Fractional Excitonic Insulator

Charles Kane University of Pennsylvania

Fractional Excitonic Insulator

- I. Introduction : Quantum Hall Effect
 - Fractional Chern Insulator
 - Band Inversion paradigm
- II. Fractional Excitonic Insulator: A correlated fluid of electrons and holes
 - Variant on Laughlin wavefunction
 - Composite fermion theory
 - Exact Hamiltonian
- III. Higher angular momentum band inversion
 - A route to FEI ?
 - A target for band structure engineering
 - excitonic phases and mean field theory

Hu, Venderbos and Kane, PRL 121, 126601 (2018).

Venderbos, Hu and Kane, PRB 98, 235160 (2018).

Yichen Hu

Jörn Venderbos

Integer Quantum Hall Effect

Chern Insulator: B=0

e.g. Haldane 1988

Fractional Quantum Hall Effect

Laughlin State

Fractionally filled Landau level: v = 1/m

- Strongly correlated incompressible quantum fluid with bulk energy gap
- $\sigma_{xy} = (1/m)e^2/h$
- Fractional charge/statistics

Fractional Chern Insulator

Tang, et al. '11; Neupert et al. '11 Sun et al. '11; Regnault, Bernevig '11

Fractionally filled Chern band at B=0

Requires:

- Nearly flat band: bandwidth < interaction energy
- Fractional band filling: v = 1/m

Numerical evidence in model systems

$$\Psi(\{z_i\}) = \prod_{i < j} (z_i - z_j)^m e^{-\sum_i |z_i|^2 / 4\ell_B^2}$$

Fractional quantum Hall states observed in moiré superlattices of bilayer graphene

Spanton, ..., Young, Science 2018

"Hofstadter Chern Insulator": Finite B, periodic potential

penetration field capacitance C_p:

probe of bulk gap

Identify incompressible quantum Hall states in fractionally filled Hofstadter-Chern bands.

Band Inversion Paradigm

- "opposite" of the flat Landau level limit
- Ground state topology determined by low energy states near Fermi energy
- Two band k·p model: simplest theory of topological transition

$$H = \left(\underbrace{M}_{\nearrow} + k_{z}^{2} \right) \sigma_{z} + v \left(k_{x} \sigma_{x} + k_{y} \sigma_{y} \right)$$

Read, Green '01; Bernevig, Hughes, Zhang '07; ... many others

Dirac mass

large k regularization

Electron – Hole Fluid

$$H = \sum_{k} \varepsilon_{k} \left(c_{ke}^{\dagger} c_{ke} + c_{kh}^{\dagger} c_{kh} \right) + \Delta_{k} c_{-ke}^{\dagger} c_{kh}^{\dagger} + h.c.$$
$$\varepsilon_{k} = k^{2} + M \qquad \Delta_{k} = v(k_{x} + ik_{y})$$
$$\uparrow$$

p+ip "excitonic pairing"

"BCS" wavefunction

$$|\Phi_0\rangle = \prod_k \left(u_k + v_k c^{\dagger}_{-ke} c^{\dagger}_{kh}\right)|0\rangle$$
 \leftarrow vacuum = filled valence band

p+ip excitonic condensate *

$$\left|\Phi_{0}\right\rangle \propto e^{\int dz dwg(z-w)\psi_{e}^{\dagger}(z)\psi_{h}^{\dagger}(w)}\left|0\right\rangle \qquad \left(g_{k}=\frac{v_{k}}{u_{k}}=\frac{\Delta_{k}}{\varepsilon_{k}+\sqrt{\varepsilon_{k}^{2}+\left|\Delta_{k}\right|^{2}}}\right)$$

(* no spontaneously broken symmetry)

 $g(z = x + iy \rightarrow \infty) \sim \begin{cases} M > 0: e^{-|z|/\xi} \text{ "strong paired" } \left(g_{k \rightarrow 0} \sim \frac{v(k_x + ik_y)}{2M}\right) \\ M < 0: \frac{1}{z} \text{ "weak paired" } \left(g_{k \rightarrow 0} \sim \frac{2M}{v(k_x + ik_y)}\right) \end{cases}$

pair wavefunction

Fractional Excitonic Insulator

A strongly correlated fluid of electrons and holes leading to B=0 "anomalous FQHE" at v=1/m

Proposed ground state: (see also Dubail and Read PRB 2015)

 $|\Psi_{m}\rangle = \sum_{N=1}^{\infty} \frac{f^{N}}{N!} |\Psi_{m}^{N}\rangle$ $|\Psi_{m}^{N}\rangle =$ wave function for N electrons at z_{i} N holes at w_{j}

$$\Psi_{m}^{N}(\{z_{i},w_{j}\}) = \frac{\prod_{i < i'} (z_{i} - z_{i'})^{m} \prod_{j < j'} (w_{j} - w_{j'})^{m}}{\prod_{i.j} (z_{i} - w_{j})^{m}}$$

Similar to Laughlin (or Halperin bilayer) wavefunction, except :

- No Gaussian factor
- Singular denominator

m=1: Non interacting Chern insulator

 $|\Psi_1\rangle$ is the exact ground state of a simple free fermion model.

$$H = \sum_{k} \varepsilon_{k} \left(c_{ke}^{\dagger} c_{ke} + c_{kh}^{\dagger} c_{kh} \right) + \Delta_{k} c_{-ke}^{\dagger} c_{kh}^{\dagger} + h.c.$$

$$\varepsilon_{k} = \frac{1}{2} \left(k^{2} - v^{2} \right) \qquad \Delta_{k} = v(k_{x} + ik_{y})$$

$$E_{k} = \sqrt{\varepsilon_{k}^{2} + |\Delta_{k}|^{2}} = \frac{1}{2} \left(k^{2} + v^{2} \right)$$

$$g_{k} = \frac{v_{k}}{u_{k}} = \frac{v}{k_{x} + ik_{y}}$$

$$g(z = x + iy) = \frac{v}{2\pi z}$$

$$\left|\Phi_{0}\right\rangle \propto e^{\int dz dwg(z-w)\psi_{e}^{\dagger}(z)\psi_{h}^{\dagger}(w)}\left|0\right\rangle = \sum_{N=1}^{\infty} \frac{f^{N}}{N!} \det\left[\frac{1}{z_{i}-w_{j}}\right]\left|\left\{z_{i},w_{j}\right\}\right\rangle \left(f=\frac{v}{2\pi}\right)$$

Cauchy Determinant Identity:

$$\det\left[\frac{1}{z_{i}-w_{j}}\right] = \frac{\prod_{i< i'}(z_{i}-z_{i'})\prod_{j< j'}(w_{j}-w_{j'})}{\prod_{i,j}(z_{i}-w_{j})}$$

Conclude $|\Phi_0\rangle = |\Psi_{m=1}^0\rangle$ with $f = v/2\pi$.

Ground state wavefunction as a CFT correlator

Laughlin State

$$\Psi_{m}^{N}\left(\left\{z_{i}\right\}\right) = \left\langle \left(\prod_{i=1}^{N} e^{im\varphi(z_{i})}\right)O_{background}\right\rangle = \prod_{i < i'} (z_{i} - z_{i'})^{m} e^{-\sum_{i=1}^{N} |z_{i}|^{2}/4}$$

Fractional Excitonic Insulator

$$\Psi_{m}^{N}(\{z_{i},w_{i}\}) = \left\langle (\prod_{i=1}^{N} e^{im\varphi(z_{i})})(\prod_{j=1}^{N} e^{-im\varphi(w_{j})}) \right\rangle = \frac{\prod_{i$$

For sufficiently large fugacity f, $|\Psi_m\rangle$ describes a fractional quantum Hall fluid.

Composite Fermion Model

Singular gauge transformation*:

- attach flux + (m-1)h/e to each electron
- attach flux -(m-1)h/e to each hole

•
$$\psi_{e(h)}(\mathbf{r}) = \psi_{e(h)}^{CF}(\mathbf{r})e^{\pm i(m-1)\Theta(\mathbf{r})}$$

Mean field theory:

• If
$$<\rho_e> = <\rho_h>$$
, then $B_{av} = 0$.

 If composite fermions form Chern insulator (C=1), then the original fermions form a fractional quantum Hall fluid

Chern Simons theory:

•
$$L = L_0[\psi, a+A] + \frac{\varepsilon_{\mu\nu\lambda}a_{\mu}\partial_{\nu}a_{\lambda}}{4\pi(m-1)} \rightarrow L = \frac{\varepsilon_{\mu\nu\lambda}}{4\pi} \left[(a+A)_{\mu}\partial_{\nu}(a+A)_{\lambda} + \frac{a_{\mu}\partial_{\nu}a_{\lambda}}{m-1} \right]$$

•
$$\rightarrow L = \frac{\varepsilon_{\mu\nu\lambda}A_{\mu}\partial_{\nu}A_{\lambda}}{4\pi m} \rightarrow \sigma_{xy} = \frac{1}{m}\frac{e^2}{h}$$

$$\nabla \times \nabla \Theta = 2\pi (\psi_e^{\dagger} \psi_e - \psi_h^{\dagger} \psi_h)$$

Towards a Hamiltonian

Seek the exact question to the answer

The Laughlin state is the exact zero energy eigenstate of a model Hamiltonian with short range repulsive interactions: Haldane 1983, Trugman and Kivelson 1985

Alternative approach for Jastrow type wavefunctions: C.L. Kane, S.A. Kivelson, D.H. Lee and S.C. Zhang, PRB 1991

- Construct annihilation operators: $Q_{e(h)}(z) |\Psi_m\rangle = 0$
- $|\Psi_{\scriptscriptstyle m}
 angle$ is an exact ground state of

$$H_m = \int d^2 z \Big[Q_e^{\dagger} Q_e + Q_h^{\dagger} Q_h \Big]$$

- m=1: H₁ is the exact non interacting Chern insulator Hamiltonian.
- m>1: H_m involves (2m-1) body interactions.

Compute
$$\partial_{z^*} \Psi(\{z_i, w_j\})$$
, use fact:
 $\partial_{z^*} \frac{1}{(z-w)^m} = \frac{\pi}{(m-1)!} \partial_w^{m-1} \delta^2(z-w)$
 \bigvee
 $Q_{e(h)}(z) = \partial_{z^*} \psi_{e(h)} - v (\partial_z - ia)^{m-1} \psi_{h(e)}^{\dagger}$
 $a(z) = m \int d^2 u \frac{\psi_e^{\dagger} \psi_e - \psi_h^{\dagger} \psi_h}{z-u}$

Possible route to Fractional Excitonic Insulator

Turn off interactions in exact Hamiltonian:

$$H = \sum_{k} k^{2} \left(c_{ke}^{\dagger} c_{ke} + c_{kh}^{\dagger} c_{kh} \right) + \mathbf{v} \left(k_{x} + i k_{y} \right)^{m} c_{-ke}^{\dagger} c_{kh}^{\dagger} + h.c$$

quadratic band touching

angular momentum *m* excitonic pairing

Non interacting ground state :

$$|\Phi_0\rangle \propto \sum_{N=1}^{\infty} \frac{1}{N!} \det \left[g(z_i - w_j)\right] |\{z_i, w_j\}\rangle$$

$$g(z \to \infty) \sim \frac{1}{z^m}$$
$$\det\left[\frac{1}{(z_i - w_j)^m}\right] = \frac{P(\{z_i, w_j\})}{\prod_{i,j} (z_i - w_j)^m}$$

Short range repulsive interactions :

Put all the required zeros of the wave function on top of the particles

$$\frac{P\left(\left\{z_i, w_j\right\}\right)}{\prod_{i,j} (z_i - w_j)^m} \rightarrow \frac{\prod_{i < i'} (z_i - z_{i'})^m \prod_{j < j'} (w_j - w_{j'})^m}{\prod_{i,j} (z_i - w_j)^m}$$

Higher angular momentum band inversion

In crystal with C₆ rotational symmetry, invert bands that differ in angular momentum by 3 at Γ : e.g. s and f states.

Unconventional topological transition

- Chern number changes by 3 at transition
- Quadratic band touching (with I=3 coupling) at transition
- Expect interactions to be important
- Target for band structure engineering

Tight Binding Model

Two band model: triangular lattice with s (m=0) and f (m=3) orbitals

$$H = \sum_{i,j} \begin{pmatrix} s_i^{\dagger} & f_i^{\dagger} \end{pmatrix} \begin{pmatrix} h_{ij}^s & \Delta_{ij} \\ \Delta_{ji}^* & h_{ij}^f \end{pmatrix} \begin{pmatrix} s_j \\ f_j \end{pmatrix} \qquad h_{ij}^{s(f)} = \varepsilon^{s(f)} \delta_{ij} + t_{ij}^{1 \, ss(ff)} \\ \Delta_{ij} = \left(t_{ij}^{1 \, sf} + t_{ij}^{2 \, sf} \right) e^{3i\theta_{ij}} \quad (p+ip)^3$$

Mean field excitonic instability

With interactions, energy can be lowered by spontaneously breaking symmetry

- s-wave excitonic order parameter: $\langle \psi_e^{\dagger} \psi_h^{\dagger} \rangle = \Delta_0 e^{i\theta_0}$
- spontaneously lowers rotational symmetry to C₃

Interplay between topological and symmetry breaking transitions.

Conclusion

Fractional excitonic insulator

- A correlated fluid of electrons and holes can exhibit a fractional quantum Hall state at zero magnetic field with a stoichiometric band filling.
- Described by variant of Laughlin wavefunction
- Target for numerics on strongly interacting model systems

Higher angular momentum band inversion

- Unconventional topological transition: $\Delta C=3$.
- Promising venue for FEI in presence of strong repulsive short range interactions.
- Target for band structure engineering, real materials prediction