Two-Phase Continuum Models for Geophysical Particle-Fluid Flows

Seminar: 21 March - 15 April 2016

Sediment gravity flows in Quesnel Lake caused by the catastrophic Mount Polley mine tailings dam failure

> Ray Kostaschuk Simon Fraser University

Outline

- The Tailings Dam Failure and Subaerial Debris Flows in Hazeltine Creek
- Subaqueous Gravity Flows in Quesnel Lake
- Erosion by Subaqueous Debris Flows in Quesnel Lake
 - Preliminary Results From the Iverson (2012)
 Entrainment Model
- Geoflo19: Modelling Debris Flow Deposition in Quesnel Lake

Date	Location	Parent company	One type	Type of Incident	Release	Impacts
2005, Nov. 21	Hpakant, Kachin state, Myanmar	7	jade	waste heap failure	1	at least 113-people killed
2015, Nov. 5	Germano mine, Bento Rodrigues, distrito de Mariana, Regilio Central, Minas Gerais, Brazil	Samaroo Miseraçlar S.A., 0 (50% IIIIP Billing, 0, 50% Yale 0)	irve	failure of two tailings dams holding a combined 62 million m ³ (apparently, the Fundlo dam broke first, releasing tailings into the Santarén dam, which failed then as well)	32 million m ³ Video of the flow slide.>	shorry wave flooded town of Bonto Rodrigues, destroying 158 homes, at least 17 persons killed and 2 reported missing; shurry pollutus North Gualaso River, Carmel River and Rio Doce over 663 km, destroying 15 square kilometers of land along the rivers and cutting residents off from patable water supply
2004, Sep. 30	Herculano mine, Itabirito, Região Central, Minas Gerais, Brazil	Henselano Mineração Lata >	inse.	tailings dam fuilure	1	two workers killed and one missing
2004, Aug. 7	Buenavista del Cobre mine, Casanes, Sonora, Mexico	Southern Copper Corp. (Corpo Ménico: (Corpo Ménico: (Corpo	соррет	tailings dam failure	40,000 m ³ of copper sulphute	flow into the 420km-long Bacanachi river waterway, a tributary of the Sonora River, directly affecting 800,000 people
2004, Aug. 4	Mount Polley mine, near Likely, British Columbia, Canala	Imperial Metals Corp.,0	copper, gold	tailings dam failure due to foundation failure (<u>view</u> details)	7.3 million m ³ of tailings, 10.8 million m ³ of water, and 6.5 million m ³ of interstitial water	tailings flowing into adjacent Polley Like and, through Haroltine Crock, into Quesnel Lake (Mitchell Bay)

British Columbia

Vancouver

Mt Polley Mine

Quesnel Lake

The Tailings Dam Failure and Subaerial Debris Flows in Hazeltine Creek

- Early on August 4, 2014, a tailings dam failure occurred at the Mount Polley Mine causing water and toxic tailings to be released to Polley Lake, Hazeltine Creek and Quesnel Lake
- The failure of the dam was caused by a combination of poor design, poor maintenance, and inadequate inspection by the British Columbia government

July 29 2014

1

Hazeltine

West Arm

Creek

August 5 2014

<u>Hazeltine</u> <u>Creek</u> West Arm

.

1100

JUNE 5, 2015

Mount Polley Mining Corporation at Internal Metals (ontpary

Mount Polley Mining Corporation an Internal Metals company

https://www.youtube.com/watch?v=xAltFxc8bME

grey layer of time material

red layer of sandy material

topsoil

Volume estimates for tailings dam failure

Volume Estimation	Total
Supernatant water (Mm ³)	10.6
Tailings solids (Mm ³)	7.3
Interstitial water (Mm ²)	6.5
Construction materials (Mm ³)	0.6
Total outflow volume (Mm ³)	25.0
Net volume of eroded material (Mm ³)	0.6 To 1.7
Total volume of the event (Mm ⁵) ⁵	25.6 To 26.7

TAILINGS FLOOD HYDROGRAPH IN THE EL GUIJO GAUGE STATION

Rico et al. 2008, Journal of Hazardous Materials

https://www.youtube.com/watch?v=YJqDJZQU8E4

Subaqueous Gravity Flows in Quesnel Lake

August 1-8 2014

-20

m

-100

-20

m

-100

pre-event delta channel?

-20

m

pre-event delta channel? tailings gravity flow scour channel -100

-20

m

pre-event delta channel? tailings gravity flow scour channel tailings gravity flow scour channel

-100

fine-grained tailings deposits coarse-grained tailings deposits

pre-event delta channel? tailings gravity flow scour channel tailings gravity flow scour channel

fine-grained

tailings

deposits

-100

-20

m

A'

-20

m

-100

A

Erosion by Subaqueous Debris Flows in Quesnel Lake

Classification

Haughton et al. 2009, Marine and Petroleum Geology

Haughton et al. 2009, Marine and Petroleum Geology

Mulder et al. 2001, Sedimentology

Erosion

 Up to 20 m vertical incision and 1.5x10⁶ m³ scoured in small cobbles and gravel on Hazeltine Creek fan-delta

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, F03006, doi:10.1029/2011JF002189, 2012

Elementary theory of bed-sediment entrainment by debris flows and avalanches

Richard M. Iverson¹

The Bare Bones of the Iverson model

Part 1:

 Coulomb slide block of mass m(t) and velocity v(t) descending a plane inclined at the angle θ

Part 2:

• Three-layer, depth- integrated, continuummechanical model of mass and momentum exchange between a flow, an erodible bed, and a stable substrate.

- Part 2 model identifies mechanical controls on entrainment efficiency at the bed boundary
- Explicit predictions of the entrainment rate E result from making reasonable assumptions about flow velocity profiles and boundary shear tractions

where: τ is shear stress, ρ is the bulk density of the flow, s_1 is a fitting parameter for the velocity profile in the flow, v is velocity

• Boundary shear tractions τ_{1bot} and τ_{2top} obey a Coulomb friction rule $\tau = \mu \sigma'_{zz}$ where μ is the Coulomb friction coefficient, σ' is effective normal stress:

$$\sigma'_{zz} = \sigma_{zz} - p, \qquad (36)$$

• Boundary shear tractions that satisfy $\tau = \mu \sigma'_{zz}$

$$\tau_{1bot} = \mu_1(\sigma_{zz\,1bot} - p_{1bot}) = \mu_1(\rho g h_1 \cos \theta - p_{1bot}), \quad (37)$$

$$\tau_{2top} = \mu_2(\sigma_{zz\,2top} - p_{2top}) = \mu_2(\rho g h_1 \cos \theta - p_{2top}), \quad (38)$$

where *p* is fluid pore pressure

• By incorporating (37) and (38), (34) becomes:

$$E = \frac{\rho g h_1(\mu_1 - \mu_2) \cos \theta + \mu_2 p_{2 top} - \mu_1 p_{1 bot}}{(1 - s_1) \rho \bar{v}_1}.$$
 (39)

- Contrasts in boundary pore fluid pressure can also promote entrainment
- If the top of the bed sediment becomes completely liquefied by high pore pressures (i.e., p_{2top} = ρgh₁ cosθ) and the value s₁ = ½ is adopted to describe the flow velocity profile, then (39) reduces to:

$$E = \frac{2\mu_1 g h_1 \cos \theta (1 - \lambda_1)}{\bar{\nu}_1}, \qquad (41)$$

where θ is the slope angle, μ_1 is the flow's Coulomb friction coefficient, h_1 is its thickness, v_1 is its depthaveraged velocity, and λ_1 is its degree of liquefaction:

$$\lambda_1 = p_{1bot} / \rho g h_1 \cos \theta \tag{42}$$

$$E = \frac{2\mu_1 g h_1 \cos \theta (1 - \lambda_1)}{\bar{\nu}_1}, \qquad (41)$$

where θ is the slope angle, μ_1 is the flow's Coulomb friction coefficient, h_1 is its thickness, v_1 is its depth-averaged velocity, and λ_1 is its degree of liquefaction:

$$\lambda_1 = p_{1bot} / \rho g h_1 \cos \theta \tag{42}$$

• Is there anything counterintuitive about (41)?

$$E = \frac{2\mu_1 g h_1 \cos \theta (1 - \lambda_1)}{\bar{\nu}_1}, \qquad (41)$$

where θ is the slope angle, μ_1 is the flow's Coulomb friction coefficient, h_1 is its thickness, v_1 is its depthaveraged velocity, and λ_1 is its degree of liquefaction:

$$\lambda_1 = p_{1bot} / \rho g h_1 \cos \theta \tag{42}$$

• Is there anything counterintuitive about (41)?

$$E \propto 1/v_{1bot}$$

 Flow liquefaction likely plays a critical role in bed entrainment

depositional boundary

displaced coarse <u></u> material

pre-event bathymetry

90

70

-60 50

30

thalweg _____ profile _____

1967 H

pre-event shoreline

 Test case: measured erosion rate, E_m, for 5 m of scour in the large scour channel:

Distance offshore (m)

Duration (hours)	12	8	6
Em (m/s)	0.0001157	0.0001736	0.0002314

- Suberial debris flow thickness at Hazeltine
 Creek mouth is estimated at h₁ = 0.35 m
- Gradient of Hazeltine Creek fan-delta near creek mouth is $\theta = 16^{\circ}$
- In experimental and natural subaerial debris flows:

$$-\mu_1 = 0.84 - 0.97$$
$$-\lambda_1 = 0.5 - 0.8$$
$$-v_1 = 3.9 - 12 \text{ m/s}$$

Subaqueous non-hydroplaning debris flow

Sohn et al. 2002, Terra Nova.

Summary so far...

- Failure of the Mt. Polley mine tailings dam caused 14x10⁶ m³ of sediment and interstitial water to flow into Quesnel Lake
- The resulting subaqueous debris flow in Quesnel Lake eroded 1.5x10⁶ m³ of fan-delta fine cobbles and gravel
- A test case of the Iverson (2012) debris flow entrainment model suggests that the erosional debris flows in Quesnel Lake were nearly liquefied

What now?

• Carry on with Iverson model

- A different approach/model?
 - Sedflux (Hutton and Syvitski 2008)
 - Suggestions?

But wait, there's more!

Dark matter debris flows in the Milky Way

Mariangela Lisanti^{a,*}, David N. Spergel^b

^a Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA ^b Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA

