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Introduction

● Brain oscillations, Hans Berger 1929 (EEG)
● Display a broad range of frequencies 
● Correlated with sleep stages & tasks 
● The reflect some coordination of spike 

discharges in large ensembles of neurons 
● Inhibition largely involved, particularly in “fast 

oscillations” (>30Hz)
● Computational models:  

– Inhibition + Synaptic Delays



  

Fast oscillations in Mean Field models
Heuristic Firing Rate Models

Roxin, Brunel, Hansel, PRL (2005); Brunel, Hakim, Chaos (2008); Roxin, Montbrió, Phys D (2011)



  

Fast oscillations in 
spiking neuron models

● In many cases, neurons do not fire at the freq. of the 
mean field. 

Dichotomy btw . Macroscopic & Microscopic dynamics 
● Sharp contrast w. Collective Synchronization Winfree J. 

Theor Biol. 1967, Kuramoto 1975, 1984. 
● Different macroscopic, self-organized state: 

Sparse Synchronization Brunel & Hakim 1999



  

Sparse Synchronization

● Networks of non-oscillatory, spiking neurons

● Strongly driven by noise

● Inhibition

● Synaptic delays (fixed and/or synaptic kinetics)      

Brunel, Hakim, Neural Comp. (1999); 
Brunel, Hansel, Neural Comp. (2006); 
Brunel, Wang, J. Neurophys (2003);  
Brunel, Hakim, Chaos (2008)

 Individual neurons 
Sparse, low firing rates

 Population Firing rate (Mean field)
Fast Oscillations

 



  

● Sparse Sync and Fast osc. in Heuristic FRM 
are assumed to be “the same state”

● HFRM are not derived from networks of spiking 
neurons though... 

● Is there an exact link btw. Fast Oscillations in 
FRM (Inhib+Delay) and some state (not 
collective sync) in networks of oscillators?

● Let's look at the Kuramoto model with delay...



  

Kuramoto model with time delay 

Coupling Strength

Time delay
Natural frequencies

Incoherence
Asynchronous (splay) state Full synchronization 

Yeung, Strogatz, Phys Rev Lett (1999)



  

Phase Diagram of the KM with delay

J



Full Synchrony
Incoherence

Sync/Incoh

Not OK for modeling Fast Osc. in inhibitory networks:
 

● Only collective sync (also clustering)
● Same dynamics for Excitation and Inhibition 

Yeung, Strogatz, Phys Rev Lett (1999)



  

● Quasiperiodic Partial Synchronization

● Collective Chaos

Potential candidates in oscillatory 
networks...



  

Quasiperiodic Partial Synchronization (QPS)

● Networks of Identical + Oscillatory + Excitatory LIF neurons

● Global coupling w. synaptic kinetics (alpha synapses)

Van Vresswijk, Phys Rev E (1996) 

Mean Field: 
Population Firing Rate

(Arbitrarily low-amplitude oscillations)

Neurons:
Quasiperiodic Dynamics

w. different mean freq 

Mohanti, Politi, J. Phys A (2006);
Rosenblum, Pikovsky, PRL 2007; 
Pikovsky, Rosenblum, Physica D (2009);
Olmi, Politi, Torcini, EPL (2010);
Luccioli et al, Phys Rev Lett (2012);
Politi, Rosenblum, PRE (2015)

QPS in LIF and Phase-Osc. (NLC) networks
no inhibition: 



  

Collective Chaos

Globally-coupled, Identical Limit-Cycle Oscillators (Landau-Stuart)

Collective dynamicsMicroscopic dynamics:
 

Chaos

Or... No chaos at the microscopic level!

Nakagawa & Kuramoto, Prog Theor Phys (1993),Nakagawa & Kuramoto, Phys D (1994) 

Collective chaos

Hakim, Rappel PRA (1992); Takeuchi et al. PRL (2009,2011), Olmi, Politi, Torcini, 
EPL (2010); Ku, Girvan, Ott, Chaos 2015, Rosenblum, Pikovsky PRE (2015)

...Collective chaos in
Populations of 

Oscillators with a single 
Phase-like variable?



  

Derivation of a FRM with 
Inhibition + Delays

(Not Heuristic)

Montbrió, Pazó and Roxin, PRX 2015
Pazó, Montbrió PRL 2016



  

Spiking neurons 
Quadratic Integrate & Fire model (QIF)

The QIF model is the normal form of a SNIC bifurcation

 

Ermentrout, Kopell, SIAM 1986; 
Latham et al. J Neurophys. 2000; 

Izhikevich, 2007



  

Dynamics of the QIF model 

Excitable dynamics:

Oscillatory  dynamics:

E. Izhikevich, “Dynamical Systems in Neuroscience”, 2007



  

Ensemble of recurrently coupled QIF neurons
with synaptic time delay

● Coupling: J>0: Excitation; J<0: Inhibition

● Mean synaptic activity ( sD=s(t-D) ): 

● Fast synapses (s->0):      

Time delayed, Population-Averaged Firing Rate



  

Thermodynamic limit
Continuous formulation

The Continuity Equation is

Fraction of neurons with V between V and V+dV
and parameter at time t

PDF of the currents  

For each value of Then the total density at time t is given by:  



  

Stationary solutions

Center Width

Lorentzian Ansatz



  

General solutions? 

Equating the expressions

We substitute the LA into the continuity eq

The identity must hold at all orders!! 



  

Dynamics in the Lorentzian manifold

Lorentzian ansatz Continuity equation

Closing this equation requires to express w as a function of r and 
some other meaningful macroscopic observables

: Fast Synapses



  

Lorentzian Ansatz 
Firing Rate & Mean Membrane potential

Firing Rate = Prob flux at threshold:

Firing Rate

Mean Membrane potential



  

Firing Rate Model

Lorentzian distribution of currents

Cauchy Residue's theorem to solve 

Montbrió, Pazó and Roxin, PRX 2015
Pazó, Montbrió PRL 2016
Ott, Antonsen, Chaos 2008



  

Linear Stability Analysis of Incoherence

For identical neurons, the only fixed point is:

Linearizing around the f.p. and imposing the cond. of marginal stab: = i 

Hopf boundaries:

 without loss of generality 

Incoherent state (splay state)



  

Incoherence (Hopf) boundaries

Incoherence is stable here!



  

Weakly nonlinear analysis (two timing)

Hopf bifs are super-critical here!
(only for inhibition)



  

Stability of Sync 
QIF ↔ Phase models

When: Vpeak=-Vreset→infty :

● Inter-spike Interval self-oscillatory neurons (>0,J=0):

●  Winfree Model (identical, self-oscillatory neurons):  

● Theta-Neurons: Ermentrout and Kopell,SIAM J Appl Math 1986 



  

Linear stability analysis of Sync

And: 

Winfree (QIF) model:

We find the boundaries:



  

Synchronization boundaries

Full synchronization is unstable here!



  

Phase diagram

Sync  & Incoh are 
UNSTABLE here!

Pazó, Montbrió, PRL (2016)

Bistability ?/Sync

SYNC

Incoh

SYNC + Incoh



  

Fast oscillations as in Heuristic FRM

D

T=2D

Delayed Inhibition (D) 
prevents an increase of activity

After a new time D 
there is no inhibition... 
Firing is possible again!



  

Micro vs. Macro dynamics: 
Fast osc. in Inhibitory networks & 

Quasiperiodic Partial Sync 

2D

Microscopic dynamics (QIF network) Macroscopic dynamics (FREs)



  

Decreasing J, period of QPS remains 
constant (symmetry of l.c. v→ -v)

Microscopic dynamics (QIF network) Macroscopic dynamics (FREs)

2D



  

Decreasing J,D: Macroscopic Chaos

Microscopic dynamics (QIF network) Macroscopic dynamics (FREs)

Neurons are not chaotic! Collective chaos



  

Transition from QPS to Collective Chaos 
period-doubling cascade 

Using the FREs we find:

In the thermodynamic limit the system shows genuine Collective Chaos



  

Onset of QPS and (weak) heterogeneity

TC bifs. are not robust 

bistability remains though!



  

Macroscopic chaos in 
heterogeneous networks 

No chaos
at microscopic

level!

Sync plateaus

Luccioli, Politi, PRL 2010

Heterogeneous Inhibitory LIF 
+ Delay



  

Summary

● Using an exact FRM we related QPS and CC to 
Fast Oscillations in Inhibitory Networks

● Same Collective Oscillations arise due to distinct 
Microscopic dynamics: sparse sync, QPS, CC...  

● Transition from QPS to CC via period doubling 
cascade

● CC and QPS are also present in (weakly) 
Heterogeneous networks  



  

Thanks!

ITN project: Complex Oscillatory Systems: 
Modeling and Analysis

Diego Pazó
Instituto de Física de Cantabria 

CSIC-Universidad Cantabria

In collaboration with:

Acknowledgement:


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

