Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Albert-Ludwigs-Universität Freiburg

Quantum Optics and Statistics

Physikalisches Institut

Dresden, QCTMBS, February 17, 2017

Motivation

Quantum transport in complex/disordered environments

M. Sarovar et al., Nature Physics 6, 462 (2010)

\rightsquigarrow constructive or destructive?

Solar cell

J. Billy et al., Nature 453, 891 (2008)

Interactions

\rightsquigarrow decoherence, thermalization, many-body localization,...?
F. Jörder et al., PRL 113, 063004 (2014)

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle \& weak disorder
II) Multiple scattering theory for interacting bosons
III) Excitation transport in ultracold Rydberg gases

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle \& weak disorder
II) Multiple scattering theory for interacting bosons
III) Excitation transport in ultracold Rydberg gases

Multiple scattering of a single particle: Interference

$$
\begin{aligned}
\psi= & \sum_{\text {paths } i} \psi_{i} \text { Born series } \\
|\psi|^{2} & =\sum_{i, j} \psi_{i} \psi_{j}^{*} \\
& =\sum_{i}\left|\psi_{i}\right|^{2}+\sum_{i \neq j} \psi_{i} \psi_{j}^{*}
\end{aligned}
$$

Interferences:
\rightsquigarrow speckle

Multiple scattering of a single particle: Interference

$$
\begin{aligned}
|\psi|^{2} & =\sum_{i, j} \psi_{i} \psi_{j}^{*} \\
& =\sum_{i}\left|\psi_{i}\right|^{2}+\sum_{i \neq j} \psi_{i} \psi_{j}^{*}
\end{aligned}
$$

Interferences:
\rightsquigarrow speckle

Multiple scattering of a single particle: Interference

Coherent backscattering (CBS)

Interference between reversed paths survives disorder average!

Coherent backscattering (CBS)

Interference between reversed paths survives disorder average!

Coherent backscattering (CBS)

Interference between reversed paths survives disorder average!

Coherent backscattering (CBS)

Ladder diagrams:

Diffusion

Coherent backscattering (CBS)

Interference between reversed paths survives disorder average!

Ladder diagrams:

Diffusion γ_{L}

Crossed diagrams:

Coherent backscattering (CBS)

Interference between reversed paths survives disorder average!

Experiments on CBS with Bose-Einstein condensates
F. Jendrzejewski et al., PRL 109, 195302 (2012) G. Labeyrie et. al., EPL 100, 66001 (2012)

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle \& weak disorder
II) Multiple scattering theory for interacting bosons
III) Excitation transport in ultracold Rydberg gases

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle \& weak disorder
II) Multiple scattering theory for interacting bosons
III) Excitation transport in ultracold Rydberg gases

N-particle scattering scenario

N-particle scattering: Theoretical background

Hamiltonian: $H=H_{0}+V+U$

$$
G_{0}(E)=\frac{1}{E-H_{0}+i \epsilon}
$$

Initial state: $\left|\psi_{0}\right\rangle=\left|N \vec{k}_{0}\right\rangle$

$$
E=N E_{0} \quad E_{0}=\frac{\hbar^{2} k_{0}^{2}}{2 m}
$$

Stationary scattering state:

$$
|\psi\rangle=\left|\psi_{0}\right\rangle+G_{0}(E)(V+U)|\psi\rangle
$$

Iteration: $\quad|\psi\rangle=\left|\psi_{0}\right\rangle+G_{0}(E) V\left|\psi_{0}\right\rangle+G_{0}(E) U\left|\psi_{0}\right\rangle+$

$$
+G_{0}(E) V G_{0}(E) V\left|\psi_{0}\right\rangle+G_{0}(E) U G_{0}(E) V\left|\psi_{0}\right\rangle+\ldots
$$

N-particle scattering: diagrammatic approach

N-particle scattering: diagrammatic approach

N-particle scattering: diagrammatic approach

N-particle scattering: diagrammatic approach

N-particle scattering: diagrammatic approach

Disorder average: ladder diagrams

$$
H=H_{0}+V+U
$$

$$
\begin{aligned}
\overline{J_{E}(\vec{r})} & =J_{0}(\vec{r}) \delta\left(E-E_{0}\right)+\int \mathrm{d} \vec{r}^{\prime} P_{E}\left(\vec{r}-\vec{r}^{\prime}\right) \overline{J_{E}\left(\vec{r}^{\prime}\right)}+ \\
& +\int \mathrm{d} E_{1} g_{E_{1}, E} \overline{J_{E_{1}}(\vec{r})} \overline{J_{E}(\vec{r})}+\iint \mathrm{d} E_{1} \mathrm{~d} E_{2} f_{E_{1}, E_{2} ; E} \overline{J_{E_{1}}(\vec{r})} \overline{J_{E_{2}}(\vec{r})}
\end{aligned}
$$

T. Geiger, T. Wellens, A. Buchleitner, PRL 109, 030601 (2012)

Building blocks

$$
\overrightarrow{E_{1}+E_{2}-E}
$$

N-particle scattering: diagrammatic approach

Disorder average: ladder diagrams

$$
H=H_{0}+V+U
$$

$$
\begin{aligned}
& \overline{J_{E}(\vec{r})}=J_{0}(\vec{r}) \delta\left(E-E_{0}\right)+\int \mathrm{d} \vec{r}^{\prime} P_{E}\left(\vec{r}-\vec{r}^{\prime}\right) \overline{J_{E}\left(\vec{r}^{\prime}\right)}+ \\
&+\int \mathrm{d} E_{1} g_{E_{1}, E} \overline{J_{E_{1}}(\vec{r})} \overline{J_{E}(\vec{r})}+\iint \mathrm{d} E_{1} \mathrm{~d} E_{2} f_{E_{1}, E_{2} ; E} \overline{J_{E_{1}}(\vec{r})} \overline{J_{E_{2}}(\vec{r})} \\
& \vec{r} \rightarrow \infty: \overline{J_{E}} \rightarrow E \exp \left(-2 E / E_{0}\right) \quad \text { Maxwell-Boltzmann } \\
& \rightsquigarrow \text { Thermalization! }
\end{aligned}
$$

N-particle scattering: diagrammatic approach

Building blocks

$E+\tilde{E}=E_{0}+E_{D}$
elastic inelastic
N-particle coherent backscattering

- Weak anti-localization for $\beta>0.13$ in mean field limit $\left(a_{s} \rightarrow 0\right)$
T. Wellens, Appl. Phys. B 95, 189 (2009); T. Hartmann et. al., Ann. Phys. 327, 1998 (2012)
- Decrease of CBS for larger β slowed down by inelastic collisions
T. Geiger, A. Buchleitner, T. Wellens, New J. Phys. 15, 115015 (2013)

N-particle coherent backscattering

Inelastic spectral crossed and ladder flux density at $\theta=0$

CBS enhancement factor >2 in certain spectral windows

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle \& weak disorder
II) Multiple scattering theory for interacting bosons
III) Excitation transport in ultracold Rydberg gases

Multiple scattering of interacting bosons in random potentials

Thomas Wellens

Outline

I) Introduction - single particle \& weak disorder
II) Multiple scattering theory for interacting bosons
III) Excitation transport in ultracold Rydberg gases

Dresden, QCTMBS, February 17, 2017

Motivation: Transport on random quantum networks

$$
H=\sum_{m \neq n} V\left(\mathbf{r}_{m}-\mathbf{r}_{n}\right)|m\rangle\langle n|
$$

$\mathbf{r}_{m}, \mathbf{r}_{n}:$ random positions
of sites m, n

$$
\begin{array}{r}
P\left(\mathbf{r}^{\prime}, \mathbf{r}, t\right)=\overline{\sum_{m n}\langle m| e^{-i H t / \hbar}|n\rangle\langle n| e^{i H t / \hbar}|m\rangle \delta\left(\mathbf{r}^{\prime}-\mathbf{r}_{m}\right) \delta\left(\mathbf{r}-\mathbf{r}_{n}\right)} \\
\overline{(\ldots)} \text { : average over random positions }
\end{array}
$$

- Character of transport: diffusion or localization?
- Theoretical prediction of relevant transport quantities?

$$
\left(D, L_{\mathrm{loc}}, \ldots\right)
$$

Motivation: Transport on random quantum networks

$$
H=\sum_{m \neq n} V\left(\mathbf{r}_{m}-\mathbf{r}_{n}\right)|m\rangle\langle n|
$$

$\mathbf{r}_{m}, \mathbf{r}_{n}: \underset{\text { of sites } m, n}{\text { random positions }}$

$$
\begin{array}{r}
P\left(\mathbf{r}^{\prime}, \mathbf{r}, t\right)=\overline{\sum_{m n}\langle m| e^{-i H t / \hbar}|n\rangle\langle n| e^{i H t / \hbar}|m\rangle \delta\left(\mathbf{r}^{\prime}-\mathbf{r}_{m}\right) \delta\left(\mathbf{r}-\mathbf{r}_{n}\right)} \\
\overline{(\ldots)} \text { : average over random positions }
\end{array}
$$

- Character of transport: diffusion or localization?
- Theoretical prediction of relevant transport quantities?

$$
\left(D, L_{\mathrm{loc}}, \ldots\right)
$$

Different model: $\quad H=\frac{\hbar^{2} k^{2}}{2 m}+V(\mathbf{r}) \quad$ (particle in a random potential)
classical diffusive transport if $1 /(k \ell) \ll 1$ (in 3D)

- Analogous criterion for discrete networks?

Excitation transfer in a disordered cloud of Rydberg atoms

- frozen cloud with N randomly placed Rydberg atoms
- Rydberg blockade: atoms are spheres with radius $r_{b} / 2$
- two Rydberg states

$$
\begin{aligned}
|\mathrm{P}\rangle & =\left|n \mathrm{P}_{3 / 2, m_{j}=3 / 2}\right\rangle \\
|\mathrm{S}\rangle & =\left|n \mathrm{~S}_{1, m_{j}=1 / 2}\right\rangle
\end{aligned}
$$

- a single P in a sea of $(N-1) \mathrm{S}$:

$$
|i\rangle=|\mathrm{S}\rangle_{1} \ldots|\mathrm{~S}\rangle_{i-1}|\mathrm{P}\rangle_{i}|\mathrm{~S}\rangle_{i+1} \ldots|\mathrm{~S}\rangle_{N}
$$

- Hamiltonian:

$$
H=C_{3} \sum_{i \neq j} \frac{3\left(\hat{\mathbf{R}}_{i j} \cdot \hat{\mathbf{Z}}\right)^{2}-1}{R_{i j}^{3}}|i\rangle\langle j|
$$

Excitation energy transport

- mean squared displacement

Excitation energy transport

- mean squared displacement

Microscopic theory of excitation transfer
Locator expansion: $\frac{1}{z-\mathcal{H}}=\frac{1}{z}+\frac{1}{z} \mathcal{H} \frac{1}{z}+\frac{1}{z} \mathcal{H} \frac{1}{z} \mathcal{H} \frac{1}{z}+\ldots$

Diagrams

- $1 / z$
$\longrightarrow V_{i j}$

Elyutin (1981)

Matsubara/Toyozawa (1961)

Density of states
$r_{b}=0$

T. Scholak, T. Wellens, and A. Buchleitner, PRA 90, 063415 (2014)

Conclusions

- Scattering theory for interacting bosons in weak random potentials

- inelastic collisions \rightsquigarrow thermalization
- effect of interactions on coherent backscattering

T. Geiger, T. Wellens, A. Buchleitner, PRL 109, 030601 (2012)
T. Geiger, A. Buchleitner, T. Wellens, New J. Phys. 15, 115015 (2013)
- Character of excitation transport in disordered ultra-cold Rydberg gases controllable via blockade radius r_{b} and density \mathcal{N} :
$-r_{b} \sim \mathcal{N}^{-1 / 3}:$ diffusive (limited by finite size)
$-r_{b} \ll \mathcal{N}^{-1 / 3}:$ subdiffusive (coherent transport)

Conclusions

- Scattering theory for interacting bosons in weak random potentials

Outlook

- Interacting bosons: time-dependent scenario

- Excitation transport in Rydberg gases: diagrammatic theory

T. Wellens and R. A. Jalabert, PRA 94, 144209 (2016)

