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(a) A typical sequence of side-
view images from the ini-
tially sessile drop to the run-
back threshold. Test condi-
tions were V = 50 µL and
↵ = 0�. The critical flow
speed was U

crit

= 17.7 m/s.
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(b) Final drop profiles, split by volume and inclination angle.
Plots show inclination angles of ↵ = 0�, 10�, 20�, 30�, beginning
at the top. Drops smaller than the Bo threshold in figure 9
are shown with solid lines; larger drops are shown with dashed
lines

Figure 23: Sideview drop profiles.

the profile as the flow speed increases. The pressure inside a sessile drop is higher than
that of the surrounding fluid due to the surface tension along the interface. Flow over the
drop and gravity combine to alter the pressure field both inside and outside the drop.
The e↵ects of these forces can be seen in the evolution of the drop profile.

Splitting reconstructed profiles into groups based on both inclination angle and drop
size relative to the Bond number threshold, figure 23(b) shows the final sub-critical
reconstructed sideview profile. The profile and band displayed are the mean and standard
deviation of a collection of drop profiles. Drops smaller than the Bo threshold in figure 9
possess a region of negative curvature on the upwind side of the drop. Larger drops whose
stability limits have been shown to be dominated by the force of gravity (see figure 10)
maintain configurations with curvature similar to the sessile drop case. In the hydrostatic
configuration, the force exerted by surface tension due to the interface curvature resists the
essentially uniform pressure field around the drop. For smaller drops where the stability
limit is dominated by airflow e↵ects, the complex pressure field surrounding the drop is
creates the negative interface curvature on the upwind drop side.
Reconstructed volumes begin at about 70% to 90% of the applied drop volume and

decrease to about 60% to 85% at runback. This is thought to be measurement error.
Although evaporation could contribute to the problem, the initially low values suggest
it is mainly a measurement issue. As the experiment proceeds, added complexity of
reconstructing deformed drop shapes decreases further the reconstructed volume.

4.2.3. Contact Angle Evolution

The measurement of profile sequences enables further exploration of the details of
drop evolution and stability. Of particular interest is the evolution of the contact angle
distribution. Figure 24 shows the mean and standard deviation of contact angle for all
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FIGURE 1. The pattern which occurs after the injection of' air 
into a Hele Shaw cell filled with glycerine. 

results of this paper are the examination of the minimum wavelength of a finger in the 
radial situation, the derivation of an approximate form of the growth rate of the 
fingers and the derivation of the equation describing the shape of a long finger. These 
results are compared with Hele Shaw cell experiments which are typified in figure 1 
by a pattern which result'ed from the injection of air into a Hele Shaw cell filled with 
glycerine. 

2. Apparatus 
For a discussion on the relevance of Hele Shaw cells to  flow in porous media, the 

reader is referred to the papers on linear fingering cited above and to Bear (1973). It 
must be acknowledged that their relevance is not completely certain, as pointed out 
by Wooding & Morel-Seytoux (1976) in an article which contains a review of linear 
fingering. 

The essential parts of the circular Hele Shaw cell used in the experiments consisted 
of two 13 mm thick glass disks, 600mm in diameter, spaced a few millimetres apart. 
A system of screws, sprockets and a chain was used to change the spacing between the 
disks while keeping them parallel. A hole was drilled in the centre of one of the disks so 
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Modelling suppression of viscous fingering in elastic-walled Hele-Shaw cells 163
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FIGURE 1. Top view of the fingering patterns in (a) the rigid cell and (b,c) the elastic-walled
cell with a latex membrane of thickness h ⇡ 0.33 mm and Young’s modulus E = 1.44 MPa,
in which a growing air bubble displaces silicone oil of viscosity µ = 1.04 kg m�1 s�1 at a
constant flow rate V̇: (a) highly branched fingers: V̇ = 145 ml min�1; (b) suppressed fingers:
V̇ = 145 ml min�1; and (c) stubby fingers V̇ = 1.25 l min�1.

Darrieus–Landau instability of flame fronts (Clanet & Searby 1998) and growth of
bacterial colonies (Ben Jacob et al. 1992). Moreover, it is of direct practical relevance
in fields like oil recovery (Orr & Taber 1984) and carbon sequestration (Cinar, Riaz
& Tchelepi 2009). Much recent work has focused on mechanisms that can be used
to manipulate the pattern formation in Hele-Shaw cells, e.g. via the use of non-
Newtonian fluids (Kondic, Shelley & Palffy-Muhoray 1998; Fast et al. 2001; Kagei,
Kanie & Kawaguchi 2005), by controlling the injection rate (Li et al. 2009; Dias &
Miranda 2010; Dias et al. 2012) or by changing the geometry of the cell (Nase, Derks
& Lindner 2011; Al Housseiny, Tsai & Stone 2012; Juel 2012; Dias & Miranda 2013).

In recent experimental work (Pihler-Puzović et al. 2012) we showed that the
introduction of fluid–structure interaction is a particularly powerful means of affecting
the viscous fingering instability. Specifically, we found that when the upper bounding
plate of the Hele-Shaw cell was replaced by an elastic membrane, the onset of
fingering was delayed considerably: for an injection flow rate that created the
complex highly branched fingering pattern shown in figure 1(a), the expanding bubble
remained axisymmetric in an (otherwise identical) elastic-walled cell; see figure 1(b).
Non-axisymmetric instabilities still developed, but only at much larger flow rates.
Furthermore, the finite-amplitude fingers that ultimately emerged from instabilities in
the elastic-walled cell were found to have a fundamentally different shape (‘short and
stubby’; see figure 1c) compared to the narrow highly branched fingers in rigid-walled
cells.

Similar interactions between compliant boundaries and lubrication flows also arise
in a variety of natural processes including pulmonary airways reopening (Jensen et al.

2002; Grotberg & Jensen 2004; Heap & Juel 2008; Heil & Hazel 2011) and the
spreading of magma underneath deforming strata (Bunger & Cruden 2011; Michaut
2011; Lister, Peng & Neufeld 2013), as well as industrial application, such as
roll coating (Carvalho & Scriven 1997, 1999; Chong, Gaskell & Kapur 2007) and
fabrication of MEMS (Hosoi & Mahadevan 2004).

The aim of the present paper is to develop a theoretical model of flow in elastic-
walled Hele-Shaw cells in order to elucidate the mechanism responsible for the
suppression of viscous fingering by fluid–structure interaction. Our model is based

Pihler-Puzovic et al 2012
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In their landmark paper from 1958, Saffman and Taylor intro-
duced the Hele-Shaw cell, two parallel plates separated by  
a small gap, as an idealized model system for the study of  

hydrodynamic interfacial instabilities1,2. This simple setup has since 
provided important insights into fundamental aspects of branch-
ing patterns3–8, and into the flow behaviour of non-Newtonian fluids 
typically found in consumer products and industrial materials9–12. 
Recently, several authors have considered displacement patterning 
in granular suspensions, in which care is taken to match the density 
of the grains and the host fluid13–15.

Displacement dynamics in settling granular mixtures, in which 
inter-particle friction has a central role, have received less attention. 
Such ‘frictional fluids’ are ubiquitous in nature and engineering. For 
example, they have a key role in landslides, where fluidization causes 
the rheology to jump rapidly from solid- to fluid-like behaviour. Of 
interest in engineering applications is the role of frictional granular 
mixtures in oil and gas recovery, and potentially for processes linked 
to CO2 geo-sequestration. From a materials science point of view, 
frictional fluids are strongly related to such complex materials as 
Bingham or yield stress fluids, in which non-Newtonian behaviour 
reflects jamming mechanisms on the molecular level that resemble 
static friction on the macro-level.

In Liu and Nagel’s generalized description of jamming, an 
arrested assembly of grains can be fluidized through dilation or by 
increasing the applied stress16–18. The origin of jamming is closely 
linked to the presence of force chains within the packing19,20, and 
the unjamming, or yielding, occurs as grain–grain contacts become 
mobilized, leading to destabilization and buckling of the load  
carrying force chains21.

Recently Fall et al. found that many puzzling phenomena 
observed for dense granular suspensions, such as shear banding and 
a yield stress well below the close packing limit, can be attributed to 
sedimentation or creaming induced by gravity22. Only the slightest 
density mismatch between the grains and the fluid has a profound 
impact on the rheology as close-packed regions form where normal 
forces create force chains that stabilize the system. The majority of 
dense noncolloidal mixtures will thus display frictional responses 
induced by gravity, especially at low flow velocities where hydrody-
namic interactions are less dominant23.

Here we use a generic granular material that settles in a New-
tonian fluid to explore the displacement dynamics of a system 
with both rheological and tribological characteristics. We map the 
dynamic response of the frictional fluid as it is displaced by air, and 
we focus on the effects of the granular filling fraction , system stiff-
ness K and the injection rate q. Several new dynamic modes are 
uncovered and presented in phase diagrams illustrating the vari-
ous morphologies and the transitions between them. At low rate, 
the frictional contacts between grains introduce a kind of intermit-
tent behaviour familiar from processes such as stick-slip sliding24,25, 
earthquakes26 and granular avalanches27–29. A transition to the  
viscous regime is observed as hydrodynamic interactions dominate 
at high injection rate. Finally, we consider displacement dynamics  
as  approaches 1, where the system takes on the properties of a 
more or less solid porous medium.

Results
Frictional flow at low rate. Pressurized air is injected into a confined, 
settled granular mixture using a syringe pump driven at a constant 
rate (Fig. 1a). The height of granular material in the gap depends on 
the initial filling fraction  of the mixture (where  is normalized 
with the filling fraction of close-packed grains). The syringe contains 
a reservoir of air of volume Vair. The air/fluid interface advances and 
accumulates a front of compacted granular material of thickness 
L as illustrated in Figure 1b. Here, horizontal stress imposed by 
capillary forces at the interface is transmitted through force chains 
within the packing. As the granular packing is unable to dilate, the 

normal force on the confining plates increases. We adopt a Janssen 
model30 for the stress in the packing, such that zz = xx, where  is 
the Janssen proportionality constant giving the ratio of transverse 
to in-plane granular pressure. The frictional stress  at the interface 
that must be overcome to move the front is derived31, and takes the 
form ~ z[exp(L/ z) − 1].

At low granular filling fraction the injected air advances in a  
slow and quasi-continuous fingering process where side-branch-
ing of fingers and a random growth direction produces a branched 
labyrinthine structure as seen in Figure 2a. The front of compacted 
grains, compiled by the advancing interface, can be seen along  
the entire front as a narrow, dark band. We have previously shown 
that a characteristic finger width emerges as a result of the force 
balance between the gas pressure on the inside of the finger and 
the capillary forces and friction at the interface. This characteristic 
width gives rise to the uniform wavelength of the labyrinths seen in 
fully drained systems32 and decreases with increasing .

The low rate means that viscous forces are negligible. Capillary 
and friction forces act locally and thereby effectively screen the 
fingers from their surroundings. The characteristic finger scale is 
therefore independent of channel width, contrary to what is gene-
rally observed in viscous fingering in most Newtonian and non-
Newtonian fluids3,10,33. One exception is viscous fingering in yield 
stress fluids, in which the finger width at low rate is found to be 
independent of channel width and velocity, and instead influenced 
by surface tension and the yield stress of the material12. This sim-
ilarity in behaviour is perhaps not surprising as both yield stress  
and frictional fluids are governed by threshold-limited dynamics 
associated with the yield stress and the static friction, respectively.

When we increase  above a threshold value, the dynamics 
changes dramatically and a different morphology emerges (Fig. 2b). 
The advancement of the interface is no longer slow and creeping, 
instead its motion becomes highly intermittent. The front remains 
stationary for an extended period, followed by a sudden displace-
ment of the granular-fluid mixture by a burst of air in the shape of a 
bubble. The displacement progresses bubble by bubble in a stick-slip 
manner.

During the static periods, the gas pressure increases linearly  
as the air is compressed by the constant, slow driving of the piston  
(Fig. 2c). The gas pressure is balanced by the frictional stress  
from the jammed granular front. As the pressure builds, the weakest 
point along the front finally yields, and the pressurized air invades 
rapidly through a narrow neck before expanding radially. The air 
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Figure 1 | Setup and displacement process. (a) Air is slowly injected 
into a linear Hele-Shaw cell loaded with polydisperse glass beads 
(~100 m diameter) submersed in a water/glycerol solution. The gap is 
z = 0.5 mm and the cell forms a channel 20 cm wide and 30 cm long. The 

granular material settles after loading. (b) The invading air/fluid interface 
accumulates a front of close-packed grains in the gap between the plates.
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a small gap, as an idealized model system for the study of  
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static friction on the macro-level.
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uncovered and presented in phase diagrams illustrating the vari-
ous morphologies and the transitions between them. At low rate, 
the frictional contacts between grains introduce a kind of intermit-
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viscous regime is observed as hydrodynamic interactions dominate 
at high injection rate. Finally, we consider displacement dynamics  
as  approaches 1, where the system takes on the properties of a 
more or less solid porous medium.
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rate (Fig. 1a). The height of granular material in the gap depends on 
the initial filling fraction  of the mixture (where  is normalized 
with the filling fraction of close-packed grains). The syringe contains 
a reservoir of air of volume Vair. The air/fluid interface advances and 
accumulates a front of compacted granular material of thickness 
L as illustrated in Figure 1b. Here, horizontal stress imposed by 
capillary forces at the interface is transmitted through force chains 
within the packing. As the granular packing is unable to dilate, the 
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(Fig. 2c). The gas pressure is balanced by the frictional stress  
from the jammed granular front. As the pressure builds, the weakest 
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Figure 1 | Setup and displacement process. (a) Air is slowly injected 
into a linear Hele-Shaw cell loaded with polydisperse glass beads 
(~100 m diameter) submersed in a water/glycerol solution. The gap is 
z = 0.5 mm and the cell forms a channel 20 cm wide and 30 cm long. The 

granular material settles after loading. (b) The invading air/fluid interface 
accumulates a front of close-packed grains in the gap between the plates.
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The low rate means that viscous forces are negligible. Capillary 
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stress fluids, in which the finger width at low rate is found to be 
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by surface tension and the yield stress of the material12. This sim-
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associated with the yield stress and the static friction, respectively.
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bubble. The displacement progresses bubble by bubble in a stick-slip 
manner.
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from the jammed granular front. As the pressure builds, the weakest 
point along the front finally yields, and the pressurized air invades 
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accumulates a front of close-packed grains in the gap between the plates.
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Tang et al 2000; Ramachandran & Leighton 2010

Particles destabilize the interface!
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In this talk, we will 
focus on: 

1. What is the 
mechanism of 

fingering? 

2. Can we model the 
particle-laden flow 

upstream of the 
interface?
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M E C H A N I S M  O F  F I N G E R I N G
particle accumulation on the fluid-fluid interface. 

“shear-induced migration”
Leighton & Acrivos 1987
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10 cm

M E C H A N I S M  O F  F I N G E R I N G
particle accumulation on the fluid-fluid interface. 

“fountain flow” Coyle et al 1987; Karnis & Mason 1967
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10 cm

M E C H A N I S M  O F  F I N G E R I N G
particle accumulation on the fluid-fluid interface. 

Tang et al 2000; Ramachandran & Leighton 2010, 2007 (particle accumulation on the meniscus in a tube)
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M E C H A N I S M  O F  F I N G E R I N G
particle accumulation on the fluid-fluid interface. 

Particle accumulation 
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migration
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particle accumulation on the fluid-fluid interface. 

Particle accumulation 
due to shear-induced 

migration

z “shear-induced migration”
> v̄rv̄pr

v̄r

velocity ratio � ⌘ v̄pr (r)

v̄r(r)
>1 

necessary condition 
for accumulation

necessary condition 
for fingering

Calculate 
by resolving the upstream flow field!
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conservation
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momentum
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momentum
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Nott & Brady 1994
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“upstream” 
quasi-1D regime
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particle-induced fingering
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Figure 1 | Evolution of morphologies, wavelengths and amplitudes with compression. a,b, System 1. A PDMS foundation is cured with ultraviolet
radiation–ozone, which modifies the elastic properties of its surface. The thickness of the membrane is about 10–20 µm depending on the irradiation time.
The wavelength, �0, of the initial wrinkling instability is about 50–100 µm. c–e, System 2. A thin coloured stiff PDMS film is bound to a thick soft PDMS
foundation. The thickness of the membrane is about 200 µm and the initial wrinkle wavelength is about 3 mm. The compression ratios, �, are equal to
0.165, 0.19 and 0.24 for panels c, d and e respectively. f, The systems are compressed uniaxially along the x axis. The wavelength and amplitudes of the
wrinkles are measured for successive values of the relative compression �. g, Amplitudes (A1, A2) and wavelength, �, as a function of the compression ratio
�. Experimental data for system 1 are reported with bullet, filled square and filled diamond symbols for 30 min, 1 h and 2 h of irradiation respectively
whereas the open triangle is used for system 2. Results of the linear (dotted lines) and nonlinear (solid lines) theories are also reported. Before period
doubling, the expression of the amplitude A computed from equations (1) is A/�0 =

p
�/⇡(1�(3�/8)�(17�2/128)). The wavelength � is computed from

(7): �/�0 = 1��+O(�3,(B/�0)2�2), where B is the amplitude of the subharmonic mode.

to its Young modulus (K = 2E(1� � )/(1+ � )(3–4� ), where �
is the Poisson ratio) and H is the Hilbert transform. The first
nonlinear contribution due to the elastomer can be computed
for periodic deformation with one mode of wavenumber q and
equation (2) then reduces to

Bm@`
4y+F@`

2y+Kqy+K2q2y2 = 0 (3)

where K2 is also proportional to the Young modulus (K2 =
E(1–2� )(13–16� )/2(1+� )(3–4� )2; see Supplementary Informa-
tion). The expression of the nonlinearity can also be deduced
from a simple dimensional argument. From elasticity equations we
expect a quadratic nonlinearity, and as there is no characteristic
length-scale for the elastomer this term should be multiplied by
the square of the wavenumber. Owing to the quadratic nonlinearity
from the foundation, the equation (3) giving the profile of the
membrane implies an up–down symmetry breaking: vertical exten-
sion and compression along the y axis are no longer equivalent.
This equation can also be viewed as a spatial equivalent of a
nonlinear oscillator, such as a simple pendulum, with which it
shares many similarities.

Equation (3) reduces to a linear oscillator for small amplitudes
of the instability. In this regime, the period is independent of

the amplitude, in agreement with observation and usual theories.
Indeed, nonlinear terms can be ignored for small amplitudes and
the curvilinear and Cartesian coordinates coincide: ` ' x , � ' @xy .
Equation (3) admits sinusoidal solutions y(x) = A cos(2⇡x/�)
provided that the pressure F and the wavelength of the wrinkling
instability are related by

F(�)= 4⇡ 2Bm

�2
+ �K

2⇡
This relation shows that below a threshold F < Fc = 3q02Bm there
is no associated wavelength and the membrane stays flat. At the
threshold, F = Fc, the wrinkling instability emerges and a unique
and constant wavelength, �0, is selected3,26
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⇠ h
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The selection of this particular wavelength is obtained from a
minimization of the energy through a minimization of F . The inex-
tensibility constraint (1) gives the evolution of the amplitude of the
instability as a function of the relative compression, A=±�0

p
�/⇡ .

However, neither the evolution of the wavelength with � nor the
period-doubling bifurcation are captured by this linearmodel.

NATURE PHYSICS | VOL 7 | JANUARY 2011 | www.nature.com/naturephysics 57

Brau et al 2011
10% 

effect of particles on draining pattern formation with analogy to 
elastic instability 

formation & breakage of 
particle band

NATURE PHYSICS DOI: 10.1038/NPHYS1806 LETTERS

2

5 mm

100 µm 

1a

c

d

e

f

b

0.05

0

0.10

0.15

0.20

0.25

0.30

0.35

A
1,2

/ 
  0

A1/   0 (1)

A1/   0 (2)

A2/   0 (1)

A2/   0 (2)
Harmonic: linear
Harmonic: nonlinear
K2 / K = 0.25
K2 / K = 0.27

System 1
System 2
Linear theory
Nonlinear theory

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

δ

δ

/
0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Compression
z

x

y

φ
t

2A22A1

2

g

Figure 1 | Evolution of morphologies, wavelengths and amplitudes with compression. a,b, System 1. A PDMS foundation is cured with ultraviolet
radiation–ozone, which modifies the elastic properties of its surface. The thickness of the membrane is about 10–20 µm depending on the irradiation time.
The wavelength, �0, of the initial wrinkling instability is about 50–100 µm. c–e, System 2. A thin coloured stiff PDMS film is bound to a thick soft PDMS
foundation. The thickness of the membrane is about 200 µm and the initial wrinkle wavelength is about 3 mm. The compression ratios, �, are equal to
0.165, 0.19 and 0.24 for panels c, d and e respectively. f, The systems are compressed uniaxially along the x axis. The wavelength and amplitudes of the
wrinkles are measured for successive values of the relative compression �. g, Amplitudes (A1, A2) and wavelength, �, as a function of the compression ratio
�. Experimental data for system 1 are reported with bullet, filled square and filled diamond symbols for 30 min, 1 h and 2 h of irradiation respectively
whereas the open triangle is used for system 2. Results of the linear (dotted lines) and nonlinear (solid lines) theories are also reported. Before period
doubling, the expression of the amplitude A computed from equations (1) is A/�0 =

p
�/⇡(1�(3�/8)�(17�2/128)). The wavelength � is computed from

(7): �/�0 = 1��+O(�3,(B/�0)2�2), where B is the amplitude of the subharmonic mode.
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is the Poisson ratio) and H is the Hilbert transform. The first
nonlinear contribution due to the elastomer can be computed
for periodic deformation with one mode of wavenumber q and
equation (2) then reduces to
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where K2 is also proportional to the Young modulus (K2 =
E(1–2� )(13–16� )/2(1+� )(3–4� )2; see Supplementary Informa-
tion). The expression of the nonlinearity can also be deduced
from a simple dimensional argument. From elasticity equations we
expect a quadratic nonlinearity, and as there is no characteristic
length-scale for the elastomer this term should be multiplied by
the square of the wavenumber. Owing to the quadratic nonlinearity
from the foundation, the equation (3) giving the profile of the
membrane implies an up–down symmetry breaking: vertical exten-
sion and compression along the y axis are no longer equivalent.
This equation can also be viewed as a spatial equivalent of a
nonlinear oscillator, such as a simple pendulum, with which it
shares many similarities.

Equation (3) reduces to a linear oscillator for small amplitudes
of the instability. In this regime, the period is independent of

the amplitude, in agreement with observation and usual theories.
Indeed, nonlinear terms can be ignored for small amplitudes and
the curvilinear and Cartesian coordinates coincide: ` ' x , � ' @xy .
Equation (3) admits sinusoidal solutions y(x) = A cos(2⇡x/�)
provided that the pressure F and the wavelength of the wrinkling
instability are related by

F(�)= 4⇡ 2Bm
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2⇡
This relation shows that below a threshold F < Fc = 3q02Bm there
is no associated wavelength and the membrane stays flat. At the
threshold, F = Fc, the wrinkling instability emerges and a unique
and constant wavelength, �0, is selected3,26
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The selection of this particular wavelength is obtained from a
minimization of the energy through a minimization of F . The inex-
tensibility constraint (1) gives the evolution of the amplitude of the
instability as a function of the relative compression, A=±�0
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However, neither the evolution of the wavelength with � nor the
period-doubling bifurcation are captured by this linearmodel.

NATURE PHYSICS | VOL 7 | JANUARY 2011 | www.nature.com/naturephysics 57

10 cm

Kim, Xu & Lee [ICTAM; in preparation]

Summary: characterization of particle-
induced fingering; continuum model 

formulation  

On-going: prediction of the onset of 
fingering based on stability analysis 

Big picture: coupled dynamics of  particles  
& interface dynamics



particle-induced fingering

NATURE PHYSICS DOI: 10.1038/NPHYS1806 LETTERS

2

5 mm

100 µm 

1a

c

d

e

f

b

0.05

0

0.10

0.15

0.20

0.25

0.30

0.35

A
1,2

/ 
  0

A1/   0 (1)

A1/   0 (2)

A2/   0 (1)

A2/   0 (2)
Harmonic: linear
Harmonic: nonlinear
K2 / K = 0.25
K2 / K = 0.27

System 1
System 2
Linear theory
Nonlinear theory

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

δ

δ

/
0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Compression
z

x

y

φ
t

2A22A1

2

g

Figure 1 | Evolution of morphologies, wavelengths and amplitudes with compression. a,b, System 1. A PDMS foundation is cured with ultraviolet
radiation–ozone, which modifies the elastic properties of its surface. The thickness of the membrane is about 10–20 µm depending on the irradiation time.
The wavelength, �0, of the initial wrinkling instability is about 50–100 µm. c–e, System 2. A thin coloured stiff PDMS film is bound to a thick soft PDMS
foundation. The thickness of the membrane is about 200 µm and the initial wrinkle wavelength is about 3 mm. The compression ratios, �, are equal to
0.165, 0.19 and 0.24 for panels c, d and e respectively. f, The systems are compressed uniaxially along the x axis. The wavelength and amplitudes of the
wrinkles are measured for successive values of the relative compression �. g, Amplitudes (A1, A2) and wavelength, �, as a function of the compression ratio
�. Experimental data for system 1 are reported with bullet, filled square and filled diamond symbols for 30 min, 1 h and 2 h of irradiation respectively
whereas the open triangle is used for system 2. Results of the linear (dotted lines) and nonlinear (solid lines) theories are also reported. Before period
doubling, the expression of the amplitude A computed from equations (1) is A/�0 =

p
�/⇡(1�(3�/8)�(17�2/128)). The wavelength � is computed from

(7): �/�0 = 1��+O(�3,(B/�0)2�2), where B is the amplitude of the subharmonic mode.

to its Young modulus (K = 2E(1� � )/(1+ � )(3–4� ), where �
is the Poisson ratio) and H is the Hilbert transform. The first
nonlinear contribution due to the elastomer can be computed
for periodic deformation with one mode of wavenumber q and
equation (2) then reduces to

Bm@`
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2y+Kqy+K2q2y2 = 0 (3)

where K2 is also proportional to the Young modulus (K2 =
E(1–2� )(13–16� )/2(1+� )(3–4� )2; see Supplementary Informa-
tion). The expression of the nonlinearity can also be deduced
from a simple dimensional argument. From elasticity equations we
expect a quadratic nonlinearity, and as there is no characteristic
length-scale for the elastomer this term should be multiplied by
the square of the wavenumber. Owing to the quadratic nonlinearity
from the foundation, the equation (3) giving the profile of the
membrane implies an up–down symmetry breaking: vertical exten-
sion and compression along the y axis are no longer equivalent.
This equation can also be viewed as a spatial equivalent of a
nonlinear oscillator, such as a simple pendulum, with which it
shares many similarities.

Equation (3) reduces to a linear oscillator for small amplitudes
of the instability. In this regime, the period is independent of

the amplitude, in agreement with observation and usual theories.
Indeed, nonlinear terms can be ignored for small amplitudes and
the curvilinear and Cartesian coordinates coincide: ` ' x , � ' @xy .
Equation (3) admits sinusoidal solutions y(x) = A cos(2⇡x/�)
provided that the pressure F and the wavelength of the wrinkling
instability are related by

F(�)= 4⇡ 2Bm

�2
+ �K

2⇡
This relation shows that below a threshold F < Fc = 3q02Bm there
is no associated wavelength and the membrane stays flat. At the
threshold, F = Fc, the wrinkling instability emerges and a unique
and constant wavelength, �0, is selected3,26
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minimization of the energy through a minimization of F . The inex-
tensibility constraint (1) gives the evolution of the amplitude of the
instability as a function of the relative compression, A=±�0
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However, neither the evolution of the wavelength with � nor the
period-doubling bifurcation are captured by this linearmodel.
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Figure 1 | Evolution of morphologies, wavelengths and amplitudes with compression. a,b, System 1. A PDMS foundation is cured with ultraviolet
radiation–ozone, which modifies the elastic properties of its surface. The thickness of the membrane is about 10–20 µm depending on the irradiation time.
The wavelength, �0, of the initial wrinkling instability is about 50–100 µm. c–e, System 2. A thin coloured stiff PDMS film is bound to a thick soft PDMS
foundation. The thickness of the membrane is about 200 µm and the initial wrinkle wavelength is about 3 mm. The compression ratios, �, are equal to
0.165, 0.19 and 0.24 for panels c, d and e respectively. f, The systems are compressed uniaxially along the x axis. The wavelength and amplitudes of the
wrinkles are measured for successive values of the relative compression �. g, Amplitudes (A1, A2) and wavelength, �, as a function of the compression ratio
�. Experimental data for system 1 are reported with bullet, filled square and filled diamond symbols for 30 min, 1 h and 2 h of irradiation respectively
whereas the open triangle is used for system 2. Results of the linear (dotted lines) and nonlinear (solid lines) theories are also reported. Before period
doubling, the expression of the amplitude A computed from equations (1) is A/�0 =
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(7): �/�0 = 1��+O(�3,(B/�0)2�2), where B is the amplitude of the subharmonic mode.

to its Young modulus (K = 2E(1� � )/(1+ � )(3–4� ), where �
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Bm@`
4y+F@`

2y+Kqy+K2q2y2 = 0 (3)
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length-scale for the elastomer this term should be multiplied by
the square of the wavenumber. Owing to the quadratic nonlinearity
from the foundation, the equation (3) giving the profile of the
membrane implies an up–down symmetry breaking: vertical exten-
sion and compression along the y axis are no longer equivalent.
This equation can also be viewed as a spatial equivalent of a
nonlinear oscillator, such as a simple pendulum, with which it
shares many similarities.

Equation (3) reduces to a linear oscillator for small amplitudes
of the instability. In this regime, the period is independent of

the amplitude, in agreement with observation and usual theories.
Indeed, nonlinear terms can be ignored for small amplitudes and
the curvilinear and Cartesian coordinates coincide: ` ' x , � ' @xy .
Equation (3) admits sinusoidal solutions y(x) = A cos(2⇡x/�)
provided that the pressure F and the wavelength of the wrinkling
instability are related by
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This relation shows that below a threshold F < Fc = 3q02Bm there
is no associated wavelength and the membrane stays flat. At the
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minimization of the energy through a minimization of F . The inex-
tensibility constraint (1) gives the evolution of the amplitude of the
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However, neither the evolution of the wavelength with � nor the
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Figure 1 | Evolution of morphologies, wavelengths and amplitudes with compression. a,b, System 1. A PDMS foundation is cured with ultraviolet
radiation–ozone, which modifies the elastic properties of its surface. The thickness of the membrane is about 10–20 µm depending on the irradiation time.
The wavelength, �0, of the initial wrinkling instability is about 50–100 µm. c–e, System 2. A thin coloured stiff PDMS film is bound to a thick soft PDMS
foundation. The thickness of the membrane is about 200 µm and the initial wrinkle wavelength is about 3 mm. The compression ratios, �, are equal to
0.165, 0.19 and 0.24 for panels c, d and e respectively. f, The systems are compressed uniaxially along the x axis. The wavelength and amplitudes of the
wrinkles are measured for successive values of the relative compression �. g, Amplitudes (A1, A2) and wavelength, �, as a function of the compression ratio
�. Experimental data for system 1 are reported with bullet, filled square and filled diamond symbols for 30 min, 1 h and 2 h of irradiation respectively
whereas the open triangle is used for system 2. Results of the linear (dotted lines) and nonlinear (solid lines) theories are also reported. Before period
doubling, the expression of the amplitude A computed from equations (1) is A/�0 =
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(7): �/�0 = 1��+O(�3,(B/�0)2�2), where B is the amplitude of the subharmonic mode.

to its Young modulus (K = 2E(1� � )/(1+ � )(3–4� ), where �
is the Poisson ratio) and H is the Hilbert transform. The first
nonlinear contribution due to the elastomer can be computed
for periodic deformation with one mode of wavenumber q and
equation (2) then reduces to

Bm@`
4y+F@`
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where K2 is also proportional to the Young modulus (K2 =
E(1–2� )(13–16� )/2(1+� )(3–4� )2; see Supplementary Informa-
tion). The expression of the nonlinearity can also be deduced
from a simple dimensional argument. From elasticity equations we
expect a quadratic nonlinearity, and as there is no characteristic
length-scale for the elastomer this term should be multiplied by
the square of the wavenumber. Owing to the quadratic nonlinearity
from the foundation, the equation (3) giving the profile of the
membrane implies an up–down symmetry breaking: vertical exten-
sion and compression along the y axis are no longer equivalent.
This equation can also be viewed as a spatial equivalent of a
nonlinear oscillator, such as a simple pendulum, with which it
shares many similarities.

Equation (3) reduces to a linear oscillator for small amplitudes
of the instability. In this regime, the period is independent of

the amplitude, in agreement with observation and usual theories.
Indeed, nonlinear terms can be ignored for small amplitudes and
the curvilinear and Cartesian coordinates coincide: ` ' x , � ' @xy .
Equation (3) admits sinusoidal solutions y(x) = A cos(2⇡x/�)
provided that the pressure F and the wavelength of the wrinkling
instability are related by

F(�)= 4⇡ 2Bm
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This relation shows that below a threshold F < Fc = 3q02Bm there
is no associated wavelength and the membrane stays flat. At the
threshold, F = Fc, the wrinkling instability emerges and a unique
and constant wavelength, �0, is selected3,26
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minimization of the energy through a minimization of F . The inex-
tensibility constraint (1) gives the evolution of the amplitude of the
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However, neither the evolution of the wavelength with � nor the
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Figure 1 | Evolution of morphologies, wavelengths and amplitudes with compression. a,b, System 1. A PDMS foundation is cured with ultraviolet
radiation–ozone, which modifies the elastic properties of its surface. The thickness of the membrane is about 10–20 µm depending on the irradiation time.
The wavelength, �0, of the initial wrinkling instability is about 50–100 µm. c–e, System 2. A thin coloured stiff PDMS film is bound to a thick soft PDMS
foundation. The thickness of the membrane is about 200 µm and the initial wrinkle wavelength is about 3 mm. The compression ratios, �, are equal to
0.165, 0.19 and 0.24 for panels c, d and e respectively. f, The systems are compressed uniaxially along the x axis. The wavelength and amplitudes of the
wrinkles are measured for successive values of the relative compression �. g, Amplitudes (A1, A2) and wavelength, �, as a function of the compression ratio
�. Experimental data for system 1 are reported with bullet, filled square and filled diamond symbols for 30 min, 1 h and 2 h of irradiation respectively
whereas the open triangle is used for system 2. Results of the linear (dotted lines) and nonlinear (solid lines) theories are also reported. Before period
doubling, the expression of the amplitude A computed from equations (1) is A/�0 =
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length-scale for the elastomer this term should be multiplied by
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from the foundation, the equation (3) giving the profile of the
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sion and compression along the y axis are no longer equivalent.
This equation can also be viewed as a spatial equivalent of a
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shares many similarities.
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of the instability. In this regime, the period is independent of

the amplitude, in agreement with observation and usual theories.
Indeed, nonlinear terms can be ignored for small amplitudes and
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