

The flow of fluidised particles

Andı Centra Unive

Cal Flows

Mark Gilbertson, David Jessop

Introduction

- Granular materials are fluidised when their weight is borne by interstitial fluid.
- In a static fluidised bed
 - Gas flow is passed through a porous plate below the particles.
 - When the gas flow reaches a sufficient[®]
 rate, the vertical component of the drag
 balances the weight of the particles

Pressure drop across the bed, ΔP , increases with gas flow until minimum velocity of fluidization, u_{mf} , and then remains constant.

Particles

Gas flow

Demonstration of fluidisation (i)

Royal Instituition: Tales from the Prep Room: Making Sand Swim

Demonstration of fluidisation (ii)

• When fluidised, the granular material can no longer support relatively dense objects

Crazy fluidisers

Flowing fluidised materials

- Gas flow can support the weight of the grains
 - The flows are highly mobile
 - What determines the resistance?
- Industrial application: The dyna-slide (air-slide) is used for conveying fine particulate along gradients less than their angle of repose

Geophysical application

 Enhanced mobility of volcanic flows associated with gas release through the particulate material (Pyroclastic Flows)

O. Roche, D. C. Buesch, G. A. Valentine Nature Geophys 17 March 201

Experiments

- Particles were introduced at the end of a sloping, narrow channel (length 1m,width 1cm) at constant rates (q).
- The entire channel was fluidised with a flow rate, w_g, exceeding u_{mf.}
- Measurements were taken from video footage (+ PIV)

The effects of fluidisation

Dimensionless flow parameters

- Glass ballotini particles: Size d=350 μ m, Density ρ_s = 2.5 gcm⁻³, Geldart Class B
- Flows of depth h are characterised by 5 dimensionless groups
 - Slope S=tan θ = 10⁻¹
 - Density ratio $R = \rho_g / \rho_s = 10^{-3}$
 - Flow thickness $\delta = d/h = 10^{-2} 10^{-1}$
 - Fluidisation strength $W_g = \mu_g w_g / (\rho_s d^2 g cos \theta) = 10^{-3}$
 - Reduced Stokes number $St=\delta^2\rho_s(gsin\theta h)^{1/2}/\mu_g=10^{-1}-10$
 - Particle Reynolds Number $Re_p = \rho_f w_g d/\mu_f \sim 1$

Steady fluidised current

- Flows down slopes reach a fully developed steady-state.
- By varying the inclination of the channel, we can use the experiment as a rheometer for fluidised flows.
- Measure h as function of q and θ.

Flows over horizontal surfaces

• The currents do not attain a steady state

Experiments with different volume fluxes at source

Velocity profile

- Using high-speed video footage and PIV techniques, it is possible to measure the velocity profile.
- 3 key features:
 - Slip velocity at z=0
 - Shearing zone (~15d)
 - Plug -flow region
- Horizontal gas flow speed is approximately same as speed of solids.

Velocity profiles

Results: dependence of h

Flow depth h as a function of (i) Flux q; and (ii) Inclination θ

Effects of source flux

Faster front speeds with higher fluxes

Effects of fluidisation velocity

Faster front speeds with higher fluidisation velocities

Theoretical formulation: Drag Law

- We adopt a two-phase model and express mass & ٠ momentum (& energy) conservation for each phase.
- The key dynamical feature is the interaction between the solid and gas phases due to the imposed gas flow.
 - The vertical gas flow supports the weight of the particles.
- The Ergun equation for drag force between phases:

$$\mathbf{F}_{drag} = \begin{bmatrix} \frac{150\mu_f \phi^2}{d^2(1-\phi)^3} + \frac{1.75\rho_f \phi |\mathbf{u} - \mathbf{v}|}{d(1-\phi)^3} \end{bmatrix} (\mathbf{u} - \mathbf{v})$$
ince Re~1, the interaction force
a dominated by the linear term
$$\mathbf{F}_{drag} \equiv \beta(\mathbf{u} - \mathbf{v}) \qquad \theta$$

Theoretical model: Fully developed flow

- Particle velocity $\mathbf{v} = (v(z), 0)$, Gas velocity $\mathbf{u} = (u(z), w_{a}/(1-\phi(z)))$ •
 - Mass conservation automatically satisfied
- Normal component of momentum equation:

Fluid $\rho_g w_g \frac{\partial w}{\partial z} = -\rho_g (1-\phi)g\cos\theta - \frac{\partial p}{\partial z} + (1-\phi)\frac{4\mu_g}{3}\frac{\partial^2 w}{\partial z^2} - \mathbf{f}_{gs} \hat{\mathbf{z}}$ $0 = \rho_s \phi g \cos \theta + \frac{\partial \sigma_{zz}}{\partial z} + \mathbf{f}_{gs} \cdot \hat{\mathbf{z}}$ Solid

Interaction force between phases $\mathbf{f}_{gs} = -\phi \nabla p + \mathbf{F}_{drag}$

- Combined normal momentum balance for uniformly fluidised $\frac{\partial}{\partial z}(p-\sigma_{zz}) = -(\phi\rho_s + (1-\phi)\rho_g)g\cos\theta$ material (ϕ , w constant)
- Normal stress in solid fraction

$$\frac{\partial}{\partial (p-\sigma)} = -(\phi \rho + (1-\phi)\rho)$$

$$\frac{\partial \sigma_{zz}}{\partial z} = \phi \left(\rho_s - \rho_f \right) g \cos \theta - \frac{\beta w_g}{\left(1 - \phi \right)^2}$$

Theoretical model: Fully developed flow

• Fluid phase horizontal momentum:

$$\rho_g w_g \frac{\partial u}{\partial z} = \rho_g (1 - \phi) g \sin \theta - \beta (u - v) + \mu_g (1 - \phi) \frac{\partial^2 u}{\partial z^2}$$

• Solid phase horizontal momentum

$$0 = \rho_s \phi \sin \theta + \beta (u - v) + \frac{\partial \sigma_{xz}}{\partial z}$$

 Combined momentum equation reveals that solids' shear stress (σ_{xz}) must be non-negligible to achieve balance.

$$\rho_f w_g \frac{\partial u}{\partial z} = \left(\rho_f (1 - \phi) + \rho_s \phi\right) g \sin \theta + \mu_f (1 - \phi) \frac{\partial^2 u}{\partial z^2} + \frac{\partial \sigma_{xz}}{\partial z}$$

- Size of shear stress: $\sigma_{xz} \sim \rho_s gh$, but can not be Coulomb-like as there is no normal stress in solid phase.
- Need a rheology for fluidised material!

Kinetic theory: Granular temperature

- The Stokes number of the particle motion is large
 - Particles interact directly with each other through collisions
- Granular temperature (T) measures the average fluctuations of the particle velocity.
- Granular temperature is generated by shear in the velocity field and dissipated through inelastic collisions.
- Kinetic theory provides closures for the particle stresses

•
$$\sigma_{xz} = \rho_s dT^{1/2} f_1(\phi, e) \frac{\partial v}{\partial z}$$

$$\sigma_{zz} = \rho_s d\mathsf{T} f_2(\phi, e)$$

Granular temperature

Conservation of granular temperature expressed by

$$0 = \frac{\partial q_T}{\partial z} + \sigma_{xz} \frac{\partial v}{\partial z} - f_3(\phi, e) \frac{T^{3/2}}{d}$$

Conduction Generation Dissipation

2

• Boundary conditions:

- At base

$$u = 0$$
 $v = f_5 d \frac{\partial v}{\partial z}$ $f_4 d \frac{\partial T}{\partial z} = f_6 v^2 - f_7 T$
No slip (fluid) Slip (particles) Energy production/dissipation

- At top surface

$$\frac{\partial u}{\partial z} = 0 \qquad p - \frac{4\mu}{3} \frac{\partial w}{\partial z} = 0 \qquad (\sigma_{xz}, \sigma_{zz}) = \frac{\pi}{6} \left(\frac{\phi}{\phi_m}\right)^{2/3} \rho_s dg \qquad \frac{\partial T}{\partial z} = 0$$

No fluid stresses Small particle stresses No energy flux

Dynamical regime

- Balance between downslope acceleration and particle shear stress $\rho_f w_g \frac{\partial u}{\partial \tau} = \left(\rho_f (1-\phi) + \rho_s \phi\right) g \sin \theta + \mu_f \frac{\partial^2 u}{\partial \tau^2} \left(+ \frac{\partial \sigma_{xz}}{\partial \tau} \right)$
- Balance between production and dissipation of granular temperature $0 = \frac{\partial q_T}{\partial z} + \sigma_{xz} \frac{\partial v}{\partial z} - f_3(\phi, e) \frac{T^{3/2}}{d}$
- Velocity scale $(g \sin \theta h^3/d^2)^{1/2}$, Temperature scale $g \sin \theta h$
- Differs from non-fluidised flows: these require the solids normal stress to balance the weight $(T \sim g \cos \theta h)$.
 - For fluidised flows the temperature is lower
 - The effective viscosity is lower
 - The flows are faster more mobile.

Numerical solution

- **Boundary value** 0.9 problem (8th order) with 5 dimensionless 0.8 parameters 0.7
- Typical solutions for 0.6 different values of $W_{g_{N}}$

0.4

0.1

- Uniform volume fraction
- Negligible velocity • difference
- Linear decrease of T

Approximate solution (i)

• Away from boundaries

$$u = v$$
 $f_1 \left(\frac{\partial v}{\partial z}\right)^2 = f_3 T$

No slip between phases Balance between production and dissipation

А

Momentum balances normal and parallel to slope

$$-S\frac{\partial}{\partial z}(f_2T) = \phi - W_g \frac{f_0}{(1-\phi)^2}$$

$$\frac{\partial}{\partial z} \left((f_1 f_3)^{1/2} T \right) = -\phi$$

Normal stresses

Shear stresses

• These admit a solution with uniform volume fraction $\phi(z) = \overline{\phi}$

$$\frac{S\bar{\phi}f_2}{(f_1f_3)^{1/2}} = \bar{\phi} - W_g \frac{f_0}{(1-\bar{\phi})^2} \qquad \qquad \frac{\partial T}{\partial z} = -\frac{\bar{\phi}}{(f_1f_3)^{1/2}}$$

Approximate solution (ii): v & T

Approximate solution

• Volume flux (per unit width) carried layer

• Mobility $F(\phi)$ determined by fluidising gas flow

Comparison with data

Velocity profiles

Unsteady, developing flows (dimensional variables)

- The flows are shallow; vertical accelerations are negligible $\frac{\partial}{\partial z}(p \sigma_{zz}) = \rho_s g \cos \theta \phi$
- Dominant terms in downslope momentum balance

$$\rho_s \phi \frac{Dv}{Dt} = \rho_s \phi \operatorname{gsin} \theta - \frac{\partial p}{\partial x} + \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xz}}{\partial z}$$

• In depth-integrated form ($\sigma_{xx}=\sigma_{zz}$)

 $\rho_s \frac{\partial}{\partial t} \int_0^h \phi v \, dz + \rho_s \frac{\partial}{\partial x} \int_0^h \phi v^2 \, dz = \rho_s g \sin \theta \int_0^h \phi \, dz + \int_0^h - \frac{\partial p}{\partial x} + \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xz}}{\partial z} \, dz$

• Magnitude of inertial to 'viscous' terms $\frac{h\rho_s v^2}{L\sigma_{xz}} \sim \frac{h^3}{f(\phi)Ld^2}$

Depth-averaged model

- Volume fraction, ϕ , determined by W_g
- Expressions for height of flow, *h(x,t)*, and depth-averaged velocity, *v(x,t)*

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(hv) = 0$$
$$\frac{\partial}{\partial t}(hv) + \frac{\partial}{\partial x}(hv^2) + \frac{g\cos\theta}{2}\frac{\partial}{\partial x}(h^2) = g\sin\theta h - F(\phi)d^2\left(\frac{2v}{5h}\right)^2$$
$$\phi hv = q \text{ at } x = 0$$

- Seek travelling wave solution, h(x,t)=H(x-ct), v(x,t)=V(x-ct)
- Find that h(x,t) and v(x,t) uniform throughout most of the domain and the front speed given by $g \sin \theta h = F(\phi) d^2 \frac{4v^2}{25h^2}$

Unsteady, developing flows: down slopes

 After initial transients, flow attains steady balance between downslope acceleration = basal drag

Downslope flow: theory vs data

• Dimensional $x_f = \left(\frac{4}{25} \frac{q^3 g \sin \theta F^2}{d^2 \phi^3}\right)^{1/5} t$

8

Unsteady flows on horizontal surfaces

- Flows are slower and decelerate along channel
- Shear is localised to small basal region, with much larger plug-flow region.
- Height profiles at successive times

 Resistive stress due to side walls not base

Horizontal flows with side-wall drag

- Flows length (L) >> Flow depth (h) >> Flow width (B)
- Grains are supported by fluid drag
- Fluid pressure is hydrostatic
- Horizontal pressure gradients drive the motion and are resisted by cross-stream stresses.

$$\rho_s \phi \frac{Dv}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y}$$

 When inertia negligible and granular temperature determined by local balance of production and dissipation

$$Q = \int \phi \rho_s v \, dz \, dy = \frac{2h}{5} \left(\frac{\phi^6 f_1^3}{f_3}\right)^{1/2} \left(\frac{B^5 g \sin \theta}{8d^2}\right)^{1/2} \left(-\frac{\partial h}{\partial x}\right)^{1/2}$$

Horizontal motion: similarity solution

- Mass conservation $B\phi \frac{\partial h}{\partial t} + \frac{\partial Q}{\partial x} = 0$ subject to $Q(0,t) = Q_0$
- Dimensionless variables:
 scale h & x by H and t by \u03c6H²B/Q₀

$$H = \frac{Q_0 d}{(gB^5)^{1/2} F \bar{\phi}}$$

Governing equation

$$\frac{\partial h}{\partial t} = \frac{1}{5\sqrt{2}} \frac{\partial}{\partial x} \left(h \left(-\frac{\partial h}{\partial x} \right)^{1/2} \right), \text{ subject to } h \left(-\frac{\partial h}{\partial x} \right)^{1/2} = 5\sqrt{2} \text{ at } x = 0$$

- Similarity solution: gearing between x & t: h/t~ (h/x)^{3/2} and h^{3/2}~x^{1/2}
- x ~t^{3/4} and h~ t^{1/4}

Similarity solution

 Dimensionless Solution: (Numerical solution of ODE with boundary conditions)

$$x_f(t) = Kt^{3/4}$$
$$h(x,t) = t^{1/4} \Psi\left(\frac{x}{x_f}\right)$$

• K=0.5434

Horizontal motion: theory and experiment

Conclusions

- We have experimentally investigated gravitationally-driven fluidised flow down slopes and over horizontal surfaces
 - Fully developed steady state
 - Velocity profile
- A two-phase model of the motion, featuring the drag between the phases, can not be balanced unless the shear stresses from the solid-phase are included.
- In this experimental regime, the particles flow at high Stokes number and so collisions dominate.
- Predictive model of unsteady motion without any fitted parameters

Mixtures of materials

