Non-Abelian Evolution of a Majorana Train in a Single Josephson Junction: $2 n \pi$ fractional AC Josephson effect

Heung-Sun Sim
Physics, KAIST

Part I: Non-Abelian evolution of a Majorana train

Choi, Sim, submitted (2018)

Part II: Nonlocal entanglement (length-independent, topological) in the bulk of 1D fermions

Park, Shim, Lee, Sim, PRL (2017)

Non-Abelian Fusion of Majoranas

Majorana fermions

- Real fermions \quad (particle $=$ anti-particle) $\quad \gamma_{i}^{\dagger}=\gamma_{i}$
- Two Majoranas (fusion) = a complex fermion

$$
\begin{aligned}
& \psi=\gamma_{1}+i \gamma_{2} \quad \psi^{\dagger}=\gamma_{1}-i \gamma_{2} \\
& \psi^{\dagger}|0\rangle=|1\rangle
\end{aligned}
$$

- Interchanging fusion partners: four Majoranas

$$
|00\rangle \rightarrow|00\rangle+|11\rangle
$$

- Generation of a form of entanglement!

Part I: Non-Abelian evolution of a Majorana train:

$2 n \pi$ fractional AC Josephson effects

$$
T_{\mathrm{J}}=h /\left(2 e V_{\mathrm{DC}}\right)
$$

Majorana fermions in topological SC

$$
\gamma_{i}^{\dagger}=\gamma_{i}
$$

Particle-hole symmetry in SC

2DT-SC

$$
k L+\pi+\pi=2 n \pi
$$

Magnetic flux
Berry phase
M. Z. Hasan and C. L. Kane, RMP (2010).

Topological Josephson junction

Topological insulator

$\phi=\pi$

4π fractional Josephson effect

$$
I_{4 \pi} \sin \phi / 2
$$

Experiments: doubled Shapiro step LP Rokhinson et al. Nat Phys 2012

Wiedenmann et al. Nat Comm 2016

Topological Josephson junction

Nanowire + spin-orbit coupling
Lutchyn, Sau, Das Sarma, PRL 2010 Oreg, Refael, von Oppen, PRL 2010
a

b

Non-abelian braiding with multiple Josephson junctions and dynamical control of system parameters

Fu and Kane, PRL 2008

$$
\left|0_{12} 0_{34}\right\rangle \rightarrow\left(\left|0_{14} 0_{32}\right\rangle+\left|1_{14} 1_{32}\right\rangle\right) / \sqrt{2} .
$$

Non-abelian braiding with multiple Josephson junctions and dynamical control of system parameters

Alicea, Oreg, Refael, von Oppen, Fisher, Nat. Phys. 2011

Non-abelian braiding with a single Josephson junction?

YES! (under magnetic fields)

and without dynamically tuning the system parameters

4π fractional Josephson
$2 n \pi$ fractional Josephson

$$
n \geq 2
$$

Conditions for Majorana zero modes

$$
\begin{array}{r}
H(t)=\int_{-l}^{W} d x \Gamma(x)^{\top}\left(-i v(x) \sigma_{z} \partial_{x}+m(x, t) \sigma_{y}\right) \Gamma(x) \\
m(x, t)=\Delta_{0} \sin \left(\frac{N \pi x}{W}-\frac{e V_{\mathrm{DC}} t}{\hbar}\right)
\end{array}
$$

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H(t)|\psi(t)\rangle \quad E_{t o t}(t)=\langle\psi(t)| H(t)|\psi(t)\rangle \quad I_{J}=\frac{1}{V_{D C}} \frac{\partial E_{t o t}}{\partial t}
$$

Conditions for Majorana zero modes

s-wave SC

$$
N=B L W / \Phi_{0}=3
$$

s-wave SC

Topological insulator

$$
x_{k=1,2, \ldots}(t)=\frac{W}{N}\left(k-1+\frac{t}{T_{\mathrm{J}}}\right)
$$

$$
\begin{aligned}
& \lambda \equiv \sqrt{\frac{\hbar v W}{\pi N \Delta}} \ll \\
& T_{\mathrm{J}}=h /\left(2 e V_{\mathrm{DC}}\right)
\end{aligned}
$$

The Kitaev chains and trivial chains alternately appear in the junction.

Conditions for Majorana zero modes

An extended MZM appears along the arcs when there are an odd number of MZMs inside (e.g., along the junction)

Mobile Majorana train \& Fusion

After one Hamiltonian period $T_{\mathrm{J}}=h /\left(2 e V_{\mathrm{DC}}\right): \quad \gamma_{1}\left(T_{\mathrm{J}}\right)=\gamma_{2}(0)$

$$
\gamma_{2}\left(T_{\mathrm{J}}\right)=\gamma_{3}(0)
$$

$$
\gamma_{3}\left(T_{\mathrm{J}}\right)=\gamma_{4}(0)
$$

$$
\gamma_{4}\left(T_{\mathbf{J}}\right)=-\gamma_{1}(0)
$$

Non-Abelian braiding of MZMs

Non-Abelian braiding of MZMs

Non-Abelian braiding of MZMs

Mobile Majorana train \& Fusion

$$
\begin{aligned}
& t=0 \quad t=T_{\mathrm{J}} \\
& \left|0_{41} 0_{32}\right\rangle_{0} \mapsto \frac{e^{i \phi}}{\sqrt{2}}\left(e^{i \phi^{\prime}}\left|0_{41} 0_{32}\right\rangle_{0}-i e^{-i \phi^{\prime}}\left|1_{41} 1_{32}\right\rangle_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{1}\left(T_{\mathrm{J}}\right)=\gamma_{2}(0) \\
& \gamma_{2}\left(T_{\mathrm{J}}\right)=\gamma_{3}(0) \\
& \gamma_{3}\left(T_{\mathrm{J}}\right)=\gamma_{4}(0) \\
& \gamma_{4}\left(T_{\mathrm{J}}\right)=-\gamma_{1}(0)
\end{aligned}
$$

$$
|00\rangle \rightarrow|00\rangle+\cdot|11\rangle
$$

Mobile Majorana train \& Fusion

$$
\begin{aligned}
& \left|0_{41} 0_{32}\right\rangle_{0} \mapsto \frac{e^{i \phi}}{\sqrt{2}}\left(e^{i \phi^{\prime}}\left|0_{41} 0_{32}\right\rangle_{0}-i e^{-i \phi^{\prime}}\left|1_{41} 1_{32}\right\rangle_{0}\right) \\
& U=U_{\phi^{\prime}} U_{\mathrm{B}} U_{\phi}
\end{aligned}
$$

$$
\begin{gathered}
U_{\phi}=\left(\begin{array}{cccc}
e^{i \phi} & 0 & 0 & 0 \\
0 & e^{-i \phi} & 0 & 0 \\
0 & 0 & e^{i \phi} & 0 \\
0 & 0 & 0 & e^{-i \phi}
\end{array}\right) \\
U_{\mathrm{B}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & i & 0 & 0 \\
-i & -1 & 0 & 0 \\
0 & 0 & -i & 1 \\
0 & 0 & 1 & -i
\end{array}\right)
\end{gathered}
$$

$$
\left\{\left|0_{41} 0_{32}\right\rangle_{0},\left|1_{41} 1_{32}\right\rangle_{0},\left|0_{41} 1_{32}\right\rangle_{0},\left|1_{41} 0_{32}\right\rangle_{0}\right\}
$$

$2 n \pi$ Fractional Josephson effects

s-wave SC
s-wave SC
$2 n \pi$ periodic in time, $\quad n \geq 2$
Signature of the non-Abelian braiding statistics: n is determined by the bias voltage

$$
T_{\mathrm{J}}=h /\left(2 e V_{\mathrm{DC}}\right)
$$

Topological insulator

$$
n=2
$$

$$
|\psi(0)\rangle=\left|0_{41} 0_{32}\right\rangle_{0} \stackrel{U}{\mapsto}-\left|0_{41} 0_{32}\right\rangle_{0}-i e^{i \phi_{-}}\left|1_{41} 1_{32}\right\rangle_{0} \quad t=T_{J}
$$

$$
\stackrel{U}{\mapsto}\left|0_{41} 0_{32}\right\rangle_{0}
$$

$$
t=2 T_{J}
$$

$$
n=3
$$

$$
|\psi(0)\rangle=\left|0_{41} 0_{32}\right\rangle_{0} \stackrel{U}{\mapsto} \quad \frac{e^{i \pi / 4}}{\sqrt{2}}\left|0_{41} 0_{32}\right\rangle_{0}+\frac{i e^{i \phi}-}{\sqrt{2}}\left|1_{41} 1_{32}\right\rangle_{0} \quad t=T_{J}
$$

$$
\stackrel{U}{\mapsto} \quad \frac{e^{i \pi / 4}}{\sqrt{2}}\left|0_{41} 0_{32}\right\rangle_{0}-\quad \frac{e^{i \phi}-}{\sqrt{2}}\left|1_{41} 1_{32}\right\rangle_{0} \quad t=2 T_{J}
$$

$$
\stackrel{U}{\mapsto}\left|0_{41} 0_{32}\right\rangle_{0}
$$

$$
t=3 T_{J}
$$

$2 n \pi$ Fractional Josephson effects

s-wave SC

By
s-wave SC
$2 n \pi$ periodic in time, $\quad n \geq 2$

Signature of the non-Abelian braiding statistics: n is determined by the bias voltage

4π fractional AC Josephson
6π fractional AC Josephson
8π fractional AC Josephson

$$
T_{\mathrm{J}}=h /\left(2 e V_{\mathrm{DC}}\right)
$$

Summary of Part I

Non-Abelian evolution of a Majorana train in a single Josephson junction

- Generation and Braiding of mobile Majorana fermions
- Signature of Non-Abelian effects: $2 n \pi$ fractional AC Josephson effect

Nonlocal entanglement in 1D bulk at finite temperature

- Entanglement by non-Abelian fusion
- Dependent on topological classes (the number of the end Majorana fermions)
- Sudden death and birth of nonlocal entanglement

Nonlocal entanglement in 1D
Non-Abelian evolution of a Majorana train

Park, Shim, Lee, Sim, PRL (2017)
Choi, Sim
submitted (2018)

Part II: - Nonlocal entanglement (topological) in bulk of 1D fermions

Entanglement B|AC

- Non-Abelian anyonic statistics + Fermi statistics
- Topological-class dependent entanglement

Topological order and entanglement

Entanglement entropy

$$
\begin{aligned}
\mathcal{E}_{\mathrm{E}}(|\psi\rangle) & =-\operatorname{Tr}\left(\rho_{\mathrm{A}} \log _{2} \rho_{\mathrm{A}}\right) \\
\rho_{\mathrm{A}} & =\operatorname{Tr}_{\mathrm{B}}|\psi\rangle\langle\psi|
\end{aligned}
$$

Quantum correlation between A and B generates entropy even at zero temperature

Topological entanglement entropy

Global constant

$$
\mathcal{E}_{E}=\alpha L-\gamma+\cdots
$$

(D: quantum dimension; topological ground-state degeneracy)

Identifying anyonic topological order non-topological order: $\quad \gamma=0$
fractional quantum Hall with filling $1 / \mathrm{q}$ (Abelian anyon) :

$$
\gamma=0.5 \log q
$$

Our motivation: 1. topological entanglement at finite temperature ?
2. 1D version

Our target systems: Kitaev chain and its variants

$$
\hat{H}_{\mathrm{I}}=-\sum_{j=1}^{N-1}\left[\frac{t}{2}\left(c_{j}^{\dagger} c_{j+1}+c_{j+1}^{\dagger} c_{j}\right)+\frac{\Delta}{2}\left(c_{j} c_{j+1}+c_{j+1}^{\dagger} \epsilon_{j}^{\dagger}\right)\right]+\sum_{j=1}^{N} \mu c_{j}^{\dagger} c_{j}
$$

γ_{1}
x

$$
\begin{aligned}
& t=\Delta \\
& \mu=0
\end{aligned}
$$

- One Majorana fermion at each end
- Two degenerate ground states

$$
\begin{aligned}
|0\rangle_{\mathrm{I}} \quad|1\rangle_{\mathrm{I}}= & f_{14}^{\dagger}|0\rangle_{\mathrm{I}} \\
& f_{a b} \equiv\left(\gamma_{a}+i \gamma_{b}\right) / \sqrt{2}
\end{aligned}
$$

Two Majoranas at each end
$\hat{H}_{\mathrm{II}}=-\frac{\Delta}{2} \sum_{j=1}^{N-2}\left(c_{j}+c_{j}^{\dagger}\right)\left(c_{j+2}-c_{j+2}^{\dagger}\right)$

What we compute: Entanglement between B and AC

Thermal mixture of different-parity states

Entanglement B|AC

Mixed-state entanglement measure

- Entanglement of formation:
- Logarithmic entanglement negativity:
generalization of entanglement entropy computable measure for mixed states

Entanglement between B and AC: Results

Entanglement $\mathrm{B} \mid \mathrm{AC}$

Entanglement of formation Logarithmic negativity

- $\mathrm{T} \rightarrow 0$: Entanglement $=1$
- Nonlocal, independent of length (>> correlation length)
- Sudden death of the entanglement at certain T

Corresponding spin systems (Wigner Jordan)

- No entanglement in the thermal states

Entanglement between B and AC: Bell entanglements

Ground states $\quad|0\rangle_{\mathrm{I}} \quad|1\rangle_{\mathrm{I}}=f_{14}^{\dagger}|0\rangle_{\mathrm{I}}$

$$
f_{a b} \equiv\left(\gamma_{a}+i \gamma_{b}\right) / \sqrt{2}
$$

Mapping fermion occupation states to qubits

Nonlocal entanglement by interchanging Majorana fusion partners

The zero-temperature thermal state has the Bell entanglement!

$$
\rho_{\mathrm{I}}(T=0)=\left(|0\rangle\left\langle\left. 0\right|_{\mathrm{I}}+\mid 1\right\rangle\left\langle\left. 1\right|_{\mathrm{I}}\right) / 2\right.
$$

A nontrivial step...
To define entanglement in fermion occupation states, we need to map the fermion states into qubit states.

One must treat the fermion-exchange sign (-1) properly.

Role of fermion statistics

$$
\begin{aligned}
& |0\rangle_{\mathrm{I}} \mapsto|\operatorname{Bell}\rangle^{q}\left|0_{14}\right\rangle^{q} \quad|1\rangle_{\mathrm{I}} \mapsto|\operatorname{Bell}\rangle^{q}\left|1_{14}\right\rangle^{q} \\
& \mid \text { Bell }^{q}=\frac{1}{\sqrt{2}}\left(\left.\left|0_{\overline{2} \overline{3}}^{q}\right| 0_{23}\right|^{q}+\left.\left.i| |_{2 \overline{3}}{ }^{q}\right|_{233}\right|^{q}\right)
\end{aligned}
$$

$$
\begin{aligned}
|0\rangle_{\mathrm{I}} & =\frac{1}{2}\left(1+f_{12}^{\dagger} f_{34}^{\dagger}+f_{12}^{\dagger} f_{\overline{2} \overline{3}}^{\dagger}+f_{\overline{2} \overline{3}}^{\dagger} f_{34}^{\dagger}\right)\left|0_{12} 0_{\overline{2} \overline{3}} 0_{34} \cdot \cdot\right\rangle, \\
|1\rangle_{\mathrm{I}} & =\frac{1}{2}\left(f_{12}^{\dagger}+f_{34}^{\dagger}+f_{\overline{2} \overline{3}}^{\dagger}+f_{12}^{\dagger} f_{\overline{2} \overline{3}}^{\dagger} f_{34}^{\dagger}\right)\left|0_{12} 0_{\overline{2} \overline{3}} 0_{34} \cdot \cdot\right\rangle .
\end{aligned}
$$

§ $f_{a b} \equiv\left(\gamma_{a}+i \gamma_{b}\right) / \sqrt{2}$

Role of fermion statistics

$$
\begin{aligned}
|0\rangle_{\mathrm{I}} & =\frac{1}{2}\left(1+f_{12}^{\dagger} f_{34}^{\dagger}+f_{12}^{\dagger} f_{\overline{2} \overline{3}}^{\dagger}+f_{\overline{2} \overline{3}}^{\dagger} f_{34}^{\dagger}\right)\left|0_{12} 0_{\overline{\overline{3}}} 0_{34} \cdot \cdot\right\rangle, \\
|1\rangle_{\mathrm{I}} & =\frac{1}{2}\left(f_{12}^{\dagger}+f_{34}^{\dagger}+f_{\overline{2} \overline{3}}^{\dagger}+f_{12}^{\dagger} f_{\overline{2} \overline{3}}^{\dagger} f_{34}^{\dagger}\right)\left|0_{12} 0_{\overline{2} \overline{3}} 0_{34} \cdot \cdot\right\rangle .
\end{aligned}
$$

We must collect operators belonging to B and those to $A C$, before mapping fermion occupation states to qubit tensor products

$$
\begin{aligned}
& |0\rangle_{\mathrm{I}}=\frac{1}{2}\left(1+f_{12}^{\dagger} f_{34}^{\dagger} \Theta f_{\overline{2} \overline{3}}^{\dagger} f_{12}^{\dagger}+f_{\overline{2} \overline{3}}^{\dagger} f_{34}^{\dagger}\right)\left|0_{\overline{2} \overline{3}} 0_{12} 0_{34} \ldots\right\rangle, \\
& |1\rangle_{\mathrm{I}}=\frac{1}{2}\left(f_{12}^{\dagger}+f_{34}^{\dagger}+f_{\frac{2}{\dagger} \overline{3}}^{\dagger}-f_{\overline{2} \overline{3}}^{\dagger} \bar{j}_{12}^{\dagger} f_{34}^{\dagger}\right)\left|0_{\overline{2} \overline{3}} 0_{12} 0_{34} \ldots\right\rangle . \\
& |0\rangle_{\mathrm{I}} \mapsto|0\rangle_{\mathrm{I}}^{q}=\frac{1}{2}\left(\left|0_{\overline{2} \overline{3}}\right\rangle^{q}\left(\left|0_{12}\right\rangle^{q}\left|0_{34}\right\rangle^{q}+\left|1_{12}\right\rangle^{q}\left|1_{34}\right\rangle^{q}\right)\right. \\
& \left.\theta\left|1_{\overline{2} \overline{3}}\right\rangle^{q}\left(\left|1_{12}\right\rangle^{q}\left|0_{34}\right\rangle^{q} \Theta\left|0_{12}\right\rangle^{q}\left|1_{34}\right\rangle^{q}\right)\right) \text {, } \\
& |1\rangle_{\mathrm{I}} \mapsto|1\rangle_{\mathrm{I}}^{q}=\frac{1}{2}\left(\left|0_{\overline{2} \overline{3}}\right\rangle^{q}\left(\left|1_{12}\right\rangle^{q}\left|0_{34}\right\rangle^{q}+\left|0_{12}\right\rangle^{q}\left|1_{34}\right\rangle^{q}\right)\right. \\
& \left.+\left|1_{\overline{2} \overline{3}}\right\rangle^{q}\left(\left|0_{12}\right\rangle^{q}\left|0_{34}\right\rangle^{q} \Theta\left|1_{12}\right\rangle^{q}\left|1_{34}\right\rangle^{q}\right)\right) .
\end{aligned}
$$

Role of fermion statistics

Fermion case:

\[

\]

Spin case: $|0\rangle_{I}^{s}=\frac{1}{2}\left[\left|0_{\overline{2} \overline{3}}\right\rangle^{s}\left(\left|0_{12}\right\rangle^{s}\left|0_{34}\right\rangle^{s}+\left|1_{12}\right\rangle^{s}\left|1_{34}\right\rangle^{s}\right)\right.$

$$
\begin{aligned}
\mid & \left.+\left|1_{2 \overline{3}}\right\rangle^{s}\left(\left|1_{12}\right\rangle^{s}\left|0_{34}\right\rangle^{s}+\left|0_{12}\right\rangle^{s}\left|1_{34}\right\rangle^{s}\right)\right], \\
|1\rangle_{I}^{s}= & \frac{1}{2}\left[\left|0_{\overline{2} \overline{3}}\right\rangle^{s}\left(\left|1_{12}\right\rangle^{s}\left|0_{34}\right\rangle^{s}+\left|0_{12}\right\rangle^{s}\left|1_{34}\right\rangle^{s}\right)\right. \\
& \left.+\left|1_{\overline{2} \overline{3}}\right\rangle^{s}\left(\left|0_{12}\right\rangle^{s}\left|0_{34}\right\rangle^{s}+\left|1_{12}\right\rangle^{s}\left|1_{34}\right\rangle^{s}\right)\right],
\end{aligned}
$$

$$
|0 \psi\rangle+|1 \phi\rangle
$$

$$
|0 \phi\rangle+|1 \psi\rangle
$$

$\rho_{I}^{s}(T=0)=\left(|0\rangle\left\langle\left. 0\right|^{s}+\mid 1\right\rangle\left\langle\left. 1\right|^{s}\right) / 2 \quad\right.$ has no entanglement!

Zero temperature: Summary

Fermion case:

$$
\begin{aligned}
& |0\rangle_{\mathrm{I}} \mapsto|\operatorname{Bell}\rangle^{q}\left|0_{14}\right\rangle^{q} \quad|1\rangle_{\mathrm{I}} \mapsto|\operatorname{Bell}\rangle^{q}\left|1_{14}\right\rangle^{q} \\
& \left.\mid \text { Bell }^{q}=\frac{1}{\sqrt{2}}\left(\left.\left|0_{\overline{2} \overline{3}}^{q}\right| 0_{23}\right|^{q}+\left.i| |_{\overline{2} \overline{3}}\right|^{q} \mid 1_{23}\right)^{q}\right)
\end{aligned}
$$

$$
\begin{array}{l:ll}
\gamma_{\overline{3}} & \gamma_{3} & \gamma_{4}
\end{array}
$$

$$
\begin{aligned}
|0\rangle_{\mathrm{I}} \mapsto|0\rangle_{\mathrm{I}}^{q}= & \frac{1}{2}\left(\left|0_{\overline{2} \overline{3}}\right\rangle^{q}\left(\left|0_{12}\right\rangle^{q}\left|0_{34}\right\rangle^{q}+\left|1_{12}\right\rangle^{q}\left|1_{34}\right\rangle^{q}\right)\right. \\
& \left.-\left|1_{\overline{2} \overline{3}}\right\rangle^{q}\left(\left|1_{12}\right\rangle^{q}\left|0_{34}\right\rangle^{q}-\left|0_{12}\right\rangle^{q}\left|1_{34}\right\rangle^{q}\right)\right), \\
|1\rangle_{\mathrm{I}} \mapsto|1\rangle_{\mathrm{I}}^{q}= & \frac{1}{2}\left(\left|0_{\overline{2} \overline{3}}\right\rangle^{q}\left(\left|1_{12}\right\rangle^{q}\left|0_{34}\right\rangle^{q}+\left|0_{12}\right\rangle^{q}\left|1_{34}\right\rangle^{q}\right)\right. \\
& \left.+\left|1_{\overline{2} \overline{3}}\right\rangle^{q}\left(\left|0_{12}\right\rangle^{q}\left|0_{34}\right\rangle^{q}-\left|1_{12}\right\rangle^{q}\left|1_{34}\right\rangle^{q}\right)\right) .
\end{aligned}
$$

1. The zero-temperature thermal state has the Bell entanglement (in any basis)! $\rho_{\mathrm{I}}(T=0)=\left(|0\rangle\left\langle\left. 0\right|_{\mathrm{I}}+\mid 1\right\rangle\left\langle\left. 1\right|_{\mathrm{I}}\right) / 2\right.$
2. The entanglement results from Majorana non-Abelian statistics and Fermi-Dirac statistics

Spin case: no entanglement

$$
\text { Thermal states } \quad \rho=e^{-H /\left(k_{B} T\right)} / \operatorname{Tr} e^{-H /\left(k_{B} T\right)}
$$

Thermal mixing of Bell entanglements

$$
\begin{array}{ll}
|0\rangle_{\mathrm{I}},|1\rangle_{\mathrm{I}} & \mid \text { Bell }\rangle^{q}=\frac{1}{\sqrt{2}}\left(\left|0_{\overline{2} \overline{3}}\right\rangle^{q}\left|0_{23}\right\rangle^{q}+i\left|1_{\overline{2} \overline{3}}\right\rangle^{q}\left|1_{23}\right\rangle^{q}\right) \\
f_{2 \overline{2}}^{\dagger} & \left|0_{\overline{2} \overline{3}}\right\rangle^{q}\left|1_{23}\right\rangle^{q}-i\left|1_{\overline{2} \overline{3}}\right\rangle^{q}\left|0_{23}\right\rangle^{q} \\
f_{\overline{3} 3}^{\dagger} & \left|0_{\overline{2} \overline{3}}\right\rangle^{q}\left|1_{23}\right\rangle^{q}+i\left|1_{\overline{2} \overline{3}}\right\rangle^{q}\left|0_{23}\right\rangle^{q} \\
f_{2 \overline{2}}^{\dagger} f_{\overline{3} 3}^{\dagger} & \left|0_{\overline{2} \overline{3}}\right\rangle^{q}\left|0_{23}\right\rangle^{q}-i\left|1_{\overline{2} \overline{3}}\right\rangle^{q}\left|1_{23}\right\rangle^{q}
\end{array}
$$

Entanglement sudden death

Comparison with the corresponding 1D spin

Fermion case:

Spin case (Wigner Jordan):

No Entanglement $B \mid A C$ at any temperature

Our target systems: a different class from the Kitaev chain

$$
\hat{H}_{\text {II }}=-\frac{\Delta}{2} \sum_{j=1}^{N-2}\left(c_{j}+c_{j}^{\dagger}\right)\left(c_{j+2}-c_{j+2}^{\dagger}\right)
$$

Two Majoranas at each end

Our target systems: a different class from the Kitaev chain

$$
\hat{H}_{\mathrm{II}}=-\frac{\Delta}{2} \sum_{j=1}^{N-2}\left(c_{j}+c_{j}^{\dagger}\right)\left(c_{j+2}-c_{j+2}^{\dagger}\right)
$$

Two Majoranas at each end

Changing Majorana fusion pairs $\boldsymbol{\rightarrow}$ 4-qubit cluster-state entanglement (nonlocal)

$$
\begin{aligned}
|n\rangle_{\mathrm{II}} & \rightarrow|n\rangle_{\mathrm{II}}^{q}=|\mathrm{CL}\rangle^{q}\left|n_{11^{\prime}}\right\rangle^{q}\left|n_{44^{\prime}}\right\rangle^{q}, \\
|\mathrm{CL}\rangle^{q}= & \frac{1}{2}\left[\left|0_{\overline{2} \overline{2}^{\prime}}\right\rangle^{q}\left|0_{22^{\prime}}\right\rangle^{q}\left(\left|0_{\overline{3} \overline{3}^{\prime}}\right\rangle^{q}\left|0_{33^{\prime}}\right\rangle^{q}+\left|1_{\overline{3} \overline{3}^{\prime}}\right\rangle^{q}\left|1_{33^{\prime}}\right\rangle^{q}\right)\right. \\
& \left.-\left|1_{\overline{\overline{2}^{\prime}}}\right\rangle^{q}\left|1_{22^{\prime}}\right\rangle^{q}\left(\left|0_{\left.\overline{\overline{3}^{\prime}}\right\rangle^{\prime}}\right\rangle^{q}\left|0_{33^{\prime}}\right\rangle^{q}-\left|1_{\overline{3} \overline{3}^{\prime}}\right\rangle^{q}\left|1_{33^{\prime}}\right\rangle^{q}\right)\right] .
\end{aligned}
$$

Our target systems: a different class from the Kitaev chain

$$
\hat{H}_{\mathrm{II}}=-\frac{\Delta}{2} \sum_{j=1}^{N-2}\left(c_{j}+c_{j}^{\dagger}\right)\left(c_{j+2}-c_{j+2}^{\dagger}\right)
$$

Changing Majorana fusion pairs \rightarrow 4-qubit cluster-state entanglement (nonlocal)

$$
\begin{aligned}
|n\rangle_{\mathrm{II}} & \rightarrow|n\rangle_{\mathrm{II}}^{q}=|\mathrm{CL}\rangle^{q}\left|n_{11^{\prime}}\right\rangle^{q}\left|n_{44^{\prime}}\right\rangle^{q}, \\
|\mathrm{CL}\rangle^{q}= & \frac{1}{2}\left[\left|0_{\overline{2} \overline{2}^{\prime}}\right\rangle^{q}\left|0_{22^{\prime}}\right\rangle^{q}\left(\left|0_{\overline{3} \overline{3}^{\prime}}\right\rangle^{q}\left|0_{33^{\prime}}\right\rangle^{q}+\left|1_{\overline{3} \overline{3}^{\prime}}\right\rangle^{q}\left|1_{33^{\prime}}\right\rangle^{q}\right)\right. \\
& \left.\ominus\left|1_{\overline{2}{ }^{\prime}}\right\rangle^{q}\left|1_{22^{\prime}}\right\rangle^{q}\left(\left|0_{\left.\overline{\overline{3}^{\prime}}\right\rangle^{q}}\right\rangle^{q}\left|0_{33^{\prime}}\right\rangle^{q} \Theta\left|1_{\overline{3} \overline{3}^{\prime}}\right\rangle^{q}\left|1_{33^{\prime}}\right\rangle^{q}\right)\right] .
\end{aligned}
$$

Spin case (Winger-Jordan):
Bell*Bell local entanglement in $\rho_{\mathrm{II}}^{s}(T=0) \quad\left|\mathrm{Bell}_{2}\right\rangle^{s} \otimes\left|\mathrm{Bell}_{3}\right\rangle^{s}$

Entanglement between B and AC: finite temperature

$\mathcal{L N}\left(\rho_{\text {II }}(T)\right)-\mathcal{L N}\left(\rho_{\text {II }}^{s}(T)\right)$
A marker for nonlocal entanglement originating from fermion statistics and Majorana fermions

Sudden birth and death of nonlocal entanglement

Summary

Non-Abelian evolution of a Majorana train in a single Josephson junction

- Generation and Braiding of mobile Majorana fermions
- Signature of Non-Abelian effects: $2 n \pi$ fractional AC Josephson effect

Nonlocal entanglement in 1D bulk at finite temperature

- Entanglement by non-Abelian fusion and fermionic exchange statistics
- Dependent on topological classes (the number of the end Majorana fermions)
- Sudden death and birth of nonlocal entanglement

Nonlocal entanglement in 1D
Non-Abelian evolution of a Majorana train

Park, Shim, Lee, Sim, PRL (2017)
Choi, Sim submitted (2018)

Acknowledgement: Collaboration with

Yeje Park (KAIST)

Jeongmin Shim (KAIST)
Sang-Jun Choi (IBS-PCS)
Seung-Sub B. Lee (Munchen, the group of Jan von Delft)

