Anyons in Quantum Many-Body Systems (Anyon19) Jan 25 2019

Non-Abelian Evolution of a Majorana Train in a Single Josephson Junction: $2n\pi$ fractional AC Josephson effect

Heung-Sun Sim Physics, KAIST

Part I: Non-Abelian evolution of a Majorana train

Choi, Sim, submitted (2018)

Part II: Nonlocal entanglement (length-independent, topological) in the bulk of 1D fermions

Park, Shim, Lee, Sim, PRL (2017)

Non-Abelian Fusion of Majoranas

 $\gamma_i^{\dagger} = \gamma_i$

Majorana fermions

- Real fermions (particle = anti-particle)
- Two Majoranas (fusion) = a complex fermion

$$\psi = \gamma_1 + i\gamma_2 \quad \psi^{\dagger} = \gamma_1 - i\gamma_2$$
$$\psi^{\dagger} |0\rangle = |1\rangle$$

- Interchanging fusion partners: four Majoranas

- Generation of a form of entanglement!

Part I: Non-Abelian evolution of a Majorana train: $2n\pi$ fractional AC Josephson effects

Majorana fermions in topological SC

RMP (2010).

Topological Josephson junction

Fu and Kane, PRL 2008

Topological insulator

$$\phi = \pi$$

 4π fractional Josephson effect $I_{4\pi} \sin \phi/2$

> Experiments: doubled Shapiro step LP Rokhinson et al. Nat Phys 2012 Wiedenmann et al. Nat Comm 2016

Topological Josephson junction

Nanowire + spin-orbit coupling

Lutchyn, Sau, Das Sarma, PRL 2010 Oreg, Refael, von Oppen, PRL 2010

Non-abelian braiding with multiple Josephson junctions and dynamical control of system parameters

Fu and Kane, PRL 2008

 π

 $|0_{12}0_{34}\rangle \rightarrow (|0_{14}0_{32}\rangle + |1_{14}1_{32}\rangle)/\sqrt{2}.$

Non-abelian braiding with multiple Josephson junctions and dynamical control of system parameters

а

Alicea, Oreg, Refael, von Oppen, Fisher, Nat. Phys. 2011 Non-abelian braiding with a single Josephson junction?

YES! (under magnetic fields)

and without dynamically tuning the system parameters

 $2n\pi$ fractional Josephson

 4π fractional Josephson

 $n \ge 2$

Conditions for Majorana zero modes

Tiwari, Zuelicke, and Bruder, PRL **110**, 186805 (2013)

$$H(t) = \int_{-l}^{W} dx \Gamma(x)^{\top} \left(-iv(x)\sigma_{z}\partial_{x} + m(x,t)\sigma_{y}\right)\Gamma(x)$$
$$m(x,t) = \Delta_{0} \sin\left(\frac{N\pi x}{W} - \frac{eV_{\rm DC}t}{\hbar}\right)$$

 $i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = H(t)|\psi(t)\rangle \qquad E_{tot}(t) = \langle\psi(t)|H(t)|\psi(t)\rangle \qquad I_J = \frac{1}{V_{DC}}\frac{\partial E_{tot}}{\partial t}$

TT7

Conditions for Majorana zero modes

$$N = BLW/\Phi_0 = 3$$

Mobile localized MZMs (Majorana zero modes)

$$x_{k=1,2,\dots}(t) = \frac{W}{N} \left(k - 1 + \frac{t}{T_{\mathrm{J}}} \right)$$

$$\lambda \equiv \sqrt{\frac{\hbar v W}{\pi N \Delta}} \ll W/N$$

 $T_{\rm J} = h/(2eV_{\rm DC})$

The Kitaev chains and trivial chains alternately appear in the junction.

Conditions for Majorana zero modes

An extended MZM appears along the arcs when there are an odd number of MZMs inside (e.g., along the junction)

Mobile Majorana train & Fusion

After one Hamiltonian period $T_{\rm J} = h/(2eV_{\rm DC})$: $\gamma_1(T_{\rm J}) = \gamma_2(0)$ $\gamma_2(T_{\rm J}) = \gamma_3(0)$ $\gamma_3(T_{\rm J}) = \gamma_4(0)$ $\gamma_4(T_{\rm J}) = -\gamma_1(0)$

Non-Abelian braiding of MZMs

Non-Abelian braiding of MZMs

Non-Abelian braiding of MZMs

 $t=T_{I}$

Mobile Majorana train & Fusion

$$t=0$$
 $t=T_{\rm J}$

$$|0_{41}0_{32}\rangle_0 \mapsto \frac{e^{i\phi}}{\sqrt{2}} (e^{i\phi'}|0_{41}0_{32}\rangle_0 - ie^{-i\phi'}|1_{41}1_{32}\rangle_0)$$

Mobile Majorana train & Fusion

$$|0_{41}0_{32}\rangle_{0} \mapsto \frac{e^{i\phi}}{\sqrt{2}} (e^{i\phi'}|0_{41}0_{32}\rangle_{0} - ie^{-i\phi'}|1_{41}1_{32}\rangle_{0})$$
$$U = U_{\phi'}U_{\rm B}U_{\phi}$$

 $\{|0_{41}0_{32}\rangle_0, |1_{41}1_{32}\rangle_0, |0_{41}1_{32}\rangle_0, |1_{41}0_{32}\rangle_0\}$

$2n\pi$ Fractional Josephson effects

 $2n\pi$ periodic in time, $n \ge 2$ Signature of the non-Abelian braiding statistics: *n* is determined by the bias voltage

$$T_{\rm J} = h/(2eV_{\rm DC})$$

$$\begin{split} n &= 2 \\ |\psi(0)\rangle &= |0_{41}0_{32}\rangle_0 \stackrel{U}{\mapsto} - |0_{41}0_{32}\rangle_0 - ie^{i\phi_-} |1_{41}1_{32}\rangle_0 \qquad t = T_J \\ &\stackrel{U}{\mapsto} |0_{41}0_{32}\rangle_0 \qquad t = 2T_J \\ n &= 3 \\ |\psi(0)\rangle &= |0_{41}0_{32}\rangle_0 \stackrel{U}{\mapsto} \frac{e^{i\pi/4}}{\sqrt{2}} |0_{41}0_{32}\rangle_0 + \frac{ie^{i\phi_-}}{\sqrt{2}} |1_{41}1_{32}\rangle_0 \qquad t = T_J \\ &\stackrel{U}{\mapsto} \frac{e^{i\pi/4}}{\sqrt{2}} |0_{41}0_{32}\rangle_0 - \frac{e^{i\phi_-}}{\sqrt{2}} |1_{41}1_{32}\rangle_0 \qquad t = 2T_J \\ &\stackrel{U}{\mapsto} |0_{41}0_{32}\rangle_0 \qquad t = 3T_J \end{split}$$

$2n\pi$ Fractional Josephson effects

 $2n\pi$ periodic in time, $n \ge 2$

Signature of the non-Abelian braiding statistics: *n* is determined by the bias voltage

Summary of Part I

Non-Abelian evolution of a Majorana train in a single Josephson junction

- Generation and Braiding of mobile Majorana fermions
- Signature of Non-Abelian effects: $2n\pi$ fractional AC Josephson effect

Nonlocal entanglement in 1D bulk at finite temperature

- Entanglement by non-Abelian fusion
- Dependent on topological classes (the number of the end Majorana fermions)
- Sudden death and birth of nonlocal entanglement

Nonlocal entanglement in 1D Non-Abelian evolution of a Majorana train Park, Shim, Lee, Sim, PRL (2017) Choi, Sim submitted (2018)

Part II: - Nonlocal entanglement (topological) in bulk of 1D fermions

Entanglement B|AC

- Non-Abelian anyonic statistics + Fermi statistics
- Topological-class dependent entanglement

Park, Shim, Lee, Sim, PRL (2017)

Topological order and entanglement

Entanglement entropy

$$\mathcal{E}_{\rm E}(|\psi\rangle) = -\mathrm{Tr}(\rho_{\rm A}\log_2\rho_{\rm A})$$
$$\rho_{\rm A} = \mathrm{Tr}_{\rm B}|\psi\rangle\langle\psi|$$

Quantum correlation between A and B generates entropy even at zero temperature

Topological entanglement entropy

$$\mathcal{E}_E = \alpha L - \gamma + \cdots$$

Global constant $\gamma = \log D$ (D: quantum dimension; topological ground-state degeneracy)

Identifying anyonic topological order

non-topological order: $\gamma = 0$ fractional quantum Hall with filling 1/q (Abelian anyon) :

 $\gamma = 0.5 \log q$

Kitaev & Preskill,

Levin & Wen

Our motivation: 1. topological entanglement at finite temperature ? 2. 1D version

Our target systems: Kitaev chain and its variants

$$\hat{H}_{\text{II}} = -\frac{\Delta}{2} \sum_{j=1}^{N-2} (c_j + c_j^{\dagger}) (c_{j+2} - c_{j+2}^{\dagger})$$

$$\gamma_{1'} \gamma_{1}$$

$$\gamma_{4'} \gamma_{4}$$

Two Majoranas at each end

Fidkowski and Kitaev PRB 2011 Turner, Pollmann, and Berg, PRB 2011

What we compute: Entanglement between B and AC

$$\rho = e^{-H/(k_B T)} / \mathrm{Tr} e^{-H/(k_B T)}$$

Thermal mixture of different-parity states

Entanglement B|AC

Mixed-state entanglement measure

- Entanglement of formation:
- Logarithmic entanglement negativity:

generalization of entanglement entropy computable measure for mixed states

Entanglement between B and AC: Results

Entanglement B|AC

Entanglement of formation Logarithmic negativity

- $T \rightarrow 0$: Entanglement = 1
- Nonlocal, independent of length (>> correlation length)
- Sudden death of the entanglement at certain T

Corresponding spin systems (Wigner Jordan)

- No entanglement in the thermal states

T Yu & JH Eberly, Science 323, 598 (2009)

Entanglement between B and AC: Bell entanglements

Ground states $|0\rangle_{\rm I}$ $|1\rangle_{\rm I} = f_{14}^{\dagger}|0\rangle_{\rm I}$ $\langle f_{ab} \equiv (\gamma_a + i\gamma_b)/\sqrt{2}$

Mapping fermion occupation states to qubits

 $\begin{aligned} |0\rangle_{\mathrm{I}} &\mapsto |\mathrm{Bell}\rangle^{q} |0_{14}\rangle^{q} \\ |1\rangle_{\mathrm{I}} &\mapsto |\mathrm{Bell}\rangle^{q} |1_{14}\rangle^{q} \\ &- |\mathrm{Bell}\rangle^{q} = \frac{1}{\sqrt{2}} (|0_{\bar{2}\bar{3}}\rangle^{q} |0_{23}\rangle^{q} + i|1_{\bar{2}\bar{3}}\rangle^{q} |1_{23}\rangle^{q}) \end{aligned}$

Nonlocal entanglement by interchanging Majorana fusion partners

The zero-temperature thermal state has the Bell entanglement! $\rho_{\rm I}(T=0)=(|0\rangle\langle 0|_{\rm I}+|1\rangle\langle 1|_{\rm I})/2$ A nontrivial step...

To define entanglement in fermion occupation states, we need to map the fermion states into qubit states.

One must treat the fermion-exchange sign (-1) properly.

Role of fermion statistics

$$\begin{split} |0\rangle_{\mathbf{I}} &\mapsto |\mathrm{Bell}\rangle^{q} |0_{14}\rangle^{q} \qquad |1\rangle_{\mathbf{I}} \mapsto |\mathrm{Bell}\rangle^{q} |1_{14}\rangle^{q} \\ |\mathrm{Bell}\rangle^{q} &= \frac{1}{\sqrt{2}} (|0_{\bar{2}\bar{3}}\rangle^{q} |0_{23}\rangle^{q} + i|1_{\bar{2}\bar{3}}\rangle^{q} |1_{23}\rangle^{q}) \end{split}$$

$$\begin{split} |0\rangle_{\mathrm{I}} &= \frac{1}{2} (1 + f_{12}^{\dagger} f_{34}^{\dagger} + f_{12}^{\dagger} f_{\bar{2}\bar{3}}^{\dagger} + f_{\bar{2}\bar{3}}^{\dagger} f_{34}^{\dagger}) |0_{12} 0_{\bar{2}\bar{3}} 0_{34} \cdot \cdot \rangle, \\ |1\rangle_{\mathrm{I}} &= \frac{1}{2} (f_{12}^{\dagger} + f_{34}^{\dagger} + f_{\bar{2}\bar{3}}^{\dagger} + f_{12}^{\dagger} f_{\bar{2}\bar{3}}^{\dagger} f_{34}^{\dagger}) |0_{12} 0_{\bar{2}\bar{3}} 0_{34} \cdot \cdot \rangle. \end{split}$$

 $\zeta f_{ab} \equiv (\gamma_a + i\gamma_b)/\sqrt{2}$

Role of fermion statistics

$$|0\rangle_{\mathrm{I}} = \frac{1}{2} (1 + f_{12}^{\dagger} f_{34}^{\dagger} + f_{12}^{\dagger} f_{\bar{2}\bar{3}}^{\dagger} + f_{\bar{2}\bar{3}}^{\dagger} f_{34}^{\dagger}) |0_{12} 0_{\bar{2}\bar{3}} 0_{34} \cdots \rangle,$$

$$|1\rangle_{\mathrm{I}} = \frac{1}{2} (f_{12}^{\dagger} + f_{34}^{\dagger} + f_{\bar{2}\bar{3}}^{\dagger} + f_{12}^{\dagger} f_{\bar{2}\bar{3}}^{\dagger} f_{34}^{\dagger}) |0_{12} 0_{\bar{2}\bar{3}} 0_{34} \cdots \rangle.$$

We must collect operators belonging to B and those to AC, before mapping fermion occupation states to qubit tensor products

$$|0\rangle_{\mathbf{I}} = \frac{1}{2} (1 + f_{12}^{\dagger} f_{34}^{\dagger} - f_{\bar{2}\bar{3}}^{\dagger} f_{12}^{\dagger} + f_{\bar{2}\bar{3}}^{\dagger} f_{34}^{\dagger}) |0_{\bar{2}\bar{3}} 0_{12} 0_{34} \dots \rangle,$$

$$|1\rangle_{\rm I} = \frac{1}{2} (f^{\dagger}_{12} + f^{\dagger}_{34} + f^{\dagger}_{\bar{2}\bar{3}} - f^{\dagger}_{\bar{2}\bar{3}} f^{\dagger}_{12} f^{\dagger}_{34}) |0_{\bar{2}\bar{3}} 0_{12} 0_{34} \dots \rangle.$$

$$\begin{split} |0\rangle_{\mathrm{I}} &\mapsto |0\rangle_{\mathrm{I}}^{q} = \frac{1}{2} (|0_{\bar{2}\bar{3}}\rangle^{q} (|0_{12}\rangle^{q} |0_{34}\rangle^{q} + |1_{12}\rangle^{q} |1_{34}\rangle^{q}) \\ & \bullet |1_{\bar{2}\bar{3}}\rangle^{q} (|1_{12}\rangle^{q} |0_{34}\rangle^{q} \bullet |0_{12}\rangle^{q} |1_{34}\rangle^{q})), \\ |1\rangle_{\mathrm{I}} &\mapsto |1\rangle_{\mathrm{I}}^{q} = \frac{1}{2} (|0_{\bar{2}\bar{3}}\rangle^{q} (|1_{12}\rangle^{q} |0_{34}\rangle^{q} + |0_{12}\rangle^{q} |1_{34}\rangle^{q}) \\ & + |1_{\bar{2}\bar{3}}\rangle^{q} (|0_{12}\rangle^{q} |0_{34}\rangle^{q} \bullet |1_{12}\rangle^{q} |1_{34}\rangle^{q})). \end{split}$$

Role of fermion statistics

Fermion case:

$$\begin{split} |0\rangle_{\mathrm{I}} &\mapsto |0\rangle_{\mathrm{I}}^{q} = \frac{1}{2} (|0_{\bar{2}\bar{3}}\rangle^{q} (|0_{12}\rangle^{q} |0_{34}\rangle^{q} + |1_{12}\rangle^{q} |1_{34}\rangle^{q}) \\ & = |1_{\bar{2}\bar{3}}\rangle^{q} (|1_{12}\rangle^{q} |0_{34}\rangle^{q} = |0_{12}\rangle^{q} |1_{34}\rangle^{q})), \\ |1\rangle_{\mathrm{I}} &\mapsto |1\rangle_{\mathrm{I}}^{q} = \frac{1}{2} (|0_{\bar{2}\bar{3}}\rangle^{q} (|1_{12}\rangle^{q} |0_{34}\rangle^{q} + |0_{12}\rangle^{q} |1_{34}\rangle^{q}) \\ & + |1_{\bar{2}\bar{3}}\rangle^{q} (|0_{12}\rangle^{q} |0_{34}\rangle^{q} = |1_{12}\rangle^{q} |1_{34}\rangle^{q})). \end{split}$$

 $\rho_{\rm I}(T=0) = (|0\rangle\langle 0|_{\rm I} + |1\rangle\langle 1|_{\rm I})/2$, the zero-temperature thermal state has the maximum entanglement!

$$\begin{aligned} \text{Spin case: } |0\rangle_{I}^{s} &= \frac{1}{2} [|0_{\bar{2}\bar{3}}\rangle^{s} (|0_{12}\rangle^{s} |0_{34}\rangle^{s} + |1_{12}\rangle^{s} |1_{34}\rangle^{s}) \\ &+ |1_{\bar{2}\bar{3}}\rangle^{s} (|1_{12}\rangle^{s} |0_{34}\rangle^{s} + |0_{12}\rangle^{s} |1_{34}\rangle^{s})], \\ |1\rangle_{I}^{s} &= \frac{1}{2} [|0_{\bar{2}\bar{3}}\rangle^{s} (|1_{12}\rangle^{s} |0_{34}\rangle^{s} + |0_{12}\rangle^{s} |1_{34}\rangle^{s}) \\ &+ |1_{\bar{2}\bar{3}}\rangle^{s} (|0_{12}\rangle^{s} |0_{34}\rangle^{s} + |1_{12}\rangle^{s} |1_{34}\rangle^{s})], \end{aligned}$$

 $\rho_I^s(T=0) = (|0\rangle\langle 0|^s + |1\rangle\langle 1|^s)/2$ has no entanglement!

Zero temperature: Summary

Fermion case:

- 1. The zero-temperature thermal state has the Bell entanglement (in any basis)! $\rho_{I}(T = 0) = (|0\rangle\langle 0|_{I} + |1\rangle\langle 1|_{I})/2$
- 2. The entanglement results from Majorana non-Abelian statistics and Fermi-Dirac statistics

Spin case: no entanglement

Finite temperature

Thermal states
$$\rho = e^{-H/(k_B T)} / \text{Tr} e^{-H/(k_B T)}$$

Thermal mixing of Bell entanglements $|0\rangle_{I}, |1\rangle_{I}$ $|Bell\rangle^{q} = \frac{1}{\sqrt{2}}(|0_{\bar{2}\bar{3}}\rangle^{q}|0_{23}\rangle^{q} + i|1_{\bar{2}\bar{3}}\rangle^{q}|1_{23}\rangle^{q})$ $f_{2\bar{2}}^{\dagger}$ $|0_{\bar{2}\bar{3}}\rangle^{q}|1_{23}\rangle^{q} - i|1_{\bar{2}\bar{3}}\rangle^{q}|0_{23}\rangle^{q}$ $f_{\bar{3}3}^{\dagger}$ $|0_{\bar{2}\bar{3}}\rangle^{q}|1_{23}\rangle^{q} + i|1_{\bar{2}\bar{3}}\rangle^{q}|0_{23}\rangle^{q}$ $f_{2\bar{2}}^{\dagger}f_{\bar{3}3}^{\dagger}$ $|0_{\bar{2}\bar{3}}\rangle^{q}|0_{23}\rangle^{q} - i|1_{\bar{2}\bar{3}}\rangle^{q}|1_{23}\rangle^{q}$

Entanglement sudden death

Comparison with the corresponding 1D spin

Fermion case:

Spin case (Wigner Jordan):

No Entanglement B|AC at any temperature

Our target systems: a different class from the Kitaev chain

$$\hat{H}_{\text{II}} = -\frac{\Delta}{2} \sum_{j=1}^{N-2} (c_j + c_j^{\dagger}) (c_{j+2} - c_{j+2}^{\dagger})$$

Our target systems: a different class from the Kitaev chain

Changing Majorana fusion pairs → 4-qubit cluster-state entanglement (nonlocal)

$$\begin{split} |n\rangle_{\mathrm{II}} &\to |n\rangle_{\mathrm{II}}^{q} = |\mathrm{CL}\rangle^{q} |n_{11'}\rangle^{q} |n_{44'}\rangle^{q}, \\ |\mathrm{CL}\rangle^{q} &= \frac{1}{2} [|0_{\bar{2}\bar{2}'}\rangle^{q} |0_{22'}\rangle^{q} (|0_{\bar{3}\bar{3}'}\rangle^{q} |0_{33'}\rangle^{q} + |1_{\bar{3}\bar{3}'}\rangle^{q} |1_{33'}\rangle^{q}) \\ &- |1_{\bar{2}\bar{2}'}\rangle^{q} |1_{22'}\rangle^{q} (|0_{\bar{3}\bar{3}'}\rangle^{q} |0_{33'}\rangle^{q} - |1_{\bar{3}\bar{3}'}\rangle^{q} |1_{33'}\rangle^{q})]. \end{split}$$

Our target systems: a different class from the Kitaev chain

Changing Majorana fusion pairs → 4-qubit cluster-state entanglement (nonlocal)

$$\begin{split} |n\rangle_{\mathrm{II}} &\to |n\rangle_{\mathrm{II}}^{q} = |\mathrm{CL}\rangle^{q} |n_{11'}\rangle^{q} |n_{44'}\rangle^{q}, \\ |\mathrm{CL}\rangle^{q} &= \frac{1}{2} [|0_{\bar{2}\bar{2}'}\rangle^{q} |0_{22'}\rangle^{q} (|0_{\bar{3}\bar{3}'}\rangle^{q} |0_{33'}\rangle^{q} + |1_{\bar{3}\bar{3}'}\rangle^{q} |1_{33'}\rangle^{q}) \\ &= |1_{\bar{2}\bar{2}'}\rangle^{q} |1_{22'}\rangle^{q} (|0_{\bar{3}\bar{3}'}\rangle^{q} |0_{33'}\rangle^{q} - |1_{\bar{3}\bar{3}'}\rangle^{q} |1_{33'}\rangle^{q})]. \end{split}$$

Spin case (Winger-Jordan):

Bell*Bell local entanglement in $\rho_{II}^s(T=0)$ $|Bell_2\rangle^s \otimes |Bell_3\rangle^s$

Entanglement between B and AC: finite temperature

 $\mathcal{LN}(\rho_{\mathrm{II}}(T)) - \mathcal{LN}(\rho_{\mathrm{II}}^{s}(T))$

A marker for nonlocal entanglement originating from fermion statistics and Majorana fermions

Sudden birth and death of nonlocal entanglement

Summary

Non-Abelian evolution of a Majorana train in a single Josephson junction

- Generation and Braiding of mobile Majorana fermions
- Signature of Non-Abelian effects: $2n\pi$ fractional AC Josephson effect

Nonlocal entanglement in 1D bulk at finite temperature

- Entanglement by non-Abelian fusion and fermionic exchange statistics
- Dependent on topological classes (the number of the end Majorana fermions)
- Sudden death and birth of nonlocal entanglement

Nonlocal entanglement in 1D Non-Abelian evolution of a Majorana train Park, Shim, Lee, Sim, PRL (2017) Choi, Sim submitted (2018) Acknowledgement: Collaboration with

Yeje Park (KAIST)

Jeongmin Shim (KAIST)

Sang-Jun Choi (IBS-PCS)

Seung-Sub B. Lee (Munchen, the group of Jan von Delft)

Center for Quantum Coherence In Condensed matter 응집상 양자 결맞음 연구센터