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We consider the evolution of particle segregation in collisional flows of two types
of spheres down rigid bumpy inclines in the absence of sidewalls. We restrict
our analysis to dense flows and use an extension of kinetic theory to predict the
concentration of the mixture and the profiles of mixture velocity and granular
temperature. A kinetic theory for a binary mixture of nearly elastic spheres that
do not differ by much in their size or mass is employed to predict the evolution
of the concentration fractions of the two types of spheres. We treat situations in
which the flow of the mixture is steady and uniform, but the segregation evolves,
either in space or in time. Comparisons of the predictions with the results of discrete
numerical simulation and with physical experiments are, in general, good.
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1. Introduction

Particle segregation impacts granular flows both in industry and in nature. For
example, in the pharmaceutical industry, flow segregation of particles of different
types is often undesirable, and homogeneous mixing is encouraged (Muzzio, Shinbrot
& Glasser 2002). In natural phenomena, such as debris flows, reverse grading takes
place, in which higher concentrations of larger particles of the same material develop
on top and in front of the flow (Armanini, Fraccarollo & Larcher 2005). This has
important effects on the rheology of the mixture, altering parameters such as the
depth and the velocity of the flow, on the characteristics and consequences of the
impact of the flow on structures meant to confine it, and on the nature of the flow
deposit when the flow comes to rest (Jakob & Hungr 2005; Takahashi 2014).

Many authors have observed that in inclined flows of binary mixtures of spheres that
differ in both size and mass, two mechanisms appear to influence segregation: heavier
particles tend to sink in a medium of lower average density, due to gravitational
effects, while smaller particles tend to percolate downwards through interstices, due
to geometrical effects, inducing larger particles to ride above them. Such observations
are common to free-surface flows (e.g. Drahun & Bridgwater 1983), rotating tumblers
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Physical observation 
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Heavier particles tend to sink in a 
medium of lower density due to 
gravitational effects 

Smaller particles tend to percolate 
downwards through the interstices due 
to geometrical effects, inducing larger 
particles to float 
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Physical observation 
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Confirmed in 

•  Free-surface flows (Drahun & Bridgewater 1983, …) 

•  Rotating tumblers (Alonso, Satoh & Miyanami 1991, 
Felix & Thomas 2004, Jain, Ottino & Lueptow 2005, Hill et al. 
2010, …) 

•  Rotating tubes (Metcalfe & Shattuck 1996, …) 



Università degli Studi di Trento 30/04/16 

Michele Larcher 3 

Context 

Industry: 
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•  Segregation is usually undesired 
•  Mixing is encouraged 

Nature: 

•  Debris flow: reverse grading 
•  Snow and rock avalanches 

Anterselva (BZ) 2004 
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Debris flow 
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   text Snow avalanches 
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   text 

Large, light human “sphere”… 
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Assumptions 
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•  Binary mixtures of spheres 
•  Rigid, bumpy, inclined channel 
•  Dense, collisional flows  

•  Absence of sidewalls 
•  Steady, uniform flow of the mixture 
•  Time and space evolution of segregation  

•  Small differences in size and/or mass 

Goal 
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•  Predict the concentration of the mixture 
•  Predict the profiles of mixture velocity 

and granular temperature 

•  Predict the evolution of concentration 
fractions of the two types of spheres 

•  Comparison with DEM simulations and 
physical experiments 
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Kinetic theory 
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•  A theory based on measured particle 
properties (avoiding the choice of parameters) 

•  Governing equations based on 
fundamental physical principles: i) the 
balances of mass, ii) momentum and       
iii) energy for the two species and the 
mixture  

Steady, fully developed, dense flows 
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•  Binary mixture of inelastic spheres 
(Arnarson & Jenkins 2004) 

•  Extension of the kinetic theory of Garzo 
& Dufty (1999) for identical inelastic 
spheres by Jenkins (2007) 

•  Correlated collisions and particle clusters 
accounted for through an additional 
length-scale in the rate of collisional 
energy dissipation (Jenkins & Berzi 2010) 

Larcher & Jenkins, Phys. Fluids 25: 113301, 2013 
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Steady, fully developed, dense flows 
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Tripathi and Khakhar, Phys. Fluids 23, 113302 (2011) 

Segregation evolution: Dense flows 
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•  Rate at which segregation takes place   
∝ average distance between the edges 
of spheres 

•  The rate at which momentum is 
transferred in the mixture is inversely 
proportional to that distance 

•  The flow of the mixture reaches a fully 
developed state much rapidly than do CA 
and CB 
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Fully developed flows 
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Therefore, we assume that the flow of 
the mixture reaches a fully developed 
state much more rapidly than do the 
concentrations of the two species 

Radii:   rA, rB      d =rA + rB 

Variables 

  δr =rA / rB   - 1 

Masses:   mA, mB 

δm =(mA – mB)/(mA + mB) 

Number densities:      
nA, nB    n = nA + nB 

Number fraction, species A:   
fA = NA / N 

Mass densities:   ρi = mi ni              ρ = ρΑ + ρΒ	

Volume fractions:   ci = (4/3)ni π ri
3

        c = cΑ +  cΒ	

18 
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Variables 

Mixture velocity:   u = (ρAuA +ρB uB) /ρ  

                            v = (ρAvA +ρB vB) /ρ 	

Granular temperature:	 Ti ≡
mi Ci

2

3
i = A,B

Mixture temperature: A A B Bn T n TT
n
+

=

19 
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Balance equations: segregation 

Difference of mass balance of the two species 
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the evolution of segregation for spheres of the same size, but different masses, and
indicate how particular combinations of radius and mass ratios result in an evolution
towards a perfectly mixed state, whatever the initial condition of the mixture.

2. Balance equations

2.1. Segregation
The difference of mass balances of the two particle species A and B can be
expressed as

@

@t
(⇢A � ⇢B) + @

@x
(⇢AuA � ⇢BuB) + @

@y
(⇢AvA � ⇢BvB) = 0, (2.1)

where uA, uB, vA and vB are the velocity components along the flow, the direction of
increasing x, and across the flow, the direction of increasing y, of particles of species
A and B respectively. The mass-averaged components, u and v, of the velocity are
given by

⇢u = ⇢AuA + ⇢BuB and ⇢v = ⇢AvA + ⇢BvB, (2.2a,b)

where the total density, ⇢, is the sum of the densities of the two species, ⇢ = ⇢A + ⇢B.
The components ũA = uA � u and ṽA = vA � v of the diffusion velocities provide a

measure of the velocity of segregation. Upon employing them in (2.1), we obtain

@

@t
(⇢A � ⇢B) + @

@x
(⇢A � ⇢B) u + @

@y
(⇢A � ⇢B) v

+ @

@x
(⇢AũA � ⇢BũB) + @

@y
(⇢AṽA � ⇢BṽB) = 0. (2.3)

Using ⇢AũA + ⇢BũB = 0 and ⇢AṽA + ⇢BṽB = 0, (2.3) becomes

@

@t
(⇢A � ⇢B) + u

@

@x
(⇢A � ⇢B) + v

@

@y
(⇢A � ⇢B)

+ (⇢A � ⇢B)

✓
@u
@x

+ @v

@y

◆
+ 2

@

@x
⇢AũA + 2

@

@y
⇢AṽA = 0. (2.4)

In (2.4), the divergence of (u, v) can be obtained from the mass balance for the
mixture,

@u
@x

+ @v

@y
= � 1

⇢

✓
@⇢

@t
+ u

@⇢

@x
+ v

@⇢

@y

◆
, (2.5)

while

⇢AũA = ⇢A⇢B

⇢
(ũA � ũB) and ⇢AṽA = ⇢A⇢B

⇢
(ṽA � ṽB) . (2.6a,b)

Then,

⇢
@

@t

✓
⇢A � ⇢B

⇢

◆
+ ⇢u

@

@x

✓
⇢A � ⇢B

⇢

◆
+ ⇢v

@

@y

✓
⇢A � ⇢B

⇢

◆

+ 2
@

@x


⇢A⇢B

⇢
(ũA � ũB)

�
+ 2

@

@y


⇢A⇢B

⇢
(ṽA � ṽB)

�
= 0. (2.7)
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@y
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⇢AũA = ⇢A⇢B

⇢
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Balance equations: segregation 

where the difference in the vector diffusion 
velocities is driven by gradients in the mixtures 
pressure, P, the kinetic energy of the velocity 
fluctuations, T, the gradient of the chemical 
potentials, µA, and the number densities of the 
two species (Arnarson & Jenkins 2004) 

21 
 

Università degli Studi di Trento Michele Larcher 

408 M. Larcher and J. T. Jenkins

The difference in the vector diffusion velocities is driven by gradients in the
mixture pressure, P, the kinetic energy of the velocity fluctuations, or mixture
granular temperature, T , and the number densities of the two species (Arnarson &
Jenkins 2004):

ṽA � ṽB = � n2

nAnB
DAB

⇢
� ⇢A

n⇢T
rP + 1

nT

✓
nA + 2

mA

mAB
KAB + KAA

◆
rT

+ nA

nT

✓
@µA

@nA
rnA + @µA

@nB
rnB

◆
+ 1

T
K(A)

T rT
�

. (2.8)

In this equation, the diffusion coefficient, DAB, is given by (Arnarson & Jenkins 2004)

DAB ⌘ 3
2ngAB

✓
2TmAB

pmAmB

◆1/2 1
8r2

AB
, (2.9)

in which mij = mi + mj and rij = ri + rj, with i, j = A or B, are respectively the sums
of the masses and radii and gij are the radial distribution functions at collision for the
components of the mixture:

gij = 1
1 � c

+ 3rirj

rij

⇠2

(1 � c)2 + 2
✓

rirj

rij

◆2
⇠ 2

2

(1 � c)3 , (2.10)

with ⇠2 ⌘ 4p(nAr2
A + nBr2

B)/3 and Kij = 2pr3
ijninjgij/3. The mixture pressure is the sum

of the partial pressures of the two particle species, pA and pB, given by (Arnarson &
Jenkins 2004)

pA = (nA + KAA + KAB) T and pB = (nB + KBB + KAB) T. (2.11a,b)

These can be used to evaluate the first prefactor of the gradient of the granular
temperature in (2.8),

✓
nA + 2

mA

mAB
KAB + KAA

◆
rT = pA

T
rT � mB � mA

mAB
KABrT. (2.12)

Approximate expressions for the mass densities, the gradient of the chemical
potential, µA, and the coefficient of thermal diffusion, K(A)

T , are given in appendix A,
in the context of a theory for mixtures in which it is assumed that the radii and
the masses of the two types of spheres do not differ by much. Arnarson & Jenkins
(2004) and Larcher & Jenkins (2013) provide complete expressions for the chemical
potential and the coefficient of thermal diffusion and derive the approximations. In the
approximate theory, �r ⌘ (rA/rB)� 1 and �m ⌘ (mA � mB)/mAB measure the differences
in size and mass, and the quantity X ⌘ (nA � nB)/(2n) measures the segregation.

As indicated in appendix A, the approximate form of the mass balance, (2.7),
phrased in terms of these variables is

⇢
@X
@t

+ ⇢u
@X
@x

+ ⇢v
@X
@y

+ @

@x

hmAn
4

�
1 � 4X2� (ũA � ũB)

i

+ @

@y

hmAn
4

�
1 � 4X2� (ṽA � ṽB)

i
= 0, (2.13)

Balance equations: segregation 

and the diffusion coefficient is (Arnarson & Jenkins 

2004): 
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ṽA � ṽB = � n2

nAnB
DAB

⇢
� ⇢A

n⇢T
rP + 1

nT

✓
nA + 2

mA

mAB
KAB + KAA

◆
rT

+ nA

nT

✓
@µA

@nA
rnA + @µA

@nB
rnB

◆
+ 1

T
K(A)

T rT
�

. (2.8)

In this equation, the diffusion coefficient, DAB, is given by (Arnarson & Jenkins 2004)

DAB ⌘ 3
2ngAB

✓
2TmAB

pmAmB

◆1/2 1
8r2

AB
, (2.9)

in which mij = mi + mj and rij = ri + rj, with i, j = A or B, are respectively the sums
of the masses and radii and gij are the radial distribution functions at collision for the
components of the mixture:

gij = 1
1 � c

+ 3rirj

rij

⇠2

(1 � c)2 + 2
✓

rirj

rij

◆2
⇠ 2

2

(1 � c)3 , (2.10)

with ⇠2 ⌘ 4p(nAr2
A + nBr2

B)/3 and Kij = 2pr3
ijninjgij/3. The mixture pressure is the sum

of the partial pressures of the two particle species, pA and pB, given by (Arnarson &
Jenkins 2004)

pA = (nA + KAA + KAB) T and pB = (nB + KBB + KAB) T. (2.11a,b)

These can be used to evaluate the first prefactor of the gradient of the granular
temperature in (2.8),

✓
nA + 2

mA

mAB
KAB + KAA

◆
rT = pA

T
rT � mB � mA

mAB
KABrT. (2.12)

Approximate expressions for the mass densities, the gradient of the chemical
potential, µA, and the coefficient of thermal diffusion, K(A)

T , are given in appendix A,
in the context of a theory for mixtures in which it is assumed that the radii and
the masses of the two types of spheres do not differ by much. Arnarson & Jenkins
(2004) and Larcher & Jenkins (2013) provide complete expressions for the chemical
potential and the coefficient of thermal diffusion and derive the approximations. In the
approximate theory, �r ⌘ (rA/rB)� 1 and �m ⌘ (mA � mB)/mAB measure the differences
in size and mass, and the quantity X ⌘ (nA � nB)/(2n) measures the segregation.

As indicated in appendix A, the approximate form of the mass balance, (2.7),
phrased in terms of these variables is

⇢
@X
@t

+ ⇢u
@X
@x

+ ⇢v
@X
@y

+ @

@x

hmAn
4

�
1 � 4X2� (ũA � ũB)
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where the radial distribution function at collision 
is (Mansoori et al. 1971): 
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The difference in the vector diffusion velocities is driven by gradients in the
mixture pressure, P, the kinetic energy of the velocity fluctuations, or mixture
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The difference in the vector diffusion velocities is driven by gradients in the
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i

+ @

@y

hmAn
4

�
1 � 4X2� (ṽA � ṽB)
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Here, the functions G and H are related to the radial distribution function of the
mixture, regarded as a single species with mass mAB/2 and rAB/2 (Torquato 1995):

G = 5.69c
cM � 0.49

cM � c
(2.19)

and
H ⌘ dG

dc
= G

cM

c(cM � c)
, (2.20)

in which cM is the value of the mixture concentration at which these functions become
singular (Mitarai & Nakanishi 2007). The separation between the edges of the fictive
spheres of the mixture is inversely proportional to G. The approximations in (2.16)–
(2.18) apply at a value of 0.55 of the mixture volume fraction. Here, we take the
value of the singularity, cM, to be 0.58. This provides the best fit to the simulations
of Tripathi & Khakhar (2011), which were carried out with particles that had the same
inertial and contact properties as those employed by Silbert et al. (2001), and which
are often adopted by others. Results of the fit are shown in figure 2 of Larcher &
Jenkins (2013).

Equation (2.14) indicates that inhomogeneity in the species’ concentrations results
from an imbalance between the gradient of the difference in the species’ number
fractions and a segregation flux that contains contributions from both the gradient of
the mixture temperature and gravity. Each contribution to the segregation flux is linear
in the differences in the size and mass of the two species, with coefficients that are
functions of the mixture concentration.

2.2. Dense flows of the mixture
For the flow of the dense mixture, we employ an extension of the kinetic theory
that incorporates an additional length scale in the rate of collisional dissipation that
is associated with chains or clusters of a characteristic size in the flow. This length
scale is determined in a phenomenological balance between the orienting influence of
the mean shear rate and the randomizing influence of the collisions. The balance of
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that incorporates an additional length scale in the rate of collisional dissipation that
is associated with chains or clusters of a characteristic size in the flow. This length
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The difference in the vector diffusion velocities is driven by gradients in the
mixture pressure, P, the kinetic energy of the velocity fluctuations, or mixture
granular temperature, T , and the number densities of the two species (Arnarson &
Jenkins 2004):
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In this equation, the diffusion coefficient, DAB, is given by (Arnarson & Jenkins 2004)
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These can be used to evaluate the first prefactor of the gradient of the granular
temperature in (2.8),
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in which cM is the value of the mixture concentration at which these functions become
singular (Mitarai & Nakanishi 2007). The separation between the edges of the fictive
spheres of the mixture is inversely proportional to G. The approximations in (2.16)–
(2.18) apply at a value of 0.55 of the mixture volume fraction. Here, we take the
value of the singularity, cM, to be 0.58. This provides the best fit to the simulations
of Tripathi & Khakhar (2011), which were carried out with particles that had the same
inertial and contact properties as those employed by Silbert et al. (2001), and which
are often adopted by others. Results of the fit are shown in figure 2 of Larcher &
Jenkins (2013).

Equation (2.14) indicates that inhomogeneity in the species’ concentrations results
from an imbalance between the gradient of the difference in the species’ number
fractions and a segregation flux that contains contributions from both the gradient of
the mixture temperature and gravity. Each contribution to the segregation flux is linear
in the differences in the size and mass of the two species, with coefficients that are
functions of the mixture concentration.

2.2. Dense flows of the mixture
For the flow of the dense mixture, we employ an extension of the kinetic theory
that incorporates an additional length scale in the rate of collisional dissipation that
is associated with chains or clusters of a characteristic size in the flow. This length
scale is determined in a phenomenological balance between the orienting influence of
the mean shear rate and the randomizing influence of the collisions. The balance of
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•  The inhomogeneity in the specie’s 
concentration results from an imbalance 
between the gradient of the difference in the 
species’ number fractions, X, and a 
segregation flux that contains  contributions 
from both the gradient of the mixture 
temperature and gravity 

•  Each contribution to the segregation flux is 
linear in δr and δm. 



Università degli Studi di Trento 30/04/16 

Michele Larcher 13 

Balance equations: mixture flow 

25 
 

Università degli Studi di Trento Michele Larcher 

•  Extension of kinetic theory that incorporates 
an additional lengthscale in the rate of 
collisional dissipation associated with chains or 
clusters 

•  Transport coefficients given by Garzo & Dufty 
(1999) for identical, very dissipative spheres, 
modified by Arnarson & Jenkins (2004) for 
binary  mixtures of nearly elastic spheres. 

•  Uniform concentration across the flow (Silbert et 
al. 2001; Tripathi & Khakhar 2011) 

Balance equations: mixture flow 

The component of the mixture momentum 
balance across the flow gives 
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fluctuation energy, used with the determination of the length scale, provides relations
that are, in the collisional regime, the equivalents of purely phenomenological relations
that have recently been employed for dense flows (GDR MiDi 2004; Jop, Forterre &
Pouliquen 2005). Here, we show the expressions for the mixture quantities needed to
predict the segregation, and the briefest sketch of their derivation. Larcher & Jenkins
(2013) provide the details.

The transport coefficients of the mixture are given by the theory of Garzo & Dufty
(1999) for identical very dissipative spheres, modified in the way introduced by
Arnarson & Jenkins (2004) for binary mixtures of nearly elastic spheres that do not
differ much in size and mass. From this point on, we consider the mixture to have
achieved a steady uniform state that varies only with the coordinate y across the flow,
with its upper surface at y = h.

The profile for the granular temperature T results from the component of the
mixture momentum balance across the flow and the fact that in such dense flows, the
mixture concentration is uniform across the flow (Silbert et al. 2001):

T = mAB(h � y)
4(1 + e)G

g cos � (1 + 2X�m). (2.21)

The uniform mixture concentration is related to the angle of inclination of the
flow and the particle parameters. This relationship is derived from the energy balance
for the mixture, in which the rate of work of the mixture shear stress through the
gradients of the mixture velocity is balanced by the rate of collisional dissipation.
In this balance, the determination of the additional length is used in the rate of
collisional dissipation. One result is an expression for G in terms of the angle of
inclination, properties of the mixture and a coefficient of restitution e:

G =
(

4J
5p1/2

1
1 + e


15
J

(1 � e2)

↵

�1/3 1
tan �

)9

[1 + 3X (�r + �m)] , (2.22)

where ↵, a coefficient of order one in the relation that determines the additional length
scale, is taken here to be 0.5, and J is a coefficient in the mixture shear stress,

J = (1 + e)
2

+ p

4
(3e � 1)(1 + e)2

[24 � (1 � e)(11 � e)]
. (2.23)

This form of J is appropriate for dense flows of a single species of very dissipative
spheres and incorporates the dependence on the coefficient of restitution determined
by Garzo & Dufty (1999). We incorporate friction in the particle interactions through
the introduction of an effective coefficient of restitution in the translational energy
equation (Jenkins & Zhang 2010) and avoid the necessity of introducing an additional
balance equation for the energy of the rotational velocity fluctuations. This effective
coefficient accounts for energy lost to the fluctuations in translation velocity due to
both their conversion to rotational velocity fluctuations and their dissipation due to
sliding friction or tangential restitution. Larcher & Jenkins (2013) outline its derivation
in an appendix. With (2.22), (2.19) may be inverted to give the desired relation

c = cMG
G + 5.69 (cM � 0.49)

. (2.24)

From the mixture energy balance, Su ’ - Γ = 0:   
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Balance equations: mixture flow 

The velocity of the mixture, u, follows from 
the balance of mixture momentum along the 
flow and the expression for the mixture 
shear stress:  
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The velocity of the mixture, u, follows from the balance of mixture momentum
along the flow and the relationship between the mixture shear stress and the mixture
velocity gradient. When the latter is integrated, it provides

u = u0 + 5p1/2

6J
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✓
1 + e
2G
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◆1/2 ⇥
h3/2 � (h � y)3/2⇤ tan �(1 � X�r), (2.25)

where the subscript 0 indicates a quantity evaluated at the base and u0 is the slip
velocity. In what follows, we adopt the approximation, u0 = 0, since it does not affect
significantly the prediction of granular segregation. Larcher & Jenkins (2013) provide
the details of the determination of the slip velocity as a function of the bumpiness,
the granular temperature, the angle of inclination and the effective coefficient of
restitution.

Finally, because by (2.13) and (2.14) derivatives of X with respect to y are
proportional to small quantities, X may be replaced by its depth average, X̄, whenever
it multiplies �r or �m, as in (2.21), (2.22) and (2.25).

3. Evolution in time and space

3.1. Uniform time-dependent segregation
In the case of uniform time-dependent segregation, with the y-axis normal to the flow
and directed upward, (2.13) reduces to
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in which DAB is given by (2.15). When (2.21) for T in the dense inclined flow is
employed in this equation, it becomes
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We note that because of the dependence of the mixture temperature on G and the
approximations in (2.16) through (2.18), the terms in the segregation flux are all
proportional to G. If lengths are normalized by the height h and time by (rAB/g)1/2,
then, with z ⌘ y/h and ⌧ ⌘ t/(rAB/g)1/2,
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We approximate the slip velocity at the 
bottom u0 = 0  

Evolution in time 
For uniform, time-dependent segregation 
the mass balance reduces to 
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Finally, because by (2.13) and (2.14) derivatives of X with respect to y are
proportional to small quantities, X may be replaced by its depth average, X̄, whenever
it multiplies �r or �m, as in (2.21), (2.22) and (2.25).

3. Evolution in time and space

3.1. Uniform time-dependent segregation
In the case of uniform time-dependent segregation, with the y-axis normal to the flow
and directed upward, (2.13) reduces to
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in which DAB is given by (2.15). When (2.21) for T in the dense inclined flow is
employed in this equation, it becomes
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We note that because of the dependence of the mixture temperature on G and the
approximations in (2.16) through (2.18), the terms in the segregation flux are all
proportional to G. If lengths are normalized by the height h and time by (rAB/g)1/2,
then, with z ⌘ y/h and ⌧ ⌘ t/(rAB/g)1/2,
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or, equivalently, using the expressions for the 
diffusion velocity, DAB and T: 
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In order to conserve the total number of 
particles of the two species, a new variable is 
introduced: 
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The form of (3.4) ensures that if the vertical flux vanishes at z = 0 and z = 1, the
integral of X through the depth of the flow is constant in time. However, given the
definition of X in (A 5), this conservation is not compatible with the conservation of
the total number of particles of the two species. This is because the depth average of a
concentration fraction is not equal to the ratio of the depth averages of its numerator
and denominator. A similar issue occurs in the context of the steady segregation
problem (Xu, Louge & Reeves 2003; Larcher & Jenkins 2013). Therefore, in order
to conserve the total number of particles, there and here, a new variable, ⇣ ⌘ Xn/n̄,
is introduced, where the overbar indicates an average through the flow depth. Then,
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2
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where NA and NB are the total numbers of particles of A and B respectively, and
N = NA + NB. The total number fraction fA = NA/N or, equivalently, the total volume
fraction
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3 (3.6)

of type A particles is known and conserved during the time evolution of the solution.
The variables ⇣ and X can be related through known quantities by
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We employ the approximation in (3.8) to express (3.4) in terms of ⇣ :

@⇣

@⌧
=

⇣rAB

h

⌘3/2 (p cos �)1/2

128G3/2

✓
2

1 + e

◆1/2 2c�
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Then, the integral of ⇣ through the depth of the flow is approximately constant in
time and initial conditions that involve the number fractions or volume fractions can
be specified for it.
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ĉA + ĉB
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Then, the integral of ⇣ through the depth of the flow is approximately constant in
time and initial conditions that involve the number fractions or volume fractions can
be specified for it.
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Then, the integral of ⇣ through the depth of the flow is approximately constant in
time and initial conditions that involve the number fractions or volume fractions can
be specified for it.
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ĉA + ĉB
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Then, the integral of ⇣ through the depth of the flow is approximately constant in
time and initial conditions that involve the number fractions or volume fractions can
be specified for it.

Evolution in time 
If lengths and time are normalized by: 
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ĉA + ĉB
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Then, the integral of ⇣ through the depth of the flow is approximately constant in
time and initial conditions that involve the number fractions or volume fractions can
be specified for it.
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The velocity of the mixture, u, follows from the balance of mixture momentum
along the flow and the relationship between the mixture shear stress and the mixture
velocity gradient. When the latter is integrated, it provides

u = u0 + 5p1/2
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◆1/2 ⇥
h3/2 � (h � y)3/2⇤ tan �(1 � X�r), (2.25)

where the subscript 0 indicates a quantity evaluated at the base and u0 is the slip
velocity. In what follows, we adopt the approximation, u0 = 0, since it does not affect
significantly the prediction of granular segregation. Larcher & Jenkins (2013) provide
the details of the determination of the slip velocity as a function of the bumpiness,
the granular temperature, the angle of inclination and the effective coefficient of
restitution.

Finally, because by (2.13) and (2.14) derivatives of X with respect to y are
proportional to small quantities, X may be replaced by its depth average, X̄, whenever
it multiplies �r or �m, as in (2.21), (2.22) and (2.25).

3. Evolution in time and space

3.1. Uniform time-dependent segregation
In the case of uniform time-dependent segregation, with the y-axis normal to the flow
and directed upward, (2.13) reduces to
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in which DAB is given by (2.15). When (2.21) for T in the dense inclined flow is
employed in this equation, it becomes
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We note that because of the dependence of the mixture temperature on G and the
approximations in (2.16) through (2.18), the terms in the segregation flux are all
proportional to G. If lengths are normalized by the height h and time by (rAB/g)1/2,
then, with z ⌘ y/h and ⌧ ⌘ t/(rAB/g)1/2,

@X
@⌧

=
⇣rAB

h

⌘3/2 (p cos �)1/2

128G3/2

✓
2

1 + e

◆1/2
@

@z


(1 � z)1/2

⇢
[(2(1 + e)G�2 � �1) �m

+ (2(1 + e)GR2 � R1) �r]
1 � 4X2

1 � z
+ 4

@X
@z

��
. (3.4)

then: 
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Steady longitudinal segregation 
Lengths associated with the evolution of 
segregation are significantly larger than the 
flow depth 
Therefore we assume that in the mass 
balance the streamwise derivatives are 
neglegible compared with the cross-stream 
derivatives 
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3.2. Steady longitudinal segregation
Lengths associated with the evolution of segregation are, typically, significantly larger
than the flow depth, so we assume that streamwise derivatives in the difference of
the diffusion velocities are negligible compared with cross-stream derivatives. Then,
for steady longitudinal segregation, X = X(y, x), with the x-axis along the flow and
the y-axis normal to the flow and directed upward, (2.13) assumes the form
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If lengths are normalized by the flow depth, h, then, with z ⌘ y/h and ` ⌘ x/h,
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In analogy with the uniform time-dependent segregation problem described above,
the approximation in (3.8) is employed to express (3.14) in terms of ⇣ :
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ĉA + ĉB
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However, the use of the approximation between X and ⇣ of (3.8) in the correction for
the differences in mass and radius in (2.22) is too crude for an accurate determination
of the mixture volume fraction. Because Larcher & Jenkins (2013) show that the use
of the exact relation between X in ⇣ in the correction results in little or no change
from the single-species volume fraction, we use the uncorrected mixture volume
fraction in what follows. Finally, we note that in steady longitudinal segregation,
the quantities that are conserved are the fluxes of each species, i.e.

R 1
0 cAu dz andR 1

0 cBu dz. As a consequence of the non-uniformity of the velocity across the flow,
the depth-integrated concentration of each species may change with the longitudinal
coordinate `, up to the point at which segregation ceases (e.g. figure 5b).

Steady longitudinal segregation 
At lowest order in δr and δm: 

32 
 

Università degli Studi di Trento Michele Larcher 

The evolution of segregation in binary mixtures 413

3.2. Steady longitudinal segregation
Lengths associated with the evolution of segregation are, typically, significantly larger
than the flow depth, so we assume that streamwise derivatives in the difference of
the diffusion velocities are negligible compared with cross-stream derivatives. Then,
for steady longitudinal segregation, X = X(y, x), with the x-axis along the flow and
the y-axis normal to the flow and directed upward, (2.13) assumes the form

⇢u
@

@x

✓
⇢A � ⇢B

⇢

◆
+ 2

@

@y


⇢A⇢B

⇢
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In analogy with the uniform time-dependent segregation problem described above,
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However, the use of the approximation between X and ⇣ of (3.8) in the correction for
the differences in mass and radius in (2.22) is too crude for an accurate determination
of the mixture volume fraction. Because Larcher & Jenkins (2013) show that the use
of the exact relation between X in ⇣ in the correction results in little or no change
from the single-species volume fraction, we use the uncorrected mixture volume
fraction in what follows. Finally, we note that in steady longitudinal segregation,
the quantities that are conserved are the fluxes of each species, i.e.

R 1
0 cAu dz andR 1

0 cBu dz. As a consequence of the non-uniformity of the velocity across the flow,
the depth-integrated concentration of each species may change with the longitudinal
coordinate `, up to the point at which segregation ceases (e.g. figure 5b).
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ĉA + ĉB
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ĉA + ĉB
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of the mixture volume fraction. Because Larcher & Jenkins (2013) show that the use
of the exact relation between X in ⇣ in the correction results in little or no change
from the single-species volume fraction, we use the uncorrected mixture volume
fraction in what follows. Finally, we note that in steady longitudinal segregation,
the quantities that are conserved are the fluxes of each species, i.e.
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the depth-integrated concentration of each species may change with the longitudinal
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Comparison with experiments 
and simulations 

The evolution of segregation was obtained by 
solving the segregation equation with the 
Matlab embedded solver pdepe, suitable for 
initial BVP for parabolic-elliptic PDE in one 
space-like and one time-like variable.  

The initial boundary sets the concentration 
profile (through ζ). 
The two boundary conditions require the flux 
to vanish at the base, z = 0, and the top, z = 1. 
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Thornton et al. (2012) simulations 
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•  Chute flow over a rigid bumpy base 
•  Periodic box at angle 25° - 0° 
•  5000 small particles 

•  Total volume of large and small are equal 
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Thornton et al. (2012) simulations 
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FIGURE 1. (Colour online) Predicted COMs of large spheres (dashed blue) and small
spheres (solid red) and those measured by Thornton et al. (2012) (large spheres, blue
stars; small spheres, red circles) for two radius ratios and the same material density:
(a) rA/rB = 1.1, mA/mB = (1.1)3; (b) rA/rB = 1.3, mA/mB = (1.3)3. The other simulation
parameters are � = 25�, e = 0.65, VA/V = 0.5 and h/rAB = 20. The vertical axes are the
same in the two figures.
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FIGURE 2. (Colour online) Predicted relative concentration profiles of large spheres
(increasing functions, blue lines) and small spheres (decreasing functions, red lines) for
two radius ratios at four equally spaced steps 1⌧ of dimensionless time units, from
the initial state to the steady state: (a) rA/rB = 1.1, (b) rA/rB = 1.3. The profile of
steady relative concentration for the small spheres in the Thornton et al. (2012) simulation
is given in (b) for comparison (black circles). The simulation parameters are � = 25�,
e = 0.65, mA/mB = (rA/rB)

3, VA/V = 0.5 and h/rAB = 20. The vertical axes are the same
in the two figures.

In figure 2 we show, for the same radius ratios, the time evolution of the relative
concentration profiles, cA/c and cB/c, from an initial state, in which the two species
are perfectly mixed, to a steady state, with only large particles in the top layers and a
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Thornton et al. (2012) simulations 
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Relative concentration profiles of large and 
small spheres   
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in the two figures.

In figure 2 we show, for the same radius ratios, the time evolution of the relative
concentration profiles, cA/c and cB/c, from an initial state, in which the two species
are perfectly mixed, to a steady state, with only large particles in the top layers and a

The evolution of segregation in binary mixtures 415

4000 8000 12 0000

0.2

0.4

0.6

0.8

1.0(a)

0 2000 4000 6000

(b)

FIGURE 1. (Colour online) Predicted COMs of large spheres (dashed blue) and small
spheres (solid red) and those measured by Thornton et al. (2012) (large spheres, blue
stars; small spheres, red circles) for two radius ratios and the same material density:
(a) rA/rB = 1.1, mA/mB = (1.1)3; (b) rA/rB = 1.3, mA/mB = (1.3)3. The other simulation
parameters are � = 25�, e = 0.65, VA/V = 0.5 and h/rAB = 20. The vertical axes are the
same in the two figures.

0 0.2 0.4 0.6 0.8 1.0

(b)

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0(a)

FIGURE 2. (Colour online) Predicted relative concentration profiles of large spheres
(increasing functions, blue lines) and small spheres (decreasing functions, red lines) for
two radius ratios at four equally spaced steps 1⌧ of dimensionless time units, from
the initial state to the steady state: (a) rA/rB = 1.1, (b) rA/rB = 1.3. The profile of
steady relative concentration for the small spheres in the Thornton et al. (2012) simulation
is given in (b) for comparison (black circles). The simulation parameters are � = 25�,
e = 0.65, mA/mB = (rA/rB)

3, VA/V = 0.5 and h/rAB = 20. The vertical axes are the same
in the two figures.

In figure 2 we show, for the same radius ratios, the time evolution of the relative
concentration profiles, cA/c and cB/c, from an initial state, in which the two species
are perfectly mixed, to a steady state, with only large particles in the top layers and a

The evolution of segregation in binary mixtures 415

4000 8000 12 0000

0.2

0.4

0.6

0.8

1.0(a)

0 2000 4000 6000

(b)

FIGURE 1. (Colour online) Predicted COMs of large spheres (dashed blue) and small
spheres (solid red) and those measured by Thornton et al. (2012) (large spheres, blue
stars; small spheres, red circles) for two radius ratios and the same material density:
(a) rA/rB = 1.1, mA/mB = (1.1)3; (b) rA/rB = 1.3, mA/mB = (1.3)3. The other simulation
parameters are � = 25�, e = 0.65, VA/V = 0.5 and h/rAB = 20. The vertical axes are the
same in the two figures.

0 0.2 0.4 0.6 0.8 1.0

(b)

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0(a)

FIGURE 2. (Colour online) Predicted relative concentration profiles of large spheres
(increasing functions, blue lines) and small spheres (decreasing functions, red lines) for
two radius ratios at four equally spaced steps 1⌧ of dimensionless time units, from
the initial state to the steady state: (a) rA/rB = 1.1, (b) rA/rB = 1.3. The profile of
steady relative concentration for the small spheres in the Thornton et al. (2012) simulation
is given in (b) for comparison (black circles). The simulation parameters are � = 25�,
e = 0.65, mA/mB = (rA/rB)

3, VA/V = 0.5 and h/rAB = 20. The vertical axes are the same
in the two figures.

In figure 2 we show, for the same radius ratios, the time evolution of the relative
concentration profiles, cA/c and cB/c, from an initial state, in which the two species
are perfectly mixed, to a steady state, with only large particles in the top layers and a

The evolution of segregation in binary mixtures 415

4000 8000 12 0000

0.2

0.4

0.6

0.8

1.0(a)

0 2000 4000 6000

(b)

FIGURE 1. (Colour online) Predicted COMs of large spheres (dashed blue) and small
spheres (solid red) and those measured by Thornton et al. (2012) (large spheres, blue
stars; small spheres, red circles) for two radius ratios and the same material density:
(a) rA/rB = 1.1, mA/mB = (1.1)3; (b) rA/rB = 1.3, mA/mB = (1.3)3. The other simulation
parameters are � = 25�, e = 0.65, VA/V = 0.5 and h/rAB = 20. The vertical axes are the
same in the two figures.

0 0.2 0.4 0.6 0.8 1.0

(b)

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0(a)

FIGURE 2. (Colour online) Predicted relative concentration profiles of large spheres
(increasing functions, blue lines) and small spheres (decreasing functions, red lines) for
two radius ratios at four equally spaced steps 1⌧ of dimensionless time units, from
the initial state to the steady state: (a) rA/rB = 1.1, (b) rA/rB = 1.3. The profile of
steady relative concentration for the small spheres in the Thornton et al. (2012) simulation
is given in (b) for comparison (black circles). The simulation parameters are � = 25�,
e = 0.65, mA/mB = (rA/rB)

3, VA/V = 0.5 and h/rAB = 20. The vertical axes are the same
in the two figures.

In figure 2 we show, for the same radius ratios, the time evolution of the relative
concentration profiles, cA/c and cB/c, from an initial state, in which the two species
are perfectly mixed, to a steady state, with only large particles in the top layers and a



Università degli Studi di Trento 30/04/16 

Michele Larcher 19 

Wiederseiner et al. (2011) EXP. 
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serve any particle dislodged from the tape, but we could not
ensure that this never happened. Tests with different rough-
ness sizes were conducted and we finally selected 1 mm
particles for the roughness because they allowed us to obtain
uniform depth flows over a wider range of flow rates.

We used binary mixtures of small beads !ranging from
0.75 to 1 mm in diameter" and large beads !2 mm in diam-
eter, with a narrow distribution around this value". For both
sizes, the density was 2500 kg /m3. Small beads were trans-
parent, while the larger ones were colored in black; this
choice produced the best contrast for our images. To avoid
electrostatic effects resulting from particle-particle and
particle-sidewall friction, we grounded all metallic pieces
!sieve, hopper, and frame". After each run, the particles were
collected in a bin placed below the flume outlet; then they
were poured in a cylindrical copper duct to remove electric
charges as much as possible. Particles were also sieved and
reused for the next experiment. Experiments were run under
well controlled conditions !50% humidity, 25 °C tempera-
ture". The flow rates of small particles ranged from 20 to
100 g s−1, while the flow rates of large particles were in the
35–60 g s−1 range !see Table I".

Initially, each bead class was placed in a separate reser-
voir attached to the flume inlet. As sketched in Fig. 2, the
reservoirs were separated by a splitter plate, whose inclina-
tion partially controlled flow rates of both the large and small
beads; they were supplied with beads by two cylindrical hop-
pers. There were numerous constraints that made the design
of the splitter and reservoirs difficult. First, the velocity pro-
file had to be as continuous as possible, which implied that
the splitter plate had to be inclined at a shallow slope !i.e.,

parallel to the flume base" in order to avoid disturbances.
Second, the velocity mismatch between small and large
beads at their interface needed to be as low as possible.
Third, the position and inclination of the splitter plate had to
vary in order to adjust the respective inflow rate of large and
small particles. After much trial and error, a deflecting plate
was added in the lower reservoir to help the large particles to
follow streamlines parallel to the base; the walls of the upper
reservoir containing small particles were made rougher to
reduce their velocity.

B. Image processing

In order to investigate how small and large particles seg-
regate when flowing down the flume under steady flow con-
ditions, small beads were injected from above while large
particles crept along the flume base. The small particles rap-
idly percolated to the bottom, while the large ones drifted to
the top of the flow. In this setting, the temporal vertical seg-

TABLE I. Inflow flow-depth h1 and h2 in millimeters !see Fig. 2"; duration of the experiment in seconds; mass flow rates in large and small particles, Qlarge
and Qsmall, respectively, in g/s; flow-depth h !in millimeters" at different positions !in centimeters". All experiments were conducted at !=29°.

Run h1 h2 texpt Qlarge Qsmall

h

x=0 x=3.5 x=50 x=100 x=180 x=260

1 25.4 6.3 71.5 55.6 22.3 31.7 24.0 24.0 21.5 20.5 17.0

2 25.4 8.3 94.5 47.5 49.0 33.7 23.0 26.5 25.0 21.5 17.0

3 25.4 10.3 85.6 47.0 60.9 35.7 23.5 26.0 25.0 22.5 17.5

4 25.4 12.3 86.9 41.8 75.8 37.7 24.5 25.0 25.0 23.5 18.0

5 25.4 14.3 90.2 40.8 92.9 39.7 20.5 24.0 26.0 26.5 21.0

6 31.7 6.0 66.9 58.8 15.1 37.7 26.5 23.0 20.0 19.5 17.0

7 31.7 8.0 63.5 54.5 26.3 39.7 27.5 25.0 22.0 20.0 17.0

8 31.7 10.0 66.5 49.9 38.5 41.7 28.0 26.0 25.0 21.5 17.5

9 31.7 12.0 64.3 47.2 57.5 43.7 29.0 27.0 28.0 25.0 19.0

10 31.7 14.0 62.1 40.4 72.6 45.7 30.0 31.0 31.5 29.0 21.0
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FIG. 2. !Color online" Sketch of the feeding system. The arrowed arcs
indicate that the plates can be tilted.

013301-5 Experimental investigation into segregating granular flows Phys. Fluids 23, 013301 !2011"

Downloaded 18 Dec 2012 to 132.236.27.111. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

•  Flume: 3 m long, 2 cm wide 

•  Inclination: 0 - 45°, rigid bumpy bed 

•  Spherical glass beads 

•  rA = 2 mm; rB = 1 mm; ρs = 2500 kg/m3 
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FIGURE 3. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at six
different locations between the origin and the section at which the asymptotic solution
is established: (a) x/L = 0, (b) x/L = 0.01, (c) x/L = 0.25, (d) x/L = 0.5, (e) x/L = 0.75,
(f ) x/L = 1. The simulation parameters are � = 29�, e = 0.65, rA/rB = 2, mA/mB = (rA/rB)

3,
VA/V = 0.62 and h/rAB = 16. The profile of the relative concentration of small spheres in
the experiments of Wiederseiner et al. (2011) (black circles) is given for comparison. The
vertical axes are the same in all of the figures.

clear dominance of small particles at the bottom, but some large particles, nonetheless,
still present.

4.2. Wiederseiner et al. (2011) experiments
Wiederseiner et al. (2011) performed laboratory experiments on a chute with an
inclination � = 29�. They used a binary mixture of glass beads with a radius ratio
of rA/rB = 2 and showed how the relative concentration of the two species evolved
from a position x/L = 0.01 very close to the origin of the chute to the section at
x/L = 1 where the asymptotic solution was reached. They observed that the evolution
of segregation was greatly influenced by the inflow rates.

The results, presented in dimensionless form in figure 3, show good agreement, even
if a slightly longer distance was needed in order to reach the steady state.

4.3. Savage & Lun (1988) experiments
Savage & Lun (1988) performed experiments on size segregation in inclined chute
flows almost three decades ago, but their findings are still among the most cited on
granular segregation. Although they are known as the basis for the random fluctuating
sieve model, they also provide a valuable experimental dataset on the longitudinal
evolution of size segregation in binary mixtures. They used spherical polystyrene
beads with mean diameters of 1.600 and 0.943 mm and a mean angle of repose
of 25�. The flume was 1 m long with 75 mm spaced sidewalls. A series of splitter
plates was fixed at the downstream end of the flume and used to separate the flow
into a maximum of five distinct layers, in order to measure the concentrations of
the two species in each bin. The mixture was fed in a perfectly mixed state from a
hopper, which could be moved to any position along the chute in order to study the
evolution of granular segregation in the longitudinal direction.
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FIQURE 7 .  Schematic diagram of inclined-chute segregation apparatus. 
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7. Experimental measurements 
Experiments were performed using the apparatus shown in figure 7. A Plexiglas 

hopper contained randomly mixed spherical polystyrene beads having a specific 
gravity of 1.095. The binary mixture was made up of large beads ranging from 1.40 
to 1.68 mm in diameter and small 0.85 to 1.0 mm beads, having mean particle 
diameters of 1.6 and 0.943 mm respectively, giving a diameter ratio of 0.589. The size 
distributions for the small and large particles are shown in figure 8. These were 
determined by measuring the diameters of samples of several hundred particles with 
a micrometer. The mean angle of repose for the 'monosized' beads is 25". No 

•  Flume 1 m long; 75 mm spaced 
sidewalls 

•  Spherical polystyrene beads 

•  rA = 0.8 mm; rB = 0.47 mm 
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FIGURE 4. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at seven
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 3, (c) x/h = 7, (d) x/h = 13, (e) x/h = 23, (f ) x/h = 37,
(g) x/h = 50. The simulation parameters are � = 26�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3,
VA/V = 0.9 and h/rAB = 11.8. The profile of the relative concentration of small spheres in
the experiments of Savage & Lun (1988) (black dash-dotted line) is given for comparison.
The vertical axes are the same in all figures.
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FIGURE 5. (Colour online) Predicted evolution with distance of (a) the COMs and (b)
the depth-averaged relative concentrations of large spheres (dashed blue) and small spheres
(solid red). The simulation parameters are the same as in figure 4. The experimental results
of Savage & Lun (1988) for the large (blue stars) and small (red circles) spheres are given
for comparison.

In figure 4 we show a comparison between the experimental results of Savage &
Lun (1988) and the prediction of the theory for the case of a 10 % initial concentration
of fine particles, VA/V = 0.9, an angle of inclination of � = 26� and a flow depth of
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FIGURE 6. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at four
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 5, (c) x/h = 10, (d) x/h = 20. The simulation parameters
are � = 26�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3, VA/V = 0.9 and h/rAB = 7.8. The profile
of the relative concentration of small spheres in the experiments of Savage & Lun (1988)
(black dash-dotted line) is given for comparison. The vertical axes are the same in all
figures.

15 mm. Considering the experimental technique adopted to measure the segregation,
based on a limited number of splitter plates and bins, the agreement is good, both
in terms of the shapes of the concentration profiles and in terms of the longitudinal
distance needed in order to reach the fully developed state. In particular, in figure 5
we show the evolution of the positions of the COMs of the large and small spheres
with longitudinal distance and that of the depth-averaged concentrations of the two
species. As already mentioned, the change of the relative depth-averaged concentration
of the two species in the longitudinal direction is a consequence of the variation of
the mixture velocity across the flow.

Good agreement between experimental measurement and theoretical predictions is
obtained also for a flow depth of 10 mm, when all of the other parameters are kept
constant. In this case, the fully developed segregation is obtained at a distance that is
less than the half of that needed for the thicker flow of the previous case, as shown
in figures 6 and 7.

In figures 8–11, we present similar comparisons, but for a channel with a steeper
slope. In this case, we also observe a slower segregation for the thicker flow.
Moreover, we observe that the segregation also becomes slower if the slope is
increased, in good agreement with experimental data. The increased advection due
to the larger slope appears to have a more significant influence on the segregation
distance than the increase in particle agitation.

We obtain similar agreement with the results of the experiments of Savage &
Lun (1988) when the relative volume of small particles is slightly increased, so
VA/VB = 0.85. In this case, the observation that the segregation distance is shorter
when the smaller species is more dilute is confirmed by the theory.
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15 mm. Considering the experimental technique adopted to measure the segregation,
based on a limited number of splitter plates and bins, the agreement is good, both
in terms of the shapes of the concentration profiles and in terms of the longitudinal
distance needed in order to reach the fully developed state. In particular, in figure 5
we show the evolution of the positions of the COMs of the large and small spheres
with longitudinal distance and that of the depth-averaged concentrations of the two
species. As already mentioned, the change of the relative depth-averaged concentration
of the two species in the longitudinal direction is a consequence of the variation of
the mixture velocity across the flow.

Good agreement between experimental measurement and theoretical predictions is
obtained also for a flow depth of 10 mm, when all of the other parameters are kept
constant. In this case, the fully developed segregation is obtained at a distance that is
less than the half of that needed for the thicker flow of the previous case, as shown
in figures 6 and 7.

In figures 8–11, we present similar comparisons, but for a channel with a steeper
slope. In this case, we also observe a slower segregation for the thicker flow.
Moreover, we observe that the segregation also becomes slower if the slope is
increased, in good agreement with experimental data. The increased advection due
to the larger slope appears to have a more significant influence on the segregation
distance than the increase in particle agitation.

We obtain similar agreement with the results of the experiments of Savage &
Lun (1988) when the relative volume of small particles is slightly increased, so
VA/VB = 0.85. In this case, the observation that the segregation distance is shorter
when the smaller species is more dilute is confirmed by the theory.
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15 mm. Considering the experimental technique adopted to measure the segregation,
based on a limited number of splitter plates and bins, the agreement is good, both
in terms of the shapes of the concentration profiles and in terms of the longitudinal
distance needed in order to reach the fully developed state. In particular, in figure 5
we show the evolution of the positions of the COMs of the large and small spheres
with longitudinal distance and that of the depth-averaged concentrations of the two
species. As already mentioned, the change of the relative depth-averaged concentration
of the two species in the longitudinal direction is a consequence of the variation of
the mixture velocity across the flow.

Good agreement between experimental measurement and theoretical predictions is
obtained also for a flow depth of 10 mm, when all of the other parameters are kept
constant. In this case, the fully developed segregation is obtained at a distance that is
less than the half of that needed for the thicker flow of the previous case, as shown
in figures 6 and 7.

In figures 8–11, we present similar comparisons, but for a channel with a steeper
slope. In this case, we also observe a slower segregation for the thicker flow.
Moreover, we observe that the segregation also becomes slower if the slope is
increased, in good agreement with experimental data. The increased advection due
to the larger slope appears to have a more significant influence on the segregation
distance than the increase in particle agitation.

We obtain similar agreement with the results of the experiments of Savage &
Lun (1988) when the relative volume of small particles is slightly increased, so
VA/VB = 0.85. In this case, the observation that the segregation distance is shorter
when the smaller species is more dilute is confirmed by the theory.
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15 mm. Considering the experimental technique adopted to measure the segregation,
based on a limited number of splitter plates and bins, the agreement is good, both
in terms of the shapes of the concentration profiles and in terms of the longitudinal
distance needed in order to reach the fully developed state. In particular, in figure 5
we show the evolution of the positions of the COMs of the large and small spheres
with longitudinal distance and that of the depth-averaged concentrations of the two
species. As already mentioned, the change of the relative depth-averaged concentration
of the two species in the longitudinal direction is a consequence of the variation of
the mixture velocity across the flow.

Good agreement between experimental measurement and theoretical predictions is
obtained also for a flow depth of 10 mm, when all of the other parameters are kept
constant. In this case, the fully developed segregation is obtained at a distance that is
less than the half of that needed for the thicker flow of the previous case, as shown
in figures 6 and 7.

In figures 8–11, we present similar comparisons, but for a channel with a steeper
slope. In this case, we also observe a slower segregation for the thicker flow.
Moreover, we observe that the segregation also becomes slower if the slope is
increased, in good agreement with experimental data. The increased advection due
to the larger slope appears to have a more significant influence on the segregation
distance than the increase in particle agitation.

We obtain similar agreement with the results of the experiments of Savage &
Lun (1988) when the relative volume of small particles is slightly increased, so
VA/VB = 0.85. In this case, the observation that the segregation distance is shorter
when the smaller species is more dilute is confirmed by the theory.
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15 mm. Considering the experimental technique adopted to measure the segregation,
based on a limited number of splitter plates and bins, the agreement is good, both
in terms of the shapes of the concentration profiles and in terms of the longitudinal
distance needed in order to reach the fully developed state. In particular, in figure 5
we show the evolution of the positions of the COMs of the large and small spheres
with longitudinal distance and that of the depth-averaged concentrations of the two
species. As already mentioned, the change of the relative depth-averaged concentration
of the two species in the longitudinal direction is a consequence of the variation of
the mixture velocity across the flow.

Good agreement between experimental measurement and theoretical predictions is
obtained also for a flow depth of 10 mm, when all of the other parameters are kept
constant. In this case, the fully developed segregation is obtained at a distance that is
less than the half of that needed for the thicker flow of the previous case, as shown
in figures 6 and 7.

In figures 8–11, we present similar comparisons, but for a channel with a steeper
slope. In this case, we also observe a slower segregation for the thicker flow.
Moreover, we observe that the segregation also becomes slower if the slope is
increased, in good agreement with experimental data. The increased advection due
to the larger slope appears to have a more significant influence on the segregation
distance than the increase in particle agitation.

We obtain similar agreement with the results of the experiments of Savage &
Lun (1988) when the relative volume of small particles is slightly increased, so
VA/VB = 0.85. In this case, the observation that the segregation distance is shorter
when the smaller species is more dilute is confirmed by the theory.

418 M. Larcher and J. T. Jenkins

0.5 1.00

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

(a) (b) (c) (d)

FIGURE 6. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at four
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 5, (c) x/h = 10, (d) x/h = 20. The simulation parameters
are � = 26�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3, VA/V = 0.9 and h/rAB = 7.8. The profile
of the relative concentration of small spheres in the experiments of Savage & Lun (1988)
(black dash-dotted line) is given for comparison. The vertical axes are the same in all
figures.

15 mm. Considering the experimental technique adopted to measure the segregation,
based on a limited number of splitter plates and bins, the agreement is good, both
in terms of the shapes of the concentration profiles and in terms of the longitudinal
distance needed in order to reach the fully developed state. In particular, in figure 5
we show the evolution of the positions of the COMs of the large and small spheres
with longitudinal distance and that of the depth-averaged concentrations of the two
species. As already mentioned, the change of the relative depth-averaged concentration
of the two species in the longitudinal direction is a consequence of the variation of
the mixture velocity across the flow.

Good agreement between experimental measurement and theoretical predictions is
obtained also for a flow depth of 10 mm, when all of the other parameters are kept
constant. In this case, the fully developed segregation is obtained at a distance that is
less than the half of that needed for the thicker flow of the previous case, as shown
in figures 6 and 7.

In figures 8–11, we present similar comparisons, but for a channel with a steeper
slope. In this case, we also observe a slower segregation for the thicker flow.
Moreover, we observe that the segregation also becomes slower if the slope is
increased, in good agreement with experimental data. The increased advection due
to the larger slope appears to have a more significant influence on the segregation
distance than the increase in particle agitation.

We obtain similar agreement with the results of the experiments of Savage &
Lun (1988) when the relative volume of small particles is slightly increased, so
VA/VB = 0.85. In this case, the observation that the segregation distance is shorter
when the smaller species is more dilute is confirmed by the theory.
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FIGURE 7. (Colour online) Predicted evolution with distance of (a) the COMs and (b)
the depth-averaged relative concentrations of large spheres (dashed blue) and small spheres
(solid red). The simulation parameters are the same as those in figure 6. The experimental
results of Savage & Lun (1988) for the large (blue stars) and small (red circles) spheres
are given for comparison.
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FIGURE 8. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at eight
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 3, (c) x/h = 7, (d) x/h = 13, (e) x/h = 23, (f ) x/h = 37,
(g) x/h = 50, (h) x/h = 63. The simulation parameters are � = 28�, e = 0.7, rA/rB = 1.7,
mA/mB = (1.7)3, VA/V = 0.9 and h/rAB = 11.8. The profile of the relative concentration
of small spheres in the experiments of Savage & Lun (1988) (black dash-dotted line) is
given for comparison. The vertical axes are the same in all figures.

For given spheres and chute, the extended kinetic theory associates a unique volume
flow rate to each flow depth (Jenkins & Berzi 2010). Consequently, the success of
the theory in predicting the influence of depth on the evolution of segregation in the
experiments of Savage & Lun (1988) is equivalent to success in predicting the
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FIGURE 4. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at seven
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 3, (c) x/h = 7, (d) x/h = 13, (e) x/h = 23, (f ) x/h = 37,
(g) x/h = 50. The simulation parameters are � = 26�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3,
VA/V = 0.9 and h/rAB = 11.8. The profile of the relative concentration of small spheres in
the experiments of Savage & Lun (1988) (black dash-dotted line) is given for comparison.
The vertical axes are the same in all figures.
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FIGURE 5. (Colour online) Predicted evolution with distance of (a) the COMs and (b)
the depth-averaged relative concentrations of large spheres (dashed blue) and small spheres
(solid red). The simulation parameters are the same as in figure 4. The experimental results
of Savage & Lun (1988) for the large (blue stars) and small (red circles) spheres are given
for comparison.

In figure 4 we show a comparison between the experimental results of Savage &
Lun (1988) and the prediction of the theory for the case of a 10 % initial concentration
of fine particles, VA/V = 0.9, an angle of inclination of � = 26� and a flow depth of
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15 mm. Considering the experimental technique adopted to measure the segregation,
based on a limited number of splitter plates and bins, the agreement is good, both
in terms of the shapes of the concentration profiles and in terms of the longitudinal
distance needed in order to reach the fully developed state. In particular, in figure 5
we show the evolution of the positions of the COMs of the large and small spheres
with longitudinal distance and that of the depth-averaged concentrations of the two
species. As already mentioned, the change of the relative depth-averaged concentration
of the two species in the longitudinal direction is a consequence of the variation of
the mixture velocity across the flow.

Good agreement between experimental measurement and theoretical predictions is
obtained also for a flow depth of 10 mm, when all of the other parameters are kept
constant. In this case, the fully developed segregation is obtained at a distance that is
less than the half of that needed for the thicker flow of the previous case, as shown
in figures 6 and 7.

In figures 8–11, we present similar comparisons, but for a channel with a steeper
slope. In this case, we also observe a slower segregation for the thicker flow.
Moreover, we observe that the segregation also becomes slower if the slope is
increased, in good agreement with experimental data. The increased advection due
to the larger slope appears to have a more significant influence on the segregation
distance than the increase in particle agitation.

We obtain similar agreement with the results of the experiments of Savage &
Lun (1988) when the relative volume of small particles is slightly increased, so
VA/VB = 0.85. In this case, the observation that the segregation distance is shorter
when the smaller species is more dilute is confirmed by the theory.
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FIGURE 4. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at seven
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 3, (c) x/h = 7, (d) x/h = 13, (e) x/h = 23, (f ) x/h = 37,
(g) x/h = 50. The simulation parameters are � = 26�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3,
VA/V = 0.9 and h/rAB = 11.8. The profile of the relative concentration of small spheres in
the experiments of Savage & Lun (1988) (black dash-dotted line) is given for comparison.
The vertical axes are the same in all figures.
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In figure 4 we show a comparison between the experimental results of Savage &
Lun (1988) and the prediction of the theory for the case of a 10 % initial concentration
of fine particles, VA/V = 0.9, an angle of inclination of � = 26� and a flow depth of
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different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 3, (c) x/h = 7, (d) x/h = 13, (e) x/h = 23, (f ) x/h = 37,
(g) x/h = 50, (h) x/h = 63. The simulation parameters are � = 28�, e = 0.7, rA/rB = 1.7,
mA/mB = (1.7)3, VA/V = 0.9 and h/rAB = 11.8. The profile of the relative concentration
of small spheres in the experiments of Savage & Lun (1988) (black dash-dotted line) is
given for comparison. The vertical axes are the same in all figures.

For given spheres and chute, the extended kinetic theory associates a unique volume
flow rate to each flow depth (Jenkins & Berzi 2010). Consequently, the success of
the theory in predicting the influence of depth on the evolution of segregation in the
experiments of Savage & Lun (1988) is equivalent to success in predicting the
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In figure 4 we show a comparison between the experimental results of Savage &
Lun (1988) and the prediction of the theory for the case of a 10 % initial concentration
of fine particles, VA/V = 0.9, an angle of inclination of � = 26� and a flow depth of
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The vertical axes are the same in all figures.
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mA/mB = (1.7)3, VA/V = 0.9 and h/rAB = 11.8. The profile of the relative concentration
of small spheres in the experiments of Savage & Lun (1988) (black dash-dotted line) is
given for comparison. The vertical axes are the same in all figures.

For given spheres and chute, the extended kinetic theory associates a unique volume
flow rate to each flow depth (Jenkins & Berzi 2010). Consequently, the success of
the theory in predicting the influence of depth on the evolution of segregation in the
experiments of Savage & Lun (1988) is equivalent to success in predicting the
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FIGURE 10. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at five
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 5, (c) x/h = 10, (d) x/h = 20, (e) x/h = 35. The
simulation parameters are � = 28�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3, VA/V = 0.9 and
h/rAB = 7.8. The profile of the relative concentration of small spheres in the experiments
of Savage & Lun (1988) (black dash-dotted line) is given for comparison. The vertical
axes are the same in all figures.

influence of the inflow rate. That is, for larger flow depths, which are equivalent to
larger inflow rates, the segregation evolution predicted by the theory is slower, as
observed.
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In figure 4 we show a comparison between the experimental results of Savage &
Lun (1988) and the prediction of the theory for the case of a 10 % initial concentration
of fine particles, VA/V = 0.9, an angle of inclination of � = 26� and a flow depth of
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FIGURE 6. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at four
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 5, (c) x/h = 10, (d) x/h = 20. The simulation parameters
are � = 26�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3, VA/V = 0.9 and h/rAB = 7.8. The profile
of the relative concentration of small spheres in the experiments of Savage & Lun (1988)
(black dash-dotted line) is given for comparison. The vertical axes are the same in all
figures.

15 mm. Considering the experimental technique adopted to measure the segregation,
based on a limited number of splitter plates and bins, the agreement is good, both
in terms of the shapes of the concentration profiles and in terms of the longitudinal
distance needed in order to reach the fully developed state. In particular, in figure 5
we show the evolution of the positions of the COMs of the large and small spheres
with longitudinal distance and that of the depth-averaged concentrations of the two
species. As already mentioned, the change of the relative depth-averaged concentration
of the two species in the longitudinal direction is a consequence of the variation of
the mixture velocity across the flow.

Good agreement between experimental measurement and theoretical predictions is
obtained also for a flow depth of 10 mm, when all of the other parameters are kept
constant. In this case, the fully developed segregation is obtained at a distance that is
less than the half of that needed for the thicker flow of the previous case, as shown
in figures 6 and 7.

In figures 8–11, we present similar comparisons, but for a channel with a steeper
slope. In this case, we also observe a slower segregation for the thicker flow.
Moreover, we observe that the segregation also becomes slower if the slope is
increased, in good agreement with experimental data. The increased advection due
to the larger slope appears to have a more significant influence on the segregation
distance than the increase in particle agitation.

We obtain similar agreement with the results of the experiments of Savage &
Lun (1988) when the relative volume of small particles is slightly increased, so
VA/VB = 0.85. In this case, the observation that the segregation distance is shorter
when the smaller species is more dilute is confirmed by the theory.
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mA/mB = (1.7)3, VA/V = 0.9 and h/rAB = 11.8. The profile of the relative concentration
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For given spheres and chute, the extended kinetic theory associates a unique volume
flow rate to each flow depth (Jenkins & Berzi 2010). Consequently, the success of
the theory in predicting the influence of depth on the evolution of segregation in the
experiments of Savage & Lun (1988) is equivalent to success in predicting the
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of Savage & Lun (1988) (black dash-dotted line) is given for comparison. The vertical
axes are the same in all figures.

influence of the inflow rate. That is, for larger flow depths, which are equivalent to
larger inflow rates, the segregation evolution predicted by the theory is slower, as
observed.

420 M. Larcher and J. T. Jenkins

20 40 600

0.2

0.4

0.6

0.8

1.0(a)

20 40 600

0.2

0.4

0.6

0.8

1.0(b)

FIGURE 9. (Colour online) Predicted evolution with distance of (a) the COMs and (b)
the depth-averaged relative concentrations of large spheres (dashed blue) and small spheres
(solid red). The simulation parameters are the same as those in figure 8. The experimental
results of Savage & Lun (1988) for the large (blue stars) and small (red circles) spheres
are given for comparison.
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FIGURE 10. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at five
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 5, (c) x/h = 10, (d) x/h = 20, (e) x/h = 35. The
simulation parameters are � = 28�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3, VA/V = 0.9 and
h/rAB = 7.8. The profile of the relative concentration of small spheres in the experiments
of Savage & Lun (1988) (black dash-dotted line) is given for comparison. The vertical
axes are the same in all figures.

influence of the inflow rate. That is, for larger flow depths, which are equivalent to
larger inflow rates, the segregation evolution predicted by the theory is slower, as
observed.
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FIGURE 4. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at seven
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 3, (c) x/h = 7, (d) x/h = 13, (e) x/h = 23, (f ) x/h = 37,
(g) x/h = 50. The simulation parameters are � = 26�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3,
VA/V = 0.9 and h/rAB = 11.8. The profile of the relative concentration of small spheres in
the experiments of Savage & Lun (1988) (black dash-dotted line) is given for comparison.
The vertical axes are the same in all figures.
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FIGURE 5. (Colour online) Predicted evolution with distance of (a) the COMs and (b)
the depth-averaged relative concentrations of large spheres (dashed blue) and small spheres
(solid red). The simulation parameters are the same as in figure 4. The experimental results
of Savage & Lun (1988) for the large (blue stars) and small (red circles) spheres are given
for comparison.

In figure 4 we show a comparison between the experimental results of Savage &
Lun (1988) and the prediction of the theory for the case of a 10 % initial concentration
of fine particles, VA/V = 0.9, an angle of inclination of � = 26� and a flow depth of
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FIGURE 6. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at four
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 5, (c) x/h = 10, (d) x/h = 20. The simulation parameters
are � = 26�, e = 0.7, rA/rB = 1.7, mA/mB = (1.7)3, VA/V = 0.9 and h/rAB = 7.8. The profile
of the relative concentration of small spheres in the experiments of Savage & Lun (1988)
(black dash-dotted line) is given for comparison. The vertical axes are the same in all
figures.

15 mm. Considering the experimental technique adopted to measure the segregation,
based on a limited number of splitter plates and bins, the agreement is good, both
in terms of the shapes of the concentration profiles and in terms of the longitudinal
distance needed in order to reach the fully developed state. In particular, in figure 5
we show the evolution of the positions of the COMs of the large and small spheres
with longitudinal distance and that of the depth-averaged concentrations of the two
species. As already mentioned, the change of the relative depth-averaged concentration
of the two species in the longitudinal direction is a consequence of the variation of
the mixture velocity across the flow.

Good agreement between experimental measurement and theoretical predictions is
obtained also for a flow depth of 10 mm, when all of the other parameters are kept
constant. In this case, the fully developed segregation is obtained at a distance that is
less than the half of that needed for the thicker flow of the previous case, as shown
in figures 6 and 7.

In figures 8–11, we present similar comparisons, but for a channel with a steeper
slope. In this case, we also observe a slower segregation for the thicker flow.
Moreover, we observe that the segregation also becomes slower if the slope is
increased, in good agreement with experimental data. The increased advection due
to the larger slope appears to have a more significant influence on the segregation
distance than the increase in particle agitation.

We obtain similar agreement with the results of the experiments of Savage &
Lun (1988) when the relative volume of small particles is slightly increased, so
VA/VB = 0.85. In this case, the observation that the segregation distance is shorter
when the smaller species is more dilute is confirmed by the theory.
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FIGURE 7. (Colour online) Predicted evolution with distance of (a) the COMs and (b)
the depth-averaged relative concentrations of large spheres (dashed blue) and small spheres
(solid red). The simulation parameters are the same as those in figure 6. The experimental
results of Savage & Lun (1988) for the large (blue stars) and small (red circles) spheres
are given for comparison.
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FIGURE 8. (Colour online) Predicted evolution with distance of the relative concentration
profiles of large spheres (dashed blue lines) and small spheres (solid red lines) at eight
different locations between the origin and the point at which the asymptotic solution is
established: (a) x/h = 0, (b) x/h = 3, (c) x/h = 7, (d) x/h = 13, (e) x/h = 23, (f ) x/h = 37,
(g) x/h = 50, (h) x/h = 63. The simulation parameters are � = 28�, e = 0.7, rA/rB = 1.7,
mA/mB = (1.7)3, VA/V = 0.9 and h/rAB = 11.8. The profile of the relative concentration
of small spheres in the experiments of Savage & Lun (1988) (black dash-dotted line) is
given for comparison. The vertical axes are the same in all figures.

For given spheres and chute, the extended kinetic theory associates a unique volume
flow rate to each flow depth (Jenkins & Berzi 2010). Consequently, the success of
the theory in predicting the influence of depth on the evolution of segregation in the
experiments of Savage & Lun (1988) is equivalent to success in predicting the

The evolution of segregation in binary mixtures 421

10 20 300

0.2

0.4

0.6

0.8

1.0(a)

10 20 300

0.2

0.4

0.6

0.8

1.0(b)

FIGURE 11. (Colour online) Predicted evolution with distance of (a) the COMs and (b)
the depth-averaged relative concentrations of large spheres (dashed blue) and small spheres
(solid red). The simulation parameters are the same as those in figure 10. The experimental
results of Savage & Lun (1988) for the large (blue stars) and small (red circles) spheres
are given for comparison.

5. Two additional examples

5.1. Equal sizes, different masses
Up to this point, we have only analysed problems of size segregation of spheres
made of the same material; in this case, the larger particles tend to rise (figure 12).
However, the theory is also suitable for predicting profiles of relative concentration for
binary mixtures of particles made of different materials. In particular, in agreement
with what is shown by others (Drahun & Bridgwater 1983; Alonso et al. 1991; Jain
et al. 2005a,b; Larcher & Jenkins 2013) for spheres of the same size made of different
materials, we predict that the heavier spheres stay down, while the lighter spheres stay
up (figure 13).

5.2. No segregation
Given the structure of (3.10) and (3.15) and the analogy with the steady segregation
problem (Larcher & Jenkins 2010, 2013), we expect that mixtures of particles with
particular size and mass ratios will exhibit perfect mixing. In the steady case, in order
to have no gradient of X normal to the bed and, therefore, no segregation, those
terms in (4.3) that involve �r and �m must vanish. In figures 14 and 15, we show
the evolution in time from an initial unmixed state to a final perfectly mixed state of
the relative concentration profiles of a mixture of spheres for which this condition is
valid, characterized by a radius ratio of rA/rB = 1.0375, also shown in figure 12 for
spheres with the same material density, and a mass ratio of mA/mB = 2(rA/rB)

3. The
same density ratio was also shown in figure 13 for particles of the same size. The
asymptotic solution is independent of the initial condition, which does affect the time
needed to reach it. Four decimal places are retained in the specification of the radius
ratio because of the extreme sensitivity of the mixing to the ratio.
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rA/rB = 1, mA/mB = 2;  heavy (blue), light (red) 
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FIGURE 12. (Colour online) Predicted profiles of the relative concentration of large
spheres (dashed blue lines) and small spheres (solid red lines) for the radius ratio rA/rB =
1.0375 and spheres made of the same material, mA/mB = (rA/rB)

3, at five equally spaced
steps, each of 10 000 dimensionless time units (a–e). The simulation parameters are
� = 25�, e = 0.7, VA/V = 0.5 and h/rAB = 20. The vertical axes are the same in all figures.
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FIGURE 13. (Colour online) Predicted relative concentration profiles of heavy spheres
(blue dashed lines) and light spheres (solid red lines) for spheres of the same size,
rA/rB = 1, and a mass ratio of mA/mB = 2, at five equally spaced time steps, each of 4500
dimensionless time units (a–e). The simulation parameters are � = 25�, e = 0.7, VA/V = 0.5
and h/rAB = 20. The vertical axes are the same in all figures.

As mentioned already for the steady theory (Larcher & Jenkins 2013), a necessary
condition for no segregation is a uniform mixture concentration through the flow, a
condition that is often observed, at least in first approximation, in dense gravity-driven
granular flows with a free surface.

Tunuguntla, Bokhove & Thornton (2014) have carried out discrete numerical
simulations to test for situations in which there is no segregation. However, the
angle of inclination and the collision parameters that they employ do not result in
a sufficiently dense flow for the extended kinetic theory to apply; see, for example,
figure 4(b) of Silbert et al. (2001). In such moderately dense flows, the mixture

422 M. Larcher and J. T. Jenkins

0.5 1.00

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

(a) (b) (c) (d) (e)

FIGURE 12. (Colour online) Predicted profiles of the relative concentration of large
spheres (dashed blue lines) and small spheres (solid red lines) for the radius ratio rA/rB =
1.0375 and spheres made of the same material, mA/mB = (rA/rB)

3, at five equally spaced
steps, each of 10 000 dimensionless time units (a–e). The simulation parameters are
� = 25�, e = 0.7, VA/V = 0.5 and h/rAB = 20. The vertical axes are the same in all figures.
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FIGURE 13. (Colour online) Predicted relative concentration profiles of heavy spheres
(blue dashed lines) and light spheres (solid red lines) for spheres of the same size,
rA/rB = 1, and a mass ratio of mA/mB = 2, at five equally spaced time steps, each of 4500
dimensionless time units (a–e). The simulation parameters are � = 25�, e = 0.7, VA/V = 0.5
and h/rAB = 20. The vertical axes are the same in all figures.

As mentioned already for the steady theory (Larcher & Jenkins 2013), a necessary
condition for no segregation is a uniform mixture concentration through the flow, a
condition that is often observed, at least in first approximation, in dense gravity-driven
granular flows with a free surface.

Tunuguntla, Bokhove & Thornton (2014) have carried out discrete numerical
simulations to test for situations in which there is no segregation. However, the
angle of inclination and the collision parameters that they employ do not result in
a sufficiently dense flow for the extended kinetic theory to apply; see, for example,
figure 4(b) of Silbert et al. (2001). In such moderately dense flows, the mixture
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FIGURE 12. (Colour online) Predicted profiles of the relative concentration of large
spheres (dashed blue lines) and small spheres (solid red lines) for the radius ratio rA/rB =
1.0375 and spheres made of the same material, mA/mB = (rA/rB)

3, at five equally spaced
steps, each of 10 000 dimensionless time units (a–e). The simulation parameters are
� = 25�, e = 0.7, VA/V = 0.5 and h/rAB = 20. The vertical axes are the same in all figures.
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FIGURE 13. (Colour online) Predicted relative concentration profiles of heavy spheres
(blue dashed lines) and light spheres (solid red lines) for spheres of the same size,
rA/rB = 1, and a mass ratio of mA/mB = 2, at five equally spaced time steps, each of 4500
dimensionless time units (a–e). The simulation parameters are � = 25�, e = 0.7, VA/V = 0.5
and h/rAB = 20. The vertical axes are the same in all figures.

As mentioned already for the steady theory (Larcher & Jenkins 2013), a necessary
condition for no segregation is a uniform mixture concentration through the flow, a
condition that is often observed, at least in first approximation, in dense gravity-driven
granular flows with a free surface.

Tunuguntla, Bokhove & Thornton (2014) have carried out discrete numerical
simulations to test for situations in which there is no segregation. However, the
angle of inclination and the collision parameters that they employ do not result in
a sufficiently dense flow for the extended kinetic theory to apply; see, for example,
figure 4(b) of Silbert et al. (2001). In such moderately dense flows, the mixture
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FIGURE 14. (Colour online) Predicted relative concentration profiles of the large heavy
spheres (blue dashed lines) and small light spheres (solid red lines) for the radius ratio
rA/rB = 1.0375 and a mass ratio of mA/mB = 2(rA/rB)

3, at five equally spaced time steps,
from the initial state to the final perfectly mixed state, after 90 000 dimensionless time
units (a–e). Initially, all of the large heavy spheres are in the lower half of the flow. The
simulation parameters are � = 25�, e = 0.7, VA/V = 0.5 and h/rAB = 20. The vertical axes
are the same in all figures.

0.5 1.00

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

(a) (b) (c) (d) (e)

FIGURE 15. (Colour online) Predicted relative concentration profiles of large heavy
spheres (blue dashed lines) and small light spheres (red lines) for the radius ratio rA/rB =
1.0375 and a mass ratio of mA/mB = 2(rA/rB)

3, at five equally spaced time steps, from the
initial state to the final perfectly mixed state, after 108 000 dimensionless time units (a–e).
Initially, all of the small light spheres are in the lower half of the flow. The simulation
parameters are � = 25�, e = 0.7, VA/V = 0.5 and h/rAB = 20. The vertical axes are the
same in all figures.

volume fraction varies through the entire depth of the flow; its variation, and that
of the mixture temperature and mixture velocity, may be determined as a solution
to a boundary value problem phrased using the classical kinetic theory (Arnarson &
Jenkins 2000).
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rA/rB = 1.04, mA/mB = 2; heavy (blue), light (red) 
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FIGURE 14. (Colour online) Predicted relative concentration profiles of the large heavy
spheres (blue dashed lines) and small light spheres (solid red lines) for the radius ratio
rA/rB = 1.0375 and a mass ratio of mA/mB = 2(rA/rB)

3, at five equally spaced time steps,
from the initial state to the final perfectly mixed state, after 90 000 dimensionless time
units (a–e). Initially, all of the large heavy spheres are in the lower half of the flow. The
simulation parameters are � = 25�, e = 0.7, VA/V = 0.5 and h/rAB = 20. The vertical axes
are the same in all figures.
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FIGURE 15. (Colour online) Predicted relative concentration profiles of large heavy
spheres (blue dashed lines) and small light spheres (red lines) for the radius ratio rA/rB =
1.0375 and a mass ratio of mA/mB = 2(rA/rB)

3, at five equally spaced time steps, from the
initial state to the final perfectly mixed state, after 108 000 dimensionless time units (a–e).
Initially, all of the small light spheres are in the lower half of the flow. The simulation
parameters are � = 25�, e = 0.7, VA/V = 0.5 and h/rAB = 20. The vertical axes are the
same in all figures.

volume fraction varies through the entire depth of the flow; its variation, and that
of the mixture temperature and mixture velocity, may be determined as a solution
to a boundary value problem phrased using the classical kinetic theory (Arnarson &
Jenkins 2000).
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•  Governing equations based on the balances of 
mass, momentum and energy 

•  The flow reaches uniformity before 
segregation (DAB ∝ 1/G, µ ∝ G) 

•  Larger and lighter particles rise 
•  Slower segregation for thicker flows 
•  Slower evolution for steeper slopes 
•  Faster evolution if one species is diluted in the 

other 
•  No segregation for particular radii and mass 

combinations 
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