Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Albert-Ludwigs-Universität Freiburg

Dresden, QCTMBS, February 17, 2017

Motivation

$Quantum\ transport\ in\ complex/disordered\ environments$

M. Sarovar et al., Nature Physics 6, 462 (2010)

Solar cell

Bose-Einstein condensate

J. Billy et al., Nature **453**, 891 (2008)

 \rightsquigarrow constructive or destructive?

 \rightsquigarrow decoherence, thermalization, many-body localization,...?

F. Jörder et al., PRL **113***,* 063004 (2014)

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

- I) Introduction single particle & weak disorder
- **II**) Multiple scattering theory for interacting bosons

III) Excitation transport in ultracold Rydberg gases

Dresden, QCTMBS, February 17, 2017

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle & weak disorder

II) Multiple scattering theory for interacting bosons

Dresden, QCTMBS, February 17, 2017

Multiple scattering of a single particle: Interference

Multiple scattering of a single particle: Interference

Multiple scattering of a single particle: Interference

Interference between reversed paths survives disorder average!

Interference between reversed paths survives disorder average!

Interference between reversed paths survives disorder average!

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle & weak disorder

II) Multiple scattering theory for interacting bosons

Dresden, QCTMBS, February 17, 2017

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle & weak disorder

II) Multiple scattering theory for interacting bosons

III) Excitation transport in ultracold Rydberg gases

Dresden, QCTMBS, February 17, 2017

N-particle scattering scenario

N-particle scattering: Theoretical background

Hamiltonian: $H = H_0 + V + U$ $G_0(E) = \frac{1}{E - H_0 + i\epsilon}$ Initial state: $|\psi_0\rangle = |N\vec{k}_0\rangle$ $E = NE_0$ $E_0 = \frac{\hbar^2 k_0^2}{2m}$

Stationary scattering state:

$$|\psi\rangle = |\psi_0\rangle + G_0(E)\left(V+U\right)|\psi\rangle$$

Iteration: $|\psi\rangle = |\psi_0\rangle + G_0(E)V|\psi_0\rangle + G_0(E)U|\psi_0\rangle + G_0(E)VG_0(E)V|\psi_0\rangle + G_0(E)V|\psi_0\rangle + \dots$

T. Geiger, A. Buchleitner, T. Wellens, New J. Phys. 15, 115015 (2013)

N-particle scattering: diagrammatic approach

elastic

inelastic

elastic

inelastic

N-particle coherent backscattering

• Weak anti-localization for $\beta > 0.13$ in mean field limit $(a_s \rightarrow 0)$

T. Wellens, Appl. Phys. B 95, 189 (2009); T. Hartmann et. al., Ann. Phys. 327, 1998 (2012)

• Decrease of CBS for larger β slowed down by inelastic collisions

N-particle coherent backscattering

Inelastic spectral crossed and ladder flux density at $\theta = 0$

CBS enhancement factor >2 in certain spectral windows

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle & weak disorder

II) Multiple scattering theory for interacting bosons

III) Excitation transport in ultracold Rydberg gases

Dresden, QCTMBS, February 17, 2017

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle & weak disorder

II) Multiple scattering theory for interacting bosons

III) Excitation transport in ultracold Rydberg gases

Dresden, QCTMBS, February 17, 2017

Motivation: Transport on random quantum networks

$$H = \sum_{m \neq n} V(\mathbf{r}_m - \mathbf{r}_n) |m\rangle \langle n|$$

 $\mathbf{r}_m, \, \mathbf{r}_n$: random positions of sites m, n

$$P(\mathbf{r}', \mathbf{r}, t) = \sum_{mn} \langle m | e^{-iHt/\hbar} | n \rangle \langle n | e^{iHt/\hbar} | m \rangle \delta(\mathbf{r}' - \mathbf{r}_m) \delta(\mathbf{r} - \mathbf{r}_n)$$
$$\overline{(\dots)} : \text{average over random positions}$$

- Character of transport: diffusion or localization?
- Theoretical prediction of relevant transport quantities? $(D, L_{loc}, ...)$

Motivation: Transport on random quantum networks

$$H = \sum_{m \neq n} V(\mathbf{r}_m - \mathbf{r}_n) |m\rangle \langle n|$$

 $\mathbf{r}_m, \, \mathbf{r}_n$: random positions of sites m, n

$$P(\mathbf{r}', \mathbf{r}, t) = \sum_{mn} \langle m | e^{-iHt/\hbar} | n \rangle \langle n | e^{iHt/\hbar} | m \rangle \delta(\mathbf{r}' - \mathbf{r}_m) \delta(\mathbf{r} - \mathbf{r}_n)$$
$$\overline{(\dots)} : \text{average over random positions}$$

- Character of transport: diffusion or localization?
- Theoretical prediction of relevant transport quantities? $(D, L_{loc}, ...)$

Different model:

 $H = \frac{\hbar^2 k^2}{2m} + V(\mathbf{r}) \quad \text{(particle in a random potential)}$

classical diffusive transport if $1/(k\ell) \ll 1$ (in 3D)

• Analogous criterion for discrete networks?

Excitation transfer in a disordered cloud of Rydberg atoms

- frozen cloud with N randomly placed Rydberg atoms
- **Rydberg blockade**: atoms are spheres with radius $r_b/2$
- two Rydberg states

 $|\mathbf{P}\rangle = |n\mathbf{P}_{3/2,m_j=3/2}\rangle$ $|\mathbf{S}\rangle = |n\mathbf{S}_{1,m_j=1/2}\rangle$

• a single P in a sea of (N-1)S:

 $|i\rangle = |\mathbf{S}\rangle_1 \dots |\mathbf{S}\rangle_{i-1} |\mathbf{P}\rangle_i |\mathbf{S}\rangle_{i+1} \dots |\mathbf{S}\rangle_N$

• Hamiltonian:

$$H = C_3 \sum_{i \neq j} \frac{3\left(\hat{\mathbf{R}}_{ij} \cdot \hat{\mathbf{Z}}\right)^2 - 1}{R_{ij}^3} |i\rangle\langle j|$$

G. Günther et. al., Science **342**, 954 (2013)

Excitation energy transport

• mean squared displacement

Excitation energy transport

• mean squared displacement

Microscopic theory of excitation transfer

T. Scholak, T. Wellens, and A. Buchleitner, PRA 90, 063415 (2014)

Conclusions

Scattering theory for interacting bosons in weak random potentials

- inelastic collisions \rightsquigarrow thermalization
- effect of interactions on coherent backscattering

T. Geiger, T. Wellens, A. Buchleitner, PRL **109**, 030601 (2012) T. Geiger, A. Buchleitner, T. Wellens, New J. Phys. **15**, 115015 (2013)

Character of excitation transport in disordered ultra-cold Rydberg gases controllable via blockade radius r_b and density \mathcal{N} :

-
$$r_b \sim \mathcal{N}^{-1/3}$$
 : diffusive (limited by finite size)

- $r_b \ll \mathcal{N}^{-1/3}$: subdiffusive (coherent transport)

T. Scholak, T. Wellens, and A. Buchleitner, PRA 90, 063415 (2014)

Conclusions

T. Scholak, T. Wellens, and A. Buchleitner, PRA 90, 063415 (2014)