

KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN

The Quantum Design of Photosynthesis PAP

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Rienk van Grondelle

Alexander von Humboldt Stiftung/Foundation

CIFAR CANADIAN

INSTITUTE

ADVANCED

RESEARCH

FOR

130 VU

er

INSTITUT

DE

CANADIEN

AVANCÉES

RECHERCHES

Charge Separation

Light harvesting

concentrates electronic excitation–*ultrafast* & efficient

Quantum Design of a Light Trap

In spite of the fact that Nature appears ordered there is disorder = Energetic Disorder

- Disorder in local environment
- Disorder in coupling (excitons, charge transfer, reorganization)
- All time scales: femtoseconds-seconds!!!

r19 Schematic view of how energy flows among the three subunits of the Lhc2 trimer, assuming one could excite Chla a 603(1) selectively (this is a computational result, the model is based on a multitude of experimental data). Top left: 603(1)* will EET mainly to the 610-611-612 cluster in the same subunit (< 1ps), a bit will transfer to 602(2), some to 602(1). The excited 610-611-612 trimer will relax mainly through uphill transfer to the lowest exciton state of 602-603(1), which is mainly 602(1). Since this is uphill it is slow. The most obvious energy acceptor for 602(1) is 603(3), which again is uphill and again is slow (slow here means 10-20 ps). Right bottom. This figure tries to explain some of thos EET steps. Red is 602, magenta is 603. 603 is energetically above 602 meaning that in all the subunits of this pair the highest exciton state is determined by 603(magenta), the lowest by 602 (red). Exciting 603(1) involves relaxation to 602(1), all the other rates are very slow (this of course on top of relaxation to the 610-611-612 trimerof subunit 1 which is even faster). Excitation of 602(1), either directly by 603(1) or by the 610-611-612 trimer of subunit escapes mainly via uphill transfer to the 603(3) (the 16 ps arrow in the bottom figure) van grondelle, 8/17/2010</p>

Quantum Design Principles of Photosynthesis

and Strategies to overcome Energetic Disorder

2nd Excitons with Charge-Transfer Character

 $P_{D2}^{\delta +} P_{D1}^{\delta -}$

 $Chl_{D1}^{\delta +}Phe_{D1}^{\delta -}$

Novoderezhkin et al, *Biophysical Journal*, **2007** Romero et al, *Biophysical Journal*, **2012**

3rd *Two Different (multiple) Charge Separation Pathways*

 P_{D1} path

Chl_{D1} path

Romero et al, *Biochemistry*, **2010** Novoderezhkin, Romero et al, *ChemPhysChem*, **2011** Romero et al, *Biophysical Journal*, **2012**

Two-Dimensional Electronic Spectroscopy

Two-Dimensional Electronic Spectroscopy

λexcitation / nm

Quantum beats

Fast Fourier Transform: 2D Frequencies

Chl *a* intramolecular vibrations

Optimal range to match energy differences between electronic states

Vibration-Assisted Electronic Coherence

Vibronic Coherence

Fourier Transform: from Population Time

120 cm⁻¹

Sampling Energy Landscape

What is the Role of Quantum Coherence

Disordered Exciton Redfield Model

3. Redfield relaxation tensor

ľ"

coherence transfer population to

 $\vec{P}_{k'k''} = R_{k'k''k,k} P_{kk'}$

coherence transfer

exciton-phonon

Disordered exciton - Charge-Transfer Redfield Model

Experimental

Calculated

Quantum Beats

Good Vibrations

Vibration-Assisted Electronic Coherence Vibronic Coherence

key parameters leading to coherence

Electronic Energy Levels

Vibrational Modes

Resonance !!!!

How resonant vibrations promote efficient charge separation

PCCP

Cite this: DOI: 10.1039/c5cp00582e

How exciton-vibrational coherences control charge separation in the photosystem II reaction center;

Vladimir I. Novoderezhkin, * Elisabet Romero $^{\rm b}$ and Rienk van Grondelle $^{\rm b}$

Light Harvesting:

Excitons and Dark States

And

Photoprotection

chromophores at 0.5 M

in the major light-harvesting complex of higher plants & green algae, LHCII

no concentration
quenching

Blinking, quenching, trapping, S-T annihilation in PS2 supercomplexes

Novoderezhkin, V., Marin, A. & van Grondelle, R. *Phys. Chem. Chem. Phys.* **13**, 17093–17103 (2011). Kruger, T. P. J. *et al. Biophys. J.* **102**, 2669–2676 (2012).

Environmentally controlled disorder

Acknowledgements

Eli Romero, Vladimir Novoderezhkin, Marco Ferretti, Jos Thieme, Donatas Zigmantas, Sheelah Ramanan, Pavel Maly, Michael Gruber, Tjaart Krüger, Ivo van Stokkum, Tomas Mancal, Javier Prior, Alex Chin, Martin Plenio.