

PARTICLES BREAKING OUT OF DEBRIS FLOWS

The University of Nottingham

Barbara Turnbull, Matthew Scase

Debris flows

 Fast moving, subaerial gravitational flows of water, sediments and coarse material (rocks, trees boulders)

A general term encompassing lahars, landslides, jökulhlaups.

e.g. Vargas, Venezuela 1999

- With our debris flow experiments we want to
 - Understand the effect of various flow variables, e.g. surface roughness, particle size
 - Use large particle sizes to (try and) achieve Froude and particle Reynolds number similarity
 - Simultaneously measure velocity profiles, pore pressure and basal shear and normal stress

Design Criterion - Similarity

Always difficult in particle laden flows!

Parameter	Name	Force Balance	Notts Chute	USGS Chute	1982 Oddstad
$\mathrm{N}_{\mathrm{Bag}} = rac{\phi_s ho_s d^2 \dot{\gamma}}{\left(1-\phi_s ight) \mu}$	Bagnold number	Inertial grain stress to viscous shear stress	2	400	4
$N_{Sav} = rac{ ho_s d^2 \dot{\gamma}^2}{(ho_s - ho_f) gh an heta}$	Savage number	Inertial grain stress to friction	0.2	0.2	$2 imes 10^{-4}$
$N_{fric} = rac{N_{Bag}}{N_{Sav}}$		Friction to viscous shear stress	9	$2 imes 10^3$	$2 imes 10^4$
$N_{mass} = \frac{\phi_s}{(1-\phi_s)} \frac{\rho_s}{\rho_s}$	Mass number	Solid to fluid inertia	1	4	4
(x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	c.f. Stokes number				
$N_{Rey} = rac{N_{Bag}}{N_{mass}}$	c.f. Reynolds number	Fluid inertial stress to viscous shear stress	2.5	100	1
$\operatorname{Fr} = \frac{u}{\sqrt{gh}}$	Froude number	Inertial to gravita- tional	0.6	10	3

Data from

Iverson Richard M., 1997, Physics of debris flows, Rev. Geophys 35, 3, 245-296

Experiment Design

2D CHUTE

Lock release

Variable	Notation	Values	(units)		
Solids volume fraction Volume of solids Roughness length	$\phi_s \ \phi_s V \ [d_{r1}, d_{r2}, d_{r3}]$	$0.6 \\ 1 \\ [2, 4, 8]$	$^{ m litre}_{ m imes 10^{-3}m}$		
Angle of inclination	heta	27°			
Solids: glass beads					
Density	ρ_s	2600	kg m ⁻³		
Diameter	$[d_1,d_2,d_3]$	[2, 4, 8]	$ imes 10^{-3} \mathrm{m}$		
Fluids: water, glycerol					
Density	$[ho_{f1}, ho_{f2}]$	[1000, 1260]	${ m kg}{ m m}^{-3}$		
Viscosity	$[\mu_1,\mu_2]$	[1.41, 0.8]	Pas		

Experiment

What happens?

Snout formation

- Longitudinal and vertical particle size and volume fraction variation
- Distinct collisional and continuum regions

Flow regimes

Quivers scaled by 0.1

SD>150 mm s⁻¹ Granular region, dark grey

Low SD, viscoplastic, pale grey

14 frame (0.2 s) averages

Velocities 600--1000 mm s⁻¹

Power law profiles

Power law profiles

Pressures

- Roughness is only important in the when the roughness length is greater than or equal to the mean particle size
- But, we see that snout-body architecture formation does not require mixtures of particle sizes

What about saturation?

- So if all that snout and body architecture needs is for the may-or-may-not be larger material at the top to be moving more quickly than the rest of the flow, then the level of saturation should be important
- While rebuilding the chute to investigate this, I was wondering over what range a particle leaving a fluid surface remained 'in touch' with the surface

To start with, consider one....

Experiments

- Particle diameters: 4, 6, 8, 10, 12 mm
 Winch speeds: 02, 0.3, 0.4, 0.5, 0.6, 0.7 m/s
- □ Fluids: Water, Kaolin solution (10% vol)

What happens?

Variation with winch speed, 12 mm

Variation with particle size (0.7 m/s)

Ejection jet

- As the particle exits the surface, it leaves behind a little vortex ring
- This continues to accelerate fluid through it after the particle has left
- It may even accelerate the particle
- □ A force balance allows to estimate a timescale $T_j = \frac{u}{a}$

Draining flow

Stokes flow in a thin layer, invoke lubrication assumptions. Short time asymptotics...

Draining timescale

This draining flow has a layer Reynolds number that looks like

$$\mathsf{Re}_l = \frac{g(\varepsilon R)^3}{\nu^2}$$

and, without surface tension, that leads to a timescale

$$T_d = rac{
u}{arepsilon Rg}$$

Clearly, this depends on the original layer thickness

Coating

- So how thick is the initial layer in this draining problem? i.e. ε
- 1. Inertial?
- 2. Capillary?
- If inertial, then I can imagine that the fluid that gets dragged with the particle is the added mass
- If capillary, (Ca<<1, ours are ~10⁻²), the coat thickness varies with Ca^{2/3}

(Landau Levitch 1942) Ca = -

Timescales

Raw data

Ejection jet scaling

Draining scaling, 'inertial coating'

Draining timescale, 'capillary coating'

So...

- The sustaining of the tendril scales more convincingly with time scales inferred from analysis of the draining flow
- But this itself depends on the way in which the particle became coated
- Include surface tension in the draining flow
- I would have done the experiments a bit differently if I had known this!

In reality?

- Rarely have real debris flows where a particle could eject in this way
- But this might give a handle on the extent of the 'intermittent' zone
- □ Or why particles stay *in* the flow
- More significant for lab flows