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1824 Erosion-deposition waves in shallow grafular

free-surface flows

e 15 Qct 2000 an unintentional release of 150 000 m3 water led
to a~debris flow in Fully Switzerland that had regular surges




SIMIEIRVYEVES
spontaneously
develop on
erodible beds
in the lab

there are
static
regions
between
wave crests

Daerr & Douady (1999)
Borzsony et al. (2008)
Takagi et al (2011)




e Side-on “photo-finish” shows basal erosion and deposition




Granular solid-fluid phase transition in depth-averaged framework

s
.
a,
~a

e Or ignore it ...
crude, BUT ....

e resolve erosion
deposition interface

notoriously diffcult

Edwards & Gray (2015) J. Fluid Mech. 762, 35—67.




Use shallow water avalanche model ...

e Uses shallow water avalanche model (e.g. Grigorian et al.
1967, Gray et al. 1999, 2003) for the thickness h and the
depth-averaged velocity u

oh O
L% ha)=0
5 T 55

2 iy + 2oy + 2 (L2 _
at(h“) + 833(Xhu ) + oy <2h gcosc) = hgS

e where y = ?/ﬂ2 Is the shape factor, g is the constant of
gravitational acceleration and the source term

S = sing—ugcosg
ul

e consists of gravitational acceleration and basal fiction u

Grigorian, Eglit & Iakimov (1967), Tr. Vysokokogornogo Geofizich Inst. 12, 104-113.
Gray, Wieland & Hutter (1999) Proc. Roy. Soc. A 455, 1841-1874
Gray, Tai & Noelle (2003) J. Fluid Mech. 491, 161-181




Pouliquen & Forterre (2002)

e Measured basal friction by
determining the thickness
as which the grains

— came to rest

— when they started moving
again from a static state

e gave effective basal friction law
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e where Fr is the Froude number, x = 1073 and p1 = tan{y, wo
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Fr > 3, dynamic

Ha — M < Fr < B, intermediate

ER= static

tan (o and uz = tan (3 are the tangents of the angles, (1, (> and (3.

Pouliquen & Forterre (2003) J. Fluid Mech. 453, 133-151.




Travelling-wave solutions in the absence of viscosity

In a frame travelling at speed u,, with coordinates
E=x  u,l, T = 1.
Assuming 0/07 = 0 and x = 1 the system is reduces to
d

aE (h(& — uw)) =0,

R “)?TZ + hgcos c% — hgcos C(tan ¢ — u)

Since uw = 0 in a stationary layer of thickness h = h4

h
h(T — uw) = —hyt = 0 = uy ( _ %) .

The flow thickness for which Fr = 8 is nhow defined as h = h,

_ Bhy?\/gcose
he —hy

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.
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h (mm) 4

hsmp

e Integration of the first order ODE indicates a problem
e solution asymptotes to a critical thickness h. > herit > hstop
e T0O get through this point, ones needs a little bit of viscosity

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




The p(l)-rheology for liquid-like granular flows

GDR MIDI (2004) and Jop
et al. (2006): proposed
constitutive law

D

T — M(I)pm

where 2nd invariant

/1
|D|| = {/=trD?
2

If o = const this reduces
to Mohr-Coulomb law

BUT, friction p is a function of the inertial number I
— 2||D||d
p(l) = +L2 0 2D

Io/T+1 v/t

where d is the particle diameter and p* is the intrinsic density.




The Bagnold solution

For steady-uniform flow u = (u(z),0,0) the normal
and downslope momentum balances imply that

p = pg(h — z) cos, Tzz = pg{h — z) Sin¢

Rheology then implies u(I) = tan¢ and hence I is
equal to a constant

Io=To (tang — tan C1>

tan{o —tan(

Solve I equation for the downslope velocity

<

21
U = 3—5\/Cbg cos ¢ (h3/2 — (h — 2)3/2) .

The depth-averaged Bagnold velocity satisfies
21,
5d

v/ Dgcos ¢ h3/2

Th—




The depth-averaged p(l)-rheology for granular flows

To first order the inviscid avalanche equations emerge
naturally with the dynamic basal friction law

_ H2 — (1
Mb(ha Fr)_ul_l_ﬁh/(LFr)—l—l’ FI’>/B,

This is just Pouliquen & Forterre’s (2002) law, where
__|al

vV gh cos(
Now add in the in-plane deviatoric stress

D.’E:E

| D]

Assume shallow and use Bagnold solution to evaluate
ou ou

1
ox 210z

Fr
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It follows that the in-plane deviatoric stress is

Oh
or

Tan = 2pgsin ¢ (AY/2(h = 2)M2 — (b — 2)) 2=

formal depth-integration gives

1 ~Oh
Tz = ZPGS] ¢ h* oy

Use depth-averaged Bagnold velocity to reformulate
ou

h7,. = prh3/2=—
P 8:13

where the angle dependent coefficient v is determined

2L,/g sin¢ (tan@—tan()
98 +/cosC \tan¢ —tan¢y/

vV =

Gray & Edwards (2014) J. Fluid Mech. 755, 503-534.




Well-posed and ill-posed behaviour of the p(l)-rheology

e Coefficient v is neg-
ative outside range
of steady-uniform flow

e Depth-averaged u([l)-
rheology is ill-posed
iIn this region.

e consistent with full p(I)- 0003 _
rheology, which is well- Gerris
posed for angles in the
grey region (above)

2D transient simulations
of Bagnold flow blow-
up via oblique pressure
perturbations for angles

in white region (above) ,
Barker et al. (2015) J. Fluid Mech. 779, 794-818.




Application to granular roll-waves

t =0.0s

T T L ]

5, 5, a (1 5, ot
—(h@) + —(h@?) + — [ =gh? = ghS, + — [ vh3/?—
g ) F 5 (W) + o (29 COSC) ghss + 5 (” Bz

e Adds a singular perturbation to the momentum equation

e T his is the only form that is not singular in A or u
Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




Measurements of the spatial growth rate of granular roll-waves

. depth-averaged u(I)

-0.03
0

1.0
w

Forterre & Pouliquen (2003) used loudspeaker to initiate
roll waves of a given frequency

Inviscid theory predicts critical Froude Fr. = 2/3, but
growth occurs at all frequencies w

Depth-averaged rheology predicts the cut-off frequency we
MATCHES WITHOUT ANY FITTING PARAMETERS




Exact travelling wave solutions for roll waves
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computed by numerically integrating 2nd order ODE with
prescribed Fr and wu, until a limit cycle is formed

Gray & Edwards (2014) J. Fluid Mech. 755, 503-534.




Exact travelling wave solutions for erosion-deposition waves

tyy = 0.2802 ms™!

hy =3.56

ty =~ 0.2652ms™!

h(mm) 4
h

stop

e For each solution Ay and h, must be prescribed.
e Viscosity allows solution to cross the critical line!

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




Exact travelling wave solutions for erosion-deposition waves

h (mm)

e EXxact solution picks off the correct amplitude and wavelength
e ALTHOUGH its shape is a little different

e MAJOR STEP FORWARD in modelling erosion-deposition
problems with shallow erodible layers

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




h (1m)
w

w

e Numerical solutions with random noise rapidly coarsen into
large amplitude waves

e Close to stopping very destructive waves are formed!

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




Complex coarsening dynamics is qualitatively reproduced

h (mm)

Experimental space-time plot shows:-

— regions of stationary material as horizontal straight lines
— the wave-fronts as white lines

very similar in computations (right)

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




The depth-averaged p(l)-rheology also plays critical role in fingering instabilities

Pouliquen, Delours & Savage (1997), Nature. 386, 816-817.
Woodhouse et al. (2012), J. Fluid Mech. 709, 543-580.
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Schematic diagram for the levee formation process

oarse-enriched surface ayer

Breaking size-segregation wavej

Deposition point

e larger particles are shouldered to the sides to create levees

e this is an example of a segregation-mobility feedback effect




Inviscid avalanche model for segregation-mobility induced fingers

e For avalanche thickness A, small particle thickness n and
depth-averaged velocity w the 2D coupled model is

Oh
— + div(hu 0
L+ div(ia) ,

o

%(hﬂ) T & T A g (%ghz cos c;) hgS.,

e source terms composed of gravity and basal friction

_ ( sin¢ — u(@/|m|) cos ¢,
2 —( —u(v/mwcosg,)

e coupling through ¢ = n/h dependent friction coefficient
p=(1-0)p"+¢u, p">p
Gray & Kokelaar (2010) J. Fluid Mech. 652, 105-137
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Woodhouse et al. (2012), J. Fluid Mech. 709, 543-580.
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e [ he model is hyperbolic

e captures the instability mechanism
e and forms large rich lateral levees, BUT ....
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Numerical solutions are grid dependent ...!

e Such ill-posed behaviour is an indication that some impor-
tant physics is missing — in this case viscosity.

Woodhouse et al (2012), J. Fluid Mech. 709, 543-580. 26




A two-dimensional fully coupled model including rheology

e \When the depth-averaged u(I)-rheology is generalized to
2D it suggests a system of conservation laws of the form

Oh
— + div(hu o}
5 + diviha) ,

=+ div (nﬂ—(l—a)n (1—%)%) 0,

%(hﬂ) + div(hu ® w) + grad (%hQ COS C) hS + div (z/h%ﬁ),

e where the two-dimensional strain-rate tensor is
_ 1 -
D = > (L + L )

e and L = grad(u) is the depth-averaged velocity gradient
e Numerics converges ... (Baker, Johnson & Gray in prep)




e characteristics coincide when
1

(1—a)2n — 1

Fr=Fr. =

e produces unbounded growth in inviscid case v = 0.

e The depth-averaged u(I)-rheology regularizes the equations

28
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.i_n Important for geophysmal mass flows which

often-form Ie\ge/s which enhance run-out!
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