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Overview

Understanding the origin of rain showers from ice-free
clouds is a challenge. Raindrops grow by collisions, but the
rate of collision is slow.

It has been proposed that turbulence in shower clouds
enhances the collision rate. There are two mechanisms:
clustering of particles, and folding of the phase-space
manifold. In typical clouds, neither effect is sufficient.
 Only a tiny fraction of droplets need to undergo runaway
growth. Large deviation theory is the appropriate tool for
rare events. In the case of rainfall, it shows that a shower
can occur in a small fraction of the mean collision time.



The problem of raintall

Raindrops (millimetre size) result from a ‘collector’ droplet
sweeping up a vast number of microscopic droplets. The
first few collisions happen very slowly (perhaps one
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collision per hour).

Droplet size: gy = 10 um
Liquid water content: &, = 1 gm >

One million collisions must occur in less than the mean time
of a single collision. But this only a tiny fraction ( P ~ 107
of microscopic droplets need to undergo runaway growth.



Estimating collision rates

Collisions primarily due to differing settling rates. Stokes
formula F = 6rnav gives
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Simple kinetics (area X speed) gives the collision rate:
Ry = meNy(ag + a1)’k(a] — af) No=25x10°m™?

The collision efficiency is low for small droplets

a < 10pum — ¢ <0.03

Collision rate estimate: for ao =10pum , a; —ap = 2.5 um
Ri ~2x 10 °s}



Role of turbulence

Can turbulence initiate rainfall by increasing the rate of
collisions between droplets? Several distinct proposals:

+ Turbulence causes collisions by inducing shear (Saffman
and Turner, 1956).

- Turbulence causes particles with significant inertia to
cluster (Maxey, 1987). This should enhance the collision
rate (Sundaram and Collins, 1997).

- The clustering of particles samples a fractal measure
(Sommerer and Ott, 1993), implying large densities.

- Relative velocities may be increased by folding of phase-
space manifolds (Falkovich, Fouxon and Stepanov, 2005),
Wilkinson, Mehlig and Bezuggly, (2006).



Particles In turbulence

Droplets have small Reynolds number: their motion is
dominated by viscosity. Equations of motion are

1
F=v, b= lu(r1) v+
Tp

Damping time is determined by Stokes formula for drag
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Turbulent motion of fluid is described by Kolmogorov theory

(u(R,t) —u(0,)]%) = C (| R)?® 7k =/v/e



Saffman-Turner mechanism

Saffman and Turner: turbulence has shearing motions, which
induce collisions:
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Clustering

Droplets density becomes inhomogeneous due to inertial
effects. Maxey (1987) proposed that dense particles are
ejected from vortices by centrifugal effects. The effect can

only work at moderate Stokes number.
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Fractal clustering

The clustering effect is much stronger than Maxey’s
centrifuge argument implies. Ott and Sommerer (1993) used
dynamical systems theory to show that the clustering is
fractal. Characterised by the correlation dimension:




Caustics

A competing effect is that
collisions may occur if faster
particles overtake slower ones:
think about phase space.
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R = (St, Re) F(St, Re) oc exp(—5/St)
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The effect is most clearly understood in terms of caustics:
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High Stokes number

The ‘overtaking’ mechanism was termed the sling effect by
Falkovich, Fouxon and Stepanov (2005), and discussed in
terms of caustics by Wilkinson, Mehlig & Bezuglyy (2006).

When the Stokes number is very large, the particle
trajectories are uncorrelated with the flow (Abrahamson,
1975), also termed ‘random uncorrelated motion’ (Reeks et
al, 2011). The collision rate is inferred from the Kolmogorov
theory (Mehlig & Wilkinson, 2007):

2
(|Av|) = K\ /e, R~ K 1\/st
T

K



Collision rate formula

Collision rates due to shearing effects and caustics are
additive:

R = Radv + Rcaust
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Numerical studies

(a) - (b)

20 T T T T T

e

R><1:K/[n0 (2a)3]

2

Rx‘cK/ [noxn x(2a)”]
[y
=

X pP/pf=4000 |
+ pP/pf=1000
A pP/pf=250

0 01 02 _ 03 04 05 | 1 2 3 4 5 6
St St
FIGURE 1. The collision rate R as a function of the Stokes number St and for the ratios of
density pp/pr = 250, 10° and 4 x 10°. The collision rate R is normalized by no(2a)°/mx (a),
and mno(2a)’n/mk (b). The horizontal dashed line in (a) corresponds to the Saffman-Turner
prediction.



Large Stokes number limit
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Figure 4. (Colour online). Plot of the collision rate R divided by nga?uk+/St, as a function of St. The
curves appear to approach a plateau at large St as the Reynolds number increases, consistent with equation
(12). The data for Rey = 130 is from [24], the other data is re-plotted from [10].



Does turbulence explain rain”

Estimate intensity of turbulence (rate of dissipation):

U? 0

e~ — ~ 107 m?s™ ! TK%10_QS

Parameters of typical droplets:

ag = 10pm , a; —ag = 2.5pum Ny =25x10°m™°

The Saffman-Turner collision rate is low:

Rturb ~ 10_6 S_1
And so is the Stokes number: r

So turbulence does not have much effect.



Model for runaway growth

Kostinski and Shaw (BAMS, 2005) gave a model for runaway
droplet growth. Time for growth of raindrop is:

N
1=1

Individual collision times are Poisson distributed, with a rate
that increases as the droplet grows:

P,(t,) = R, exp(—R,t,) R, = Rin”

Ignoring collision efficiency gives ~ = 4/3 . Including collision
efficiency, ~ = 2 may be a better model. What is

P(t), 7=-—



L arge deviation form

We are interested in the very small probability that the
droplet grows explosively in a very short time. What is the
(dimensionless) time 7* at which the probability to grow to

size N IS ) 1 T
P(T ) — ./T/* y T = <T>
This is a large-deviation problem: introduce an ‘entropy’
1 1
P(l) = —exp|—J(T)|, T=-—7
(T) = 7y expl=J(7)] T

Dimensionless time for onset of rainfall is solution of:
J(t7) = InN



Bromwich integral solution

Mean time converges when ~ > 1 : raindrops result from
cases where the first few coII|S|ons where unusually rapid.

Jm =/&£nm3—12f 7
Laplace transform in terms of explicit cumulent:

exp|—A(k)] = (exp(—kT")) = /OOO dT P(T) exp(—kT)
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Laplace inverted numerically by Bromwich integral:

C'+10c0
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Saddle-point approximation

Seek a stationary point of the exponent in Bromwich integral:
relates time to saddle point: |,

= ZR e

Saddle point approximation:
1 1
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Dimensionless parametric equations for entropy:
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Asymptotics of asymptotics

Small 7 asymptotics of saddle requires large ~ form of:

S(k) = Z In (1+xn~7)

Some analysis gives:

S~ Sy— %ln(/i) —~vC+ O™ Sy = / dn In(1+kn™7)
0

— 1
C = lim [(n —1)In (n 1) + 1] — # ~ 0.91896611
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Other asymptotics follow from this, e.g.:

a1 o = 11 1
T(k) ~ A(Y)E 7 + A = [ de = B )




Explicit asymptotic theory

Seek a stationary point of the exponent in Bromwich integral:
relates time to saddle point: |,

= ZR e

Saddle point approximation:

11
P(T) = & NS exp[—J (), T =T/T)

Analysis of sums leads to an asymptotic formula
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P(r) = Kt 200 exp(—C/777)




Numerical results

Monte-Carlo simulation

Exact probability density from Bromwich integral
Saddle-point approximation

Explicit asymptote for very small time
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Implications for raintall

Consider v = 2. The probability of undergoing A/ = 106
collisions is approximately P = 107° when 7" = 0.12, that is a
shower is triggered after a small fraction of the timescale for
the first collision:

Tshower — %Z/)T* ~ 019T1
A small fraction of particles undergoes an enormous number
of collisions in a fraction of the mean time for the first collision.

Surprisingly the time to make a shower decreases as the
number of collisions increases:

T ~ (ln./\/‘)_(fy_l)



summary

Since Saffman and Turner’s classic paper in 1956, a vast
literature has developed on whether turbulence enhances
droplet collision rates in clouds. Recent numerical evidence
shows that ‘caustics’ are the dominant mechanism, but in
most clouds their effect is insignificant.

An alternative view is that raindrops are the result of rare
cases where droplets undergo a succession of rapid
collisions. Large deviation theory is the appropriate tool.
Surprisingly, the more droplets have to collide, the shorter
the time for the onset of rainfall.



