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Introduction: Gravity currents

!
Gravity currents form in nature and industrial settings 

Horizontal flows driven by hydrostatic horizontal density differences 
and the associated hydrostatic pressure gradients 

Encompass atmospheric and oceanic flows: sandstorms, 
powdersnow avalanches, pyroclastic flows, thunderstorm outflows, 
and turbidity currents
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Sandstorm (haboob)

4Sandstorm in Phoenix AZ. Courtesy of Andrew Pielage (http://apizm.com/)



Sandstorm (haboob)

5Sandstorm in Phoenix AZ (2011). Courtesy of Mike Olbinski  (http://www.mikeolbinski.com/)

http://www.mikeolbinski.com/


Powdersnow avalanche

6Avalanche in Mt. Logan in Canada. Courtesy of Jeffrey Levison



Pyroclastic flows
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Left: Mount Pinatubo's eruption (Philippines) in 1991 (Photo by Alberto Garcia/Corbis available at 
http://www.guardian.co.uk/)

Right: Mount Merapi in central Java, Indonesia (AP Photo, available at http://
www.commercialappeal.com/)

http://www.guardian.co.uk/
http://www.commercialappeal.com/


Pyroclastic flows

8Mount Unzen, Japan (1991). 



Turbidity currents

9
Los Cabos in Baja California, Mexico. 

Movie by Andre Frota available at http://www.youtube.com/watch?v=ruC77oiGIiE

http://www.youtube.com/watch?v=ruC77oiGIiE


Turbidity currents: the Grand Banks landslide

10http://journals.hil.unb.ca/ocean

In 1929: 7.2 scale earthquake triggered	

a landslide. Transported O(200) km3 	

sediment into deep-sea regions 	
(≈ 800 km)

http://journals.hil.unb.ca/ocean


Turbidity currents: the Grand Banks landslide

11
Top: Recorded times (hr:min) of disrupted telegraphs after the 1929 Grand Banks landslide (http://www.geol.lsu.edu/jlorenzo/  
Bottom: Configuration of a turbidity current caused by a landslide (Covaul (2011), Nature)	

Estimated velocity ≈ 15 − 50 mph (Heezen & Ewing (1952))



Outline
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• Direct Numerical Simulation of turbidity currents

• Investigate the mixing and ‘unmixing’ dynamics

• Evolution of interstitial fluid as current interacts with a seamount

!

• And more… 



Problem setup

Suspension : ‘lock-exchange’ configuration

Complex topography: a Gaussian bump 

Two different particle sizes with identical densities

13



Basic assumptions

Dilute suspension of particles:               volume fractions

No particle-particle interaction

Incompressible flow with Boussinesq approximations

No change in bottom bed height as particles settle out

No erosion and/or bedload transport

14

O(1)%



Governing equations
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Continuity:

Momentum: Navier-Stokes equations with Boussinesq approximations

Particle transport: Small particles, neglect inertia

r · u = 0

@u

@t
+ u ·ru = �rp+

1

Re
r2u+ ceg|{z}

e↵ective density

@c

@t
+ (u+ use
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1
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Important numbers
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Reynolds number:

Particle settling speed:

Buoyancy velocity:



Software code: TURBINS

Viscous terms: Implicit second-order finite difference scheme

Convective terms: Third-order ENO

Time integration: Third-order TVD Runge-Kutta method

To impose a divergence-free velocity field: Fractional projection 
method

Complex topography: Immersed boundary method with direct forcing

Domain decomposition approach using MPI 

Parallel Krylov iterative solvers: PETSc

Algebraic Multigrid preconditioning for the solution of Poisson 
equation: BoomerAMG provided by hypre

17

Nasr-Azadani, M. M., & Meiburg, E. (2011). TURBINS: an immersed boundary, Navier–Stokes code for the simulation of 
gravity and turbidity currents interacting with complex topographies. Computers & Fluids.



Problem setup
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Two particle sizes: 

1. Coarse particles (50%): 

!
 2. Fine particles (50%):
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Flow evolution
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Frontal structure
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Frontal structure
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Three-dimensional structures

22

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3



Three-dimensional structures
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Three-dimensional structures
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Experiments
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Case B2. Gravity current. Experiments by Dr. Firat Y. Testik, Clemson University



Experiments

26
Case B2. Gravity current. Experiments by Dr. Firat Y. Testik, Clemson University



Front location & suspended mass
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Front location
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Non-monotonic 
behavior?
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Viscous dissipation
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Current height and front velocity
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Discussion: Bump height & non-monotonic 
effect

With the increase in bump height, there are two competing effects

Enhanced viscous dissipation due to three-dimensional vortical 
structures

Increase in front velocity due to a higher effective current height

Existence of a critical bump height which indicates the current 
traveling faster or slower than the flat bottom case
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Mixing: Interstitial fluid

• Lock-fluid (interstitial fluid) is tracked via a continuous 
concentration field:

!
!
!
!

• It is advected along the fluid velocity (minimal diffusion, Sc = 6) 

!
!
!

• With

32

: Mixing concentration 	
threshold



Mixing: Interstitial fluid
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Mixing: Interstitial fluid
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Mixing: Interstitial fluid
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Mixing: Interstitial fluid
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Streamwise vorticity components at two different locations
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Mixing: Interstitial fluid

• Lock-fluid (interstitial fluid) is tracked via a continuous 
concentration field:

!
!
!
!

• It is advocated along the fluid velocity (We set Sc = 6) 

!
!
!

• With

37

: Mixing concentration 	
threshold



Mixing: Interstitial fluid
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Mixing: Interstitial fluid
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Mixing identified: entrainment of ambient fluid into lock-fluid
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Influence of settling velocity
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B2-GC: Similar to case B2, settling velocity set to zero
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Influence of settling velocity
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B2-GC: Similar to case B2, settling velocity set to zero
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Influence of settling velocity
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B2-GC: Similar to case B2, settling velocity set to zero
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Influence of settling velocity
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Mixing at the interfacial region
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Mixing at the interfacial region
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Gravity current: Demonstrate a stable interface everywhere (Ri > 0.25) 

(exception: behind the nose region)



Mixing at the interfacial region
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Turbidity current: Production of strong K-H instabilities. Causes the upper 
interface to become unstable and mixed (Ri < 0.25)



Mixing at the interfacial region
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Mixing at the interfacial region
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In preparation: B. Kneller, M. M. Nasr-Azadani, S. Radhakrishnan, and E. Meiburg	



Mixing at the interfacial region

50

!
Could suppression of turbulence at the interfacial region (in this example, for a 

gravity current with zero settling velocity) be a reason for the enigmatic existence 
of long range turbidity currents observed in nature? 


In preparation: B. Kneller, M. M. Nasr-Azadani, S. Radhakrishnan, and E. Meiburg	
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Three-dimensional simulations: LES

Gravity current

Reynolds: 100,000


Us=0

Lock-exchange configuration
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Three-dimensional simulations: LES

Turbidity current

Reynolds: 100,000


Us = 0.02

Lock-exchange configuration
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Sub-summary:

!
Stability of upper interface in a gravity/turbidity current may play an 
important role in energy dissipation and, ultimately, the runout length 
of turbidity currents 

Unlike status quo definitions, i.e. utilizing bulk Froude/Richardson 
number for sub- vs. super-critical turbidity currents, it may be 
versatile to use gradient Richardson number as a way of identifying 
the behavior for these currents



Problem setup
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Two particle sizes: 

1. Coarse particles (50%): 

!
 2. Fine particles (50%):


FL 0.0
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Influence of Reynolds number
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Case B2-GC: Re=2000 & Re=5000

Re=2,000

Re=5,000



Influence of Reynolds number
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Influence of Reynolds number
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Lobe-and-cleft structures
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Mixing: Interstitial fluid
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A closer look: Vicinity of the bump
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Concentration of particles
Concentration of interstitial fluid



Mixing & unmixing
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Mixing of ambient fluid with particles

Mixing of ambient fluid with interstitial fluid

Unmixing of particles and interstitial fluid



Mixing and unmixing
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Summary

High resolution DNS simulations of turbidity currents interacting with 
seafloor topography

Investigated the effect of bump height on front location, vortical 
structures, and resulting mixing/unmixing behavior

!
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Nasr-Azadani, M.M., & Meiburg, E. (2015). Turbidity currents interacting with three-dimensional seafloor topography. J. Fluid 
Mechanics.

Nasr-Azadani, M.M., & Meiburg, E. (2013). Influence of seafloor topography on the depositional behavior of bi-disperse 
turbidity currents: A three-dimensional, depth-resolved numerical investigation. Envi. Fluid Mechanics.

Nasr-Azadani, M.M., & Meiburg, E. (2016). Mixing dynamics of turbidity currents interacting with complex topographies. 
(Under review). 
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Mixing and entrainment at the interface of 
lock-release gravity currents: a comparison 

between laboratory experiments, Large Eddy 
Simulations and Direct Numerical Simulations

!
C. Cenedese5, K. Bhaganagar1, R. Nokes2 , J. Hyatt3 , M. M. Nasr-Azadani4, M. 

Nayamatullah1 , and E. Meiburg4 
1 University of Texas at San Antonio, 2 University of Canterbury, 3 Massachusetts Maritime Academy,  

4 University of California at Santa Barbara, 5 Woods Hole Oceanographic Institute  
!



ꞌ 

Entrainment in dense currents

Wells, Cenedese & Caulfield, JPO 2010 

Assume entrainment is confined at  
the interface of the current, i.e. 
bottom drag does not influence 
 entrainment. 
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Entrainment in dense currents



Gravity current: Experiment
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Channel height: 20 cm

Reynolds number: ~9,000



Spanwise-averaged density field
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Channel height: 20 cm

Reynolds number: ~9,000



DNS: Spanwise-averaged density field
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Reynolds number: ~2,200



DNS
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Reynolds number: ~2,200



Density field: Experiments
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Horizontal velocity field
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Vertical velocity field
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Vertical velocity field
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Large 

entrainment



Average velocity

Locations: do not seem to 

depend strongly on 

Reynolds number



Entrainment coefficient

Significant portion of entrainment

occurs in this region, i.e. 


behind the gravity current head



Summary

Non-uniform entrainment behavior into gravity current body 

It does not depend strongly on Reynolds number

Strong entrainment behind the gravity current head: O(5) gravity 
current height

Good agreement observed: DNS, LES and experiments
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