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Small particles in mixing flows

2

Rapid droplet

growth

~15 min

Rain droplets and ice crystals in rain

clouds Pruppacher and Klett, (Springer 1997)



Small particles in complex flows

Photo and simulation

of accretions disks

Rain droplets and ice crystals in rain

clouds

Dust grains in accretion disks

Pruppacher and Klett, (Springer 1997)

Praburam and Goree, Astrophys. J. 441 (1995)



Small particles in complex flows

Water and sand aerosols

Rain droplets and ice crystals in rain

clouds

Dust grains in accretion disks

Climate models

Pruppacher and Klett, (Springer 1997)

Praburam and Goree, Astrophys. J. 441 (1995)

IPCC reports



Rain droplets and ice crystals in rain

clouds

Dust grains in accretion disks

Climate models

Microswimmers and bacteriae

Small particles in complex flows

Pruppacher and Klett, (Springer 1997)

Guasto et al, Annu. Rev. Fluid Mech. 44 (2012)

Praburam and Goree, Astrophys. J. 441 (1995)

Plankton

IPCC reports



Small particles in complex flows
Rain droplets and ice crystals in rain

clouds

Dust grains in accretion disks

Climate models

Microswimmers and bacteriae

Industrial applications

Mixing/separation of chemicals,

colloidal solutions, sprays,

combustion processes, pollution

filtering, fibers in paper making,

pipeline flows of slurries,…

Pruppacher and Klett, (Springer 1997)

Guasto et al, Annu. Rev. Fluid Mech. 44 (2012)

Praburam and Goree, Astrophys. J. 441 (1995)

IPCC reports

Separation of chiral particles

using helical flow

Aristov et al, Soft Matter 9 (2013)



stationary incompressible random velocity field

no preferred direction or position in either space or time

single scale flow with typical length scale and time scale

Droplet equation of motion (small, heavy particles)

Spherical droplets move independently (until they collide)

particle position

particle response time (depends on droplet size and mass)

Aim: Try to understand relative motion between particles.

- What are the clustering mechanisms within this model?

- Which mechanisms make droplets collide?

particle velocity

gravitational acceleration

Model



Random-flow model

Particle density

Region of high vorticity

Non-interacting, non-colliding particles (red) follow a random flow

Length scale

Time scale



In rain cloud turbulence:

R. Shaw, Annu. Rev. Fluid Mech 35 (2003)

Large droplet

Small droplet

( particle size in meter)

average flow speed

correlation length of flow

correlation time of flow

particle response time

particle radius

particle density

gravitational acceleration

Dimensionless parameters

Kubo number ( )

Stokes number ( )

packing fraction (small)

dimensionless size (small)

gravity parameter ( )

Model parameters



Quick to simulate

Identifies universal properties at small scales

- Different flows as changes

Allows for analytical solutions:

- Fokker-Planck description

- Matched asymptotics

- Perturbation expansion (‘Kubo expansion’)

Distinguishes effects due to particle dynamics contra fluid properties

KG et al., New J. Phys. 10 (2008); Wilkinson et al., Europhys. Lett. 89 (2010)

KG and Mehlig, Europhys. Lett. E 96 (2011); Adv. Phys. (2016)

KG and Mehlig, Phys. Rev. E 84 (2011); J. Turbulence 15 (2014)

Advantages of statistical model



Department of Physics

Computer simulation of particles (red) in two-dimensional

random flow (periodic boundary conditions in space)

a initial distribution, b particle positions after random stirring.

Mixing by random stirring



‘Unmixing’ of slightly inertial particles

Particle density

Region of high vorticity

Non-interacting, non-colliding particles (red) suspended in a random

flow (gravity neglected)



Slightly inertial particles ( )

suspended in an incompressible

random flow.

Non-inertial particles ( )

suspended in a compressible

random flow.

A hint of what is going on...

Comparison to compressible flows



Inertial droplets are centrifuged out of

vortices

Maxey, J. Fluid Mech. 174, 441, (1987)

Particles avoid regions of high vorticity

For slightly inertial particles ( )

Particles follows effective velocity

field , which is compressible

Droplets cluster due to long-lived

flow structures. This is an example

of ‘preferential sampling’.

Centrifuge mechanism



‘Unmixing’ of very inertial particles

Particle density

Region of high vorticity

Non-interacting, non-colliding particles (red) suspended in a random

flow (gravity neglected)



The motion of heavy particles ( ) is independent of the

instantaneous value of the fluid if is small enough ( ).

Mehlig & Wilkinson, Phys. Rev. Lett. 92 (2004) 250602

Duncan et al., Phys. Rev. Lett. 95 (2005)

Wilkinson et al., Phys. Fluids 19 (2007) 113303

Langevin/Fokker-Planck treatment possible.

Dynamics described by single parameter:

Replace the position-dependent flow by ‘random kicks’:

Clustering results as the net effect of many small

deformations of small cloud of close-by particles, uncorrelated

from any instantaneous structures in the flow.

Multiplicative amplification



Inertial particles cluster on self-similar structures, ‘fractals’
Sommerer & Ott, Science 259 , 334, (1993)

Small-scale fractal clustering



When and not too large, the ( ) dynamics is:

- chaotic (positive maximal Lyapunov exponent)

- compressible (areas contract)

Lyapunov exponents describe contraction/expansion

rate of separations , areas etc. in a cloud of closeby particles

J. Sommerer & E. Ott, Science 259 (1993) 351

Fractal dimension Kaplan & Yorke, Springer Lecture Notes

in Mathematics 730, 204, (1979)

Quantification of fractal clustering I



The number of uniformly distributed particles in a sphere of radius is

proportional to the volume, i.e. ( is the spatial dimension).

E. Ott, Chaos in dynamical systems, 478p (2002)

A small corresponds to large fractal

clustering.

On a fractal, the number of droplets in the

sphere is proportional to , where

is the ‘correlation dimension’.

Quantification of fractal clustering II



Lyapunov dimension (     ,   ) and Correlation dimension (     ,    )

For clustering in random and turbulent flows, different measures

of the clustering does not give the same result (‘multifractal’).
Bec et. al, Phys. Rev. Lett. 92, 224501, (2004)

Numerical results (         )



Clustering in statistical model show qualitative agreement with

DNS of turbulence in persistent-flow limit (large ).

Comparison to DNS

Bec et. al, Phys. Fluids 18,

091702, (2006)

DNS from



Inertia

Flow intensity Fractal dimension

Maxey centrifuge effect

Multiplicative amplification 

Maxey

centrifuge

Preferential

concentration
Multiplicative

amplification

Clustering without gravity



Particles reach a terminal ‘settling velocity’ (from )

Deterministic dynamics with gravity
Dynamics in the absence of

Relative motion between two particles is only affected by gravity

through the -dependence in . Gravity is expected to alter

correlations between flow and particle trajectories.

The flow velocity typically lead to increased settling speeds

Wang & Maxey, J. Fluid. Mech. 256 (1993)



Non-interacting, non-colliding particles (red) suspended in a random

flow (no clustering when )

Particle density

Frame moving with

settling velocity

Large- gravitational clustering

‘Unmixing’ of falling inertial particles



Non-interacting, non-colliding particles (red) suspended in a random

flow (no clustering when )

Particle density

Frame moving with

settling velocity

Large- gravitational clustering

‘Unmixing’ of falling inertial particles



Deterministic solution with settling velocity

When is large

the effective correlation time

approaches white noise.

Spatial decorrelation becomes

faster than time decorrelation.

Single-particle correlation function

at two different times

Large- dynamics



The effective correlation time results in .

The dynamics with and can be roughly mapped onto

the dynamics with .

Langevin model

Maxey

centrifuge

Preferential

concentration
Multiplicative amplification

Large- clustering due to settling

KG Mehlig & Vajedi, Phys. Rev. Lett. 112 (2014)



Comparison of correlation dimension in statistical model ( )

to results from DNS.

Bec et al, Phys. Rev. Lett. 112 184501 (2014)

Statistical model DNS

Comparison to turbulence



The rate of collisions (         )

The clustering peaks before the

collision rate peaks.

When is small increases as

correlation dimension increases

as expected.

Collision rate for different 

Collision rate for a test particle

suspended with particles.

The collision rate only drops

slowly for large where there is

negligible clustering.



The rate of collisions (         )
Collision rate for different 

Explanation:

‘Caustics’

Falkovich et. al, Nature 419, 151, (2002)

Wilkinson et. al, Phys. Rev. Lett. 97 048501

(2006)



Non-interacting, non-colliding particles (red) suspended in a random

flow (gravity neglected)

Particle density

Region of high vorticity

Motion of very inertial particles



Non-interacting, non-colliding particles (red) suspended in a random

flow (gravity neglected)

Particle density

Region of high vorticity

Motion of very inertial particles



Density of particles suspended in a

(compressible) random flow.

Caustics of sun light in water

http://www.physics.utoronto.ca/~peet/

Caustics

http://www.physics.utoronto.ca/~peet/


Formation of a caustic (         )

Initially the velocity is a single valued function of position .

Faster particles overtake the slower ones.

Trajectories following Stokes e.q.m.

Caustics are formed where the slope is infinite, i.e. when .

is local and fail to describe the multi-valuedness between caustic

pairs. Phase-space description of separations ( , ) necessary.



Particle positions at large times (        )

Particles distribute on fractal in phase-space with phase-space

fractal dimension . Here .

Plot particle positions and velocities moving according to Stokes’

law with and (so ) at a large time.



Consider the relative motion between

two particles with separation and

relative velocity .

KG & B. Mehlig, J. Turbulence 15 (2014); Phys. Rev. E 84 (2011)

Example of relative trajectory

between two droplets.

Trajectories of separations (         )



Case :

When and particles

approach each other, a caustic occurs.

The motion can be approximated by

uniform, i.e. universally.

For a given , all are equally

likely, i.e. the probability distribution

of and behaves as

Trajectories of separations (         )

Consider the relative motion between

two particles with separation and

relative velocity .

KG & B. Mehlig, J. Turbulence 15 (2014); Phys. Rev. E 84 (2011)

Example of relative trajectory

between two droplets.



Use to get

Case :

When , changes in the

relative amplitude of are small

compared to changes in the relative

amplitude of .

Trajectories of separations (         )

Consider the relative motion between

two particles with separation and

relative velocity .

KG & B. Mehlig, J. Turbulence 15 (2014); Phys. Rev. E 84 (2011)

Example of relative trajectory

between two droplets.



Determine and from the definition of the phase-space

correlation dimension , , for small phase-space

separations . :

Match these asymptotic limits along a line (small )

Put

This gives and .

Distribution of separations (         )



The matching gives

Distribution of         and        at

and thus

This result is valid for many systems

with caustics and fractal clustering and

non-singular force at .

Distribution of separations (         )



Results in white-noise limit (        )

The analytic solution for small gives the phase-space

correlation dimension and the matching scale .



Phase-space picture of

zoomed rectangle.

Particle density in , -plane

Caustics in two spatial dimensions



Comparison to distribution of phase-space separations gives:

if

if

Relative velocities (general   )

Match the two asymptotes as before. When

the uniform relative motion only gives a contribution to the

distribution at small separations if its angular component is small

enough:

This results in a geometrical factor .



V. Perrin & H. Jonker, Phys. Rev. E 92 (2015)

We find that the distribution of relative velocities show universal

power-law tails, independent of the driving flow.

J. Bec et. al, J. Fluid Mech. 646 (2010)M. Cencini, Talk: MP0806_CG3.pdf (2009)

Smooth ‘Kraichnan flow’ ( ) Numerical simulations of turbulence

Distribution of radial velocities DNS at different Reynolds numbers

KG & B. Mehlig J. turbulence 15 (2014)

Universality



Distribution of relative velocities govern collision rates.

Introduce cut-off at typical maximal relative velocities and integrate

over to get moments of radial velocities ( )

Consequences

Smooth dynamics due to caustics

Case gives the spatial correla-

tion dimension . .

Case gives an estimate of the

‘recollision rate’

Higher more affected by caustics



Ghost-particle collision rate (             )

Smooth

contribution

Simulations of

collisions

Caustic

contribution

Caustic forma-

tion rate (arbi-

trary prefactor)



We find that the distribution of relative velocities show universal

power-law tails, independent of the underlying flow.

The power-law tails corresponds to collisions with large relative

velocities.

The collision rate has two contributions: smooth + due to caustics

The contribution from caustics dominates the collision rate for

small particles.

The smooth contribution is increased due to fractal clustering.

Conclusions, relative velocities



G. Bewley, E-W. Saw and E. Bodenschatz, New Journal of Physics 15 (2013)

Droplets injected in meter-size

plexiglass ball.

Turbulence driven by 32

randomly pulsating

loudspeakers.

A millimeter-sized cube in the

center is monitored by three

high-speed cameras.

Crystal ball experiment



Recorded video from three cameras (shadow imaging)

Particle tracking: Raw data



Particle identification



A three-dimensional coordinate system is set up by moving a punch-

hole mask (separation )in steps of in the -direction.

Find linear mapping between world coordinate and image

plane for each camera:

Setting up a coordinate system

Projection of Eulerian grid onto the image plane after calibration

Measurement area
After calibration image positions correspond to a ray in the real space.

The intersection point of the three rays gives particle position.



In experimental runs the camera system has shifted compared to the

calibration due to temperature variations etc.

Figure shows closest distance between rays corresponding to the

darkest shadow in each camera.

Recalibration



Solution: Select regions where it is clear that the rays originates

from the same particle and readjust the calibration.

Recalibration



Better, but not perfect

agreement

Recalibration



After the calibration images of the

three cameras are identified to form

world coordinated of candidate particles.

Using particle tracking methods particle

trajectories are assembled and analyzed.

Forming trajectories



Distributed of estimated particle sizes for the accepted trajectories

Result: Droplet size distribution



Relative motion of particles of size ~20 micrometers.

Distribution of separation seems to show power-laws for small

separations

Result: Correlation dimension



Relative motion of particles of size ~20 micrometers.

Distribution of relative velocities is consistent with predicted

power-law tails

Result: Power-law tails

Values of

chosen

below


