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Multiple scattering of a single particle: Interference
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Coherent backscattering (CBS)
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Coherent backscattering (CBS)
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Coherent backscattering (CBS)

Interference between reversed paths 
survives disorder average!

Experiments on CBS with 
Bose-Einstein condensates 
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peak, and their evolution with time, are an indisputable
signature of CBS, intimately linked to the role of
coherence.

To understand the origin of that CBS peak, let us
consider an input plane matter wave with initial momen-
tum pi that experiences multiple scattering towards a final
momentum pf (inset of Fig. 1). For each multiple scatter-
ing path, we can consider the reversed path with the same
input pi and output pf. Since the initial and final atomic
states are the same, we must add the two corresponding
complex quantum amplitudes, whose phase difference is
!" ¼ ðpi þ pfÞ %R=@ (R is the spatial separation be-
tween the initial and final scattering events and @ ¼
h=2# the reduced Planck constant). For the exact back-
ward momentum pf ¼ &pi, the interference is always
perfectly constructive, whatever the considered multiple
scattering path. This coherent effect survives the ensemble
averaging over the disorder, so that the total scattering
probability is twice as large as it would be in the incoherent
case. For an increasing difference between pf and&pi, the
interference pattern is progressively washed out as we sum
over all interference patterns associated with all multiple
scattering paths. It results in a CBS peak of width inversely
proportional to the spread !R in the separations [22]. For
diffusive scattering paths, the distribution of R is a
Gaussian whose widths increase with time as t1=2, and
the CBS widths decrease according to !pCBS;$ ¼@= ffiffiffiffiffiffiffiffiffiffiffi

2D$t
p

for each direction of space ($ ¼ y, z), D$ being
the diffusion constant along that direction. This time re-
solved dynamics of the CBS peak has been observed in
acoustics [9,10] and optics [23,24].

The crux of the experiment is a sample of noninteracting
paramagnetic atoms, suspended against gravity by a mag-
netic gradient (as in Ref. [18]), and launched along the z
axis with a very well-defined initial momentum pi (see
Fig. 1). This is realized in four steps. First, evaporative
cooling of an atomic cloud of 87Rb atoms in a quasi-
isotropic optical dipole trap (trapping frequency ’ 5 Hz)
yields a Bose-Einstein condensate of 9' 104 atoms in the
F ¼ 2, mF ¼ &2 ground sublevel. Second, we suppress

the interatomic interactions by releasing the atomic cloud
and letting it expand during 50 ms. At this stage, the atomic
cloud has a size (standard half-width along each direction)
of !r$ ¼ 30 %m, and the residual interaction energy
(Eint=h( 1 Hz) is negligible compared to all relevant en-
ergies of the problem. Since the atomic cloud is expanding
radially with velocities proportional to the distance from
the origin, we can use the ‘‘delta-kick cooling’’ technique
[26], by switching on a harmonic potential for a well
chosen amount of time. This almost freezes the motion
of the atoms, and the resulting velocity spread !v$ ¼
0:12) 0:03 mm=s is just one magnitude above the
Heisenberg limit (!r$m!v$ ( 5@, with m the atom
mass). Last, we give the atoms a finite momentum pi along
the z direction, without changing the momentum spread,
by applying an additional magnetic gradient during 12 ms.
The first image of Fig. 2 shows the resulting 2Dmomentum
distribution. The average velocity is vi ¼ 3:3) 0:2 mm=s
(ki ¼ pi=@ ’ 4:5 %m&1), corresponding to a kinetic en-
ergy EK ¼ p2

i =2m (EK=h ’ 1190 Hz). This momentum
distribution is obtained with a standard time of flight
technique that converts the velocity distribution into a
position distribution. Because of the magnetic levitation,
we can let the atomic cloud expand ballistically for as long
as 150 ms before performing fluorescence imaging along
the x axis. The overall velocity resolution of our ex-
periment that takes into account the initial momentum

spread, which writes !vres ¼ ½!v2
$ þ ð!r$=ttofÞ2+1=2 ¼

0:23 mm=s, is nevertheless mainly limited by the size
!r$ of the atomic cloud.
To study CBS, we suddenly switch on an optical disor-

dered potential in less than 0.1 ms, let the atoms scatter for a
time t, then switch off the disorder andmonitor the momen-
tum distribution at time t. The disordered potential is the
dipole potential associated with a laser speckle field
[27,28], obtained by passing a laser beam through a rough
plate, and focusing it on the atoms (Fig. 1). It has an average
value VR (the disorder ‘‘amplitude’’) equal to its standard
deviation. Its autocorrelation function is anisotropic, with a
transverse shapewell represented by a Gaussian of standard
half-widths &y ¼ &z ¼ &? ’ 0:2 %m, and a longitudinal

Lorentzian profile of half-width&x ’ 1 %m (HWHM) [29].
The laser (wavelength 532 nm) is detuned far off-resonance
(wavelength 780 nm), yielding a purely conservative and
repulsive potential. The disorder amplitude VR is homoge-
nous to better than 1% over the atom cloud (profile of half-
widths 1.2 mm along y, z, 1 mm along x).
The anisotropy of the speckle autocorrelation function

(elongated along x) allows us to operate in a quasi-two-
dimensional configuration by launching the atoms perpen-
dicularly to the x axis (along the z axis). In the y-z plane,
the atoms are scattered by a potential with a correlation
length shorter than the reduced atomic de Broglie wave-
length (ki&? ’ 0:9), so that the scattering probability is
quasi-isotropic, and we will replace the subscript $ ¼ y, z
by ? in the rest of this Letter. The dynamics within this

FIG. 2 (color online). Observed momentum distributions after
different propagation times t in the disorder. The images corre-
spond to an averaging over 20 experimental runs. Note that the
vertical scale is different in the three first images (t ¼ 0, 0.5, and
1 ms), whereas it is the same in the three last images (t ¼ 1:5, 2,
and 2.5 ms).

PRL 109, 195302 (2012) P HY S I CA L R EV I EW LE T T E R S
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F. Jendrzejewski et al., PRL 109, 195302 (2012) 

G. Labeyrie et. al., EPL 100, 66001 (2012)

  ⇤



Albert-Ludwigs-Universität FreiburgOutline

I) Introduction - single particle & weak disorder 

II) Multiple scattering theory for interacting bosons 

III) Excitation transport in ultracold Rydberg gases

Multiple scattering of interacting bosons in 
random potentials

!
Thomas Wellens

Dresden, QCTMBS, February 17, 2017



Albert-Ludwigs-Universität FreiburgOutline

I) Introduction - single particle & weak disorder 

II) Multiple scattering theory for interacting bosons 

III) Excitation transport in ultracold Rydberg gases

Multiple scattering of interacting bosons in 
random potentials

!
Thomas Wellens

Dresden, QCTMBS, February 17, 2017



N-particle scattering scenario
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N-particle scattering: Theoretical background
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T. Geiger, A. Buchleitner, T. Wellens, New J. Phys. 15, 115015 (2013)
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N-particle scattering: diagrammatic approach

T. Geiger, A. Buchleitner, T. Wellens, New J. Phys. 15, 115015 (2013)
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Ẽ
Ẽ2
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N-particle coherent backscattering

T. Geiger, A. Buchleitner, T. Wellens, New J. Phys. 15, 115015 (2013)
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N-particle coherent backscattering
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Motivation: Transport on random quantum networks

H =
X

m 6=n

V (rm � rn)|mihn| rm, rn : random positions 
of sites m, nm, n

Theoretical prediction of relevant transport quantities?

P (r0, r, t) =
X

mn
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��e�iHt/~
��n
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n
��eiHt/~

��m
↵
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Character of transport: diffusion or localization?

: average over random positions n(. . . )

(D, L
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Motivation: Transport on random quantum networks

H =
X

m 6=n

V (rm � rn)|mihn| rm, rn : random positions 
of sites m, nm, n

Theoretical prediction of relevant transport quantities?

Analogous criterion for discrete networks?

(particle in a random potential)

classical diffusive transport if                  (in 3D)        1/(k`) ⌧ 1

P (r0, r, t) =
X
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Character of transport: diffusion or localization?

: average over random positions n(. . . )
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Excitation transfer in a disordered cloud of Rydberg atoms

frozen cloud with     randomly placed Rydberg atoms N

Rydberg blockade: atoms are spheres with radius rb/2

two Rydberg states

a single    in a sea of             :(N � 1)SP

|Pi = |nP3/2,mj=3/2i
|Si = |nS1,mj=1/2i

|ii = |Si1 . . . |Sii�1|Pii|Sii+1 . . . |SiN

Hamiltonian:

G. Günther et. al., Science 342, 954 (2013)

H = C3

X

i 6=j

3
⇣
R̂ij · Ẑ

⌘2
� 1

R3
ij

|iihj|



Excitation Energy Transport
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Microscopic theory of excitation transfer

Locator expansion:
1
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Conclusions
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Outlook
‣ Interacting bosons: time-dependent scenario

‣ Excitation transport in Rydberg gases: diagrammatic theory

T. Wellens and R. A. Jalabert, PRA 94, 144209 (2016)
peak, and their evolution with time, are an indisputable
signature of CBS, intimately linked to the role of
coherence.

To understand the origin of that CBS peak, let us
consider an input plane matter wave with initial momen-
tum pi that experiences multiple scattering towards a final
momentum pf (inset of Fig. 1). For each multiple scatter-
ing path, we can consider the reversed path with the same
input pi and output pf. Since the initial and final atomic
states are the same, we must add the two corresponding
complex quantum amplitudes, whose phase difference is
!" ¼ ðpi þ pfÞ %R=@ (R is the spatial separation be-
tween the initial and final scattering events and @ ¼
h=2# the reduced Planck constant). For the exact back-
ward momentum pf ¼ &pi, the interference is always
perfectly constructive, whatever the considered multiple
scattering path. This coherent effect survives the ensemble
averaging over the disorder, so that the total scattering
probability is twice as large as it would be in the incoherent
case. For an increasing difference between pf and&pi, the
interference pattern is progressively washed out as we sum
over all interference patterns associated with all multiple
scattering paths. It results in a CBS peak of width inversely
proportional to the spread !R in the separations [22]. For
diffusive scattering paths, the distribution of R is a
Gaussian whose widths increase with time as t1=2, and
the CBS widths decrease according to !pCBS;$ ¼@= ffiffiffiffiffiffiffiffiffiffiffi

2D$t
p

for each direction of space ($ ¼ y, z), D$ being
the diffusion constant along that direction. This time re-
solved dynamics of the CBS peak has been observed in
acoustics [9,10] and optics [23,24].

The crux of the experiment is a sample of noninteracting
paramagnetic atoms, suspended against gravity by a mag-
netic gradient (as in Ref. [18]), and launched along the z
axis with a very well-defined initial momentum pi (see
Fig. 1). This is realized in four steps. First, evaporative
cooling of an atomic cloud of 87Rb atoms in a quasi-
isotropic optical dipole trap (trapping frequency ’ 5 Hz)
yields a Bose-Einstein condensate of 9' 104 atoms in the
F ¼ 2, mF ¼ &2 ground sublevel. Second, we suppress

the interatomic interactions by releasing the atomic cloud
and letting it expand during 50 ms. At this stage, the atomic
cloud has a size (standard half-width along each direction)
of !r$ ¼ 30 %m, and the residual interaction energy
(Eint=h( 1 Hz) is negligible compared to all relevant en-
ergies of the problem. Since the atomic cloud is expanding
radially with velocities proportional to the distance from
the origin, we can use the ‘‘delta-kick cooling’’ technique
[26], by switching on a harmonic potential for a well
chosen amount of time. This almost freezes the motion
of the atoms, and the resulting velocity spread !v$ ¼
0:12) 0:03 mm=s is just one magnitude above the
Heisenberg limit (!r$m!v$ ( 5@, with m the atom
mass). Last, we give the atoms a finite momentum pi along
the z direction, without changing the momentum spread,
by applying an additional magnetic gradient during 12 ms.
The first image of Fig. 2 shows the resulting 2Dmomentum
distribution. The average velocity is vi ¼ 3:3) 0:2 mm=s
(ki ¼ pi=@ ’ 4:5 %m&1), corresponding to a kinetic en-
ergy EK ¼ p2

i =2m (EK=h ’ 1190 Hz). This momentum
distribution is obtained with a standard time of flight
technique that converts the velocity distribution into a
position distribution. Because of the magnetic levitation,
we can let the atomic cloud expand ballistically for as long
as 150 ms before performing fluorescence imaging along
the x axis. The overall velocity resolution of our ex-
periment that takes into account the initial momentum

spread, which writes !vres ¼ ½!v2
$ þ ð!r$=ttofÞ2+1=2 ¼

0:23 mm=s, is nevertheless mainly limited by the size
!r$ of the atomic cloud.
To study CBS, we suddenly switch on an optical disor-

dered potential in less than 0.1 ms, let the atoms scatter for a
time t, then switch off the disorder andmonitor the momen-
tum distribution at time t. The disordered potential is the
dipole potential associated with a laser speckle field
[27,28], obtained by passing a laser beam through a rough
plate, and focusing it on the atoms (Fig. 1). It has an average
value VR (the disorder ‘‘amplitude’’) equal to its standard
deviation. Its autocorrelation function is anisotropic, with a
transverse shapewell represented by a Gaussian of standard
half-widths &y ¼ &z ¼ &? ’ 0:2 %m, and a longitudinal

Lorentzian profile of half-width&x ’ 1 %m (HWHM) [29].
The laser (wavelength 532 nm) is detuned far off-resonance
(wavelength 780 nm), yielding a purely conservative and
repulsive potential. The disorder amplitude VR is homoge-
nous to better than 1% over the atom cloud (profile of half-
widths 1.2 mm along y, z, 1 mm along x).
The anisotropy of the speckle autocorrelation function

(elongated along x) allows us to operate in a quasi-two-
dimensional configuration by launching the atoms perpen-
dicularly to the x axis (along the z axis). In the y-z plane,
the atoms are scattered by a potential with a correlation
length shorter than the reduced atomic de Broglie wave-
length (ki&? ’ 0:9), so that the scattering probability is
quasi-isotropic, and we will replace the subscript $ ¼ y, z
by ? in the rest of this Letter. The dynamics within this

FIG. 2 (color online). Observed momentum distributions after
different propagation times t in the disorder. The images corre-
spond to an averaging over 20 experimental runs. Note that the
vertical scale is different in the three first images (t ¼ 0, 0.5, and
1 ms), whereas it is the same in the three last images (t ¼ 1:5, 2,
and 2.5 ms).
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