Velocity pulsations in continuous turbidity currents: observations from the field, laboratory experiments and Direct Numerical Simulation

Ray Kostaschuk, Simon Fraser University

SIMON FRASER UNIVERS

Two-Phase Continuum Models for Geophysical Particle-Fluid Flows

Geoflo13: Lillooet Lake

Geoflo16: Lillooet Lake + Xiaolangdi Reservoir + DNS + lab + linear stability analysis

A global collaboration..

Turbidity currents

• Gravity current driven by a density difference caused by suspended sediment

Research Objectives

- Primary objective: to examine the cause(s) of pulsing in continuous, natural turbidity currents in the field using laboratory experiments, numerical simulations and linear stability analysis of stratified shear flows
- Stratified shear layer instability: large-amplitude, wave-like structures such as Kelvin–Helmholtz (KH) (Brown and Roshko, 1974), Holmboe (H) (Smyth and Winters, 2003; Smyth et al., 2007) and Taylor-Caulfield (TC) (Taylor, 1931; Caulfield et al., 1995; Carpenter et al., 2013; Guha and Lawrence, 2014).

Field Methods

 Transects and time series: velocity, temperature, suspended sediment concentration and particle size in Lillooet Lake and Xiaolangdi Reservoir

Field Results

Laboratory Methods

- Saline gravity current experiments: 6 m long open glass-wall tank with an internal channel
- Velocity: Particle Imaging Velocimetry (PIV)

Based on Negretti et al. (submitted to JFM)

Laboratory Results

DNS Methods

- Software TURBINS (e.g., Nasr-Azadani and Meiburg, 2014): direct numerical simulations (DNS) of continuous two-dimensional gravity and turbidity currents
- Simulations: combination of straight and segmented bed slopes; gravity and turbidity currents with settling velocities consistent with sand (150µm) and silt-clay (30µm)
- This study: gravity currents similar to silt-clay turbidity currents and saline gravity currents

DNS Results

Linear Stability Analysis

 Linear stability analysis: evolution of stratified shear layers is based on the Taylor-Goldstein (TG) equation (e.g., Lawrence et al., 2013):

$$w'' + \left[\frac{N^2}{(U-c)^2} - \frac{U''}{U-c} - k^2\right]w = 0$$

- Analytical solutions: possible assuming piecewise velocity and density profiles
- Velocity and density profiles: expressed nondimensionally by the bulk Richardson Number (J), wave number (α), and the scale ratio (R) of shear layer thickness to density layer thickness

Linear Stability Analysis

Based on: Lawrence et al. (1991, 2013), Negretti et al. (2008), Khavasi et al. (2013)

Velocity and Density Profiles

R = 0.8

R = 1

R = 0.6(?)

Stratified Shear Layer Instabilities

Kelvin-Helmholtz

- Two vorticity waves
- Overturning billows

Holmboe

- Vorticity and gravity waves
- Positive and negative cusps
- Taylor-Caulfield
 - Two gravity waves
 - Intermediate density layer

Wavelet Analysis

DNS

Xiaolangdi Reservoir

Stability diagrams

Horizontal flow: $\theta = 0$

Based on: Lawrence et al. (1991, 2013)

Based on: Guha and Lawrence (2014)

Stability diagrams

Inclined flow: $\theta > 0$

Based on: Khavasi et al. (2013)

Based on: Negretti et al. (2008)

Conclusions

Causes of velocity pulsing

- Laboratory and DNS currents: KH instability
- Stability analysis for horizontal flow: KH, H and TC instabilities
- Stability analysis for inclined flow: primarily KH instability, H and TC instabilities at large values of bulk Richardson number?

Continuous turbidity currents

 Caulfield et al. (1995): "all three instabilities (KH, H, TC) can be observed simultaneously at markedly different wavelengths and phase speeds for extended periods of time, even though linear theory may predict significantly different growth rates"

Danke!