�(s),s, with � 2 ⌦, in the condition that the N source pairs {(s, ⇢(s))}s2S
for each crossterm are fixed by a given permutation ⇢. Moreover, each weight f⇢(S) describes the
degree of pairwise indistinguishability for the set of source pairs {(s, ⇢(s))}s2S .
In the trivial case ⇢ = 1, each photon is paired with itself and the indistinguishability weight

is f⇢(S) = 1. Yet, the indistinguishability weight for ⇢ 6= 1 can have arbitrary values depending
on the overlap of the spectral distributions ⇠s(!) and ⇠⇢(s)(!) of each pair of photons. Thereby,
these weights describe how the degree of distinguishability of the photons at the detectors a↵ects

3

Partially distinguishable input photon states 
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Figure 1. General boson sampling interferometer. N single bosons are injected into an N -port subset S of the M input ports

of a linear interferometer. They can be detected at the output in any possible sample D containing N of the M output ports.
For each output port sample D and given input configuration S, the evolution through the interferometer is fully described by

an N ⇥N submatrix U(D,S) of the original M ⇥M interferometer random matrix U .

2. Interferometer description

We consider the linear interferometer in Fig. 1. For a set S of occupied input ports, the input state

|Si ..=
O
s2S

|1[⇠s]is
O
s/2S

|0is, (1)

is defined by N single-photon pure states

|1[⇠s]is ..=
X
�=1,2

Z 1

0
d! (e� · ⇠s(!)) â†s,�(!)|0is, (2)

with the creation operator â†s,�(!) for the frequency mode ! and the polarization mode � [13].
The magnitude, phase and direction of the complex spectral distribution ⇠s(!) (normalized asR
d! |⇠s(!)|2 = 1) correspond to the frequency spectrum, the time of emission, and the polarization

of the photon, respectively.
After the evolution in the interferometer, in the condition of equal propagation times �t along

any possible path, an N -photon detection can occur in any N -port sample D. The rate of an N -
fold detection event at detection times {td}d2D and in the polarizations {pd}d2D is given by the
Nth-order Glauber correlation function [14]

G(D,S)
{td,pd}

..= hS|
Y
d2D

⇣
p⇤
d · Ê

(�)
d (td)

⌘⇣
pd · Ê

(+)
d (td)

⌘
|Si, (3)

where pd · Ê
(+)
d (td) are the pd-polarized components of the electric field operators

Ê(+)
d (td) =

X
s2S

Ud,sÊ
(+)
s (td ��t), (4)

with d 2 D, written in terms of the operators Ê(+)
s (td � �t) at the input ports s 2 S, and the

N ⇥N submatrix

U (D,S) ..= [Ud,s]d2D
s2S

(5)

2

Multiboson Correlation Interferometry with arbitrary single-photon pure states

Vincenzo Tamma and Simon Laibacher
Institut für Quantenphysik and Center for Integrated Quantum Science

and Technology (IQST), Universität Ulm, D-89069 Ulm, Germany

We provide a compact full description of multiboson correlation measurements of arbitrary order
N in passive linear interferometers with arbitrary input single-photon pure states. We give evidence,
even for non-identical photons, of the tremendous computational power of multiphoton quantum in-
terference at the heart of the complexity of multiboson correlation sampling at the output of random
linear interferometers. Moreover, our results describe general multiboson correlation landscapes for
an arbitrary number of input single photons and arbitrary interferometers. In particular, we use two
different schemes to demonstrate, respectively, arbitrary-order quantum beat interference and 100%
visibility entanglement correlations even for input photons distinguishable in their frequencies.

Motivation . Multiboson interference based on cor-
related measurements is a fundamental phenomenon in
atomic, molecular and optical physics with numerous
applications in quantum information processing [1, 2],
quantum metrology [3, 4], and imaging [5]. The well-
known two-boson interference “dip” [6–9] is recorded
when two single bosons impinge on a balanced beam
splitter and joint detections are performed at the out-
put channels. The dip is a manifestation of the destruc-
tive quantum interference between the two-boson quan-
tum paths corresponding to both bosons being reflected
or transmitted. Recent works [10–23] have demon-
strated the feasibility of multiboson experiments based
on higher-order correlation measurements well beyond
two-boson experiments, which are crucial towards quan-
tum networks of arbitrary dimensions and the demon-
stration that boson sampling devices are probably hard
to reproduce classically [24–26].

At the same time, the advent of fast detectors and the
production of single photons with arbitrary temporal and
spectral properties [27–29] make it possible to fully inves-
tigate the temporal dynamics of multiphoton interference
via time-resolving correlation measurements [30] by us-
ing atom-cavity systems [31], nitrogen vacancy centers in
diamonds [32, 33], atomic ions [34] and remote organic
molecules [35]. Two-photon quantum interference as a
function of the detection time has been observed [31] in
the form of quantum beats for single photons even when
the relative central frequency is larger than their band-
widths. Moreover, the possibility to encode and retrieve
an entire time-dependent quantum alphabet with high
fidelity [36, 37] within a given photon spectrum is impor-
tant for cluster-state quantum computing [38], quantum
cryptographic schemes [39], and enhanced time metrol-
ogy [40, 41].

Finally, higher-order multiphoton interference based
on polarization correlation measurements has been
widely used for the generation of multiqubit entangle-
ment [42, 43] and tests of quantum nonlocality [44]. This
has triggered the implementation of many quantum in-
formation applications, including quantum dense coding
protocols [45], entanglement swapping, and teleportation
[46, 47], entanglement distribution between distant mat-

ter qubits such as ions [48] and atomic ensembles [49].
Despite all these remarkable achievements, there is

still no full quantum optical description of time and/or
polarization-resolving correlation measurements of arbi-
trary order in linear multiboson interferometers with in-
put bosons in an arbitrary internal state. In this letter,
we wholly perform such a description and unravel the
intimate connection between the fundamental physics of
multiboson interference and its computational power.

Although here we consider photonic networks, our re-
sults are relevant for any interferometric network with
bosonic sources, including atoms [8, 9], plasmons [50] and
mesoscopic many-body systems [51], and can be easily ex-
tended to Fock states of an arbitrary number of bosons
[52] as well as to different input states [53, 54].

Multiboson Correlation Interferometry . Let us
introduce the following general multiphoton correlation
experiment based on time and polarization resolving
measurements (see Fig. 1): N single photons are pre-
pared at the N input ports of a linear interferometer with
2M � 2N ports [55]. At the output of the interferome-
ter, we consider all possible correlated detection events,
at given times and polarizations, of the N photons at any
N -port sample D of the M output ports [56].

If S describes the set of occupied input ports, the N -
photon input state is

|Si ..
=

O
s2S

|1[⇠s]is
O
s/2S

|0is, (1)

where, using an arbitrary polarization basis {e1, e2}, the
single-photon multimode states are defined as

|1[⇠s]is ..
=

X
�=1,2

1Z
0

d! (e� · ⇠s(!)) â†s,�(!)|0is, (2)

with the creation operator â†s,�(!) for the frequency mode
! and the polarization � [55, 57]. The direction, mag-
nitude, and phase of the complex spectral distribution
⇠s(!) (with normalization condition

R
d! |⇠s(!)|2 = 1)

define the polarization, the frequency spectrum, and the
time of emission of the photon, respectively.

V. Tamma and S. Laibacher, 
Phys. Rev. Lett. 114, 243601 (2015)



Ø Arbitrary single-photon pure states

Ø Sampling measurements based on 
time and polarization-resolving detections

Multiboson Correlation Sampling:
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FIG. 1. General setup for multiboson correlation interferom-
etry. N single bosons are injected into an N -port subset S
of the M input ports of a linear interferometer. They can be
detected at the output in any possible sample D containing
N of the M output ports at N corresponding detection times
{td}d2D. For each output port sample D and given input
configuration S, the evolution through the interferometer is
fully described by a N ⇥N submatrix U (D,S) of the original
M ⇥ M interferometer matrix U . The correlated measure-
ments can be performed in any bosonic degree of freedom,
such as time, polarization and spin.

After the evolution in the interferometer, an N -photon
detection can occur in any N -port sample D at detec-
tion times {td}d2D and in the polarizations {pd}d2D.
For simplicity, we consider input photon spectra in the
narrow bandwidth approximation and a polarization-
independent interferometric evolution with equal prop-
agation time �t for each possible path. The field oper-
ators ˆE(+)

d (td) at the detected ports d 2 D can then be
written in terms of the operators ˆE(+)

s (td � �t) at the
input ports s 2 S as

ˆE(+)
d (td) =

X
s2S

Ud,s
ˆE(+)
s (td ��t) (3)

through the N ⇥N submatrix

U (D,S) ..
= [Ud,s]d2D

s2S
(4)

of the unitary M ⇥M matrix U describing the interfer-
ometer.

The rate of an N -fold detection event for ideal pho-
todetectors is now given by the Nth-order Glauber cor-
relation function [58]

G(D,S)
{td,pd}

..
= hS|

Y
d2D

⇣
p⇤
d · ˆE(�)

d (td)
⌘⇣

pd · ˆE(+)
d (td)

⌘
|Si,

(5)

where pd · ˆE(+)
d (td) is the component of the electric field

operator in Eq. (3) in the detected polarization pd.
By using the Fourier transforms

�s(t) ..
= F [⇠s](t��t) (6)

of the frequency distributions, defining the matrices

T (D,S)
{td,pd}

..
=

⇥
Ud,s

�
pd · �s(td)

�⇤
d2D
s2S

(7)

and applying the definition of the permanent of a matrix,

permM ..
=

X
�2⌃N

Y
i

Mi,�(i), (8)

where the sum runs over all permutations � in the
symmetric group ⌃N , the N -photon probability rate in
Eq. (5) can be easily expressed as

G(D,S)
{td,pd} =

���perm T (D,S)
{td,pd}

���2 , (9)

as shown in App. A. Here, the permanent describes the
coherent superposition of N ! detection probability ampli-

tudes each corresponding to a different N -photon quan-

tum path from the input ports in S to the output ports in
D. Each N -photon amplitude is the product of the N re-
spective single-photon amplitudes, which are the entries
of the matrix T (D,S)

{td,pd} in Eq. (7). Therefore, the inter-
ference between the N ! quantum paths depends strongly
not only on the interferometric evolution but also on the
spectral distributions defining the multiphoton state in
Eq. (1) and on the detection times and polarizations as-
sociated with a measured correlation sample.

Multiboson Correlation Sampling . For approxi-
mately equal detection times td ⇡ t and equal polar-
izations pd = p, 8d 2 D, all quantum paths become
effectively indistinguishable even for non-identical input
photons, and the multiphoton detection rate in Eq.(9)
becomes

G(D,S)
t,p =

���permU (D,S)
���2 Y

s2S
|p · �s(t)|2 . (10)

Here, if for each input photon, the detection probabil-
ity |p · �s(t)|2 after free propagation is not vanishing at
a given time t, the interference of all possible N -photon
quantum paths depends, apart from an overall factor,
only on the permanent of submatrices U (D,S) of the in-
terferometer transformation. In particular, for a random
linear interferometer with 30 . N ⌧ M input pho-
tons, such permanents are already not tractable with
a classical computer [24]. Therefore, in this case, the
task of multiboson correlation sampling, i.e. sampling
by time/polarization resolving correlation measurements
from the probability distribution at the interferometer
output, cannot, in general, be simulated by a classical
computer even for non-identical photons.

Multiboson correlation landscapes. The general
result obtained in Eq. (9) allows us to describe the possi-
ble multiboson interference “landscapes” which arise from
correlation measurements in given degrees of freedom
(time, polarization, spin, etc.) depending on the internal
state of the input bosons and on the interferometer trans-
formation. As an example, we consider N = 3-photon

with



Photons of different colors

Ø Boson Sampling Trivial

Different colors:



Multiboson Correlation Sampling

Ø Multi-Boson Correlation Sampling Hard even in the Approximate case 

Detection integration time:

∝

N-photon interference at any detection time:

Different colors:



Ø Zooming in on N-photon state evolution

Summary

Ø N-photon Entanglement Generation
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Ø Multi-Boson Computational Speed-Up 


