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Sediment transport and self-formed morphologies
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Bed-load transport in pipe flows

What parameters characterize:

1 the incipient motion of the grains?

2 the rate of particle transport?

3 the formation of dunes?
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Incipient motion characterized by critical Shields number
Shields number: θ = τb/(ρp − ρf )gd
∝ ratio of the fluid force on the particle to the weight of the particle

Force balance on a grain

τbπd
2

+ (N1 −N2) sinα = 0
π

6
d
3
(ρp − ρf )g − (N1 +N2) cosα = 0

At threshold, contact with first grain lost (N1 ≡ 0)

∴
τb

(ρp − ρf )gd
=

1

6
tanα

→ θ
c ≈ 0.1 (for α = 30◦)

Force balance on a grain layer

Shearing forces: Fb = τbdS
Coulomb friction: Ff = µFN
with normal force FN = dSδ(ρp − ρf )gφ

At threshold, thickness of the mobile layer δ ≡ d
∴

τb

(ρp − ρf )gd
= µφ

→ θ
c ≈ 0.3 (for µ = 0.5 and φ = 0.6)
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Shields curve
from Buffington 1999

Large scatters due to:

Bed packing conditions

Polydispersity in size

Multiple possible definition for the onset of grain motion

Different definition of the shear stress
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Threshold characterized through cessation of motion
A granular bed submitted to a laminar flow in a pipe (test section not fed in with
particles)

D

dh
p
start

h
p
end

θc = 0.12± 0.03 in the range 1.5 10−5 6 Rep 6 0.76

Ouriemi, Aussillous, Médale, Peysson, and Guazzelli PoF 2007
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Shields curve in the laminar regime
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White 1940 (+), White 1970 (�), Mantz 1977 (×), Yalin et al. 1979 (4), Pilotti et al. 2001 (◦), Charru et al.
2004 (N), Loiseleux et al. 2005 (•), Ouriemi et al. 2007 ( ∗), Lobkovsky et al. 2008 (�), Malverti et al. 2008 (♦)

Recent controlled experiments: θc ≈ 0.12 independent of Re

Direct numerical simulations of Derksen PoF 2011 and Kidanemariam and
Uhlmann IJMF 2014 in line with experiments
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Bed-load transport

Typical findings: qp ∝ θn
Einstein 1942, 1950, Bagnold 1956, Yalin 1963 . . .

In laminar regime: qp ∝ θ2 near θc and ∝ θ3 away from θc

Charru, Mouilleron, and Eiff 2004, 2009, Ouriemi, Aussillous, and Guazzelli 2009
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Two-phase model of bed-load transport

Two-phase equations (see Jackson 1997, 2000)

Continuity equations for the fluid and particle phases

Momentum equations for the fluid and particle phases

Closures (Ouriemi, Aussillous, and Guazzelli JFM 2009 Part 1)

Particle-fluid interaction: viscous Darcy drag

Newtonian rheology for the fluid phase: τf = ηeγ̇

Frictional rheology (contact interactions) in the mobile granular layer: τp = µpp

Resulting equations for viscous shearing flows

Brinkman equation for the fluid phase
→ Darcy term dominant

Mixture equation (suspension balance)
→ Exchange between stresses of the fluid and solid phases

Hydrostatic pressure
→ pp = φ∆ρg(hp − z) apparent weight of the solid phase
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Simple calculation for Coulomb friction and constant φ

h
m

h
f

z z

τf
τp

µpp

dpf/dx

h
p

h
c

x τ0 0

µ and ηe = constant

Darcy dominant → no slip: U ≈ up ≈ uf

Mixture: τp(z) + τf (z) = τf (hp)−
∂pf

∂x
(hp − z)

τ
f

= ηe
∂U

∂z
: ≡ τf (hp) at hp and goes to 0 at hc

τ
p

= µp
p

= µφ∆ρg(hp − z):
≡ 0 at hp and increases until can keep ≡ µpp (i.e. until hc)

Bed-load thickness:
hm

hf

=
ηe

η

1−

√
1−

η

ηe

∂pf/∂x

∂pf/∂x + µφ∆ρg


Parabolic velocity profile: up

= u
f

= U =
∂pf/∂x + µφ∆ρg

ηe

(z − hc)2

2

Relevant scalings

length scale = hf , pressure scale = ∆ρghf , time scale = η/∆ρghf
control parameter = fluid flow rate qf made dimensionless by ∆ρghf

3/η
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More sophisticated granular frictional rheology

Shear-dependent friction law:
µ(I) = µs + I(µ2 − µs)/(I + I0)
(GDR Midi 2004, da Cruz et al. 2005, Jop et al. 2006 . . . )

Single dimensionless control parameter for
hard spheres: dimensionless shear rate I

Dry granular flows: inertial number
I = d

√
ρp/ppγ̇

Wet granular flows: viscous number
Iv = ηγ̇p/pp (Cassar et al. 2005)

Numerical implementation

Nonlinear mixture equation through the constitutive laws for µ(Iv), φ(Iv), and
ηe(φ) solved numerically using MATLAB

Full three dimensional case: finite-element code + regularisation technique for
frictional granular rheology (Chauchat and Médale Comput. Methods Appl.
Mech. Engrg. 2010)
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Granular bed in a rectangular-tube flow

Two index-matched combinations of fluids and particles (Borosilicate + mixture
of Triton X-100 and water as well as PMMA + Triton X-100 )

Viscous laminar regime: Both θ and Re range from 0.2 to 1.2

Aussillous, Chauchat, Pailha, Médale, and Guazzelli JFM 2013
inspired by Goharzadeh et al. PoF 2005 and Lobkovsky et al. JFM 2008
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Inside the mobile granular bed
PIV → particle and fluid (seeded with fingerprint powder) velocities

Accelerated movie (× 15) of PMMA spheres + Triton X-100 (with Rhodamine 6G) at
Qf = 4.1 10−6 m3s−1 and corresponding particle and fluid velocity profiles
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Velocity and concentration profiles
particle (•), fluid (•) velocities, and volume fraction (+)
Borosilicate (left) and PMMA with seeded fluid (right)

No velocity slip between particles and fluid inside the mobile granular layer

φ ≈ constant inside the mobile granular layer except at the top interface where
it vanishes on a distance ≈ 2 d
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Particle-velocity flux qv and mobile-layer thickness hm
borosilicate: Qf =2.7 (×), 3.6 (◦ ), 4.4 mm (N), 5.3 (�), 5.7 (�), 6.1 (5), 6.9 (•), 8.2 (4), 8.6 (�), 9.7 cm3/s (♦)

PMMA: Qf =2.2 (×), 2.7 (◦ ), 3.2 mm (N), 3.6 (�), 4.1 (�), 4.6 (5), 5.6 cm3/s (•)
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Decrease with increasing hf but strong dependence on particle and fluid
combination (borosilicate and PMMA) as well as fluid flow rate Qf .
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Scalings: length-scale = d and time-scale = η/∆ρgd
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Imperfect collapse of data

Shields number θ not the most appropriate parameter!
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Scalings: length-scale = hf and time-scale = η/∆ρghf
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Good collapse using the scalings of the continuum two-phase approach

Control parameter = dimensionless fluid flow-rate qf/(∆ρgh
3
f/η)
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Comparison with Coulomb frictional rheology
2D calculation with µs = 0.32 and Einstein viscosity ηe/η = 2.4 (dashed line)
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Realistic prediction for particle flux but not for bed-load thickness!
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Comparison with Coulomb frictional rheology
2D calculation with (best fit) µs = 0.24 and ηe/η = 14 (solid line)

qf=(";gh
3
f=2)

10-2 10-1

q v
=
("
;
g
h

3 f
=
2
)

10-4

10-2

qf=(";gh
3
f=2)

0 0.02 0.04

h
m
=
h

f

0

2

4

6

8

Good agreement except at large flow rate
but µs slightly low and ηe/η slightly high!
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Velocity profiles versus Coulomb model
qf/(∆ρgh

3
f/η) = 9.1 10−3 (left) and qf/(∆ρgh

3
f/η) = 13.9 10−3 (right)
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Good collapse of the experimental data using the scalings of the
continuum two-phase approach

Good agreement between experimental data and 2D calculation with
Coulomb frictional rheology in the pure fluid zone but not in the mobile
layer zone!
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Velocity profiles versus Coulomb model (blow-up)
qf/(∆ρgh

3
f/η) = 9.1 10−3 (left) and qf/(∆ρgh

3
f/η) = 13.9 10−3 (right)
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Velocity profile not well described by a simple parabola!
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Comparison with granular frictional rheology µ(Iv)
µs = 0.24, µ2 = 0.39, I0 = 0.01, and ηe/ηf = 6.6 (2D: dashed line and 3D: solid line)
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2D model: good agreement but 3D effects at large flow rate

3D model: good agreement for qv but underestimation for hm at large
flow rate
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Velocity profiles versus granular model
qf/(∆ρgh

3
f/η) = 9.1 10−3 (left) and qf/(∆ρgh

3
f/η) = 13.9 10−3 (right)

U=(";gh2
f=2)

0 0.005 0.01

z
=
h

f

-2

-1

0

1

U=(";gh2
f=2)

0 0.005 0.01 0.015 0.02

z
=
h

f

-4

-3

-2

-1

0

1

Small flow rate: excellent agreement for 2D and 3D models

Larger flow rate:
2D model: good predictions in fluid / overestimation in bed-load
3D model: good prediction in bed-load / overestimation in fluid
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Velocity profiles versus granular model (blow-up)
qf/(∆ρgh

3
f/η) = 9.1 10−3 (left) and qf/(∆ρgh

3
f/η) = 13.9 10−3 (right)
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Small flow rate: excellent agreement for 2D and 3D models

Larger flow rate:

2D model (dashed line): overestimation in bed-load
3D model (solid line): good prediction in bed-load
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Three-dimensional effects
(a) experimental and (b) numerical velocity profiles
for PMMA at Qf = 4.1210−6m3s−1 and hf = 16 mm
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Good agreement
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The erosion of granular beds under the action of fluid shearing flows



Incipient motion Two-phase approach Inside the bed-load Discrete approach Dunes Conclusions

1 Incipient motion

2 Bed-load transport: a two-phase approach

3 Inside the bed-load

4 Bed-load transport: a discrete approach

5 Dunes

Aussillous, Chauchat, Ouriemi, Médale, Pailha, Peysson, and Guazzelli Aix-Marseille Université, CNRS
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Direct numerical simulation of the erosion of a sediment
bed sheared by laminar channel flow
Immersed boundary technique for the fluid-solid coupling
Soft-sphere approach for solid-solid contact

Kidanemariam and Uhlmann IJMF 2014
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Comparison of experiments with discrete approach
Two-phase granular model (dashed red line)

As can be seen from the fit in Fig. 8(a) their conclusion is fully con-
firmed by the present data.

An alternative scaling of the particle flow rate data is to replace
the particle diameter in (29) with the fluid height, viz.

qvisc;h ¼
ðqp=qf # 1Þgh3

f

m ¼ qvisc;D
hf

D

! "3

: ð30Þ

This scaling was advocated by Aussillous et al. (2013) as more con-
sistent with a continuum (two-fluid) approach. Fig. 8(b) shows that
our data for the particle flow rate as a function of the fluid flow rate,
both normalized with the scale defined in Eq. (30), again matches
the experimental data of Aussillous et al. (2013) very well. We also
note that the simulation data is very well represented by the power
law hqpi=qvisc;h / ðqf =qvisc;hÞ

3:21 which is again close to a cubic varia-
tion. In fact it can be shown that a cubic variation of hqpi=qvisc;h with
qf =qvisc;h follows directly from a cubic variation of hqpi=qvisc;D with
HPois.

4.2.2. Sensitivity with respect to collision model parameters
The force range Dc has been varied by a factor of two (from

Dc ¼ Dx to Dc ¼ 2Dx) in two simulation cases (BL20 and BL21,
where Reb ¼ 267 and 333, respectively, and Ga ¼ 6:3 in both cases,
cf. Tables 3 and 4). It can be seen from Fig. 8 that the effect of mod-
ifying this parameter upon the particle flow rate is insignificant in
the given range. The same conclusion holds for the quantities dis-
cussed below (Sections 4.2.3 and 4.2.4).

We have likewise tested the influence of the choice of the value
for the dry restitution coefficient ed upon the results in the present

configuration. For this purpose the flow case denoted BL10 in
Table 3 has been repeated three times with modified values of
the dry restitution coefficient (while maintaining all remaining
numerical and physical parameters at their original value).
Fig. 9(a) shows the resulting mean particle flow rate for the set
of coefficients ed ¼ 0:3;0:6;0:9;0:97. As can be observed, the
impact of this parameter variation is very limited.

Finally, we have repeated the same case BL10 while indepen-
dently changing the value of the Coulomb friction coefficient in
the range lc ¼ 0:1 % % %0:55. The result is shown in Fig. 9(b), where
again a very small effect upon the mean particle flow rate is
obtained.

4.2.3. Thickness of the mobile sediment bed
In practical applications involving bedload transport it is often

of interest to predict the extent of the layer of particles which
exhibits significant streamwise motion. Referring to the schematic
of the configuration shown in Fig. 5, we define the thickness of the
mobile layer hm as the distance between the fluid-bed interface
location (y0) and the location inside the bed where the mean par-
ticle velocity hupi is equal to a prescribed threshold value hupithresh.
In the present work we set this threshold velocity to
hupithresh ¼ 0:005 maxhuf i. In terms of the Stokes settling velocity,
the chosen value ranges from 0:01Us to 0:09Us in the different
cases which we have simulated. In the study of Aussillous et al.
(2013) the mobile layer thickness hm has been determined by a
similar thresholding criterion.

Fig. 10(a) shows the computed mobile layer thickness hm nor-
malized by the diameter of the particles as a function of the Shields
number; Fig. 10(b) shows the same quantity under the alternative
normalization with the fluid height, plotted as a function of the
non-dimensional fluid flow rate. Once again, the DNS data shows
very good agreement with the experimental data despite the sen-
sitivity of this quantity due to thresholding. The data in Fig. 10
clearly shows that hm monotonically increases with increasing val-
ues of the Shields number and with the non-dimensional fluid flow
rate. It can be observed that the DNS–DEM data over the presently
investigated parameter range is fairly well represented by a qua-
dratic law in both graphs. This result is in contrast to some of
the available models in the literature. Mouilleron et al. (2009) have
considered the viscous re-suspension theory of Leighton and
Acrivos (1986) in which particles are assumed to have no inertia
and a mass balance between downward sedimentation and
upward diffusion is considered. Ouriemi et al. (2009) on the other
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Fig. 8. (a) Mean particle flow rate hqpi non-dimensionalized by the viscous scaling qv isc;D plotted as a function of the Shields number HPois . The vertical solid line corresponds
to the critical Shields number for particle erosion Hc

Pois ¼ 0:12& 0:03 reported by Ouriemi et al. (2007), the dashed lines indicating the tolerance range. The inset shows the
same data plotted in logarithmic scale. The black chain-dotted line in the inset corresponds to a power law hqpi=qvisc;D ¼ 1:6584H3:08

Pois . (b) The same quantity hqpi as in ðaÞ, but
normalized by qvisc;h and plotted as a function of the non-dimensional fluid flow rate qf =qvisc;h . The power law hqpi=qvisc;h ¼ 1055:3ðqf =qv isc;hÞ

3:21 is indicated by the black chain-
dotted line. In both graphs the results from the present simulations are indicated by the symbols given in Table 4. Data points marked by (',h) correspond to the experiment
of Aussillous et al. (2013) (', combination ‘‘A’’ of materials in their Table 1; h, combination ‘‘B’’).

Table 4
Numerical parameters used in the simulations of bedload transport (for the notation
cf. Table 2). The color and symbol coding given in the last column correspond to a
chosen pair of numerical parameter values ðD=Dx;Dc=DxÞ and will be used in
subsequent plots.

Domain ½Lx ) Ly ) Lz*=D Nx ) Ny ) Nz D=Dx Dc=Dx symbol

D4 32) 32) 16 512) 513) 256 16 2 —, +
D5 32) 36) 16 512) 577) 256 16 2 —, +
D6 32) 16) 16 512) 257) 256 16 2 —,
D7 38:4) 25:6) 12:8 384) 257) 128 10 1 —,
D8 38:4) 51:2) 12:8 384) 513) 128 10 1 ,
D8b 38:4) 51:2) 12:8 768) 1025) 256 20 2 ,
D9 32) 36) 16 512) 577) 256 16 1 ,
D10 32) 32) 16 512) 513) 256 16 1 ,
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hand consider a continuum description of the problem where a
frictional rheology (using a Coulomb model with a constant friction
coefficient) is assumed to describe the mobile granular layer. In
both theoretical approaches (Mouilleron et al., 2009; Ouriemi
et al., 2009) the authors arrive at a linear variation of the thickness
of the mobile layer with the Shields number. More recently,
Aussillous et al. (2013) have essentially revisited the two-fluid
modelling approach of Ouriemi et al. (2009), but employing more
sophisticated closures for the stress tensor of the particle phase.
In particular, they use a granular frictional rheology with a
shear-rate dependent friction coefficient. These authors’ results
for the mobile layer thickness obtained with this continuum
approach are included in Fig. 10(b). It can be seen that the match
with our data is very reasonable at larger values of the fluid flux
qf . For smaller values of qf the continuum model results clearly
deviate from the presently observed quadratic behavior. This, how-
ever, is not much of a surprise since the thickness of the mobile
layer is very small in that range, and the continuum approach
might not be appropriate. Please note, however, that the definition
of the mobile layer thickness in the continuum model context is
not identical to the definition which is employed in both the pres-
ent work and in the experiment (Aussillous et al., 2013).

Going back to the present simulation data, it can be seen that at
larger values of the two alternative control parameters our results
are in fact not inconsistent with a linear variation of the mobile
layer thickness with both Shields number (Fig. 10(a) and with
the fluid flow rate (Fig. 10(b). However, in view of the fact that
the data points (both in the experiment and in the simulation)

cover only a limited range of these control parameters, and consid-
ering the scatter of the experimental data, this issue cannot be set-
tled at the present time.

4.2.4. Fluid and particle velocities
The wall–normal profiles of the streamwise component of the

mean fluid and particle velocities huf i and hupi for all cases are
shown in Fig. 11. In this figure the length and velocity scales pro-
posed by Aussillous et al. (2013) (hf and qvisc;h=hf , respectively)
are used. The graph in Fig. 11(a) features an ordinate which is
shifted to the fluid-bed interface location (y0), while in Fig. 11(b)
the location of the bottom of the mobile layer (y0 ! hm) is used as
the zero of the ordinate. Similar to what has been observed in the
experiments (Aussillous et al., 2013), the present profiles exhibit
three distinct regions: (I) the clear fluid region (0 < y! y0 < hf ),
where the mean fluid velocity profile is characterized by a near-par-
abolic shape, while the solid volume fraction is negligibly small; (II)
the mobile granular layer (!hm < y! y0 < 0), where both the fluid
and particles are in motion; (III) the bottom region (y < y0 ! hm),
where the velocities of both phases are vanishingly small. It can
be observed from Fig. 11 that there exists no significant difference
between the mean velocities of the two phases. Note that in the
clear fluid region (I) particles are occasionally entrained into the
bulk flow, reaching larger distances above the mobile layer. How-
ever, the mean particle velocity at these points was not determined
with sufficient statistical accuracy, and these values are, therefore,
not shown in Fig. 11.
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Fig. 9. As Fig. 8(a), but showing the effect of changing the parameters of the collision model in case BL10 with Reb ¼ 266 and Ga ¼ 13:98 (cf. Table 3). In ðaÞ the dry restitution
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Fig. 10. Thickness of the mobile bed layer hm: (a) normalized by the particle diameter D and given as a function of the Shields number HPois and (b) normalized by the fluid
height hf and given as a function of the non-dimensional fluid flux qf =qvisc;h . The insets show the same data in logarithmic scale. The chain-dotted lines indicate the following
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red line indicates the results obtained with a two-fluid model including a shear-rate dependent friction coefficient (black dashed line in Fig. 6(b) of Aussillous et al. (2013)).
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Excellent agreement between experimental data of Aussillous, Chauchat,
Pailha, Médale, and Guazzelli JFM 2013 and numerical simulation of
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The erosion of granular beds under the action of fluid shearing flows



Incipient motion Two-phase approach Inside the bed-load Discrete approach Dunes Conclusions

Phase diagram of the dune patterns
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Dunes in direct numerical simulations
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FIGURE 2. Different regimes of sediment bed patterns obtained in the pipe flow
experiment of Ouriemi et al. (2009), shown in the parameter plane (Reb, Ga(2H/D)2):
‘flat bed in motion’ (⌅); ‘small dunes’ (�); ‘vortex dunes’ (N). For the pipe flow data
the Reynolds number Repipe based upon the pipe diameter dpipe and the bulk velocity
qf /dpipe is used. The data points in the turbulent channel flow experiment of Langlois &
Valance (2007) are indicated by D = 100 µm (M); D = 250 µm (C); D = 500 µm (B).
The following symbols refer to the present simulations: black circle, LC1; red circle, LC2;
blue circle, TO1.

Langlois & Valance (2007) and Ouriemi et al. (2009). It should be noted that the
former experiment was performed in pipe flow, whereas the latter was in plane channel
flow. It can be seen that the cases LC1 and LC2 fall into the regime where the
formation of ‘small dunes’ is expected, while ‘vortex dunes’ can be anticipated in
case TO1.

2.3. Initiation of the simulations
The simulations were initiated as follows. In a first stage the initial sediment bed was
generated by means of a simulation of particles settling (from random initial positions)
under gravity and under solid–solid collisions but disregarding hydrodynamic forces.
The result is a pseudo-randomly packed bed of initial bed thickness hb(t = 0) above
the bottom wall. Then the actual fully coupled fluid–solid simulation is started with all
particles being initially at rest. In cases LC1 and LC2, the initial fluid velocity field is
set equal to a laminar Poiseuille flow profile with the desired flow rate in the interval
hb(t = 0)6 y6Ly and zero elsewhere. After starting the simulation, individual particles
are set into motion due to the action of hydrodynamic force/torque, and erosion takes
place. In case TO1 the fluid–solid simulation was first run with all particles held
fixed in order to develop a fully turbulent field over the given sediment bed. After
approximately 100 bulk time units the particles were released, and the bed started to
evolve away from its initial macroscopically flat shape, as discussed in the following.

2.4. Definition of the fluid–bed interface
The location of the interface between the fluid and the sediment bed is determined
in the following way. First, a solid phase indicator function �p(x, t) is defined which
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FIGURE 4. Space–time evolution of the fluctuation of the fluid–bed interface location,
h

0
b(x, t)=hb(x, t)�hhbix(t), normalized with the particle diameter D: (a) case LC1; (b) case

LC2; (c) case TO1.
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FIGURE 5. Close-up of the instantaneous spanwise-averaged solid volume fraction
h�piz (plotted in greyscale) as well as the streamlines computed from a spanwise-averaged
instantaneous flow field in the final phase of the simulated interval: (a) case LC1;
(b) case TO1.

enhanced fluctuation amplitudes in comparison with both laminar cases. Furthermore,
these space–time plots show the occasional occurrence of dune mergers with a
subsequent increase of wavelength and an apparent decrease of the propagation speed.
For times t & 550H/ub the sediment bed patterns in the turbulent case TO1 (cf.
figure 4c) remain roughly invariant, with two distinct dunes featuring somewhat
different elevation amplitudes.

A visualization of the fluid–bed interface and the streamlines of the spanwise-
averaged flow field towards the end of the simulated intervals is shown in figure 5.
It is found that the patterns in the laminar cases indeed correspond to ‘small dunes’
in the terminology of Ouriemi et al. (2009), and to ‘vortex dunes’ with significant
separation on the lee side in the turbulent case (the graph for case LC2 is similar
to case LC1 and has been omitted). These results are, therefore, consistent with the
regime classification based upon the channel (or pipe) Reynolds number proposed by
these authors (cf. figure 2).

The instantaneous two-point correlation of the bed height fluctuation as a function
of streamwise separation rx, defined as Rh(rx, t) = hh0

b(x, t) h
0
b(x + rx, t)ix, exhibits a

clear negative minimum in all of the present cases (figure omitted). Therefore, we
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(a) Small dunes (•) and (b) Vortex dunes (•)

Two cases in laminar flow (with different Galileo and Shields numbers) lead to the
formation of ‘small dunes’, while one case under turbulent flow conditions exhibits
‘vortex dunes’, consistently with the regime classification of Ouriemi, Aussillous, and
Guazzelli JFM 2009 Part 2
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Conclusions

Understanding the erosion and transport by shearing flows of solid
heavy particles forming an erodible bed:

1 Incipient motion: critical Shields number θc ≈ 0.12
independent of Reynolds number

2 Particle transport above this threshold:

Control parameter: dimensionless fluid flow-rate
Realistic predictions given by two-phase model using a
frictional rheology as well as discrete simulations

3 Dunes:

Instability threshold: pipe Reynolds number
Regimes of ‘small dunes’, ‘vortex dunes’, and ‘sinuous dunes’
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