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How many electrons in the picture”
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How many electrons are needed for a quasi-particle”?



Outline and Results

Ultra-short intro to FQH and anyons
FQH model wave functions

Quasiholes vs. quasi-electrons

Problem with quasi-electrons: screening

Some answers and a proposal
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ANyons

Leinaas & Myrheim (1977), Wilczek (1982)

identical (point) particles in 3D: bosons & fermions
2D: any exchange statistics allowed

2T
anyons are local quasi-particles:
braiding phase is path independent for sufficiently large

distances between anyons: deviations exponentially
small in the distance between the anyons

generalizations:

non-abelian anyons
interplay of anyons and symmetry
topological quantum computing
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FQHE and model wave functions

han = | [ (2 —w) [ [ (2 — 2)e™ 2 /B o niin (1983)

i i< ]
incompressible quantum liquid (gapped, homogeneous)  Plasma analogy
fractional charge quasi-particles |¢% |2 ~ Locp

usual work flow:

‘guess’ model wave functions, for which we ‘know’ the properties
verify their relevance by numerical simulations

model wave function « topological guantum field theory

systematic way of guessing model wave functions:

hierarchy schemes Haldane (1983), Halperin (1983)
composite fermions Jain (1989)

conformal field theory Moore & Read (1999)
clustering conditions Bernevig & Haldane (2007)
patterns of zeroes Wen (2012)
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Model wave functions and CFT

Laughlin wave function “looks like” conformal field theory correlator (Moore & Read 1991)

Vah = <1;[ H(we) 1;[ Y(Zj)obg> Vi(z) = piV3¢(2)
/ \ H(w) = pi/ V3o (w)
quasi-hole operator neutralizing background charge

electron operator



Model wave functions and CFT

Laughlin wave function “looks like” conformal field theory correlator (Moore & Read 1991)

Ygh = HH Wa HV 2j)Obg) V(Z) _ e'i\/gso(?«*)

— H o CUB 1/3 H — Wqy H — Zj)3€_ Zj |Zj|2/(4£2) H(W) — ei/\/ggo(w)

a<pf 1<J



Model wave functions and CFT

Laughlin wave function “looks like” conformal field theory correlator (Moore & Read 1991)

Ygh = HH Wa HV 2j)Obg) V(Z) _ e'i\/gso(?«*)
=[] wa — ws)*/? H —wa) [z — 25)%e o 1/ H(w) = ¢/ V32
a<f 1<jJ

Moore-Read conjecture:

QH wave functions are conformal blocks of unitary, rational CFTs
topological properties manifest when using ‘minimal” CFT
statistical phase = monodromy

Berry phase trivial (Aharonov-Bohm phase)

bulk CFT < edge CFT (via 2+1 D TQFT)

CFT provides efficient matrix-product-state representation of model wave functions
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Laughlin wave function “looks like” conformal field theory correlator (Moore & Read 1991)

Ygh = HH Wa HV 2j)Obg) V(Z) _ ei\/gso(Z)
=[] wa — ws)*/? H —wa) [z — 25)%e o 1/ H(w) = ¢/ V32
a<f 1<jJ

Moore-Read conjecture:

QH wave functions are conformal blocks of unitary, rational CFTs
topological properties manifest when using ‘minimal” CFT
statistical phase = monodromy

Berry phase trivial (Aharonov-Bohm phase)

bulk CFT < edge CFT (via 2+1 D TQFT)

CFT provides efficient matrix-product-state representation of model wave functions
(zaletel, Mong 2012) [numerical simulations on the cylinder]

From now on, focus on quasi-particles of Laughlin wave function
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Quasi-holes

unique definition / well-defined: Laughlin quasi-hole

zero mode of model hamiltonian

correct position 006

correct topological properties o
sharp fractional charge

0.02

path-independent, fractional braiding statistics

0.00

analytical: Arovas, Schrieffer, Wilczek (1984)
generalization by Gurarie & Nayak (1997), Read (2009)

numerical: Kjgnsberg & Myrheim (1999)
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Laughlin Laughlin (1983)
composite fermions Jain (2003)
CFT Hansson, Hermanns, Viefers (2009)
clustering conditions Bernevig & Haldane (2009)

all give different proposals

CFT quasi-electron

0.06

0.04

0.02

0.00




Quasi-electrons

Statistics properties: ge = gh-

definition not unigue (not zero-modes!)
Laughlin Laughlin (1983)
composite fermions Jain (2003)
CFT Hansson, Hermanns, Viefers (2009)
clustering conditions Bernevig & Haldane (2009)

all give different proposals

sharp fractional charge v CFT quasi-electron

none of these theoretical proposals has the correct
(topological) properties:

braiding X
correct position X P
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Why are quasi-holes screened?  plasma is screening
fluctuating, itinerant charges
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Constructing quasi-electrons

Why are quasi-holes screened?  plasma is screening
fluctuating, itinerant charges

quasi-electrons: glue (fuse) inverse hole to an electron (shrink correlation hole):

V(Z) — ei\/§90(2) [—_](w) _ ei/\/§90(z)-|—i2/\/695(z) ‘7(2) _ 8Z€i2/\/§gp(z)—i2/\/6¢(z)

locate using exponential kernel (lowest Landau level projector!):

— 5 ([2—€P+(2—-€2)
Z¢k &)or(z 2 q€2 2 ( )

results in a quasi-local operator (anti-symmetrize over (nearby) electrons!)

it is the charge of ¢(z) that is not properly screened!
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Screening quasi-electrons

Why are quasi-holes screened?  plasma is screening
fluctuating, itinerant charges

quasi-electrons: glue (fuse) inverse hole to an electron (shrink correlation hole):

V(z) = o1V30(2) H(w) = ot/ V30 (2)+i2/V65(2) V(z) = 12/ V3p(2)—i2/V/65(2)

solution: remove the charge of ¢(z), thatis, drop the zero mode!

correct localization
correct statistics properties
good density profile for ge's that are far apart

for small distances, we need an additional ad-hoc
change of the phases in MPS description
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Quasi-electrons — a proposal

‘Laughlin-like” quasi-electron using conformal field theory
starting point: modified Laughlin state Girvin & Jach (1984)

\IJL(Zl .. ZN) — PLLL H ‘Z’L L 23‘2(22 . Zj)qe_éll%qffzj |Zj|2
1<J

N
= Prrr(Osg H Vi(zi,2z:))  with V(z;,z;) = etV atle(z) gix(2)

1=1

X(§)

. _ 1
local quasi-electron operator, all charges are screened: Pqe — €

correct braiding properties?



Summary and outlook

MPS description of quasi-electrons
» deficiency of CF/CFT quasi-electrons

» remedied by properly screening the operators
Kjall, Ardonne, Dwivedi, Hermanns, Hansson, J. Stat. Mech. (2018)

CFT description of Laughlin-like quasi-electron

» explicit model wave functions for quasi-electrons
» LLL projection using MPS (V')

N. Regnault (private communication)

» analytical understanding (7)

Comparison to lattice realizations A. Nielsen et al.
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