Saturation Times in a Two-Phase Continuum Theory for Windblown Sand

Jim Jenkins Civil and Environmental Engineering Cornell University

Alexandre Valance Institut de Physique de Rennes Université de Rennes 1

For saltating particles in a uniform turbulent shearing flow, determine the time to restore a steady state after a change in wind speed.

Aeolian Transport

Two-phase, turbulent flow

Friction velocity / Shields parameter $\hat{u}^* \equiv (\hat{S}_H / \hat{\rho}^f)^{1/2}$ $S^* \equiv \hat{S}_H / (\hat{\rho}^s \hat{g} \hat{d})$ Air drag: $\hat{C} \hat{U} - \hat{u}$ $\hat{D} \equiv \frac{3}{10} \frac{\hat{\rho}^f}{\hat{d}} [(\hat{U} - \hat{u})^2 + 3\hat{T}]^{1/2} + \frac{18\hat{\mu}^f}{\hat{d}^2}$

Continuum Theory

Particle horizontal momentum

$$0 = \frac{\mathrm{ds}}{\mathrm{dy}} + \frac{\mathrm{cD}}{\mathrm{\sigma}}(\mathrm{U} - \mathrm{u})$$

Particle vertical momentum:

$$0 = -\frac{\mathrm{d}p}{\mathrm{d}y} - \mathrm{c}$$

Particle fluctuation energy

$$0 = -\frac{\mathrm{dq}}{\mathrm{dy}} + \mathrm{su'} - \gamma$$

Particle pressure

p = cT

Particle shear stress

?

Particle energy flux

Continuum Theory

Single particle trajectories without vertical drag

Upward:
$$\xi'_{y} \frac{d\xi'_{x}}{dy} = D(U - \xi'_{x})$$

Downward: $\xi'_{y} \frac{d\xi_{x}}{dy} = -D(U - \xi_{x})$

Multiply by c, sum, and average

$$c\overline{\xi_{y}^{\prime 2}} \frac{d}{dy} (\xi_{x}^{\prime} + \xi_{x}) = c\overline{D\xi_{y}^{\prime}(\xi_{x}^{\prime} - \xi_{x})}$$

$$2u \equiv (\overline{\xi_{x}^{\prime} + \xi_{x}})$$

$$p \equiv c\overline{\xi_{y}^{\prime 2}} = cT \quad 2s \equiv c\overline{\xi_{y}^{\prime}(\xi_{x}^{\prime} - \xi_{x})}$$

$$p\frac{du}{dy} = \alpha Ds$$

$$2q \equiv c\overline{\xi_{y}^{\prime} [(\xi_{x}^{\prime} - u)^{2} + \xi_{y}^{\prime 2}]} + c\overline{\xi_{y} [(\xi_{x} - u)^{2} + \xi_{y}^{2}]}$$

$$= c [\overline{\xi_{y}^{\prime}(\xi_{x}^{\prime} - \xi_{x})(\xi_{x}^{\prime} + \xi_{x})}/2 - \overline{\xi_{y}^{\prime}(\xi_{x}^{\prime} - \xi_{x})u}]$$

$$q = 0$$

Splash

Beladjine, et al. Phys. Rev. E 75, 061305 (2007)

Momentum of rebounding particles

$$\overline{\boldsymbol{\xi}'} = \mathbf{e}(\boldsymbol{\xi})\boldsymbol{\xi} = (0.87 - 0.72\sin\theta)\boldsymbol{\xi}$$
$$\overline{\boldsymbol{\xi}'}_{y} = \mathbf{e}(\boldsymbol{\xi})|\boldsymbol{\xi}_{y}| = \left(\frac{0.30}{\sin\theta} - 0.15\right)|\boldsymbol{\xi}_{y}|$$

Total number N of particles

$$N(\xi) = \begin{cases} 1+13(1-e^2)\left(\frac{\xi}{40}-1\right), & \text{if } \xi > 40\\ 1, & \text{if } 1 \le \xi \le 40\\ 0, & \text{if } \xi < 1 \end{cases}$$

Velocity distribution function

$$f(\xi) = \frac{n_0}{2\pi T_0} \exp\left[\frac{-(\xi_x - u_0)^2 - \xi_y^2}{2T_0}\right]$$

$$\left(c_{0}=\pi n_{0} / 6\right)$$

Mass flux

$$\dot{\mathbf{m}} = \int_{\xi_{y} \le 0} (\mathbf{N} - 1) \xi_{y} \mathbf{f}(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

$$= \frac{13}{2\pi} \frac{\mathbf{n}_{0} T_{0}^{2}}{\mathbf{u}_{0} (40 - \mathbf{u}_{0})^{2}} \left[0.24 + 0.63 \left(\frac{\pi T_{0}}{20 \mathbf{u}_{0}} \right)^{1/2} \right] e^{\frac{-(40 - \mathbf{u}_{0})^{2}}{2T_{0}}}$$

$$- \frac{74\sqrt{2}}{\pi} \frac{\mathbf{n}_{0}}{T_{0}} e^{\frac{-\mathbf{u}_{0}^{2}}{2T_{0}}}$$

Momentum flux

$$\dot{\mathbf{M}} = -\frac{\pi}{6} \int_{\xi_y \le 0} (\overline{\xi}' - \xi) \xi_y f(\xi) d\xi$$
$$\dot{\mathbf{M}}_x = \mathbf{c}_0 \mathbf{T}_0 \left(0.35 + 0.07 \frac{\mathbf{u}_0}{\mathbf{T}_0^{1/2}} - 0.33 \frac{\mathbf{T}_0^{1/2}}{\mathbf{u}_0} \right)$$
$$\dot{\mathbf{M}}_y = \mathbf{c}_0 \mathbf{T}_0 \left[0.12 \left(\frac{\mathbf{u}_0}{\mathbf{T}_0^{1/2}} + \frac{\mathbf{T}_0^{1/2}}{\mathbf{u}_0} \right) - 0.08 \right] + \frac{\mathbf{c}_0 \mathbf{T}_0}{2}$$

With
$$\dot{M}_y = p = c_0 T_0$$
, $\frac{u_0}{T_0^{1/2}} = 4.6$

Boundary-Value Problem

Steady, uniform flow: $\dot{m} = 0$ $u_0 = 21.7, T_0 = 22.3 \text{ and } s_0 \equiv \dot{M}_x = 0.6c_0T_0$ $\frac{dc}{dv} = -\frac{c}{T_c}$ $\frac{du}{dv} = 20D\frac{s}{p} \qquad D = \frac{0.3}{\sigma} \left[(U-u)^2 + 3T_0 \right]^{1/2} + \frac{18.3}{\sigma R}$ $\frac{ds}{dv} = -cD(U-u) \qquad \sigma = \frac{\rho^s}{\rho^f} \qquad R = \frac{d(gd)^{1/2}}{\mu^f/\rho^f}$ $\frac{\mathrm{dU}}{\mathrm{dy}} = \frac{\left[(\mathbf{S}^* - \mathbf{s})\boldsymbol{\sigma}\right]^{1/2}}{\kappa(\mathbf{y} + \mathbf{v}_{\mathrm{s}})}$

 $y = 0: u_0 = 21.7, T_0 = 22.3, s = 0.6c_0T_0, U = 0$ y = H: s = 0 cu = 0.001 Parameters: c_0, H

Predicted Profiles

Concentration

Predicted Profiles

Velocities

Particle Shear Stress Continuum versus discrete simulation

Uniform, Unsteady

Phrase an initial-boundary-value problem to describe the adjustment of an initially steady flow to an abrupt change in wind speed.

Shear stress $s_0 = 0.6c_0T_0$

Expand about $u_0^0 = 21.7$, at which $v_0 = 0$.

Then

 $\mathbf{v}_{0} \doteq \beta_{0} (\mathbf{u}_{0} - \mathbf{u}_{0}^{0}), \qquad \beta_{0} = 1.35 \times 10^{-4}$

Uniform, Unsteady (saturation time) $c\frac{\partial u}{\partial t} = -cv\frac{\partial u}{\partial v} + \frac{\partial s}{\partial v} + c\frac{D}{\sigma}(U-u)$ $s = \frac{\sigma p}{\sigma D}\frac{\partial u}{\partial v}$ $c\frac{\partial v}{\partial t} = -cv\frac{\partial v}{\partial v} + \frac{\partial}{\partial v}(-p+b) - c\frac{D}{\sigma}v - c \ b = \frac{\sigma p}{D}\frac{\partial v}{\partial v}$ $\frac{\partial c}{\partial t} = -c\frac{\partial v}{\partial v} - v\frac{\partial c}{\partial v} + \varepsilon\frac{\partial}{\partial v}\left(\frac{\partial c}{\partial v} - \frac{c}{T}\right)$ p = cT $\frac{\partial U}{\partial t} = \sigma \frac{\partial S}{\partial v} - cD(U - u) \qquad S = \frac{1}{\sigma} \left| \kappa \left(y + y_0 \right) \frac{\partial U}{\partial v} \right|^2$ $\sigma = \frac{\rho^{s}}{\rho^{f}}, D = 0.3 \left[\left(U - u \right)^{2} + v^{2} \right]^{1/2} + \frac{18.3}{Re}, Re = \frac{d(gd)^{1/2}}{U/2}$ y = 0: s = 0.6cT, U = 0, v = $\beta(u - u^0)$, $\frac{\partial c}{\partial v} = -\frac{c}{T}$

$$T = (u / 4.6)^2 \quad \beta = 1.35 \times 10^{-4}$$

y = H: s = 0, S = S^{*0} + S^{*'}, b = 0,
$$\frac{\partial c}{\partial y} = -\frac{c}{T}$$

t = 0: steady solution $c^0(y)$, $u^0(y)$, $v^0 \equiv 0$, $U^0(y)$.

Linearize about the steady solution: $S^{*'} / S_0^{*} << 1$

$$\begin{aligned} \mathbf{c}^{0} \frac{\partial \mathbf{u}'}{\partial t} &= -\mathbf{c}^{0} \mathbf{v}' \frac{\partial \mathbf{u}^{0}}{\partial \mathbf{y}} + \frac{\partial \mathbf{s}'}{\partial \mathbf{y}} + \mathbf{c}' \frac{\mathbf{D}^{0}}{\sigma} (\mathbf{U}^{0} - \mathbf{u}^{0}) \\ &+ \mathbf{c}^{0} \frac{\mathbf{D}'}{\sigma} (\mathbf{U}^{0} - \mathbf{u}^{0}) + \mathbf{c}^{0} \frac{\mathbf{D}^{0}}{\sigma} (\mathbf{U}' - \mathbf{u}') \\ \mathbf{s}' &= \frac{\mathbf{T}^{0}_{0}}{\alpha \mathbf{D}^{0}} \left(-\mathbf{D}' \frac{\mathbf{c}^{0}}{\mathbf{D}^{0}} \frac{\partial \mathbf{u}^{0}}{\partial \mathbf{y}} + \mathbf{c}' \frac{\partial \mathbf{u}^{0}}{\partial \mathbf{y}} + \mathbf{c}^{0} \frac{\partial \mathbf{u}'}{\partial \mathbf{y}} + \frac{2\mathbf{c}^{0}}{\mathbf{u}_{0}^{0}} \mathbf{u}'_{0} \right) \\ \mathbf{D}^{0} &= 0.3 \left| \mathbf{U}^{0} - \mathbf{u}^{0} \right| + \frac{18.3}{R} \mathbf{D}' = 0.3 \left| \mathbf{U}' - \mathbf{u}' \right| \\ \mathbf{c}^{0} \frac{\partial \mathbf{v}'}{\partial t} &= \frac{\partial}{\partial \mathbf{y}} \left(-\mathbf{p}' + \mathbf{b}' \right) - \mathbf{c}^{0} \frac{\mathbf{D}^{0}}{\sigma} \mathbf{v}' - \mathbf{c}' \mathbf{p}' = \mathbf{T}^{0}_{0} \left(\mathbf{c}' + \frac{2\mathbf{c}^{0}}{\mathbf{u}_{0}^{0}} \mathbf{u}'_{0} \right) \\ \frac{\partial \mathbf{c}'}{\partial \mathbf{t}} &= -\mathbf{c}^{0} \frac{\partial \mathbf{v}'}{\partial \mathbf{y}} - \mathbf{v}' \frac{\partial \mathbf{c}^{0}}{\partial \mathbf{y}} + \epsilon \left(\frac{\partial \mathbf{c}'}{\partial \mathbf{y}} - \frac{\mathbf{c}'}{\mathbf{T}^{0}_{0}} \right) \mathbf{b}' = \frac{\sigma \mathbf{c}^{0} \mathbf{T}^{0}_{0}}{\mathbf{D}^{0}} \frac{\partial \mathbf{v}'}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{U}'}{\partial \mathbf{t}} &= \sigma \frac{\partial \mathbf{S}'}{\partial \mathbf{y}} - \mathbf{c}' \mathbf{D}^{0} (\mathbf{U}^{0} - \mathbf{u}^{0}) - \mathbf{c}^{0} \mathbf{D}' (\mathbf{U}^{0} - \mathbf{u}^{0}) \\ -\mathbf{c}^{0} \mathbf{D}^{0} (\mathbf{U}' - \mathbf{u}') \\ \mathbf{S}' &= \frac{2 \left[\kappa \left(\mathbf{y} + \mathbf{y}_{0} \right) \right]^{2}}{\sigma} \frac{\partial \mathbf{U}^{0}}{\partial \mathbf{y}} \frac{\partial \mathbf{U}'}{\partial \mathbf{y}} \frac{\partial \mathbf{U}'}{\partial \mathbf{y}} \end{aligned}$$

Take $S_0^* = 0.05$.

Boundary conditions

$$y = 0$$
: $s' = 0.6c'T$, $U' = 0$, $v' = \beta u'$, $\frac{\partial c'}{\partial y} = -\frac{c'}{T}$

y = H: s' = 0,
$$S^{*'} = 0.005, b' = 0, \frac{\partial c'}{\partial y} = -\frac{c'}{T}$$

Initial conditions

$$t = 0$$
: $u' \equiv 0$, $v' \equiv 0$, $U' \equiv 0$, $c' \equiv 0$, $S^* = S^{*'}$

Dimensional parameters
cgs

$$d = 0.025$$
, $g = 980$, $\mu_f / \rho_f = 0.15$

Dimensionless parameters $u_0^0 = 21.7, T^0 = 22.3, \sigma = 2200, \alpha = 20$ $H = 101, \kappa = 0.41, \epsilon = 0.01, \beta = 1.35 \times 10^{-4}$

Solve the system using Matlab "pdepe".

B. Andreotti, P. Claudin, O. Pouliquen, Geomorphology 123, 343-348 (2010)

What's been done?

A two-phase continuum theory for saltation, which can also accommodates turbulent and collisional suspension, has been formulated.

The theory permits boundary-value problems to be phrased and solved for steady, uniform flows and initial-boundary-value problems to be phrased and solved both for unsteady, uniform flows and steady, developing flows.

The solutions reproduce the distributions and feature of flows seen in laboratory flows, including the characteristic times for the adjustment of the different mechanisms of suspension to changes in conditions.

At least one of these adjustments occurs in a nonmonotone way.