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Introduction
• Granular materials are fluidised when their weight is borne 

by interstitial fluid.

• In a  static fluidised bed

– Gas flow is passed through a porous

plate below the particles.

– When the gas flow reaches a sufficient

rate, the vertical component of the drag

balances the weight of the particles
Gas flow

Particles

DP

UUmf

Pressure drop across the 

bed, DP, increases with gas 

flow until minimum velocity 

of fluidization,umf, and then 

remains constant.



Demonstration of fluidisation (i)

Royal Instituition:Tales from the Prep Room: Making Sand Swim



Demonstration of fluidisation (ii)

• When fluidised, the granular material can no longer 

support relatively dense objects 



Crazy fluidisers



Flowing fluidised materials

• Gas flow can support the weight of the grains

– The flows are highly mobile

– What determines the resistance?

• Industrial application:

The dyna-slide (air-slide) is used for conveying fine 

particulate along gradients less than their angle of repose



Geophysical application

• Enhanced mobility of volcanic flows associated with gas 

release through the particulate material (Pyroclastic 

Flows)

O. Roche, D. C. Buesch, G. A. Valentine Nature Geophys.17 March 2016



Experiments

q

g

q• Particles were introduced at 

the end of a sloping, narrow 

channel  (length 1m,width 

1cm) at constant rates (q). 

• The entire channel was 

fluidised with a flow rate, wg, 

exceeding umf.

• Measurements were taken 

from video footage (+ PIV)



The effects of fluidisation



Dimensionless flow parameters

• Glass ballotini particles: Size d=350mm, Density rs= 2.5 

gcm-3, Geldart Class B

• Flows of depth h are characterised by 5 dimensionless 

groups

– Slope S=tanq = 10-1

– Density ratio R=rg/rs=10-3

– Flow thickness d=d/h=10-2-10-1

– Fluidisation strength Wg=mgwg/(rsd
2gcosq)=10-3

– Reduced Stokes number St=d2rs(gsinqh)1/2/mg=10-1-10

– Particle Reynolds Number Rep=rfwgd/mf~1



Steady fluidised current

• Flows down slopes 

reach a fully developed 

steady-state.

• By varying the 

inclination of the 

channel, we can use 

the experiment as a

rheometer for fluidised 

flows.

• Measure h as function 

of q and q.



Flows over horizontal surfaces

• The currents do not attain a steady state

Experiments 

with different 

volume 

fluxes at 

source



Velocity profile

• Using high-speed video 

footage and PIV 

techniques, it is possible 

to measure the velocity 

profile.

• 3 key features:

– Slip velocity at z=0

– Shearing zone (~15d)

– Plug –flow region

• Horizontal gas flow speed 

is approximately same as 

speed of solids.

Results for steady flows down 10o

& 15o inclines for various fluxes



Velocity profiles

Close to the top surface 

there are large 

fluctuations in the 

measured velocity.



Results: dependence of h

Flow depth h as a function of (i) Flux q; and (ii) Inclination q



Effects of source flux

Faster front speeds with higher fluxes



Effects of fluidisation velocity

Faster front speeds with higher fluidisation velocities



Theoretical formulation: Drag Law

• We adopt a two-phase model and express mass & 

momentum (& energy) conservation for each phase.

• The key dynamical feature is the interaction between the 

solid and gas phases due to the imposed gas flow.

– The vertical gas flow supports the weight of the particles.

• The Ergun equation for drag force between phases:
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Theoretical model: Fully developed flow

• Particle velocity v=(v(z),0), Gas velocity u=(u(z),wg/(1-z))

– Mass conservation automatically satisfied

• Normal component of momentum equation:

• Combined normal momentum 

balance for uniformly fluidised 

material (, w constant)

• Normal stress in solid fraction

    zf ˆ.
3

4
1cos1

2

2

gs

g

ggg
z

w

z

p
g

z

w
w -




-




---=



 m
qrr

zf

.cos0 gs

zz
s

z
g 




=


qr

Fluid

Solid

draggs p Ff -= Interaction force between phases

     qrr cos1 gp
z

gszz --=-




 
 2
1

cos



qrr



-
--=



 g

fs
zz

w
g

z



Theoretical model: Fully developed flow

• Fluid phase horizontal momentum:

• Solid phase horizontal momentum

• Combined momentum equation reveals that solids’ shear 

stress (xz) must be non-negligible to achieve balance.

– Size of shear stress: xz ~ rsgh, but can not be 

Coulomb-like as there is no normal stress in solid phase.

• Need a rheology for fluidised material!
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Kinetic theory: Granular temperature

• The Stokes number of the particle motion is large

– Particles interact directly with each other through collisions

• Granular temperature (T) measures the average fluctuations 

of the particle velocity. 

• Granular temperature is generated by shear in the velocity 

field and dissipated through inelastic collisions.

• Kinetic theory provides closures for the particle stresses

• 𝜎𝑥𝑧 = 𝜌𝑠𝑑𝑇
1/2𝑓1(𝜙, 𝑒)

𝜕𝑣

𝜕𝑧
𝜎𝑧𝑧 = 𝜌𝑠𝑑T𝑓2(𝜙, 𝑒)



Granular temperature 

• Conservation of granular temperature expressed by

0 =
𝜕𝑞𝑇
𝜕𝑧
+ 𝜎𝑥𝑧

𝜕𝑣

𝜕𝑧
− 𝑓3(𝜙, 𝑒)

𝑇3/2

𝑑

• Boundary conditions:

– At base

– At top surface

Conduction Generation Dissipation 

𝑢 = 0 𝑣 = 𝑓5𝑑
𝜕𝑣

𝜕𝑧
𝑓4𝑑
𝜕𝑇

𝜕𝑧
= 𝑓6𝑣

2 − 𝑓7𝑇

No slip (fluid) Slip (particles) Energy production/dissipation

𝜕𝑢

𝜕𝑧
= 0 𝑝 −

4𝜇

3

𝜕𝑤

𝜕𝑧
= 0

𝜕𝑇

𝜕𝑧
= 0𝜎𝑥𝑧 , 𝜎𝑧𝑧 =

𝜋
6

𝜙

𝜙𝑚

2/3

𝜌𝑠𝑑𝒈

No fluid stresses Small particle stresses No energy flux 



Dynamical regime
• Balance between downslope acceleration and particle shear 

stress

• Balance between production and dissipation of granular 

temperature

• Velocity scale 𝑔 sin 𝜃 ℎ3/𝑑2 1/2 ,Temperature scale 𝑔 sin 𝜃 ℎ

• Differs from non-fluidised flows: these require the solids 

normal stress to balance the weight (T~ 𝑔 cos 𝜃 ℎ).

– For fluidised flows the temperature is lower

– The effective viscosity is lower

– The flows are faster more mobile.

  
zz

u
g

z

u
w xz

fsfgf








-=



 
mqrrr

2

2

sin1

0 =
𝜕𝑞𝑇
𝜕𝑧
+ 𝜎𝑥𝑧

𝜕𝑣

𝜕𝑧
− 𝑓3(𝜙, 𝑒)

𝑇3/2

𝑑



Numerical solution

• Boundary value 

problem (8th order) 

with 5 dimensionless 

parameters

• Typical solutions for 

different values of Wg

• Uniform volume 

fraction

• Negligible velocity 

difference

• Linear decrease of T



Approximate solution (i)

• Away from boundaries

• Momentum balances normal and parallel to slope

• These admit a solution with uniform volume fraction𝜙(𝑧) =  𝜙

𝑆  𝜙𝑓2
𝑓1𝑓3

1/2
=  𝜙 −𝑊𝑔

𝑓0

1 −  𝜙 2

𝜕𝑇

𝜕𝑧
= −

 𝜙

𝑓1𝑓3
1/2

𝑢 = 𝑣 𝑓1
𝜕𝑣

𝜕𝑧

2

= 𝑓3𝑇

No slip between phases Balance between production and dissipation

−𝑆
𝜕

𝜕𝑧
𝑓2𝑇 = 𝜙 −𝑊𝑔

𝑓0
1 − 𝜙 2

𝜕

𝜕𝑧
𝑓1𝑓3

1/2𝑇 = −𝜙

Normal stresses Shear stresses



Approximate solution (ii): v & T

• Temperature and Velocity

• Volume flux of particles 

𝑇 = −
 𝜙

𝑓1𝑓3
1/2

1 − 𝑧 𝑣 =
 𝜙2𝑓3

𝑓1
3

1/4
2

3
1 − 1 − 𝑧 3/2

𝑞 =  
0

ℎ

 𝜙𝑣𝑑𝑧 =
2

5

 𝜙6𝑓3

𝑓1
3

1/4

Numerical and 

asymptotic 

solutions

𝑞 =
2

5

 𝜙6𝑓3

𝑓1
3

1/4
ℎ5𝑔 sin 𝜃

𝑑2

1/2
Dimensional form



Approximate solution

• Volume flux (per unit width) carried layer

• Mobility F() determined by fluidising gas flow

𝑞 =
2

5

 𝜙6𝑓3

𝑓1
3

1/4
ℎ5𝑔 sin 𝜃

𝑑2

1/2

Bagnold scalingMobility

F()



Comparison with data



Velocity profiles

Wg=8.09 10

e=0.75-4



Unsteady, developing flows (dimensional variables)

• The flows are shallow; vertical accelerations are negligible

• Dominant terms in downslope momentum balance

• In depth-integrated form (xx=zz)

• Magnitude of inertial to ‘viscous’ terms 
ℎ𝜌𝑠𝑣

2

𝐿𝜎𝑥𝑧
~

ℎ3

𝑓(𝜙)𝐿𝑑2

𝜕

𝜕𝑧
𝑝 − 𝜎𝑧𝑧 = 𝜌𝑠𝑔 cos 𝜃 𝜙

𝜌𝑠 𝜙
𝐷𝑣

𝐷𝑡
= 𝜌𝑠𝜙 g sin𝜃 −

𝜕𝑝

𝜕𝑥
+
𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜎𝑥𝑧
𝜕𝑧

𝜌𝑠
𝜕

𝜕𝑡
 0
ℎ
𝜙𝑣 𝑑𝑧 + 𝜌𝑠

𝜕

𝜕𝑥
 0
ℎ
𝜙𝑣2 𝑑𝑧= 𝜌𝑠g sin𝜃  0

ℎ
𝜙 𝑑𝑧 +  0

ℎ
−
𝜕𝑝

𝜕𝑥
+
𝜕𝜎𝑥𝑥

𝜕𝑥
+
𝜕𝜎𝑥𝑧

𝜕𝑧
𝑑𝑧



Depth-averaged model

• Volume fraction, , determined by Wg

• Expressions for height of flow, h(x,t), and depth-averaged 

velocity, v(x,t)

• Seek travelling wave solution, h(x,t)=H(x- ct), v(x,t)=V(x- ct)

• Find that h(x,t) and v(x,t) uniform throughout most of the 

domain and the front speed given by g sin 𝜃ℎ = 𝐹(𝜙)𝑑2
4𝑣2

25ℎ2

𝜕

𝜕𝑡
ℎ𝑣 +

𝜕

𝜕𝑥
ℎ𝑣2 +

𝑔 cos 𝜃

2

𝜕

𝜕𝑥
ℎ2 = g sin𝜃ℎ − 𝐹 𝜙 𝑑2

2𝑣

5ℎ

2

𝜕ℎ

𝜕𝑡
+
𝜕

𝜕𝑥
ℎ𝑣 = 0

𝜙ℎ𝑣 = 𝑞 𝑎𝑡 𝑥 = 0



Unsteady, developing flows: down slopes

• After initial transients, flow attains steady balance between

downslope acceleration = basal drag



Downslope flow: theory vs data

• Dimensional 𝑥𝑓 =
4

25

𝑞3𝑔 sin 𝜃𝐹2

𝑑2𝜙3

1/5

𝑡

Theory



Unsteady flows on horizontal surfaces

• Flows are slower and decelerate along channel

• Shear is localised to small basal region, with much larger 

plug-flow region.

• Height profiles at

successive times

• Resistive stress due to

side walls not base



Horizontal flows with side-wall drag

• Flows length (L) >> Flow depth (h)  >>Flow width (B)

• Grains are supported by fluid drag

• Fluid pressure is hydrostatic

• Horizontal pressure gradients drive the motion and are 

resisted by cross-stream stresses.

• When inertia negligible and granular temperature 

determined by local balance of production and dissipation

𝜌𝑠 𝜙
𝐷𝑣

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+
𝜕𝜎𝑥𝑦

𝜕𝑦

𝑄 =  𝜙𝜌𝑠𝑣 𝑑𝑧𝑑𝑦 =
2ℎ

5

𝜙6 𝑓1
3

𝑓3

1/2
𝐵5𝑔 sin 𝜃

8𝑑2

1/2

−
𝜕ℎ

𝜕𝑥

1/2



Horizontal motion: similarity solution

• Mass conservation

• Dimensionless variables: 

scale h & x by H and t by H2B/Q0

• Governing equation

𝜕ℎ

𝜕𝑡
=

1

5 2

𝜕

𝜕𝑥
ℎ −

𝜕ℎ

𝜕𝑥

1/2
, 

• Similarity solution: 

gearing between x & t: h/t~ (h/x)3/2 and h3/2~x1/2 

• x ~t3/4 and h~ t1/4

𝐵𝜙
𝜕ℎ

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0

𝑄 0, 𝑡 = 𝑄0subject to

𝐻 =
𝑄0𝑑

𝑔𝐵5 1/2𝐹  𝜙

subject to ℎ −
𝜕ℎ

𝜕𝑥

1/2
= 5 2 at x=0



Similarity solution

• Dimensionless Solution:

(Numerical solution of 

ODE with boundary 

conditions)

• K=0.5434

𝑥𝑓 𝑡 = 𝐾𝑡
3/4

ℎ 𝑥, 𝑡 = 𝑡1/4Ψ
𝑥

𝑥𝑓

Y

x/xf(t)



Horizontal motion: theory and experiment 

x/xf(t)

Yx/xf(t))



Horizontal motion: theory and experiment 

t

xf(t)



Conclusions
• We have experimentally investigated gravitationally-driven 

fluidised flow down slopes and over horizontal surfaces

– Fully developed steady state 

– Velocity profile

• A two-phase model of the motion, featuring the drag 

between the phases, can not be balanced unless the shear 

stresses from the solid-phase are included.

• In this experimental regime, the particles flow at high 

Stokes number and so collisions dominate.

• Predictive model of unsteady motion without any fitted 

parameters



Mixtures of materials


