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Chapter 1

Abstract

During vertebrate embryo development, the body axis is subdivided into repeated

structures, called somites. Somites bud off from an un-segmented tissue called the

pre-somitic mesoderm (PSM) in a sequential and periodic manner, tightly con-

trolled by an in built molecular clock, called the "segmentation clock". According

to current understanding, the clock is comprised of: (i) an autonomous cellular

oscillator consisting of an intracellular negative feedback loop of Her genes within

the PSM cells, (ii) Delta-ligand and Notch-receptor coupling that facilitates syn-

chronization of oscillators among the PSM cells, (iii) Tissue level waves of gene

expression that emerge in the posterior PSM and move coherently towards ante-

rior, leading to global arrest of oscillations in the form of somites. However, the

movement of cellular oscillators within the PSM before the formation of somitic

furrows, a prominent feature of the tissue as observed through this work has not

been experimentally considered as a constituent of the segmentation clock so far.

Our work aims to incorporate movement of cellular oscillators in the framework

of the segmentation clock. It is well known from theoretical studies that the char-

acteristics of relative motion of oscillators affect their synchronization properties

and the patterns of oscillations they form. Particularly, theoretical studies by

Uriu et al., PNAS (2010) suggest that cell movements promotes synchronization

of genetic oscillations. Here, we established experimental techniques and image

analysis tools to attain quantitative insight on (i) diffusion co-efficient of cellular

oscillators, (ii) dynamics of a population of oscillators, within the PSM aiming

towards concomitant understanding of the relationship between movement and
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Abstract

synchronization of cellular oscillators.

In order to quantitatively relate cellular oscillators and their motion within

the PSM, I established imaging techniques that enabled visualization of fluores-

cenctly labeled nuclei as readouts of cell positions in live embryo, and developed

dedicated segmentation algorithm and implemented tracking protocol to obtain

nuclei positions over time in 3D space. Furthermore, I provide benchmarking

techniques in the form of artificial data that validate segmentation algorithm ef-

ficacy and, for the first time proposed the use of \transgenic embryo chimeras\

to validate segmentation algorithm performance within the context of in vivo

live imaging of embryonic tissues. Preliminary analysis of our data suggests that

there is relatively high cell mixing in the posterior PSM, within the same spa-

tial zone where synchronous oscillations emerge at maximum speed. Also, there

are indications of gradient of cell mixing along the anterior-posterior axis of the

embryo. By sampling single cell tracks with the help of nuclei markers, we have

also been able to follow in vivo protein oscillations at single cell resolution that

would allow quantitative characterization of coherence among a population of cel-

lular oscillators over time. Our image analysis work flow allows testing of mutant

embryos and perturbation of synchrony dynamics to understand the cause-effect

relationship between movement and synchronization properties at cellular resolu-

tion. Essentially, through this work, we hope to bridge the time scales of events

and cellular level dynamics that leads to highly coordinated tissue level patterns

and thereby further our understanding of the segmentation clock mechanism.
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Chapter 2

Introduction

During vertebrate embryo development, the body axis is divided into segmented

structures, called somites. These structures give rise to the vertebrae, skeleton

and the muscle of trunk and tail. Segmentation of the embryo occurs as it grows,

in an anterior-to-posterior or head to tail sequence, where somites appear se-

quentially on the paraxial mesoderm tissue, that is differentiated much earlier

during development (Wolpert et al., 2007; Gilbert, 2006). Although, we do not

completely understand the mechanism controlling the process, we do know some

of the key players that determine somite formation. Studies have proven that a

biological clock and wave mechanism based on gene expression network of oscil-

lators within the mesoderm tissue coordinate to give rise to the sequential and

periodic somite pattern, harmonized by other signaling pathways- the process

termed \somitogenesis\ and the clock referred to as \segmentation clock\. This

manner of biological patterning has attracted researchers who are not only biol-

ogists, but also physicists, computational biologists and recently even engineers.

I will introduce and explain the mechanism by which vertebrate embryos are

segmented in the following section.

2.1 Somitogenesis during zebrafish embryo development

During the process of somitogenesis, the body axis of the vertebrate embryo is seg-

mented in an anterior-to-posterior sequence, where groups of cells called somites

–precursors of vertebrae, ribs, and some dermis and muscular tissue, appear se-
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Introduction

quentially from head to tail as the embryo grows (Kimmel et al., 1995; Dequéant

and Pourquié, 2008; Wolpert et al., 2007; Pourquié, 2001; Gilbert, 2006). In ze-

brafish, around 30 somites are formed in the paraxial mesoderm with one new pair

of somite formed about every 30 minutes from the posterior unsegmented tissue of

the embryo, the presomitic mesoderm (PSM) as shown in Fig. 2.1. Somite forma-

tion is hence a highly time-driven process, with a species specific period, ranging

from 30 minutes in zebrafish to 6 hours in human (Gomez et al., 2008). In the

Figure 2.1: Lateral views of embryo with stages during zebrafish embryo somitogenesis.
Somites bud-off sequentially on the posterior unsegmented PSM (blue line). courtesy:
Oates A C et al., Development, 2012.

following, I will give a brief historical account of the most important steps leading

to our present understanding of the process of somitogenesis. The first theoretical

hypothesis to explain somitogenesis was the \clock and wavefront model\ proposed

by Cooke and Zeeman (Cooke, 1975; Cooke and Zeeman, 1976). According to

their model, tissue level synchronous oscillations occur in the PSM, which upon

reaching the determination front in the anterior, arrest to form somites. The

length of the somite formed is given by the product of the arrest wavefront veloc-

ity and the period of the clock. The model thus explains how temporal periodicity

is converted into spatial patterns (Cooke and Zeeman, 1976; Morelli et al., 2009).

However, the model doesn’t take into account the cellular and molecular players

involved in the process of somite formation.

The first molecular evidence for a developmental clock linked to segmentation

and somitogenesis of the paraxial mesoderm was provided for the chick embryo

(Palmeirim et al., 1997). Palmeirim et. al. identified and characterized a gene be-

longing to the hairy and Enhancer of split (Hes) family (Davis and Turner, 2001;

Kageyama et al., 2007), (c-hairy1 ), where its mRNA exhibited cyclic waves of
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Somitogenesis during zebrafish embryo development

expression within the paraxial mesoderm alone, whose temporal periodicity cor-

responds to the formation of one somite (Fig. 2.2 A.). Similar orthologous sets of

Hes-related (Her) genes have been identified in the segmentation clocks of other

vertebrates (Krol et al., 2011). The cyclic nature of deltaC, that codes for Notch

ligands, was revealed through in situ expression pattern analysis at different stages

of zebrafish somitogenesis. These findings suggested the existence of a segmen-

tation clock in the zebrafish PSM and the crucial function of Notch signaling to

synchronize the biochemical oscillators within the PSM of the zebrafish embryos

(Jiang et al., 2000). Further investigations on the roles on two genes, her1 and

her7 revealed that they repress the transcription of their own protein, and their

mRNA levels oscillate in synchrony, with a periodicity and phase matching those

of deltaC (Hirata et al., 2002; Henry et al., 2002; Oates and Ho, 2002; Holley

et al., 2000; Lewis, 2003) (Fig. 2.2 B.).

A large genetic screen identified several zebrafish segmentation mutants such as

fused somites (fss), beamter (bea), deadly seven (des), after eight (aei) and mind

bomb (mib). After eight (aei) and beamter (bea) are caused by mutations in deltaD

(deld) and deltaC (delc), respectively, while des is a mutant of the notch1a re-

ceptor and mib is an E3 ubiquitin ligase required for ubiquitination of the Delta

ligand, suggesting that in some way or the other, all of these mutants affect the

Delta/Notch signaling pathway. The expression pattern of delc in all the delta-

notch mutant backgrounds was shown to be clearly erratic, as seen in Fig. 2.2

C, further supporting the requirement of the Delta/Notch signaling to keep the

oscillations of neighboring PSM cells synchronized (van Eeden et al., 1996; Jiang

et al., 1996; Jülich et al., 2005; Jiang et al., 2000; Itoh et al., 2003).

Disruption of the signal leads to salt and pepper like patterns of oscillating gene

expressions. Embryos treated with DAPT, a γ - secretase inhibitor that blocks

the cleavage of the Notch-intra cellular domain (NICD), that normally regulates

the transcription of her genes, leads to disruptive segmental boundaries, revealed

by high resolution in situ hybridization as a read out. As a consequence of loosing

signaling, local coordination among the cells is disrupted, although the cells would

still presumably continue to oscillate in the PSM. Wash-out of DAPT from the

embryo lead to complete recovery of segmental boundaries as shown in Fig. 2.3.

These experiments strongly suggested that the cell autonomous oscillations are
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A.

B.

C.

Figure 2.2: Dorsal views A. In situ hybridization with c-hairy1 mRNA expression in the
PSM of chick embryo provides first molecular evidence for oscillatory gene expression.
c-hairy1 expression patterns in embryos aged, 15 (A, B, and C), 16 (D, E, and F),
and 17 (G, H, and I) somites. I, II, III for each somite stage indicates the periodic
phase of oscillations in the PSM; adapted from: Palmeirim et al., Cell, 1997. B. In situ
expression of cyclic genes in the zebrafish PSM at 14 hpf (10 somites) after flat mounting
for delC, her1, her7 ; adapted from: Oates et al., Development,2002. C. papc, (paraxial
protocadherin), marks cells corresponding to the anterior part of a somite, (Yamamoto
et al., 1998)) and delc expression patterns in wild type (wt) and mutants (mib, bea, des,
aei), at 10-somite stage. delc expression pattern in all mutants is abnormal compared
to wt, with no sign of the organized oscillation as seen in the wt, indicating individual
cells continue to oscillate in the mutants with an amplitude appropriate to the region of
the PSM in which they lie, but that local cell-cell synchrony is lost, creating a random
mixture of cells in different phases of their individual oscillation cycles. Taken from:
Jiang et al., Nature, 2000.
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Somitogenesis during zebrafish embryo development

Figure 2.3: Lateral view, 36 hpf. Delta-Notch coupling is sufficient for self-organized
resynchronization of the segmentation clock and rescue of morphological segmentation
defects. A Timeline of DAPT pulse-chase experiment. B Six anterior segments formed
correctly followed by approximately 15 disrupted segments as an effect of DAPT, fol-
lowed by normally shaped segments posterior to 21st segment as an effect of wash-out
of DAPT. C to G Representative dlc PSM expression patterns, time points marked re-
ferring to B. Two representative embryos showing transition from mildly affected cyclic
expression stripes C, degrading gradually D to typical salt-and-pepper pattern indicat-
ing desynchronization among cells E compared to expected wt pattern F, and return of
normal, symmetrical cyclic gene expression pattern G. Asterisks mark dlc cyclic stripes
(C, F and G) and disordered expression domains (D and E). Taken from: Reidel-Kruse
IH et al., Science, 2007.

generated by her1 and her7, and that the Delta-Notch signaling is required to

maintain synchrony in the segmentation clock by coupling the cellular oscillators.

It is also noted from these studies that the onset of segmentation defects and

recovery from the defects occurs after certain ’time delay’ (Riedel-Kruse et al.,

2007; Jiang et al., 2000; Horikawa et al., 2006; Ozbudak and Lewis, 2008; Giudi-

celli et al., 2007).

Further, other signaling pathways like Wnt, fibroblast growth factor (FGF) and

retinoic acid have been identified to have a gradient like distribution, along the

anterior-posterior axis of the PSM, orchestrating tissue level spatio-temporal as-

pects of somitogenesis (Dequéant et al., 2006; Dubrulle et al., 2001; Pourquié,

2003; del Corral et al., 2003; Dequéant and Pourquié, 2008; Niwa et al., 2011;
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Pourquié, 2011; Vilhais-Neto et al., 2010; Oates et al., 2012) as seen in Fig. 2.4.

Figure 2.4: Pictorial representation of the dorsal view showing global gradients of fibrob-
last growth factor (FGF) and Wnt (brown) form a gradient on the tissue from posterior
to anterior, while retinoic acid (RA) gradient (gray) expands from the recently formed
somites. Sustained high-frequency oscillations observed in the posterior region of the
tissue that gradually slow down as they approach the wavefront of arrest (horizontal
line). Left panel shows the different phases cellular oscillators undergo as they traverse
the tissue. Right panel highlights maturation program of pre-somitic mesoderm cells,
running in parallel to segment length specification controlled by the clock. Taken from:
Oates A C et al., Development, 2012.

Progress towards understanding the structure and function of the clock mecha-

nism in the last decade manifest combinatorial approaches based on experimental

observations, computational analysis and theoretical models (Tomlin and Axel-

rod, 2007; Oates et al., 2009; Roellig et al., 2011; Lewis, 2008). These findings

improved our understanding of the function and dynamics of the segmentation

clock, particularly the interplay between single cell oscillator to collective coher-

ent dynamics among a population of cells, leading to tissue level patterns in the

form of somitic boundaries (Pourquié, 2011; Oates et al., 2012; Morelli et al.,

2012).

Keeping with the pace of appreciating in vivo clock dynamics, the idea of simul-

taneous direct observation of rapidly changing gene expression seemed to quickly
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build up among researchers studying zebrafish and other vertebrate species. De-

signing a cyclic gene reporter can be a challenging task since it can be tricky to find

the right balance between accuracy of expression, which depends on the instabil-

ity of reporter proteins, and the sensitivity of available imaging methods/set-ups,

which must detect the expected transient signals (Soroldoni and Oates, 2011).

The first live reporter of cyclic oscillations using a destabilized Luciferase cassette

reporter at the mRNA and protein level, was observed in the mouse embryo by

Masamizu et. el (Masamizu et al., 2006). A while later, Aulehla and co-workers

provided the first fluorescent transgene cassette reporter of oscillating gene expres-

sion that could be imaged at the tissue level (Aulehla et al., 2008). Mathematical

models of the segmentation clock predict that the oscillatory expression is regu-

lated by negative feedback and ’delays’ from transcription to protein expression

and therefore negative auto-regulation must be sufficiently long for sustained os-

cillations (Lewis, 2003; Monk, 2003; Novak and Tyson, 2008). In another study on

the intron length in genes, it has been shown that in negative feedback systems,

intron length in genes can be significantly instrumental in causing transcription

delays and thereby contribute to timing mechanisms of gene expression (Swin-

burne and Silver, 2008; Swinburne et al., 2008). The function of introns in the

timing of gene expression in segmentation clock network to produce sustained

oscillations was demonstrated for Hes7 in mice by Takashima and co-workers

(Takashima et al., 2011; Oswald and Oates., 2011).

In our laboratory, the PhD work of Dr. Soroldoni has produced high-fidelity live

reporters, a technically challenging task, that recapitulates the endogenous Her1

and Her7 oscillating protein expressions (Soroldoni, 2010). Comparative statis-

tical significance tests conducted on live reporters and wt embryos, indicated a

consistency between in vivo protein oscillations and the period of somite bound-

ary formation that also overlap closely with the wt embryos period (Soroldoni,

2010; Schröter et al., 2008). These transgenic reporters now allow us to follow

tissue level oscillating protein expression as seen in Fig. 2.5. High magnification

imaging also allows us to study oscillations of these reporters at cellular resolu-

tion.

Although several components of the clock have been identified, direct visualiza-

tion of cellular oscillators is essential for bridging between the cellular level events
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waves of her1 pro-

tein oscillations in 

the PSM
Somites

Anterior Posterior

Figure 2.5: Lateral view of the embryo. Tissue level protein oscillations of her1 - yfp,
that occur autonomously in PSM cells. PSM cells are synchronized with adjacent cells,
a wave-like gene expression starts at the posterior PSM and moves towards the anterior,
where it slows down and eventually stops, where somites are formed. Movie snapshot
and transgenic line: Daniele Soroldoni

leading to tissue level patterns derived from a highly coordinated temporal pro-

gram. Moreover, none of the studies so far considered the role of movement of

cellular oscillators within the PSM in the context of the segmentation clock. In

the following sections, I will introduce the current state of the art for the segmen-

tation clock. My approach in understanding the role of movement of oscillators

is predominantly based on developing tools to obtain quantitative experimental

data of single cell trajectories in the PSM. I do this, in order to gain cellular

level insight on the clock dynamics. Further, existing and relevant theoretical

models are improvised to extract meaningful properties of the system at cellular

resolution. Therefore, in subsequent sections, I will introduce the theoretical con-

cepts required for understanding the clock mechanism. Subsequently, I will put

forth the current challenges in image acquisition techniques and image processing

approaches to acquire 3D positions of cells over time in live embryonic tissues.

2.2 Segmentation clock: the three-tier model

The current understanding of the segmentation clock can be conceptually sub-

divided into a three-tier model, wherein all the tiers must orchestrate for proper

10



Moving cellular oscillators of the PSM

functioning of the clock (Oates et al., 2012; Oates and Ho, 2002; Holley et al.,

2002, 2000; Lewis, 2003; Lewis et al., 2009).

Single cell autonomous oscillators : Each cell within the PSM has a protein (Her1

and Her7), which represses the transcription of its own gene (her1 and her7 ).

Periodic changes in concentration of gene and protein via a negative feedback

loop, makes the cell an autonomous oscillator, also exemplified in Fig. 2.6 B.

Delta-Notch coupling synchronizes the autonomous oscillators : The mRNA lev-

els of these genes synchronously increase and decrease in a population of cells in

the PSM. This is due to the fact that cells in the PSM are coordinated via the

Delta/Notch signaling pathway. Notch and Delta are cell-surface receptor and

ligand respectively. A delta ligand of one cell, say A, binds to the Notch receptor

of its neighboring cell, say B, to activate cleavage of the Notch at the membrane

that consequently allows release of the Notch intracellular domain (NICD) in cell

B, which migrates to the nucleus and regulates the transcription of her1 and

her7 genes. The Notch extracellular domain (NECD) along with the Delta is

endocytosed in cell B. This causes cells to express similar identities and thereby

inter-cellular communication among cells is achieved. Thus, local synchronization

is achieved via inter-cellular coupling as shown in Fig. 2.6 C.

Tissue level global control and arrest of oscillations : At the tissue-level, the seg-

mentation clock generates patterns of traveling waves of gene expression, that

sweep across the PSM tissue from posterior to anterior. The traveling waves of

oscillations are sharply arrested in the anterior PSM in the form of somites, also

seen in Fig. 2.4.

Thus the segmentation clock is a multi-scale rhythmic pattern generator, coordi-

nated from a single cell oscillator to coupling of phases of oscillators that integrate

to give periodic tissue level patterns (Oates et al., 2012; Pourquié, 2011).

2.3 Moving cellular oscillators of the PSM

Cell movements start very early during embryogenesis and is a fundamental as-

pect that carves the embryonic body form. Multiple morphogenetic movements

occur during development driven by variety of cell behaviors such as cellular

rearrangements, cell migrations, coordinated shape changes and region specific
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Figure 2.6: A Dorsal view cartoon of the embryo during somitogenesis. Somites flanked
on both sides of the notochord. PSM is an assembly of cellular oscillators with a number
of cyclic genes expressed in the tissue. B Single cell oscillator via an intracellular nega-
tive feedback loop within the nucleus (by Her gene and protein) (top). Oscillations of
mRNA and protein concentrations in the single cell oscillator (bottom). C Autonomous
Her gene oscillators are synchronized by Delta-Notch coupling (top). Synchronized
oscillations of mRNA for a population of coupled oscillators (bottom).

cell movements (Wolpert et al., 2007; Gilbert, 2006). However, cell movement

patterns during somitogenesis in the zebrafish have not been elucidated in the

context of the segmentation clock. In this study, we aim to incorporate the role

of cell movements in the PSM and how their properties affect the synchronization

of oscillators. When we look at the cell movements in the PSM over a span of

several hours using a Histone H3-gfp transgenic line on a confocal microscope,

we perceive continuous dynamic re-arrangment of cells throughout PSM prior to

formation of somitic furrows, indicated by white arrows in Fig. 2.7. Maximum

cell mixing is observed within the same spatial posterior PSM, where sustained

synchronized oscillations occur at high frequency as shown earlier in Fig. 2.4. In

this work, we aim to investigate the cause-effect relationship between movement

of cellular oscillators and their synchronization properties during the course of

somite formation.

12



Relationship between movement and synchrony?

PSM

Figure 2.7: Real-time imaging of cell nuclei in zebrafish embryos. Panels are taken
from a confocal time-lapse movie (25x objective) and show the positions of nuclei in
the tail during somitogenesis; newly forming somite boundaries are marked with white
arrowheads. Continuous movement of cells observed throughout out PSM (indicated in
pink here). Note that PSM shrinks in length along anterior-posterior axis and decreases
in depth along the dorsal-ventral axis as somite formation occurs during development.
Snapshots of movie from Dr. Andrew C Oates.

2.4 Relationship between movement and synchrony?

Experimental and theoretical studies on the segmentation clock so far have em-

phasized the role of coupling of cellular oscillators as an essential criterion for

proper functioning of the clock. Coupling or phase synchronization of neigh-

boring oscillators is achieved via interactions between membrane proteins such

as delta ligands and notch receptors. A classical experiment shown in Fig. 2.3

further supports that the delta-notch coupling by itself is sufficient to maintain

synchrony among a population of oscillators. Other signaling pathways like FGF

and Wnt form a gradient along the antrior-posterior axis, however, cell-cell com-

munication alone can be achieved by the delta ligand and notch receptor signaling

between cell membranes of neighboring cells, essential for synchronisation. How-

ever, delta-notch coupling alone may not be able to attain sustained global level

synchronization among a population of cellular oscillators. This is owed to the

fact that locally coupled oscillators have strong tendency to form spatial strut-

ters that would prevent the oscillators to achieve global synchronization (Peruani

et al., 2010; Uriu et al., 2012). Theoretical studies have thus shown that local spa-

tial structures formation may be overcome by the continuos exchange of oscillator

positions to achieve a global synchronous state. Therefore, continuous change of
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position of oscillators may prevent the formation of local synchronization and

rather aid a global synchrony state. These studies suggest that the characteris-

tics of relative motion of oscillators affect their synchronization properties and

the patterns of oscillations they form(Ishimatsu et al., 2007; Mehta and Gregor,

2010; Tinsley et al., 2009; Riedel-Kruse et al., 2007; Peruani et al., 2010; Uriu

et al., 2010, 2012). Cell movements within the PSM play a key role owed to

morphogenesis during embryo development demarcating somitic furrows (Delfini

et al., 2005; Bénazéraf et al., 2010) sequentially on the PSM. PSM cells exhibit

oscillatory behavior and synchronized oscillations occur in the same spatial zone

(posterior PSM) of the tissue where rigorous cell mixing has been observed, one

can ask, whether the movement of cells in the PSM has any contribution to the

segmentation clock? Some studies have interpreted cell movements as a source of

noise that would hamper the oscillatory machinery in its synchronization (Mara

and Holley, 2007), however, the theoretical studies prove it different.

Therefore, we ask the following question in the zebrafish embryo PSM:

"What happens to the coupling between cells while the cells move continuously

over time within the PSM?"

Or how does the movement of cellular oscillators affect the synchronization prop-

erties? To obtain answers, we combined high resolution imaging techniques with

quantitative image analysis tools to obtain cellular tracks in order to read in

vivo oscillator phases. In the next section, I will briefly go through stages of

zebrafish embryo development, particularly convergence and extension mecha-

nisms adopted during development and the essential role of cell movements that

contributes to this process.

2.5 Cell movements during embryonic \convergence and ex-

tension\

Zebrafish are teleosts and form an excellent research model organism since the

zebrafish embryos develop externally and are transparent until about 24 hours

post fertilization (hpf). The zebrafish developmental stages were first described

by Kimmel et al., (Kimmel et al., 1995) in terms of hours post fertilization (hpf)

at standard temperature of 28 °C, schematically narrated in Fig. 2.8.
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Figure 2.8: Pictorial representation of zebrafish development from the Zygote Period to
the mid-Segmentation Period. Following the brief Zygote Period (panel a), when the
embryo is at the single-cell stage, the Cleavage Period (panels b–g) runs from 2-cell to
64-cell stage (i.e., 0.75 hpf to 2.25 hpf). The Blastula Period (panels h-p) follows the
Cleavage Period, and runs from the 128-cell stage to the 50% epiboly stage (i.e., from
2.25 hpf to 5.3 hpf). The formation of the enveloping layer (EVL) and yolk syncytial
layer (YSL) are indicated in panels i, and j and k, respectively. The Gastrula Period
(panels q-u) then runs from the end of the Blastula Period at 50% epiboly (i.e., 5.3 hpf)
through to bud stage at 10 hpf, after which the SP begins. In this schematic, we have
just shown the early stages of the Segmentation Period (panels v-z), i.e., from bud stage
(at 10 hpf) to the 14-somite stage (at 16 hpf). AP, VP, Ant. Pos. and hpf are animal
pole, vegetal pole, anterior, posterior and hours post fertilization, respectively. BD (in
panel a) indicates the blastodisc, at the 1-cell stage, which develops into the blastoderm
during subsequent stages of development. In the Gastrula Period, the leading edge of
the blastoderm is indicated by a blue arrowhead in panel q. The dorso-ventral axis
is first visible morphologically at Shield stage (i.e., 6 hpf; panel s). The simultaneous
cell movements of epiboly (blue arrows), convergence (green arrows) and extension (red
arrows) that occur during the Gastrula Period are shown in panel t. The tail bud,
somites and brain anlage are indicated by red, green and black arrowheads, respectively
in panels v, w and x. Schematics modified from Kimmel et al.,. Taken from: Webb et.
al., (Webb and Miller, 2007) 15



Introduction

The final vertebrate body plan is extremely complex, generated from a single

fertilized egg. The fertilized egg, referred to as zygote undergoes several early

mitotic cell divisions. The cell - divides, differentiates, grows, moves, produces

and senses molecular signals that influence neighboring cell activities, generate

patterns. Hence the rules of activities are very well-defined from the beginning

for embryo development within a species. Besides, some of the early events are

even conserved across species (Alberts et al., 2002). Cell movements start very

early during zebrafish development and in fact it has been shown through lineage

tracing and fate mapping experiments that cell commitment is set already before

the onset of gastrulation (Ho and Kimmel, 1993; Kimmel et al., 1990).

Understanding early morphogenetic processes in developmental biology has been

of great interest for several decades (Spemann, 1938; Waddington, 1956). Gas-

trulation, (refer to Fig. 2.8), a fundamental process of embryogenesis, shapes

the early embryo with three germ layers - endoderm, mesoderm and ectoderm.

Vertebrate gastrulation involves four morphogenetic movements: mesoderm inter-

nalization, epiboly, convergence and extension. During gastrulation, cells demon-

strate a repertoire of morphogenetic movements coordinated with fate inductions

to sculpt the embryonic body. Epiboly leads to expansion of tissue, internal-

ization encompasses movements of mesodermal and endodermal precursors from

the blastula surface beneath the ectodermal layer. Convergence movements nar-

row embryonic tissue mediolaterally, whereas extension movements elongate them

from head to tail (Spemann, 1938; Warga and Kimmel, 1990; Solnica-Krezel, 2005;

Keller et al., 2000; Wallingford et al., 2002; Myers et al., 2002).

Convergence movements give rise to directed migration of cells in the lateral

regions of the fish embryo toward the dorsal midline without any cellular rear-

rangements, while the anteroposterior extension encompasses the intercalation of

cells specifically along the mediolateral axis via cellular rearrangements (Walling-

ford et al., 2002; Solnica-Krezel, 2005). A large scale genetic screen, carried out

few years ago identified specific mutations affecting cell fates and cellular arrange-

ments during gastrulation of zebrafish embryo development (Solnica-Krezel et al.,

1996; Stemple et al., 1996; Sepich et al., 2000).

Two of the mutants described in the screen were reported to have reduced con-

vergence and extension movements, namely the heparan sulfate proteoglycan
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Knypek/Glypican4 (Kny) (Topczewski et al., 2001) and Trilobite (Tri)/Strabismus

(Stbm)/Van Gogh-like 2 (Vangl2) (Jessen and Solnica-Krezel, 2004; Jessen et al.,

2002). Kny and tri are components of the non-canonical Wnt signaling pathway,

also termed as Planar Cell Polarity (PCP) pathway and they control the medio-

lateral elongation and alignment essential for the planar cell behaviors that drive

convergence and extension processes (Myers et al., 2002; Yin et al., 2000; Sepich

et al., 2000). Through quantitative particle image velocimetry analysis (Raffel

et al., 1998) of patterns in the PSM and manual cell tracking, it was revealed

that the medial PSM cell population in kny and tri had fewer cell rearrange-

ments and reduced cell migration speeds compared to their wt counterparts, thus

supporting the crucial contribution of medial intercalation for convergence and

extension movements (Yin et al., 2000; Yin and Solnica-Krezel, 2007; Solnica-

Krezel et al., 1996; Keller et al., 2000). As a result, the somites in kny and

tri mutant embryos are substantially wider in their medio-lateral dimension and

shorter in their anterior-posterior dimension as seen in figure Fig. 2.9 B.(Solnica-

Krezel et al., 1996; Henry et al., 2000). Interestingly, it has been reported by Dr.

Röllig in our laboratory, that the period of somitogenesis (Schröter et al., 2008)

in the mutants is same as seen in wt embryos and further established a novel

role of the PCP pathway in regulation of the cellular morphology during somite

boundary formation (Roellig and Oates, 2012). In this thesis, the convergence

and extension mutants form our potential candidates for PSM cell movement

analysis study, that have slower cell movement compared to wild-type (WT). We

also consider to investigate cell movement rates in aei, a deld mutant, that affects

delta - notch coupling between oscillators, in order to understand whether cellular

mobility is affected by delta-notch signaling.

2.6 Theoretical studies of the segmentation clock

Mathematical models may serve to provide plausible prototypes, to explain ob-

served phenomena and provide a theoretical framework for further experimental

investigations. Theoretical interest in somitogenesis started as early as in the

70’s, much before molecular biologists found experimental evidence for a molec-

ular biological clock within the PSM. Christopher Zeeman and Jonathan Cooke
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A.

B C

B.

WT

kny / tri

MyoD, 6 somites deltaD, 12 somites 

Figure 2.9: Anterior is to the top and dorsal towards the right. A. Lateral views.
Nomarski images of live embryos at 10 somite stage (13.25 hpf). Wild type (wt);
Mutants: Knypek (kny) and Trilobite(tri). Scale bar, 0.1 mm. Adapted from: L
Solnica-Krezel et al.,1996. B. Dorsal views. Top panel wt and bottom panel kny/
tri mutant from a cross of two heterozygous adults. MyoD expression indicates early
muscle differentiation in both cases at 6 somite stage. DeltaD expression seen at 12
somite stage. Narrow somites are formed in kny and tri embryos compared to wt.
Adapted from: Henry et al., 2000.

postulated the clock and wavefront model to explain the periodic somite for-

mation during vertebrate morphogenesis (Cooke and Zeeman, 1976), while the

existence of an oscillatory gene network responsible for such a sequential and

periodic patterning was discovered much later only in the 90’s (Palmeirim et al.,

1997).

The pioneering work of Turing in 1952 introduced the concept of \morphogen\and
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coupled reaction-diffusion systems that could potentially give rise to various types

of biological patterns (Turing, 1952). Turing’s conceptual idea that mutually-

interacting components of a system could spontaneously generate patterns of

various forms depending on the dynamics of the reacting components and wave-

length of pattern has been widely used to explain pattern formation in various

biological systems (Kondo and Miura, 2010). Following this theory, Meinhardt

proposed activator-inhibitor systems which further included non-linearities and

considered local and global stability criteria to generate spontaneous patterns

and structures in tissues (Meinhardt, 1982). In another famous work by Wolpert,

it has been suggested that cells process positional information by combining po-

sitional identity and a signaling gradient to form patterns during development

(Wolpert, 1969, 1994). Since then, considerable experimental evidence has proved

the existence of morphogen gradients responsible for cell fate specifications and

patterning during development and has inspired theoretical modeling for unravel-

ing the dynamics of biological systems (Gurdon and Bourillot, 2001; Oates et al.,

2009; Bollenbach et al., 2005; Dubrulle and Pourquié, 2004; Ashe and Briscoe,

2006; Reeves et al., 2006; Delfini et al., 2005; Bénazéraf et al., 2010; Wartlick

et al., 2011; Morelli et al., 2009). Besides, several studies have illustrated the

importance of biochemical and biophysical rhythms in various systems ranging

from calcium oscillations to circadian rhythms that find their roots in regulatory

mechanisms that control the dynamics of living systems (Goodwin, 1963; Win-

free, 1980; Goldbeter, 1996), much earlier than the discovery of the segmentation

clock (Kruse and Jülicher, 2005). Our present understanding of the molecular

clock and gene regulatory network linked to somitogenesis has advanced consid-

erably through quantitative experiments complemented by computational tools

and mathematical models.

Soon after the discovery of an oscillatory gene, c-hairy1 within the PSM (Palmeirim

et al., 1997), the first mathematical model for oscillatory expression of the Hes1

protein, a basic helix-loop-helix (bHLH) factor in mouse PSM was presented by

Hirata and co-workers (Hirata et al., 2002). They experimentally established

that the bHLH Hes1 protein self-represses the transcription factor by inhibiting

hes1 mRNA production and show that sustained oscillations depend upon neg-

ative auto-regulation of hes1 transcription and ubiquitin-proteasome-mediated
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degradation of the Hes1 protein (Hirata et al., 2002; Bessho et al., 2003). They

proposed a set of ordinary differential equations (ODE) describing their experi-

mental observations:

dx

dt
= By − Cx− Axz,

dy

dt
= −Dy +

E

(1 + x2)
,

dz

dt
=

F

(1 + x2)
−Gz − Axz.

where x and y are the concentrations of Hes1 protein and hes1 mRNA respec-

tively, and z is the \\Hes1-interacting factor\\, that allows the system to have

sustain oscillations. A-G are positive parameters that affect production and de-

cay rates. x2 represents a form of interaction of the Hes1 protein with itself.

Additionally, experimental evidence for cyclic expression within the PSM, falsified

the ’cell cycle models’ that attempted to explain segmentation clock phenomena.

The cell cycle models of the clock assumed that the cell cycles along the anterior-

posterior axis of the clock are in synchrony and that segmentation occurs when

all the cells reach a certain time in their cycle (Primmett et al., 1989; Collier

et al., 2000; McInerney et al., 2004). Baker and co-workers, revised their early

cell cycle models and incorporated reaction-diffusion modeling that evolves along

anterior-posterior axis in response to Fgf gradient signaling (Baker and Maini.,

2007).

Following Hirata’s approach, several ODE models have been put forth for the

segmentation clock that considered cell autonomous oscillators and inter-cellular

interactions, however, the ODE models did not include the real biological delays

in transcription to mRNA and its translation to protein. In 2003, Nicholas Monk

and Julian Lewis published very similar models for mouse and zebrafish respec-

tively, proposing delayed differential equations (DDE) that included time delays

and negative feedback loops for sustained oscillations with minimum number of

parameters (Monk, 2003; Lewis, 2003). Further, Julian Lewis considered posi-

tive regulation by delta-notch activity combined with negative auto-regulation

of Her1 and Her7 to generate sustained oscillations (Lewis, 2003). The simplest
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DDE model can be written as:

dp(t)

dt
= am(t− Tp)− b p(t),

dm(t)

dt
=

k

1 + (p(t−Tm)
p0

)2
− cm(t).

where p is the protein concentration in the cell produced with delay Tp >0, and

m is the mRNA concentration produced with delay Tm >0. The positive pa-

rameters a, b and c are the protein synthesis rate per mRNA molecule, protein

degradation rate and mRNA degradation rate respectively. p0 is a critical con-

centration of the protein at which mRNA production is half its maximum value

k. The period of oscillations is sensitive to the total delay; Tp + Tm.

Tiedemann and coworkers proposed a multicellular model encompassing an fgf8

gradient and Hes1 protein in the cytosolic and nuclear compartments, which en-

abled the system to exhibit sustained oscillation without requiring explicit time

delays in the model (Tiedemann et al., 2007). While the idea of synchroniza-

tion of cells within the PSM due to inter-cellular coupling was held (Jiang et al.,

2000; Lewis, 2003; Horikawa et al., 2006; Holley, 2007; Ozbudak and Lewis, 2008),

a popular mathematical model to describe synchronization, or more precisely, a

large set of coupled phase oscillators (Kuramoto, 1984) soon found its place to ex-

plain segmentation clock dynamics. In this class of models, the PSM cell’s ’state

of expression’ is represented by its phase. In 2007, Riedel-Kruse and coworkers,

investigated such a model representation accompanied by inter-cellular coupling,

using a mean-field approximation to study the effect of coupling strength on the

synchronization properties of the system (Riedel-Kruse et al., 2007). Their study

suggested that the coupled oscillators phenomena are an inherent property of

the segmentation clock and a relatively high magnitude of coupling strength is

required to overcome the intrinsic noise of the oscillators.

In another theoretical study, it has been shown that mutual entrainment of limit

cycle oscillators at different frequencies coupled with a ’finite time delay’ may pro-

vide several interesting synchronized solutions as opposed to the scenario without

any delays, which has fewer solutions (Schuster and Wagner, 1989). Furthermore,

Kuramoto models of coupled phase oscillatory systems with time delays have been
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widely explored to show the importance of delays in biological and chemical oscil-

latory systems beyond the segmentation clock. The measure of ’order parameter’

in the Kuramoto models indicates phase synchrony among an ensemble of coupled

oscillators (Strogatz, 1994; Yeung and Strogatz, 1999; Pikovsky et al., 2001).

In 2009, Morelli and co-workers, further extended the work of Riedel-Kruse et

al., and formulated a delayed coupling theory to explain vertebrate segmenta-

tion. The theory captures coupling of phase oscillators, time delays in coupling

and a frequency profile along the anterior-posterior axis considering the signaling

gradients in the PSM (Morelli et al., 2009). The cells are spatially fixed with

respect to each other and the clock is generated by phase oscillation frequency in

the tail bud, while the wavefront mechanism moves posteriorly across the PSM,

slows oscillations and eventually arrests the traveling phase wave in the form of

somites. With a periodic sine function, phase differences among coupled oscilla-

tors are reduced. Patterns in the anterior PSM are realized at time intervals equal

to the period of oscillations and the wave sweeps across a space, which represents

the PSM tissue along the anterior-posterior body axis of the embryo to generate

a striped pattern (somite). The phase dynamics of the coupled oscillators can be

described by

θ̇i(t) = ωi(t) +
εi(t)

na2

∑
k

sin[θk(t− τi(t))− θi(t)] + ηζi(t)

where the dot denotes time derivative, θi is the phase of oscillator i, ωi is its in-

trinsic frequency, εi is the coupling strength, τi is the time delay in the coupling,

η represents the noise strength and ζi is a random variable with zero average rep-

resenting different noise sources. N discrete phase oscillators are arranged on a

lattice, where each oscillator occupies a position xi = ia along the PSM axis and

a is the characteristic distance between oscillators, i.e., the average cell diameter

(Morelli et al., 2009).

Phase oscillator modeling offers great flexibility to explore the dependence on pa-

rameters and examination of analytical solutions. Moreover, it makes the math-

ematical analyses much simpler compared to DDE models, and allows easier ex-

amination of properties of the system, such as the effect of coupling strength and

delays on the period of the clock or formation of somitic patterns. The theory
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suggests that the clock period is an effective collective period caused by signaling

delays. The theory was experimentally tested and it was found that delta-notch

mutant, mib had longer period with weakest somite boundary disruption pheno-

type, thus suggesting that coupling delay is strongly increased and the coupling

strength is mildly affected in the mutant (Herrgen et al., 2010). Thus experi-

mental evidence combined with theoretical formulation lead to the discovery of

the first segmentation clock period mutant emphasizing that autonomous oscilla-

tor, coupling delays and coupling strength combinatorially regulate the collective

period (Herrgen, 2008; Herrgen et al., 2010). The theoretical group has further

shown that the segmentation clock is robust towards phase oscillators coupled

with ’distributed delays’ since the steady state depends on the mean of the delay

distribution and is independent of its shape validating the discrete delay approx-

imation originally assumed in the delayed coupling theory model (Wetzel et al.,

2012).

The phase models elegantly take the biological complexity into account and yet

have a simple formulation that allows experimental testing of clock parameters.

However, the model descriptions are formulated for tissue level speculations that

average out the cellular level details of the segmentation clock.

Recently, following the approaches of (Lewis, 2003; Hirata et al., 2002; Tiedemann

et al., 2007) for modeling genetic oscillators within the PSM, Uriu and co-wrokers

proposed to model using ordinary differential equations that takes into account

the time evolution of: (i) her mRNA, (ii) Her proteins in cytoplasm and nucleus

and finally (iii) the delta proteins expressed on the cell membranes. The model

shows that traveling waves can be generated along the tissue with an appropriate

choice of basal her mRNA transcription without incorporating fgf gradient sig-

naling in contrast to some of the earlier studies (Uriu et al., 2009). The equations
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in details are:

dhm
dt

=
Kn

1

Kn
1 +Hn

pn

(v1 + vcd̂elpc)−
v2hm

K2 + hm
,

dHpc

dt
= v3herm −

v4Hpc

K4 +Hpc

− v5Hpc,

dHpn

dt
= v5Hpc −

v6Hpn

K6 +Hpn

,

ddelpc
dt

= v7
Kc

7

Kc
7 +Hc

pm

− v8delpc
K8 + delpc

.

hm, Hpn, Hpc and delpc denote the concentration of her mRNA, Her protein in

nucleus, Her protein in cytoplasm and delta proteins expressed by neighboring

cells respectively. For a more detailed description of the model, refer to (Uriu

et al., 2009). Crucially, the cells were allowed to exchange their positions with

their neighbors at random times in their model. The authors deduced from their

work that exchange of positions of cellular oscillators with their neighbors con-

siderably enhances their synchronization properties (Uriu et al., 2010). However,

in this model, the cells were allowed to interact with neighbors through delta

proteins immediately after changing their position. This assumption is probably

not true for the PSM oscillators. Therefore, Uriu and co-workers re-modeled their

theory in the form of coupled phase oscillators, in which they incorporated grad-

ual recovery of intercellular coupling experienced by a cell after its movement.

Through this work, they have provided a theoretical framework to study the ef-

fect of movement on synchronization properties of cellular oscillators within the

PSM (Uriu et al., 2012).

In this work, we have experimentally measured three-dimensional movements

rates of cells within the PSM and adapted the models proposed by Uriu and

co-workers to derive properties of the system. These measurements would pro-

vide us for the first time scales of diffusion of cellular oscillators within the PSM.

However, the task to obtain three-dimensional positions of nuclei over time re-
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quires optimizing image acquisition settings, image segmentation and tracking

parameters. The section below gives a brief overview of the current challenges

and techniques involved in quantitative live imaging.

2.7 Live imaging and image processing

During the development of multicellular organisms, cells undergo amazingly di-

verse changes with respect to gene expression, signal transduction, morphology,

individual and collective motion (Karsent, 2008). Understanding how these pro-

cesses are regulated and coordinated to build an embryo has benefited from recent

advances in time-lapse fluorescence microscopy and the generation of a wide range

of specific fluorescent probes. In combination, these have allowed spatial and

temporal visualization of protein levels and localization, and hence cellular and

sub-cellular dynamics, within developing embryos (Supatto et al., 2009; Megason,

2009; Long et al., 2009; Keller et al., 2008; Blanchard et al., 2009; Morrison et al.,

2012).

The use of confocal microscopy allows high-resolution optical sections to be col-

lected noninvasively at depths up to hundreds of microns within embryos. Visual

inspection of these images allows a qualitative analysis and may be sufficient to

assess dramatic effects in some systems. However, to fully characterize alterations

in gene expression levels or cell motility, for example, quantitative evaluation is

essential. Acquisition of embryonic images in three spatial dimensions over time

(4D) with a balance between spatial and temporal resolution gives scope to con-

vert image data into reliable quantitative measurements (Supatto et al., 2009;

Roysam et al., 2006; Gerlich and Ellenberg., 2003; Eils and Athale., 2003). The

computational image analysis required to accomplish this task is becoming a vi-

tal part of developmental biology, since it allows rigorous hypothesis testing and

serves to bridge experimental data and mathematical modeling.

The primary task to detect an object in an image is done via segmentation. Fol-

lowing the object over time is achieved through tracking, where the key first step

is accurate segmentation. Computer vision is well advanced in the field of image

analysis, however, it is often either technically inaccessible or not easily modi-

fiable for biological research purposes. Generic commercial image segmentation
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software packages are available, but these are expensive and do not allow access to

their source code, meaning that they have to be used as black box. Furthermore,

most biological imaging problems explicitly depend on the nature of the scientific

question addressed, and therefore require tailored methods for image analysis

to measure suitable quantities. As a result, development of more reliable and

automated image analysis tools remains an important challenge. Several open

source image segmentation techniques have been published, yet they may suffer

in several aspects such as speed, reliability and ease of application. Importantly,

objective measures of the accuracy of segmentation and straightforward protocols

for optimizing the algorithms for specific imaging problems will foster wider use

and increased confidence in the methods.

Finally, the task of quantitative imaging involves re-iteratively doing image acqui-

sition to optimize spatial resolution in order to achieve reasonable image segmen-

tation results that are further used for tracking objects. A number of parameters

of acquisition directly determine the performance of tracking objects. For a good

performance by an automated tracking algorithm, the acquisition time should be

smaller than the displacement of the structure that is imaged (Meijering et al.,

2012). Therefore conceptual feedback loops between image acquisition parame-

ters, considering sample photo-toxicity and bleaching, good spatial resolution for

image segmentation and high temporal resolution for tracking play vital role in

accurate quantitative image analysis as seen in Fig. 2.10.

In this work, I provide an optimal framework for visualization of high quality

cellular level image data with optimized spatial and temporal resolution for the

PSM cells for the developing embryo. Subsequently, the data allows use of reliable

quantification techniques that has been developed here. I have devised segmen-

tation algorithm tailored for obtaining spatial positions of juxtaposed cells ac-

curately, in a developing tissue followed by implementing tracking algorithms to

obtain their positions over time. This further allows me to address specific ques-

tions about movements and oscillation dynamics at cellular resolution within the

PSM of the embryo, and further enables interplay between relevant mathematical

models and interpretation of experimental data.
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Figure 2.10: Interdependence between tools: Imaging, Segmentation and tracking re-
quires optimization and trade-off between spatial resolution, time resolution and health
of the live sample to obtain accurate image quantification.
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Chapter 3

Aim of the thesis

Although several components of the clock have been identified, a complete un-

derstanding of the collective behavior of the genetic oscillators in the PSM is

far from achieved. To explain and examine the relationship between temporal

program and spatial pattern, we need to have a quantitative measurement of the

properties of the system, in particular, the role of movements of cellular oscilla-

tors in the context of the clock. In this work, I seek to obtain quantitative data

to understand how the movement of cells affects the spatio-temporal dynamics

of cyclic gene expression that is regulated by inter-cellular signaling. I have the

following aims:

• Establish imaging techniques to capture in vivo cellular dynamics of the

moving oscillators within the PSM.

• Develop image analysis tools by formulating image segmentation and track-

ing algorithms to obtain precise tracks of single cells over time within the

PSM.

• Use benchmarking techniques such as synthetic data and transplantation

experiments to validate segmentation and tracking algorithm developed in

this work.

• Quantify movement patterns within different regions of the PSM in WT and

mutants, such as the effective diffusion co-efficient of cells.

• Subsequently, the tools become handy to extract phases of cellular oscilla-
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Aim of the thesis

tors of the PSM, which would provide scope to extract parameters, such as

synchronization index and phase correlations for a population of oscillators.

In the following Chapter, I would outline my Results. In case any detailed

explanation is required for better understanding of any section in the Results, I

request the reader to kindly look into the corresponding section in the Methods

Chapter.
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Chapter 4

Results

4.1 Inspection of existing datasets for analyzing PSM cells

In order to monitor individual or group dynamics of cell movements and their

oscillatory behavior, I first needed the spatial coordinates of cell positions within

the PSM over time, i.e. precise tracks of individual cells. Around the time I

started my thesis, Keller and co-workers published digital datasets of zebrafish

embryo nuclear coordinates during 22.5 hours of development (for wild-type (WT)

and one-eyed pinhead mutant, MZoep) (Gritsman et al., 1999) using a newly

developed microscope, called a digital scanned light sheet microscope (Keller

et al., 2008). The digital datasets of Keller et. al. were publicly available in the

form of cell positions over time, however, not their tracks. I analyzed the dataset

and concluded that the data quality was insufficient for our purposes. We were

particularly interested in the PSM cells at later stages of embryo development

(about 16 to 20 somite stage), where the number of cells is large, and the cells

are closely juxtaposed and are mixing at varying rates during rapid and dynamic

morphological changes in the tissue shape over developmental time. It seemed

a technically challenging task to digitally recognize and extract just the PSM

cells alone, from a dataset for all embryonic cells during development. However,

the analysis provided an excellent opportunity to understand and address the

goals and challenges involved in optimizing experimental details affecting image

acquisition, segmentation and cell tracking variables. Thereafter, I went on to

set up an experimental framework for obtaining high quality spatio-temporal
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resolution data by making the appropriate choice of microscope and exploring

sample preparation methods to image live zebrafish embryos, with minimized

bleaching and photo-toxicity issues.

4.2 Exploration and establishment of image acquisition tech-

niques

I first sought to explore a range of microscopes supported by the Light Microscopy

Facility (LMF) in our institute, choice of transgene, sample preparation and

mounting techniques.

Choice of transgene: Our goal was to determine precise cell positions over time

within the PSM and since the nucleus is approximately the centre of the cell,

it seemed a viable option to choose a nuclear marker to read cellular positions.

Therefore, I used a chromatin histone protein fused with green fluorescent protein

(gap) or a similar m-cherry variant (Hans-Hermann and Kaether, 1996; Chudakov

et al., 2010). The gfp fusion zebrafish transgenes seemed our potential candidate

to visualize fluorescent labeled nuclei and nuclear divisions, as readouts for cellu-

lar positions over time.

Sample preparation: The sample preparation method used in this work is a vari-

ant of the technique that has been previously described in (Herrgen et al., 2009)

and has also been used to precisely characterize zebrafish somitogenesis period

(Schröter et al., 2008). I used a similar sample preparation method to acquire

high quality images at cellular resolution. A petri-dish coated with agarose with

conical depressions such that the de-chorinated embryo head can fit laterally

into the depression while the posterior-body develops parallel to the agarose, has

been used in this work for imaging as described in the methods section 6.3 and

illustrated in Fig. 6.1A. The embryo develops under the microscope placed in a

petri-dish, filled with E3 medium (that is also used for raising embryos otherwise)

and grows in in its natural environment without any external pressure.

Choice of microscope: The confocal microscopy technique seemed to be the

best option since it has the capability to provide high cellular resolution three-

dimensional images. The width of the confocal pinhole determines the amount of

light that reaches the sample and removes any out of focus light from the image.
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As a result, high quality, sharp two dimensional images can be obtained. A series

of two dimensional images acquired over a certain depth (along the z-direction)

can be put together to give a good three dimensional image (Wright and Wright.,

2002; Amos and White., 2003). I took care to optimize the number of imaging

hours and problems of photo-toxicity that would directly affect health of imaged

embryos and might cause slower development and in turn cause abnormal move-

ment of cells. For this reason, the images were not acquired for more than 2 hours.

Typically, images of 512×512 in x-y and 20 - 30 slices in z respectively, with voxel

size of 0.691× 0.691× 1.75µm3 were obtained. Furthermore, the imaged embryos

were carefully removed from the agarose and their development was verified until

30 hours under normal physiological conditions.

Selective Plane Illumination Microscope (SPIM), a technique that has recently

gained popularity, was also explored in this work due to its capability to ac-

quire images at high speed with fairly good resolution, lower photo-toxicity issues

and greater flexibility for mounting samples (Huisken et al., 2004; Huisken and

Stainier., 2009). However, the first hand images were obtained on a test SPIM

microscope provided by Zeiss with several problems regarding mounting live em-

bryo and image blurring. Hence, at that time, the technique was not explored

any further, and the image processing pipeline established here was designed for

images obtained from a Carl Zeiss upright confocal microscope, with a 40x, 1 NA

dipping lens. We later revisited the SPIM together with Dr. Jan Huisken and

demonstrated that we can achieve convincing results with the image processing

algorithms developed through this work. The PSM is a bilateral tissue, therefore,

we chose to image either lateral sides of the developing embryo. The choice of an

upright microscope was compatible with our sample preparation technique.

4.3 Image processing pipeline

The general workflow for quantitative image analysis implemented in this work

is shown in Fig. 4.1. As mentioned earlier in section 2.7, the task of quanti-

tative imaging involves re-iterative combination of steps from image acquisition

to tracking objects. The idea was to establish an imaging set up that would
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Figure 4.1: Blue boxes in the flowchart give a step-by-step procedure used in this work.
Purple ellipses indicate the important guideline and parameters required for optimizing
the image processing pipeline at different stages.

allow us to track individual nuclei in 3D without compromising the health of

the embryo. Here, I have obtained high resolution three-dimensional stacks of

the PSM over time using an upright confocal microscope followed by applying a

three-dimensional segmentation algorithm based of image derivatives. The three-

dimensional segmentation algorithm developed in this work is a fast and accurate

technique that is able to segment about ∼ 2000 nuclei within the PSM tissue,

that undergoes rigorous morphological changes and has juxtaposed cells that ex-

hibit continuous diverse and dynamic cell motions during development. Thus,

our PSM image data provides a technically challenging platform for image anal-

ysis. To tackle this, I designed a segmentation algorithm comprising of a set of

sequential steps, that ultimately is able to segment nuclei with high accuracy in

3D. Further on, I show the use of artificial data and for the first time the use of

transplant experiments to validate the 3D segmentation algorithm in vivo. Due

to high accuracy of segmentation, I have been able to use a tracking algorithm

based on nearest neighbor centroid detection to follow nuclei over time. The re-
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Imaging the growing pre-somitic mesoderm in 4D

sults are further used to characterize the movement rates in different regions of

the PSM for WT and mutant backgrounds. It was also possible to observe single

cell in vivo protein oscillations using the method developed here.

4.4 Imaging the growing pre-somitic mesoderm in 4D

I acquired three-dimensional image stacks of the PSM using an upright confocal

microscope, illustrated in Fig. 6.1A. The 40x dipping lens is immersed into a

petri-dish such that the objective is focussed on the lateral side of the developing

PSM, after the last formed somite as shown in Fig. 4.2A (Supplementary movie:

S1 with movie legend in Chapter 7). The zebrafish embryo PSM stack is obtained

over several parallel xy-slices of the tissue, from nuclei of the outer epithelial skin

layer through the PSM, until the notochord nuclei are visible. Fig. 4.2B. shows

an image of a typical three-dimensional stack (one time point) obtained in such a

manner and 4.2C. shows snippets of three two-dimensional slices from different

confocal planes of the imaged tissue (Supplementary movies: S2-A, S2-B, S2-C,

with movie legends in Chapter 7). A range of image resolution was tested in the

z-direction in order to achieve good 3D segmentation of nuclei. Hence, the next

goal was to design an appropriate algorithm to acquire individual 3D positions

of nuclei accurately over time.

4.5 3D nuclei segmentation within the PSM

Advances in imaging techniques, fluorescent markers and innovative sample mount-

ing ideas are providing rich information regarding biological systems across several

scales. With the advent of such technologies to collect image data, it simulta-

neously becomes important to have reliable quantification techniques along with

visual inspection. The problem of nuclei segmentation in a crowded, developing

embryonic tissue is not at all new, however the topic is still under great scrutiny,

since we have not yet been able to achieve satisfactory results in terms of accuracy

and reliability in image segmentation.

The great diversity of biological questions and the physical scales involved makes

the choice of segmentation method highly problem dependent. A major drawback
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Figure 4.2: A. Cartoon view of the zebrafish embryo. 40x objective is focussed on the
lateral PSM tissue with tissue slices encompassing epithelial nuclei, PSM nuclei and
notochord nuclei of an 18 somite stage embryo. B. A typical three-dimensional view of
the stack obtained from Fiji, 3D viewer. C. Snap shots of confocal slices of the PSM at
different depths indicated in microns.

in the field of image segmentation is the lack of measure for performance that

could rate all the algorithms under a single umbrella, and thereby would allow

users to trust the effectiveness of algorithms over variety of available biological

image datasets. A number of segmentation algorithms have been proposed, many

of them focussing on segmentation of migrating cells in vivo as well as in vitro.

Image analysis tools based on active contours compute image segmentation by
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evolving a contour in the direction of the negative gradient of the image energy,

however, such methods are sensitive to fuzzy boundaries and initial conditions

(Kass et al., 1988; Osher and Sethian, 1988; Meegama and Rajapakse, 2003).

Methods using region based active contours overcome such flaws because they

do not require explicit parameterization or topology constraints, like snake con-

tours (Chan and Vese, 2001), however they are computationally expensive. The

active contour methods are quiet sophisticated and adaptive compared to the

standard thresholding techniques. Thresholding methods include a binary oper-

ation that is a fast way to achieve image segmentation. A threshold value, say,

T is set for a particular image. All intensity values above T are assigned to be

part of foreground of objects (of value 1) and below the value are supposedly

part of background intensities (of value 0) (Brakenhoff et al., 1995; Sezgin and

Sanku., 2004). However, to get accurate results using simple thresholding can be

challenging because thresholding cannot separate touching objects properly. To

overcome this problem, watershed algorithm and several of its variants have been

proposed, that can clearly separate touching objects, but over-segmentation is

likely to happen simultaneously (Meyer, 1994; Bleau and Leon, 2000; Lin et al.,

2003; Gonzalez and Woods, 1992). The gradient flow tracking method can over-

come this problem, however it may find difficulty in processing textured cells (Li

et al., 2007). My challenge was to develop an algorithm that has the ability to

separate touching nuclei correctly in 3D space and that can be easily used to pro-

cess several embryos varying in nuclei number, nuclear size, volume and density.

Here, I propose a segmentation algorithm that combines a sequence of steps,

based on well known mathematical functions, until high accuracy of segmenta-

tion is achieved. The algorithm is developed specifically to address the problem of

touching nuclei images in 3D in developing tissues. Even though we have acquired

images with high spatial resolution (while compromising for temporal resolution),

the major task still remains to separate closely spaced nuclei. The problem grows

severely with developmental time in embryonic tissues as the number of nuclei is

increasing, and they emerge in varying sizes and shapes, their morphology and

mobility being tightly attributed to the tissues and organs they are destined to

form.

Typically, grayscale images of 8-bit (range of values between 0 and 255) or 16-bit
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(range of values between 0 and 65535) are acquired wherein high values represent

intra-nuclei regions or foreground, while medium ranged values could be a part of

inter-nuclear regions with Poisson noise in the proximity of nuclei, and even lower

values represent background intensities. The borders between the three qualita-

tive categories mentioned here entirely depends on the image acquisition param-

eters, microscope and the qualitative spectral properties of fluorescent tagged

proteins. I propose a combination of image derivatives to crown every nucleus in

the image that can be easily converted to a binary image using the Otsu’s thresh-

olding method that yields several properties of the 3D segmented objects, such

as, object volumes, voxel lists and centroid of voxel lists. These properties are

further used to enhance segmentation performance and hence boost the overall

accuracy of the method proposed in this work.

When we look at a two-dimensional slice from a 3D stack as seen in Fig. 4.3A.,

and apply a simple Otsu’s thresholding method (Otsu., 1979), we see that the

contour of thresholding does a fairly good job of separating nuclear images. How-

ever, in regions where the spatial inter-nuclear distance is small, the thresholding

method fails substantially as seen in Fig. 4.3C. Although, we could achieve good

xy resolution using a confocal microscope, simple thresholding still leads to er-

rors in 2D. Furthermore, errors grow in 3D, owing to the axial resolution of the

confocal microscope, which is poorer than the xy resolution.

In the following, I describe the algorithm, as outlined in Fig. 4.4 that addresses

this problem. We start from three-dimensional z-stacks of 2D confocal x-y image

slices that are finally segmented in 3D. In essence, the algorithm first smoothens

the raw input images to eliminate noise within the images, followed by applying

a series of masks based on image derivative steps that clarify nuclear edges in 2D.

The resulting 2D image is segmented by binary thresholding, and assembled into

a 3D image by connecting like pixels in neighboring slices. The same algorithm

can also be formulated for 3D image volumes. However, it is easier to pictorially

demonstrate the intention of each step in 2D. Therefore, we focus here on the

version for 2D slices, that are later connected to give 3D segmented objects. The

algorithm has been titled ’CWNT’ meaning crown wearing nuclei tracker.
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A. B. C.

Figure 4.3: A. Lateral view of a raw, grayscale PSM image slice (x-y) from a three
dimensional stack of 18 somite stage embryo. B. Contour plot of Otsu’s thresholding
plotted over original raw input image C. Image regions highlighted with fused nuclei in
blue circles where Otsu’s thresholding fails.

4.5.1 Image De-noising

Intensity fluctuations, both in background and in intra-nuclear regions severely

affect image segmentation results. To reduce this perturbation before edge detec-

tion, we first apply linear and non-linear de-noising filters, as given by equation

(6.1). Typically, we used a low pass Gaussian filter, which removes high fre-

quency noise. If the acquired image is severely affected by noise, we employ

de-convolution and the median filters following Gaussian filter. The choice of

noise removal filter strongly depends on the quality of the image obtained. We

have listed a few linear and non-linear filters in section 6.1, that might be appro-

priate to use depending on the noise of the image. To further remove intensity

fluctuation in the image, whilst preserving edges of nuclei, I applied the non-linear

isotropic diffusion filter proposed by Perona and Malik (Perona and Malik., 1990).

It smoothens image regions less that have high gradients and therefore potential

edges compared to low gradient regions. The details of implementation is illus-

trated in Fig. 4.4, description is as per equation (6.2). The diffusion coefficient

implemented in this work (described in section 6.4.2) exponentially decreases as

the gradient of signal intensity becomes steeper.
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Figure 4.4: Segmentation algorithm, CWNT, described methodologically for a 2D raw
image slice (grayscale) from a stack. Gaussian blur is applied to a 2D slice, followed by
a non-linear isotropic diffusion filter that smoothens pixels inside of the nucleus, whilst
preserving edges. First derivative of the image using a Gauss gradient emphasizes the
edges, Laplacian marks the maximum of the gradient and Hessian highlights the saddle
points and cuts touching spaces between nuclei. Image derivatives are combined with
tunable parameters (indicated by red greek glyphs) into a tangent hyperbolic masking
function that allows tuning the steepness of edges. This masking function is applied on
the de-noised image, such that nuclear edges are masked. Otsu’s thresholding is applied
to the masked image. Similarly, all slices of the stack are converted to binary image. 2D
binary slices are connected based on similarity of like pixels to give a 3D binary stack
(surface rendered gray objects).
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4.5.2 The core segmentation algorithm

Following the de-noising steps, the task of the core segmentation algorithm is to

find the edges of the nuclei, in particular those edges where nuclei are touching.

I computed first and second derivatives of the signal intensity in each 2D slice

to detect edges of nuclei. Signal intensity steeply increases from the edges of

nuclei toward the center, while it is almost flat around the center. Therefore, I

computed the magnitude of the gradient and the Laplacian of the signal intensity

to enhance nuclei edges as given by equations, (6.4) and (6.7). The magnitude of

the gradient increases at the boundaries between a nucleus and the background

and it takes a maximum value at the point where the slope of the signal intensity

is steepest i.e. the inflection point. At the inflection points, the Laplacian of

the signal intensity changes its sign. The key innovation in this image processing

algorithm is to be able to infer nuclear edges where neighboring nuclei are touch-

ing each other. To achieve this, I applied at each pixel, the negative determinant

of the Hessian of the image, which marks the saddle points of the image, where

nuclei closely touch each other, for details see section (6.8).

I finally combined the derivatives in the form of a masking function that high-

lights nuclear edges. For this, I first added all three forms of the derivatives:

magnitude of gradient (ADF ), Laplacian (L) and the determinant of the Hessian

(H ), with different weighing constants; α, β and ε as given by equation (6.9). I

then combined the sum into a hyperbolic tangent function that detects the edges

of the nuclei. The masking function is zero at edges and touching points between

nuclei, and otherwise one at all points. The product of the masking function

and the de-noised image produces an image with suppressed signal intensity at

touching points of nuclei, ideal for thresholding, given by equations (6.10), (6.11)

and (6.12).

4.5.3 Thresholding and generation of 3D images

I obtained binary images by applying Otsu\s thresholding method to the masked

image. The segmentation protocol was similarly applied to all 2D slices and sim-

ilar pixels from the neighboring slices were combined to give 3D binary objects

as seen in Fig. 4.4.
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The power of our nuclei segmentation method is illustrated in Fig. 4.5. Contour

plot of Otsu\s thresholding (Otsu., 1979) applied on the raw input image is unable

to separate closely spaced nuclei, as seen in Fig. 4.5A., whereas Fig. 4.5B., clearly

illustrates the effectiveness of using our image segmentation method, which eas-

ily allows us to separate closely spaced nuclei. The resulting threshold contour

matches well to the apparent edge of the nucleus in the raw image. The compu-

tation time of image derivatives takes less than a minute for a stack of about 40

slices (70 µm thick) with Matlab R2011a on a 4-core machine.

B.A.

Figure 4.5: Contour Plot of Otsu’s thresholding in 2D for all nuclei demonstrates the
effectiveness of the segmentation algorithm. A. Threshold contour (pink) for processed
image using the segmentation algorithm. B. Threshold contour (red) for original 2D
slice,unable to separate fused nuclei. Similarly colored ellipses highlight the same regions
in both the plots.

The segmentation steps demonstrated so far, attain reasonably good results,

as seen in the 3D binary image obtained after segmentation in Fig. 4.6. Sup-

plementary movie: S3-A shows 3D movie of the embryo over time as an input

to the segmentation algorithm and Supplementary movie: S3-B shows the same

movie after image segmentation (movie legend in Chapter 7). Each segmented

object is now defined by three properties: voxel list (voxels in x, y, z comprising

the object), volume (total number of voxels) and centroid of voxels. The position

of each nucleus in the image volume is given by the centroid of the object. The

42



3D nuclei segmentation within the PSM
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Figure 4.6: Surface rendered 3D binary image for a 19 somite stage embryo after suc-
cessful segmentation. Rendered nuclei indicated in grey for a stack of the PSM

voxel list of the 3D images is used to calculate spatial properties of the segmented

objects, and objects that exceed empirically established volume limits are subject

to post-processing to separate inappropriately fused (under segmented) objects.

For simplicity, 3D segmented data clip shown in Fig. 4.4 has been used here to

demonstrate post-processing steps.

4.5.4 Post-processing resolves under-segmentation

I examined the segmentation performance by analyzing the properties of the seg-

mented objects. I used the histogram of the object volumes as a tool to draw

a boundary between correctly segmented and under-segmented objects with an

empirically determined cut-off for fused objects (for details refer to section 6.4.6).
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The histogram plot of the 3D volumes of segmented objects depicts the range of

nuclear volumes within the data including noise (voxels less than 5), correctly

segmented volumes and potential fused candidates, as indicated in Fig. 4.7.

While the image segmentation steps listed above have solved most of the prob-

lem depicted in Fig. 4.5, some residual fused objects still remain, particularly

in the z-direction that indicate quite large volumes of under-segmented objects,

comprising multiple fused nuclei. To circumvent this problem, one option for

splitting fused objects was to vary the values of parameters contributing to the

masking function in equation (6.11). Increasing the weights of the parameters

would results in erosion of the nuclei at the edges that consequently would reduce

under-segmentation and hence improve 2D nuclei identification. However, this

approach has the disadvantage that the volume of the nuclei is strongly com-

pressed. To simultaneously reduce under-segmentation and preserve as much of

the native morphology as possible, it proved useful to apply a post-processing

step to the 3D segmented images, in order to correct segmentation mistakes in

the form of fused nuclei. It is further noted from the histogram plot that the

image comprises of a range of 3D nuclear volumes that are correctly segmented,

therefore, mean volume cannot be used to determine the number of fused nuclei

directly.

I put forward two post-processing methods based on unsupervised clustering,

namely k-means and Gaussian mixture models (GMM) that locally correct for

segmentation mistakes (Hartigan and Wong, 1979; Figueiredo and Jain, 2002;

McLachlan and Peel, 2000; Press et al., 2007). K-means groups input data points

into clusters, that largely depends on distances between the points (3D voxel list

coordinates in this case). Whereas, GMM fits mixture of several Gaussians with

different means and variances to data points, and finds best suited parametric

models, when combined with Akaike information criterion (AIC) and thereby

determines clusters in data. The post-processing methods operate locally on

each potentially fused object and find new reasonable clusters of voxels and their

respective centroids, thereby enhancing segmentation performance considerably.

A typical correctly segmented object/nucleus volume has a unimodal frequency

distribution of voxels in each x, y and z direction (from the voxel list), and has a

single centroid for a given volume as seen in Fig. 4.8. Thus, our post-processing
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Figure 4.7: Histogram plot of segmented object volumes within a single stack (one time
point) allows preliminary segmentation assessment. A lower cut-off of 5 (indicated by
the green dotted line) excludes object volumes less than 5 voxels considered noise. The
upper cut-off (indicated by the red dotted line) is determined empirically (see 6.4.6)
based on the mean and standard deviation of the segmented volume list. Objects with
volumes above the upper cut-off form potentially fused candidates that are further
processed for segmentation corrections.

steps applied to correctly segmented objects do not alter the centroid position,

indicating that our local re-segmentation approach is not biased towards splitting

objects unlike the classical watershed that often leads to over-segmentation.

However, the corresponding voxel distribution in x, y, z for each outlier volume

(or fused objects) indicate the number of fused nuclei. These objects are sepa-

rately analyzed by finding local maxima or ’total number of peaks’ in each voxel

list and this information is fed to the k-means clustering algorithm to re-assign

voxels. The distance between two consecutive peaks approximately depends on

the voxel sizes of acquired image. We typically defined voxel sizes of 0.691�0.691

�1.75µm3 and for this resolution, it was estimated that a nucleus usually spans

about 3µm in x and y and approximately about 2µm in the z direction. We

considered the span of a nucleus to be approximately equal to the minimum
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Figure 4.8: A correctly segmented object of 156 voxels with unimodal distributions in
x,y and z directions. The rendered input data for a single nucleus with centroid plotted
on top. Centroids generated after segmentation and post-processing steps (GMM and
k-means). Post-processing does not alter the position of the segmented centroid for a
correctly segmented object.

peak distance in voxel distribution plot for each direction. Therefore, this further

helped in setting the minimum distance criteria between two consecutive peaks in

the voxel distribution, which is a read out for number of clusters fused together.

Minimum peak distance was set to be about 4 for x and y voxel distributions

and about 1 for the z direction. The result of k-means heavily depends on the

number of local maximas found in the frequency list. On the other hand, GMM

is initialized using the local maximum peak from the voxel lists. GMM method

fits 3D Gaussians clusters to the voxel lists. However, GMM combined with AIC

minimizes the number of Gaussian clusters based on the features of the distribu-

tions.

Both post-processing steps, k-means and GMM insightfully utilize the features

of segmented objects to split fused nuclei and thereby correct for segmentation
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Figure 4.9: Fused nuclei examples. Bar plots of sampled voxel list exhibits unimodal
distributions of peaks in x and y directions, a bi-modal distribution in the z voxel list
(top panel) and a tri-modal distribution (bottom panel) comprising the object. Post-
processing steps are applied to correct segmentation mistakes. Here, both GMM and
k-means give similar results, by splitting objects into new volumes and their centroids.
In top panel, GMM splits into 108 and 111 voxels while k-means gives 113 and 106
voxels respectively, for the two new objects. In the bottom panel, both methods split a
volume of 207 voxels into three new objects with 66, 75 and 66 voxels respectively.
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mistakes. The frequency distribution plot for the voxel list in each direction for

fused objects would exhibit multi-modal distribution, indicating the number of

clusters of nuclei fused together. This information is used as a first step to feed

into the clustering methods (for details, refer 6.4.6) to initialize splitting nuclei.

Fig. 4.9 shows multi-modal frequency distribution within the z voxel list and a

roughly unimodal distribution in the other two directions. Both post-processing

steps arrive at similar results in case of two or three nuclei fused together and

further show considerable overlap in the position of centroids found, as illustrated

in Fig. 4.9.

Local noise within the nucleus is also a direct observable in the sampled voxel list

that could feign local maximas that are potential indicators of number of clusters,

and therefore it is vital to pertinently de-noise the images. The analysis in this

work indicates that k-means method is more sensitive to local noise in the form

of local peaks that appear in the voxel list frequency distribution, and hence may

result in erroneous number of nuclei. However, unlike k-means, GMM is only

initialized with the number of clusters from the voxel list, and when combined

with AIC, GMM elegantly fits correct number of nuclei models to the list, and

therefore is observed to be less sensitive to small local peaks (noise) in the voxel

lists. However, both approaches aim for separating fused nuclei and gave compa-

rable results.

The stem plots after segmentation and post-processing steps indicate the effec-

tiveness of applying proposed methods to rectify segmentation errors locally as

illustrated in Fig. 4.10. Number of fused nuclei has considerably reduced after

implementing post-processing steps compared to what was achieved directly after

segmentation as seen in Fig. 4.7.

Image segmentation is a challenging problem and several algorithms have been

proposed in the literature, however, it is yet harder to obtain high accuracy. Nev-

ertheless, improvements on segmentation is extremely valuable since it has direct

impact on tracking performance. Here, we have proposed an approach that can

automatically segment nuclei with varying volumes, obtained from a real biologi-

cal tissue. Additionally, the algorithm also allows the options of verification check

points in the form of histogram plot of volumes and 3D rendering of objects with

their frequency distribution plots of voxel lists, making this approach of image
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Figure 4.10: Stem plot of volumes of segmented objects after post-processing fused
nuclei. GMM method achieves superior performance in splitting objects in compari-
son with k-means. Right box shows fused candidates segmented volumes before post-
processing same as seen in Fig. 4.7.

segmentation reliable in the context of live imaging of embryonic tissues. The

algorithms were developed in Matlab, and are also available in the Fiji library

(Schindelin et al., 2012), as a user-interactive plugin, written by Dr. Jean -Yves

Tinevez.

4.6 Verification of nuclei segmentation algorithm

Segmentation algorithms for biological research are specifically built depending

upon the markers used and questions asked for understanding biological processes.

The problem of image segmentation can be solved using several techniques. Edge

detection algorithms based on image derivatives have high speed, however, they

may be sensitive to false positives and therefore mis-classify edges. Here, I have

provided a framework, which goes through several steps, first at coarse grain

level and later, finely tunes the image parameters locally to achieve high quality

results. To do this task, I have put forth the use of refined information from one
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step into the next, until error rates in image segmentation decrease considerably.

However, it is still difficult to asses the performance of algorithm with respect to

our image data. The missing key here is the verification steps, that allow easy

assessment or ranking of algorithms. Here, I propose the use of verification steps

in order to rate the algorithm performance.

4.6.1 Assessment of segmentation algorithm with Imaris

Although, we precisely know the number of nuclei during early stages of embryo

development (Warga and Kimmel, 1990), the exact number of nuclei within the

PSM and its change at late developmental time is much less certain. Here, I first

used Imaris (Bitplane), an imaging processing software to qualitatively assess the

CWNT algorithm performance. The ’Segmentation-spots’ feature from Imaris

was used for this purpose and all the nuclei were first segmented in a semi-

automated manner. Fig. 4.11A. shows the 3D rendered nuclei of the PSM for a

single time point, with the centroids found by the Imaris software. I chose suitable

parameters based on visual inspection (using volume rendering feature) to obtain

accurate segmentation for all the nuclei in 3D for the first time step. The same

set of parameters was used for all later time points. Later, segmentation mistakes

had to be corrected manually on the software. Next, I used the CWNT algorithm

to segment nuclei for the same stack and all time samples. Fig. 4.11B. provides

a qualitative measure of performance of the two algorithms. The total number

of nuclei given by the two algorithms is fairly similar, as indicated in the plot. It

gradually decreases in both the cases owing to the fact that the embryo rolls out

of the imaging frame during its development. This is illustrated in Fig. 4.11B

by outlining the 3D snapshot of the PSM (3D viewer in Fiji) at the first and

last time points. Supplementary movie S4 clearly highlights this feature, movie

legend in Chapter 7. We next evaluated the performance of the two algorithms

using artificial datasets.

4.6.2 Segmentation Efficacy with artificial data sets

Synthetic images were generated in order to systematically test the CWNT al-

gorithm for different signal-to-noise ratios (SNRs) in the image and density of
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CWNT

Imaris

Embryo at

 time step 1

Embryo at

 time step 40

A.

B.

Figure 4.11: A. Snapshot of a single stack of the PSM after nuclei segmentation using a
semi-automated method in Imaris. Rendered green nuclei and red centroid spots plotted
on top. B. Comparison of total number of nuclei over time with CWNT and Imaris.
The number of nuclei decreases over time due to the movement of the embryonic tissue
out of the imaging frame owing to development and growth. Embryo outlined (in red)
at time frame 1 and in green at time frame 40.
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objects. Characteristics of the embryonic image data such as density of nuclei in

a volume, signal-to-noise ratio (SNR), background intensity and spatial resolu-

tion were utilized to produce synthetic or artificial images as shown in Fig. 4.12A.

The advantage of this is that the exact 3D position of every object is known and

image qualities such as SNR and density can be continuously varied in 3D. We

segmented the objects using the CWNT algorithm and compared the differences

between centroid positions after segmentation to the known coordinates as seen

in Fig. 4.12B. In order to measure error rates in the algorithm, we defined two

quantities, namely sensitivity that represents the detection rate of objects in an

image and precision that represents the probability that a detected object is actu-

ally a real object, explained in section 6.5.1. The score is given by the product of

sensitivity and precision. We examined the efficacy of our algorithm by varying

the SNR and the density of objects in the synthetic images.

Fig. 4.12C. shows on the left artificial images for a range of SNR and density

values. We segmented the objects for all density values and found that the al-

gorithm is robust for a range of SNR values. Similarly, we tested the algorithm

performance by varying density values and found that the performance mono-

tonically decreases with increase in density. Further, we were able to assess that

the typical density within the embryonic tissue lies within a range of 0.0022 µm-3

to 0.0032 µm-3 as highlighted in Fig. 4.12C. right, wherein the algorithm scores

about 90%. The plots in Fig. 4.12C. are shown both for a single density and

a range of SNR and similarly for a single SNR and a range of densities. The

analysis of results of synthetic data was done in collaboration with Dr. Koichiro

Uriu.

For a value of SNR=5, which is similar to what we would obtain from our

real image datasets, we finally checked the performances of algorithms variants

for a range of density values. Fig. 4.12D. shows the dependence of sensitivity

and precision on density (section 6.5.1). The performance of the core segmen-

tation algorithm without post-processing (pink open circles in Fig. 4.12D) has

high precision whereas the sensitivity drops with increase in density. Combin-

ing post-processing methods suggested in this work (k-means and GMM) with

the segmentation algorithm improves the performance curves. GMM exhibits

superior results than k-means for our artificial data sets. Post-processing with
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Figure 4.12: A. series of slices from a synthetic image volume. B. Positions of known
centroids in synthetic images (blue dots) and centroid position after segmentation (red
dots). C. Segmentation algorithm response to SNR and density. Score (given by the
product of Sensitivity and Precision) demonstrates robustness of the algorithm with re-
spect to SNR values and a monotonic decrease in performance with increase in density.
D. Sensitivity and Precision (measures of false positive and false negative rates) eval-
uates for different density. We compare the CWNT algorithm without post-processing
(pink circles), post-processing with k-means (blue dots) and GMM (green triangle) and
finally a commonly used watershed algorithm (filled red triangle).

53



Results

the standard watershed algorithm shows a bias towards splitting objects (Meyer,

1994) and thereby is able to achieve highest sensitivity (above 90%) regardless of

varying density. However, the precision is consistently about 60% even for low

densities, indicating that the watershed tends to over segment.

Our analysis with artificial images implies that the efficacy of the algorithm com-

bined with GMM post-processing method is quite robust. The sensitivity is high

for density values up to 0.0035 µm-3, which is within the range of densities we

have in the embryonic tissues. The precision is of about 90% and is density in-

variant, indicating that our nuclei segmentation algorithm performs well within

the regime of our biological problem of interest. The synthetic data allows a

qualitative and quantitative evaluation of our segmentation algorithm and gives

us a better understanding of the advantages and shortcomings with respect to

testable features of the real world images.

4.6.3 In vivo benchmarking of algorithm with embryo chimeras

Synthetic data form an excellent tool to test segmentation algorithms for varying

image properties, like SNR and density, however, it is difficult to mimic all the

properties of real images artificially. In contrast, in real datasets, owing to the

high density, it is hard to benchmark algorithms because the true positions are

a priori unknown. Since our motivation to formulate a segmentation algorithm

was to segment nuclei in the context of live zebrafish embryo during development,

we designed embryo chimeras using transplantation techniques for in vivo testing

(section 6.6, Fig. 6.2). The experiment supplied natural test datasets within

the context of a live embryo to benchmark algorithm efficiency for wide range

of nuclear sizes and volumes, image contrast and densities of nuclei within the

limits of tissue packing.

Acceptor embryos that had double labeled nuclei within the PSM around the

10 somite stage were screened for live imaging. The embryo was imaged from

the 16 somite stage onwards using both channels sequentially on an upright sin-

gle photon confocal microscope. As a result of the transplantation, the embryos

had a fraction of nuclei labeled with a histone fused m-cherry marker, that had

corresponding nuclei labeled with histone fused gfp in the other channel as seen
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Figure 4.13: A. Doubled labeled cells were transplanted into ubiquitously gfp labeled
embryo at 1000-cell stage. Embryos were screened for an appropriate cell density within
the PSM in the sparse channel at 10 somite stage. Snapshot of the PSM from live
imaging, 16 somite stage onwards for both dense(gfp) and sparse(mcherry) channels,
16-bit grayscale images. B. Images were cubically cropped within the same spatial
coordinates in both channels. C. Nearest neighbor distance distribution for all nuclei
within a time frame suggest a matching distance cut-off of 2µm. Matches are found
if the Euclidean distance between a nucleus of mcherry channel and gfp channel lie
within this distance. D. Success rate of the algorithm is measured in terms of matching
fraction between nuclei in dense and sparse channels over time. There are, on average
73% matches for a time-lapse movie. Match fraction is found similarly for five different
movies with different densities of nuclei in their sparse channel, indicating a consistent
match of about ∼ 70%.
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in Fig. 4.13 A , also see Supplementary movie S5 and the corresponding movie

legend in Chapter 7.

Next, small cubes approximately of size 51�51�35 voxels3, were cropped from

different regions of the time-lapse movies as illustrated in Fig. 4.13 B. As a re-

sult of cropping, the computational time for nuclei segmentation was fairly short

and allowed easy analyses of image properties, such as density and SNR. Nuclei

segmentation yielded positions and voxel lists of all nuclei in the dense channel

(gfp) and a subset of those in the sparse channel (mcherry). The sparse channel

allowed us to achieve reliable segmentation results, since overall density of nuclei

compared to the dense channel as well as local density within a volume was quiet

low. Due to the lower density, we assured that the positions of nuclei in the sparse

channel detected by the algorithm could be considered as "truth". In contrast,

we assumed that the segmentation algorithm was more challenging in the high

density channel for the same volume. Thereby, using the technique it was possible

to evaluate in vivo performance of the algorithm. The detected centroid of a cor-

rectly segmented nucleus of a transplanted cell in the dense channel image would

have a corresponding nuclear position in its close vicinity in the sparse channel

(ground truth). Therefore, we counted the number of matches between the two

channels and defined a detection rate given by the ’sensitivity’, also previously

used for the analysis of synthetic images. Centroid matches were found when the

position of the nucleus in the dense channel is within 2µm Eucledian distance

from a true point in the sparse channel as shown in Fig. 4.13 C.

We defined the match fraction as the ratio of the number of matches between

dense and sparse to the total number of nuclei in the sparse channel. Fig. 4.13

D shows the match fraction fairly consistent over time, with an average match

fraction of 0.73 ± 0.068. We repeated the analysis in different regions of several

embryos with varying densities in both dense and sparse channel and obtained

on average match fraction of about 70%, as shown in Fig. 4.13 D (right). Due to

large differences in intensity and poor local contrast within real images, we fail

to segment nuclei in the dense channel and thereby loose 30% of matches.

The segmentation algorithm combined with benchmarking tools indicate that

our algorithm performs well in 3D, and is able to identify objects of different
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sizes and in different regions of the tissue varying in packing and contrast. In

essence, we have converted a 3D image volume from the PSM into quantitative

datasets designated with properties such as centroids volume and voxel lists for

each segmented object in the image. In conclusion, we have put forth a segmen-
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Figure 4.14: Successful 3D segmentation results. 3D input raw image shown on the
left and the 3D rendered nuclei (in green), with colored centroids plotted on top after
segmentation are shown on the right.

tation algorithm based on image derivatives and have proposed post - processing

steps to combine properties of segmented objects to specifically address the prob-

lems of under-segmentation, thereby enhance the overall performance. With such

encouraging segmentation results, illustrated in Fig. 4.14, we were interested in

tracking centroids of segmented nuclei over time.

4.7 Nuclei centroid tracking within the PSM

The segmentation algorithm yielded reliable results and it was now possible to

track the centroid positions of nuclei over time. In order to precisely track the

positions of cells over time, I adapted the algorithm developed by Sbalzarini and

co-workers (Sbalzarini and Koumoutsakos, 2005). The Sbalzarini algorithm con-

siders imperfections in nuclei identification and therefore accounts for appearance
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and disappearance of nuclei in all time frames. It is implemented by formulating

an association matrix for all centroids between consecutive time frames. Final

nuclei trajectories are then linked by minimizing a cost function that depends

on the distances between centroid positions in the subsequent time frames for all

time points. We found this to yield good results for our segmented data and serve

purpose of our analysis.
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Figure 4.15: Random colored 3D tracks for the posterior section of the PSM of an18
somite stage embryo (70 time points with time interval of 1.4 minutes). Open circles
indicate starting positions of tracks.

Fig. 4.15 shows 3D traces of nuclei for a small volume of PSM image. As

a result of successful segmentation and implementing the tracking algorithm,

it was possible to make reliable trajectory linkages that allows following the 3D

centroids of individual nucleus. However, even for this small volume, it is difficult

to gauge the tracking performance due to the large number of cells and their

tracks. Therefore, we use embryo chimeras for the purpose of inspecting the

tracking results.
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4.7.1 Trajectory length verification using embryo chimeras

Here, I would like to demonstrate the use of embryo chimeras to better assess

the tracking results. The embryos, carriers of gfp and mcherry nuclear markers,

formed the ideal test set to compare trajectory lengths in live images of the same

embryo, with one of the channels consisting of closely packed nuclei while the

other with scattered labeled nuclei, as explained in section 6.6. To demonstrate

the usefulness of embryo chimeras to evaluate trajectory lengths, in this section,

I would use the embryo shown in Fig. 4.16, which shows a 3D snapshot of a

17 somite stage embryo chimera with gfp (dense) and mcherry (sparse) labeled

nuclei (also refer to Supplementary movie S6 and the corresponding movie legend

in Chapter 7) .

gfp (dense) channel mcherry (sparse) channel

anterior

posterior

posterior

Figure 4.16: Lateral views of the PSM, anterior is left and posterior is right. 3D snapshot
of a time step from a 17 somite stage embryo after transplantation experiment. Image
on the left shows all nuclei labeled in green, carrier of h2aflv-gfp+/− (dense channel)
and on the right, only a fraction of those labeled with m-cherry, carrier of h2aflv-gfp+/−

- h2afv-mcherry+/− (sparse channel). Time interval between consecutive time frames
is 65.7 seconds with 30 time steps. Voxel size: 0.691× 0.691× 1.89µm3.

The transplant experiments allowed in vivo comparison of trajectory lengths

in two different scenarios; closely packed nuclei and a subset of those being scat-

tered labeled within the same embryo. The transplanted images were segmented

for nuclei in both dense and sparse channel and the tracking algorithm was used to
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form trajectory links between centroids of nuclei over time. Fig. 4.17 and Fig. 4.18

show the results of inspection of trajectory lengths using embryo chimeras. Please

note that the number of trajectories is much larger than the number of segmented

nuclei because of large number of broken tracks due to imperfections in segmen-

tation.

The validation using transplant experiments are consistent with the fact that

the outcome of segmentation is affected by density (shown earlier in section 4.6.2

and 4.6.3) and therefore also trajectory lengths depend on the density. Fig. 4.17

and Fig. 4.18 illustrate that we can obtain longer tracks for the channel with

lower density of nuclei within the PSM when compared to track lengths for the

dense channel within the same embryonic tissue over time. In this example, the

sparse channel has approximately 6.2% nuclei of the dense channel, as shown in

Fig. 4.19A. Fig. 4.19B. further confirms that the fraction of longer tracks are

obtained for the sparse channel due to lower density and sparsity of nuclei.

We were yet able to detect the track of the same nucleus coming from the

sparse as well as the dense channel. For doing this, a distance cut-off of 2 µm

was set to find a match between the first 5 time points of the tracks coming from

the dense and the sparse channel. When the distances were within this cut-off,

it was possible to trace the tracks of the same nucleus coming from both the

channels. Fig. 4.19 C. illustrates plots of 2 nuclei having the same trace, one

coming from sparse and the other from the dense channel. Comparison of full

length trajectories alone (i.e. trajectory lengths with 30 time points only), gave

a 33% match between tracks of dense and sparse channel. Here, for the first

time, we provide a glimpse on how embryo chimeras can be useful to compare

in vivo tracking performances. The next task was to evaluate the dispersion of

cells within different regions of the PSM. For this analysis, it became mandatory

to have uniform density of cells throughout the PSM to achieve reliable statistics

from our data, however it was not necessary to always have longest lengths of

trajectories of cell tracks. Therefore, cell track data from dense type of channel

would be used for computation of diffusion co-efficient of cells.
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Figure 4.17: Dense channel 3D trajectory lengths indicated by the color bar for
Fig. 4.16,left. Dark blue color indicates shorter trajectory lengths < 5 and color dots
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Figure 4.19: A. Trajectory length distribution for both dense and sparse channels.
Fraction of tracks with longer trajectories are obtained for the case with lower density
of nuclei (mcherry/sparse channel. Due to high density of nuclei, more shorter track
lengths are seen for the gfp/dense channel. B. Nuclei number variation for both dense
and sparse channel indicated here. On average, the sparse channel has about 6.2%
nuclei of the dense channel. C. Examples of centroid track of a single nucleus from both
sparse and dense channel. The match between the traces was found within a distance of
2µm. Black asterisk indicates starting positions of the tracks. 33% match of full length
track (i.e. upto 30 time points) was found between sparse and dense channel.
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4.8 Diffusion co-efficient of PSM cellular oscillators

The study of diffusion of cells within the PSM would permit us to evaluate the

characteristic time scales of motion of the PSM cellular oscillators. We were

interested in inferring the diffusion co-efficient of cells within the posterior PSM

where cell mixing is high and is likely random. Further, the diffusion co-efficient

can then be re-phrased as a flipping rate of cells for the model (Uriu et al., 2010)

discussed in section 6.8. Combining cell tracking data and the model developed

by Uriu and co-workers (Uriu et al., 2010), we developed a method to compute

the Mean Squared Distance (MSD) for a collection of cells in a fixed spatial region

within the PSM and thereby locally infer the diffusion co-efficient of cells (section

6.8). We also evaluated the precision of the estimated diffusion co-efficient of cells

by selecting different number of tracks with different trajectory lengths.

The MSD was calculated for a specific region in the PSM tissue using nu-

clear coordinates of cells within a radius of 18 µm. The method of region se-

lection allowed us to understand time scales of diffusion of cellular oscillators

with respect to the PSM reference frame and gain insight on the values along the

anterior-posterior axis as well as along the dorso-ventral direction of the embryo.

Fig. 4.20 A shows a selected region in the posterior PSM highlighted with an

orange ellipsoid for a 19 somite stage developing zebrafish embryo.

In order to obtain a good quantitative description of the motion of oscillators

from the data in the posterior PSM, we processed the selected data such that

we considered only times up till which a high fraction fc of the initial tracks

exists. The value of fc controls the selection of tracks (number of tracks and their

length) used here to estimate locally the value of MSD and hence we were able

to check whether we obtained consistent answers independent of small changes

in the selection of tracks. This was done to ensure good statistics for the MSD

calculation. Fig. 4.20 B. illustrates the procedures for a selected set of tracks

that correspond to values of fc ranging between 0.2 and 0.7 and shows that all

curves are consistent. This plot thus indicates that we would be able to get

a reliable estimate of diffusion coefficient of cells (D) and that artifacts arising

from imperfections in segmentation and tracking would not significantly affect

our estimated value from the data. Next, for each MSD curve, we used a power
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law fit, MSD = Dtα (see section 6.8) to estimate the values of D,α and their

corresponding time scales Ts, as illustrated in Fig. 4.20 C. The plot shows for

each fc value that ranges between 0.2 and 0.7 that we can obtain D and α, given

by equation (6.19) in section 6.8. Therefore, to estimate the best fit, we used the

goodness-of-fit statistics and evaluated sum of square of error (sse), adjusted-R-

square and root mean squared error (rmse) and chose that value of D,α and Ts,

which was corresponding to least error, highlighted column in Fig. 4.20 D. The

number of tracks and time samples vary depending on fc, as does the quality of

fit and the final values of D,α and Ts.

For the 19 somite stage wild type embryo, imaged at 28°C, shown in Fig. 4.20,

the estimated values were, D = 5.7, with α = 1.1 and therefore, the time scales of

motion of oscillators was found to be Ts = 26.2 minutes. The value of α indicates

that there exists a super-diffusive process (since α>1) in the posterior PSM.

Similar analysis for a Trilobite mutant (convergence and extension phenotype) at

the 19 somite stage at 28 °C revealed Ts =31.3 minutes, D = 4.5 and α = 1.1

(analysis details are not shown here, see Supplementary movies: S7-A and S7-B

with movie legend in Chapter 7). The results indicate that the diffusion of cells in

the Trilobite mutant is slower in the posterior PSM than their WT counterparts.

In order to have a broader overview of diffusion of cells in the PSM, we would

be able to estimate Ts in WT and mutant embryos for different developmental

stages and temperatures in the near future.

Next, we wanted to estimate D and Ts throughout the entire PSM (for the

WT embryo shown in Fig. 4.20) by considering smaller sub-regions along the

anterior-posterior (AP) axis as well as dorso-ventral axis. Therefore, the present

method was modified to compute D,α and Ts for sliced sections along the z

direction at intervals of about 10 µm as shown in Fig. 4.21 B. This enabled us

to have a pictorial view of how the time scales change along the AP axis, and as

well as along the lateral (or ventral to dorsal) direction of the tissue, as we move

from the PSM cells close to the epithelial until the cells of the PSM spatially

closer to the notochord are reached. Fig. 4.21 A shows a 3D view (obtained with

Fiji 3D viewer) of the 19 somite staged embryo imaged at time interval of 75.3

seconds used here for the purpose of demonstrating the computation of diffusion

coefficient of cells for the entire PSM tissue. Fig. 4.21 B illustrates 4 sections along
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Figure 4.20: A. Centroid plot after segmentation (green dots) for first time point .
Tracks from the posterior PSM of the embryo are selected in a 19 somite stage embryo
imaged at 28°C, at a time interval of 75.3 seconds, highlighted by the orange ellipsoid.
B. Dependence of MSD results on fc. Linearity of the MSD curves for different sets
of selected tracks within the same posterior PSM region consistently indicates that the
movement is random. The selection of tracks with different lengths does not affect the
estimate of MSD. C. Power law fit (given by MSD = Dtα) used to determine diffusion
co-efficient of cells (D), α and Ts within the selected region for different set of selected
tracks based on fc in the posterior PSM. D. Tabulated overview of the effect of varying
the fractional cut-off (fc ) resulting in variation of the number of time samples and total
time points. Power law fit is evaluated for each MSD curve and the values of D,α and
Ts are chosen for that set of tracks with least error (using goodness-of-fit statistics),
which is the highlighted column.
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the z-direction, 10 µm apart within the PSM in the dorso-ventral direction. The

diffusion values were estimated around each of the sections in the PSM within a

3D radius of 18 µm for all cells in order to estimate the values of time scales (Ts)

of diffusion along the AP axis and in the lateral direction over the entire PSM

space.

Z

X

Y

1.8µm

11.8µm

21.8µm

31.8µm

Anterior

Posterior

Anterior-posterior

 axis

Lateral view

Dorso-ventral

axis

A B

Figure 4.21: A. 3D view of a 19 somite stage WT embryo tagged with histone-gfp,
imaged at 28°C at time interval of 75.3 seconds. White curved line indicates anterior-
posterior axis and arrowed line shows the dorso-ventral direction of the PSM. B. Mesh
plot of 3D centroids a single time point with 4 z-slices that section the PSM along the
z-direction into 2d-planes ( surface height of Z is indicated by the color). The diffusion
coefficient of cells is estimated in the z-sections spaced by 10 µm.

As described, we obtained Ts values for cells around each of the 4 sliced sec-

tions within a radius of 18 µm for the entire image, as seen in plots Fig. 4.22

A-D. The plots encapsulate Ts values for the entire 3D image in 4 different lateral

sections of the embryo, using a linear colormap index, indicated by the color bar.

Similar plots were also made for D and α (data not shown here). From the plots

in Fig. 4.22, it can be inferred that the oscillators diffuse faster in the posterior

PSM and relatively slower as we move towards the anterior PSM. Colorbar on the

plots determine that the time scales of diffusion of cells in the posterior PSM is

about 25-30 mins and as we move towards the anterior, the diffusion time scales

ranges between 55-60 mins. As the 4 plots show similar distribution of Ts for

the entire PSM tissue, independent of which sliced section of the PSM they are
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centered around, we may conclude that the diffusion does not vary strongly along

the lateral direction. In other words, the time scales of diffusion are fairly similar

along the lateral direction as seen from the plots in Fig. 4.22 A-D.

In summary, the analysis suggests that the diffusion is fairly homogeneous in the

dorso-ventral direction of the PSM, whereas the time scales of diffusion increases

as we move from posterior to anterior as observed in all the plots. The methods

developed here may be further used to systematically analyze the diffusion of

cellular oscillators at different stages of embryo and at different temperatures in

more detail in the near future. We would also be able to use drugs like blebestatin

in WT and mutant embryos and infer variations in diffusion co-efficient values.

To further our understanding of the relationship between movement and syn-

chrony, in the next section, I will briefly outline the method we have established

through this work to extract trajectories of in vivo single oscillators at cellular

resolution.

4.9 her1 cellular oscillations within the PSM

Previous studies have established that the Delta-Notch coupling is mandatory

for keeping the autonomous cellular oscillators, her1 and her7, in a synchro-

nized state and that perturbation to the pathway leads to erroneous boundary

segments, also discussed in chapter 2, section 2.1. These studies used in situ

hybridization techniques on fixed embryos to analyze segmented boundary for-

mation. They infer coupling strength, defect rates and synchronization response

times to perturbations due to addition of drugs, such as DAPT, and recovery

rates after effacing drug effects from the embryo (Riedel-Kruse et al., 2007; Jiang

et al., 2000). The tools developed through this work would make it possible to

read in vivo oscillations within the PSM at cellular resolution and therefore, we

would be able measure the differential cellular patterns during perturbations as

well as recovery from perturbations for the cellular oscillators in space over time.

Previously in section 2.1, we illustrated by Fig. 2.5, that the tissue level protein

oscillations of her1 -yfp that occur autonomously in PSM cells are synchronized

with adjacent cells, therefore a tissue-level wave-like gene expression pattern is

seen sweeping the PSM periodically concomitant with somite formation. Fig. 4.23
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Figure 4.22: Ts plotted for the 19 somite stage embryo shown in Fig. 4.21A. Regular
grid of 3D points on the 4 sliced planes was generated as shown in Fig. 4.21B. For each
z-section, Ts was calculated for the tracks starting within a 3D radius of 18µm around
each cell closest to 3D grid location. Black dotted lines approximately border the PSM
tissue in the plots (sketched by hand on the plots). Ts for posterior PSM ranges between
25-30 mins and as we move towards anterior the time scales change to about 55-60 mins,
as seen using the color bar.
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Anterior

Posterior

wave II

wave I

Figure 4.23: Phases of cellular oscillators are in synchrony as they traverse the tissue
in the form of a stripe from posterior to anterior. Here, two her1 stripes are seen in
their on-state phase of oscillations. her1 oscillates autonomously in single cells, however
because of delta-notch coupling, the neighboring cell phases are synchronized and their
her1 protein expression traverses the cells from posterior to anterior in the form of a
wave until the last formed somite.

shows a snapshot from live imaging of the same her1 -yfp transgenic line at cel-

lular resolution, wherein phases of cells are seen synchronized as they traverse

the tissue from posterior to anterior of the PSM. The figure highlights two waves

of expression where neighboring populations of cells are in their "on-phase" of

oscillation, also seen a movie on a 2D plane of the her1 -yfp in Supplementary

movie: S8-A with movie legend in Chapter 7.

However, in order to track down single cell oscillators of the PSM, we needed

a ubiquitous marker as a reference that would allow us to follow nuclei over time

and be able to read their her1 oscillations over time. A similar protocol has been

established previously to read dynamics of an oscillator reporter gene (Swinburne

et al., 2008). Here, we used transgenic lines that were carriers of h2aflv-mcherry

that would be used to track all the nuclei and read the phases of her1 -yfp PSM

cellular oscillators as seen in Fig. 4.24 (Supplementary movie: S8-B with movie

legend in Chapter 7). From these movies and the algorithms discussed in this

work, it was possible to segment and track all the nuclei of the mcherry channel.

It was also possible to record the voxel lists of segmented nuclei over time which

enabled us to read the voxels of the her1 channel of the same segmented nuclei.

Fig. 4.25 shows the average nuclear intensity of the same cell in both the mcherry

69



Results

h2aflv -mcherry +/- her1-yfp+/- h2aflv-mcherry +/- her1-yfp+/- 

yfp channelmcherry channel merged channel

posterior

anterior

Figure 4.24: 25 somite stage embryo labeled with h2aflv-mcherry and her1 -yfp imaged
at 28°C on a Zeiss upright single-photon microscope. Image taken sequentially at time
interval of 89 seconds. m-cherry nuclear marker enables segmentation and tracking of
all nuclei and as a result nuclei centroids and their corresponding voxel list are obtained
from this experiment.

channel and the yfp channel. Using this method, it is therefore possible to capture

in vivo her1 oscillations of single cells over time. The cherry signal is stable in all

the 4 plots indicating no cross-talk between channels, while her1 signal intensity

varies depending on the phase of the cellular oscillator. However, using the present

confocal technique with limited imaging hours, it was not possible to obtain very

long time lines of oscillations. In order to precisely read phases of oscillators for at

least more than 5-6 cycles, we hope to improve on imaging techniques that would

enable us to record images for several hours without issues of photo-toxicity in

future.

Based on these initial results, it will be possible in the future to deduce syn-

chronization index parameter for a population of cellular oscillators in the PSM

reference space and its evolution in time. We can also derive several other pa-

rameters like the correlation index, or order parameter that would cast light on

synchrony dynamics of cellular oscillators. Such results are not included in this

thesis, however, the present framework provides a foundation for measuring them.

This will allow us to better understand the interplay and dynamics of synchrony

of oscillators, their coupling strength, intrinsic noise within the oscillators and

how these quantities are affected by perturbations.

Using the tools described here, we would be able to analyze the synchrony

dynamics of oscillators in the Trilobite mutant background embryos, where we
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Figure 4.25: Left panels are posterior and right panels are anterior. Average intensity of
nuclear voxels as a function of time for 4 different cells with her1-yfp on the left (blue)
and mcherry on the right (red). Stable nuclear intensities are seen for all the 4 nuclei
for the m-cherry channel. The her1 signal intensity varies depending on the cell’s phase
of oscillation. Plots 1-3 show oscillatory behavior of the her1 signal whereas nearly
constant nuclear intensity in plot 4 on the bottom right, indicates that the cell does not
oscillate.

have already established that the diffusion of cells in the posterior PSM is slower

compared to their WT counterparts. Fig. 4.26 shows two waves of her1 oscilla-

tions on a Trilobite mutant background with shorter inter-stripe distance between

the waves (Supplementary movie: S9-A and S9-B with movie legend in Chapter

7.
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wave II

wave I

Posterior

Anterior

A. B.

her1-yfp 

stripe

Figure 4.26: A. her1 oscillations seen on a Trilobite mutant background, 17 somite
stage embryo imaged at 28°C. Size of her1 stripe and the inter-stripe distance is smaller
compared to WT concomitant with somite formation in Trilobite mutants. B. Snapshot
from a image file showing her1 -yfp oscillations and h2aflv-mcherry labeling all nuclei in
the Trilobite mutant embryo imaged at 28°C.
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Chapter 5

Discussion and Outlook

In this thesis, I have developed a protocol that achieves high quality images of

the developing zebrafish PSM tissue for quantitative analysis using image pro-

cessing tools in order to specifically address questions regarding movement of cells

and their relation to synchronization properties in the context of the segmenta-

tion clock. We used fluorescently labeled nuclei as readouts for cell positions

and obtained good images qualified to determine precise positions of nuclei over

time. To obtain positions of nuclei, a segmentation pipeline was developed in

this work that was carefully constructed to segment 3D objects of about ∼2000
closely packed nuclei within an embryonic tissue (PSM) undergoing morpholog-

ical changes during development. The intention was to provide an algorithm

that is well balanced in terms of accuracy, performance and speed. Accuracy of

segmentation performance is important to obtain long traces of nuclei that are

later used to compute diffusion co-efficient of cellular oscillators and extract their

phases over time during development. Speed of algorithm became vital since we

wanted to analyze embryos (WT and mutants) at different developmental stages

and at different temperatures.

The image processing tools developed through this work have the ability to

handle multiple touching nuclei, moving at different velocity, that may divide,

enter or leave the observation volume in the growing pre-somitic mesoderm. We

provided quantitative validation using artificial data (provided by Dr. Koichiro

Uriu, post-doc from the group) to ascertain the efficacy of segmentation algo-

rithm with respect to testable features of images such as SNR and object density
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and further quantify detection success to demonstrate the merits of the algo-

rithm. For the first time, we substantiated the consistency and reliability of

the algorithm’s performance within the PSM reference frame under different nu-

clear density conditions via an insightful tool used in developmental biology, i.e.

analysis of chimeric embryos. Cells from a transgenic embryo with double-labeled

ubiquitous nuclear marker (h2aflv-mcherry and h2aflv-gfp) were transplanted into

another transgenic embryo labeled with only h2aflv-gfp marker (transplantations

by Dr. Andrew Oates, supervisor and Dr. Guillaume Valentin, post-doc from

the group). This resulted in embryos that had a small fraction of nuclei labeled

with both fluorophores, and all nuclei labeled with another fluorophore. Thus the

experiment gave a natural environment, which could be usefully tested to assess

the segmentation algorithm performance in the context of the nuclear density

within the embryo. We were hence able to compare the algorithm performance

to identify nuclei in sparsely scattered channel and the same ones in the densely

packed clusters within the same tissue. Hence, we demonstrated the usefulness

of our image segmentation tool with the help of artificial datasets and in vivo

benchmarking techniques that aid towards confident quantitative analysis.

With good success with image segmentation, we modified and used the Sbalzarini

tracking algorithm (Sbalzarini and Koumoutsakos, 2005) that considers segmen-

tation imperfections by accounting for appearing and disappearing nuclei in all

time frames. The algorithm makes trajectory links by minimizing a cost function

that is formulated using the Euclidean distance between centroid positions for

all time frames. The implementation of cost function is an improvement on the

basic nearest neighbor distance, since it considers trajectory links by optimizing

the distance between consecutive time points over all time frames. In order to

ascertain the degree of tracking performance, we again used embryo chimeras.

With the segmentation algorithm, we already established that it was easier to

segment the sparse channel successfully and thereby it was also easier to obtain

longer fraction of tracks for the same. However, we were still able to find a num-

ber tracks of the same nucleus from both dense and the sparse channel that were

in good agreement.

From here on, the tools enabled us to quantify a plethora of properties of the

system at cellular resolution to further our understanding about the dynamics
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of cell movements during segmentation in the PSM, and how this affects the

synchronization of the oscillating cells.

We started by experimental quantification of movements and relate the data

to moving rate parameter as described in Uriu et al. (2010). This work was

done in close collaboration with Dr. Uriu who developed a theoretical model for

cell movement and their mobility properties with respect to synchronization of

oscillations with the PSM of the zebrafish embryo. We developed a method to

measure the diffusion coefficient of cells within the PSM tissue of the embryo

along the anterior-posterior axis in WT and mutants. Our analysis suggests that

the cells diffuse faster in the posterior PSM and slower in the anterior PSM.

Previously, similar observations have been made within the chick embryo PSM,

although the quantitative analysis was implemented differently (Bénazéraf et al.,

2010). We further also deduced from our analysis that the diffusion along the

dorso-ventral axis does not vary strongly within the PSM. The method developed

in this work would allow us to gain more insight on this parameter of the PSM

and thereby gives future scope to analyze WT embryos at different stages as well

as mutants in order to better understand the diffusion of cells within the PSM.

The tracking data also enables to capture phases of in vivo oscillators that

would provide huge scope to verify time series correlations of oscillators in differ-

ent region of the tissue over time. This would allow us to visualize and quantify

the cellular level details for better understanding of the clock dynamics. It would

also allow us to compute change in phases of cellular oscillators in WT and mu-

tant embryos, responses to perturbations to drugs such as DAPT. Additionally,

we would be able to use this information to extract the synchronization index

(Uriu et al., 2010), synchrony parameters such as, coupling strength and com-

pute quantities such as spatio-temporal correlation functions from the real data.

Although, at this point it would be difficult to give a simple straight answer as

to how cell movements affect cell synchronization properties, but we have gained

considerable insight through this work on time scales of motion of cellular oscil-

lators and developed the tools that would enable us to tweak several properties

of the system to further our understanding of the behavior of cellular oscillator

and how their assembly may generate a precise molecular segmentation clock.

It is suggested that diffusion of oscillators is an inherent feature of the PSM
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and may be linked to the age and the dimensions (owed to continuous tissue

level convergence and extension movements) of the PSM. Further, the diffusion

slows down as we move towards the anterior PSM. We know that synchronous

oscillations emerge at the posterior PSM of the tissue where cell mixing is rela-

tively high, and the oscillations slow down as we move towards the anterior as

well, and eventually are arrested in the form of somites. On the other hand,

experimental and theoretical studies on the clock so far have emphasized on the

role of coupling of cellular oscillators as an essential machinery for proper func-

tioning of the segmentation clock. Several studies have simulated inter-cellular

coupling of phase oscillators Cinquin (2007); Herrgen et al. (2010); Morelli et al.

(2009); Uriu et al. (2012) and have considered the coupling strength to be fairly

constant throughout the PSM. However, I would put forward a hypothesis where

we could consider a space-varying coupling strength along the posterior-anterior

axis that changes relative to diffusion of oscillators and therefore may affect their

synchrony dynamics properties. It is further speculated that the ratio of time

scales of diffusion of oscillators and the coupling strength (a measure of local

synchrony among a population of oscillators) within a spatial region of the PSM

maintains an inter-relation such that a tissue level output is achieved whose prod-

ucts are waves of oscillating gene expression and dynamic re-arrangement of cell

that ultimately form somitic furrows.

Advances in microscopy techniques and image processing tools provide great

opportunity to quantitatively evaluate and characterize cellular and sub-cellular

level dynamics of processes such as collective motion, gene expression patterns

within the developing embryo. Thus it is increasingly becoming vital to provide

computational tools that have the ability to convert high resolution image data

into reliable quantitative measures in field of developmental biology. They may

further bridge experimental observations and theoretical models for better un-

derstanding of how certain processes are regulated and coordinated to form an

embryo. Here, we have optimized live imaging and image processing tools to suit

reliable quantification of the PSM of the zebrafish embryo. This further helps us

to address specific questions pertaining to oscillators motion and their dynamics

at cellular resolution and allows interplay of mathematical models to interpret

experimental data.
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Through imaging techniques and tools, it would be possible to provide a better

quantitative description of such parameters of the clock and propose mathemat-

ical models that would include experimental observations. For instance, quanti-

tative measures of the diffusion of oscillators may be used as an input to existing

theoretical model (Uriu et al., 2010), and thereby provide the model with better

predictive power for segmentation clock. Further considerations to other struc-

tures like filopodia, actin and myosin networks can be examined to understand the

their contribution to the dynamic re-arrangement of cells and their subsequent

consequences to the synchronization properties of the clock.

In future, it should also be possible to use new microscopes such as the SPIM

(Supplementary movie: S10 with movie legend in Chapter 7), that has the abil-

ity to image at a higher frame rate with better spatial and temporal resolution

without issues of photo-toxicity and bleaching. This would result in better im-

age segmentation results and enable us to have longer tracks of cells over time

and even over several somites. This may enable us to manipulate molecular level

features of the clock, and help us investigate cellular level properties such as as

motion and synchrony, and how these affect tissue level properties of the seg-

mentation clock. In future, all this together may throw some light on the design

principles of the segmentation clock and how different aspects of the clock are

linked with each other.
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Chapter 6

Materials and Methods

6.1 Materials

• E3 Composition:

– 5 mM NaCl

– 0.17 mM KCl

– 0.33 mM CaCl2

– 0.33 mM MgSO4

– 10-5% methylene blue

• Molds for time-lapse imaging (Herrgen et al., 2009)

• ethyl-m-aminobenzoate methanesulphonate (Tricane)

• Danieau’s

– 0.4 mM MgSO4

– 0.6 mM CaCl2

– 0.7 mM KCl

– 58 mM NaCl

– 5 mM Hepes pH 7.6
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6.2 Fish care and mutant stocks

Zebrafish Danio rerio were raised and kept under standard laboratory conditions

(Westerfield, 2000). Embryos obtained from natural spawnings were staged as

described in Kimmel et al., 1995. All wt fish used in this study were of the AB

and TL strain. Mutant alleles used here were trilobite (Jessen and Solnica-Krezel,

2004; Jessen et al., 2002), knypeg (Topczewski et al., 2001) and after eight (van

Eeden et al., 1996; Jiang et al., 1996).

6.3 Sample Preparation and 4D Image Acquisition

We carried out confocal live imaging of the zebrafish embryos, carriers of h2aflv-

gfp or h2aflv-mcherry or textither1 oscillating protein expression in different ex-

periments including wt and mutant backgrounds. From about 16 somite stage

onwards, the dechorinated embryos were positioned laterally in grooves that fit

embryo head head, made of low melting point-agarose (1.5% LMP agarose with E3

(without methylene blue) and 0.02% ethyl-m-aminobenzoate methanesulphonate

(Tricane),) in a petri-dish (Herrgen et al., 2009; Schröter et al., 2008). The dish

was filled with E3 (embryo medium) and Tricane, that prevents embryos from

twitching during imaging. An upright Zeiss confocal microscope with 40x/1.0

NA water objective and 488nm/ 561nm/ 514nm laser light excitation was used

(depending on the flurophore), enabled us to obtain several good quality 2D im-

ages (8-bit or 16-bit grayscale) of the nuclei parallel to the xy focal plane within

the PSM tissue. Several z-slices (with overlap) of the PSM tissue were made and

time series of the images with best possible quality were recorded for 2 to 2.5

hours as shown in Fig. 6.1. We typically imaged 512 × 512 in x-y and 20 - 30

slices in z respectively, with voxel size of 0.691 × 0.691 × 1.75µm3. Imaging ex-

periments were carried out between 23°C and 28°C. For developing segmentation

algorithm of nuclei, no temperature controls were done, and hence all imaging was

done at room temperature, and that was measured intermediately during imag-

ing experiments. For the analysis of cell movement and the purpose of reading

oscillatory signals, temperature control was achieved using a Bachhoffer chamber

and the temperature was maintained at 28°C. The temperature inside the petri-
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dish during imaging was measured with a K-type thermocouple dipped into the

E3 (without methylene blue) medium and the temperatures were recored every

5 minutes.

Epithelial
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Detector
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Figure 6.1: A. Illustration of the imaging technique used in this work. The width of the
pin hole determines the amount of light that reaches the sample. A 40x Dipping lens is
used to image the PSM of the live embryo over several xy planes to obtain a 3D stack.
B. Sample setup. A petri-dish coated with agarose with conical depressions such that
embryo head fits laterally and the tail flanks out parallel to the agarose. The objective
is immersed into the dish focussed on posterior body of the embryo. C. Imaging the
sample. The embryo is imaged over time laterally from the epithelial tissue, through
the PSM, until the notochord nuclei are visible. The imaging frame is fixed.

6.4 Nuclei Segmentation Algorithm

Images were segmented using custom-written Matlab programs that were ex-

ported as a plug-in ’CWNT’ or ’Crown wearing nuclei tracking’ in Fiji, an open

source image analysis software (Schindelin et al., 2012). Fig. 4.4 briefly outlines

the nuclei segmentation scheme. We have built a 3D image analysis tool that

aims to recognize in vivo juxtaposed nuclei over time. The algorithm is fast and

accurate, and is based on combining image derivative followed by carefully in-
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specting features of 3D segmented objects to enhance the results. The algorithm

has several tunable parameters and is designed to work for biological image data

typically labeled with nuclear markers.

6.4.1 Input Image De-noising

From the 3D stack, we take the 2D image slice for de-noising. Image de-noising

is a crucial step in image analysis. This essentially should remove noisy pixels

and at the same time not degrade features of interest in the image. Here, we list

a few linear and non-linear filters that can potentially be useful to reduce noise

in the images (Lim, 1990; Gonzalez and Woods, 1992). Since our algorithm relies

on sharp cell edges, we prefer to de-noise images such that we dilute the noisy

component without degrading the change of image gradients at the edges.

Median filter : A non-linear filter, effective for salt and pepper noise and speckled

noise. It preserves the edges for a given window size. The value of an output

pixel is determined by the median of the neighborhood pixels.

Wiener filter : A pixel-wise adaptive Wiener method based on statistics estimated

from a local neighborhood of each pixel. It can be used for removal of blur in

images due to power additive noise.

Gaussian filter : A low-pass filter linear smoothing operation that convolves the

image with a Gaussian function and brings the value of each pixel into closer

harmony with the values of its neighbors (Shapiro and Stockman, 2001).

Bilateral filter : A non-linear, edge preserving and noise reducing smoothing fil-

ter. The principle here is a convolution operation with a non-linear Gaussian

filter with weights based on pixel intensities. It is applied in the form of two

Gaussian filters at a localized pixel neighborhood, one in the spatial domain and

the other in the intensity domain.

Lucy Richardson Deconvolution filter : It is an iterative Deconvolution algorithm

that attempts to de-blur an image. It assumes that the image has been blurred

by a point-spread function and pixel statistics follow Poisson distribution, appro-

priate for photon noise in image data (Richardson., 1972; Lucy., 1974)

The linear and non-linear filters mentioned above were chosen depending upon

the type of noise in the image to obtain an FIM image, which had reduced high
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frequency noise. IM is the raw input image and FIM is the de-noised image

obtained after using a de-noise filter operator, sf.

FIM = sf(IM), (6.1)

We typically used the Gaussian filter given by, g(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 , for very low

background noise in images with a value σ of 0.5 and window size of 5 × 5. For

images with high noise, we first used the Gaussian filter followed by Deconvolution

and median filters.

6.4.2 Non-linear Isotropic diffusion filter

Originally proposed by Perona and Malik (Perona and Malik., 1990), it evolves the

image with a smooth partial differential equation, similar to the heat equation

and yields intra-region smoothness and at same time impedes diffusion at the

edges. We apply the filter df proposed by Perona and Malik on the de-noised

image as it facilitates edge extraction, before computing image derivatives. We

implemented the standard filter given by,

∂FIM

dt
= div[df(||∇FIM ||)∇FIM ], (6.2)

where ||∇FIM || is the de-noised image intensity gradient and df is the dif-

fusion co-efficient, given by, df(||∇FIM ||) = exp(−||∇FIM/κ2||) in this work.

This step smoothened noisy pixels, although features of interest in the image re-

quired for segmentation (edges of nuclei) were not diluted. I set the value of κ to

50 for about 10 iterations for the purpose of our image analysis.

6.4.3 Computation of Image Derivatives

Image Gradient: first derivative of the image

After image de-noising and implementing the anisotropic diffusion filter, the im-

age edge pixels are enhanced compared to the background and pixels within the

nucleus. Hence, I computed the gradient of the image, where the partial deriva-

tive, ∂x is obtained by convolving the image with the derivative of the Gaussian

83



Materials and Methods

function in the x direction and the Gaussian function itself in the y direction and

vice-versa for ∂y. Hence, the width of Gaussian parameter allows the tuning of

the gradient norm (Shapiro and Stockman, 2001; Canny., 1986).

∇ADF = [∂xADF ∂yADF ], (6.3)

For further analysis, I used the magnitude of the gradient given by:

||ADF || =
√
∂xADF 2 + ∂yADF 2, (6.4)

Image Laplacian and Hessian: Second derivative of the image

I re-differentiated the result of the gradient of the image and obtain the second

order partial derivatives, given by the Hessian matrix.

Hm =

∂2ADF
∂x2

∂2ADF
∂x∂y

∂2ADF
∂x∂y

∂2ADF
∂y2

 , (6.5)

The trace of the matrix is the Laplacian of the image, given by

La =
∂2ADF

∂x2
+
∂2ADF

∂y2
, (6.6)

The Laplacian ingredient for our final filter is a function L,

L =

La, if La > 0

0, otherwise
, (6.7)

Our main objective is to separate closely spaced nuclei. For this, we used the

determinant of Hm that marks the saddle points. This component efficiently cuts

through the touching spaces between neighboring nuclei, thus contributing to the

robustness of segmentation results. The function H marks all the saddle points

84



Nuclei Segmentation Algorithm

in the image, given by:

H =

|det(Hm)|, if det(Hm) < 0

0, otherwise
, (6.8)

Combining Derivatives

At this point, I combined equations (6.4), (6.7) and (6.8) with different weigh-

ing constants α, β, ε in order to obtain a function that is large in the form of a

ring-shape given by D, where,

D = α||∇ADF ||+ βL+ εH, (6.9)

In order to obtain a smooth edge for every object, I used a tangent hyperbolic

function. The touching points between nuclei form the saddle points of the image

intensity matrix, ADF , characterized by det(Hm) < 0. Combining derivatives,

with this tangent hyperbolic function, I defined a masking function F,

F = 0.5(tanh(X) + 1), (6.10)

Where ,

X = [γ − D

δ
], (6.11)

The parameters α, β, ε, γ and δ can be tuned to achieve good segmentation

results. In the end, I do a mathematical multiplication of the masking function F

with the de-noised image FIM to obtain a matrix FI that has highlighted edges,

given by,

FI = F. FIM. (6.12)

This image is thus prepared for the subsequent image thresholding step.
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6.4.4 Image Thresholding

Based on the sequence of steps described so far, I obtain an image FI, with clearly

worked out the nuclei edges. Further, I used Otsu’s thresholding method (Otsu.,

1979) that finds suitable threshold value for every 2D slice, each varying in nuclear

density, contrast and packing. The Otsu’s method finds a suitable threshold for

each slice by first representing two classes of pixels, (foreground and background)

as a bi-modal histogram and then calculating the optimum threshold separating

the two classes so that their intra-class variance is minimal.

6.4.5 From 2D to 3D: Connecting the like pixels

2D binary slices are connected such that the neighboring pixels with value 1 are

clustered together to make 3D objects and with values 0 contribute to the back-

ground voxels (Haralick and Shapiro, 1992). I used the minimum connectivity of

6 neighboring pixels to make up 3D voxels (background and foreground objects).

This connectivity to optimize the total number of segmented objects obtained.

I found that for higher order of connectivities consisting of 18 or 26 neighbors,

the number of segmented objects decreases, indicating that these lead to severe

under-segmentation problems. At this point, I have completed the image seg-

mentation. I now further examine the 3D objects based on the properties of each

segmented object.

Analysis of Properties of 3D Segmented nuclei

Each 3D segmented object was characterized by three key features, namely,

Voxel list : The voxel coordinates in x, y and z make up the voxel list for the

segmented object.

Centroid : The mean of voxels in each direction gives the centroid of that object.

Volume: The total number of voxels that make up the segmented nuclei.
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6.4.6 Post-processing based on properties of 3D segmented nuclei

I used the histogram of the volumes of objects as a tool to draw a boundary

between correctly segmented and under-segmented objects. The histogram plot

of 3D volumes is positively skewed exhibiting that even after employing a rigorous

segmentation algorithm that specifically aimed to separate juxtaposed nuclei, it is

possible to have multiple fused objects. The imaging volume spans over different

tissues of the developing embryo. Therefore a wide range of heterogeneous shapes

and sizes of nuclear volumes is observed even for correctly segmented objects, as

depicted in the histogram. In the case of under segmentation, there would be

particularly large volumes, that are in fact comprised of several nuclei with only

a single centroid. I empirically determined a cut-off representing the maximum

allowed volume for correctly segmented objects, given by,

FOC = MV + (0.1× SDV ) (6.13)

where FOC is the fused object Cut-off, MV is the mean volume of segmented

objects and SDV is the standard deviation of volumes of segmented objects.

For all potentially fused objects, I sampled the voxel frequency distribution

in each x, y and z direction separately. Ideally, one would expect to see a uni-

modal distribution with one local maximum in each list (for a typical image of a

nucleus obtained from the LSM) and the geometrical centroid after segmentation

should lie at the centre of nuclear volume as shown in Fig. 4.8 . In contrast,

fused objects would have multi-modal frequency distributions with multiple lo-

cal maximas. This information can now be further used to split fused objects

into potential nuclei candidates. For this, I devised a semi-automated method to

re-segment the fused objects by using the local peak information from the coor-

dinate voxel distributions.

Based on the total number of local maxima in the frequency distribution of voxels

in the three directions, x, y and z, we formed a guess for the number of potentially

fused nuclei clustered together. This value was provided to the k-means that was

able to segregate the voxels into clusters with their corresponding new centroids

and new voxel list values.

Each cluster in this case, represents a true nucleus. K-means clustering uses
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the Euclidian distance metric and the variance between the data points and de-

termines cluster centroids (Seber, 1984; Spath, 1985; Hartigan and Wong, 1979;

Dhillon and Modha, 2001; Amorim and Mirkin, 2012; Press et al., 2007). An

important feature of k-means is that it requires the actual number of clusters as

an input parameters, where an inappropriate choice leads to the wrong number

of clusters, since in our case, this parameter is based local maxima from the voxel

list. It is vital to reduce noise from the image, while keeping smooth intra-nuclear

regions, to avoid false local maximas.

Alternatively, I propose the use of Gaussian mixture models (GMM) (McLach-

lan and Peel, 2000; Bishop, 2006; Press et al., 2007) for post-processing nuclei

clusters. GMM were also initialized with the number of local maxima as a guess

for the number of nuclei. This value was used as the number of components

required to fit parametric models to the data. Choosing a suitable number of

components or nuclei clusters is essential for creating a useful model of the data

(voxel list) - too few components fails to model the voxel list accurately; too

many components leads to an over-fit model with singular covariance matrices.

Therefore, I combined GMM with Akaike information criterion (AIC) (Akaike,

1980; Figueiredo and Jain, 2002), which penalizes the model based on its com-

plexity. The GMM fits several models with different proportions to the same

voxel list and subsequently AIC minimizes the number of 3D Gaussian models

and ultimately automatically achieves the correct number of Gaussian models or

nuclei, even in cases where the initial guess was slightly off.

6.5 Generation of Synthetic Images

Synthetic images were used to assess the systematic errors in the algorithm in a

case where we exactly know the centroids of objects (Sbalzarini and Koumout-

sakos, 2005). Synthetic images were generated by Dr. Koichiro Uriu, a post-doc

from our group.

We randomly allocated centroids of N objects in a three-dimensional continu-

ous space Lx×Ly ×Lz (in µm). Let xj = (xj, yj, zj) be the centroid of an object

j (j = 1, 2, .., N) in the three-dimensional space. We defined density of objects
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as ρ=N/ (Lx Ly Lz). We chose the number of objects N such that the density ρ

in synthetic images is close to that of actual PSM images. In order to obtain a

preferred distance between objects, we relaxed their locations by using equation

of motions with a Lennard-Jones potential (Frenkel and Smit, 2002).

We approximated the shape of nuclei by an ellipsoid with shape parameters a, b,

and c, which also determine their volume. We set a = 4µm, b = 2.5µm, and c =

2.5µm based on the measured average size of a typical nucleus from the embryonic

data. The orientation of the object j is given by the Euler angle (αj, βj, γj). This

angle was chosen from a uniform distribution between 0 and π/4 for α and β and

between 0 and π/2 for γ.

To represent the orientation of the object j, we rotated its axes such that:


x′

y′

z′

 =


1 0 0

0 cosαj − sinαj

0 sinαj cosαj




cos βj 0 sin βj

0 1 0

−sinβj 0 cos βj




cos γj − sin γj 0

sin γj cos γj 0

0 0 1



x− xj
y − yj
z − zj


(6.14)

The signal intensity at a given position (x, y, z), emitted by the object j,

Ij(x, y, z) was modeled as follows:

Ij(x, y, z) =
I0

2In
(tanh[σ1− x′2

a2
− y′2

b2
− z′2

c2
] + 1), (6.15)

where I0 is the maximum intensity at the centroid of the object, s repre-

sents the steepness of the edge of an object and In is the normalization constant,

In = (tanh(σ) + 1)/2. The intensity value at the position (x, y, z) is, given by

I(x, y, z) = Ib + max[Ij(x, y, z), |j = 1, 2, N ], where Ib is the background inten-

sity. To determine I0 and Ib, we measured the average intensity at the center of

nucleus Im and background intensity Îb in our real images. Next, we set I0 = Îb

and I0 = Im − Îb.
The three-dimensional space was discretized using the voxel spacing in each di-

rection and images were created from the intensity profiles. Let Dx, Dy and Dz be

the voxel sizes in x, y and z directions, respectively. The voxel size represents the
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spatial resolution of an image. We set the same voxel size as obtained from our

confocal microscope images (Dx = 0.691µm,Dy = 0.691µm,Dz = 1.75µm). The

discrete spatial coordinate of the three-dimensional space (x̃, ỹ, z̃) can be written

as (x̃, ỹ, z̃) = (kx∆x, ky∆y, kz∆z) where, kζ = 1, 2, , Lζ/∆ζ and x = (x, y or z).

The signal intensity of the voxel (kx, ky, kz) in the synthetic image was given by:

Id(kx, ky, kz) = I(
∆x

2
(2kx − 1),

∆y

2
(2ky − 1),

∆z

2
(2kz − 1)) (6.16)

We then added the noise to each voxel in the synthetic image, we used gamma

distribution, given by:

f(x, k, θ) = xk−1
e−x/θ

Γ(k)θk
, (6.17)

where, k and θ are the shape and scale parameters, respectively and Γ represents

the gamma function. The mean of the gamma distribution is m = kθ for which

we choose the intensity at each voxel, kθ = Id(kx, ky, kz). We defined the SNR

as the inverse of the coefficient of variation (CV) given by: SNR = 1/CV =

m/σ =
√
k. The shape and scale parameters, may be written in terms of a given

SNR as k = SNR2 and therefore, θ = Id(kx, ky, kz)/SNR
2. Note that q might

differ between two different voxels under this setting depending on their noiseless

intensities Id = (kx, ky, kz). We generated a random real number from the gamma

distribution with k and q obtained by the above equations for each voxel. Finally,

16-bit images were produced with the ’Image’ function in Mathematica from the

intensity profile.

6.5.1 Segmentation efficacy measured by Sensitivity and Precision

We created artificial datasets by varying the SNR and density to evaluate the

algorithm performance. To measure error rates in our segmentation algorithm,

we matched each of the data points obtained by the segmentation algorithm with

each of the true positions based on Euclidian distances between them. We adopted

particle-matching algorithm previously used for cell tracking and minimized the

cost function defined as the summation of Euclidian distances between assigned

pairs (Sbalzarini and Koumoutsakos, 2005).
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We compared segmentation results of the synthetic data with their known true

centroid positions. If a match was found between true position of an object and

the segmented position, the algorithm was qualified to have segmented the object

correctly. A miss was considered when a true position was not paired with any

of the segmented data points. On the other hand, when a segmented data point

was not paired with any true positions, we considered that the segmentation

algorithm detected false signals (e.g. noise) as an object or over-segmented an

object. The mis-matches and the false signals were accounted in the form of false

positives (over segmentation rate) and false negatives (under segmentation rate).

In order to measure the error rates by the algorithm, we defined sensitivity and

precision.

We counted the number of real objects correctly detected by the algorithm Nra

and defined sensitivity as Nra/Nr where Nr is the true number of objects in a

synthetic image. The sensitivity represented the detection rate of objects in an

image. We defined precision as Nra/Ns where Ns is the total number of segmented

objects. The precision represents the probability that a detected object is actually

a real object. The score was given by the product of sensitivity and precision.

6.6 Transplant Experiments

Genetic mosaics were generated as described previously by (Westerfield, 2007;

Haas and Gilmour, 2006). Briefly, donor embryos expressing two histone variants

fused to gfp and m-cherry (h2AflV-gfp, h2AflV-mcherry) were allowed to develop

until blastula period. Approximately 20 to 30 cells were then transplanted into

age-matched h2AflV-gfp host embryos. The next day, mosaic h2AflV-gfp em-

bryos were screened for mcherry expression and imaged with a Zeiss LSM 780

equipped with a 40x dipping objective/N.A.1.0. Fig. 6.2 shows a brief sketch of

the transplantation experiments done to obtain chimeric embryos used here to

examine segmentation algorithm results in live embryo.

6.6.1 Segmentation performance assessment using embryo chimeras

We selected small cubes in different regions of the embryo and segmented nuclei

in both dense and sparse channels Fig. 4.13B. The sparsely labeled nuclei channel
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Day 2:
Transplant cells at

Blastula Period

Day 3: 
Screening

Day 1: 
Fish Set up

Screen potential 
candidate chimeric 
embryos for live 

imaging

h2aflv-mcherry+/-  h2aflv-gfp+/+ => h2aflv-mcherry+/- - h2aflv-gfp+/- (Donor)

h2aflv-gfp+/+  WT -/-  => h2aflv-gfp+/- (Acceptor)

Donor

h2aflv-mcherry+/- - h2aflv-gfp+/-

Acceptor 

h2aflv-gfp+/- 

Figure 6.2: Transplant experiment procedure. Fish crosses were done to obtain ’donor
embryos’ with double labeled ubiquitous nuclei markers- mcherry and gfp and ’acceptor
Embryos’ with single labeled gfp nuclei marker. Cells from the donor embryos were
transplanted into acceptor embryos around blastula period. Embryos were screened on
the next day for live imaging

allowed us to achieve reliable segmentation results. We computed the Euclidian

distance between all the centroids from the two channels. A match between two

nuclei from each channel was considered when the distance was below 2µm. We

defined the match fraction as the ratio of the \number of matches between dense

and sparse\ to the \number of nuclei in the sparse channel\.

6.7 Nuclei Tracking Algorithm

I adopted the trajectory linking algorithm previously written for particle track-

ing (Sbalzarini and Koumoutsakos, 2005). The algorithm uses a association ma-

trix based on Euclidean distance between nuclei of consecutive time frames. A

cost function minimizes the distances considering all the time frames.The nearest
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neighbor linking distance was tested for a range of values between 3.5-5µm and a

value of 5 µm was chosen for linking trajectories. Further, embryo chimeras were

analyzed in order to understand the relationship between density of nuclei and

trajectory lengths.

6.8 Measurement of Diffusion co-efficient of cells

A method was developed in this work to measure the diffusion coefficient of

cells in different regions of the PSM of the embryos along the anterior-posterior

axis, on the lateral line. 3D segmented nuclei centroids from the first time point

were rendered and a single centroid was selected manually. For the selected

centroid position, we select all the tracks originating from the first time point

that lie within a radius of 18µm. Fig. 6.3 illustrates the region selection procedure

explained so far for the analysis.

 ‘Selected Centroid’ from

the posterior region 

of the PSM

Posterior PSM

Anterior PSM

X

Y

Z

Figure 6.3: 3D cell tracks were extracted around the selected centroid, indicated by
a black asterisk marker, within a 2d radius of 18µm, as highlighted by the orange
ellipsoid in the posterior PSM, for the purpose of analysis of diffusion coefficient of
cells. Snapshot from a 19 somite stage WT embryo imaged at 28°C with time interval
between consecutive frames of 1.2 minutes. On the right, a zoomed in, 2D projection
of the selected region is shown.

Since the selected centroid tracks varied in length, I processed the samples to
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obtain one with correct number of members, such that all have sufficient length

and provide enough statistics.

For this, I defined a fractional cut-off, fc of the original nuclei that are sup-

posed to remain in the sample. Large fc thus ensures good statistics. We then

determined the time sample tn where, N(tn) = fc.N0, where N(t) is the time

varying number of nuclei in our initial selection and N(t1) = N0. We then se-

lected only those tracks that extend until tn. By doing this, we avoided large

standard error of mean in the calculation of Mean square displacement owing to

lesser number of tracks at later time steps. Therefore, a selected set of spatial

coordinates of nuclei was examined to determine a useful fc and t1, t2, ...tn from

a selected region of the tissue was used for further analysis.

For the calculation of MSD, each track was expressed relative to its first time sam-

ple, (x̃i(tn), ỹi(tn), z̃i(tn)) = (xtn − xt1), (ytn − yt1), (ztn − zt1), where t1 stands

for first time sample and tn for time samples from 2 to n (last time sample), for

a cell, i.

Pair-wise distances were computed at each time step given by,

d2ij = (x̃i(tn)− x̃j(tn))2 + (ỹi(tn)− ỹj(tn))2 + (z̃i(tn)− z̃j(tn))2, where i, j indicate

celli and cellj.

By taking pairs of distances, we essentially eliminated tissue level movements and

considered contribution of only cell movements (Gerlich and Ellenberg., 2003).

For each time step, averaged squared distances for all nuclei was computed, given

by, d̄2t =< d2ij >.

d̄2t gives the Mean squared distance (MSD) as a function of time for the selected

nuclei, from a selected spatial region within the PSM tissue.

In order to infer the properties of the PSM cellular oscillators and compute

their moving rates, we considered the theoretical model proposed in (Uriu et al.,

2010) as shown in Fig. 6.4, that allows cellular oscillators to exchange their po-

sitions with their neighbors, which thereby considerably enhances their synchro-

nization properties.

With the model outlined in Fig. 6.4, the time taken for a cell to exchange

its location with its neighbor, Ts, encapsulates the time scales of mobility of the

cellular oscillators within a specified spatial region of the PSM of the embryo.
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t₁ t₂ t₃

FlippingFlippingFlipping

1/λ 1/λ

A B

Model incoorporates:

Oscillating expressions of Her protein and her gene as a result of intra-cellular negative feedback loop.

Concentration of delta proteins between 4 adjacent neighbors as a result of cellular interactions
due to Delta-Notch coupling.

Exchange of cell poistions with their neighbors that leads to decrease in synchronisation time of cellular oscillators 
than otherwise.

Figure 6.4: A. 2D lattice model for the Posterior PSM of the zebrafish embryo during
somitogenesis. Taken from (Uriu et al., 2010). B. The model incorporates features
of the in vivo events, as indicated in the figure. Cells sitting on the lattice flip their
positions with their neighbors between two time points indicated by blue arrows. 1/λ
indicates average time taken for a cell to exchange its position with its neighbor between
two time points.

Ts =
1

λ
(6.18)

Our observation indicates that the diffusion of cells along the anterior-posterior

axis seemingly varies within the PSM, with high mixing in the posterior and rela-

tively less in the anterior PSM. Combining the know-how regarding the mobility

of oscillators and the model properties, we were interested to explore the mo-

ments of displacements that has been previously shown to provide a complete

characterization of diffusive behaviors in different biological and physical systems

(Ferrari et al., 2001).

Therefore, we considered the PSM cells to be diffusing according to the function,

MSD = Dtα. (6.19)

For a cell to exchange its position with its neighbor, it has to diffuse about one
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cell diameter, Cd = 10µm. Therefore, the switching time, ts, taken for a cell to

exchange its position with its neighbor, can be derived by considering,

MSD = C2
d . (6.20)

Combining (6.19) and (6.20), we search,

C2
d = Dtαs . (6.21)

From here, it was possible to extract, ts, given by,

ts = (
C2
d

D
)

1
α (6.22)

λ =
1

2ts
, (6.23)

where, Ts = 1/λ .

Thus, we can extract the average time, Ts taken for a cell to exchange its

position with its neighbor. A Matlab power law fit function was used, on the

computed MSD data in order to derive the values of D and α.

Using this method, it was possible to extract diffusion coefficient of cells and their

respective time scales in different regions of the PSM along the anterior-posterior

axis of the WT as well as mutant embryos. Further, it was also possible to extract

the value of α along the anterior-posterior axis of the embryo, that may provide

a vivid picture on how cell diffusivity changes along the embryonic axis, and its

sensitivity towards temperature and the developmental stage of the PSM. This

further allowed us to use this method of analysis of cell movements in mutant

embryos, such as Trilobite.

The power law fits were tested for a range of values of fc and fits were evaluated

using goodness-of-fit Statistics in Matlab. The final values of D, α and Ts that

fit with minimum error were chosen, based on the following measures:

Sum of Squares Due to Error (SSE): This measures the total deviation of the
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data values from the fit. A value closer to 0 would be indicative of a model with

smaller error component.

SSE =
∑n

i=1wi(yi − ŷi)2, where wi are the weights, yi is the data and ŷi is the

fit.

Degrees of Freedom Adjusted R-Square: The adjusted R-square statistic is an

excellent indicator of the fit quality for comparing a series of models.

AdjustedR2 = 1− SSE(n−1)
SST (v)

where SST gives the sum of squares about the mean, SST =
∑n

i=1wi(yi − ȳi)2.
The residual degrees of freedom (v) is given by the number of response values (n)

minus the number of fitted coefficients (m) estimated from the response values.

The adjusted R-square statistic can take on any value less than or equal to 1,

with a value closer to 1 indicating a better fit. Negative values can occur when

the model contains terms that do not help to predict the response.

Root Mean Squared Error: This statistic is also known as the fit standard error

and the standard error of the regression. It is an estimate of the standard devia-

tion of the random component in the data, and is defined as

RMSE =
√

(MSE), where MSE = SSE
v

, and MSE is the mean square error or

the residual mean square. Just as with SSE, an MSE value closer to 0 indicates

a fit that is more useful for prediction. For more details on this section, refer to

Matlab Help on Goodness-of-fit Statistics.

The method was further modified to verify diffusion of cells along the lateral line.

This was essentially done by selecting 3D sections of the PSM tissue and comput-

ing diffusion within 3D radius of 18µm around each selected cell within the PSM

space. This allowed us to inspect time scales of diffusion for the entire image

along the anterior-posterior axis of the embryo as well along the dorso-ventral

direction on one of the lateral sides of the embryo.

6.9 Reading oscillating expression using nuclear marker

Embryos, carriers of her1 -yfp and nuclear marker, h2aflv-mcherry were imaged by

sequential scanning and further the cherry channel nuclei were segmented using

the CWNT algorithm and nuclei traces were made using the tracking algorithm.

The centroids as well as the voxel list values for each tracked nucleus were reg-
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istered for the mcherry channel. The voxel list locations were used to read the

oscillating her1 expression of the yfp channel. This method essentially allowed

us to read the time series trajectory of an oscillating cell using the mcherry nu-

clear marker. The average fluorescence intensity (i.e. the average voxel intensity)

within each nucleus was computed as the total nuclear fluorescence intensity di-

vided by the volume of the nucleus and plotted as a function of time to visualize

the dynamics of the oscillations.
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Chapter 7

Supplementary Movies

Movie S1: Lateral view of a 18 somite stage WT zebrafish embryo, taken from

a Zeiss Meta 510, Confocal upright microscope, using a 40x Dipping lens, 1.0

NA. A stack of 8-bit image (512× 512× 39) acquired using 488 laser that excites

H2aflv-gfp line; 1 voxel given by : 0.621× 0.621× 1.745 µm3, image acquired at

time interval of 81.6 seconds.

Movie S2-A: Lateral view movie of the 18 somite stage embryo (in S1) at 6.98

µm in z-plane (4th slice movie at 7 frames per second, using Fiji)

Movie S2-B: Lateral view movie of the 18 somite stage embryo (in S1) at 34.9

µm in z-plane (20th slice movie at 7 frames per second, using Fiji)

Movie S2-C: Lateral view movie of the 18 somite stage embryo (in S1) at 68.05

µm in z-plane (39th slice movie at 7 frames per second, using Fiji)

Movie S3-A: 3D movie (using 3D Fiji viewer) of 19 somite stage WT zebrafish

embryo, taken on a Zeiss Zen 710, single photon upright microscope, using a

40x Dipping lens, 1.0 NA, GaAsP spectral detector. A stack of 16-bit image

(512 × 512 × 23) acquired using 488 laser that excites h2aflv-gfp; 1 voxel given

by : 0.621× 0.621× 1.79 µm3, image acquired at time interval of 75.3 seconds.

Movie S3-B: 3D movie of the 19 somite stage zebrafish embryo (in S3-A) af-
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ter image segmentation using the proposed algorithm. Movie shows rendered

nuclei in green after image segmentation over 70 time frames (using Matlab).

Movie S4: 3D movie (using 3D Fiji viewer) of a 18 somite stage WT zebrafish

embryo, taken on a Zeiss Meta 510, Confocal upright microscope, using a 40x

Dipping lens, 1.0 NA. A stack of 8-bit image (512 × 512 × 39) acquired using

488 laser that excites h2aflv-gfp line; 1 voxel given by : 0.621 × 0.621 × 1.75

µm3 with time interval between frames being 130 seconds. Embryo outlined in

green color in the first frame and by the end of the movie, the embryo rolls over

during imaging because of its growth. Embryo is outlined by a red color line in

the last frame of the movie. Image data was used for verification of total number

of segmented nuclei in comparison with results from Imaris software.

Movie S5: Transplant experiment– 3D movie (using 3D Fiji viewer) of a 16 somite

stage WT embryo chimera after transplantation experiment, taken on a Zeiss 710

Zen, single photon upright microscope, using a 40x Dipping lens, 1.0 NA, GaAsP

spectral detector. A stack of 16-bit image (512 × 512 × 35) was acquired using

488 and 561 lasers that excite h2aflv-gfp and h2aflv-mcherry respectively; 1 voxel

given by : 0.69 × 0.69 × 1.75 µm3, image acquired with time interval between

frames being 72.6 seconds.

Movie S6: Transplant experiment– 3D movie (using 3D Fiji viewer) of a 17 somite

stage WT embryo chimera after transplantation experiment, taken on a Zeiss 710

Zen, single photon upright microscope, using a 40x Dipping lens, 1.0 NA, GaAsP

spectral detector. A stack of 16-bit image (512 × 512 × 30) was acquired using

488 and 561 lasers that excite h2aflv-gfp and h2aflv-mcherry respectively; 1 voxel

given by : 0.69 × 0.69 × 1.90 µm3,image acquired with a time interval between

frames being 65.7 seconds.

Movie S7-A: 3D movie (using 3D Fiji viewer) of a 19 somite stage Trilobite

mutant zebrafish embryo imaged at 28°C, taken on a Zeiss 710 Zen, single photon

upright microscope, using a 40x Dipping lens, 1.0 NA. A stack of 16-bit image

(512×512×38) acquired using 488 laser that excites h2aflv-gfp; 1 voxel given by
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: 0.691× 0.691× 1.79 µm3, image acquired at time interval of 79.1 seconds with

70 time steps.

Movie S7-B: 3D movie (using 3D Fiji viewer) of a 17 somite stage aei mutant.

Microinjections with mkate2-nls nuclear marker around 8-cell stage was done and

the mutant zebrafish embryo was imaged at 22°C, taken on a Zeiss 710 Zen,

single photon upright microscope, using a 40x Dipping lens, 1.0 NA. A stack

of 16-bit image (512 × 512 × 25) acquired using 561 laser; 1 voxel given by :

0.691× 0.691× 1.80 µm3, image acquired at time interval of 42.5 seconds with 70

time steps.

Movie S8-A: WT her1 18 somite stage embryo, imaged at 22 °C, taken on a

Zeiss Meta 510, Confocal upright microscope, using a 40x Dipping lens, 1.0 NA.

A stack of 8-bit image (512× 512× 20) acquired using 514 laser that excites yfp;

1 voxel given by : 0.62 × 0.62 × 2.10 µm3 at time interval of 160.5 seconds with

40 time steps. Movie shows waves of oscillating her1 expression traversing the

tissue from the posterior PSM to the anterior PSM on a 2D slice at 21 µm.

Movie S8-B: WT embryo at 25 somite stage, labeled with h2aflv-mcherry marker

that ubiquitously marks all the nuclei and her1 labeled with de-stabilized yfp

marker. Embryo imaged at 28 °C on a Zeiss 710 Zen, single photon upright mi-

croscope, using a 40x Dipping lens, 1.0 NA. A stack of 16-bit image (512×512×19)

acquired using 561 and 514 lasers that excites mcherry and yfp respectively. 1

voxel given by : 0.69× 0.69× 2.0 µm3 at time interval of 89 seconds with 20 time

steps.

Movie S9-A: her1 -yfp oscillations on a Trilobite background at 17 somite stage

embryo imaged at 28 °C, on a Zeiss 710 Zen, single photon upright microscope,

using a 40x Dipping lens, 1.0 NA. A stack of 16-bit image (512 × 512 × 34) ac-

quired using 514 laser that excites yfp; 1 voxel given by : 0.62× 0.62× 2.0 µm3

at time interval of 71 seconds with 80 time steps. Traveling waves sweep across

the tissue from posterior to anterior. Note the inter-stripe distance is smaller

compared to WT as well as the size and length of the her1 stripe.
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Movie S9-B: Trilobite embryo at 17 somite stage, labeled with h2aflv-mcherry

marker that ubiquitously marks all the nuclei and her1 labeled with de-stabilized

yfp marker. Embryo imaged at 28 °C on a Zeiss 710 Zen, single photon up-

right microscope, using a 40x Dipping lens, 1.0 NA. A stack of 16-bit image

(512× 512× 31) acquired using 561 and 514 lasers that excites mcherry and yfp

respectively. 1 voxel given by : 0.62 × 0.62 × 2.0 µm3 at time interval of 65.0

seconds with 80 time steps.

Movie S10: A stack obtained from SPIM for an embryo from 18 somite stage

onwards, carrier of h2aflv-gfp. The 16-bit stack dimensions are (960× 960× 68),

where 1 voxel is given by : 0.279× 0.279× 0.186 µm3. Image is acquired using a

25x lens at a frame rate of 30.5 seconds using a 488 laser line.
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