Two-Phase Continuum Models for Geophysical Particle-Fluid Flows

Time-dependent measurements for incipient bed load discharge on shallow open channel flows

Guilherme H. FIOROT

supervisors : Pascal DUPONT Geraldo de F. MACIEL

LGCGM - INSA de Rennes & PPGEM - UNESP de Ilha Solteira

March 14-18, 2016

Guilherme H. FIOROT

geoflo16

March 14-18, 2016 1 / 35

General framework

Shields number Sh = $u_*^2/(\Delta \rho_* gD)$; $\begin{array}{l} \mbox{Transport} \\ \rightarrow q_* = {\cal A} ({\rm Sh} - {\rm Sh}_c)^B. \end{array}$

(Shields, 1936; Paphitis, 2001; Beheshti and Ataie-Ashtiani, 2008) (Meyer-Peter and Müller, 1948; Wong and Parker, 2006) unesp* INSA

Guilherme H. FIOROT

March 14-18, 2016 2 / 35

Dimensionless analysis

Reynolds :	$\mathrm{Re} = 4 \frac{u_0 h_0}{\nu}$	flow dynamics ;		
Froude :	$\mathrm{Fr} = \frac{u_0}{\sqrt{gh_0\cos\theta}}$	flow hydraulic regimen ;		
Shields :	${ m Sh}=rac{u_*^2}{\Delta ho_*gD}$	particles initiation of motion;		
Particle Reynolds :	$\operatorname{Re}_{p} = \frac{u_{0}D}{\nu}$	particle-flow interaction;		
Stokes :	$\mathrm{St} = rac{T_{p}}{T_{f}}$	particles-flow interaction;		
Particle Froude :	$\mathrm{Fr}_{p} = rac{u_{0}}{\sqrt{gD}}$	flow capacity of transport;		
Rouse :	$\frac{W_s}{\dots}; \frac{W_s}{\dots}; \frac{U_*}{\dots}$	dominant mode of sediment transport ;		
(suspension or movability)	κu _* u _* w _s	unesp* INSA < ㅁ > < 큔 > < 흔 > < 흔 > 흔 · · · · · · · · · · · · · · · · ·		
Guilherme H. FIOROT	geofl o 16	March 14-18, 2016 3 / 35		

Dimensionless analysis

Reynolds :	$\mathrm{Re} = 4 \frac{u_0 h_0}{ u}$	flow dynamics ;			
Froude :	$\mathrm{Fr} = \frac{u_0}{\sqrt{gh_0\cos\theta}}$	flo	w hydraulic regime	en ;	
Shields :	${ m Sh}=rac{u_*^2}{\Delta ho_*gD}$	partic	les initiation of mo	otion ;	
Particle Reynolds :	$\operatorname{Re}_{p} = \frac{u_{0}D}{\nu}$	par	ticle-flow interaction	on;	
Stokes :	$\mathrm{St} = rac{T_p}{T_f}$	particles-flow interaction ;			
Particle Froude :	$\mathrm{Fr}_{p} = rac{u_{0}}{\sqrt{gD}}$	flow	capacity of transp	ort ;	
Rouse :	$\frac{W_s}{\dots}; \frac{W_s}{\dots}; \frac{U_*}{\dots}$	dominant mode of sediment tra		transport ;	
suspension or movability)	ension or movability) $\kappa u_* u_* w_s$		unesp* < □ > < () > < ≥ > < ≥ > ≥ - ?)		
Guilherme H. FIOROT	geofl o 16		March 14-18, 201	.6 3/35	

Non-stationary transport - Turbulence

 $u_* \propto u_0$

Figure 1 – Fluctuations of the instantaneous velocity around the mean value. Particle entrainment occurs sporadically. (Ancey et al., 2008).

Non-stationary transport - Grain-size distribution

Fig. 17. Solid discharges of fine, medium, coarse materials and total (run 4)

Fig. 18. Time series of solid discharge for the uniform material (run 13)

Figure 2 – Solid discharges of materials with different granulometry (Frey et al., 2003).

Non-stationary transport - Flow instabilities

Free surface instabilities

& Bedforms

Figure 3 – Evolution of roll waves and sediment transport (Davies, 1990).

Figure 4 – Comparison of stability lines for roll waves and bedforms (Colombini and Stocchino, 2005)

(日) (同) (目) (日)

Main objective

Non-stationary sediment transport

Experimentally study time-dependent effects on sediment transport for runoff flows.

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Main objective

Non-stationary sediment transport

Experimentally study time-dependent effects on sediment transport for runoff flows.

Shields number ${
m Sh} < 2.5 {
m Sh}_c$;

(Recking et al., 2009)

Turbulence effects :

Image: Image:

Experimental project

Figure 5 – Sketch of experimental setup.

- shallow water flow $h_0/l \ll 1$;
- PIV method for local flow dynamics measurements;
- contact needle for global measurements;
- combined shadowgraph and PTV methods for local sediment transport measurements;

Guilherme H. FIOROT

Test sand

Figure 6 – Histogram for particles used in experiments and MEV images.

- non-cohesive;
- regular shape;
- ▶ 0.15 < D < 0.25 mm;

▶
$$Sh_c = 0.062$$
;

► favorable to bedload (given the exp. limitations, $w_s \approx 2 \text{ cm/s}$); unesp* NSA

Dimensionless parameters

Dimensionless	Range	Interpretation			
Re	$3000 < \mathrm{Re} < 4000$	Turbulent	(close to transition);	
Fr	$1.1 < \mathrm{Fr} < 1.5$	Torrential flows			
Sh	$0.068 < \mathrm{Sh} < 0.165$	5 particles initiation of motion;			
Rouse :	$2.4 < \frac{w_s}{u_*} < 3.6$	bed-load transport ;			
$\mathrm{Sh}_{c}=0.062$ (Paphitis, 2001)					
		< c	u • • • • • • • • • • • • •	inesp* INSA	
Guilherme H. FIOROT	- geoflo	16	March 14-18, 2016	10 / 35	

Methodology debrief

For flow dynamics

- determination of friction velocity u_{*} based on theoretical turbulent profile; assumption u_{*}(t) = F{< u > (y₀, t)}; correction of results based on global values (contact needle);
- Obtaining of time-dependent friction velocity u_{*}(t).

For sediment transport

- Image acquisition from fast-recording camera ; images processing on Matlab ; PTV algorithm ; correction of particles size/velocities ; time dependent discharge computation ; comparison to global values from mean weighted discharge ;
- Obtaining of time-variable transport rate q(t).

→ < ∃ →</p>

Methodology debrief

For flow dynamics

- determination of friction velocity u_{*} based on theoretical turbulent profile; assumption u_{*}(t) = F{< u > (y₀, t)}; correction of results based on global values (contact needle);
- Obtaining of time-dependent friction velocity u_{*}(t).

For sediment transport

- Image acquisition from fast-recording camera; images processing on Matlab; PTV algorithm; correction of particles size/velocities; time dependent discharge computation; comparison to global values from mean weighted discharge;
- Obtaining of time-variable transport rate q(t).

→ < ∃ →</p>

Methodology debrief

For flow dynamics

- determination of friction velocity u_{*} based on theoretical turbulent profile; assumption u_{*}(t) = F{< u > (y₀, t)}; correction of results based on global values (contact needle);
- Obtaining of time-dependent friction velocity u_{*}(t).

For sediment transport

Image acquisition from fast-recording camera; images processing on Matlab; PTV algorithm; correction of particles size/velocities; time dependent discharge computation; comparison to global values from mean weighted discharge;

March 14-18, 2016

11 / 35

 Obtaining of time-variable transport rate q(t).

Statistically...

$$q(t) \stackrel{?}{=} f\{u_*(t)\}$$

Friction velocity obtaining

In wall coordinates : $u^+ = u(y)/u_*$ and $y^+ = u_*y/\nu$ For viscous sublayer : $u^+ = y^+$; For log region : $u^+ = \kappa^{-1} \log y^+ + 5$;

Figure 7 – Turbulent characteristics of average profile of mean flow velocity. Lines indicate theoretical values : solid line is $u^+ = \kappa^{-1} \log y^+ + 5$ for log region ; dashed line is $u^+ = y^+$ for viscous layer.

Guilherme H. FIOROT

Turbulent intensities - $u_{\rm RMS}^+$

$$\begin{array}{l} (\text{Antonia and Krogstad, 2001}) \\ u_{\mathrm{RMS}}^{+} = \\ A \exp\left(-\frac{y^{+}}{Re_{*}}\right) \left[1 - \exp\left(-\frac{y^{+}}{B}\right)\right] + \\ Cy^{+} \exp\left(-\frac{y^{+}}{B}\right) \end{array}$$

A=2, B=8, and C=0.34; $Re_*=u_{*{\rm PIV}}h_0/\nu$ is the Reynolds number using friction velocity as reference.

Figure 8 – Turbulent intensities for runs gb1 to gb8. Lines indicate computed values following empirical results from Antonia and Krogstad (2001). Longitudinal turbulent intensities u_{RMS}^+ ; dark line represent run computed value for gb1, and gray line, for gb8.

Guilherme H. FIOROT

March 14-18, 2016 13 / 35

Friction velocity $u_*(t)$

Bottom shear stress : $au_b \sim
ho u_*^2 \sim
ho gh_0 \sin heta$

For our experiments :

▶
$$u_* \sim 0.01 \text{ ms}^{-1}$$
;
 $\rightarrow \tau_b \sim (10^3)(10^{-2})^2 \sim 0.1 \text{ Pa}$;

▶
$$h_0 \sim 0.01 \text{ m}$$
;
 $\rightarrow \tau_b \sim (10^3)(10^1)(10^{-2})(10^{-2}) \sim 1 \text{ Pa}$

The precision required to measure fluctuations would be ~ 0.01 Pa !!! (Detert et al., 2010; Amir

et al., 2014)

So, an indirect measure is pursued...

Friction velocity correlation

 $\tau_b(t)$?

- $u_*^2 \propto \tau_b \propto u_0^2$
- ► $u(y_0) \propto u_0 \rightarrow u_* \propto u(y_0)$

Dimensionally and statistically we can assume that \colon

- $ar{u}_*^2(t) \propto ar{ au}_b(t) \propto ar{u}^2(y_0,t)$
- so there is a function F that : $\bar{u}_*(t) = F\{\bar{u}(y_0, t)\}$

(Ould Ahmedou et al., 2007)

► the hypothesis : F is also valid for instantaneous variables, so that : u_{*}(t) = F{u(y₀, t)}

Figure 9 – Correlation between $\langle \bar{u} \rangle (y_0)$ and $u_{*\rm PIV}$. First-order polynomial approximation and 95% confidence boundaries.

Friction velocity correlation

Figure 9 – Correlation between $\langle \bar{u} \rangle (y_0)$ and $u_{*\text{PIV}}$. First-order polynomial approximation and 95% confidence boundaries.

Friction velocity signal

Figure 10 – Signals of $u_*(t)$ and Sh(t) for a close to threshold experiment run. The dotted dark line represent Sh_c .

Experimental project

- A 🖓

Experimental project

* INSA

17 / 35

Particles identification method Original image

Linear histogram normalization

Binary Image

- Based on maximum and minimum images from series, each image gray level is adjusted;
- Canny filter is applied, using Otsu's threshold method, to identify particle edges;
- Morphological operations (closing, filling, opening, watershed) are performed.

(Frey et al., 2003)

Particle Tracking Velocimetry

Particle mass :
$$m_i^k = \frac{\pi \rho_s}{6} D_i^{k^3}$$

Particle displacement : $\Delta \bar{r}_i^k$

Particle velocity : $\vec{v}_i^k = \frac{\Delta \vec{r}_i^k}{\Delta t}$

Total mass at time t^k :

$$M(t^k) = \sum_i^{N_p} m_i^k$$
 ;

Time scale of particles permanence :

$$\Delta t^k_{
m esc} = rac{\Delta y_{
m ROI}}{ar v_{y_i}^k}$$

Time dependent discharge :

$$q(t^k) = rac{M(t^k)}{\Delta t^k_{
m esc}}$$
 ,

$$\begin{aligned} \text{Mean} : \bar{v}_{y_i}^k &= \frac{1}{N_p} \sum_{i}^{N_p} v_{y_i}^k ; \\ \text{Veighted-mean} : \bar{v}_{y_i}^k &= \frac{1}{M(t^k)} \sum_{i}^{N_p} m_i^k v_{y_i}^k . \end{aligned}$$

Guilherme H. FIOROT

geoflo16

March 14-18, 2016 19 / 35

Instantaneous discharge measurement

Figure 11 – Correlation between sediment discharge computation based on images and weighted mass.

Measure	u*	Sh	Fr	$ \bar{q}_{lW}$	$ \bar{q}_{ m lPTV} $
gb1-2	0.014	0.068	1.16	0.065	0.064
gb1-3	0.014	0.075	1.20	0.179	0.386
gb1-4	0.015	0.079	1.10	0.204	0.336
gb2-1	0.021	0.158	1.55	1.187	2.967
gb2-2	0.021	0.159	1.54	0.896	2.107

Top view of the trap.

March 14-18, 2016 20 / 35

Sh = 0.079, Fr = 1.10

Sh = 0.079, Fr = 1.10

Sh = 0.159, Fr = 1.54

Sh = 0.159, Fr = 1.54

Comparison to classical formulas

Result

PSD

March 14-18, 2016 26 / 35

unesp* INSA

Discussions

- ▶ q_{sRMS} and u_{*RMS} ;
- characteristic time scales;
- additional effect : pulsating flows;

INSA

unesp*

э

Thank you!

gfiorot@insa-rennes.fr ghfiorot@gmail.com

Guilherme H. FIOROT

March 14-18, 2016 28 / 35

E > < E >

unesp* INSA

Références

- M. Amir, V. I. Nikora, and M. T. Stewart. Pressure forces on sediment particles in turbulent open-channel flow : a laboratory study. *Journal of Fluid Mechanics*, 757 :458-497, 2014. ISSN 0022-1120. doi : 10.1017/jfm.2014.498. URL http://www.journals.cambridge.org/abstract_S0022112014004984.
- C. Ancey, a. C. Davison, T. Böhm, M. Jodeau, and P. Frey. Entrainment and motion of coarse particles in a shallow water stream down a steep slope. *Journal of Fluid Mechanics*, 595 (August), 2008. ISSN 0022-1120. doi: 10.1017/S0022112007008774.
- R. A. Antonia and P.-r. Krogstad. Turbulence structure in boundary layers over different types of surface roughness. *Fluid Dynamics Research*, 28(2):139, 2001. URL http://stacks.iop.org/1873-7005/28/i=2/a=A06.
- A. A. Beheshti and B. Ataie-Ashtiani. Analysis of threshold and incipient conditions for sediment movement. *Coastal Engineering*, 55(5):423-430, may 2008. doi: 10.1016/j.coastaleng.2008.01.003. URL http://linkinghub.elsevier.com/retrieve/pii/S0378383908000021.
- M. Colombini and A. Stocchino. Coupling or decoupling bed and flow dynamics : Fast and slow sediment waves at high froude numbers. *Physics of Fluids*, 17 :036602(1–19), 2005.
- T. R. H. Davies. Debris-flow surges Experimental Simulation. *Journal of Hydrology*, 29(1) : 18-46, 1990.
- M. Detert, V. Nikora, and G. Jirka. Synoptic velocity and pressure fields at the water-sediment interface of streambeds. *Journal of Fluid Mechanics*, 660:55-86, 2010. ISSN 0022-1120. doi: 10.1017/S0022112010002545.

Guilherme H. FIOROT

- T. D. Ho, a. Valance, P. Dupont, and a. Ould El Moctar. Aeolian sand transport : Length and height distributions of saltation trajectories. *Aeolian Research*, 12 :65–74, 2014. ISSN 18759637. doi : 10.1016/j.aeolia.2013.11.004.
- E. Meyer-Peter and R. Müller. Formulas for bed-load transport. In *Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research*, pages 39–64, Stockholm, 1948.
- D. Ould Ahmedou, a. Ould Mahfoudh, P. Dupont, a. Ould El Moctar, a. Valance, and K. R. Rasmussen. Barchan dune mobility in Mauritania related to dune and interdune sand fluxes. *Journal of Geophysical Research : Earth Surface*, 112(2) :1–18, 2007. ISSN 21699011. doi : 10.1029/2006JF000500.
- D. Paphitis. Sediment movement under unidirectional flows : an assessment of empirical threshold curves. *Coastal Engineering*, 43(3-4) :227-245, Aug. 2001.
- A. Recking, P. Frey, A. Paquier, and P. Belleudy. An experimental investigation of mechanisms involved in bed load sheet production and migration. *Journal of Geophysical Research*, 114 (F3) :F03010, Aug. 2009. ISSN 0148-0227.
- A. Shields. Application of Similarity principles and Turbulence Research to bed-load movement. Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, 1936. Original version in german (Anwendung der Aehnlichkeitsmechanik und der Turbulenz Forschung auf die Geschebebewegung).
- M. Wong and G. Parker. The bedload transport relation of meyer-peter and müller over**peedicts** by a factor of two. Journal of Hydraulics Engineering, 132:1159–1168, 2006.

Guilherme H. FIOROT

29 / 35

Mean flow velocity and turbulent intensities

Figure 12 – Results for average profiles of mean flow velocity $\langle \bar{u} \rangle(y)$ and standard deviation $\langle u_{\rm RMS} \rangle(y)$ for runs gb1 to gb8.

Guilherme H. FIOROT

March 14-18, 2016 29 / 35

Turbulent intensities - $v_{\rm RMS}^+$

Figure 13 – Turbulent intensities for runs gb1 to gb8. Lines indicate computed values following empirical results from Antonia and Krogstad (2001). Vertical turbulent intensities $v_{\rm BMS}^+$; dark line represent computed values.

Friction velocity correction

Figure 14 – Correlation between friction velocity computed through both methods u_{*CN} and u_{*PIV} . Solid line represent linear relation between both methods for friction velocity calculation. Dashed line represents equality $u_{*PIV} = u_{*CN}$.

U_*

 $u_* = u_{*\rm CN} = 1.08 u_{*\rm PIV} - 0.006$ with a correlation coefficient $R^2 = 0.96$.

March 14-18, 2016 31 / 35

Grain-size distribution

Guilherme H. FIOR

Figure 15 – Probability distribution function from captured images in comparison to calibrated grain-size distribution.

ightarrow (Correction of particles diameter.			unesp* INSA	
		< □ >	→ @ → → 注 → → 注 →	E	
от	geofl o 16		March 14-18, 201	6 32/35	

$\Delta y_{ m ROI}$ influence

$\Delta y_{\rm ROI}$ influence

Experimental run

- 1. arrange the experiment;
- 2. partially block the outlet;
- 3. set flow discharge and slope;
- start data acquisition (PIV and PTV);
- 5. release the outlet;
- 6. after 1'30", data acquisition stops;
- 7. block outlet;

Further analysis...

PSD

Guilherme H. FIOROT

March 14-18, 2016 35 / 35

unesp[◆] INSA ≣ ∽ ৭ ে