
Understanding rainfall: the role 
of Turbulence and Large 

Deviation Theory!
!

Michael Wilkinson!
!

Department of Mathematics and Statistics,!
The Open University, Walton Hall, !
Milton Keynes, MK7 6AA, England!

!

Includes results obtained in collaboration with 
B. Mehlig, A. Pumir, V. Bezuglyy, M. Vosskuhle



Overview
!

• Understanding the origin of rain showers from ice-free 
clouds is a challenge. Raindrops grow by collisions, but the 
rate of collision is slow. 

• It has been proposed that turbulence in shower clouds 
enhances the collision rate. There are two mechanisms: 
clustering of particles, and folding of the phase-space 
manifold. In typical clouds, neither effect is sufficient.!

• Only a tiny fraction of droplets need to undergo runaway 
growth. Large deviation theory is the appropriate tool for 
rare events. In the case of rainfall, it shows that a shower 
can occur in a small fraction of the mean collision time. 



The problem of rainfall

a0 = 10µm
�l = 1gm�3

  

Types of cloud

There are two major clouds types: stratus and cumulus: 

Stratus clouds: layers in an air 
mass which is stable against 
convection. Associated with 
slow onset of rain from warm 
fronts. No turbulence.

Cumulus clouds: moisture in 
clumps of rising air in an 
atmosphere which is unstable 
against convection. Associated 
with showers or thunderstorms 
from cold fronts. Turbulence.

Raindrops (millimetre size) result from a ‘collector’ droplet 
sweeping up a vast number of microscopic droplets. The 
first few collisions happen very slowly (perhaps one 
collision per hour).!
!
Droplet size:!
Liquid water content:

One million collisions must occur in less than the mean time 
of a single collision. But this only a tiny fraction (                 ) 
of microscopic droplets need to undergo runaway growth. 

P ⇡ 10�7



Estimating collision rates
Collisions primarily due to differing settling rates. Stokes 
formula                   gives 
!

!

Simple kinetics (area X speed) gives the collision rate: 
!

!

The collision efficiency is low for small droplets 
!

Collision rate estimate: for 

v = ⌧pg = a2 ,  =
2

9

⇢l
⇢g

g

⌫

R1 = ⇡"N0(a0 + a1)
2(a21 � a20) N0 = 2.5⇥ 108 m�3

F = 6⇡⌘av

 ⇡ 1.4⇥ 108 m�1s�1

a  10µm ! "  0.03
a0 = 10µm , a1 � a0 = 2.5µm

R1 ⇡ 2⇥ 10�5s�1



Role of turbulence
Can turbulence initiate rainfall by increasing the rate of 
collisions between droplets? Several distinct proposals:!
!
• Turbulence causes collisions by inducing shear (Saffman 

and Turner, 1956).!
• Turbulence causes particles with significant inertia to 

cluster (Maxey, 1987). This should enhance the collision 
rate (Sundaram and Collins, 1997).!

• The clustering of particles samples a fractal measure 
(Sommerer and Ott, 1993), implying large densities.!

• Relative velocities may be increased by folding of phase-
space manifolds (Falkovich, Fouxon and Stepanov, 2005), 
Wilkinson, Mehlig and Bezuggly, (2006).!



Particles in turbulence
Droplets have small Reynolds number: their motion is 
dominated by viscosity. Equations of motion are

⌧K =
p

⌫/✏

ṙ = v , v̇ =
1

⌧p
[u(r, t)� v] + g

Damping time is determined by Stokes formula for drag

⌧p =
2

9

a2

⌫

⇢p
⇢f

Turbulent motion of fluid is described by Kolmogorov theory

h[u(R, t)� u(0, t)]2i = C (✏|R|)2/3



Saffman-Turner mechanism
Saffman and Turner: turbulence has shearing motions, which 
induce collisions: !
!
 

Rturb =

r
8⇡

15

N0"(2a)3

⌧K
⌧K =

p
⌫/✏

Figure 5

The velocity gradient is not usually a simple shear. A locally hyperbolic relative velocity also
induces collisions.

In this review, we are concerned with turbulence in an incompressible, Newtonian fluid,

described by the Navier-Stokes equations:

@

t

u+ (u ·r)u = � 1
⇢

f

rp+ ⌫r2

u+ f (14)

r· u = 0 . (15)

where p is pressure. The viscous term dissipates kinetic energy in the fluid, so in the

absence of any forcing, f = 0, the motion simply decays. The Reynolds number, defined as

Re = UL/⌫, where U and L are the velocity and length scales at which the fluid is forced,

measures the ratio between the nonlinear term, (u ·r)u and the viscous (dissipative) term,

⌫r2

u. In turbulent flows, the Reynolds number is e↵ectively a measure of the intensity of

turbulence: turbulence is expected to occur whenever the Reynolds number is very large:

Re � 1. Thus, the statement Re � 1 e↵ectively means that, at the forcing scale, viscous

dissipation does not play much role. Primarily because the kinematic viscosity ⌫ is a small

quantity, very large Reynolds numbers are common: for example, a convective instability

of the atmosphere can create a flow with Re > 108.

3.1. Scales in a turbulent flow

Turbulence is a notoriously di�cult problem (34) but we argue that most of what we need

to know can be surmised from dimensional considerations. Kolmogorov (35, 36) introduced

the powerful notion that the small structures of the flow have very little ‘memory’ of how

the flow was generated. He argued that only one quantity, the rate of kinetic energy dissi-

pation per unit mass, ✏, is required to characterise fully developed steady and homogeneous

turbulent motion over a wide range of length scales (termed the ‘inertial range’ in the tur-

bulence literature). The quantity ✏, the power dissipated per unit mass, and designated

in the following in short as ‘energy dissipation’, is determined by the manner in which the

turbulence is generated, by means of large scale flows with characteristic length scale L and

velocity scale U . Dimensional considerations imply that ✏ ⇠ U

3

/L. In the inertial range of

length scales, where ✏ is the only relevant parameter, statistics of the flow can be determined
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Figure 3

The rate of collision between particles of radius a
1

and a
2

is determined by integrating the
relative velocity over a spherical surface of radius a

1

+ a
2

, indicated by a dotted line.

(a) (b)

Figure 4

The relative velocity of particles might be independent of their separation, illustrated in (a) for a
larger particle overtaking a smaller one as they both fall under gravity. Alternatively, the relative
velocity may be proportional to their velocity gradient: (b) shows a collision induced by a simple
shear flow (in both cases the arrows indicate the velocity of the smaller particle relative to the
larger one).

2.2.1. Collision in a gas of particles with a Gaussian distribution of velocity. For future

reference, we estimate here the collision rate between particles spatially uniformly dis-

tributed in a fluid, with statistically independent Gaussian (Maxwellian) distribution of

velocities, such that hvi = 0 and a variance hv2i
a

, which depends a-priori on the ra-

dius a of the particles. The assumption that particles are uniformly distributed ensures

that C(a
1

+ a

2

) = 1. Assuming that the distribution of the velocity for particle i is

P (v
i

) = ( 3

2⇡hv2iai
)3/2 exp[�3v

i

2

/(2hv2i
ai)], an elementary calculation shows that the aver-

age velocity required in (8) is h|�v

r

|i = [ 2
⇡

(hv2i
a1 + hv2i

a2)]
1/2. This leads to the following

collision rate in a suspensions of particles with a Gaussian distribution of velocities:

�
1,2

= (
8⇡
3
)1/2(a

1

+ a

2

)2[hv2i
a1 + hv2i

a2 ]
1/2 (10)

consistent with classical estimates (33).
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Clustering 

Maxey’s centrifuge effect
Maxey suggested that suspended particles are centrifuged away from vortices:

M.R.Maxey, J. Fluid Mech., 174, 441, (1987).

If the Stokes number is too large, 
the vortices are too short-lived. If 
the Stokes number is too small, 
the particles are too heavily 
damped to respond. Clustering 
occurs when  

St =
⌧p
⌧K

v = u(x(t), t)� ⌧p
Du

Dt
(x(t), t)

r · v = �⌧p


tr(E2)� 1

2
! · !

�

Droplets density becomes inhomogeneous due to inertial 
effects. Maxey (1987) proposed that dense particles are 
ejected from vortices by centrifugal effects. The effect can 
only work at moderate Stokes number.



Fractal clustering

C(✏) = 1

4⇡n✏2
dhN i
d✏

����
✏

hN (✏)i ⇠ n⌘3
✓
✏

⌘

◆D2

Figure 1

Particles in a turbulent flow can show pronounced clustering, which samples a fractal measure.
The image is a two-dimensional simulation of particles in an incompressible flow. The simulation
includes particles with three di↵erent masses, shown in di↵erent colors.

Figure 2

a The distribution of particles in a turbulent flow can show singularities which result from the
projection of folded manifolds in phase space: this is a simulation of a two-dimensional
compressible flow, taken from (14). b The singularities are termed caustics, because they have the
same structure as singularities in optics. The image (a photograph by Amanda W. Peet) shows a
pattern of caustics on the bottom of a swimming pool, resulting from partial focussing of sunlight
due to curvature of the water surface by irregular waves. The two images are remarkably similar.

based on a mean-field approximation, may appear as an enticing starting point. The rapid

increase of the collision rate when the size of the particle increases, as it happens in the case

of settling droplets in a cloud, can lead to runaway growth, which is a feature of the forma-

tion of raindrops from microscopic water droplets. This phenomenon is known as gelation

in the polymer physics literature. Surprisingly, it has been shown that when gelation is

modelled using the Smoluchowski equation, the time required for the gelation transition

may be strictly equal to zero (13). This instantaneous gelation is clearly unphysical; it im-

plies that mean-field descriptions based on the Smoluchowski approach have to be applied

with caution.

We provide here a critical discussion of results concerning the rate of rain drop and
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The clustering effect is much stronger than Maxey’s 
centrifuge argument implies. Ott and Sommerer (1993) used 
dynamical systems theory to show that the clustering is 
fractal. Characterised by the correlation dimension:



Caustics
Caustics

The velocity field develops a fold caustic 
as faster particles overtake slower ones.

Also, the density of particles 
diverges at caustics:

M.Wilkinson and B.Mehlig, Europhys. Lett. 71, 186, 
(2005).

The velocity field is triple-valued between the 
fold caustics, so that particles at same 
position have relative motion.R =

4⇡a2n⌘

⌧K
F (St,Re) F (St,Re) / exp(�S/St)

A competing effect is that 
collisions may occur if faster 
particles overtake slower ones: 
think about phase space.

The effect is most clearly understood in terms of caustics:

Figure 1

Particles in a turbulent flow can show pronounced clustering, which samples a fractal measure.
The image is a two-dimensional simulation of particles in an incompressible flow. The simulation
includes particles with three di↵erent masses, shown in di↵erent colors.

Figure 2

a The distribution of particles in a turbulent flow can show singularities which result from the
projection of folded manifolds in phase space: this is a simulation of a two-dimensional
compressible flow, taken from (14). b The singularities are termed caustics, because they have the
same structure as singularities in optics. The image (a photograph by Amanda W. Peet) shows a
pattern of caustics on the bottom of a swimming pool, resulting from partial focussing of sunlight
due to curvature of the water surface by irregular waves. The two images are remarkably similar.

based on a mean-field approximation, may appear as an enticing starting point. The rapid

increase of the collision rate when the size of the particle increases, as it happens in the case

of settling droplets in a cloud, can lead to runaway growth, which is a feature of the forma-

tion of raindrops from microscopic water droplets. This phenomenon is known as gelation

in the polymer physics literature. Surprisingly, it has been shown that when gelation is

modelled using the Smoluchowski equation, the time required for the gelation transition

may be strictly equal to zero (13). This instantaneous gelation is clearly unphysical; it im-

plies that mean-field descriptions based on the Smoluchowski approach have to be applied

with caution.

We provide here a critical discussion of results concerning the rate of rain drop and
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High Stokes number
The ‘overtaking’ mechanism was termed the sling effect by 
Falkovich, Fouxon and Stepanov (2005), and discussed in 
terms of caustics by Wilkinson, Mehlig & Bezuglyy (2006).!
!
When the Stokes number is very large, the particle 
trajectories are uncorrelated with the flow (Abrahamson, 
1975), also termed ‘random uncorrelated motion’ (Reeks et 
al, 2011). The collision rate is inferred from the Kolmogorov 
theory (Mehlig & Wilkinson, 2007):

h|�v|i = Kp
✏⌧p R ⇡ K

na2⌘

⌧K

p
St



Collision rate formula

R = Radv +Rcaust

Radv =

r
8⇡

15

n(2a)3

⌧K
C(2a)

Rcaust = K
na2⌘

⌧K

p
St exp(�S/St)

Collision rates due to shearing effects and caustics are 
additive:



Numerical studies
Prevalence of the sling effect for enhancing collision rates 5
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Figure 1. The collision rate R as a function of the Stokes number St and for the ratios of
density ρp/ρf = 250, 103 and 4 × 103. The collision rate R is normalized by n0(2a)

3/τK (a),
and n0(2a)

2η/τK (b). The horizontal dashed line in (a) corresponds to the Saffman-Turner
prediction.

using the Kolmogorov model for the structure of the flow. This theory suggests that
F (St ,∞) ∼ St1/2. A simpler and more general dimensional argument was proposed by
Mehlig et al. (2007): in the inertial range, the relative velocity can only depend upon
ϵ and τp, so that dimensional analysis mandates that ⟨|w|⟩ ∼ √

ϵτp. Substituting for
τp, we have a rate of collision at high Stokes number which is of the form (2.7) with
F (St ,∞) ∼ K

√
St , where K is a universal dimensionless constant. We emphasise that,

because the preferential concentration effect is a consequence of nearby particles expe-
riencing a correlated strain-rate, this effect makes no contribution to Rsling. Equation
(2.7) accounts for collisions between particles which have not experienced the same local
environment, and the factor g(2a) which occurs in (2.6) is therefore absent from (2.7).
An alternative approach to the theoretical analysis of collision rates was pursued by

(Zaichik et al. 2003), who analysed the PDF of relative position and velocity in a stochas-
tic model for the turbulent velocity field. This model includes both preferential concen-
tration and the sling/caustic effects, but does not allow their relative contributions to be
determined. The possible connections between this approach, and the one discussed in
this paper deserves further attention (Salazar & Collins 2012).

3. DNS studies of the collision rate

As explained before, we investigated the collision rate R as a function of both a and
ρp/ρf . This allows us, in particular, to keep the values of Reλ and St fixed, while varying
the size of the particles.
Our simulations used a pseudo-spectral code, fully dealiased, with grid size 3843. The

flow is forced with a prescribed energy injection rate ϵ (Lamorgese et al. 2005). The
Taylor microscale Reynolds number achieved in the steady state is Reλ = 130. Proper
spatial resolution has been maintained, as can be judged from the product kmaxη = 2,
where kmax is the largest wavenumber faithfully simulated. Particle trajectories were
integrated by using the Velocity Verlet algorithm (Press et al. 2007) and resorting to
tri-cubic interpolation to evaluate the fluid velocity at the position of the particle. We
detected collisions by using the algorithm described by Sundaram & Collins (1996).
Modifying the ratio ρp/ρf at fixed value of the Stokes number is achieved by varying in
the collision detection algorithm the radius of the particles, a, according to (2.2),(2.3)
(so that a ∝ (ρp/ρf)−1/2). In the range of parameters considered, ρp/ρf > 250 and
St ! 5, the particle radii are at most ≈ η/3, which ensures that (2.1) provides a very



Large Stokes number limit
July 21, 2014 Journal of Turbulence DNSKSJOT˙accepted
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Figure 4. (Colour online). Plot of the collision rate R divided by n0a2uK

√
St, as a function of St. The

curves appear to approach a plateau at large St as the Reynolds number increases, consistent with equation
(12). The data for Reλ = 130 is from [24], the other data is re-plotted from [10].

sweeping effect.
Random flow field models which use single-scale velocity fields have been very

successful in explaining the qualitative features of the role of caustics in enhancing
collision rates [21, 29]. They have also been shown to be able to give quantitatively
correct results in describing preferential concentration [30]. Our results indicate
that attempts to improve upon the predictive ability of random flow models for
turbulence by incorporating the multi-scale aspect of the flow seem to be unsuc-
cessful. The reason for this failure can be attributed to the lack of sweeping of the
small eddies by the large eddies in the KS model. This very important difference of
the KS flow, in comparison to DNS has been shown to lead to different predictions
[31]. In particular, it has been qualitatively noticed that preferential concentration
is reduced in KS [32]. We find that even in the range of Stokes number St ! 1, where
the enhancement of the collision rate is not so much due to preferential concentra-
tion, but rather to the caustics effect [24], the KS model seriously underestimates
the collision rates.
The evaluation of the collision rate in turbulence at large Stokes and Reynolds

remains a significant open problem. The results presented here indicate that only
DNS evaluations should be considered reliable. The best approach is to utilise DNS
data at the largest Stokes number for which a DNS collision rate has been observed
to be substantially independent of the Reynolds number. We used data from a high
resolution study of collisions in turbulent flows by Rosa et al., [10], together with
our own data from [24]. In accord with arguments in [25, 26] and with equations
(7) and (8) above, we fitted a collision rate proportional to

√
St. The data plotted

in figure 4 indicate that the collision rate for turbulence with very high Reynolds
numbers is

R ≈ Kn0a
2uK

√
St , K = 50 . (12)

for large values of the Stokes number, with the plateau being reached by St ≈ 1.2.
Note that, while the curves show a decrease for larger values of St, they appear to
approach a plateau as the Reynolds number increases. The position of the plateau
and therefore the exact value of the constant K seem to depend (slightly) on the
Reynolds number. But until simulations at higher Reynolds number become avail-



Does turbulence explain rain?
Estimate intensity of turbulence (rate of dissipation): 
!

!

Parameters of typical droplets: 
!

The Saffman-Turner collision rate is low: 
!

And so is the Stokes number:  
!

So turbulence does not have much effect.

N0 = 2.5⇥ 108 m�3a0 = 10µm , a1 � a0 = 2.5µm

✏ ⇠ U3

L
⇡ 10�3 m2s�1 ⌧K ⇡ 10�2 s

Rturb ⇡ 10�6 s�1

St =
⌧p
⌧K

⇡ 10�2



Model for runaway growth
Kostinski and Shaw (BAMS, 2005) gave a model for runaway!
droplet growth. Time for growth of raindrop is:

N ⇡ 106T =
NX

i=1

tn

Pn(tn) = Rn exp(�Rntn) Rn = R1n
�

Individual collision times are Poisson distributed, with a rate 
that increases as the droplet grows:

Ignoring collision efficiency gives                . Including collision!
efficiency,             may be a better model. What is 

� = 4/3
� = 2

P (⌧) , ⌧ =
T

hT i



Large deviation form
We are interested in the very small probability that the 
droplet grows explosively in a very short time. What is the 
(dimensionless) time      at which the probability to grow to 
size      is         

P (T ) =
1

hT i exp[�J(⌧)] , ⌧ =

T

hT i

⌧⇤

N

This is a large-deviation problem: introduce an ‘entropy’       

P (⌧⇤) =
1

N , ⌧ =
T

hT i

Dimensionless time for onset of rainfall is solution of:      
J(⌧⇤) = lnN



Bromwich integral solution
Mean time converges when           : raindrops result from 
cases where the first few collisions where unusually rapid.

�(k) = �
NX

n=1

lnhexp(�ktn)i =
NX

n=1

ln

✓
1 +

k

Rn

◆

P (T ) =
1

2⇡i

Z C+i1

C�i1
dz exp[zT � �(z)]

exp[��(k)] = hexp(�kT )i =
Z 1

0
dT P (T ) exp(�kT )

lim
N!1

hT i = lim
N!1

1

R1

NX

n=1

1

f(n)
=

1

R1
⇣(�)

� > 1

Laplace transform in terms of explicit cumulent: 

Laplace inverted numerically by Bromwich integral: 



Saddle-point approximation
Seek a stationary point of the exponent in Bromwich integral: 
relates time to saddle point:

T =
NX

n=1

1

Rn + k⇤

P (T ) =
1

R1

1p
2⇡S(k⇤)

exp[�J(⌧)]

Saddle point approximation:

⌧ = T/hT i

Dimensionless parametric equations for entropy:

⌧() =
1

⇣(�)

1X

n=1

1

+ n� J() =
NX

n=1

ln
�
1 + n��

�
� ⌧



Asymptotics of asymptotics
Small      asymptotics of saddle requires large     form of:

S0 =

Z 1

0
dn ln(1 + n��)S ⇠ S0 �

1

2
ln()� �C +O(�1)

T () ⇠ A(�)� ��1
� +

1

2
A(�) =

Z 1

0
dx

x

��1
�

1 + x

=
1

�

�(
1

�

, 1� 1

�

)

⌧ 

S() =
1X

n=1

ln
�
1 + n��

�

Some analysis gives:

C = lim
n!1


(n� 1) ln

✓
n� 1

n

◆
+ 1

�
� ln(n)

2
⇡ 0.91896611

Other asymptotics follow from this, e.g.:



Explicit asymptotic theory
Seek a stationary point of the exponent in Bromwich integral: 
relates time to saddle point:

T =
NX

n=1

1

Rn + k⇤

P (T ) =
1

R1

1p
2⇡S(k⇤)

exp[�J(⌧)]

Saddle point approximation:

⌧ = T/hT i

Analysis of sums leads to an asymptotic formula

P (⌧) = K⌧�
3��1

2(��1)
exp(�C/⌧

1
��1

)



Numerical results
• Monte-Carlo simulation!
• Exact probability density from Bromwich integral!
• Saddle-point approximation!
• Explicit asymptote for very small time

� = 2� = 4/3
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Implications for rainfall
Consider          . The probability of undergoing                   
collisions is approximately                 when                 , that is a 
shower is triggered after a small fraction of the timescale for 
the first collision:

N = 106

P = 10�6 ⌧⇤ = 0.12

T
shower

=
⇣(�)

R
1

⌧⇤ ⇡ 0.19T
1

� = 2

A small fraction of particles undergoes an enormous number 
of collisions in a fraction of the mean time for the first collision. !
!
Surprisingly the time to make a shower decreases as the 
number of collisions increases:

⌧ ⇠ (lnN )�(��1)



Summary
Since Saffman and Turner’s classic paper in 1956, a vast 
literature has developed on whether turbulence enhances 
droplet collision rates in clouds. Recent numerical evidence 
shows that ‘caustics’ are the dominant mechanism, but in 
most clouds their effect is insignificant.!
!
An alternative view is that raindrops are the result of rare 
cases where droplets undergo a succession of rapid 
collisions. Large deviation theory is the appropriate tool. !
Surprisingly, the more droplets have to collide, the shorter 
the time for the onset of rainfall.  


