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Balanced state
● The firing patterns of 

cortical neurons in 
intact animals display 
a strong degree of 
temporal variability

● They can be approxi-
mated by a Poisson 
process with a small
refractory period

(Softy and Koch, 1993)



Balanced state
● On the other hand cortical neurons fire quite 

regularly when they receive a constant input 
(in vitro experiments) 

● (Holt  et al., 1996)



Balanced state
● Each cortical neuron receives hundreds or 

thousands of synaptic connections

● 3 x 10**8 synapses/mm**3
10**5 neurons/mm**3

(Beaulieu and Colonnier, 1985) 

● Correlations between the activity of different 
cortical neurons are weak

(Renart et al., 2010)



Balanced state
● In the limit of very large connectivity (K) each 

neuron should receive a net input order K + 
fluctuations order sqrt(K)

● How all this be compatible?

● Very low firing rate?

● Some degree of synchronization?

● Additional sources of noise?

● Cancellation of excitation and inhibition?



Balanced state
● Cancellation of excitation and inhibition

(van Vreeswijk and Sompolinsky, 1996, 1998)

● N
E
, N

I
 excitatory and inhibitory neurons

● K connections per neuron (average), no spatial 
structure

● 1 << K << N
E
,N

I   
(strongly diluted connectivity)

 
● Synaptic efficacy O(1/sqrt(K)): “strong” synapses

● For binary neurons this system can be solved 
analytically



Balanced state
● The diluted connectivity guarantees there are 

no correlations.
● As K>>1 the distribution of inputs is 

Gaussian
● The distribution is characterized by fast and 

quenched terms whose correlations can be 
evaluated self-consistently

● In the limit of very large K it is easy to see 
why it leads to a highly variable state



Balanced state
● PYR: excitatory neurons
● IN: Inhibitory neurons



Balanced state
● n

E
=F(h
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● n: firing rate; h: synaptic input; F: input-output transfer 
function
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● The net inputs (h
E
,h

I
) must be order 1, otherwise the activity 

would be 0 or at saturation value
● But the fluctuations are proportional to  n

E
2 ,  n

I
2

● The total fluctuation is order 1



Balanced state
● Numerical simulations



Balanced state
● Properties of the balanced state

● In the limit of very large K it must be
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● There is a LINEAR relation between the firing rates and the
external inputs. Single neuron input-output transfer function (F) 
is irrelevant

● The firing rates become lower if all the couplings become 
stronger



Balanced state
● Properties of the balanced state

● Conditions for stability

● J
EI

 J
IE
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 J

II 
> 0

● J
II
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EE
 > 0

● t
I
 < t

E  
(fast inhibition)



Balanced state
● Systems with spatial structure

(Rosenbaum and Doiron, 2014)



Balanced state
● Systems with spatial structure

● Now the balance conditions have to be satisfied locally
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where * is the convolution operator

● In Fourier space:
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● Taking the limit of very large K:
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Primary visual cortex



Primary visual cortex
● Orientation selectivity



Primary visual cortex
● Orientation selectivity



q



Primary visual cortex
● Orientation maps

Modified from Blasdel G.G. and Salama G. Voltage sensitive dyes 
reveal a modular organization in monkey striate cortex, Nature 
(1986) 



Primary visual cortex
● Cat/monkey vs. rat/mouse

(Ohki and Reid, 
2007)

Salt-and-
pepper



Primary visual cortex
● Neurons in rodent V1 are orientation selective (Niell and Stryker, 2008)



Primary visual cortex
● What are different mechanisms underlying the two cases?
● What is the contribution of the of the intracortical connections to 

selectivity?
● In rodents, are intracortical connections functionally organized 

and if this is so what is the effect on orientation selectivity?  

«The mixed salt-and-pepper organization of 
preferred orientation in rodents […] argues 
for specific connectivity between neurons» 

(Ohki and Reid, 2007)



Primary visual cortex
●Selectivity present in mouse at eye opening Ko et al, 2013

 At eye opening: Neurons are selective to orientation; EE 
connectivity is non specific.

 After critical period: Specificity in the EE connectivity



The Models   

 

● Reduced model

θ1 θ2
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The Models   

 

● Reduced model

θ1 θ2

θ3

θ4

θ5

θ6

θ7

Orientation Map

Salt and Pepper



The Models   

 

● Computational Model Preferred orientation



The Models   

 

● Plasticity Rules

W/W

 

 

W/(2-W)

tpost- tpre

STDP
Spike-Timing 

Dependent Plasticity

Reconnection Rule: 
Connection probability of 

neurons with similar 
preferred orientation is 

strengthened

+

-



The Models   

 

● Orientation Selectivity Index

0 90 180

Stimulus orientationStimulus orientationStimulus orientation
0 90 180

 

0 90 180
 



Reduced Model

Connectivity 
profile

Firing Rate Average 
number of 

connections

External current

Balance equations



Solutions

Stability of the balanced state

Reduced Model



1) If the spatial structure of the connectivity profile 
depends only on the presynaptic population

with:

2) The external current is the same for both populations

Reduced Model



1) If the spatial structure of the connectivity profile 
depends  only on the presynaptic population

2) The external current is the same for both populations

Reduced Model



External Current

Orientation 
selectivity 

index of the 
external 
current

Reduced Model



External Current

•Casdasd
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Reduced Model



•Casdasd
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Reduced Model
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OSI

Reduced Model



Salt and 
Pepper

Orientation 
Map

Mean value of the connectivity 
profile
Modulation of the connectivity 
profile

Reduced Model



Salt and Pepper Orientation Map

Mean value of the connectivity 
profile
Modulation of the connectivity 
profile

Reduced Model
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Orientation Map Salt and Pepper

As predicted by the model, keeping all the 
other parameters the same, orientation 
selectivity is larger for Salt and Pepper.

Simulation Results



Salt and Pepper
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Simulation Results
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● More selective systems 
generate more 
modulate interactions, 
but this goes AGAINST 
an increase in 
selectivity



ε: Reconnection probability between neurons

εcE                         εcI

+

-

Reconnection Rule
Simulation Results



Reconnection Rule

As predicted by the model, functional 
connectivity decreases orientation 

selectivity.

Simulation Results



Reconnection Rule

With 
Reconnection

Without 
Reconnection
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If the balanced state becomes unstable, 
selectivity can be increased by generating 
functional connectivity in the excitatory 
interactions.

Simulation Results



Conclusions   

 • Does functional connectivity improves orientation selectivity?
• It depends on the dynamical state!

• In the balanced state selectivity increases by decreasing the 
modulation of the connectivity profile.

• Salt and Pepper is more selective than Orientation Map for 
the same feed-forward input.

• Since STDP increases the mean value of the connectivity 
profile, it improves selectivity.

• It is necessary to get more information about functional 
connectivity of inhibitory interactions



Conclusions   
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