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Liquid in Kitaev’s Honeycomb Model
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A. Kitaev, Annals of Physics 321, 2 (2006)

• Exactly solvable model of a Z2 quantum spin liquid

(with only NN two-spin interactions, 
which can be realised in materials) 

• Rich playground for investigating exact ground state, dynamical 
and finite temperature properties of Z2 spin liquids
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Kitaev Model
+

Magnetic Field
⇡ ???
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Single, free Majorana fermion 
coupled to static Z2 gauge field!!!
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• Ground State:
• Majorana fermions form a Dirac cone
• All plaquette fluxes = 0
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• Two kinds of excitations:
• Gapless Majorana fermions
• Gapped flux excitations (visons)
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d-orbitals
+

Crystal field splitting
+

Spin-orbit coupling
+

Interactions

jeff = 1/2
|"ieff

|#ieff

Kitaev Materials

G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009)

Ingredients:

|"ieff ⇠ i |zx, #i+ |yz, #i+ |xy, "i
|#ieff ⇠ �i |zx, "i+ |yz, "i � |xy, #i

• Kitaev interactions can actually be realized in materials
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Spin-orbit entangled
Mott Insulators!

• Kitaev interactions can actually be realized in materials



Na2IrO3 Li2IrO3 H3LiIr2O6RuCl3 Cu2IrO3

Kitaev Materials

K2IrO3
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Ingredients:

• Kitaev interactions can actually be realized in materials

. . .

Good for neutrons :) Bad for neutrons :(
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Kitaev Materials

K2IrO3

• Kitaev interactions can actually be realized in materials

. . .

Good for neutrons :) Bad for neutrons :(
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Kitaev Heisenberg Symmetric Exchange
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Half-integer thermal Hall conductance  
in a Kitaev spin liquid 

− Evidence for chiral Majorana edge current −

Yuichi KASAHARA 
Department of Physics, Kyoto University
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FIG. 1. (color online) (a) Temperature dependence of the spe-
cific heat, plotted as Cp/T , of ↵-RuCl3 for di↵erent magnetic
fields up to 9 T k ab. (b) As before, but showing the magnetic
contribution to the specific heat after phonon subtraction on
a log-log scale, for details see text.

plement [31] for the magnetic characterization. Specific-
heat measurements were performed on a single crystal
(m ⇠ 7 mg) between 0.4 K and 20 K using a heat-pulse
relaxation method in a Physical Properties Measurement
System (PPMS, Quantum Design), in magnetic fields up
to 9 T parallel to the ab plane.

Results: The low-T specific heat Cp/T as a function
of temperature in di↵erent applied fields is shown in Fig.
1(a). The zero-field curve reveals the good quality of the
sample, with a single magnetic transition at TN = 6.5 K
determined from the peak position. By applying a mag-
netic field the peak becomes broader and the transition
temperature is gradually suppressed. Finally no thermal
phase transition is detected for fields higher than 6.9 T,
i.e., magnetic LRO disappears.

In order to extract the magnetic contribution to the
low-T specific heat, the data were analyzed by subtract-
ing the lattice contribution from the experimental Cp(T )
data by measuring the non-magnetic structural analog
compound RhCl3 in pressed polycrystalline form. The
di↵erence of mass and volume between the Rh and Ru
compounds was accounted for by scaling the experimen-
tal specific heat curve by the Lindemann factor [32],
which was found to be 0.98. With the aim of ruling
out possible errors due to non-perfect sample coupling
during the measurements, the phononic contribution was

FIG. 2. (color online) Exponential fit of CmagT in order to
extract the excitation gap for magnetic fields (a) 5 T µ0H 
6.8 T and (b) 7 T  µ0H  9 T. The data at 6.8 T cannot be
meaningfully fit by an exponential, i.e., the gap is too small.

also calculated for RhCl3 by density-functional theory,
see supplement [31]. This approach confirmed that the
phonon subtraction based on the experimental data is
consistent with the theoretical calculations for T � 1 K.

The temperature dependence of the calculated mag-
netic contribution to the specific heat is shown in Fig.
1(b). In the lowest-T region, T  3 K, an increase of
Cmag/T with the applied field could be observed up to
µ0H = 6.8 T. Increasing the field even further, the op-
posite behavior is revealed: the magnetic contribution
starts to decrease with field up to the highest field of 9 T.
Hence, low-T entropy accumulates around 6.8� 7 T. Re-
markably, around 6.9 T the magnetic specific heat dis-
plays an approximate power-law behavior between 0.4
and 2.5 K, with Cmag / T x with x ⇡ 2.5. Together,
these observations imply the existence of a field-induced
QCP [33, 34] at µ0Hc ⇡ 6.9 T.

Excitation gap: The lowest-temperature data away
from the QCP, with a gradual suppression of Cmag(T ),
indicate the opening of a magnetic excitation gap, Fig.
1(b). The simplest model of a bosonic mode with gap �
and parabolic dispersion in d = 2 predicts that Cmag /
exp[��/(kBT )]/T , see supplement [31]. According to
this, the experimental CmagT data were fitted to a pure
exponential behavior in order to extract the energy gap.
The results are shown in Fig. 2.

Two key observations are apparent: First, the data
below about 1.5 K indeed show an exponential suppres-
sion of Cmag, and the corresponding gap is minimal near

Y. Kasahara et al., Nature 559, 227-231 (2018)

A. Banerjee et al., npj Quantum Mater. 3, 8 (2018)
A. U. B. Wolter et al., PRB 96, 041405(R) (2017)

Na2IrO3 Li2IrO3 H3LiIr2O6RuCl3 Cu2IrO3 K2IrO3 . . .

RuCl3 in Field



1. Before we try to understand the complicated materials:

First we should try to understand just the 
pure Kitaev model in a magnetic field

2. From a theory perspective:

Natural to ask what happens to Kitaev’s
quantum spin liquid in a magnetic field

Motivation
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Kitaev’s Gapless QSL in a [111] Field

• Kitaev showed, using perturbation theory, that a [111] magnetic 
field can:

E

k

E

k
Gap out 

Dirac cones! Chern number 
C = +1

• We have a gapped insulator of Majorana’s with C = +1

• In terms of spins we have a gapped quantum spin liquid (KSL)

• Single, chiral Majorana edge mode with half-integer quantised 
thermal Hall conductance
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• What happens if we add a magnetic field?
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h || [111] Direction:
- S. Fey, MSc Thesis (2013)
- Z. Zhu et al., PRB 97, 241110(R) (2018)
- M. Gohlke et al., PRB 98, 014418 (2018)



Phase Diagrams in Tilted Magnetic Fields
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FIG. 1. (a) Ferromagnetic zigzag chains along x and y bonds with antiferromagnetically ordered z bonds (“z-zigzag”), together
with the definition of the staggered magnetization ~mstagg. Dotted rectangle: magnetic unit cell. (b) Hexagonal structure of
Ru3+ ions with edge-shared octahedra of Cl� ions. The cubic axes ~e

x

, ~e
y

, and ~e

z

are along Ru-Cl bonds, while the [1̄10] direction
is along Ru-Ru z-bonds of the honeycomb plane. In the conventions of Ref. 29 the latter corresponds to the crystallographic b

axis, while the [112̄] in our cubic basis then coincides with the a axis, with a ? b. The [111] direction is perpendicular to the
honeycomb plane and is sometimes referred to as c⇤ axis.8 (c) Classical energy gain on each bond in Scenario 1 (antiferromagnetic
K1, ferromagnetic J1). In the z-zigzag state, ~mstagg is parallel or antiparallel to the z axis (“cubic-axis z-zigzag”). In ↵-RuCl3,
the spins point along Ru-Cl bonds (d). (e) Same as (c), but in Scenario 2 (ferromagnetic K1, antiferromagnetic J3). In the
z-zigzag state, ~mstagg can (classically) point everywhere in the xy plane (“cubic-plane z-zigzag”). In ↵-RuCl3, this corresponds
to the planes perpendicular to the Ru-Cl bonds (f). (g) Same as (e), but in Scenario 3 (strong �1 > 0). Here, we display the
limit �1 � |K1| with �1/(�J1) > 0 finite. In the z-zigzag state, ~mstagg lies in the [111̄] direction. In ↵-RuCl3, the spins point
towards the centers of opposite faces of Cl� octahedra surrounding each Ru3+ ion (“face-center z-zigzag”) (h).

B. Conventions for field directions

Due to the broken spin rotation symmetry, and as will
be demonstrated explicitly below, the response of the sys-
tem to an external field ~h crucially depends on the field
direction ~h/h. For convenience, we will give all field di-
rections in the cubic spin basis {~e

x

,~e
y

,~e
z

} and label them
in the form [xyz], i.e.,

~h k [xyz] , ~h / x~e
x

+ y~e
y

+ z~e
z

. (3)

In RuCl3, the cubic axes ~e
x

, ~e
y

, and ~e
z

point along
nearest-neighbor Ru-Cl bonds, see Fig. 1(b). Conse-
quently, the two in-plane field directions along the crys-
tallographic a and b axes correspond to ~h k [112̄] and
~h k [1̄10], respectively. The direction perpendicular to
the honeycomb layer, which is sometimes referred to as
c⇤ axis,8 is labelled as the [111] direction in our conven-

tions. In the same way, ~h k [001] denotes an intermediate
direction which lies in the ac plane and is tilted 55° away
from the c⇤ axis towards the �a axis.

C. Parameter sets

In Table I, we list popular parameter sets for the cou-
plings J1,2,3, K1,2, and �1, that were suggested either on
the basis of ab-initio calculations or by fitting the predic-
tions of di↵erent simplified versions of the above model
to experimental data. The parameter sets can roughly
be divided into three groups, corresponding to the three
scenarios listed in the introduction:

(1) Dominant antiferromagnetic K1 > 0, supplemented
by ferromagnetic J1 < 0 and small longer-ranged in-
teractions,

(2) Dominant ferromagnetic K1 < 0 together with large
antiferromagnetic J3 > 0,

(3) Strong �1 > 0 in conjunction with ferromag-
netic K1 < 0 and only small Heisenberg couplings.

The classical energy contributions to a zero-field zigzag
state within three di↵erent minimal models, represen-
tative for the three scenarios, are illustrated in Fig. 1.
The observed zigzag states in ↵-RuCl3 (Refs. 7 and 8)
and Na2IrO3 (Ref. 3) are in principle compatible with

In-plane field directions (a, b axes)

Out-of-plane field direction (c axis)

L. Janssen et al., PRB 96, 064430 (2017)
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• From Kitaev’s perturbative arguments we know the phase 
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• Can be identified by the modular S-matrix:

Sab ⇠
Info on quantum dimensions
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• From Kitaev’s perturbative arguments we know the phase 
should exhibit “Ising Anyon Topological Order”

• Can be identified by the modular S-matrix:

Quantum dimensions
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Q. What is the nature of the KSL phase in a    
m  magnetic field?

A. Gapped Quantum Spin Liquid with “Isi 
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Even though the system is gapless, 
the dynamical spin structure factor is gapped!

J. Knolle et al., PRL 112, 207203 (2014)
J. Knolle et al., PRB 92, 115127 (2015)
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1. Phase is gapless

2. Phase is disordered

3. Flux gap closes at the transition

4. Energy scale associated with Z2 flux decreases as 
transition is approached

5. Fermions seemingly not affected much. Action is 
occurring mainly in the gauge sector

6. Phase is stable to perturbations

Summary of GSL
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What’s going on?
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U(1) QSL

• Central charge consistent with Fermi surface predicted by PSG analysis 
H.-C. Jiang et al., arXiv:1809.08247 L. Zou, Y.-C. He, arXiv:1809.09091
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State G

M̃

h

(x1, x2, s) G

C6(x1, x2, s) Stable FS?

Kitaev Z2 (�1)se� i ⇡

4 ⌧

z (�1)se
i ⇡

3
⌧

x

+⌧

y

+⌧

zp
3 N/A

U1A
k=0 e

i 3⇡
4 ⌧

z

e

� i ⇡

6 ⌧

z Yes
U1B

k=2 1 i⌧
x

· e i ⇡

3 (1�2s)⌧
z No

U1B
k=4 1 i⌧

x

· e i ⇡

3 (2s�1)⌧
z No

Table I: Symmetry implementations on fermionic spinons in
Kitaev Z2 QSLs, and in the three U(1) QSLs in proximity to
Kitaev Z2 states. The gauge rotations for translation sym-
metries T1,2 are G

T1,2(i) ⌘ 1. The spin rotations in (13) as-
sociated with these symmetries are R

T1,2 = 1, R
M̃

h

= e

i ⇡

4 �

z

and R

C6 = e

� i ⇡

3
�

x

+�

y

+�

zp
3 . (For details see Appendix C)

proximity to Kitaev Z
2

state supports robust (symmetry-
protected) Dirac points in the presence of anisotropy,
thus excluding the possibility of U(1) Dirac spin liquids.
Meanwhile only 1 state among the 3 i.e. U1Ak=0

in TA-
BLE I hosts stable spinon FSs (see Appendix C for de-
tails). Since a U(1) QSL in 2+1-D must be stablized
by gapless spinons, U1Ak=0

state becomes the only can-
didate for the gapless phase at intermediate field in the
phase diagram.

Furthermore, the fact that U1Ak=0

state is separated
with the non-Abelian Ising phase by a continuous phase
transition provides a strong constraint on its spinon FSs.
In the presence of inversion symmetry (5), the integer-
valued topological index ⌫ 2 Z of a gapped 2d supercon-
ductor in symmetry class D is dictated by the number of
spinon FSs enclosing 4 time reversal invariant momenta
(TRIM):

⌫ = (# of FSs enclosing the TRIM) mod 2 (14)

which is proved in Appendix E. Now that non-Abelian
Ising phase corresponds to a px + ipy TSC of spinons
with ⌫ = 1, there must be an odd number of spinon FSs
enclosing all 4 TRIM in the gapless U1Ak=0

state. As
shown in FIG. 4, the typical spinon FSs of an isotropic
U1Ak=0

state at J↵ = J consist of an electron pocket at
zone center �, and one hole pocket at each zone corner
±K.

To further confirm the nature of the gapless U(1)

QSL, we use DMRG method to numerically calculate
the von Neumann entanglement entropy S = �Tr(⇢ln⇢)
on Lxex ⇥ Lyey cylinders of length Lx and circumfer-
ence Ly, where ⇢ is the reduced density matrix of a sub-
system with length x. For a 1+1-D critical system de-
scribed by a conformal field theory (CFT), it is known
that S(x) = c

6

ln

⇥

L
x

⇡ sin(

x⇡
L

x

)

⇤

+ c̃ on a cylinder of length
Lx, where c is the central charge of the CFT and c̃ is
a model-dependent constant. Using this formula we ex-
tracted the central charge c numerically for cylinders with
circumference Ly = 3, 4, as shown in Fig.5. Here we keep
up to m = 3072 block states with a truncation error
✏  5 ⇥ 10

�8. The 3-leg cylinder has c ⇡ 1 suggesting
a critical ground state, while c ⇡ 0 indicates a gapped
ground state on the 4-leg cylinder. This is consistent with

Figure 4: (Color online) How the spinon fermi surfaces (FSs)
intersect with quantized momenta along the circumference of
a 3-leg ladder in (a), and a 4-leg ladder in (b) (see Appendix
D for details). Blue circles denote the spinon FSs of U1A

k=0

state, including one electron pocket at � and two hole pockets
at ±K in the isotropic model. Red lines denote the quantized
momentum along the circumference of the cylinder. Increas-
ing the anisotropy J

z

/J

x,y

not only shrinks all pockets, but
also moves the two hole pockets at ±K towards M point.
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Figure 5: (Color online) (a) Von Neumann entanglement en-
tropy S on L

y

= 3 cylinders of length L

x

, with the cut on
x-bond and y-bond respectively, where x

0 ⌘ L

x

⇡

sin( x⇡

L

x

). (b)
Extracted central charge c with error bar for L

y

= 3 and
L

y

= 4 cylinders. The dashed line is a guide for eyes. We
choose J

z

/J = 1.0 and h/J = 0.28 in (1).

the spinon FSs shown in FIG. 4, since the quantized mo-
menta along the cylinder circumference only cross the
two pockets at ±K for Ly = 3 cylinder, but not Ly = 4.

Identifying the gapless phase as U1Ak=0

state allows us
to further understand the structure of the phase diagram
(FIG. 1) with anisotropy. Numerical results point to a
single phase of gapless U1Ak=0

state, with an odd num-
ber of spinon FSs enclosing all 4 TRIM. This suggests the
neighboring gapped Z

2

topological order of the U(1) QSL
can only be ⌫ = odd TSC of spinons, i.e. the non-Abelian
Ising phase. Similarly, the only gapped Z

2

topological or-
der neighboring the polarized trivial phase can only be a
⌫ = 0 trivial superconductor of spinons, i.e. the Abelian
toric code phase. This dictates the quadrucritical point
joining all 4 phases, and hence the phase diagram FIG.1.
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FIG. 4. (a), (b): Schematic illustration of Brillouin zone
(BZ) and Fermi pockets. The dashed line represent the
momenta points accessible on (a) the L

y

= 2 cylinder and
(b) the L

y

= 3 cylinder. The spinons have anti-periodic
boundary condition on the L

y

= 2 cylinder, and periodic
boundary condition on the L

y

= 3 cylinder. (c), (d): Cen-
tral charge fitting for the (c) L

y

= 2 cylinder and (d) L
y

= 3
cylinder.

FIG. 5. The static structure factor of Sx on the L

y

= 3
cylinder. The value of 2k

f

decreases as the field strength
increases, which is a signal that the NFS shrinks as the field
increases.

visons [68]. We expect that experimental techniques
such as neutron scattering is able to directly measure
the Fermi surfaces of spinons.

Our numerical data could also be consistent with
a scenario with only one Fermi pocket around the �
point. However, such a state at the mean field level
will violate the Luttinger volume law, for which we are
not able to find a theory. On the other hand, theoret-
ically we could also imagine there are Fermi pockets
only around ±K points, or around both the ±K and
M

1,2,3 points. However, these are not consistent with

numerical results. In the former case, for example, one
would always expect an odd central charge, which con-
tradicts with c = 2 we obtained on the Ly = 3 cylinder.
At last, we remark that, if the size of the ±K pockets

are large, the k
1

= ±⇡/2 wires on the Ly = 2 cylinder
may also cut through them. If this happens, we expect
a larger central charge, for example c = 3. Similar
scenario could happen for the Ly = 3 cylinder, where
the k

1

= ±2⇡/3 wires could also cut the � pocket if the
latter is large enough. However, we have not observed
this in our numerical simulations.

Below we turn to understanding our numerical re-
sults theoretically.

B. Parton theory of the NFS state

From Kitaev’s original analysis, it is known that
the isotropic Kitaev model perturbed by a weak mag-
netic field hosts a non-Abelian ITO [3]. In Sec. III A,
we have demonstrated that a di↵erent QSL state that
has a NFS can be stabilized when the magnetic field
becomes stronger. This state persists in a range of
magnetic fields, and finally becomes a trivial polarized
state. These phenomena can be understood in the fol-
lowing picture.

Previous studies indicate that an NFS state can be-
come an ITO through a continuous quantum phase
transition by condensing Cooper pairs of fermionic
spinons [43], which is a natural scenario in our sys-
tem when the magnetic field is decreased so that the
NFS state transits into the ITO. On the other hand,
when the magnetic field is increased, the Fermi surface
of the NFS state may shrink and disappear. Then the
gauge fluctuations will render the system a short-range
entangled state [69], which can be the trivial polarized
state. To gain more insights, in this subsection we
provide a parton mean field theory for the NFS state
and its transitions out. Note to get the the full the-
ory beyond the mean field, one must incorporate the
coupling between the spinons and the dynamical U(1)
gauge field.

Before presenting our parton mean field theory, let
us pause for a moment to explain two principles to
find such a theory. First, because we would like to
have both the NFS and ITO states preserve transla-
tion, C⇤

6

and T �⇤ symmetries, and to have a scenario
that condensing spinon pairs in the NFS state leads
to the ITO state, all symmetries of the ITO mean field
must also be present in the NFS mean field. Second, we
would like to have a parameter regime in which there
are Fermi pockets around �, K and �K points of the
BZ, respectively.

We will use the standard SU(2) parton construction,
which writes the spin operator in terms of fermionic
spinon operators [1, 70]:

Si =
1

2
f†
i �fi (6)

Also see N. D. Patel, N. Trivedi, arXiv:1812.06105
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Thank you!


