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Plan of Talk

• Transition Experiments

• Direct Numerical Simulations

• Dynamic Models



Types Experiments DNS KSB Debris Debris Flows Conclusions

Powder Avalanche on K2 Pierre Beghin
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Head of Powder Snow Avalanche Cemagref
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Slab Avalanche Fracture Line
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Test Chute in Davos film
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Schematic of Avalanche, Turbidity Current, Pyroclastic Flow

Base

Powder cloud

Nose

Head

Body

Transition region
Dense flow

ρ1

ρ2

g
θ

x

z

umax

u
h

uf



Types Experiments DNS KSB Debris Debris Flows Conclusions

Aim

Understand formation of Suspension Currents

Use steep slopes to give a low Richardson number for large

density difference

Transition to suspension

Limited entrainment

Steady flows

Understand air interaction

Comparison of field observations with experiments
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Similarity Criteria

Experiment Materials Rep Ri St
∆ρ

ρa

Re

Powder snow avalanches Snow-air 3000 1 0.02 10 109

Ancey (2004) sawdust 50 1.7 0.006 0.05 104

water

Bozhinskiy (1998) aluminium 0.1 20 0.03 1 103

air

Beghin (1981) Brine-water/ – 5 – 0.02 104

Beghin (1983) Sand-water
Beghin (1983) suspension

Nishimura (1998) Ping-pong balls 2 × 104 2 10 50 107

McElwaine (2001) air

Hampton (1972) Kaolinite and – < 0.5 – 0.1 –
water slurry

Hermann (1987) Polystyrene powder 1.5 0.1 10−4 0.002 104

water

Hopfinger (1977) Brine – 2 – 0.01 103

Tochon-Danguy (1974) water

Present Study Snow-air 150 1 10 10 105

Present Study Polystyrene-air 150 2 1 5 104
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Similarity Summary

Exact similarity of Ri and ∆ρ/ρa

Re and Rep not matched but qualitatively similar

St is different ⇒ sedimentation is important

Slope angles are different.

Appears unimportant at high Re
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Experiments
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Side View 8 Litre Avalanches

31.5o slope

58.5o slope

91.0o slope

100 ml side 100 ml front
8000 ml side 8000 ml front
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Non-dimensional Height — h̃ = h
V 1/3
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Polystyrene balls
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Polystyrene balls on 70◦ surface

g
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Ping-Pong Avalanches
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Non-Dimensional Velocity — ũ = u
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Front Velocities at the K-Point
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Pressure Theory Comparison
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DNS simulations and Ping-Pong experiments
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Front Instability, 5 l polystyrene, 51 ◦ slope
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Conclusions

Transition to suspension can be achieved in the laboratory

Can deduce avalanche length, height, speed, and

front angle from pressure data

Good agreement between theory, experiments and field

observations

Pressure measurements can distinguish suspended from

dense flows

Coherent internal velocities can be twice front velocity

Take care estimating forces !
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Direct Numerical Simulations

• Meiburg Code

2d spectral with compact finite differences

• Diablo from John taylor

3d spectral with low order finite differences

• Simulation region 8×1

• Release area 2×0.5

• Slope angles 0–90◦

• Boussinesq and non-Boussinesq

Test hypothesis:

stagnation point is lowest point as Re→ ∞
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Time evolution, Re=32,000, Slope=10◦
film front
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Time evolution, Re=32,000, Slope=60◦
film front
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Re Comparison at slope 0◦

2k 00deg, s=30, t= 5.80 2knb 00deg, s=30, t= 5.80

4k 00deg, s=30, t= 5.80 4knb 00deg, s=30, t= 5.80

8k 00deg, s=30, t= 5.80 8knb 00deg, s=30, t= 5.80

16k 00deg, s=30, t= 5.80 16knb 00deg, s=30, t= 5.80

32k 00deg, s=30, t= 5.80 32knb 00deg, s=30, t= 5.80

64k 00deg, s=30, t= 5.80
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Re Comparison at slope 20◦

2k 20deg, s=30, t= 5.80 2knb 20deg, s=30, t= 5.80

4k 20deg, s=30, t= 5.80 4knb 20deg, s=30, t= 5.80

8k 20deg, s=30, t= 5.80 8knb 20deg, s=30, t= 5.80

16k 20deg, s=30, t= 5.80 16knb 20deg, s=30, t= 5.80

32k 20deg, s=30, t= 5.80 32knb 20deg, s=30, t= 5.80



Types Experiments DNS KSB Debris Debris Flows Conclusions

Re Comparison at slope 40◦

2k 40deg, s=30, t= 5.80 2knb 40deg, s=30, t= 5.80

4k 40deg, s=30, t= 5.80 4knb 40deg, s=30, t= 5.80

8k 40deg, s=30, t= 5.80 8knb 40deg, s=30, t= 5.80

16k 40deg, s=30, t= 5.80 16knb 40deg, s=30, t= 5.80

32k 40deg, s=30, t= 5.80 32knb 40deg, s=30, t= 5.80
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Stagnation Point Angle
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Front Speed — High angles evaporate
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Hindered Sedimentation, with Particle Pressure

∂φ

∂t
+∇ · q = 0,

where particle flux

q = uφ+ usφ(1 − αφ)− D∇φ

1 − βφ

Sedimenting Boundary condition n · ∇(n · q) = 0 or ∇φ = 0

Resuspending boundary condition n · q = 0

Use mixed compact finite differences and finite volume

schemes to exactly conserve mass.
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Sedimentation vs Resuspension
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2D with no-slip and hindered sedimentation, Re = 2 000
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2D with slip and hindered sedimentation, Re = 2 000
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3D with no-slip and hindered sedimentation, Re = 4 000
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3D with no-slip and hindered sedimentation, Re = 4 000
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3D with slip and hindered sedimentation, Re = 4 000
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3D with slip and hindered sedimentation, Re = 4 000
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Comparison

2D Re=2 000 no-slip

2D Re=4 000 no-slip

2D Re=2 000 slip

2D Re=4 000 slip

3D Re=2 000 no-slip

3D Re=4 000 no-slip

3D Re=2 000 slip

3D Re=4 000 slip
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Kulikovskiy–Sveshnikova–Beghin (KSB)
Three conservation equations

volume
dV

dt
= qs + qa

buoyancy
dB

dt
= (ρs − ρa)qs

momentum
d

dt

{

[

B + (1 + χ)Vρa

]

u

}

= Bg sin θ

ρs snow density ρa air density χ added mass

g gravity θ slope angle

qs snow flux qa air flux
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Geometric Closure

s
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k = h/L aspect ratio

V = πhL volume

χ = k added mass

uf = u + dL
dt front velocity



Types Experiments DNS KSB Debris Debris Flows Conclusions

Flux Closures

qs = uf he − βu
√

V snow entrainment/detrainment

qa = (αu − us)
√

V air entrainment/detrainment

α(Ri) =

{

e
−λRi

2
Ri ≤ 1

e−λ

Ri
Ri > 1

Ri =
ρ− ρa

ρa

gh cos θ

u2

he erodible snow depth β mass loss coefficient

us sedimentation velocity
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Comparison with Velocity Data
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Comparison with Ping-Pong Avalanches
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Illgraben Situation
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Illgraben Bridge
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Height and Stress Data
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Motivation – Zeroth order shallow water

∂u

∂t
= g sin θ − µg cos θ

Chezy µ(Fr,h/d , θ) ∝ Fr
2

Viscous µ(Fr,h/d , θ) ∝ Fr

µ should also depend on solids concentration at the bottom

Fr = u√
gh cos θ
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Two phase debris flow model

After much algebra . . .

vertical equation of mass conservation is

∂tα = ∂y [Vα(1 − α) + D∂yα] = ∂yD [Peα(1 − α) + ∂yα]

α density of solids relative to max

V sedimentation velocity

D diffusion

Pe = V/D Peclet number

This is a diffusion equation with hindered settling and the same

as Gray’s segregation theory
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Reduction to slow manifold

Define the vertical centre of mass for the solids fraction

hp(t) =

∫ H

0

yα(t , y) dy .

Then use previous result and more algebra to get

dhp(t)

dt
=

h∗

p − hp(t)

T

[

1 + ǫ(h∗

p − hp(t) + · · ·
]

.

For resuspension dominated regime h∗

p = H
2

and mixture

becomes well mixed

For sedimenation dominated regime h∗

p =
Hp

2 where Hp is total

height of particles at maximum packing fraction

Excess pore pressure is

p

ρf gy
=

c1(2hp − Hp) + c2(hp − h∗

p)

H − Hp
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Complete Set of Depth Averaged Equations

∂tM + ∂x (MU) = 0

∂t (cM) + ∂x [cMU (1 + a1m1)] = 0

∂t (UM) + ∂x

[

MU2(a2 + a3m2
1) + gyhM

]

= Mgx − µMgy

∂tm1 + ∂x [m1U + (a4 + a5m2
1)U] =

m∗

1 − m1

Tm
[1 + · · · ]

m1 = 2hp/H − 1 dimensionless deviation from mixed

M total mass hold up

c relative concentration of particles

h centre of mass
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Conclusions

Resuspension very important in many geophysical flows

DNS expensive but can reproduce two layer structure

Integral point mass models work well for some cases

Depth integrated equations with vertical resdistribution a

good compromise

Easy to construct empirical models

Also works for n component mixtures and segregation
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