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Introduction

« Granular materials are fluidised when their weight is borne
by interstitial fluid.

In a static fluidised bed
— Gas flow is passed through a porous

plate below the particles. . Particles
— When the gas flow reaches a sufficient _
rate, the vertical component of the drag Gas flow
_ balances the weight of the particles
AP . Pressure drop across the

bed, AP, increases with gas

flow until minimum velocity

: of fluidization,u,, and then
U. U remains constant.
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Demonstration of fluidisation (i)

Royal Instituition:Tales from the Prep Room: Making Sand Swim
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Demonstration of fluidisation (ii)

« When fluidised, the granular material can no longer
support relatively dense objects
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Crazy fluidisers
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Flowing fluidised materials

» Gas flow can support the weight of the grains
— The flows are highly mobile
— What determines the resistance?
* Industrial application:
The dyna-slide (air-slide) is used for conveying fine
particulate along gradients less than their angle of repose
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Geophysical application

« Enhanced mobility of volcanic flows associated with gas
release through the particulate material (Pyroclastic
Flows)

P

. L b ale A
Photron FASTCAM SA3 mode...

100005 171000 sec 1024 % 256
Debut image: 1919 +00:00:01.919
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Experiments

» Particles were introduced at
the end of a sloping, narrow
channel (length 1m,width
1cm) at constant rates (q).

« The entire channel was
fluidised with a flow rate, Wy,
exceeding U,

« Measurements were taken
from video footage (+ PIV)
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The effects of fIU|d|sat|on
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Dimensionless flow parameters

* Glass ballotini particles: Size d=350um, Density p.= 2.5
gcm 3, Geldart Class B

* Flows of depth h are characterised by 5 dimensionless
groups
— Slope S=tan6 = 10!
— Density ratio R=py/ps=10-
— Flow thickness 6=d/h=10-2-10"1
— Fluidisation strength W, =p,w/(psd°gcos0)=10"
— Reduced Stokes number St=52py(gsin6h)*2/p,=10-1-10
— Particle Reynolds Number Re,=pw d/p~1
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Steady fluidised current

Flows down slopes
reach a fully developed
steady-state.

By varying the
Inclination of the
channel, we can use
the experiment as a
rheometer for fluidised
flows.

Measure h as function
of g and 6.
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Flows over horizontal surfaces

* The currents do not attain a steady state
100

t  Experiments
-3 with different
| volume
fluxes at
source
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Velocity profile

Pl

. ! S—
« Using high-speed video E_ ;Z;g e
footage and PIV F T LS W o
techniques, itis possible = £ " + =Bl e’
to measure the velocity £ | % "%
profile. E ' } e
. 3 key features: PR U . ‘:n T
— Slip velocity at z=0 ..,""'" 1”
— Shearing zone (~15d) . D o S:D i ];m '
— Plug —flow region Diownstream velocity, vy /[em,

« Horizontal gas flow speed
IS approximately same as
speed of solids.

Results for steady flows down 10°
& 15° inclines for various fluxes
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Velocity profiles

T ' | S 1 |+0=10°, @ = 33cm3/s
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Results: dependence of h
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Effects of source flux
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Effects of fluidisation velocity
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Theoretical formulation: Drag Law

We adopt a two-phase model and express mass &
momentum (& energy) conservation for each phase.

The key dynamical feature is the interaction between the
solid and gas phases due to the imposed gas flow.

— The vertical gas flow supports the weight of the particles.
The Ergun equation for drag force between phases:

B 1504, ¢* 1.75pf¢‘u—v‘ - s u o ®
Fdrag _|:d2(1_¢)3 + d(l—¢)3 :|(U V) ®

Since Re~1, the interaction force
Is dominated by the linear term drag
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Theoretical model: Fully developed flow

* Particle velocity v=(v(z),0), Gas velocity u=(u(z),w,/(1-¢(z)))
— Mass conservation automatically satisfied
* Normal component of momentum equation:

: oW op i, 0°wW .
Fluid W, —=-p,(1-p)gcosd-——+{1-¢)—— -2
Py — ==, (1=¢)g o, ti=9) ==,
Solid 0= p.¢g Ccosf + 86 +f,.Z

y4
Interaction force between phases f,=-¢Vp+F,,

« Combined normal momentum ;
balance for uniformly fluidised g
material (¢, w constant)

: : : 0o,,
 Normal stress in solid fraction ~ =¢(ps—pf)gcose_

(p-0,)=—(¢p, +@-9)p, Jacose

9
(1-¢)
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Theoretical model: Fully developed flow

* Fluid phase hoarizontal momentum:
Pty > = py (L= P)gsind - plu—v)+ 1, (1-9)
« Solid phase horizontal momentum

2

0=p,
Z
 Combined momentum equation reveals that solids’ shear
stress (o,,) must be non-negligible to achieve balance.

ou . o*u/ oo
W, — 1-0)+ sSin @+ 1- + —*X
w2 @m pup)asin O+ i, (1- ) af@

— Size of shear stress: o, ~ p,gh, but can not be
Coulomb-like as there is no normal stress in solid phase.

* Need a rheology for fluidised materiall
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Kinetic theory: Granular temperature

« The Stokes number of the particle motion is large
— Particles interact directly with each other through collisions

« Granular temperature (T) measures the average fluctuations
of the particle velocity.

« Granular temperature is generated by shear in the velocity
field and dissipated through inelastic collisions.

 Kinetic theory provides closures for the particle stresses

d
o Oy = psdT2fi(¢,€) 5 02z = PsdTf2(,€)
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Granular temperature

« Conservation of granular temperature expressed by

aqr dv T3/2

0= aZ+ xzaZ — f3(p, e)

Conduction Generation  Dissipation
* Boundary conditions:
— At base
dv

oT
u=20 V:fsdg f4d5=f6v2—f7T
No slip (fluid)  Slip (particles)  Energy production/dissipation

— At top surface

au_o 4,u6w_0 ¢ 2/3 BT_O
dz P ? 0z (Oxz) 0z2) = %(d) psdg 0z
m
No fluid stresses Small particle stresses  No energy flux
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Dynamical regime
« Balance between downslope acceleration and particle shear

stress U _ oy
Ps Wg E :@¢)+ ps¢@+ H 822

« Balance between production and dissipation of granular

temperature 3q; % T3
- ()7

« Velocity scale (gsin8 h3/d?)'/? Temperature scale g sin6 h

 Differs from non-fluidised flows: these require the solids
normal stress to balance the weight (T~ g cos 8 h).
— For fluidised flows the temperature is lower
— The effective viscosity is lower
— The flows are faster more mobile.
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Numerical solution

. Boundary value | o
problem (8t order) T I
with 5 dimensionless | R
parameters ool / [ R

: : !' " |

« Typical solutions for .. I oad || [

different values of W, | |l |; | |

/ Rl

. 04k . u4—!! / f; . u4-|

« Uniform volume | | .'} / T
. /

fraction =iy 1o

- Negligible velocity o 1 o/ | ot
difference |l |-

!
 Linear decreaseof T | |, | 1A
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Approximate solution (i)

* Away from boundaries .
u=v f (E) = fzT
No slip between phases Balance between production and dissipation
« Momentum balances normal and parallel to slope

fo 0
—5—(f2T) = ¢ — W (1 — ¢)? E((f1f3)1/271) =—¢

Normal stresses Shear stresses

 These admit a solution with uniform volume fraction ¢(z) = ¢

S(EfZ (]3 fO a_T _ (E
(fifs)/? "o (1— )2 0z (f1f3)1/?
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Approximate solution (i1): v& T

« Temperature and Velocity

& (¢ f3> .
T =— (1-2) v = —1—(1—z)/
(fuf3)/? f ( )
* Volume flux of particles Dimensional form
- 1/4 —
n_ 2 (°fs / 2 (P°fs 1/4 h>gsin 6 1/2
q = QbUdZ = g 3 q=-= 3 5
0 1 S\ fi d
0.12— — —— 07—
Numerical and %1f 00
asymptotic 0.08} 0.5y
solutions o6l / |04
| 0.3
0.04r ool
0.027 01l
e 0
107 W, 107 10 W, 107
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Approximate solution

« Volume flux (per unit width) carried layer

C2(@%f\"" (RS gsine)'?
=37 )
T T

Mobility = Bagnold scaling
F($)

« Mobility F(¢) determined by fluidising gas flow
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Comparison with data
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Velocity profiles
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Unsteady, developing flows (dimensional variables)

 The flows are shallow vertical accelerations are negligible
—(p — 042) = psg cosO ¢
 Dominant terms In downslope momentum balance
Op 00y, 00y,

Dv .
psqbﬁ—psqbgsmﬁ _6x+ I py

e In depth-integrated form (c,,=c,,)

d rh d h : h h  0p , 00xx , 00y
psafo ¢vdz+psaf0 ¢pv* dz= psgsinb [ pdz+ [ — az_l_ gx + gz dz

hpsv? h3
Loy,  f(¢)La?

« Magnitude of inertial to ‘viscous’ terms
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Depth-averaged model

* Volume fraction, ¢, determined by W,

« EXxpressions for height of flow, h(x,t), and depth-averaged
velocity, v(x,t)
oh 0

a—+—(hv) =0

2
9] 9] gcos@ 0 2v
_ L (h)2 2 2

™ (hv) + Fw (hve) + > (h )=gsin6h — F(¢)d <5h>

¢hv=qatx=0

« Seek travelling wave solution, h(x,t)=H(x- ct), v(Xx,t)=V(x- ct)

* Find that h(x,t) and v(x,t) uniform throughout most of the
2 41]2

domain and the front speed given by gsin 6h = F(¢)d” ——
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Unsteady, developing flows: down slopes

« After initial transients, flow attains steady balance between
downslope acceleration = basal drag

100 | | . |
e ® :

1 f}ﬁ“ : % R

51“ £, = ? T { | :

40 PR

X (cm)
b
L 2
-
<>
b e e
H i
|
et
——
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b4
20 |- Ex 2
L

0
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Downslope flow: theory vs data

25
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« Dimensional Xp = (

University of

BRISTOL

4 q3g sin OF?

25

d2¢3

D 4

A I |
& e"E@'L | P
o @ X
o P ﬂf ) |
g | | | | | | |
5 10 15 20 25 30 35
t

)1/5 t

40

@ 0=3° Q=15cm?/s, wy = 1.5uy, ¢
® 0=23° Q=235cm’/s, wg = L.5up,y
= 6=3° Q=060cm3/s, wg = 1.5up,y
L0 =52 Q=20 cm?/s, wy = 0.5y, ¢
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Unsteady flows on horizontal surfaces

* Flows are slower and decelerate along channel

« Shear is localised to small basal region, with much larger
plug-flow region.

* Height profiles at
successive times

h/[cm]

 Resistive stress due to /
side walls not base 1

I | I | I | I | I | I | I | I | I | I |
0 10 20 30 40 50 60 70 80 90 100
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Horizontal flows with side-wall drag

* Flows length (L) >> Flow depth (h) >>Flow width (B)
« Grains are supported by fluid drag
* Fluid pressure is hydrostatic

« Horizontal pressure gradients drive the motion and are
resisted by cross-stream stresses.
Dv Op 00y

pS¢D_t=_6x+ dy

« When inertia negligible and granular temperature
determined by local balance of production and dissipation

_f i _2h(¢°f7 1z B°gsin6 Y20 am\'?
Q_ ¢pSv Z y_ 5 f3 8d2 ax
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Horizontal motion: similarity solution

« Mass conservation qu% + Z—Q =0 subjectto Q(0,£) = Qo
X
 Dimensionless variables: Qod
scale h & x by H and t by ¢H?B/Q, = (gB°)Y/2F ¢

« (Governing equation

on _ 1 9 on\1/2 om\1/2 _ _
E=5—ﬁa(h(—a) ) subject toh(—a) = 5v/2 at x=0

« Similarity solution:
gearing between x & t: h/t~ (h/x)¥? and h3/2~x1/2

« x~t¥*and h~ 4
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Similarity solution

« Dimensionless Solution: 25
(Numerical solution of
ODE with boundary
conditions) 150

xp(t) = Kt3/4

X 10}
h(x,t) = t1/4y <—>
Xf 51
e K=0.5434 0 . . . .
0 02 04 . 06 08 1

X/X(t)
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Horizontal motion: theory and experiment

25 - -
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Horizontal motion: theory and experiment

105
X(t)
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103
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Q = 0.77 cm? /s,

Q = 0.77 cm? /s,

Q = 2.50 cm? /s
Q = 2.50 cm? /s

Q@ = 5.20 cm? /s,

Q = 5.20 cm? /s
Q = 9.50 cm? /s

Q = 9.50 cm?3 /s,

Q = 9.50 cm? /s
Q = 9.50 cm?/s

Q = 13.3 cm?/s

Q = 13.3 cm?®/s

Q = 13.3 cm?®/s
Q = 35.0 cm? /s

Ug /Ums = 1.67
Ug /Uy f = 1.86
y Ug /Uy = 1.3
, Ug/Upf = 2
Ug /Uy = 1.3
, Ug /U f = 2
Ug /Uy = 1.3

Ug /Uy f = 1.48

, Ug /Uy p = 1.67
, Ug /U p = 1.86
Q = 9.50 cm?/s,

Ug/Unf = 2

Ug U = 1.3

, Ug /Uy = 1.48
Q = 13.3 cm?/s,
Q@ = 13.3 cm?/s,

Ug /Uy s = 1.67
Ug /Uy = 1.86

, Ug [/ Upf = 2

, Ug /Uy = 1.5
Q = 60.0 cm? /s,
—— Similarity solution for narrow contai

Ug/Umf = 1.5




Conclusions

« We have experimentally investigated gravitationally-driven
fluidised flow down slopes and over horizontal surfaces

— Fully developed steady state
— Velocity profile

« Atwo-phase model of the motion, featuring the drag
between the phases, can not be balanced unless the shear
stresses from the solid-phase are included.

* In this experimental regime, the particles flow at high
Stokes number and so collisions dominate.

« Predictive model of unsteady motion without any fitted
parameters
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Mixtures of materials
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