

N. test	Slope[°]	Depth [cm]	Fps	Shutter	Resolution
1	45	5	250	1/4000	1024 x 512
2	45	5.6	250	1/4000	1024 x 512
3	45	6.8	250	1/4000	1024 x 512
4	45	6.4	250	1/4000	1024 x 512
5	45	6.5	250	1/4000	1024 x 512
6	41.9	5.2	1000	1/4000	1024 x 512
7	41.3	5	2000	1/4000	1024 x 512
8	41.4	5.2	1000	1/4000	1204 x 1024
9	41.4	5	1000	1/4000	1024 x 512
10	41.4	5.5	1000	1/4000	1024 x 512
11	41.4	6.5	1000	1/4000	1024 x 512
12	41.4	6.5	1000	1/4000	1024 x 512
13	41.4	6.5	1000	1/4000	1024 x 512
14	41.4	2.5	1000	1/4000	1024 x 512
15	41.4	2.9	2000	1/4000	1024 x 512
16	41.4	2.5	2000	1/4000	1024 x 512
17	38	2.5	2000	1/4000	1024 x 512
18	45	5	1000	1/4000	1024 x 512

N. test	Slope[°]	Depth [cm]	Fps	Shutter	Resolution
19	38	5	1000	1/4000	1024 x 512
20	38	5	1000	1/4000	1024 x 512
21	41.4	5	1000	1/4000	1024 x 512
22	41.4	5	1000	1/4000	1024 x 512
23	41.4	5	1000	1/4000	1024 x 512
24	41.4	5	1000	1/4000	1024 x 512
25	41.4	5	1000	1/4000	1024 x 512
26	41.4	5	1000	1/4000	1024 x 512
27	45	5	1000	1/4000	1024 x 512
28	45	5	1000	1/4000	1024 x 512
29	45	3	1000	1/4000	1024 x 512
30	45	3.2	2000	1/4000	1024 x 512
31	41.4	3	2000	1/4000	1024 x 512
32	41.4	3	2000	1/4000	1024 x 512

N. test	Slope[°]	Depth [cm]	Fps	Shutter	Resolution	anisadan in	atta Antonio
41	32	5	1000	1/4000	1024 x 512		
42	38	3	1000	1/frame	1024 x 512		
43	35	3	1000	1/2000	1024 x 1024		
44	35	3	1000	1/2000	1024 x 1024		
45	32	3	1000	1/2000	1024 x 1024		
46	32	3	1000	1/8000	1024 x 1024		(Charles
47	33.5	3.4	1000	1/8000	1024 x 1024		
48	33.5	3	1000	1/8000	1024 x 1024		
49	33.5	3	1000	1/8000	1024 x 1024		
50	33.5	3	1000	1/8000	1024 x 1024		
51	35	3	1000	1/8000	1024 x 1024		
52	35	3	1000	1/8000	1024 x 1024		
53	38	3	1000	1/8000	1024 x 1024		
54	38	3	1000	1/8000	1024 x 1024		00-
55	38	3	1000	1/8000	1024 x 1024	and the	20

Concentration

Eliminate *L* from the energy balance and solve for $u'/T^{1/2}$:

$$\frac{u'}{T^{1/2}} = \frac{15}{J} \frac{1 - e^2}{\hat{c} G^{1/3}}$$

Use this to eliminate $u'/T^{1/2}$ from the shear stress with s/p:

$$\frac{s}{p} = \left[\frac{192}{25\pi^{3/2}} \frac{J^2(1-e)}{\hat{c}(1+e)^2}\right]^{1/3} \frac{1}{G^{1/9}} = \tan\beta - \frac{\mu_w}{W}y$$

and substitute in: $v = \frac{0.63G}{0.60+G}$

Temperature

Solve the pressure for *T* and obtain its variation with depth:

$$T = \frac{p}{2(1+e)\nu G} = \frac{\cos\beta y}{2(1+e)G}$$

Total Volume Flux

$$q = W \int_{0}^{h} v u(y) \, dy =$$

= $\frac{5\pi^{1/2} W}{4\overline{J}\sqrt{2\overline{G}}} \left(1 + \frac{e}{2}\right)^{1/2} v \left(\cos\beta\right)^{1/2} \left\{\frac{2}{5}h^{5/2} \tan\beta - \frac{2}{7}\frac{\mu_w}{W}h^{7/2}\right\}$

Unsteady: 1 equation approach

Extended kinetic theory (algebraic integration)

Momentum balance in the x direction

$$\rho \frac{\partial u}{\partial t} = \rho g \sin \beta + \frac{\partial \tau}{\partial y} - 2 \frac{\mu_W}{W} \rho g y \cos \beta$$

Similarity assumption for the variables involved: velocity, concentration

$$\frac{dh}{dt} = -\frac{dz}{dt} = f(u_s, h_s)$$

Unsteady: 2 equations approach

Extended kinetic theory (algebraic integration)

Momentum balance in the y direction

Energy balance

Similarity assumption for the variables involved: velocity, concentration

$$\begin{cases} f_1(u_s, h_s) \frac{du_s}{dt} + f_2(u_s, h_s) \frac{dh}{dt} = f_3(u_s, h_s) \\ g_1(u_s, h_s) \frac{du_s}{dt} + g_2(u_s, h_s) \frac{dh}{dt} = g_3(u_s, h_s) \end{cases}$$

1 equation approach: solution

Flow depth:

$$\frac{\partial h(t)}{\partial t} = \left\{ \rho g \sin \beta h(t) - \rho g \cos \beta h(t) R - \frac{\mu_W}{W} \rho g \cos \beta h(t)^2 \right\} / \left\{ \left(\frac{5\sqrt{\pi}}{4J} \frac{1}{d} \left[\frac{(1+e)g \cos \beta}{2G} \right]^{1/2} \frac{1}{\left[\frac{2}{3} \tan \beta h^{3/2} - \frac{2}{5} \frac{\mu_W}{W} h^{5/2} \right]} \right. \\
\left. h(t)^{1/2} \left(\tan \beta - \frac{\mu_W}{W} h(t) \right) \left[\frac{2}{3} \tan \beta \left[\frac{3}{5} h(t)^{5/2} \right] - \frac{2}{5} \frac{\mu_W}{W} \left[\frac{5}{7} h(t)^{7/2} \right] \right] \right) + \left. \left. \left(\left(\frac{5\sqrt{\pi}}{4J} \frac{1}{d} \left[\frac{(1+e)g \cos \beta}{2G} \right]^{1/2} \left[\frac{2}{3} \tan \beta h(t)^{3/2} - \frac{2}{5} \frac{\mu_W}{W} h(t)^{5/2} \right] \right) \right. \\ \left. \frac{1}{35} \frac{\left(-5\frac{2}{5} \frac{\mu_W}{W} h + 7\frac{2}{3} \tan \beta \right) \left(-5\frac{2}{5} \frac{\mu_W}{W} h + 3\frac{2}{3} \tan \beta}{\left(-\frac{2}{5} \frac{\mu_W}{W} h + \frac{2}{3} \tan \beta} \right)^2} \right) \right\}$$

