

Particulate Gravity Currents with Resuspension

Jim McElwaine

Professor of Geohazards Department of Earth Sciences Durham University

GEOTEKNISKE

Barbara Turnbull Christophe Ancey Takahiro Ogura Shane Byrne Jan-Thomas Fischer

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions
Plan of	Talk					

- Transition Experiments
- Direct Numerical Simulations
- Dynamic Models

Slab Avalanche Fracture Line

Schematic of Avalanche, Turbidity Current, Pyroclastic Flow

Understand formation of Suspension Currents

Use steep slopes to give a low Richardson number for large density difference

- Transition to suspension
- Limited entrainment
- Steady flows
- Understand air interaction
- Comparison of field observations with experiments

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions

Simi	laritv	Criteria

Experiment	Materials	Rep	Ri	St	$\frac{\Delta \rho}{\rho_a}$	Re
Powder snow avalanches	Snow-air	3000	1	0.02	10	10 ⁹
Ancey (2004)	sawdust water	50	1.7	0.006	0.05	10 ⁴
Bozhinskiy (1998)	aluminium air	0.1	20	0.03	1	10 ³
Beghin (1981) Beghin (1983) Beghin (1983)	Brine-water/ Sand-water suspension	-	5	-	0.02	10 ⁴
Nishimura (1998) McElwaine (2001)	Ping-pong balls air	2×10^4	2	10	50	10 ⁷
Hampton (1972)	Kaolinite and water slurry	-	< 0.5	-	0.1	-
Hermann (1987)	Polystyrene powder water	1.5	0.1	10 ⁻⁴	0.002	10 ⁴
Hopfinger (1977) Tochon-Danguy (1974)	Brine water	-	2	-	0.01	10 ³
Present Study	Snow-air	150	1	10	10	10 ⁵
Present Study	Polystyrene-air	150	2	1	5	10 ⁴

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions
Similarit	y Summary					

- Exact similarity of Ri and $\Delta \rho / \rho_a$
- Re and Rep not matched but qualitatively similar
- St is different \Rightarrow sedimentation is important
- Slope angles are different. Appears unimportant at high Re

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions

Experiments

front view

side view

Side View 8 Litre Avalanches

 100 ml side
 100 ml front

 8000 ml side
 8000 ml front

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions
Polyst	yrene balls					

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions

Polystyrene balls on 70° **surface**

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions

Ping-Pong Avalanches

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions
Non-D	imensional	Velocity	— ũ =	$=\frac{u}{V^{\frac{1}{6}}q^{\frac{1}{2}}}$		

Front Velocities at the K-Point

Pressure Theory Comparison

Air pressure in a small powder cloud

DNS simulations and Ping-Pong experiments

Air pressure data from a ping-pong ball avalanches and comparison with theory

Air pressure data from a direct numerical simulation of a gravity current

Front Instability, 51 polystyrene, 51 ° slope

- Transition to suspension can be achieved in the laboratory
- Can deduce avalanche length, height, speed, and front angle from pressure data
- Good agreement between theory, experiments and field observations
- Pressure measurements can distinguish suspended from dense flows
- Coherent internal velocities can be twice front velocity Take care estimating forces !

- Meiburg Code
 2d spectral with compact finite differences
- Diablo from John taylor
 3d spectral with low order finite differences
- Simulation region 8×1
- Release area 2×0.5
- Slope angles 0–90°
- Boussinesq and non-Boussinesq

Test hypothesis:

stagnation point is lowest point as $\text{Re}{\rightarrow}\infty$

Re Comparison at slope 20°

Re Comparison at slope 40°

$$rac{\partial \phi}{\partial t} +
abla \cdot \mathbf{q} = \mathbf{0},$$

where particle flux

$$\mathbf{q} = \mathbf{u}\phi + \mathbf{u_s}\phi(\mathbf{1} - lpha\phi) - rac{D
abla \phi}{\mathbf{1} - eta \phi}$$

Sedimenting Boundary condition $\mathbf{n} \cdot \nabla(\mathbf{n} \cdot \mathbf{q}) = 0$ or $\nabla \phi = 0$ Resuspending boundary condition $\mathbf{n} \cdot \mathbf{q} = 0$ Use mixed compact finite differences and finite volume schemes to exactly conserve mass.

3D with no-slip and hindered sedimentation, $\mathrm{Re}=4\,000$

3D with no-slip and hindered sedimentation, $\mathrm{Re}=4\,000$

3D with slip and hindered sedimentation, $\mathrm{Re}=4\,000$

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions
Comp	arison					

2D Re=2000	no-slip
------------	---------

- 2D Re=4000 no-slip
- 2D Re=2000 slip
- 2D Re=4000 slip
- 3D Re=2000 no-slip
- 3D Re=4000 no-slip
- 3D Re=2000 slip
- 3D Re=4 000 slip

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions		
Kulikovskiy–Sveshnikova–Beghin (KSB)								

V	olume		$\frac{dV}{dt}$	=	$q_s + q_a$
b	uoyancy		$\frac{dB}{dt}$	=	$(ho_{s}- ho_{a})q_{s}$
m	nomentum $\frac{d}{dt} \bigg\{ \bigg[E$	8+(1	$+\chi) V ho_a] u \bigg\}$	=	Bg sin θ
ρ _s g q _s	snow density gravity snow flux	ρ _a θ q a	air density slope angle air flux	χ	added mass

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions
Gaoma	tric Closure					

$$q_{s} = u_{f}h_{e} - \beta u\sqrt{V}$$
$$q_{a} = (\alpha u - u_{s})\sqrt{V}$$

snow entrainment/detrainment air entrainment/detrainment

$$\alpha(\mathrm{Ri}) = \begin{cases} e^{-\lambda \mathrm{Ri}^2} & \mathrm{Ri} \le 1\\ \frac{e^{-\lambda}}{\mathrm{Ri}} & \mathrm{Ri} > 1 \end{cases}$$
$$\mathrm{Ri} = \frac{\rho - \rho_a}{\rho_a} \frac{gh\cos\theta}{u^2}$$

he erodible snow depth

- β mass loss coefficient
- us sedimentation velocity

Comparison with Velocity Data

Avalanche no. 628

Illgraben Situation

Illgraben Bridge

Ratio of shear force to normal force

$$\frac{\partial u}{\partial t} = g\sin\theta - \mu g\cos\theta$$

- Chezy $\mu(\operatorname{Fr}, h/d, \theta) \propto \operatorname{Fr}^2$
- Viscous $\mu(\operatorname{Fr}, h/d, \theta) \propto \operatorname{Fr}$
- μ should also depend on solids concentration at the bottom

After much algebra ... vertical equation of mass conservation is

 $\partial_t \alpha = \partial_y \left[V \alpha (1 - \alpha) + D \partial_y \alpha \right] = \partial_y D \left[\operatorname{Pe} \alpha (1 - \alpha) + \partial_y \alpha \right]$

 α density of solids relative to max

- V sedimentation velocity
- **D** diffusion

Pe = V/D Peclet number

This is a diffusion equation with hindered settling and the same as Gray's segregation theory

Define the vertical centre of mass for the solids fraction

$$h_{\rho}(t) = \int_0^H y \alpha(t, y) \, \mathrm{d}y.$$

Then use previous result and more algebra to get

$$\frac{\mathrm{d}h_{p}(t)}{\mathrm{d}t} = \frac{h_{p}^{*} - h_{p}(t)}{T} \left[1 + \epsilon(h_{p}^{*} - h_{p}(t) + \cdots\right].$$

For resuspension dominated regime $h_p^* = \frac{H}{2}$ and mixture becomes well mixed

For sedimenation dominated regime $h_p^* = \frac{H_p}{2}$ where H_p is total height of particles at maximum packing fraction Excess pore pressure is

$$\frac{p}{\rho_f g_y} = \frac{c_1 (2h_p - H_p) + c_2 (h_p - h_p^*)}{H - H_p}$$

Complete Set of Depth Averaged Equations

$$\partial_t M + \partial_x (MU) = 0$$

$$\partial_t (cM) + \partial_x [cMU (1 + a_1 m_1)] = 0$$

$$\partial_t (UM) + \partial_x \left[MU^2 (a_2 + a_3 m_1^2) + g_y hM \right] = Mg_x - \mu Mg_y$$

$$\partial_t m_1 + \partial_x [m_1 U + (a_4 + a_5 m_1^2)U] = \frac{m_1^* - m_1}{T_m} [1 + \cdots]$$

 $m_1 = 2h_p/H - 1$ dimensionless deviation from mixed *M* total mass hold up

- c relative concentration of particles
- h centre of mass

Types	Experiments	DNS	KSB	Debris	Debris Flows	Conclusions
Conclu	sions					

- Resuspension very important in many geophysical flows
- DNS expensive but can reproduce two layer structure
- Integral point mass models work well for some cases
- Depth integrated equations with vertical resdistribution a good compromise
- Easy to construct empirical models
- Also works for *n* component mixtures and segregation

 N.A. Konopliv and S.G. Llewellyn-Smith and J.N. McElwaine and E. Meiburg. Modeling gravity currents without an energy closure. J. Fluid Mech., 789:806–829, 2016.

• B. Sovilla, J.N. McElwaine, and M.Y. Louge. The structure of powder snow avalanches. *Comptes Rendus Physique*, **16**(1):97–104, 2015.

• B. Turnbull, E.T. Bowman, and J.N. McElwaine. Debris flows: Experiments and modelling. *Comptes Rendus Physique*, **16**(1):86–96, 2015.

 M. Ash, P.V. Brennan, C.J. Keylock, N.M. Vriend, J.N. McElwaine, and B. Sovilla. Two-dimensional radar imaging of flowing avalanches. *Cold Regions Science and Technology*, 102:41–51, 2014.

 A.J. Hafiz, J.N. McElwaine, and C.P. Caulfield. The instantaneous froude number and depth of unsteady gravity currents. J. Hydraulic Res., 51:432– 445, 2013.

• J. Kowalski and J.N. McElwaine. Shallow twocomponent gravity-driven flows with vertical variation. J. Fluid Mech., 714:434–462, 2013.

 N. M. Vriend, J.N. McElwaine, B. Sovilla, C. J. Keylock, M. Ash, and P. V. Brennan. High resolution radar measurements of snow avalanches. *Geo. Res. Let.*, 40(4):727–731, 2013. B. Turnbull and J.N. McElwaine, 2008. Experiments on the non-Boussineq Flow of Self-Igniting Suspension Currents on a Steep Open Slope., J. Geophys. Res., 113(F01003).

 B. Turnbull, J.N. McElwaine and C. Ancey, 2007. The Kulikovskiy–Sveshnikova–Beghin Model of Powder Snow Avalanches: Development and Application, J. Geophys. Res., 112(F01004).

• Turnbull, B., and **J.N. McElwaine**, 2007. A Comparison of Powder Snow Avalanches at Vallée de la Sionne with Plume Theories, *J. Glaciol.*, **53**(30)

 J.N. McElwaine, and B. Turnbull, 2006. Plume Theories Versus Compact Models for Powder Snow Avalanches, Sixth International Symposium on Stratified Flows, Perth, December 11-14,

• J.N. McElwaine, 2005. Rotational flow in gravity current heads, *Phil. Trans. R. Soc. Lond.*, **363**, 1603–1623, 10.1098/rsta.2005.1597.

• J.N. McElwaine and B. Turnbull, 2005. Air Pressure Data from the Vallée de la Sionne Avalanches of 2004, *J. Geophys. Res.*, **110**(F03010).

 J.N. McElwaine and K. Nishimura, 2001. Particulate Gravity Currents, Blackwell Science, chap. Pingpong Ball Avalanche Experiments, no. 31 in Special Publication of the International Association of Sedimentologists, 135–148.