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Abstract

Recurrent processes are a general feature of living systems, from the cell cycle to
circadian day-night rhythms to hibernation and flowering cycles. During develop-
ment and life, numerous recurrent processes are controlled by genetic oscillators, a
specific class of genetic regulatory networks that generates oscillations in the level
of gene products. A vital mechanism controlled by genetic oscillators is the rhyth-
mic and sequential segmentation of the elongating body axis of vertebrate embryos.
During this process, a large collection of coupled genetic oscillators gives rise to
spatio-temporal wave patterns of oscillating gene expression at tissue level, forming
a dynamic prepattern for the precursors of the vertebrae. While such systems of ge-
netic oscillators have been studied extensively over the past years, many fundamental
questions about their collective behavior remain unanswered. In this thesis, we study
the behavior and the properties of genetic oscillators from the single oscillator scale
to the complex pattern forming system involved in vertebrate segmentation.

Genetic oscillators are subject to fluctuations because of the stochastic nature
of gene expression. To study the effects of noisy biochemical coupling on genetic os-
cillators, we propose a theory in which both the internal dynamics of the oscillators
as well as the coupling process are inherently stochastic. We find that stochastic
coupling of oscillators profoundly affects their precision and synchronization proper-
ties, key features for their viability as biological pacemakers. Moreover, stochasticity
introduces phenomena not known from deterministic systems, such as stochastic
switching between different modes of synchrony.

During vertebrate segmentation, genetic oscillators play a key role in establish-
ing a segmental prepattern on tissue scale. We study the spatio-temporal patterns
of oscillating gene expression using a continuum theory of coupled phase oscillators.
We investigate the effects of different biologically relevant factors such as delayed
coupling due to complex signaling processes, local tissue growth, and tissue short-
ening on pattern formation and segmentation. We find that the decreasing tissue
length induces a Doppler effect that contributes to the rate of segment formation in
a hitherto unanticipated way. Comparison of our theoretical findings with experi-
mental data reveals the occurrence of such a Doppler effect in vivo. To this end, we
develop quantification methods for the spatio-temporal patterns of gene expression
in developing zebrafish embryos.

On a cellular level, tissues have a discrete structure. To study the interplay of
cellular processes like cell division and random cell movement with pattern formation,
we go beyond the coarse-grained continuum theories and develop a three-dimensional
cell-based model of vertebrate segmentation, in which the dynamics of the segmenting
tissue emerges from the collective behavior of individual cells. We show that this
model is able to describe tissue formation and segmentation in a self-organized way.
It provides the first step of theoretically describing pattern formation and tissue
dynamics during vertebrate segmentation in a unified framework involving a three-



dimensional tissue with cells as distinct mechanical entities.
Finally, we study the synchronization dynamics of generic oscillator systems

whose coupling is subject to phase shifts and time delays. Such phase shifts and
time delays are induced by complex signaling processes as found, e.g., between genetic
oscillators. We show how phase shifts and coupling delays can alter the synchroniza-
tion dynamics while leaving the collective frequency of the synchronized oscillators
invariant. We find that in globally coupled systems, fastest synchronization occurs
for non-vanishing coupling delays while in spatially extended systems, fastest syn-
chronization can occur on length scales larger than the coupling range, giving rise
to novel synchronization scenarios. Beyond their potential relevance for biological
systems, these results have implications for general oscillator systems, e.g., in physics
and engineering.

In summary, we use discrete and continuous theories of genetic oscillators to
study their dynamic behavior, comparing our theoretical results to experimental
data where available. We cover a wide range of different topics, contributing to
the general understanding of genetic oscillators and synchronization and revealing a
hitherto unknown mechanism regulating the timing of embryonic pattern formation.



Zusammenfassung

Wiederkehrende Prozesse sind ein allgemeines Merkmal lebender Systeme, vom Zell-
zyklus über zirkadiane Tag-Nacht-Rhythmen bis hin zu Winterschlaf- und Blüte-
zyklen. Während der Entwicklung und des Lebensverlaufs lebender Systeme wer-
den eine Vielzahl solcher wiederkehrender Prozesse von genetischen Oszillatoren
gesteuert, einer spezifischen Klasse von genetisch regulativen Netzwerken, die Os-
zillationen in der Konzentration von Genprodukten erzeugen. Ein lebenswichtiger
Mechanismus, der von genetischen Oszillatoren gesteuert wird, ist die rhythmische
und sequenzielle Segmentierung der Körperachse in Wirbeltierembryonen. Während
dieses Vorgangs erzeugt ein großer Verbund gekoppelter genetischer Oszillatoren
raumzeitliche Wellenmuster auf Gewebeebene, die ein vorgängiges dynamisches Mus-
ter für die Wirbelvorläufer bilden. Obwohl solche Systeme genetischer Oszillatoren
in der Vergangenheit umfangreich studiert wurden, bleiben viele grundsätzliche Fra-
gen über ihr kollektives Verhalten offen. In dieser Dissertation studieren wir das
Verhalten und die Eigenschaften genetischer Oszillatoren vom einzelnen Oszillator
bis hin zum komplexen Musterbildungssystem, das an der Wirbeltiersegmentierung
beteiligt ist.

Genetische Oszillatoren sind Fluktuationen ausgesetzt, bedingt durch die sto-
chastische Natur der Genexpression. Um die Effekte biochemischer Kopplung auf
genetische Oszillatoren zu studieren, entwickeln wir eine Theorie, in welcher sowohl
die interne Dynamik der Oszillatoren als auch der Kopplungsprozess als inhärent
stochastisch beschrieben werden. Es wird gezeigt, dass stochastische Kopplung der
Oszillatoren sowohl ihre Präzision als auch ihre Synchronisationseigenschaften tief-
greifend beeinflussen kann, beides Schlüsselmerkmale für ihre Viabilität als biolo-
gische Zeitgeber. Weiterhin führt die Stochastizität zu Phänomenen, die von deter-
ministischen Systemen nicht bekannt sind, wie dem stochastischen Wechsel zwischen
verschiedenen Modi der Synchronisation.

Während der Wirbeltiersegmentierung spielen genetische Oszillatoren eine
Schlüsselrolle bei der Erzeugung eines vorgängigen Segmentmusters auf Gewebeebene.
Wir studieren die raumzeitlichen Muster oszillierender Genexpression anhand einer
Kontinuumstheorie gekoppelter Phasenoszillatoren. Wir untersuchen den Einfluss
verschiedener biologisch relevanter Faktoren, wie verzögerter Kopplung aufgrund
komplexer Signalprozesse, lokalem Gewebewachstum und Gewebeverkürzung auf
Musterbildung und Segmentbildung. Es wird gezeigt, dass die Gewebeverkürzung
einen Dopplereffekt verursacht, der zur Geschwindigkeit der Segmentbildung auf eine
bisher unvorhergesehene Weise beiträgt. Wir vergleichen unsere theoretischen Ergeb-
nisse mit experimentellen Daten und stellen das Auftreten eines solchen Doppleref-
fekts in vivo fest. Zu diesem Zweck entwickeln wir Quantifikationsmethoden für die
raumzeitlichen Genexpressionsmuster in sich entwickelnden Zebrafisch-Embryonen.

Auf zellulärer Ebene haben Gewebe eine diskrete Struktur. Um die Wechsel-
wirkung zwischen zellulären Prozessen wie Zellteilung und zufälliger Zellbewegung



mit der Musterbildung zu studieren, gehen wir über Kontinuumstheorien hinaus und
entwickeln ein dreidimensionales zellbasiertes Modell der Wirbeltiersegmentierung,
in welchem die Dynamik des segmentierenden Gewebes durch das kollektive Ver-
halten einzelner Zellen entsteht. Wir zeigen, dass dieses Modell in der Lage ist, in
einer selbstorganisierten Weise Gewebebildung und Segmentierung zu beschreiben.
Dieses Modell bildet eine Ausgangsbasis, um Musterbildung und Gewebedynamik
während der Segmentierung in einem einheitlichen Framework zu beschreiben, das
ein dreidimensionales Gewebe mit Zellen als eigenständigen mechanischen Einheiten
umfasst.

Schließlich studieren wir das Synchronisationsverhalten von generischen Oszilla-
torsystemen, deren Kopplung Phasenverschiebungen und Zeitverzögerungen unter-
liegt. Solche Phasenverschiebungen und Zeitverzögerungen werden von komplexen
Signalprozessen verursacht, wie sie bspw. zwischen genetischen Oszillatoren statt-
finden. Es wird gezeigt, wie solche Verzögerungen und Phasenverschiebungen die
Synchronisationsdynamik verändern können, während sie die kollektive Frequenz
der synchronisierten Oszillatoren invariant lassen. Weiterhin zeigen wir, dass global
gekoppelte Systeme bei nicht-verschwindenden Kopplungsverzögerungen am schnell-
sten synchronisieren. In räumlich ausgedehnten Systemen kann die schnellste Syn-
chronisation auf Längenskalen stattfinden, die größer sind als die Kopplungsreich-
weite, was zu neuartigen Synchronisationsszenarien führt. Über ihre potenzielle Rele-
vanz für biologische Systeme hinaus haben diese Ergebnisse Bedeutung für allgemeine
Oszillatorsysteme in Physik und Technik.

Zusammengefasst benutzen wir diskrete und kontinuierliche Theorien genetis-
cher Oszillatoren zum Studium ihres dynamischen Verhaltens und vergleichen unsere
theoretischen Ergebnisse mit experimentellen Daten sofern verfügbar. Wir behan-
deln dabei ein breites Spektrum an Themen und tragen zum allgemeinen Verständnis
von genetischen Oszillatoren und Synchronisationsprozessen bei, wobei wir einen
bisher unbekannten Mechanismus aufdecken, der den zeitlichen Ablauf embryonis-
cher Musterbildung reguliert.
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“Erfahrung ist die Ursache.
Die Welt ist die Folge.”

“Experience is the cause.
The world is the consequence.”

—Heinz von Foerster





Chapter 1

Introduction

“While we can conceive of a sum [or aggregate] as being composed gradually, a
system as a total of parts with its [multiplicative] interrelations has to be conceived
of as being composed instantly.” [157]
—Ludwig von Bertalanffy

In this chapter, we introduce the concept of a biological clock and one of its most
prominent representatives, the genetic oscillator. We discuss the importance of peri-
odic processes for living systems and give a brief introduction to vertebrate segmenta-
tion, a vital developmental process controlled by genetic oscillators. Finally, we give
an overview over the contents of this thesis.

1.1 Recurrence and Periodicity in Biology

The Latin word tempus refers to both time and the anatomical temple. Report-
edly, this coincidence dates back to the Hippocratic physicians who used to feel the
pulse at the temporal artery [27]. In fact, the heartbeat is a prototypical example
for the vital dependence of living systems on periodic processes that develop and
sustain life.

1.1.1—
Biological clocks

Biological clocks are subsystems of living organisms that are able to exhibit re-
current activity through their internal dynamics. The name ‘clock’ suggests that the
activity of these systems is not only recurrent but also periodic, that is, activity does
not only repeat but does so in regular time intervals. In higher organisms, a variety
of different biological clocks control the temporal progress of vital metabolic and
developmental processes [36, 158]. A prominent example for a biological clock is the
circadian clock in mammals [35, 53], operating in the hypothalamus, more specifically
in the neuron clusters called suprachiasmatic nuclei. In this system, a self-regulatory
biochemical mechanism leads to oscillations in the cellular concentration of specific
proteins with a period of about 24 hours (hence the name circa:dian). The cir-
cadian clock is thus able to anticipate the day-night cycle. It accordingly adjusts
the metabolism, resulting in an increased efficiency of resource usage by preparing
the organism for either activity or recovery, depending on the daytime [153]. This
adaptation mechanism constitutes a selective advantage; different types of circadian
clocks have evolved also in non-mammalian species [53]. The experience of a jet lag
after a transcontinental flight can be related to a phase lag of the circadian clock with
respect to the local day-night cycle [153], impairing or even reverting its favorable
effect on the metabolism. The jet lag is remedied as the circadian rhythm is resyn-
chronized to the local day-night cycle. This mostly happens through entrainment
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Figure 1.1 A. Simplified schematic depiction of a genetic oscillator. B. Experimental time series of
genetic oscillations in single cells dissociated from the presomitic mesoderm of zebrafish embryos
[154]. The amplitude is related to the concentration level of a specific protein. [Data courtesy
of Alexis B. Webb.]

by external cues, so-called zeitgebers, such as the natural light cycles. The latter
are sensed through the eyes from which the suprachiasmatic nucleus receives direct
innervation. In the absence of external cues, the circadian clock runs freely with re-
markable precision, i.e., temporal regularity, for weeks or even years [53]. While the
circadian clock is probably the best-known example for a biological clock, there are
numerous other biological clocks fulfilling vital functions in governing the temporal
progress of recurrent processes in living systems.

1.1.2—
Genetic oscillators

Which molecular mechanisms lead to periodic activity within cells? A typical
such mechanism is autoinhibitory gene expression [50, 81, 94]. The core mechanism is
summarized in Fig. 1.1A: a specific protein is produced by the transcription of DNA
into mRNA and the subsequent translation of mRNA. The protein, in turn, inhibits
the transcription of its own gene. Both protein and mRNA are degraded. Since the
different stages of gene expression introduce a time delay between transcription and
inhibition, this mechanism effectively forms a delayed negative-feedback loop that
can give rise to oscillations in the mRNA and protein concentrations (Fig. 1.1B).
On a molecular level, the regulatory DNA, which is required to direct the enzyme
RNA polymerase to initiate transcription, is bound and blocked by the protein.
Whenever the protein level is high, this blockade shuts down production. As the
remaining proteins decay, the regulatory DNA is freed, production becomes possible
again and the process starts over. The finite time required by transcription and
translation processes causes a recurrent overshoot of the concentration levels and
thus ensures that no steady-state protein level is reached, in which production would
exactly balance decay without oscillations [100]. Systems invoking this mechanism
are called genetic oscillators and the genes whose protein level exhibits oscillations
are often referred to as cyclic genes [110]. Genetic oscillators have been extensively
studied in the past, both experimentally [29, 31, 39, 47, 79, 83, 90, 97, 131, 162] and
theoretically [43, 94, 127, 151, 164]. Multi-cellular systems that comprise populations
of genetic oscillators are, e.g., the circadian clock mentioned in Sec. 1.1.1 and the
so-called ‘segmentation clock’, a developmental mechanism that we encounter in the
next section.

Compared to man-made reference clocks, genetic oscillators often show limited
precision, that is, they exhibit considerable period fluctuations over time (see, e.g.,
Fig. 1.1B) [79]. These fluctuations are caused by physiological processes interfering
with gene expression, often referred to as ‘noise in gene expression’ [69, 113, 115, 145].
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Figure 1.2 Segmentation of the embryonic body axis in zebrafish (Danio rerio). Brightfield
microscopy images show the embryo in a lateral view. A. Snapshot of the embryo at the 21
somite stage. B–G. Snapshots at different stages of segmentation: 5 somites (B), 8 somites (C),
11 somites (D), 14 somites (E), 17 somites (F), and 20 somites (G). [Images courtesy of Daniele
Soroldoni. Labelling by the author.]

Period fluctuations can limit an oscillator’s viability as a clock, that is, its ability to
stay correlated with periodic changes of its surroundings. In this context, the ques-
tion arises which properties of genetic oscillators determine their precision and which
strategies biological systems can develop to improve their precision [32, 93, 109]. As
such oscillators typically appear in large assemblies, the role of biochemical oscillator
coupling for precision and synchronization of these oscillators is of particular interest.

1.1.3—
Periodicity in
development:
vertebrate
segmentation

A periodic process that is vital for the development of vertebrate embryos is
the segmentation of the elongating body axis, termed somitogenesis (Fig. 1.2). Dur-
ing this stage of development, the precursors of the vertebrae, called somites, form
rhythmically and sequentially from a previously unsegmented progenitor tissue, the
presomitic mesoderm (PSM) [102]. From a dorsal view, the presomitic mesoderm
is a u-shaped tissue that embraces the notochord (Fig. 1.3), the main embryonic
skeletal element of lower vertebrates [52]. The somites are cell clusters of mesoderm
surrounded by a confining epithelial cell layer. They form in pairs with the notochord
in the center by segregating from the presomitic mesoderm at its anterior end.

Somite formation proceeds sequentially from head to tail in regular time in-
tervals, which, depending on the vertebrate species, can range from 25 minutes in
zebrafish to about five hours in humans [118]. While frogs develop about ten verte-
brae, the number of vertebrae can exceed three hundred in snakes [51]. The regularity
of the time intervals between the formation of successive segments has provoked the
assumption of a biological clock [24], termed segmentation clock, which operates in
the presomitic mesoderm and controls the temporal succession of events leading to
the formation of new segments. In a simplified picture, one cycle of this segmentation
clock coincides with the formation of one new segment [67]. Indeed, experimental
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Figure 1.3 Schematic depictions of the zebrafish presomitic mesoderm and formed somites in
lateral, dorsal, and transversal view. Transverse section scheme adapted from Ref. [118].

evidence for oscillating gene expression in the presomitic mesoderm has been found
in various vertebrate species, such as zebrafish [55, 58, 101], mouse [19, 88], chick
[68, 103], snake [51], and frog [82]. These findings provide hints that the core mecha-
nism of vertebrate segmentation by means of genetic oscillations is conserved among
vertebrate species, including humans, with differences on the genetic level [111].
Moreover, recent findings of oscillatory gene expression during the segmentation of
arthropods [123] and root primordia in plants [95] indicate that oscillation-based
segmentation mechanisms may not be restricted to the realm of vertebrates [116].

Failure of segmentation due to, e.g., mutations of oscillating genes and/or their
controlled inhibition in experiments can cause morphological defects that range from
a mild distortion of segment boundaries to severe axial deformations [65, 102, 117,
126, 150]. In humans, failure of proper segmentation due to mutations and external
factors such as hypoxia during development have been related to the occurrence of
congenital scoliosis [12, 111, 136]. An overview over the details of the segmentation
mechanism will be given in Sec. 1.2.

1.1.4—
Functional relevance

of temporal regularity

Biological clocks introduce temporal regularity to the processes that they control.
The functional relevance of this temporal regularity, however, depends on the specific
biological process at hand. For the circadian clock introduced in Sec. 1.1.1, temporal
regularity is crucial. Only if the clock stays correlated with the environmental day-
night changes through its internal dynamics, it can adjust the metabolism in a way
that is favorable for the organism. This is another way of saying that the clock has
to repeat its cycle in regular time intervals with only a limited degree of fluctuation.
Furthermore, the length of these intervals has to be specifically about 24 hours to
meet the functional requirements of the clock. Other examples for clocks, for which
temporal regularity and the specific clock period are functionally relevant are the
circannual clocks with a period of about a year, which, e.g., control the active and
hibernating physiological states of certain hibernating mammals [105].

In the case of vertebrate segmentation, introduced in the previous section, the
functional role of temporal regularity is less obvious. Rather than temporal regularity
of the process, the appropriate morphological properties of its products, the formed
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Figure 1.4 Clock-and-wavefront model of vertebrate segmentation [24]: A biological clock, lo-
cated in the presomitic mesoderm, controls the timing of segment formation. A cycle of the
clock with period T coincides with the formation of one segment. Assuming a moving wavefront
with speed v that converts the state of the clock into morphological segments, the size of the
formed segments is given by S = vT , Eq. (1.1).

segments, are crucial for the viability of the organism [102]. In fact, experiments have
shown that the period of segment formation is strongly temperature-dependent, while
the size of the formed segments is preserved under temperature variations [128]. This
implies that the functional role of temporal regularity in segmentation is different
from its role in, e.g., the circadian clock. In vertebrate segmentation, as we will see
in the next section, the ‘clock’ mechanism is in fact part of a much more complex
pattern forming system.

1.2 Vertebrate Segmentation

1.2.1—
The clock-and-
wavefront model

In 1976, Jonathan Cooke and Erik Christopher Zeeman suggested an explana-
tory principle for vertebrate segmentation that has become a paradigm in the field.
The so-called clock-and-wavefront model [24] invokes a multi-cellular clock of yet
unspecified nature that operates in the presomitic mesoderm and generates coher-
ent oscillations on tissue scale. At the anterior end of the presomitic mesoderm, a
wavefront travelling in posterior direction freezes the local phase (the instantaneous
state in the oscillation cycle). Hence, this mechanism leads to a spatially periodic
pattern being a record of the clock dynamics at the wavefront (Fig. 1.4) [102]. Sub-
sequently, this spatial pattern is read out by a biochemical process that triggers a
cell fate decision based on the frozen spatial pattern and thus leads to the spatially
periodic formation of epithelial segment boundaries. The spatial prepattern can thus
be understood as a layout for the formation of a new segment. The length S of a
newly formed segment is accordingly determined by the period T of the clock and
the speed v with which the wavefront sweeps over the oscillating tissue, through the
simple relation

S = vT , (1.1)

see Fig. 1.4. Hence, a fast clock (small period) results in small segments, while a
slow clock (large period) results in large segments. Likewise, a slow wavefront results
in smaller segments, while a fast wavefront results in larger segments.
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Figure 1.5 In-situ hybridization of zebrafish embryos shows deltaC mRNA expression patterns in
the presomitic mesoderm during different stages of segmentation. [Images courtesy of Andrew
C. Oates.]

1.2.2—
Wave patterns of
oscillating genes

It was not until 1997 that first experimental hints of a molecular clock controlling
vertebrate segmentation were discovered, by Palmeirim et al. [103]. In chick embryos,
the gene c-hairy1 was identified, strongly expressed in the presomitic mesoderm. In-
situ hybridizations, in which this gene was stained in a fixed embryo, revealed not
only signatures of cyclic gene expression but of complex dynamic patterns of striped
high expression regions in the presomitic mesoderm. (Fig. 1.5 displays analogous
patterns of deltaC mRNA in the presomitic mesoderm of zebrafish.) This was in
contrast to the simple picture, in which the presomitic mesoderm as a whole oscillates
in unison. Rather, these findings indicated that at each point in time, different parts
of the presomitic mesoderm are at different stages of the oscillation cycle.

With the advent of transgenic live reporter lines in the late 2000s, these studies
were complemented by real-time imaging of oscillatory gene expression [10, 78, 88,
133, 134]. In contrast to in-situ hybridization techniques, these transgenic lines do
not require the embryo to be fixed at a certain stage of development and thus enable
real-time imaging of gene expression products in vivo. In these reporter lines, oscil-
lating genes assumed to be functional for segmentation are tagged with a fluorescent
protein that emits light of a specific wavelength upon exposure to laser light. These
lines thus enable to distinguish tissue regions with high and low expression of cyclic
genes by their fluorescence intensity level. Using transgenic mouse and zebrafish
reporter lines, wave-like patterns of gene expression sweeping through the presomitic
mesoderm from posterior to anterior could be observed [10, 78, 133]. Masamizu et
al. [88] found first experimental hints that single cells dissociated from the presomitic
mesoderm of mouse are able to exhibit autonomous genetic oscillations. This pro-
vided another piece of evidence that the wave patterns observed in the presomitic
mesoderm are a manifestation of the coordinated oscillatory behavior of single cells
exhibiting a phase profile on tissue scale. The propagation of these wave patterns
is not due to material transport, except for the constant flow of cells away from the
posterior tip, which, however, is much slower than the wave propagation [65]. The
biochemical and mechanical mechanisms that convert the prepattern generated by
genetic oscillations into morphological segments is not well understood and subject
to ongoing research [28].

1.2.3—
Mechanisms of

pattern formation

The observed wave patterns of oscillating genes in the presomitic mesoderm are
a manifestation of the fact that at a specific point in time, different parts of the
presomitic mesoderm are at different phases in the oscillation cycle. This discovery
necessitated a revision of a simple clock-and-wavefront picture, in which the tissue
as a whole oscillates in unison. A prominent mechanism that gives rise to such
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wave patterns is a frequency profile across the tissue, that is, a gradual decay of
the frequency of cell-autonomous oscillators from posterior to anterior (Fig. 1.7)
[5, 23, 64, 49, 51, 93]. Due to this gradual frequency mismatch, a profile of phase
differences evolves across the tissue and manifests itself as traveling wave patterns in
anterior direction. (We will recapitulate and illustrate the basic principles of pattern
formation in the presence of a frequency profile in Chapter 3.) For wave patterns
that emerge from such a mechanism, the term kinematic waves has been coined [102].
This terminology emphasizes that no information is propagated through the tissue
as the motion of waves arises from the simultaneously concerted behavior of all
constituents. In this respect, the motion of kinematic waves is comparable to the
apparent motion of a cursor on a computer screen, which is due to the coordinated
flashing of pixels [102]. This is in contrast to dynamic waves such as sound waves
or electromagnetic waves, which are local perturbations of a medium that propagate
due to local interactions and are capable of transmitting information.

On a biological level, it has been hypothesized that a frequency profile is due
to a decay of oscillation frequency with physiological age of a cell as it traverses the
presomitic mesoderm [64, 70], or due to the effect of morphogen gradients, which pro-
vide positional information in the tissue [49, 51]. Morphogens are signaling molecules
that play a crucial role in patterning tissues by regulating transcriptional responses
and cell-fate decisions [119]. In fact, a variety of morphogens such as Wnt, FGF
(fibroblast growth factor), and Retinoic Acid have been identified in the presomitic
mesoderm of many vertebrates [8, 9, 34]. During segmentation of the body axis, Wnt
and FGF levels are highest in the posterior of the presomitic mesoderm and decay
towards the anterior, whereas Retinoic Acid forms an opposing gradient with highest
levels in the somites and decaying levels in posterior direction (see also Fig. 3.10A)
[8, 102]. Besides their proposed role in establishing a frequency gradient, these mor-
phogen gradients have also been suggested to control the ability of cells to oscillate
and to undergo differentiation [8]. Moreover, it has been shown in zebrafish that per-
turbation of the Wnt gradient changes the rate of length decrease of the presomitic
mesoderm during segmentation as well as the size of formed segments [11].

Alternative approaches have described the waves of gene expression in the pre-
somitic mesoderm as dynamic waves due to a specific type of intercellular cou-
pling [96]. Such a mechanism would imply the propagation of information through
the tissue. Another completely different road is taken by approaches describing seg-
mentation as a result of Turing patterning, that is, reaction and diffusion of different
biochemical species giving rise to spatially periodic patterns [37, 80].

1.2.4—
Pattern coherence in
a noisy environment

The observation of wave patterns of high spatial and temporal coherence im-
plies that cellular oscillations in the presomitic mesoderm are locally synchronous
on spatial scales comparable to the wavelength, which itself typically extends over
multiple cell diameters. The ability of cells to achieve this high degree of local syn-
chrony has been attributed to biochemical signaling between cells that couples their
oscillatory dynamics. In 2000, Jiang et al. [65] found that in-situ hybridizations
of zebrafish mutants lacking a functional Notch signaling pathway did not exhibit
coherent stripe patterns of gene expression. Rather, they observed ‘salt-and-pepper
patterns’ of strongly varying gene expression levels in neighboring regions, indicating
that the cell-autonomous oscillators were lacking local synchrony [81].

Later experiments, in which the Notch signaling pathway in developing embryos
was temporarily inhibited during segmentation, confirmed this ‘desynchronization
hypothesis’: In Ref. [117], Riedel-Kruse et al. showed that inhibition of Notch sig-
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Figure 1.6 Schematic depiction of the Delta–Notch signal transduction pathway. (See Sec. 1.2.4
for details.) Figure adapted from Ref. [102].

naling at the beginning of segmentation leads to a loss of coherent stripe patterns,
accompanied by segmentation defects. Coherent patterns and proper segmenta-
tion could be rescued at later stages of somitogenesis by washing out the inhibiting
molecules, thereby reactivating Notch signaling. Recent experiments involving live
reporter lines and imaging of the presomitic mesoderm with single-cell resolution
indicate that the cellular oscillations of wildtype embryos are locally in-phase, while
those of mutants with non-functional Notch signaling are desynchronized [31].

Hence, Notch signaling is thought to play a major role in coupling the dynam-
ics of adjacent cellular oscillators [60, 102, 135, 160]. Fig. 1.6 shows a schematic
depiction of the Delta–Notch signal transduction pathway. The functional proteins
of an intracellular genetic oscillator (green) regulate the transcription of the Delta
ligand (white). The functional Delta proteins, in turn, bind to the Notch receptor
(black) of an adjacent cell in contact [62]. Upon binding, the intracellular domain of
Notch (cyan) is released and regulates expression of the cyclic genes in the receiving
cell. Thus, this signaling pathway couples the dynamics of the cellular oscillators
of cells in contact. Mathematical models of this coupling mechanism support the
role of the Delta–Notch signaling pathway in synchronizing the oscillations of cells
in contact [81]. Beyond its role in locally synchronizing genetic oscillations, inter-
cellular coupling has been suggested to regulate the rate of segment formation by
introducing a considerable delay in cell-cell communication that is able to alter the
collective frequency of coupled oscillators [56].

1.2.5—
Current view and

open questions

In this thesis, we adopt the hypothesis that the wave patterns in the presomitic
mesoderm are kinematic waves that emerge from a frequency profile on tissue level,
as outlined in the previous section. In Ref. [102], Oates et al. have built a unify-
ing framework that summarizes the basic ingredients of any theory invoking such a
mechanism of pattern formation with oscillators. Fig. 1.7 schematically depicts the
three tiers of the framework: on the bottom tier, cell-autonomous oscillators provide
the basic oscillating elements needed for the formation of kinematic waves. On the
middle tier, adjacent cells couple through biochemical signaling and thereby tend to
locally synchronize. This local synchronization is considered as being key to estab-
lish coherent patterns of gene expression in a noisy environment (Sec. 1.2.4). On the
upper tier, a tissue-level frequency gradient causes time-dependent phase differences
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Figure 1.7. Three-tier framework of vertebrate segmentation. Figure adapted from Ref. [102].

between different regions in the tissue and is thus responsible for the emergence of
kinematic waves on tissue level (Sec. 1.2.3). This framework is independent of the
specific molecular implementation of its constituent mechanisms, which might vary
across different vertebrate species or might be unknown.

While this framework describes the basic mechanism of pattern formation, it
does not address its interplay with the dynamics of the underlying tissue. Cells in
the posterior part of the presomitic mesoderm, the tailbud, are subject to random
movement and dynamic rearrangement [76, 86]. Moreover, it is known from time-
lapse microscopy imaging that the length of the presomitic mesoderm substantially
decreases during the segmentation process (see, e.g., Fig. 1.2). While it has been
shown that random cell movement in the tailbud can promote synchronization of
oscillators [146, 147, 148, 149], it is still not understood whether and how tissue
dynamics affect the kinematic wave patterns and the rate of morphological segment
formation. So far, this aspect of segmentation has rarely been addressed in the liter-
ature. Many coarse-grained theories of the segmentation clock consider the system
to operate at a steady state, in which the presomitic mesoderm stays at a constant
length throughout segmentation [5, 24, 49, 93, 96]. Only few theories explicitly ac-
count for the length decrease of the presomitic mesoderm during segmentation [23],
but they have not addressed its impact on pattern formation.

1.2.6—
Zebrafish as a model
organism

As outlined in Sec. 1.1.3, vertebrate segmentation has been studied in different
animals such as chick, frog, mouse, snake, and zebrafish. In this thesis, we sup-
port our theoretical work on vertebrate segmentation with experimental data from
zebrafish embryos gained by our experimental collaborators. Zebrafish (Fig. 1.8) is
a popular model organism for several reasons. The embryos are transparent and
are therefore particularly suitable for imaging morphogenesis during development.
Moreover, in zebrafish, several genes have been identified to be part of the oscillatory
genetic network involved in the segmentation of the body axis [102]. The number of
these cyclic genes has been reported to be lower in zebrafish than in other vertebrate
model organisms such as mouse and chick [75], which suggests that the corresponding
oscillatory genetic network might be simpler to study. Advances in the generation
of transgenic reporter lines for various vertebrates have made it possible to image
the expression of these cyclic genes in vivo and in vitro, at tissue level and single
cell level, and in real-time [31, 133, 134]. Our experimental collaborators have re-
cently developed transgenic zebrafish reporter lines for these genes that allow the
visualization of cyclic gene expression on tissue and single-cell level [133].
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Figure 1.8. Adult zebrafish (Danio rerio). [Image courtesy of Christopher Dooley.]

1.3 Contents of this Thesis

In this thesis, we study theoretical models of genetic oscillator systems from
the single oscillator scale to the complex pattern forming system operating during
vertebrate segmentation. Moreover, we quantify experimental data obtained by our
collaborators to compare them with theoretical predictions.

In Chapter 2, we present generic Markov chain models of coupled genetic oscilla-
tors, in which both the intracellular oscillator and the intercellular coupling between
oscillators are inherently stochastic. We study how properties of the coupling pro-
cess affect the precision and synchronization of oscillators (see also Sec. 1.1.2) and
investigate the effects of stochasticity on the collective dynamics of the oscillators.
Furthermore, we present a phase oscillator approximation of the coupled system and
compare it with our stochastic model.

In Chapter 3, we introduce a continuum theory of coupled phase oscillators to
study the interplay of tissue dynamics, oscillator coupling, and pattern formation
during vertebrate segmentation (see also Sec. 1.2.5). We first introduce the basic
mechanism of pattern formation with oscillators in the presence of a frequency gra-
dient using the theory in its simplest form. We then sequentially extend the theory
by biologically relevant factors such as coupling delays due to complex signaling be-
tween cells, local growth of the tissue, and decreasing tissue length. We study the
effects of these factors on the formation of kinematic wave patterns in the presomitic
mesoderm and on the timing of morphological segment formation. Moreover, we
present a hypothetic mechanism based on interacting morphogens and oscillators
that describes self-organized segmentation and dynamically accounts for the length
decrease of the tissue and the termination of the segmentation process after a finite
number of segments.

In Chapter 4, we introduce and apply quantification methods for experimen-
tal data on vertebrate segmentation. We obtain dynamical properties of the unseg-
mented tissue such as velocity fields and length changes, which we use to parametrize
our theory. Moreover, we develop and apply a technique to quantify the spatio-
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temporal patterns of kinematic waves in the presomitic mesoderm and compare these
experimental results with the theoretical predictions obtained from our theory in
Chapter 3.

In Chapter 5, we devise a three-dimensional cell-based model that combines
tissue mechanics, morphogen dynamics, and oscillator dynamics. We show that this
model is able to describe the self-organized segmentation of a dynamically growing
tissue and relate it to the coarse-grained continuum theory introduced in Chapter 3.
We propose this model as a starting point to study the interplay of tissue mechanics,
morphogen dynamics, and oscillator dynamics during vertebrate segmentation in a
unified framework.

Motivated by the biological oscillator systems studied in the chapters before,
we turn to generic systems of coupled oscillators in Chapter 6 and study their syn-
chronization dynamics in the presence of coupling delays and phase shifts. While
coupling delays and phase shifts play an equivalent role for the dynamic frequency of
the synchronized oscillators, we show that they play a crucially different role for the
dynamics of transients to the synchronized state. We demonstrate how this behavior
results in novel synchronization scenarios.

We conclude with Chapter 7, where we discuss the achievements made in this
thesis and give suggestions for future work.
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Chapter 2

Markov Chain Models of
Coupled Genetic Oscillators

In this chapter, we introduce Markov chain models of genetic oscillators in which
both the autonomous oscillators and the coupling between oscillators are intrinsically
stochastic. We first investigate the features of an autonomous oscillator and provide
effective amplitude and frequency estimates. We then study the effects of oscillator
coupling on precision, synchronization, and collective frequency—key properties for
the biological function of oscillator assemblies. Finally, we devise a phase oscilla-
tor approximation that is able to capture the key features of stochastically coupled
oscillators with coupling delays.

2.1 Markov Chain Models of Oscillators and Coupling

We introduce stochastic Markov chain models of autonomous and coupled ge-
netic oscillators, in which the expression of cyclic genes and signaling genes is rep-
resented by a stochastic multi-step process, an approach pioneered by Morelli and
Jülicher [94]. This multi-step process provides an effective description of the different
stages of gene expression and trafficking. Instead of explicitly describing the indi-
vidual biomolecular processes such as transcription, splicing, translation, binding,
and intracellular transport [2], we here focus on a generic description with identi-
cal intermediate steps. The statistical distribution of molecule numbers generated
by such a multi-step process with identical steps serves as an approximation of the
corresponding distribution in noisy biochemical systems with different steps.

2.1.1—
Markov chain model
of an autonomous
oscillator

Before turning to a system of two coupled genetic oscillators, we introduce a
Markov chain model of a single autonomous oscillator as first presented in Ref. [94].
In this description, genetic oscillations are obtained through autoinhibition with de-
lays [81]: a finite time after the initiation of gene expression, a functional protein
inhibits the transcription of its own gene (Sec. 1.1.2). The interaction scheme of the
model is depicted in Fig. 2.1A. An oscillator consists of n+ 1 steps, enumerated by
i = 0, . . . , n, representing the different stages of gene expression. At each point in
time, the state of a step i is given by its molecule occupation number xi. Conse-
quently, the state of the system is characterized by the state vector x = (x0, . . . , xn).
The occupation number xn of the last step represents the amount of functional prod-
ucts (circle in Fig. 2.1A). Production of molecules takes place at the initial step i = 0
with a probabilistic rate that is a monotonically decreasing function of the amount xn
of functional products, thereby leading to autoinhibition. Molecules jump from step
i to i+1 with a transition rate λ and decay at the final step i = n with rate κ. Since
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Figure 2.1 A. Schematic depiction of the Markov chain model of a genetic negative-feedback
oscillator. Figure adapted from Ref. [94]. B. Hill functions H− (red) and H+ (blue), Eq. (2.4),
as a function of y for different values of the Hill exponent p. The dashed gray lines mark the
point y = 1, where the functions H+ and H− take half of their supremum.

molecules have to traverse this multi-step process before becoming a functional prod-
uct, autoinhibition is delayed (Fig. 2.1A). The resulting feedback delay is essential
to obtain oscillations (Sec. 2.2).

We describe the stochastic dynamics of this model by a master equation [44]. The
probability density P (x, t) is defined by the property that P (x, t) dt is the probability
to find the system in the state x in the time interval [t, t+dt], where x = (x0, . . . , xn)
is the state vector of all occupation numbers. The master equation describes the time
evolution of P . For our model, it is given by

∂

∂t
P (x, t) = ΛP (x, t) , (2.1)

where Λ is an operator describing the stochastic dynamics of the oscillator,

Λ = λ

n−1∑
i=0

((xi + 1)E+
i E

−
i+1 − xi) + κ((xn + 1)E+

n − xn)

+ αH−(xn/q)(E
−
0 − 1) .

(2.2)

Here, E±
i are creation (+) and annihilation (−) operators that increase or decrease

the respective product level xi by one,

E±
i P (x0, . . . , xn, t) = P (x0, . . . , xi ± 1, . . . , xn, t) . (2.3)

Repression of gene expression is described by a function of the Hill type [100],

H±(y) =
1

1 + y∓p
, (2.4)

where p is the Hill exponent, which determines the shape of H± (Fig. 2.1B). For any
value of p, the functions H± take values between 0 and 1 for positive y, with H+

being monotonically increasing and H− being monotonically decreasing in y. Both
functions take the value 1/2 at y = 1. The factor H−(xn/q) in the production term
in Eq. (2.2) thus describes the inhibition of production by the final product xn. Here
we have simplified the model presented in Ref. [94] by omitting an amplification step
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Figure 2.2 Schematic depiction of the Markov chain model of two coupled genetic negative-
feedback oscillators, Eqs. (2.5–2.7). Shaded insets show sketches of the Hill functions H±
that describe activation (blue) and inhibition (red) and indicate the threshold level (see also
Fig. 2.1B).

that accounts for translational bursting. Alternative approaches to describe genetic
negative-feedback oscillators with feedback delays have included non-Markovian ap-
proaches with explicit feedback delays [21, 22, 89]. We here focus on a Markovian
approach with many intermediate steps instead of explicit time delays. Instead of
only describing a single discrete delay, this allows for a distribution of feedback delay
times, which is expected to arise in noisy biochemical systems [87].

To obtain numerical results for this model, we use a stochastic simulation al-
gorithm to compute exact realizations of trajectories (see Appendix H for details).
Fig. 2.3A shows examples for time series of the final product level xn for different
values of the production rate α.

2.1.2—
Markov chain model
of coupled oscillators

We use the model for an autonomous oscillator presented in the previous section
to build a novel model of coupled genetic oscillators, in which also the coupling pro-
cess is inherently stochastic. Coupling between genetic oscillators is achieved through
a mechanism inspired by the Delta–Notch signal transduction pathway (Sec. 1.2.4):
signaling molecules are produced in the sending oscillator and initiate a cascade of
events that eventually leads to the activation of the cyclic gene in the receiving os-
cillator. This cascade of events is represented by a multi-step process with identical
steps, similar to the multi-step process of the oscillator. The production of signaling
molecules is regulated by the cyclic protein of the sending oscillator, so that the
amount of exchanged signaling molecules carries information about its oscillatory
state. Hence, this mechanism couples the oscillatory dynamics of both oscillators.
Since signaling molecules have to traverse a multi-step process, oscillator coupling is
delayed. Due to the stochastic nature of the signaling process, the model introduced
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here does not only describe fluctuations in molecule numbers but also effectively
accounts for fluctuations of the coupling delay.

The interaction scheme of the model is depicted in Fig. 2.2. We invoke two
identical instances µ = 1 and µ = 2 of the autonomous oscillator presented in
the previous section. The number of molecules at step i = 0, . . . , n of oscillator µ
is denoted by xµi. The oscillators are equipped with identical signaling pathways,
which couple their dynamics. Analogous to the multi-step process for an autonomous
oscillator, a signaling pathway consists of ñ + 1 steps and its state is characterized
by the number of molecules that occupy each step i = 0, . . . , ñ, denoted by x̃µi.
Production of molecules takes place at the initial step i = 0 with a probabilistic rate
that is a monotonically decreasing function of the current amount xµn of functional
products of the sending oscillator µ. Molecules jump from step i to i + 1 with a
transition rate λ̃ and decay at the final step i = ñ with rate κ̃. Molecules at the
final step i = ñ enhance the production of cyclic molecules at the initial step i = 0
of the receiving oscillator. The state of the coupled system is characterized by the
state vector x = (x10, . . . , x1n, x20, . . . , x2n, x̃10, . . . , x̃1ñ, x̃20, . . . , x̃2ñ). The master
equation for the coupled model is given by

∂

∂t
P (x, t) =

∑
µ=1,2

(Λµ +Σµ)P (x, t) , (2.5)

where Λµ describes the stochastic dynamics of the oscillator µ with µ = 1, 2 and
Σµ the stochastic dynamics of the outgoing signaling pathway of oscillator µ, see
Fig. 2.2. The operators Λµ and Σµ are given by

Λµ = λ
n−1∑
i=0

((xµi + 1)E+
µiE

−
µ,i+1 − xµi) + κ((xµn + 1)E+

µn − xµn)

+H−(xµn/q1)[α+ βH+(x̃µ̄ñ/q2)](E
−
µ0 − 1) ,

(2.6)

Σµ = λ̃

ñ−1∑
x=0

((x̃µi + 1)Ẽ+
µiẼ

−
µ,i+1 − x̃µi) + κ̃((x̃µñ + 1)Ẽ+

µñ − x̃µñ)

+ α̃H−(xµn/q0)(Ẽ
−
µ0 − 1) ,

(2.7)

where the index µ̄ refers to the respective other oscillator, µ̄ = 2δµ,1+1δµ,2, and E±
µi

and Ẽ±
µi are creation and annihilation operators that increase or decrease the respec-

tive product levels xµi or x̃µi by one, in analogy to Eq. (2.3). The factorsH−(xµn/q1)
and H−(xµn/q0) in the production terms in Eqs. (2.6) and (2.7) describe the inhi-
bition of production by the final product xµn of the oscillator, while H+(x̃µ̄ñ/q2)
describes activation of production by the final product x̃µ̄ñ of the signaling pathway.

As for the single oscillator model introduced in the previous section, we obtain
numerical results for this model by numerically computing exact realizations of tra-
jectories (see Appendix H for details). Fig. 2.3C shows examples for time series of
the final product levels x1n and x2n. In the following sections, we introduce the
key observables that describe the precision and synchronization properties of the
oscillators. We will obtain analytical and numerical results for these observables in
Secs. 2.2 and 2.3.

2.1.3—
Quality factor as a

measure for precision

The precision of an oscillator is defined by the number of oscillations over which
period fluctuations are small compared to a reference clock with high precision.
Hence, it provides a measure how well an oscillator can serve as a clock. To assess
the precision of noisy genetic oscillators in the present setting, we define the temporal
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Figure 2.3 Sample trajectories of exact realizations. A. The final product xn as a function of
time for an uncoupled oscillator with different production rates α. B. Autocorrelation A(t),
Eq. (2.9), for the respective time series in panel A. C. Final products x1n and x2n of two coupled
oscillators for different signaling delays τ = ñ/λ̃ with constant ñ and varying λ̃ (see Sec. 2.3.1
for details). Time delays are given in multiples of the oscillation period T = 2π/ω. D. Windowed
cross correlation c, Eq. (2.18), for the respective time series in panel C. All other parameters
given in Table 2.1.

correlation function Γµν between the final products xµn and xνn of the oscillators µ
and ν,

Γµν(t) = ⟨xµn(t′ + t)xνn(t
′)⟩ − ⟨xµn⟩⟨xνn⟩ . (2.8)

The averages are taken over t′. To determine the precision of an oscillator, we
compute the normalized temporal autocorrelation function of a single oscillator and
then average over multiple realizations of the stochastic system, denoted by ⟨·⟩R,

A(t) =

⟨
Γµµ(t)

Γµµ(0)

⟩
R

. (2.9)

The autocorrelation typically has a functional form of the type

A(t) ∝ e−kt cosωt , (2.10)

see Fig. 2.3B for examples. Here, ω is the frequency of oscillations and k is the
decorrelation rate. We use the function (2.10) to fit the numerically obtained auto-
correlation A(t), Eq. (2.9), using k and ω as fit parameters. The quality factor Q is
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defined as the dimensionless ratio of the correlation time k−1 and the period 2πω−1

of oscillations [94, 106],

Q =
k−1

2πω−1
. (2.11)

The quality factor corresponds to the number of cycles over which period fluctuations
are small and thus serves as a measure for oscillator precision.

2.1.4—
Cross correlation
as a measure for

synchrony

The synchrony of two oscillators refers to the degree of correlation of their dy-
namics. We here assess the synchrony of the two coupled genetic oscillators by
computing the normalized instantaneous cross correlation of their final products and
taking the average over realizations,

C =

⟨
Γ12(0)√

Γ11(0)Γ22(0)

⟩
R

. (2.12)

Here, Γµν is the correlation function (2.8). The cross correlation C takes values
between −1 and 1, where 1 indicates perfect correlation, 0 no correlation and −1
perfect anti-correlation. If the time series from which C is computed exhibit persis-
tent oscillations, C ∼ 1 corresponds to in-phase synchrony and C ∼ −1 corresponds
to anti-phase synchrony, see Fig. 2.3C,D for examples.

We also assess the synchrony of the oscillators and the signaling pathways as
their correlations contain information about the nature of the coupling mechanism.
Each oscillator has an outgoing pathway whose production rate at the initial step is
inhibited by the final step of the oscillator, and an incoming pathway whose final step
activates production at the initial step of the oscillator (Fig. 2.2). Analogously to C,
Eq. (2.12), we define the cross correlation Cout of the final products of an oscillator
and the outgoing pathway and the cross correlation Cin of the final products of
an oscillator and the incoming pathway. To this end, we introduce the correlation
functions

Γ̃µν(t) = ⟨x̃µñ(t′ + t)x̃νñ(t
′)⟩ − ⟨x̃µñ⟩⟨x̃νñ⟩ (2.13)

and

∆µν(t) = ⟨xµn(t′ + t)x̃νñ(t
′)⟩ − ⟨xµn⟩⟨x̃νñ⟩ (2.14)

and define the cross correlations Cout and Cin as

Cout =

⟨
∆µµ(0)√

Γµµ(0)Γ̃µµ(0)

⟩
R

, (2.15)

Cin =

⟨
∆µµ̄(0)√

Γµµ(0)Γ̃µ̄µ̄(0)

⟩
R

, (2.16)

where the index µ̄ refers to the respective other oscillator, µ̄ = 2δµ,1 + 1δµ,2.
Since we will also encounter cases in which the same oscillatory time series entails

both regions of in-phase and anti-phase correlations that average out in the global
cross correlation Eq. (2.12), we also introduce a time-dependent windowed cross
correlation. In contrast to the above quantities, we define this correlation measure
on a single trajectory of the model. The windowed cross correlation is given by

cµν(t) = ⟨⟨xµnxνn⟩⟩t − ⟨⟨xµn⟩⟩t⟨⟨xνn⟩⟩t , (2.17)
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where ⟨⟨f⟩⟩t = w−1
∫ w/2

−w/2
f(t+ t′) dt′ and w is the time window over which the cross

correlation is taken. The normalized windowed cross correlation between the two
oscillators is obtained as

c(t) =
c12(t)√

c11(t)c22(t)
. (2.18)

Fig. 2.3D shows the windowed cross correlation of the corresponding example tra-
jectories in Fig. 2.3C.

2.1.5—
Mutual information

Mutual information is a concept from information theory, which has recently
been used to analyze information flow and information capacity of genetic regulatory
networks [140, 141, 142]. As a supplementary measure that also takes into account
higher order correlations, we define the mutual information of the time series of the
oscillators’ final products. This measure indicates how well the state of oscillator 1
can be inferred from knowing the state of oscillator 2 and vice versa. Let pµ(x) be
the probability that the final product xµn of oscillator µ has occupation number x
and let p12(x, x

′) be the joint probability that the final products x1n and x2n of
oscillators 1 and 2 have occupation numbers x and x′, respectively. The mutual
information I of the oscillators is defined as the Kullback–Leibler divergence DKL of
the product p1(x)p2(x

′) of the marginal distributions pµ(x) and the joint probability
distribution p12(x, x

′) [26],

I = DKL(p12∥p1p2) =
∑
x,x′

p12(x, x
′) log2

(
p12(x, x

′)

p1(x)p2(x′)

)
. (2.19)

With base 2 in the logarithm, it has units of bits. The mutual information has the
property of being zero if and only if p12(x, x

′) = p1(x)p2(x
′) and thus takes into

account all correlations between random variables. This is in contrast to the cross
correlation, Eq. (2.12), which only measures linear correlations between variables [26].
We compute the probabilities p1, p2, and p12 as relative frequencies of occupation
numbers in realizations of trajectories.

2.1.6—
Product turnover

Gene expression consumes energy [2, 130, 152]. Assuming that an average ener-
getic cost can be assigned to each produced functional molecule, the average number
of produced and decaying molecules per unit time can be related to the energetic
cost of sustaining oscillations of a certain quality. To assess how the precision of
an oscillator is affected by this turnover of gene expression products, we compute
the product turnover as the average number K of molecules that decays during an
oscillation period1.

1Formally, K can be expressed as

K = T ·
⟨

lim
k→∞

1

tk

k−1∑
i=1

δxµn(ti+1)−xµn(ti),−1

⟩
R

, (2.20)

where T = 2π/ω is the period of the oscillator and ω is computed as described in Sec. 2.1.3. Furthermore,
{ti} is a time discretization of an exact realization of the model (Sec. 2.1.1). The sum inside the angular
brackets counts the number of times that a molecule decays at the final step xµn. The quantity in
angular brackets is thus the mean decay rate of the final product. Since the system is symmetric in both
oscillators and signaling pathways, K does not depend on µ.
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2.2 Analysis of the Autonomous Oscillator

In this section, we review and extend results for the uncoupled autonomous oscil-
lator introduced in Sec. 2.1.1. We show how an effective description of an uncoupled
oscillator in terms of a single delay differential equation arises in the deterministic
limit of this model. This deterministic limit reveals that the full model of such a sin-
gle oscillator is a stochastic generalization of previously studied deterministic models
of negative-feedback oscillators. Moreover, we provide new results on amplitude and
frequency estimates for an autonomous oscillator.

2.2.1—
Time evolution of

expectation values

We first derive the time evolution of the expectation values ⟨xi⟩ of molecule
numbers. This will allow us to characterize the distribution of feedback delays and to
systematically obtain a deterministic limit of the system. An autonomous oscillator is
described by Eqs. (2.1) and (2.2). The exact time evolution of the expectation values
⟨xi⟩ =

∑
x xiP (x, t) can be derived from the master equation (2.1), see Appendix A.

This yields

d

dt
⟨x0⟩ = α⟨h(xn)⟩ − λ⟨x0⟩ , (2.21)

d

dt
⟨xi⟩ = λ⟨xi−1⟩ − λ⟨xi⟩ , 1 ≤ i ≤ n− 1 (2.22)

d

dt
⟨xn⟩ = λ⟨xn−1⟩ − κ⟨xn⟩ , (2.23)

where h is given by

h(x) = H−(x/q) =
1

1 + (x/q)p
, (2.24)

with H− defined in Eq. (2.4). The cyclic hierarchy of differential equations (2.21–
2.23) can be closed to obtain an integro-differential equation for the expectation
value ⟨xn⟩ of the final product. This equation has been presented in Ref. [94] and
we provide its derivation in Appendix A for self-containedness. The result is

d

dt
⟨xn(t)⟩ ≃ −κ⟨xn(t)⟩+ α

∫ t

0

Gλ,n(t− t′) ⟨h(xn(t′))⟩dt′ , (2.25)

where

Gλ,n(t) =
λn

(n− 1)!
tn−1e−λt (2.26)

is the Gamma distribution for the case of integer n. It characterizes the arrival
times of molecules that traverse the multi-step process of the oscillator. The mean
u =

∫∞
0
tGλ,n(t) dt and variance v2 =

∫∞
0
t2Gλ,n(t) dt− u2, which correspond to the

mean arrival time and its variance, are given by

u = n/λ , (2.27)

v2 = n/λ2 . (2.28)

Henceforth, we call u the mean feedback delay to distinguish it from the mean
signaling delay, which will be considered when addressing the system of two coupled
oscillators.
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Figure 2.4 Numerical solutions to the deterministic limit Eq. (2.29) for u = 3 (A), u = 4 (B),
and u = 5 (C). The instantaneous product level x is displayed versus the delayed product
level xu. For small u, the trajectory spirals into an attracting fixed point (black dot in panel
A). For sufficiently large u, the system exhibits a limit cycle (black contours in panels B, C)
corresponding to sustained oscillations. Other parameters are α = 60, κ = 0.5, q = 20, and
p = 2.

2.2.2—
Deterministic limit

From Eq. (2.25), a deterministic limit can be obtained in two steps. First, we
consider a mean-field approximation through the replacement ⟨h(xn)⟩ → h(⟨xn⟩).
This yields a closed integro-differential equation for ⟨xn⟩. Second, we take the limit
in which the variance v2 of arrival times vanishes at constant mean feedback delay
u. This amounts to taking the limit n→ ∞ with λ = n/u. In this limit, the Gamma
distribution converges to a Dirac δ-distribution, Gλ,n(t) → δ(t−u). From Eq. (2.25),
we thus obtain

dx

dt
= αh(xu)− κx , (2.29)

where x(t) = ⟨xn(t)⟩ and xu(t) = x(t − u). Systems of the type (2.29), known
as Mackey–Glass systems [50, 85], have been extensively studied as models for
negative-feedback oscillators [81, 91, 92, 100, 127]. Hence, the Markov chain model
for an autonomous oscillator can be considered as a generalization of a Mackey–
Glass system to include stochastic feedback delays. Fig. 2.4 displays numerical so-
lutions to Eq. (2.29), where the instantaneous variable x is displayed versus the
delayed variable xu. For small feedback delays u, the trajectory spirals into a fixed
point (Fig. 2.4A), whereas for sufficiently large u, the system exhibits a limit cycle
(Fig. 2.4B,C), corresponding to sustained oscillations [155]. The shape of these limit
cycles indicates that the delayed variable xu is anti-correlated with the instantaneous
variable x (large values of xu for small values of x and vice versa), a behavior that
we will discuss again when addressing the synchrony relations in the coupled system
(Sec. 2.3.7).

2.2.3—
Amplitude estimates

The deterministic limit Eq. (2.29) can be used to build a simple heuristic ar-
gument that provides analytical estimates of the amplitude of oscillations and the
mean product level. We will demonstrate that even for the stochastic Markov chain
model, these estimates yield effective bounds for the amplitude of noisy oscillations
in specific parameter regions. First, we seek two values x+ and x− that satisfy

αh(x±) = κx∓ , (2.30)

where all quantities are defined as in Eq. (2.29). Eq. (2.30) states that h alternates
between x+ and x− up to the prefactor κ/α. We will show later in this section
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Figure 2.5 A. Numerical solution of the deterministic limit Eq. (2.29) for u = 20κ−1 (solid
black). The thick white curves show solutions to the approximations Eqs. (2.31) (blue shaded
time interval) and Eqs. (2.34) (green shaded time interval) in the respective time intervals.
B. Numerical solutions of the deterministic limit Eq. (2.29) (solid black) for u = 20κ−1 (A),
u = 10κ−1 (B), and u = 5κ−1 (C). The dashed lines indicate the amplitude estimates x+, x−,
and x∗, Eqs. (2.36) and (2.37). T is the period of oscillations. Other parameters are α = 60,
κ = 0.5, q = 20, and p = 2.

that such values exist for typical choices of h and compute them explicitly. We now
consider Eq. (2.29) for the final product x. Since Eq. (2.29) is a delay equation, it
is not sufficient to specify an initial condition at a singular point. Rather, an initial
history of the length of the delay u has to be provided [17]. We here consider the
initial history x|−u<t<0 = x− and solve Eq. (2.29) for successive time intervals of
length u. For the interval 0 < t < u, we obtain

dx

dt

∣∣∣∣
0<t<u

= αh(x−)− κx

= κ(x+ − x)

(2.31)

using Eq. (2.30). The solution reads

x
∣∣
0<t<u

= x+ − (x+ − x−)e−κt . (2.32)

Therefore, x exponentially converges towards x+. In the limit u ≫ κ−1, the term
proportional to e−κt decays fast compared to u and we can assume

x
∣∣
κ−1<t<u

≃ x+ . (2.33)
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Accordingly, we obtain in the next time interval

dx

dt

∣∣∣∣
u+κ−1<t<2u

≃ αh(x+)− κx

= κ(x− − x)

(2.34)

and thus, x converges to x− within the time scale κ−1 so that we can assume
x|u+2κ−1<t<2u ≃ x−. Hence, the system has returned to its initial value and the
process starts over. This behavior is illustrated in Fig. 2.5A, where a numerical so-
lution of the deterministic limit Eq. (2.29) is compared with solutions of Eqs. (2.31)
and (2.34) for the appropriate time windows. We find that for feedback delays much
larger than the decay time, u≫ κ−1, the values x+ and x− (which we explicitly com-
pute below) are indeed identical to the maximum and minimum amplitude of the
oscillations (Fig. 2.5B,C). For feedback delays of the same order as the decay time,
u ∼ κ−1, the values x+ and x− provide upper and lower bounds for the amplitude
(Fig. 2.5D). Intuitively, if the transient time between plateau values is of the same
order as the feedback delay, the system cannot reach the plateau values sufficiently
fast and the above argument breaks down.

These considerations motivate the computation of the values x+ and x− as
amplitude estimates: Eq. (2.30) implies that these values satisfy L(x±) = x±, where
L is the iterated function

L(x) = ακ−1h(ακ−1h(x)) . (2.35)

The values x+ and x− can thus be found by determining the fixed points of L. As an
example, we explicitly compute these values for h being a Hill function, Eq. (2.24),
with Hill exponent p = 2. The function L then has five fixed points, of which two
are generically complex and can therefore be ruled out as amplitude estimates. The
remaining three fixed points x−, x+, and x∗ can be real depending on the parameters,
and are given by

x± =

(
g0 ±

√
g20 − 1

)
q , (2.36)

x∗ =

(
g1 −

1

3g1

)
q , (2.37)

where g0 and g1 are the dimensionless quantities

g0 =
α

2κq
, (2.38)

g1 =

(
g0 +

√
g20 +

1

27

)1/3

. (2.39)

It is straightforward to show that the fixed points x+ and x− satisfy Eq. (2.30). For
g0 > 1, the fixed points x− and x+ are real and are therefore candidates for amplitude
estimates. The third fixed point x∗ satisfies αh(x∗) = κx∗ and is therefore also a
fixed point of the non-iterated function ακ−1h. It corresponds to the steady state
solution of Eq. (2.29), which is unstable if the system exhibits a limit cycle. We
will show below that the fixed point x∗ provides an effective estimate for the mean
product level even in the presence of oscillations.

While the preceding argument relies on an approximation of the deterministic
case and its effectivity has to be demonstrated by comparison with numerical so-
lutions, similar fixed point methods have been used to determine the existence of
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Figure 2.6 Relative frequencies p(x) of occupation numbers of the final product x = xn (black
solid), obtained from numerical simulations of the Markov chain model of an uncoupled oscilla-
tor, Eqs. (2.1) and (2.2), for different α. The vertical lines indicate the estimates for maximum
and minimum amplitude x+ and x− (dashed black), Eq. (2.36), and the mean product level x∗

(dashed green), Eq. (2.37), as well as the actual mean product level x̄ =
∫∞
0
x p(x) dx (solid

green). For α = 10 and α = 20, the corresponding values of x+ and x− are complex and
hence are not displayed. The plot below each histogram shows an excerpt of a corresponding
trajectory. The dashed lines in these plots indicate the same quantities as above. Parameters
are n = 18, λ = 1.5, κ = 0.5, and q1 = 20.
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oscillatory solutions in cyclic delay systems in a mathematically rigorous way [40].
Fig. 2.5 demonstrates the effectivity of this method to analytically estimate the am-
plitude for the deterministic limit Eq. (2.29). In Fig. 2.6, we compare the estimates
Eqs. (2.36) and (2.37) with relative frequencies of molecule numbers of the final
product xn obtained from numerical simulations of the Markov chain model. We
find that the estimates x+ and x− effectively provide conservative bounds for the
maximum and minimum amplitudes, respectively.

2.2.4—
Frequency and
decorrelation rate
estimates

A simple estimate for the frequency of an uncoupled oscillator can be found on
purely heuristic grounds [81]. Consider a system starting out with zero molecules,
xi = 0 for all i. Hence, production at the initial step i = 0 proceeds without
inhibition. On average, it takes a time u = n/λ, where u is the mean feedback delay,
Eq. (2.27), before the bulk of the produced molecules reaches the final step i = n of
the oscillator. When the product level xn at the final step i = n increases, production
at the initial step i = 0 decreases due to auto-inhibition. Consequently, the number
of molecules traversing the multi-step process starts to decrease. Again, on average,
it takes a time u before the decreased molecule levels reach the final step i = n
of the multi-step process. Upon this decrease of xn, inhibition of production at the
initial step i = 0 becomes weaker, which leads to stronger production and the process
starts over. One of these cycles thus consumes a time T ≃ 2u and a simple frequency
estimate ω = 2π/T is therefore given by

ω ≃ π

u
. (2.40)

Going beyond such heuristic reasoning, we now show how to systematically obtain
estimates for the frequency and decorrelation rate of an uncoupled oscillator based
on the stochastic dynamics of the system. In Sec. 2.1.3, we have demonstrated that
these quantities are encoded in the temporal behavior of the autocorrelation function
of the final product, Eq. (2.9). The autocorrelation of final products of an uncoupled
oscillator is given by

Γ(t) = ⟨xn(t′ + t)xn(t
′)⟩ − ⟨xn⟩2 , (2.41)

in analogy to Eq. (2.8). The master equation (2.5) can be used to derive an approxi-
mate integro-differential equation for Γ by neglecting higher order correlations. This
equation has been presented in Ref. [94]; we provide its derivation in Appendix A
for self-containedness. The result is given by

dΓ

dt
≃ −κΓ(t) + η

∫ t

0

Gλ,n(t− t′) Γ(t′) dt′ , (2.42)

where Gλ,n is the Gamma distribution Eq. (2.26), and

η = αh′(x̄) + αh′′′(x̄)
Γ(0)

2
. (2.43)

Here, x̄ and Γ(0) are the mean and the variance of the final product level xn,

x̄ = ⟨xn⟩ , (2.44)

Γ(0) = ⟨x2n⟩ − x̄2 . (2.45)

To obtain an estimate for the frequency ω and the decorrelation rate k of oscillations,
we assume that the autocorrelation function has the typical time dependence (2.10).
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For convenience, instead of the real ansatz (2.10), we use the complex ansatz Γ(t) =
Γ0e

−zt with z = k + iω in Eq. (2.42). If the time scales ω−1 and k−1 characterizing
the oscillations are separated such that k < ω ≪ λ, an algebraic equation for z can
be approximated. In the presence of oscillations, this separation of time scales is
expected: the correlation time k−1 typically extends over multiple oscillations with
period 2πω−1 (examples shown in Fig. 2.3B) and the period itself is typically much
larger than the average jump time λ−1 between two steps of the multi-step process.
The derivation of the characteristic equation for the complex exponent z is provided
in Appendix A. The result is given by

z ≃ κ− η

(
λ

λ− z

)n

. (2.46)

This equation can be numerically solved to obtain the frequency ω = Im z and the
decorrelation rate k = Re z. Moreover, using the separation of time scales introduced
above, a closed approximate equation for the frequency ω = Im z can be derived from
Eq. (2.46). This approximation is independent of k = Re z and holds in the limit of
large step numbers n (Appendix A). The result is given by

ω ≃ π

u

(
1 +

1

ηu

)
, (2.47)

where u = n/λ is the mean feedback delay, Eq. (2.27). The term in brackets yields
a correction factor to the simple estimate (2.40), which we had obtained on purely
heuristic grounds. Note that the constant η, defined in Eq. (2.43), depends on the
mean x̄ and the variance Γ(0) of the final product level, which itself depend on all
model parameters. In Appendix A, we show how to use the amplitude estimates
introduced in Sec. 2.2.3 to obtain a closed estimate for η, considering h to be a Hill
function, Eq. (2.24), with Hill exponent p = 2. The result is given by

η ≃ −2κ

(
1− 1

2/3 + (α/κq)2/3

)
. (2.48)

Eq. (2.47) thus provides an analytical estimate for the frequency ω that explicitly
depends on the model parameters and can thus be solved independently of numerical
simulations.

Fig. 2.7 shows comparisons of frequencies and decorrelation rates obtained from
numerical simulations of the full Markov chain model (dots), from numerical solutions
of the approximate characteristic equation2 (2.46) (solid lines) and the closed esti-
mate (2.47) (dashed lines), where for the latter two, the estimate (2.48) for η has been
used. The estimate for the frequency ω obtained from Eq. (2.46) is mostly in very
good agreement with results from simulations, while the approximation Eq. (2.47)
provides a very good approximation for large n, but fails to describe the frequency
for small n. This is expected as Eq. (2.47) has been derived for large n. The be-
havior of the decorrelation rate k is captured well for small step numbers n. For
larger n, however, the relative error of k becomes large and Eq. (2.46) yields small
negative values for k (not discernible in Fig. 2.7). Since k < 0 would correspond
to an exponentially growing autocorrelation, the estimates for k are not sensible for
large n.

2In general, the polynomial equation (2.46) has many solutions. Fig. 2.7 displays the numerical
solution with the smallest decorrelation rate k = Re z, which governs the long-time behavior of the
autocorrelation.
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Figure 2.7 Frequencies ω (green) and decorrelation rates k (orange) as a function of the step
number n obtained from simulations of the full Markov chain model (dots), from numerical solu-
tions of the approximate characteristic equation (2.46) (solid lines) and the approximation (2.47)
(dashed lines). Parameters are
A. α = 60, λ = 1.5, κ = 0.5, q = 20,
B. α = 30, λ = 1.5, κ = 0.2, q = 20,
C. α = 60, λ = 1.0, κ = 0.5, q = 20,
D. α = 60, λ = 1.0, κ = 0.5, q = 40.
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Figure 2.8 A. Gamma distribution Gλ̃,ñ, Eq. (2.49), for λ̃ = 0.5 and ñ = 10 (Table 2.1). The
dashed line shows the mean τ , Eq. (2.50); the shaded region indicates the standard deviation ±σ
from the mean, given by Eq. (2.51). B. Gamma distribution Gλ̃,ñ, Eq. (2.49), for ñ = 10 and
λ̃ = 0.5 (dark), λ̃ = 0.4 (lighter), and λ̃ = 0.3 (light).

2.3 Precision and Synchronization of Coupled Oscillators

We now turn to the Markov chain model of two coupled genetic oscillators,
described by Eqs. (2.5–2.7). We study how coupling between oscillators leads to
synchronization and affects their precision and frequency.

2.3.1—
Complex signaling

introduces coupling
delays

An important property of the signaling pathway is the effective delay that it
introduces to the coupling between the oscillators. In contrast to models with ex-
plicit coupling delays [21, 89], in our model these coupling delays arise effectively
through the finite time required for production, transition, and decay of signaling
molecules. In analogy to the multi-step process within each oscillator (see Sec. 2.2.1),
molecules traversing the multi-step process of the signaling pathway are subject to
a distribution of arrival times, given by

Gλ̃,ñ(t) =
λ̃ñ

(ñ− 1)!
tñ−1e−λ̃t . (2.49)

This is the Gamma distribution introduced in Eq. (2.26) but with the jump rate λ̃
and step number ñ of the signaling pathways instead of the oscillators. The mean
signaling delay τ and the corresponding variance σ2 are given by

τ = ñ/λ̃ , (2.50)

σ2 = ñ/λ̃2 , (2.51)

in the same way as the mean feedback delay u of an oscillator and the variance v2

of feedback delay times, Eqs. (2.27) and (2.28). Fig. 2.8A shows a Gamma distri-
bution Gλ̃,ñ together with the mean τ and the standard deviation σ. Note that the
distribution Eq. (2.49) only describes the delays caused by the signaling molecules
traversing ñ steps with transition rate λ̃. It does not include the possibly delaying
effects of production and decay of the signaling molecules. Indeed, we will find below
that the total coupling delay between the oscillators is mainly determined by the sig-
naling delay τ but also receives a contribution from the decay time of the signaling
molecules.

In the following, we study the system’s properties as a function of the mean
signaling delay τ . According to Eq. (2.50), τ can be varied by varying either ñ, λ̃,
or both of them simultaneously. We here keep the number of steps ñ fixed while
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Figure 2.9 A. Quality factor Q, Eq. (2.11), and B. cross correlation C, Eq. (2.12). Both quantities
are shown as a function of the signaling delay τ , parametrized by Eq. (2.52). Q0 denotes the
quality of an uncoupled oscillator (dashed line in panel A) and T its period (Table 2.1). Different
symbols indicate different values of the activation strength β (see legend). Parameters are given
in Table 2.1. The color code for the lines is the same as for the density plots in Fig. 2.10.

varying τ through the jump rate λ̃,

λ̃(τ) = ñ/τ . (2.52)

With this parametrization of the signaling delay, the standard deviation σ of ar-
rival times, determined by Eq. (2.51), is a constant multiple of the signaling delay,
σ = τ/

√
ñ. Hence, this parametrization enables to study the effects of different dis-

persions of delay times as τ is varied (see Fig. 2.8B for examples).

2.3.2—
Enhancement of
precision by coupling

From studies of an uncoupled genetic oscillator, it is known that the number
of molecules in the system and the number n of steps of its multi-step process are
the major factors that determine its precision [94]. We now address the question
of how precision is affected by coupling. We assess the precision of the oscillators
through the quality factor Q (Sec. 2.1.3). Fig. 2.9A shows typical examples for
the dependence of the quality factor Q on the signaling delay τ . Different curves
correspond to different values of the activation strength β. Intuitively, the magnitude
of β regulates the coupling strength of the oscillators, with β = 0 corresponding to
complete decoupling (see Fig. 2.2). For small delays, the quality factor is increased
compared to an uncoupled oscillator, whose quality is indicated by the dashed line
in Fig. 2.9A. The difference between the quality of coupled and uncoupled oscillators
depends on the activation rate β. This finding indicates that stochastic coupling with
short signaling delays can considerably increase the precision of the oscillators. For
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uncoupled oscillator, and the other parameters of the signaling pathway. Parameters that are
not varied are given in Table 2.1.
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higher delays, the quality factor displays local maxima for delays which are integer
multiples of T/2 and local minima for delays which are odd multiples of T/4, where T
is the period of an uncoupled oscillator. The height of these maxima decreases with
increasing delays. For large delays, the quality remains slightly above the value Q0

of an uncoupled oscillator. We will return to the phenomenon of alternating regions
of high and low quality and the decay of the quality for large delays when we analyze
the synchronization properties of the system.

To browse the parameter space systematically and see whether this behavior
also appears in different parameter regions, we vary other parameters of the signaling
pathway simultaneously with the signaling delay. Figs. 2.10A–E display the results as
density plots. The amount by which the quality is enhanced increases with increasing
activation rate β (Fig. 2.10A), as already indicated in Fig. 2.9A. A similar behavior
of the quality factor is found if the production rate α̃ of signaling molecules is varied
(Fig. 2.10B).

When varying the thresholds q0 and q2 for activation and repression, the picture
changes qualitatively (Fig. 2.10C,D). As a function of the threshold level q0 that
regulates the inhibition of signaling molecules by the final product xµn of the sending
oscillator, we find isolated ‘islands’ of high quality in parameter space (Fig. 2.10C).
These islands appear where q0 is of the same order as the mean product level ⟨xµn⟩ ≃
40 and have a simple explanation: for ⟨xµn⟩ ≪ q0, inhibition effectively never sets
in as the threshold level q0 is never reached, while for ⟨xµn⟩ ≫ q0, the production
of signaling molecules is always inhibited. Hence, in these parameter regions, the
signaling pathways do not reflect the oscillatory behavior of the sending oscillator.
Analogously, similar ‘islands’ of high quality appear for the activation threshold q2
being of the same order as the mean product level of the signaling molecule ⟨x̃µñ⟩
(Fig. 2.10D).

A third type of behavior of the quality factor is found when the decay rate κ̃ of
the signaling molecule is varied simultaneously with the signaling delay (Fig. 2.10E).
For small values of κ̃, the high quality regions are tilted towards smaller signaling
delays. This indicates that the total coupling delay is not only determined by the
signaling delay τ but also by the decay time κ̃−1.

2.3.3—
Is increased quality
due to higher product
turnover?

The preceding results show that coupling can increase the precision of genetic
oscillators by more than an order of magnitude. From previous studies of uncoupled
noisy oscillators, it is known that an increased production rate of cyclic molecules
tends to increase the precision as the effects of stochasticity are suppressed by high
molecule numbers [94]. This opens the possibility that the increased precision ob-
served in the presence of coupling is solely due to the higher number of cyclic
molecules caused by the additional activation through the signaling pathway. To
assess whether this is the case, we compare the precision of uncoupled and coupled
oscillators with the same product turnover K, Eq. (2.20), that is, with the same
number K of decaying cyclic molecules per period of oscillation.

To obtain a specific value K of the turnover for an uncoupled oscillator, we
adjust its basal production rate correspondingly, α = α(K), while keeping all other
parameters fixed to reference values (Table 2.1). In the coupled system, the same
value K can be achieved by adjusting the activation rate, β = β(K), while keeping
all other parameters (including the basal production rate α) fixed to reference values.
We then compare the precision of coupled and uncoupled oscillators with the same
turnover K. Fig. 2.11 shows the results for the quality factor Q of coupled and
uncoupled oscillators for different values of the mean signaling delay τ . Each bubble
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Figure 2.11 Quality of coupled and uncoupled oscillators with the same product turnover K,
Eq. (2.20), for τ/T = 1/10 (A), τ/T = 1/2 (B), τ/T = 1 (C), and τ/T = 2 (D), where T is
the period of an uncoupled oscillator. The size of the bubble indicates the relative magnitude
of different values of K (see Sec. 2.3.2 for details). The dashed line marks the diagonal. The
other parameters are provided in Table 2.1.

corresponds to a specific value K of product turnover, where the size of the bubble
indicates the relative value of K. The x-position of each bubble is the quality of
an uncoupled oscillator with basal production rate α = α(K). The y-position of
each bubble is the quality of a coupled oscillator with basal production rate α = α0

and activation rate β = β(K). Since all bubbles are located distinctly above the
diagonal, the precision of coupled oscillators is significantly higher as compared to
uncoupled oscillators with the same product turnover. This demonstrates that the
increase in precision is not solely due to an increased number of cyclic molecules.

2.3.4—
Synchronization

through coupling

It has been known for a long time that in the presence of coupling, oscillators
tend to synchronize, even if coupling is weak [138]. We now investigate how the prop-
erties of stochastic coupling between oscillators affect their tendency to synchronize
their oscillations. We assess the degree of synchrony of two oscillators through the
cross correlation C (Sec. 2.1.4). Fig. 2.9B shows typical examples for the dependence
of the cross correlation C on the signaling delay τ . The different curves correspond
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to different values of the activation strength β. For small delays, the system attains
a state of high positive correlation, C ≃ 1, indicating in-phase synchronized oscilla-
tions. As for the quality factor Q, the magnitude of the cross correlation C depends
on the activation strength β, with increased correlation observed for higher values
of β. As the signaling delay approaches T/2, the cross correlation changes its sign
and decreases to values close to C ≃ −1, indicating anti-phase synchronized oscilla-
tions. For delays close to a full period T , positive correlations are recovered again
but of decreased magnitude compared to the initial maximum for small delays. For
large delays, the cross correlation gradually decays to zero. These findings indicate
that coupling is attractive: in the absence of delays, the system tends to lock to an
in-phase synchronized state, while finite delays introduce an effective phase shift be-
tween oscillators that can lead to anti-phase synchronization depending on the value
of the delay. We will investigate how the specific coupling mechanism considered
here leads to such a behavior in Sec. 2.3.7.

As for the quality factor Q, we systematically browse the parameter space and
display the results as density plots in Figs. 2.10F–K. Again, we find that the gen-
eral trend as a function of the signaling delay τ is captured by Fig. 2.9B with the
magnitude of C determined by the other parameters of the signaling pathway. Im-
portantly, parameter regions with high quality and a high degree of correlation or
anti-correlation coincide (Figs. 2.10A–K). In particular, both the quality and the
magnitude of the cross correlation decay for large signaling delays. This is explained
as follows: The production rate of signaling molecules oscillates, entrained by the
sending oscillator through inhibition. This gives rise to oscillating molecules levels
propagating along the signaling pathway. However, with increasing signaling delay,
the dispersion of arrival times of the signaling molecules increases (Sec. 2.3.1). When
the standard deviation σ of arrival times, given by Eq. (2.51), reaches a significant
fraction of the oscillation period, oscillations are gradually lost along the signaling
pathway due to noise. Hence, as the delay increases, the last step of the signaling
pathway carries less and less information about the oscillatory state of the sending
oscillator. For large delays, this leads to an effective decoupling of the oscillators.

As a complementary measure for the degree of correlation of both oscillators, we
display the mutual information I of the final products of both oscillators, Eq. (2.19),
in Figs. 2.13F–K. Even though the mutual information I takes into account correla-
tions of all orders, we observe that it follows the same trend as the magnitude |C|
of the cross correlation C (Figs. 2.10F–K), which only measures linear correlations.
We thus conclude that the cross correlation C is sufficient to understand the inter-
dependence of both oscillators. Furthermore, in contrast to I, the sign of C carries
information about the type of synchrony attained by the system.

2.3.5—
Stochastic switching
between in-phase and
anti-phase synchrony

Between the regions of the signaling delay in which a distinct in-phase or anti-
phase correlation is observed, the quality Q and the cross correlation C of both
oscillators are low (local minima in Fig. 2.9B and bright columns in Figs. 2.10A–K).
This indicates that in these regions, the dynamics of both oscillators are poorly cor-
related on average. However, closer examination of the oscillatory time series reveals
that both oscillators are indeed highly correlated if finite time windows are consid-
ered: the oscillators stochastically switch between in-phase and anti-phase correlated
oscillations3. This behavior is illustrated in Fig. 2.12A, showing the trajectories of
the final oscillator products x1n and x2n of an exact realization of the system for
τ ≃ T/4. The system starts out with a high degree of anti-phase correlation, then

3Such a phenomenon has recently also been found in models of noisy Hodgkin–Huxley neurons [4].
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Figure 2.12 Stochastic switching between in-phase and anti-phase correlations. A. Trajectories
of the final product levels x1n and x2n of an exact realization of the model for τ ≃ T/4 and
all other parameters given by Table 2.1. B. Time-dependent windowed cross correlation c(t),
Eq. (2.18), with w = 4T of the time series shown in panel A. C. Wavelet transform of the time
series in panel A, where dark regions indicate the strong period components. The white dashed
line serves as a visual guide.

undergoes an extended transient region before it attains a highly correlated in-phase
state. This behavior is reflected in the corresponding windowed cross correlation c,
Eq. (2.18), which goes from values close to −1 to values close to 1 (Fig. 2.12B). This
phenomenon of alternating in-phase and anti-phase correlations likely contributes to
the low quality observed for corresponding values of the signaling delay as it destroys
long-term correlations of the oscillations.

Fig. 2.12C shows a so-called wavelet scalogram of x1n, which is a time-dependent
power spectrum4 [143]. Dark colors correspond to strong period components, bright
colors to weak components. In the beginning, the dominant period components are
centered around the period indicated by the white dashed line. After transition to the
in-phase synchronized state, the period has increased: the dashed line now marks
the upper boundary of the dominant period components. This indicates that the
collective frequency of the oscillators is related to the type of synchrony (in-phase or
anti-phase) that they attain. We will address this phenomenon in the next section.

2.3.6—
The collective

frequency depends
on coupling

properties

If the oscillators attain an in-phase or anti-phase synchronized state, this implies
that both oscillators evolve with a collective frequency. It is well-known that in the
presence of coupling delays, this collective frequency can differ from the frequency
of an uncoupled oscillator [129, 163]. To assess whether this is also the case for the
model of coupled genetic oscillators presented here, we obtain the collective frequency
of the oscillators (Sec. 2.1.3) as a function of the signaling delay and other parameters
of the signaling pathway (Figs. 2.13A–E).

As a function of the signaling delay τ , these plots reveal sharp changes of the

4For details on the wavelet transform, see Chapter 4, Sec. 4.2.2.
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Figure 2.13 A–E. Frequency ω from fits of Eq. (2.10) to Eq. (2.9). F–K. Mutual information I in
bits, Eq. (2.19). Axes scaling and parameters as in Fig. 2.10.
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Figure 2.14 Synchrony relations between different molecule numbers in the presence of oscilla-
tions for the autonomous oscillator (A) and the coupled system (B–D), see Sec. 2.3.7 for details.
Symbols indicate the synchrony relation between oscillations of molecule numbers connected by
the corresponding lines (see legend). The synchrony relation between any two molecule numbers
can be obtained by multiplying all signs along any connecting path in the diagram.

frequency at odd multiples of T/4. This indicates that the collective frequency of
in-phase correlated states is different from the collective frequency of anti-phase
correlated states, consistent with the observations made in the previous section. For
high signaling delays, the effect of coupling on the collective frequency vanishes as
the oscillators effectively decouple (Sec. 2.3.4). We will return to this observation
and investigate it in more detail when studying the phase oscillator approximation
in Sec. 2.4.

2.3.7—
Nature of the

coupling mechanism

In the previous sections, we found that oscillator coupling leads to in-phase
or anti-phase synchronization, depending on the signaling delay. In particular, we
found that coupling is attractive (Sec. 2.3.4), that is, coupling promotes in-phase
synchrony in the absence of signaling delays. We now investigate how the specific
coupling mechanism considered here leads to such an attractive behavior.

To this end, we study the synchrony relations between different molecule levels
in the system. In an uncoupled oscillator, since the production rate αH−(xn/q1)
of molecules depends on the final product level xn (Fig. 2.1), oscillations of the
final produce level xn induce oscillations of the production rate. Since H− acts in-
hibitory, these oscillations of the production rate are in anti-phase with the product
level xn (Fig. 2.14A). In the presence of coupling, the final product level also regu-
lates the production of signaling molecules. Hence, oscillations of the final product
level also induce anti-phase oscillations in the production rate of signaling molecules
(Fig. 2.14D). The synchrony between the first and the last step of the signaling path-
way is determined by the signaling delay, which introduces an effective phase shift
between the first and the last step (Fig. 2.14C). The oscillating signaling molecule
levels, in turn, lead to an oscillating activation of production in the receiving oscilla-
tor. Intuitively, a robust synchronized state of both oscillators—irrespective whether
in-phase or anti-phase synchronized—is only possible if this oscillating activation is
in-phase synchronized with the oscillations of the production rate due to autoin-
hibition (Fig. 2.14B). This intuitive picture implies that the final product of the
signaling pathway is always anti-phase correlated with the final product of the re-



2.3 PRECISION AND SYNCHRONIZATION OF COUPLED OSCILLATORS 37

0.5 1 1.5 2

120

80

40

0

Τ�T

Β

-1 1A

0.5 1 1.5 2

120

80

40

0

Τ�T

Α
�

-1 1B

0.5 1 1.5 2

160

120

80

40

10

Τ�T

q0

-1 1C

0.5 1 1.5 2

160

120

80

40

10

Τ�T

q2

-1 1D

0.5 1 1.5 2

1.5

1.

0.5

0.1

Τ�T

Κ�

-1 1E

0.5 1 1.5 2

120

80

40

0

Τ�T

Β

-1 1F

0.5 1 1.5 2

120

80

40

0

Τ�T

Α
�

-1 1G

0.5 1 1.5 2

160

120

80

40

10

Τ�T

q0

-1 1H

0.5 1 1.5 2

160

120

80

40

10

Τ�T

q2

-1 1J

0.5 1 1.5 2

1.5

1.

0.5

0.1

Τ�T

Κ�

-1 1K

CROSS CORRELATION Cout CROSS CORRELATION Cin
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signaling pathway, Eq. (2.16). F–K. Cross correlation Cin of the final products of an oscillator
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ceiving oscillator (x̃2ñ and x1n in Fig. 2.14B). In fact, this behavior is confirmed by
numerical studies of the cross correlation Cin of these two molecule levels, Eq. (2.15):
Figs. 2.15F–K show that Cin is always negative, independent of whether both oscil-
lators are in-phase or anti-phase synchronized (compare with Figs. 2.10F–K). Only
the magnitudes of Cin and C are correlated.

2.4 Phase Oscillator Approximation

2.4.1—
Phase description of

coupled oscillators

We complement the analysis of the Markov chain model of coupled genetic os-
cillators with a comparison with a system of coupled phase oscillators, taking into
account distributed coupling delays. Such a phase description reduces the complexity
of limit cycle oscillators to the dynamics of a single phase variable representing the
state of the oscillator [1, 77, 158]. Hence, it considerably simplifies the theoretical
description of a dynamic oscillator system. We first briefly introduce how coupling
of oscillators is represented in such a phase oscillator picture. The phase dynamics
for an uncoupled deterministic oscillator is given by

dϕ

dt
= ω , (2.53)

where ϕ is the phase of the oscillator and ω is its intrinsic frequency. Hence, the
phase of the uncoupled oscillator evolves linearly, ϕ(t) = ωt+ ϕ0. Coupling between
two identical oscillators is described by an additional term that evaluates the phase
difference between the two oscillators and adjusts their frequencies accordingly,

dϕµ
dt

= ω + ε sin(ϕµ̄ − ϕµ) . (2.54)

Here, ϕµ is the phase of oscillator µ = 1, 2, ε is the coupling strength with the
dimension of a frequency, and µ̄ = 2δµ,1 + 1δµ,2 denotes the index of the respective
other oscillator. Eq. (2.54) is the simplest example of a so-called Kuramoto model of
coupled phase oscillators [77]. According to Eq. (2.54), a phase difference between
both oscillators changes their dynamic frequency. Consequently, the oscillators speed
up or slow down to even out their phase difference. It is straightforward to show that
the oscillators tend to lock to a stable in-phase synchronized state, ϕ1(t) = ϕ2(t) =
ωt, in which they both oscillate with their intrinsic frequency ω [129].

2.4.2—
Coupling with

distributed delays

We now extend the phase model Eq. (2.54) to include the effects of time delays
in the coupling. If there is a discrete signaling delay τ between both oscillators,
this extension is accomplished by simply retarding the argument of the sending
oscillator’s phase, that is, replacing ϕµ̄(t) by ϕµ̄(t − τ) in Eq. (2.54) [63, 129, 163].
The effects of such discrete signaling delays on the properties of synchronized states
and the synchronization dynamics have been studied extensively [38, 66, 129, 163].
In the Markov chain model described in the previous sections, oscillator coupling
was achieved through the stochastic exchange of signaling molecules between the
oscillators. The effective signaling delay between the oscillators was determined
by the arrival times of the signaling molecules. We found that these arrival times
were characterized by a distribution of delay times instead of a single discrete delay
(Sec. 2.3.1). We thus expect that a phase model capable of describing the key
features of this system must also include a distribution of delay times instead of a
single discrete delay. In Appendix B, we show how to extend Eq. (2.54) to take into
account the effects of distributed delays. Assuming that the distribution of delay



2.4 PHASE OSCILLATOR APPROXIMATION 39

A

1�2 1 3�2 2

Ω - Ε

Ω

Ω + Ε

Τ�T

W

B

1�2 1 3�2 2

Ω - Ε

Ω

Ω + Ε

Τ�T

W

Figure 2.16 The collective frequency Ω for the system with distributed delays (A) and discrete
delays (B) and for the in-phase synchronized state (dark blue) and the anti-phase synchronized
state (light blue), as a function of the signaling delay τ , parameterized by Eq. (2.52). A. Solutions
to Eq. (2.58) (dark blue) and Eq. (2.59) (light blue). B. Solutions to Eq. (2.60) (dark blue) and
Eq. (2.61) (light blue). Solid lines show stable solutions, dashed lines show unstable solutions
(see Sec. 2.4.4 for details). Parameters for both plots are ω = 2π/28 and ε = ω/4. The other
parameters for plot A are given in Table 2.1.

times in the phase model is identical to the distribution Gλ̃,ñ(t
′) of arrival times of

signaling molecules, Eq. (2.49), we obtain

dϕµ
dt

= ω + ε

∫ ∞

0

Gλ̃,ñ(t
′) sin(ϕµ̄(t− t′)− ϕµ(t)) dt

′ , (2.55)

where λ̃ is the jump rate and ñ the number of steps of the signaling pathways. The
corresponding mean signaling delay τ and its variance σ2 are given by Eqs. (2.50)
and (2.51).

2.4.3—
Synchronized states

For the Markov chain model, we found that in the presence of coupling, os-
cillators can exhibit a high degree of positive or negative correlation that we have
characterized as in-phase and anti-phase synchrony (Sec. 2.3.4). We compare the
properties of these types of synchrony with those of in-phase and anti-phase solu-
tions to the phase model Eq. (2.55). The in-phase synchronized state of the phase
model is given by

ϕµ(t) = Ωt (2.56)

for µ = 1, 2, that is, both oscillators evolve with the same collective frequency Ω and
have no phase lag relative to each other. The anti-phase synchronized state is given
by

ϕ1(t) = Ω̄t ,

ϕ2(t) = Ω̄t+ π ,
(2.57)

that is, both oscillators propagate with the same frequency Ω̄ but exhibit a phase
lag of π. Using the ansatz (2.56) in Eq. (2.55) yields an implicit equation for the
collective frequency of the in-phase synchronized state,

Ω = ω − ε

(
1

1 + Ω2/λ̃2

)ñ/2

sin

(
ñ arctan

Ω

λ̃

)
. (2.58)

Details of the derivation of this equation are provided in Appendix B. It is straight-
forward to check that the collective frequency Ω̄ of the anti-phase synchronized
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state (2.57) is obtained by the replacement ε→ −ε in Eq. (2.58),

Ω̄ = ω + ε

(
1

1 + Ω̄2/λ̃2

)ñ/2

sin

(
ñ arctan

Ω̄

λ̃

)
. (2.59)

Eqs. (2.58) and (2.59) are transcendental equations, which cannot be solved for the
collective frequency in a closed form. However, we straightforwardly obtain the
bounds |Ω−ω| ≤ |ε| and |Ω̄−ω| ≤ |ε|, that is, the collective frequencies Ω and Ω̄ are
located in a window of width 2|ε| around the intrinsic frequency ω. Furthermore,
we find that Ω, Ω̄ → ω in the limit λ̃→ 0, implying that for increasing signaling
delays due to an decreased jump rate, the collective frequency becomes independent
of coupling. The case of a discrete delay τ can be recovered from Eqs. (2.58) and
(2.59) by taking the limit ñ→ ∞ with λ̃ = ñ/τ , which yields

Ω = ω − ε sin(Ωτ) , (2.60)

Ω̄ = ω + ε sin(Ω̄τ) . (2.61)

These results for a discrete delay τ are well-known in the literature [5, 38, 71, 98,
129, 163] and show that Eqs. (2.58) and (2.59) yield the correct limiting case.

Fig. 2.16 shows exact solutions5 to Eqs. (2.58–2.61), in which ñ is fixed and
the mean signaling delay τ = ñ/λ̃ is varied by varying λ̃ according to Eq. (2.52).
In contrast to the case of discrete delays, the collective frequency in the case of
distributed delays shows a decaying dependence on the mean delay τ for large τ . We
will demonstrate that such a behavior also occurs in the Markov chain model after
analyzing the stability of these states in the next section.

2.4.4—
Stability of the

synchronized states

For the Markov chain model, we found that the effective signaling delay deter-
mines whether in-phase or anti-phase correlations are observed (Sec. 2.3.4). Since
both in-phase and anti-phase synchronized states are solutions to the phase model
Eq. (2.55), we have to assess under which circumstances these states are stable or un-
stable. To this end, we linearize the dynamics around the synchronized state [18, 137].
We first address the stability of the in-phase synchronized state, Eq. (2.56). We use
the standard ansatz [137]

ϕµ(t) = Ωt+ δξµ(t) (2.63)

in Eq. (2.55), where δ is an expansion parameter and ξµ is a perturbation of order
unity. We obtain the time evolution of the perturbation ξµ by expanding Eq. (2.55)
to first order in δ,

dξµ
dt

= ε

∫ ∞

0

Gλ̃,ñ(t
′) cos(Ωt′) (ξµ̄(t− t′)− ξµ(t)) dt

′ + O(δ) . (2.64)

This equation is inconvenient to work with since the dynamics of the oscillator µ
depends on the dynamics of the respective other oscillator µ̄. Hence, we decouple the

5A curve that includes all collective frequency solutions to Eq. (2.58) with fixed ñ and λ̃ = λ̃(τ) = ñ/τ
can be parameterized exactly. We introduce a phase variable θ = Ωτ and insert Ω = θ/τ = θλ̃/ñ in
Eq. (2.58) to obtain

Ω(θ) = ω − ε

(
1

1 + θ2/ñ2

)ñ/2

sin

(
ñ arctan

θ

ñ

)
. (2.62)

The corresponding curve in the (τ,Ω)-plane is given by L = {(τ(θ),Ω(θ)) ; θ ≥ 0}, where τ(θ) = θ/Ω(θ).
The solutions to Eq. (2.59) can be obtained analogously.
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dynamics by defining the collective modes ψν = ξ1 + νξ2 with ν = +1,−1. Inverting
this definition yields ξ1 = (ψ+ + ψ−)/2 and ξ2 = (ψ+ − ψ−)/2, which shows that
exciting the collective mode ψ+ shifts both oscillators by the same amount and thus
corresponds to a global phase shift, whereas ψ− is the phase difference between both
oscillators. Dropping terms of order δ, the dynamics of these collective modes are
given by

dψν

dt
= ε

∫ ∞

0

Gλ̃,ñ(t
′) cos(Ωt′) (νψν(t− t′)− ψν(t)) dt

′ . (2.65)

The characteristic equation for these modes is obtained using the exponential ansatz
ψν(t) = eγνt. The sign of Re γν then determines whether perturbations decay
(Re γν < 0) or grow (Re γν > 0) and thus whether the synchronized state is sta-
ble or unstable [3]. Using this ansatz in Eq. (2.65), we obtain

γν = ε

∫ ∞

0

Gλ̃,ñ(t) cos(Ωt) (νe
−γνt − 1) dt . (2.66)

In general, this equation can have many solutions in γν as shown below. The syn-
chronized state is linearly stable if and only if Re γν < 0 holds for all solutions γν
to Eq. (2.66) and for both ν = +1 and ν = −1. Since the Gamma distribu-
tion Gλ̃,ñ, given by Eq. (2.26), decays as e−λ̃t, the rhs of Eq. (2.66) only converges if
Re γν > −λ̃. This implies that the decay rate Re γν of small perturbations to the syn-
chronized state cannot be faster than the jump rate λ̃. The integral in Eq. (2.66) can
be solved analytically for the case that it converges, see Appendix B. The resulting
characteristic equation is given by

γν
ε

= νE(γν)− E0 , (2.67)

where

E(γ) =
λ̃ñ

2

(
1

(λ̃+ γ + iΩ)ñ
+

1

(λ̃+ γ − iΩ)ñ

)
(2.68)

and E0 = E(0). Eq. (2.67) does not possess a closed analytical solution for arbi-
trary ñ. We thus seek an approximation of solutions to Eq. (2.67) near the stability
boundary at γν = 0. We expand Eq. (2.67) to first order in γν at γν = 0 to obtain a
closed self-consistent expression,

γν ≃ (ν − 1)E0

ε−1 − νE1
, (2.69)

where E1 = dE/dγ|γ=0. For the two modes, we thus obtain approximate solutions
in the vicinity of γν = 0,

γ+ ≃ 0 , (2.70)

γ− ≃ − 2E0

ε−1 + E1
. (2.71)

In fact, γ+ = 0 is a solution to the exact characteristic equation (2.67) and we expect
that a global phase shift is neutrally stable, that is, neither grows nor decays. Such
a behavior is known from phase models with discrete delays [38]. Eq. (2.71) provides
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Figure 2.17 Real and imaginary parts of numerical solutions to Eq. (2.67) for the in-phase
synchronized state (2.56) for γ+ (A, A’) and γ− (B, B’) as a function of the signaling delay τ ,
parameterized by Eq. (2.52). The solid black line in panel B shows the analytical approximation
Eq. (2.69). The dashed black curve in panels A and B shows Re γ = −λ̃(τ); points below this
curve are solutions to Eq. (2.67), but not to Eq. (2.66). Other parameters are ω = 2π/28 and
ε = ω/4.

a closed approximation for small |γ−| that depends on the coupling strength ε and
furthermore on the collective frequency Ω, the jump rate λ̃, and the step number ñ
through E0 and E1.

It is straightforward to check that the corresponding results for the anti-phase
synchronized state, Eq. (2.57), are obtained by replacing ε→ −ε in Eqs. (2.67) and
(2.69),

−γν
ε

= νE(γν)− E0 , (2.72)

γν ≃ (ν − 1)E0

−ε−1 − νE1
. (2.73)

Numerical solutions to Eqs. (2.67) and (2.69) for the in-phase synchronized state
are shown in Fig. 2.17, those to Eqs. (2.72) and (2.73) for the anti-phase synchronized
state are shown in Fig. 2.18. For the collective mode c = +1, which corresponds to
a global phase shift, we numerically find for given parameters that the largest real
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Figure 2.18 Real and imaginary parts of numerical solutions to Eq. (2.72) for the anti-phase
synchronized state (2.57) for γ+ (A, A’) and γ− (B, B’) as a function of the signaling delay τ ,
parameterized by Eq. (2.52). Conventions and parameters as in Fig. 2.17.

part of all solutions is indeed Re γ+ = 0 for both the in-phase and the anti-phase
synchronized state (Figs. 2.17A and 2.18A). The collective mode c = −1 exhibits
stable regions (Re γ− < 0) as well as unstable regions (Re γ+ > 0) (Figs. 2.17B
and 2.18B). Moreover, the synchronized states approach neutral stability for large
delays as the magnitude of Re γ+ decays to zero for large τ . We used these results
to indicate the stable and unstable solutions in Fig. 2.16. Depending on the chosen
parameter set, the regions where in-phase and anti-phase synchronized states are
stable can overlap, indicating multistability of both states for certain values of the
signaling delay τ (Fig. 2.16A).

2.4.5—
Comparison with the
Markov chain model

We now assess whether the phase model Eq. (2.55) can capture the features of
the Markov chain model described by Eqs. (2.5–2.7). To this end, we compare the
collective frequency Ω obtained from the phase model (Sec. 2.4.3) to the frequency
spectrum of oscillations from the Markov chain model. As before, we fix the number
of steps ñ of the signaling pathway in the Markov chain model and vary the mean
signaling delay τ by changing the jump rate λ̃ according to Eq. (2.52). For the
distribution Gλ̃,ñ of delay times in the phase model, we adopt the parameter values of
λ̃ and ñ used in the Markov chain model. For the intrinsic frequency ω in the phase
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Figure 2.19 Density plots of logarithmic power spectra of oscillations in the Markov chain model.
Bright regions correspond to strong frequency components. The collective frequency Ω is given in
multiples of the uncoupled frequency 2π/T . The different plots correspond to different activation
strengths β = aβ0 with β0 = 30 and a = 1, . . . , 4. Other parameters are given in Table 2.1.

model, we use the estimate obtained from the characteristic equation Eq. (2.46).
The coupling strength ε is the only parameter in the phase model that has to be
determined phenomenologically. We here assume that ε scales linearly with the
activation strength β in the Markov chain model, which determines how strong the
signaling pathways influence the production rate in the receiving oscillator (Fig. 2.2).
Once we fix the ratio R = ε/β by hand, there are no free parameters left for the
phase model and we are able to compare its results to the Markov chain model.

Fig. 2.19 shows the frequency spectrum of the Markov chain system for different
values of the activation strength β. The density plots display the logarithmic power
spectral density of the oscillations of the final oscillator products6. These plots

6The power spectral density S of a signal x(t) is defined by S(ω) = |x̂(ω)|2, where x̂(t) =∫
x(t)e−iωt dt is the Fourier transform of x(t). We obtain S using the Wiener–Khinchin theorem, which

states that S(ω) = Â(ω), where Â is the Fourier transform of the autocorrelation A of the signal x,
Eq. (2.9) [72]. The logarithmic power spectral density is given by S(ω) = logS(ω).
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Figure 2.20 The same plots as in Fig. 2.19 with overlayed in-phase (black) and anti-phase (white)
collective frequencies of the phase model, Eq. (2.58). Solid lines indicate stable solutions, dashed
lines indicate unstable solutions. The parameters for the phase model are adopted from the
Markov chain model except for the coupling strength, which is given by ε = Rβ with R =
1.33× 10−4.

show that the dominant frequency components change at odd multiples of T/4 as
already observed in Sec. 2.3.6. In these transition regions, the power spectrum is
bimodal as two distinct frequency components simultaneously display high spectral
power. This is expected because of stochastic switching between in-phase and anti-
phase synchrony with different frequencies found earlier (Sec. 2.3.5). Moreover, the
dominant frequency components deviate less and less from the uncoupled frequency
as the signaling delay τ increases, an observation that we already made in Sec. 2.3.6.

In Fig. 2.20, we display the same density plots as in Fig. 2.19 together with
solutions for the collective frequency Ω, Eq. (2.58), obtained from the phase oscillator
model. The comparison shows that both the collective frequency as well as the
stability regions of in-phase and anti-phase solutions can be captured well by the
phase model. In particular, the phase model describes the decaying dependence of
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the collective frequency on the signaling delay τ for large values of τ . Moreover,
the phase model exhibits regions in which the in-phase and anti-phase solution are
simultaneously stable. This implies that sufficiently strong fluctuations can drive the
system out of one synchronized state into the basin of attraction of the other. This is
consistent with the stochastic switching between in-phase and anti-phase synchrony
found in the Markov chain model (Sec. 2.3.5), where fluctuations of molecule numbers
are an intrinsic property of the system.

The quantitative deviations of the phase model from the Markov chain model
can have various reasons. First, we have observed that the decay time of signal-
ing molecules contributes to the total coupling delay in the Markov chain model
(Sec. 2.3.4). For simplicity, we have omitted to describe this contribution in the
phase model. Since the total coupling delay is one of the major factors determining
the properties of the synchronized states, this omission might contribute to the quan-
titative deviations observed in Fig. 2.20. Second, for our phase model Eq. (2.55) we
have chosen the coupling function to be sinusoidal, a generic choice for attractive os-
cillator coupling [38, 77]. In general, if a phase model is systematically derived from
a limit cycle oscillator through a phase reduction, the detailed shape of the coupling
function depends on the specific dynamics of the oscillators and may deviate from a
sinusoidal behavior [41, 73]. Since both the collective frequency and the stability of
synchronized states depend on the coupling function, this deviation might introduce
quantitative differences in the phase model and the Markov chain model. Third,
in our phase description, the autonomous oscillators are solely described by their
intrinsic frequency ω, while the Markov chain model describes their full internal dy-
namics. This internal dynamics might lead to a more complex response to oscillator
coupling than captured by our phase model and hence affect the collective frequency
and the stability properties of synchronized states. However, representing the afore-
mentioned features of the Markov chain model in a phase oscillator description leads
to substantial complications of the latter, while the simple phase model presented
here can already capture the key features to a very good degree.

2.5 Summary

In this chapter, we presented Markov chain models of coupled genetic oscillators,
in which both the internal dynamics of the oscillators as well as the coupling pro-
cesses are inherently stochastic. We have shown that our description of an uncoupled
genetic oscillator is a stochastic generalization of established deterministic models
of biochemical negative-feedback oscillators. We provided effective analytical esti-
mates for the amplitude and the frequency of an uncoupled oscillator in terms of its
biochemical parameters such as molecule production and decay rates and threshold
levels. Comparison of these estimates to numerical simulations of our model showed
very good agreement.

We then turned to the system of two coupled genetic oscillators and investigated
how the properties of stochastic coupling affect their collective dynamics. In partic-
ular, coupling can lead to a considerable increase in precision of the oscillators at
only slightly increased product turnover within the oscillators. Furthermore, cou-
pling induces synchronization of the oscillators to in-phase or anti-phase correlated
states. The effective coupling delay arising from the dynamics of the signaling path-
way is a major factor governing precision, synchronization, and collective frequency
of the coupled system. For certain values of the couping delay, we found stochastic
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switching between in-phase and anti-phase synchronized states, an effect induced by
stochasticity. Moreover, we showed how the coupling mechanism presented here leads
to attractive oscillator coupling, that is, tends to in-phase synchronize the oscillators
for vanishing coupling delays.

We complemented our study of coupled genetic oscillators with a phase oscil-
lator approximation with distributed signaling delays, which we compared with the
Markov chain model. We found that such a phase model can describe the key fea-
tures of the Markov chain model, such as the occurrence of in-phase and anti-phase
synchronized states, their stability, and the dependence of the collective frequency
on the model parameters. Furthermore, the phase model provided an approach to
describe the stochastic switching between in-phase and anti-phase synchrony found
in the Markov chain model: for specific values of the signaling delay both synchro-
nized states are simultaneously stable, which allows noise-induced switching between
both states.

Parameters and Symbols used in Chapter 2

PARAM. UNIT VALUE

OSCILLATORS

n 1 18 number of steps
α NT−1 60 production rate
β NT−1 20 activation strength due to signaling
λ T−1 1.5 transition rate between steps
κ T−1 0.5 decay rate for the final product
q1 N 20 threshold level for auto-inhibition
q2 N 100 threshold level for activation by signaling
p 1 2 Hill exponent

SIGNALING PATHWAYS

ñ 1 10 number of steps
α̃ NT−1 60 production rate

λ̃ T−1 0.5 transition rate between steps
κ̃ T−1 0.5 decay rate for the final product
q0 N 20 threshold level for repression

REFERENCE VALUES (RESULTS)

Q0 1 20.8 quality of an uncoupled oscillator
T T 27 period of an uncoupled oscillator

Table 2.1 List of parameters and numerical values used in this chapter. Here, T is the unit of
time and N is the unit ‘one molecule’.
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LIST OF SYMBOLS

P probability density function
µ, ν, . . . indices of oscillators and signaling pathways
i, j, . . . indices of oscillator steps and pathway steps
E±

µi creation (+) and annihilation (−) operators

Λµ master equation operator for the oscillator µ
Σµ master equation operator for the signaling pathway µ
xµi occupation number of step i in the coupled oscillator µ
x̃µi occupation number of step i in signaling pathway µ
xi occupation number of step i in the uncoupled oscillator
x x = xn, final product of an uncoupled oscillator
xu xu(t) = x(t− u), final product with delayed argument

H±, h Hill functions
Γµν correlation function of oscillator products

Γ̃µν correlation function of pathway products
∆µν correlation function of oscillator and pathway products
Γ autocorrelation function of the product of an uncoupled oscillator
A normalized autocorrelation function of the product of a coupled oscillator
x̄ x̄ = ⟨xn⟩, expectation value of the final product number
z complex exponent in the characteristic equation for Γ
ω oscillation frequency
k decorrelation rate
Q quality factor
C cross correlation of oscillator products
Cout cross correlation of oscillator product and outgoing pathway product
Cin cross correlation of oscillator product and incoming pathway product
cµν windowed cross correlation
c normalized windowed cross correlation of oscillator products
I mutual information
K product turnover
Gλ,n Gamma distribution
u mean feedback delay (mean of Gλ,n)
v2 variance of feedback delays (variance of Gλ,n)
τ mean signaling delay (mean of Gλ̃,ñ)

σ2 variance of signaling delays (variance of Gλ̃,ñ)

L concatenation of Hill functions
g0, g1 expressions occurring in solutions in Sec. 2.2.3
η coefficient resulting from power series expansion of Hill functions
ϕµ phase of oscillator µ
ξµ perturbation of oscillator µ to the synchronized state
ψν collective mode ν for which the linearized dynamics decouple
γν exponent describing the relaxation of ψν

ε coupling strength
Ω collective frequency
E function that enters the characteristic equation for γν
S logarithmic power spectral density
R ratio of ε and β
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Chapter 3

Continuum Theory of
Pattern Formation with
Oscillators

In this chapter, we develop a continuum theory of coupled phase oscillators that
describes the key features of vertebrate segmentation. We first introduce the basic
principles of pattern formation with coupled oscillators using simplifying assump-
tions. We then sequentially extend our theory to take into account coupling delays,
local growth, and a time-dependent tissue length and study the effects of these factors
on pattern formation. We show that our theory describes a Doppler effect in pattern
formation, which will be compared to experimental data in Chapter 4. We comple-
ment this study by proposing a model of interacting morphogens that can account for
the dynamic decrease in tissue length in a self-organized way.

3.1 Pattern Formation with Oscillators

3.1.1—
Coupled oscillators in
a moving medium

In this section, we introduce the basic principles of pattern formation with os-
cillators as observed during vertebrate segmentation. Our theory combines three
key ingredients relevant for pattern formation: (i) autonomous oscillators with a fre-
quency profile, (ii) local oscillator coupling, and (iii) advective flow of the medium
(see Chapter 1, Secs. 1.2.3–1.2.5). We describe the genetic oscillators in the segment-
ing tissue, the presomitic mesoderm, as a collection of coupled phase oscillators in
a continuous medium. In this description, the state of a genetic oscillator is char-
acterized solely by its phase in the cycle of oscillatory gene expression, disregarding
the detailed biochemical mechanism giving rise to oscillations [93]. In Chapter 2, we
have shown that such phase models can capture the key features of more detailed
models of coupled genetic oscillators while considerably simplifying the theoretical
description (Sec. 2.4).

To set up our theory, we define a one-dimensional embryonic coordinate system,
in which the spatial coordinate x measures the distance from the posterior tip x = 0
along the body axis in a reference frame comoving with the presomitic mesoderm
(Fig. 3.1A). The anterior end of the presomitic mesoderm is denoted by x = a. A
phase field ϕ describes the state of the genetic oscillators in the presomitic mesoderm,
that is, ϕ(x, t) represents the state of oscillation of a cell or a locally synchronous
group of cells at position x and time t. The dynamic equation for the phase field ϕ
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Figure 3.1 A. One-dimensional embryonic coordinate system in a reference frame comoving with
the posterior tip of the presomitic mesoderm. The origin x = 0 is the posterior tip, the x-axis
points in anterior direction along the body axis (black dashed line). The position x = a marks
the anterior end of the presomitic mesoderm. B. Sketch of a typical form of the frequency profile,
Eq. (3.2), see also Table 3.1.

is given by

∂ϕ

∂t
+ v0

∂ϕ

∂x
= ω(x) +

ε(x)

2

∂2ϕ

∂x2
. (3.1)

The intrinsic frequency of the oscillators is described by a frequency profile ω(x) that
attains its maximum at the posterior tip and gradually decays towards the anterior
(Fig. 3.1B). Motion of the oscillators with the cell flow is described by homogeneous
advection with a velocity v0 in anterior direction. This useful simplification corre-
sponds to the assumption that cells enter the presomitic mesoderm at the posterior
tip x = 0 with speed v0. We will replace this assumption by a more physical velocity
field in a later section. Local oscillator coupling with strength ε(x) is described by
a term that is formally equivalent to a diffusion term but has a different interpre-
tation: it tends to even out local phase differences and thus describes the system’s
tendency to locally synchronize. Eq. (3.1) is the spatial continuum limit of a system
of nearest-neighbor coupled phase oscillators in a moving medium (see Appendix C
for a detailed derivation).

We consider frequency and coupling profiles of the form

ω(x) = ω0Γ(x/a) , (3.2)

ε(x) = ε0Γ(x/a) , (3.3)

where ω0 is the maximum frequency and ε0 the maximum coupling strength at the
posterior tip x = 0, a is the length of the presomitic mesoderm, and Γ(ξ) is a spatial
profile that satisfies Γ|ξ=0 = 1 and smoothly decays to zero with a characteristic
decay length of unity (Table 3.1). We consider a scenario in which oscillators enter
the presomitic mesoderm at the posterior tip with speed v0 and are in synchrony
with the oscillators at x = 0. We therefore employ open boundary conditions,

∂ϕ

∂x

∣∣∣∣
x=0

= 0 . (3.4)
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Figure 3.2 Snapshots of numerical solutions to Eq. (3.1) with parameters given in Table 3.2.
For each point in time t, the lower plot shows the phase ϕ(x) (blue) and the corresponding
oscillatory signal sinϕ(x) (black). The gray vertical line indicates the position of the arrest
front, x = a. The density plots show the same snapshots in a representation where high values
of sinϕ correspond to bright, low values to dark colors.

3.1.2—
Formation of
kinematic wave
patterns

We now illustrate how the theory Eq. (3.1) describes the formation of kinematic
waves that travel through the presomitic mesoderm. Fig. 3.2 shows snapshots of
the system’s time evolution for the parameters and profile functions specified in
Tables 3.1 and 3.2. Fig. 3.3 shows the same system in a kymograph representation,
that is, in a space-time density plot displaying the oscillatory signal sinϕ(x, t), where
the abscissa indicates space and the ordinate indicates time.

Starting from zero initial conditions,

ϕ
∣∣
t=t0

= 0 , (3.5)

a phase gradient builds up along the presomitic mesoderm due to the frequency
profile and advection in anterior direction. This phase gradient corresponds to a
pattern of kinematic waves, as can be seen in the density plots of the oscillatory
signal sinϕ in Fig. 3.2. The total number of kinematic waves simultaneously present
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Figure 3.3 Kymograph of the oscillatory signal sinϕ(x, t) for the same system as in Fig. 3.2. The
color code is the same as in Fig. 3.2.

at one instant of time is given by the phase difference between posterior tip and
anterior end,

K(t) =
ϕ(0, t)− ϕ(a, t)

2π
. (3.6)

The number of kinematic waves is an important quantity: it relates the phase field ϕ
to an observable that can be robustly measured in experiments [102]. Fig. 3.4A
shows K(t) for the system shown in Figs. 3.2 and 3.3.

The kinematic waves propagate in anterior direction at a speed much faster than
the advective speed v0. This can be seen by considering the motion of a point with
a constant phase ϕ∗. The trajectory x∗(t) of this point satisfies ϕ(x∗(t), t) = ϕ∗.
Differentiating this equation with respect to time yields a differential equation for
the local velocity of the kinematic waves,

dx∗
dt

= − (∂ϕ/∂t)

(∂ϕ/∂x)

∣∣∣∣
x=x∗(t)

= v0 +
ωλ

2π
+

ε

2λ

∂λ

∂x

∣∣∣∣
x=x∗(t)

,

(3.7)

where in the second equality, we have used Eq. (3.1) to replace ∂ϕ/∂t and introduced
the local wavelength λ of the pattern1,

λ(x, t) = − 2π

(∂ϕ/∂x)
. (3.8)

According to Eq. (3.7), the local velocity of kinematic waves is thus given by (i) the
advection speed v0, (ii) a contribution depending on the local frequency ω and the
local wavelength λ, and (iii) a contribution depending on the local coupling strength ε
and λ. Note that the wavelength λ itself depends on all model parameters.

3.1.3—
Segment formation

We interpret the anterior end of the presomitic mesoderm, x = a, as the arrest
front, that is, the point where the phase information is converted into morphological
segments. Hence, we stipulate that whenever the anterior phase ϕ(a, t) exceeds a

1Since the phase ϕ(x, t) is monotonically decreasing in x due to the frequency gradient (see, e.g.,
Fig. 3.2), the minus sign in the definition of λ ensures that λ is positive.
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Figure 3.4 A. Number of kinematic waves K in the presomitic mesoderm, Eq. (3.6), as a function
of time. B. Total number of formed segments N , Eq. (3.9), as a function of time. C, D. Segment
length S at formation as a function of time (C), Eq. (3.10), and as a function of segment number
(D), Eq. (3.11). All plots show the same system as in Figs. 3.2 and 3.3.

multiple of 2π, a new segment boundary is drawn at the anterior end x = a. Thus,
the number of formed segments at time t is given by

N(t) =
ϕ(a, t)− ϕ(a, 0)

2π
. (3.9)

In our theory, the segment length S upon formation is given by the wavelength at
the anterior end,

S(t) = λ(a, t) , (3.10)

with λ defined in Eq. (3.8). While the formation of a segment takes a finite amount
of time, for simplicity we here describe the segment length upon formation by the
continuous function S(t), assuming that the wavelength λ does not significantly vary
during the formation of one segment. This assumption will be confirmed in numerical
solutions for chosen parameters.

The time tF(n) at which segment n forms is defined by N(tF(n)) = n. The
length of formed segments, Eq. (3.10), and the number of kinematic waves in the
presomitic mesoderm, Eq. (3.6), can thus be expressed as a function of the segment
number2. Fig. 3.4B–D shows the time evolution of the number of formed segments N
and the segment length S at formation for the same system as in Figs. 3.2 and 3.3.

3.1.4—
Steady state

After an initial transient time, the system attains a steady state, in which the
kinematic wave pattern repeats with a collective frequency, as shown by Figs. 3.3

2For the functions that depend on the segment number n, we use the same symbols as for those that
depend on time t,

S(n) = S|t=tF(n) , (3.11)

K(n) = K|t=tF(n) . (3.12)

It will be clear from the context which one of them is referred to.



56 CHAPTER 3. PATTERN FORMATION WITH OSCILLATORS

and 3.4. This implies that the dynamic frequency is constant along the entire pre-
somitic mesoderm, ∂ϕ/∂t = Ω. This may seem counterintuitive since the presence of
a frequency profile implies that oscillations proceed with different frequencies in dif-
ferent parts of the presomitic mesoderm. Indeed, the autonomous frequency ω in the
anterior is smaller than in the posterior. However, the dynamic frequency ∂ϕ/∂t at a
specific position x also receives contributions from the advection of the wave pattern
through this point in space and from coupling. Since at steady state, the wavelength
of the pattern is shorter in the anterior, the frequency v0/λ(x) that locally emerges
from the advection of a wave pattern with wavelength λ(x) at a speed v0 through a
constant point in space is larger in the anterior. We find that at steady state, this
contribution to the dynamic frequency exactly balances the mismatch of autonomous
frequencies due to the frequency profile. To see this formally, we make the steady
state ansatz

ϕ(x, t) = Ωt+ ψ(x) , (3.13)

where Ω is the collective frequency, and ψ(x) is a time-independent phase profile
along the presomitic mesoderm. This ansatz implies that the oscillatory signal asso-
ciated to the phase ϕ(x, t), e.g., sinϕ(x, t), is periodic with period T = 2π/Ω. Using
this ansatz in Eq. (3.1), we find that the collective frequency and the phase profile
obey

Ω + v0
dψ

dx
= ω(x) +

ε(x)

2

d2ψ

dx2
. (3.14)

The boundary condition (3.4) implies a boundary condition for the phase profile,

dψ

dx

∣∣∣∣
x=0

= 0 . (3.15)

Eq. (3.14) can be solved for arbitrary frequency profiles ω using variation of constants.
However, it is more instructive to assume that coupling is weak and that the coupling
term only provides a minor correction to the collective frequency and the phase
profile. For values of the coupling strength inferred from experimental data [93,
117] (Table 3.2), we find numerically that this assumption is warranted. Evaluating
Eq. (3.14) at x = 0 with the boundary condition (3.15) for the case ε0 = 0, we find
that the collective frequency is given by

Ω = ω0 , (3.16)

the maximum of the frequency profile at the posterior tip. For the phase profile ψ,
we obtain the solution

ψ(x) =

∫ x

0

ω(x′)− ω0

v0
dx′ . (3.17)

The local wavelength, Eq. (3.8), is consequently given by

λ(x) =
2πv0

ω0 − ω(x)
. (3.18)

Hence, the wavelength is large in the vicinity of the posterior tip x = 0, where
ω(x) ≃ ω0 and decreases towards the anterior. At the arrest front, where ω|x=a ≃ 0,
we obtain λ ≃ 2πv0/ω0. Therefore, the frequency that emerges from transporting
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the wave pattern through the arrest front with advection speed v0 coincides with
the frequency of oscillations in the posterior, 2πv0/λ|x=a ≃ ω0, as outlined in the
beginning of this section.

The velocity with which the kinematic waves travel through the tissue can be
obtained according to Eq. (3.7). At steady state, we can define a time-independent
velocity field u(x) for the speed of kinematic waves by requiring u(x∗(t)) = dx∗/dt,
where x∗(t) is the trajectory of a point with constant phase, see Eq. (3.7). Using
Eqs. (3.7) and (3.18), we find

u(x) =
v0

1− ω(x)/ω0
. (3.19)

Since 0 ≤ ω(x) ≤ ω0, u(x) is always positive and larger than v0, indicating that the
kinematic waves move in anterior direction and faster than the underlying medium.
Kinematic waves are fastest in the vicinity of the posterior tip, where ω(x)/ω0 is
close to 1 and slow down towards the anterior. This slowdown is indicated by the
downward tilt of ridges with constant phase in the kymograph Fig. 3.3.

The length of the segments upon formation is given by Eqs. (3.10) and (3.18),
which yield

S = v0T , (3.20)

where we have used ω|x=a ≃ 0 and introduced the collective period T = 2π/Ω =
2π/ω0. We thus recover the clock-and-wavefront relation (1.1) between segment
length, advection speed and collective period. Therefore, at steady state, the system
acts as a clock with a well-defined period T despite the presence of a frequency
gradient and the appearance of kinematic wave patterns.

3.2 Oscillators with Delayed Coupling

3.2.1—
Dynamic equation

In Chapter 2, we have shown that coupling delays, which arise in complex sig-
naling processes between oscillators, can have profound effects on their precision and
synchronization. Moreover, coupling delays affect the timing of segment formation as
shown earlier [56, 93]. We now study the effects of coupling delays on the kinematic
wave patterns. To this end, we extend the theory from Sec. 3.1 to take into account
time delays in the coupling of oscillators. Note that Eq. (3.1) has been derived as the
spatial continuum limit of a discrete system of nearest-neighbor coupled oscillators
(Sec. 3.1.1 and Appendix C). To systematically obtain the corresponding theory
with delayed coupling, we repeat the derivation of such a continuum limit for a dis-
crete oscillator system with coupling delays. We have presented this derivation for a
discrete coupling delay τ in Ref. [5]; for self-containedness, we provide the derivation
in Appendix C. The resulting continuum theory is given by

∂ϕ

∂t
+ v0

∂ϕ

∂x
= ω(x) + Zε(x) sin(ϕ̄τ − ϕ)− ε(x)

2
sin(ϕ̄τ − ϕ)

(
∂ϕ̄τ
∂x

)2

+
ε(x)

2
cos(ϕ̄τ − ϕ)

∂2ϕ̄τ
∂x2

,

(3.21)

where τ is the coupling delay and ϕ̄τ (x, t) = ϕ(x − v0τ, t − τ). Here, Z is a renor-
malization constant that arises during the derivation of the spatial continuum limit3.

3The constant Z stems from the expansion in the lattice spacing of the discrete oscillator system
and is given by Z = 1/s2, where s is the lattice spacing (see Appendix C for a details). We here use
s = 10µm, corresponding to the length scale of a cell.
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Note that Eq. (3.21) is non-local in time and space. For the case without delays,
τ = 0, in which ϕ̄τ − ϕ = 0, Eq. (3.21) reduces to Eq. (3.1).

3.2.2—
Steady state

Like the theory without coupling delays, Eq. (3.1), the theory with delays can
exhibit a steady state of the type ϕ(x, t) = Ωt+ψ(x), Eq. (3.13), for time-independent
parameters. This steady state solution satisfies

Ω + v0
dψ

dx
= ω(x) + Zε(x) sin(ψ̄τ − ψ − Ωτ)− ε(x)

2
sin(ψ̄τ − ψ − Ωτ)

(
dψ̄τ

dx

)2

+
ε(x)

2
cos(ψ̄τ − ψ − Ωτ)

d2ψ̄τ

dx2
,

(3.22)

where ψ̄τ (x) = ψ(x − v0τ) (see also Appendix C). Since Eq. (3.22) is non-local in
space, it is not sufficient to provide a boundary condition at a singular point. Rather,
an initial history for the region −v0τ < x < 0 has to be specified [17],

ψ
∣∣
x<0

= 0 . (3.23)

Evaluating Eq. (3.22) at x = 0 using these boundary conditions, we find an implicit
equation for the collective frequency,

Ω = ω0 − Zε0 sin(Ωτ) . (3.24)

The collective frequency Ω is thus governed by the posterior frequency ω0, the cou-
pling strength Zε0, and the coupling delay τ . In Chapter 2, we have already encoun-
tered the transcendental equation (3.24) and analyzed its properties (Sec. 2.4.3): for
a chosen value of τ , Eq. (3.24) can exhibit multiple solutions (Fig. 2.16B). Moreover,
Eq. (3.24) is well-known to determine the synchronized state of systems of identical
oscillators with delayed coupling [5, 38, 129, 163]. For the case of no delay, τ = 0,
we recover Eq. (3.16).

To obtain the length S of segments at formation, Eq. (3.10), we evaluate Eq. (3.22)
at x = a. Using ω|x=a ≃ 0 and ε|x=a ≃ 0, we find dψ/dx = −Ω/v0 = −2π/v0T
and thus S = v0T , the clock-and-wavefront relation (1.1) that has already been dis-
covered for the case of no delays, Eq. (3.20). Note that in the case with delays, the
collective period T is however determined by Eq. (3.24).

3.2.3—
Effects of coupling

delays on pattern
formation

As can be seen from Eq. (3.22), the steady state phase profile ψ depends on the
coupling delay τ both directly and indirectly through its dependence on Ω = Ω(τ).
Fig. 3.5 shows examples of steady state phase profiles for different values of the
coupling delay τ . Important observables such as the number of kinematic waves and
the segment length depend non-monotonically on the coupling delay. Remarkably,
systems that exhibit the same collective frequency Ω can exhibit quite different phase
profiles (gray and yellow profiles in Fig. 3.5): Eq. (3.24) is invariant under a change
of the coupling delay τ by a full collective period, τ → τ+2π/Ω. However, Eq. (3.22)
for the spatial phase profile is not invariant under this change as τ also enters in the
argument of the delayed phase profile ψ̄τ .

3.2.4—
When do coupling
delays have to be

considered?

We conclude that together with the frequency profile ω, coupling delays affect
pattern formation and the timing of segment formation. Experiments, in which these
coupling delays were manipulated in zebrafish wildtype and mutant embryos, indicate
that they play a role in regulating the timing of segmentation and the robustness
of kinematic wave patterns against noise [56]. Furthermore, it has been shown that



3.3 COUPLED OSCILLATORS IN A GROWING MEDIUM 59

0 200 400 600

0

-10 Π

-20 Π

Ψ

Figure 3.5 Steady state phase profiles ψ in the presence of coupling delays: Ωτ = 0 (gray),
Ωτ = π/4 (blue), Ωτ = 7π/4 (green), and Ωτ = 2π (yellow). The other parameters are given
in Table 3.2. The collective frequencies corresponding to these phase profiles are Ω = ω (gray,
yellow), Ω = ω + ε/

√
2 (blue), and Ω = ω − ε/

√
2 (green). Color code analogous to Fig. 3.2.

theories similar to Eq. (3.21) can account for experimentally observable changes in
timing and noisiness of wave patterns upon alteration of coupling delays [56].

In the remainder of this chapter, we investigate pattern formation and segmen-
tation dynamics in the deforming presomitic mesoderm of wildtype zebrafish. Hence,
we do not compare scenarios with different coupling delays. In such a case, a de-
scription without coupling delays leads to a considerable simplification. In Ref. [45],
Geisler determined the parameter regions of Eq. (3.22) that yield theoretical results
compatible with the key features of wildtype zebrafish segmentation. These key
observables include the segment length, the period of segment formation and the
number of kinematic waves in the presomitic mesoderm. Importantly, it has been
shown for large regions in parameter space that a change of the coupling delay can
be compensated by an appropriate change of the shape of the frequency profile to
obtain the same key observables. For simplicity, we therefore resort to a description
without delays in the following.

3.3 Coupled Oscillators in a Growing Medium

3.3.1—
Dynamic equation

The theory introduced in Sec. 3.1 describes the extending tissue in a simplified
way: cells enter the presomitic mesoderm at the posterior tip with the same speed v0
with which they leave at the anterior end. To account for tissue growth in a more
systematic way, we now introduce a position-dependent velocity profile v(x). The
dynamic equation for the phase field ϕ is now given by

∂ϕ

∂t
+ v(x)

∂ϕ

∂x
= ω(x) +

ε(x)

2

∂2ϕ

∂x2
. (3.25)

The velocity profile v is the integral of a growth profile k,

k(x) =
dv

dx
. (3.26)
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Figure 3.6 Steady state phase profiles ψ and velocity fields v for µ = 0.9 (yellow), µ = 1.8
(green), µ = 3.6 (blue), and µ = ∞ corresponding to no growth (gray). The curves of the blue
and gray phase profiles lie on top of each other. The other parameters are given in Table 3.2.
Color code analogous to Fig. 3.2.

We here assume that growth is mainly taking place in the posterior region of the
presomitic mesoderm and becomes weaker towards the anterior. In Chapter 4, we
quantify the velocity field in the segmented region of zebrafish embryos and motivate
this assumption (Sec. 4.1.3). We consider a growth field of the form

k(x) = k0e
−µx/a , (3.27)

where k0 is the maximum growth rate at x = 0, a is the length of the presomitic
mesoderm, and µ is a scaling factor that regulates the decay length of the growth
field. Assuming that the velocity in the direction of the body axis vanishes at the
posterior tip, v|x=0 = 0, the corresponding velocity profile can be written as

v(x) =

∫ x

0

k(x′) dx′ = v0∆(x/a) , (3.28)

where v0 = ak0/µ and ∆(ξ) is a spatial profile function specified in Table 3.1. In
Chapter 4, we show that a velocity profile of the form Eq. (3.28) is compatible with
the experimentally obtained velocity profile in the segmented region (Sec. 4.1.3).
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3.3.2—
Steady state

Like the theory with a spatially constant velocity in Sec. 3.1, the system with a
velocity profile can exhibit a steady state of the type ϕ(x, t) = Ωt+ψ(x), Eq. (3.13),
for time-independent parameters. An approximate solution for the case of weak
coupling can be obtained analogously to Eqs. (3.16) and (3.17) as

Ω = ω0 , (3.29)

ψ(x) =

∫ x

0

ω(x′)− ω0

v(x′)
dx′ . (3.30)

3.3.3—
Effects of local
growth on pattern
formation

Whether a position-dependent velocity profile of the type Eq. (3.28) substantially
affects pattern formation depends both on the shape of the velocity profile v and the
shape of the frequency profile ω. If the frequency profile does not significantly deviate
from its posterior value ω0 over the characteristic length over which the velocity
profile varies, it suppresses the effects of posterior growth on pattern formation. This
behavior is illustrated in Fig. 3.6, where steady state solutions of the phase profile ψ
for velocity fields with different µ are compared. For large µ (blue profile), the phase
profile only slightly deviates from that with a constant velocity (corresponding to
µ = ∞, gray profile) described by Eq. (3.1). For smaller values of µ (green and
yellow profiles), that is, for a longer range over which the velocity profile reaches
its plateau value v0, the number of kinematic waves in the presomitic mesoderm
increases. Formally, this can be seen by computing the number of kinematic wavesK,
Eq. (3.6), from the steady state result Eq. (3.30),

K =
1

2π

∫ a

0

ω0 − ω(x′)

v(x′)
dx′ . (3.31)

Since the velocity field v appears in the denominator of the integrand, smaller veloc-
ities tend to increase the number of kinematic waves.

3.4 Coupled Oscillators in a Medium of Changing Length

3.4.1—
Dynamic equation

In the previous sections, we have considered the length a of the presomitic meso-
derm to be constant during segmentation like many previous theories [5, 49, 93, 96],
with notable exceptions [23]. This simplification was useful to demonstrate the basic
mechanism of pattern formation and the effects of coupling delays and local growth
on pattern formation. However, experimental data show that the length of the pre-
somitic mesoderm substantially decreases during segmentation (see, e.g., Chapter 4,
Sec. 4.1.2). If our theory is to describe the dynamics of vertebrate segmentation as
observed in experiments, we have to go beyond the steady state scenarios investi-
gated in the previous sections. Hence, we further extend the theory presented in
Sec. 3.3 by taking into account the decreasing length of presomitic mesoderm. We
will apply the resulting theory specifically to segmentation in developing wildtype
zebrafish embryos.

We here consider a scenario in which the frequency, coupling, and velocity pro-
files scale with the decreasing length of the presomitic mesoderm; this simple pre-
scription regulates the length of the oscillating region in our theory. Hence, we replace
the constant length a of the presomitic mesoderm by a time-dependent length a(t)
and let the frequency, coupling, and velocity profiles inherit this time dependence
through their dependence on the relative position x/a(t), see Eqs. (3.2), (3.3), and
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(3.28). The dynamic equation for the phase is thus given by

∂ϕ

∂t
+ v(x/a(t))

∂ϕ

∂x
= ω(x/a(t)) +

ε(x/a(t))

2

∂2ϕ

∂x2
, (3.32)

where

ω(x/a(t)) = ω0Γ(x/a(t)) ,

ε(x/a(t)) = ε0Γ(x/a(t)) ,

v(x/a(t)) = v0∆(x/a(t)) ,

(3.33)

with the profile functions Γ and ∆ given in Table 3.1. We quantify the time-
dependent length a(t) of the presomitic mesoderm from experimental data on wild-
type zebrafish development in Chapter 4. We find that the presomitic mesoderm
shortens linearly, but with with two different speeds v1 and v2 in two different time
intervals, t < t∗ and t > t∗, where t∗ marks the time point of transition. To capture
this behavior, we introduce a function that smoothly interpolates between these two
shortening speeds (Sec. 4.1.2),

a(t) = a0 +
v1 + v2

2
t− v1 − v2

2
T ∗ log cosh

t− t∗

T ∗ , (3.34)

see Eq. (4.2) and Fig. 4.3A. Here, a0 is a constant length offset and T ∗ is time interval
over which the shortening speed changes from v1 to v2.

Fig. 3.7A shows a kymograph of a numerical solution to Eq. (3.32) with pa-
rameters given in Table 3.2. The decreasing length of the presomitic mesoderm is
apparent as is the change of the phase pattern over time. Hence, unlike the the-
ories considered in the previous sections, the theory Eq. (3.32) does not attain a
steady state of the type ϕ(x, t) = Ωt + ψ(x), Eq. (3.13), in which a kinematic wave
pattern repeats with a collective frequency Ω. Rather, the kinematic wave pattern
continuously changes during the evolution of the system.

This also implies that the system with decreasing tissue length is sensitive to
the choice of initial conditions as opposed to a system operating at a steady state.
Starting from zero initial conditions at time t = t0, Eq. (3.5), it takes a finite time
until a kinematic wave pattern builds up (see also Sec. 3.1.2). So far, experimental
data on the wave pattern and the presomitic mesoderm length in this initial transient
period are not available and it is outside the scope of the present theory to describe
the initiation of pattern formation in vivo. Instead, we here stipulate that the time
t = 0 corresponds to the formation of the 6th segment. To obtain an initial phase
pattern at t = 0, we use the following procedure: we start the system at time t0 < 0
with zero initial conditions, where the initial time t0 is a parameter. Furthermore, we
introduce a time t1 with t0 < t1 < 0 at which the length of the presomitic mesoderm
starts to evolve according to Eq. (3.34). For times t < t1, the presomitic mesoderm
remains at the constant size a(t1).

3.4.2—
Decreasing tissue

length induces a
Doppler effect

The absence of a steady state solution implies that the rate of segment formation
cannot simply be identified with a collective frequency Ω. Rather, we have to deter-
mine the local dynamic frequency ΩA at the moving arrest front, the anterior end
of the presomitic mesoderm. In Sec. 3.1.3, we have stipulated that this frequency is
identified with the rate of segment formation as the arrest front converts the phase
information into segment boundaries. A first hint of how these changed conditions
affect the frequency at the arrest front is given by Fig. 3.7. It shows that the arrest
front (transition point between blue and gray region) moves towards the posterior
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Figure 3.7 A. Kymograph of the oscillatory signal sinϕ(x, t) for a numerical solution to Eq. (3.32).
B. Kymograph of the oscillatory signal sinψ(x, t) of the phase profile, Eq. (3.38), for the same
system as in A. Only the presomitic mesoderm region, x < a(t), is shown. The parameters are
provided in Table 3.2. The color code is the same as in Fig. 3.3.

and hence travels into the kinematic waves as the length of the tissue decreases. This
behavior is reminiscent of a Doppler effect, in which the arrest front plays the role of
a moving observer traveling towards a wave-emitting source (Fig. 3.8). As in a clas-
sical Doppler effect, we thus expect that the frequency experienced by the moving
arrest front is larger than in the steady state scenarios considered before, where the
arrest front was not moving. To investigate whether this is the case, we study the
behavior of the phase ϕA at the arrest front and the phase ϕP at the posterior tip,
given by

ϕA(t) = ϕ(a(t), t) , (3.35)

ϕP(t) = ϕ(0, t) . (3.36)

Fig. 3.9A shows the time evolution of ϕA and ϕP. After the initial transient marked
by the shaded area, the steeper slope of the anterior phase ϕA indicates that the
frequency experienced by the moving anterior end is indeed faster than the posterior
dynamic frequency. This implies that the rate of segment formation, which we assume
to be equal to the anterior frequency, does not anymore solely depend on the time
scale of genetic oscillations, represented by the frequency profile ω. Rather, it now
depends on a second time scale, which is set by both the speed with which the tissue
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Figure 3.8 Schematic depiction of the Doppler effect induced by the decreasing tissue length. The
arrest front at the anterior end of the presomitic mesoderm (blue vertical line) moves into the
kinematic waves (gray curves) with speed da/dt. In addition, the wavelength of the kinematic
waves locally changes over time.

length decreases and the wavelength of the kinematic waves. To illustrate this, we
rewrite the anterior phase as

ϕA(t) = ϕP(t) + ψ(a(t), t) , (3.37)

where we have defined the time-dependent phase profile4

ψ(x, t) = ϕ(x, t)− ϕP(t) . (3.38)

The time evolution of the phase profile corresponding to the phase field ϕ in Fig. 3.7A
is shown in Fig. 3.7B. The anterior and posterior dynamic frequencies ΩA and ΩP

are given by

ΩA =
dϕA
dt

, (3.39)

ΩP =
dϕP
dt

, (3.40)

We obtain a relation between these frequencies by using Eq. (3.37) in Eq. (3.39),

ΩA = ΩP +ΩD +ΩW , (3.41)

where

ΩD =
da

dt

∂ψ

∂x

∣∣∣∣
x=a(t)

, (3.42)

ΩW =
∂ψ

∂t

∣∣∣∣
x=a(t)

. (3.43)

Eq. (3.41) reveals that the frequency ΩA at the arrest front is given by the posterior
frequency ΩP and two contributions that depend on the phase profile ψ. The con-
tribution ΩD is caused by the change of tissue length and accounts for the effects of
the arrest front moving towards the kinematic waves. It describes a Doppler effect

4Under steady state conditions considered in the previous sections, this definition of the phase profile
coincides with the one given by Eq. (3.13).
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Figure 3.9 A. Anterior phase ϕA (solid), Eq. (3.35) and posterior phase ϕP (dashed), Eq. (3.36),
as a function of time. B. The anterior frequency ΩA (solid black), Eq. (3.39), and its three
contributions as given by Eq. (3.41): the posterior frequency ΩP (dashed black), Eq. (3.40),
the Doppler contribution ΩD (green), Eq. (3.42), and the dynamic wavelength contribution ΩW

(blue), Eq. (3.43). The dotted gray lines show the analytical approximation Eq. (3.45) of the
anterior frequency ΩA in the respective time ranges. The parameters are provided in Table 3.2.
In both plots, the shaded areas mark the initial transient time to build up a kinematic wave
pattern (see main text).

in which da/dt is the speed of the moving observer (the arrest front) travelling into
a wave with wavelength 2π/(∂ψ/∂x). The contribution ΩW is caused by the change
of the phase profile ψ over time, which corresponds to a dynamic change of the kine-
matic wavelength. We therefore term this phenomenon ‘dynamic wavelength effect’.
In contrast to the theories considered before, the rate of segment formation now
depends on the spatial features of the kinematic wave pattern. Fig. 3.9B displays
these two contributions to the frequency ΩA at the arrest front. In Chapter 4, we
will show by comparison to experiments that these effects, a Doppler and a dynamic
wavelength effect, indeed occur during the segmentation of zebrafish embryos.

Eq. (3.41) is a kinematic relation that holds independent of any dynamic theory.
We now use the dynamic equation (3.32) to derive an explicit relation between ante-
rior and posterior frequency. For this purpose, it is instructive to further exploit the
analogy to the Doppler effect. In a classical simple Doppler effect, a source emits dy-
namic waves with a constant frequency Ωsource and wavelength λ = c ·Ωsource, where
c is the speed of wave propagation in the medium. The frequency Ωobs perceived by
an observer moving towards the source with constant speed vobs is given by

Ωobs = (1 + γ)Ωsource , (3.44)

where γ = vobs/c. A similar relation between the anterior and posterior frequen-
cies ΩA and ΩP can be derived for a linearly decreasing tissue length, a(t) = a0−v∗t,
where v∗ is the speed with which the tissue shortens. The derivation of this relation
is provided in Appendix D. The result is given by

ΩA ≃ (1 + γ)(1− η)ΩP , (3.45)
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where

γ =
v∗
v0

, (3.46)

η =

∫ 1

0

γ

(1 + γξ)2
ω(ξ)

ω0
dξ . (3.47)

Eq. (3.45) is independent of time even though a(t) is not and thus neither the fre-
quency, coupling, and velocity profiles. The term 1 + γ describes a Doppler effect
analogous to Eq. (3.44), where v∗ corresponds to the speed of the moving observer
(the arrest front) and v0 corresponds to the speed of wave propagation in the medium
(the advective speed due to cell flow). The term 1 − η appears in addition to the
Doppler effect and describes the effects caused by the change of the phase profile,
which itself depends on the relative shortening rate γ and the frequency profile ω.
Since η > 0, this term presents a contribution that opposes the Doppler effect.

Since Eq. (3.34) for the length a(t) of the presomitic mesoderm describes two
temporal regions t < t∗ and t > t∗, in which a(t) decreases linearly with rates v∗ =
v1 and v∗ = v2, respectively, Eq. (3.45) can be used for each of these regions to
approximate the anterior frequency ΩA. The result is displayed in Fig. 3.9B as
dotted gray lines in the respective temporal regions and demonstrates the validity of
Eq. (3.45).

3.5 Coupled Oscillators Interacting with Morphogens

The theories introduced in the previous sections account for the decreasing tis-
sue length through the explicit time dependence of the length a(t) of the presomitic
mesoderm and the dependence of frequency, coupling, and velocity profiles on a(t).
However, how the length of the presomitic mesoderm is controlled in the embryo
is not understood. We expect that a combination of biochemical and mechanical
mechanisms leads to a self-organized shortening of the tissue during segmentation.
To complement this study, we here propose a hypothetic mechanism that is able
to dynamically generate this length decrease in a self-organized way. In Chapter 1,
we introduced several morphogen gradients, which distribute spatial information
throughout the presomitic mesoderm (Sec. 1.2.3): The morphogens Wnt and FGF
(fibroblast growth factor) are expressed in the posterior and form a gradient towards
the anterior, while RA (Retinoic Acid) forms an opposing gradient with highest lev-
els in the formed segments (Fig. 3.10A). Our theory will thus be based on posteriorly
and anteriorly located morphogen gradients that interact with each other and the
oscillators to dynamically generate a time-dependent frequency gradient and short-
ening of the tissue.

3.5.1—
Dynamic equations

In our theory, a morphogen Q is produced in an extended domain in the posterior
region of the presomitic mesoderm. A morphogen R is produced in the entire seg-
mented region with enhanced production in the formed segments. Both morphogens
are subject to advection, diffusion, and decay. Moreover, they degrade each other.
The presomitic mesoderm is defined as the region in which the level of Q is above
a defined threshold value Q∗, the segmented region is located where Q is below this
value. The morphogens interact with the oscillator dynamics through the frequency
profile ω and the coupling profile ε, which are directly proportional to the level of Q.
Furthermore, the level of Q sets the local growth rate ∂v/∂x in the system. Hence,
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Figure 3.10 A. Location of morphogen gradients in the presomitic mesoderm and the formed seg-
ments. The morphogens Wnt and FGF (fibroblast growth factor) are expressed in the posterior
and form a gradient towards the anterior, while RA (Retinoic Acid) forms an opposing gradient
with highest levels in the formed segments. Figure adapted from Ref. [102]. B. Interaction
scheme of the components of the theory Eqs. (3.48–3.50).

in contrast to the theories considered before, no functional forms for frequency and
velocity fields need to be prescribed. The interaction scheme of the theory is sum-
marized in Fig. 3.10B. The dynamic equations for the morphogen levels Q(x, t) and
R(x, t) and the phase field ϕ(x, t) are given by5

∂Q

∂t
+

∂

∂x
(vQ) = αJ(x) + E

∂2

∂x2
Q− (h0 + h1R)Q , (3.48)

∂R

∂t
+

∂

∂x
(vR) = (β1X(ϕ) + β0)1Q<Q∗ +D

∂2

∂x2
R− (k0 + k1Q)R , (3.49)

∂ϕ

∂t
+ v

∂

∂x
ϕ = ω + ε

∂2

∂x2
ϕ . (3.50)

Here, α and β0 are basal production rates for Q and R, respectively, β1 is the
production rate of R in the formed segments, J(x) = 10<x<x0 is a source function of
Q with x0 being the spatial extension of the source and 1 an indicator function being
1 where the condition in the subscript is fulfilled and 0 elsewhere. Furthermore, D
and E are diffusion constants, h0 and k0 are decay rates, h1 and k1 indicate the
degree of mutual degradation of the two morphogens, and

X(ϕ) =
1 + cosϕ

2
(3.51)

is the oscillatory signal associated to the phase ϕ, which satisfies 0 < X(ϕ) < 1.
The dependence of the production rate of R on X(ϕ) in the region where Q < Q∗

mimicks production in the center of the formed segments.
At each point in time, the local growth rate is given by

∂v

∂x
= κQ (3.52)

with boundary condition v|x=0 = 0, where κ is a proportionality constant. The
morphogen Q also controls the frequency gradient ω and the coupling gradient ε
according to

ω = ω0Q/Q0 , (3.53)

ε = ε0Q/Q0 , (3.54)

5Note that, while the phase equation (3.50) is formally similar to the reaction–diffusion equa-
tions (3.48) and (3.49), the interpretation of the dynamics in terms of a coarse-grained oscillator system
with coupling is crucially different. See Sec. 3.1.1 for details.
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where Q0 is a reference level for Q. For the morphogens, we consider no-flux bound-
ary conditions at the posterior tip x = 0,

∂Q

∂x

∣∣∣∣
x=0

=
∂R

∂x

∣∣∣∣
x=0

= 0 , (3.55)

and open boundary conditions for the phase field,

∂ϕ

∂x

∣∣∣∣
x=0

= 0 . (3.56)

The position a(t) of the anterior end of the presomitic mesoderm is defined as the
point where the level of Q reaches the threshold level Q∗,

Q(a(t), t) = Q∗ . (3.57)

To simplify the model, we nondimensionalize all quantities such that α = E =
h0 = 16. As initial condition, we consider a steady state of both morphogens in the
absence of phase dynamics (β1 = 0), in which there is a posteriorly located profile of
Q that decays in anterior direction and an anteriorly located profile of R that decays
in posterior direction (example shown in Fig. 3.11, t = 0). We then let the system
evolve with the initial condition ϕ|t=0 = 0 for the phase field.

The effects of a single morphogen gradient controlling the frequency and length
of the presomitic mesoderm have been studied earlier, however with an explicit time
dependence of the morphogen production rate [23], which we avoid here. Reaction-
diffusion models of interacting morphogens coupled to a clock with static period have
attempted to describe somitogenesis without explicitly accounting for the dynamics
of oscillators [14, 15]. Furthermore, reaction-diffusion models similar to Eqs. (3.48)
and (3.49) without coupling to an oscillator field have been used to study the inter-
action of Fgf and Retinoic Acid (RA) gradients [13].

3.5.2—
Steady states of

morphogen gradients

The full model, Eqs. (3.48–3.54), in which the three components Q, R, and ϕ are
coupled, is nonlinear and difficult to treat analytically. The nonlinearities arise from
the mutual degradation of the morphogens and the dependence of the velocity field
on the level of Q. However, it is possible to decouple the dynamics the morphogens
using simplifying assumptions and obtain analytical approximations of their steady
state distributions, characterized by ∂Q/∂t = 0 and ∂R/∂t = 0. Even though the full
model never exhibits such decoupled steady state distributions, these approximations
provide useful insights on how parameters affect the overall shape of the gradients
and facilitate the choice of parameters. We present these approximations together
with detailed derivations in Appendix E.

3.5.3—
Self-organized
segmentation

We now illustrate that the system proposed here is capable of describing segmen-
tation and length decrease of the presomitic mesoderm in a self-organized way. To
this end, we numerically solve Eqs. (3.48–3.54) with the initial and boundary condi-
tions specified in Sec. 3.5.1 and the parameters specified in Table 3.3. Fig. 3.11 shows
snapshots of the system for different time points. Fig. 3.12 shows the system’s time
evolution in a kymograph representation as used earlier. Since the initial posterior
profile of the morphogen Q corresponds to a frequency profile through Eq. (3.53),
a kinematic wave pattern builds up (Fig. 3.11, t = 0.5) by the basic mechanism
described in Sec. 3.1. As soon as these waves leave the presomitic mesoderm, that

6This is accomplished by rescaling time, space, and morphogen levels according to t → t/T̄ , x → x/L̄,
Q → Q/C̄, and R → R/C̄ with T̄ = 1/h0, L̄ = (E/h0)1/2, and C̄ = α/h0.
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Figure 3.11 Snapshots of numerical solutions to Eqs. (3.48–3.54). For each point in time, the
lower panel shows the oscillatory signal X(ϕ) (black, values indicated by left axis), and the
morphogen levels of Q (green) and R (red) (values indicated by right axis). The vertical gray
line marks the anterior end of the presomitic mesoderm, x = a(t), with a(t) determined by
Eq. (3.57). The upper panels show density plots of the phase field in the same representation
as in Fig. 3.2. Space and time are specified in dimensionless units (see main text).

is, as they enter the region where Q < Q∗, they locally enhance the production of
the morphogen R according to Eq. (3.49) (Fig. 3.11, t = 1). Since R degrades Q,
the thus increasing levels of R lead to an enhanced decay of Q in the vicinity of
the arrest front (at Q = Q∗) and the profile of Q retreats towards the posterior
(Fig. 3.11, t = 2). Consequently, the presomitic mesoderm shortens as the region
where Q > Q∗ becomes smaller. Eventually, the region vanishes after the system has
produced a finite number of segments (Fig. 3.11, t = 8).

Therefore, the theory introduced here can account for the length decrease of
the presomitic mesoderm through its internal dynamics. Moreover, it presents a
hypothetic mechanism that dynamically terminates the segmentation process after
a finite number of segments.
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Figure 3.12 A. Kymograph of the oscillatory signal X(ϕ). The color code is the same as in
Fig. 3.11. B. Kymograph of the relative morphogen levels Q (green) and R (red) for the same
system as in Fig. 3.11. Bright colors correspond to high morphogen levels, dark colors correspond
to low morphogen levels. Space and time are specified in dimensionless units (see main text).

3.6 Summary

In this chapter, we have introduced a continuum theory of coupled phase oscil-
lators in a dynamic medium and applied it to describe the dynamics of vertebrate
segmentation. We first described the basic mechanism of pattern formation using
a simplified steady state description of the presomitic mesoderm. We then succes-
sively included the effects of biologically relevant factors such as coupling delays due
to complex signaling, local growth, and decreasing tissue length and studied their
effects on the spatio-temporal kinematic wave patterns and segment formation. We
found that coupling delays can have a profound impact on pattern formation and
yield different wave patterns for the same collective frequency. Concerning local
growth, we found that it only has a minor impact on pattern formation if growth
is restricted to the posterior region, where the frequency profile is almost flat. The
most profound effects on pattern formation and the timing of segmentation were
found when introducing a decreasing tissue length to our theory. The decreasing
tissue length causes a Doppler effect as the anterior end of the tissue moves into the
kinematic waves of gene expression. This effect introduces a new time scale, which
contributes to the rate of segment formation. The Doppler effect is accompanied by
a second effect, the dynamic change of the pattern wavelength, which contributes to
the rate of segment formation on equal footing. This prediction will be compared



3.6 SUMMARY 71

with experiments in Chapter 4.
To complement this study, we proposed a hypothetic mechanism of interacting

morphogens and phase oscillators that describes segmentation and the decreasing
tissue length in a self-organized way without explicit time dependence of the pa-
rameters. We showed that this theory is able to dynamically account for the length
decrease of the presomitic mesoderm through the interplay of opposing morphogen
gradients and the oscillator dynamics. The proposed mechanism leads to a termi-
nation of the segmentation process after a finite number of segments. Moreover, we
derived analytical approximations for the steady state distributions of the morphogen
gradients in the presence of self-interactions (Appendix E).
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Parameters and Symbols used in Chapter 3

PROFILE FUNCTION SHAPE PARAMETERS USAGE

Γ(ξ) =
1− tanh(κ1ξ − κ0)

1 + tanhκ0
κ1, κ0

frequency and coupling profile,
Eqs. (3.2) and (3.3)

1 2
Ξ0

1

2

1

G

∆(ξ) = 1− e−µξ µ velocity profile Eq. (3.28)

1 2
Ξ0

1

2

1

D

Table 3.1 Profile functions for the frequency, coupling, and velocity profile. The plots show
examples with shape parameters given in Table 3.2.

PARAM. UNIT VALUE SEC.

ω0 T−1 0.205 maximum frequency 3.1
ε0 L2T−1 7 coupling strength
v0 LT−1 0.78 relative velocity in the segmented region
κ0 1 3.8 shape parameter of profiles
κ1 1 4.7 shape parameter of profiles
a L 465 length of the presomitic mesoderm
t0 T 0 time to start with zero initial conditions

µ 1 1.8 shape parameter of the velocity profile 3.3

a0 L 465 offset length of the presomitic mesoderm 3.4

v1 LT−1 1.00 speed of tissue shortening for t < t∗

v2 LT−1 0.28 speed of tissue shortening for t > t∗

t0 T −620 time to start with zero initial conditions
t1 T −250 time at which the tissue starts to shorten
t∗ T 370 time point of transition between shortening rates
T ∗ T 57 size of the transition region

Table 3.2 List of parameters and numerical values used in this chapter. Using the theory pre-
sented in Sec. 3.4, this parameter set describes segmentation in wildtype zebrafish embryos. See
Chapter 4 for details on how this parameter set was obtained. The physical units are T = 1min
and L = 1µm.
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PARAM. UNIT VALUE

MORPHOGEN Q

α NT−1 1 production rate
x0 L 2 spatial extension of the source
h0 T−1 1 decay rate
h1 N−1T−1 300 degradation rate
E L2N−1T−1 1 diffusion constant
Q∗ N 0.05 threshold level for arrest front position
Q0 N 0.7 reference level

MORPHOGEN R

β0 NT−1 0.5 basal production rate
β1 NT−1 3 additional production rate in formed segments
k0 T−1 5 decay rate
k1 N−1T−1 40 relative rate of degradation by Q
D L2N−1T−1 0.5 diffusion constant

PHASE FIELD ϕ

ω0 T−1 20 ratio between frequency and level of Q
ε0 L2T−1 0.06 ratio between coupling strength and level of Q

VELOCITY FIELD v
κ N−1T−1 0.4 ratio between growth rate and level of Q

Table 3.3 List of parameters and numerical values used in Sec. 3.5. Here, T is the unit of time, L
is the unit of length, and N is the unit of morphogen concentration. Note that the column ‘Unit’
indicates the physical units of the respective parameter while the column ‘Value’ indicates its
value in the nondimensionalization scheme introduced in Sec. 3.5.1.

LIST OF SYMBOLS

x position variable, distance from the posterior tip
t time
ϕ phase field
ψ phase profile
a length of the presomitic mesoderm
ξ dimensionless position variable
ω frequency profile
ε coupling profile
v velocity profile
k growth profile
u velocity field of kinematic waves
Ω collective frequency
T collective period
K number of kinematic waves in the presomitic mesoderm
N total number of formed segments
S length of segments upon formation
tF time point of segment formation
x∗ position of a point with constant phase ϕ∗
λ local wavelength of kinematic waves
ϕA phase at the arrest front
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ϕP phase at the posterior tip
ΩA frequency at the arrest front
ΩP frequency at the posterior tip
ΩD Doppler frequency contribution to ΩA

ΩW Change of phase profile contribution to ΩA

γ ratio of shortening speed and advective speed
η dimensionless quantity describing effects of changing frequency profile
Q morphogen level of posteriorly expressed morphogen
R morphogen level of anteriorly expressed morphogen
X oscillatory signal associated to the phase ϕ
J source function
1 indicator function, equivalent to the Heaviside Theta function,

1x>y = Θ(x− y)
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Chapter 4

Quantitative Biology of
Vertebrate Segmentation

In this chapter, we quantify the key features of vertebrate segmentation from exper-
iments with zebrafish embryos performed by our collaborators. We determine the
morphological changes of the segmenting tissue over time and quantify the spatio-
temporal wave patterns of gene expression. We compare this experimental data with
theoretical predictions from the theory introduced in Chapter 3 and report a Doppler
effect in embryonic pattern formation caused by the decreasing tissue length as pre-
dicted by our theory.

4.1 Tissue Shortening and Tissue Deformation

In this section, we quantify the time evolution of the presomitic mesoderm length
and the velocity field in the segmented region in zebrafish embryos from experimental
data. We use the results to parametrize the presomitic mesoderm length and the
velocity field in the theory presented in Chapter 3.

4.1.1—
Analysis of brightfield
time-lapse movies

The experimental data quantified here is a brightfield time-lapse movie of a seg-
menting wildtype zebrafish, published by Schröter et al. in Ref. [128] as Supplemen-
tary Movie 3. For each frame of the movie, we define a one-dimensional coordinate
system whose origin is the tailbud tip and which points in anterior direction along the
body axis (Fig. 4.1A). We then obtain the gray values along this axis for each frame,
which allows us to locate the segment boundaries and to measure the length of the
presomitic mesoderm at each point in time. This procedure yields the kymograph
Fig. 4.2A, which shows the profile of gray values along the body axis as a function
of time1. Dark gray lines indicate the motion of segment boundaries relative to the
posterior tip. The time evolution of the position of the segment boundaries appear
as ‘world lines’ indicating their motion away from the posterior tip.

4.1.2—
Time evolution of the
presomitic mesoderm
length

The time-dependent length of the presomitic mesoderm can be obtained by
manually tracking the position where new segment boundaries appear (examples
shown by white dots in Fig. 4.2A). This reveals that the time evolution of the length
has a piecewise linear behavior (Fig. 4.3). We quantify this behavior by constructing
a fit function a(t) that smoothly interpolates between the two linear speeds v1 and
v2 with which the tissue shortens. We here choose a hyperbolic tangent as a smooth

1For the time-lapse movie in Ref. [128], there is no scale available which would allow a direct identi-
fication of pixels and physical length units. However, from a comparison of the reported segment length
upon formation with the length of segments in the movie, we estimate that one pixel in the movie
corresponds to 2 µm.
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A. BRIGHTFIELD CHANNEL B. YFP CHANNEL

Figure 4.1 Embryonic coordinate system in the reference frame comoving with the posterior tip of
the presomitic mesoderm, cf. Fig. 3.1. A. Zebrafish embryo (looping line) during segmentation
in the brightfield channel. Brightfield images are used to define the coordinate system, using
the visible features such as the notochord (see also Fig. 1.3) as a guide. B. The same embryo as
in the left image but in the YFP channel. [Images courtesy of Daniele Soroldoni.]

step function, which interpolates between the two shortening speeds,

da

dt
= −v1 −

v2 − v1
2

(
1− tanh

t− t∗

T ∗

)
, (4.1)

where t∗ is the transition point between the two rates and T ∗ characterizes the time
interval of transition. Hence, the fit function a(t) is given by

a(t) = a0 −
v2 + v1

2
t− v2 − v1

2
T ∗ log cosh

t− t∗

T ∗ . (4.2)

The resulting fit is shown as solid black line in Fig. 4.3A and the corresponding fit
parameters are provided in Table 4.1. We use these quantified values as parameters
for our theory of vertebrate segmentation presented in Chapter 3, see Table 3.2.

4.1.3—
Velocity profile in the

segmented region

In Fig. 4.2A, dark gray lines indicate the motion of the segment boundaries away
from the posterior tip. The slope of these ‘world lines’ corresponds to the speed of
the segment boundaries relative to the posterior tip and thus contains information
about the velocity field in the segmented region. To track the motion of the seg-
ment boundaries systematically, a peak-finding and tracking algorithm for the gray
level was developed2. The resulting traces of the segment boundaries are shown in
Fig. 4.2C.

2This algorithm discriminates the segment boundaries from the interior of the segments and the
presomitic mesoderm in Fig. 4.2A as follows. For each horizontal time slice in Fig. 4.2A, the intensity
signal is smoothed with a moving average of width 6 pixels. Subsequently, the local intensity minima,
which correspond to the positions of the segment boundaries, are determined with a peak-finding algo-
rithm. The result is shown in Fig. 4.2B. In the next step, nearby points are connected to obtain time
series of the segment boundaries’ positions. This is accomplished by starting at the latest point in time
(t = 1000min) and using the positions of the corresponding points as starting values for the boundary
traces. We then go back in time and successively connect points that are within a window of 14 pixels
around the last point of the respective trace. Spurious traces are removed by hand. The resulting traces
are shown in Fig. 4.2C.
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Figure 4.2 A. Intensity kymograph obtained from a time-lapse microscopy movie of zebrafish seg-
mentation published by Schröter et al. [128]. The x-axis marks the distance along the coordinate
system illustrated in Fig. 3.1. White dots are examples of points where segment boundaries are
formed, marking the anterior end of the presomitic mesoderm. B. Algorithmically determined
point set of local intensity minima indicating the position of segment boundaries. C. Sets of ad-
jacent points were algorithmically grouped to obtain separate traces for each segment boundary
(different colors indicate different boundaries). The dashed line marks the time point t = t∗∗

where the slope of the curves changes.
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Figure 4.3 A. The time evolution of the presomitic mesoderm length a (black dots) and a fit to
Eqs. (4.2) (solid line) with parameters in Table 4.1. (See Sec. 4.1.2 for details.) B. The velocity
profile as a function of time in the two temporal regions t < t∗∗ (dark dots) and t > t∗∗ (bright
dots). The curves show the phenomenological function (4.3) for the respective temporal region
with parameters listed in Table 4.2. (See Sec. 4.1.3 for details.)

PARAM. UNIT VALUE NV

ϑ ◦C 27.4 temperature at which movie was taken [128]

t∗ min 569 370 time point of transition between v1 and v2
T ∗ min 57 length of transition time interval
a0 µm 594 465 offset length of the presomitic mesoderm
v1 µmmin−1 1.00 shortening speed for t < t∗

v2 µmmin−1 0.28 shortening speed for t > t∗

Table 4.1 Parameters of a fit of the function a(t), Eq. (4.2), to the quantified length of the
presomitic mesoderm over time (Fig. 4.3). The column ‘NV’ indicates the normalized value
obtained from requiring that t = 0 corresponds to the formation of the 6th segment (t ≃ 200min
in the movie). This convention is used in Chapter 3, Sec. 3.4. A blank entry means that the
normalized value is the same as the one indicated in the ‘Value’ column.

PARAM. UNIT VALUE

t∗∗ min 850 time point of transition between velocity profiles

REGION t < t∗∗

v<0 µmmin−1 0.78 reference velocity
k<0 min−1 0 asymptotic growth rate
x<1 µm 150 length of transition region

REGION t > t∗∗

v>0 µmmin−1 0.18 reference velocity
k>0 min−1 5× 10−4 asymptotic growth rate
x>1 µm 75 length of transition region

Table 4.2 Parameter sets for Eq. (4.3) to phenomenologically describe the velocity fields quanti-
fied from experimental data (Fig. 4.3).
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At time t = t∗∗ ≃ 850min (dashed line in Fig. 4.2C), a change in the slope of
the world lines can be observed. Within the regions t < t∗∗ and t > t∗∗, the slopes
of the world lines are approximately constant. For each segment boundary and for
each of the two regions t < t∗∗ and t > t∗∗, we perform a linear fit of the boundary
position over time to determine its velocity. To obtain a velocity profile, we compute
the average position of each segment boundary in each of the two regions t < t∗∗ and
t > t∗∗ and assign the velocity of the corresponding boundary to it. In this way, we
obtain one velocity profile for each of the two temporal regions (dots in Fig. 4.3B).

We capture the features of these two velocity profiles by phenomenological func-
tions. Since the velocity profile within the presomitic mesoderm is inaccessible with
the available dataset, we make an assumption about its behavior. We here assume
that the velocity in the direction of the body axis vanishes at the posterior tip, which
marks the tissue boundary, and gradually increases towards the anterior,

v(x) = (1− e−x/x1)v0 + k0x . (4.3)

Here, x1 is the characteristic length over which the velocity increases to a finite value
in anterior direction, v0 is a reference velocity and k0 is an asymptotic linear growth
rate. This velocity field corresponds to a growth field

k(x) =
dv

dx
= k0 +

v0
x1

e−x/x1 . (4.4)

Hence, the velocity field (4.3) describes large growth in the posterior and decreasing
growth towards the anterior. The growth rate k approaches the constant k0 for
large x. For the case k0 = 0, the velocity v, Eq. (4.3), approaches the constant v0
for large x. Instead of fitting Eq. (4.3) to the experimental data, which does not
yield satisfactory results as data points in the presomitic mesoderm region are not
available, we choose a phenomenological parameter set by hand. The corresponding
parameter sets for v(x) are given in Table 4.2, where the superscript ‘<’ denotes
the parameters for t < t∗∗ and ‘>’ those for t > t∗∗. The corresponding curves are
displayed in Fig. 4.3B along with experimental data (dots). We use the obtained
velocity field at early times (t < t∗∗) for our theory of vertebrate segmentation
presented in Chapter 3, see Table 3.2.

4.2 Wave Patterns of Gene Expression

In this section, we quantify experimental data on kinematic wave patterns of gene
expression obtained from the transgenic zebrafish reporter line looping, which has
been generated by our experimental collaborators3. We obtain a phase representation
of the spatio-temporal wave patterns in the presomitic mesoderm using a wavelet
transform as explained below. We use this phase representation to determine the key
features of the spatio-temporal wave patterns of gene expression from a population
of different embryos and compare them with the theoretical predictions of the theory
presented in Chapter 3. The research presented in this section is the result of a
highly collaborative effort and part of the results have been published [133].

3The Her1–YFP reporter line looping, which lays the ground for the experiments analyzed in this
section, was generated by Daniele Soroldoni in the research group of Prof. Andrew C. Oates at the MRC
National Institute for Medical Research, Mill Hill, London, UK, the University College London, UK,
and the Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany. DS also
generated the time-lapse movies and the intensity kymographs presented in this section and performed
the frequency measurements shown in Fig. 4.9C.
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Figure 4.4 A. Intensity kymograph showing the YFP flourescence signal. The x-axis indicates the
distance from the posterior tip in the coordinate system defined in Fig. 4.1. B. Phase map ϕ(x, t)
corresponding to the intensity kymograph in panel A, obtained using the procedure explained
in Sec. 4.2.2 and Appendix F. The plot shows sinϕ(x, t) in the same color code as used for
the kymographs of theoretical results in Chapter 3. (e.g., Fig. 3.7). C. Overlay of the intensity
kymograph A and the phase map B. Data also presented in Ref. [133].

4.2.1—
Imaging

gene expression
at tissue level

The transgenic zebrafish reporter line looping allows the visualization of oscil-
lating genes in the presomitic mesoderm. In this line, the cyclic gene her1 has been
tagged with yellow fluorescent protein (YFP), which emits light at a characteristic
wavelength upon exposure to laser light. It thus allows real-time imaging of genetic
oscillations in the presomitic mesoderm at tissue level in vivo [133]. Our experi-
mental collaborators generated time-lapse movies of segmenting transgenic zebrafish
embryos, imaging them in parallel in a brightfield channel (Fig. 4.1A) and a YFP
channel (Fig. 4.1B). To quantify the spatio-temporal patterns of gene expression at
tissue level, the Her1–YFP signal was recorded along the presomitic mesoderm in
the reference frame indicated in Fig. 4.1B (in analogy to the procedure explained in
Sec. 4.1). For each embryo, this procedure yields an intensity kymograph containing
the spatio-temporal dynamics of the kinematic wave patterns (Fig. 4.4A). The bright
ridges in Fig. 4.4A indicate the motion of the kinematic waves in anterior direction.

4.2.2—
Using a wavelet

transform to generate
phase maps

A systematic and robust way to construct a phase time series from an oscilla-
tory signal, is the wavelet transform, which is similar to a windowed Fourier trans-
form [30, 112, 143]. Consider a discrete time series Q = (q1, . . . , qn) sampled with
time interval δT, so that qk with k = 1, . . . , n is the signal at time point t = kδT.
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Figure 4.5 Phase profiles ψi, Eq. (4.9), from 18 different embryos (different shades of blue)
at different developmental times, obtained as described in Appendix F, Sec. F.2. The x-axis
indicates the distance from the posterior tip in anterior direction (Fig. 4.1). Data also presented
in Ref. [133].

The continuous wavelet transform of the time series Q is defined by

Wσ(k) = σ−1/2
n∑

j=1

qjΨ
∗
(
j − k

σ

)
. (4.5)

The parameter σ, called ‘wavelet scale’, is a dimensionless time scale whose inverse
σ−1 has a function similar to the frequency in a Fourier transform. The function
Ψ(u) is the so-called ‘mother wavelet’, a complex oscillatory function that quickly
decays for increasing |u|. Ψ∗ denotes its complex conjugate. Here we use the Gabor
wavelet function [159]

Ψ(u) = π−1/4e6iu−u2/2 , (4.6)

a complex plane wave damped by a Gaussian. The wavelet transform Wσ is a
complex function and can be expressed in terms of its magnitude and phase,Wσ(k) =
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Rσ(k)e
iφσ(k). The phase φσ can be interpreted as the phase of oscillation at the time

scale associated with σ [112],

φσ(k) = argWσ(k) . (4.7)

Hence, to obtain a viable phase signal, the wavelet scale σ has to be chosen close to
the characteristic period of oscillations of the time series Q. However, the resulting
phase signal φσ(k) is robust under small variations of the time scale σ.

By applying the wavelet transform to the oscillatory signal of each column of
a YFP intensity kymograph, we generate phase maps that represent the spatio-
temporal dynamics of the wave patterns (Fig. 4.4B). The details of this procedure
are presented in Appendix F and Ref. [133]. The effectivity of this approach can be
assessed by overlaying the generated phase maps with the original intensity kymo-
graph (Fig. 4.4C).

4.2.3—
Average phase map

In Fig. 4.5, we show the phase profiles

ψi(x, t) = ϕi(x, t)− ϕi(x, 0) (4.8)

from m = 18 different embryos (i = 1, . . . ,m) at different developmental times.
For each point in time, phase profiles from different embryos collapse to a remark-
able degree. This shows that the spatio-temporal patterns of kinematic waves are
well conserved throughout different embryos. Motivated by this observation, we
construct a representative phase map Φ(x, t) by averaging experimental data from
18 embryos. This average phase map Φ represents the key features of the spatio-
temporal wave pattern during segmentation. Details of the averaging procedure are
found in Appendix F. Likewise, we obtain the average time-dependent length A(t)
of the presomitic mesoderm.

Fig. 4.6 shows the features of the average phase map Φ in different repre-
sentations. Fig. 4.6A displays a kymograph of the corresponding oscillatory sig-
nal sinΦ(x, t), a representation introduced in Chapter 3 (see, e.g., Fig. 3.7). Fig. 4.6B
shows the oscillatory signal sinΨ(x, t) of the average phase profile

Ψ(x, t) = Φ(x, t)− Φ(0, t) . (4.9)

This representation reveals the changes in the overall shape of the wave pattern.
Fig. 4.6C shows the local wavenumber ∂Φ/∂x of the pattern. It shows that large
wavelengths (red) occur in the posterior while short wavelengths (blue) occur in the
anterior. Moreover, the wavelength locally changes over time. Fig. 4.6D shows the
local oscillation frequency ∂Φ/∂t and Fig. 4.6E the local rate of change ∂Ψ/∂t of the
average phase profile.
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Figure 4.6 A. Oscillatory signal sinΦ of the average phase map Φ. B. Oscillatory signal sinΨ of
the average phase profile Ψ(x, t) = Φ(x, t) − Φ(0, t). C. Local wavenumber ∂Φ/∂x in units of
µm−1. D. Local frequency ∂Φ/∂t in units of min−1. E. Local rate of change of the phase profile,
∂Ψ/∂t in units of min−1. Figures presented with minor modifications in Ref. [133].
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Figure 4.7 A. Number of formed segments N as a function of time in theory (black curve),
Eq. (3.9), and experiment (green dots). The dashed gray line shows a linear fit to the initial 10
segments highlighting the deviation from this linear behavior at later times. B. Segment length S
upon segment formation as a function of segment number in theory (black curve), Eq. (3.11),
and experiment (red dots). In both plots, the shaded area is the initial transient region, which
we ignore (see Sec. 4.3.1 for details). Experimental data in both plots from Ref. [128].

4.3 Comparison of Theoretical and Experimental Results

We use the experimentally obtained phase maps to show that the continuum
theory of coupled oscillators in a tissue of changing length, presented in Chapter 3,
Sec. 3.4, is capable of describing the key features of vertebrate segmentation. One
strategy would be to use the experimentally obtained phase maps to fit the parame-
ters of the theory, so that the theoretical results accurately reproduce the kinematic
wave patterns observed in experiments. However, such an approach would not test
the predictive power of our theory. Instead, we here choose to determine a parame-
ter set by only demanding that the theory correctly reproduces the experimentally
observed timing of segment formation and the length of the formed segments. To
determine such a parameter set, we fit the parameters of our theory using only ex-
perimental data on morphological segment formation, not on the kinematic wave
patterns. We then use this parameter set to obtain independent predictions for the
kinematic wave patterns and compare them with experiments.

4.3.1—
Morphological
segmentation

We first show how to determine the reference parameter set in Table 3.2 for
the continuum theory of coupled oscillators, presented in Chapter 3. This parame-
ter set describes the morphological segmentation dynamics of a developing wildtype
zebrafish embryo at a temperature of 27.4◦C as published in Ref. [128]. The pa-
rameter values for the time evolution of the presomitic mesoderm length (a0, v1,
v2, t

∗, T ∗) and the velocity field (v0, µ) have been determined in Sec. 4.1 from the
data in Ref. [128]. The coupling strength ε0 has been adopted from the literature,
estimated from experiments in which intercellular coupling has been temporarily in-
hibited [93, 117]. The remaining parameters are obtained as follows: In our theory,
the key features of morphological segmentation are represented by the number of
formed segments N(t) as a function of time, Eq. (3.9), and the segment length upon
formation S(n) as a function of segment number, Eq. (3.11). These observables have
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Figure 4.8 A. Number of kinematic waves K as a function of time, Eq. (3.6). Shaded area as
in Fig. 4.7. B. Number of kinematic waves K as a function of segment number as predicted by
theory (black), Eq. (3.12), as as quantified from experiments (blue dots), see Chapter 4, Sec. 4.2.
Experimental data also presented in Ref. [133].

been measured in experiments in Ref. [128]. We use an optimization algorithm4 that
fits the theoretical results for N(t) and S(n) to the corresponding experimental data
from Ref. [128] using the remaining model parameters (ω0, κ1, κ0, t0, t1) as fit pa-
rameters. Fig. 4.7 shows N(t) and S(n) for the parameters in Table 3.2 along with
experimental data.

With zero initial conditions, Eq. (3.5), there is an initial transient period, in
which the kinematic wave pattern builds up (see Sec. 3.1.2 for details). However, the
description of the initiation of pattern formation in vivo is outside the scope of our
theory. We thus ignore the behavior of the system in this initial transient period,
which is marked by shaded areas in Fig. 4.7. The number of formed segments N(t)
exhibits two regimes where it grows approximately linear but with different slopes
The change of the slope takes place at the time point t∗, where the speed of length
decrease of the presomitic mesoderm changes from v1 to v2. The theory also qualita-
tively captures the time evolution of the segment length S(n) upon formation. After
the initial transient, S reaches a maximum value at about 50µm and then decreases
to about 30µm.

4.3.2—
Kinematic wave
patterns

As outlined in the previous section, the reference parameters in Table 3.2 have
been obtained demanding that the theoretical result captures the timing and mor-
phology of segmentation in vivo. No experimental information about the wave pat-
terns of gene expression in the presomitic mesoderm have been used so far. Therefore,
the theoretical results on the dynamics of kinematic waves are testable predictions
that can be compared with experiments. An important observable is the number of
kinematic waves K in the presomitic mesoderm, Eq. (3.6), shown as a function of

4The optimization algorithm works as follows. An initial parameter set for the theory is chosen by
hand in a way that it qualitatively captures the experimentally observed behavior of N(t) and S(n).
Starting from this initial parameter set, the algorithm creates new parameter sets by adding random
numbers from Gaussian distributions with zero mean and chosen variance to the reference parameter
set. If such a randomized parameter set achieves a better agreement with the experimental data, the
parameter set is chosen as a new reference set. After a certain number of iterations, the algorithm only
leads to minor improvements and is aborted. To check for robustness of the resulting fit parameters,
the algorithm has been fed with different initial parameter sets and different variances of the Gaussian
distributions.
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time in Fig. 4.8A. After the initial transient, the number decreases from about 3 to
1.5, where it reaches a small plateau and then decreases more slowly. The plateau
occurs where the shortening speed of the presomitic mesoderm changes from v1 to
v2.

In Fig. 4.8B, we compare the theoretical prediction for the number of kinematic
waves (black curve) with experimental data (blue dots) from transgenic zebrafish
embryos. From the experimental phase maps (Sec. 4.2.2), the number K of kine-
matic waves over time can be obtained as the phase difference between the anterior
end and the posterior tip just as in the theory, Eq. (3.6). We compare the num-
ber of kinematic waves as a function of segment number instead of time for two
important reasons: First, the timing of segmentation in the transgenic embryos is
slightly different from that in wildtype embryos [133]. Second, we determined our
reference parameter set using experimental data obtained from wildtype embryos
segmenting at a temperature of 27.4◦C [128], while experiments with transgenic em-
bryos have been performed at 23.5◦C [133]. Since the segmentation period is heavily
temperature-dependent [128], a direct comparison of absolute times is not possible.
Hence, we determine the number Ki(n) of kinematic waves for each embryo i and for
each segment number n and averaged over all m = 18 embryos for each value n of
the segment number, K(n) = m−1

∑m
i=1Ki(n), shown by blue dots in Fig. 4.8B. The

error bars indicate the corresponding standard deviation. Fig. 4.8B shows that the
theory independently predicts the correct number of kinematic waves as a function
of segment number for the observed range of segments in experiments.

4.4 A Doppler Effect in Embryonic Pattern Formation

In Chapter 3, we theoretically predicted that the shortening of the presomitic
mesoderm induces a Doppler effect and a dynamically changing wavelength at the
anterior end of the tissue (Sec. 3.4). Since the wave pattern is converted into mor-
phological segments at the anterior end, this implied that in addition to the time
scale of genetic oscillations, the rate of segment formation depends on a second time
scale set by the rate of tissue shortening and the wavelength of the kinematic waves.
Using the experimental phase maps obtained in the previous section, we are able to
test this prediction in vivo.

4.4.1—
A Doppler effect and

a dynamic
wavelength effect

occur in vivo

The decrease of the number of kinematic waves over developmental time (Fig.
4.8B) is a first hint for the presence of a Doppler effect: Intuitively, as the anterior
end moves into the kinematic waves, waves are gradually ‘cut off’ from the anterior
part of the presomitic mesoderm (see also Fig. 3.8). In our theoretical considerations
in Chapter 3, Sec. 3.4, we found that the anterior frequency ΩA, that is, the frequency
of oscillations measured in a reference frame comoving with the anterior end of the
presomitic mesoderm, could be expressed as a sum of three contributions, Eq. (3.41),

ΩA = ΩP +ΩD +ΩW . (4.10)

Here, ΩP is the posterior frequency, Eq. (3.40), ΩD is the Doppler contribution,
Eq. (3.42), and ΩW is the dynamic wavelength contribution, Eq. (3.43). Note that
Eq. (4.10) is an exact kinematic relation that holds independent of any theory. This
equation implies that the anterior and the posterior frequency can only coincide if
either (i) there is neither a Doppler nor a dynamic wavelength effect, ΩD = 0 = ΩW,
or (ii) the contribution of Doppler and dynamic wavelength effect exactly compen-
sate, ΩD = −ΩW. Since the time derivative of the number K of kinematic waves,
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Figure 4.9 A. Experimentally determined posterior frequency ΩP (dashed) and anterior fre-
quency ΩA (solid), Eqs. (4.12) and (4.10). B. Contributions to the offset between posterior
and anterior frequency ΩP − ΩA = ΩD + ΩW (black): the Doppler contribution ΩD (green),
Eq. (4.13), and the dynamic wavelength contribution ΩW (blue), Eq. (4.14). C. Posterior fre-
quency ΩP (gray), anterior frequency ΩA (black), and frequency of segment formation ΩS (red)
as measured from 40 embryos. ΩA and ΩS coincide and are significantly larger than ΩP (t-test,
Welch correction, *** p < 0.0001). Data in panel C obtained by our collaborators. Data in all
plots also presented in Ref. [133].

Eq. (3.6), is proportional to the difference between posterior and anterior frequencies,

2π
dK

dt
= ΩP − ΩA = −(ΩD +ΩW) , (4.11)

the observed decrease of the number of kinematic waves, dK/dt < 0, immediately
rules out these two scenarios. Moreover, using the average phase map Φ, introduced
in Sec. 4.2.3, we can explicitly determine the frequencies ΩP, ΩD, and ΩW, given by
Eqs. (3.40), (3.42), and (3.43), from experiments as

ΩP ≃ ∂Φ

∂t

∣∣∣∣
x=0

, (4.12)

ΩD ≃ dA

dt

∂Ψ

∂x

∣∣∣∣
x=A(t)

, (4.13)

ΩW ≃ ∂Ψ

∂t

∣∣∣∣
x=A(t)

, (4.14)

where Ψ(x, t) is the average phase profile, Eq. (4.9), and A(t) is the average time-
dependent length of the presomitic mesoderm (Sec. 4.2.3). The anterior frequency ΩA

is given by the exact relation (4.10). Fig. 4.9 displays these contributions to the an-
terior frequency. Fig. 4.9A shows that the anterior frequency is in fact larger than
the posterior frequency on average as already indicated by the decreasing number
of kinematic waves. Fig. 4.9B reveals that the Doppler effect due to the decreas-
ing tissue length indeed yields a positive contribution ΩD > 0, while the changing
wavelength at the anterior end yields a negative contribution ΩW < 0. Hence, the
Doppler effect and the dynamic wavelength effect oppose each other as predicted by
our theory (Sec. 3.4.2). Over most of the time range, the magnitude of the Doppler
contribution is larger, which yields a positive contribution to the anterior frequency
on average.

Fig. 4.10 displays the Doppler effect and the dynamic wavelength effect and
their combination schematically in a kymograph representation. In a classical simple
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Figure 4.10 Schematic kymograph representations of a pure Doppler effect (A), a pure dynamic
wavelength effect (B), and their interplay as observed during the segmentation of zebrafish
embryos (C). Gray lines indicate the motion of wave peaks traversing the spatial domain. Thick
black lines indicate two different observers (solid and dashed). Figure presented with minor
modifications in Ref. [133].

Doppler effect (Fig. 4.10A), a source emits waves (motion of wave peaks indicated
by gray lines) with a constant period and wavelength (blue lines). The slope of the
gray lines indicates the propagation speed of the waves. For an observer at rest
with respect to the source (dashed black line), the observed period coincides with
the period of emission at the source. An observer moving towards the source (solid
black line), experiences a smaller period (higher frequency) as more wave peaks are
crossed in the same time interval. In a pure dynamic wavelength effect (Fig. 4.10B),
both observers are at rest but the wavelength decreases locally in the vicinity of
one observer, leading to a larger period (smaller frequency) compared to the other
observer. In the zebrafish embryo, both effects combine and oppose each other, with
the Doppler effect having the larger magnitude (Fig. 4.10C).

4.4.2—
The anterior

frequency coincides
with the rate of

segmentation

It remains to show that the anterior frequency ΩA indeed coincides with the
rate of morphological segment formation. The rate of segment formation can be ob-
tained from the brightfield channel (Fig. 4.1A) of the time-lapse movies obtained for
each embryo by measuring the times at which new segment boundaries are drawn.
Fig. 4.9C shows the posterior frequency ΩP, the anterior frequency ΩA, and the
frequency of segment formation ΩS as measured from 40 embryos by our collabo-
rators. As described above, the anterior frequency ΩA is larger than the posterior
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frequency ΩP. The relative offset between both frequencies is 9%. Moreover, the
anterior frequency ΩA indeed coincides with the frequency of segment formation ΩS.
We thus conclude that in addition to the time scale of genetic oscillations, a sec-
ond time scale, which stems from a Doppler effect and a dynamic wavelength effect,
regulate the rate of morphological segment formation.

4.5 Summary

In this chapter, we quantified experimental data on vertebrate segmentation
obtained by our collaborators and compared them with theoretical predictions. First,
we quantified the time-dependent length of the presomitic mesoderm and the velocity
field in the segmented region from data published in Ref. [128] to determine an
appropriate parameter set for the theory presented in Chapter 3. We then used the
resulting theoretical predictions on the kinematic wave patterns to independently
test the viability of our theory. To this end, we quantified the spatio-temporal
patterns of kinematic waves obtained from transgenic zebrafish lines obtained by
our collaborators. We used a wavelet transform to construct a phase representation
of these wave patterns, which allowed us to systematically compare the patterns of
different embryos, to extract the observables of interest, and to compare experimental
with theoretical data. We found that the number of kinematic waves substantially
decreases as a function of segment number and that this decrease is captured very
well by our theory.

Moreover, the theory presented in Chapter 3 described the occurrence of a
Doppler effect, which is caused by the anterior end of the tissue moving into the
kinematic waves. This Doppler effect was accompanied by a dynamic change of the
wavelength in the vicinity of the anterior end and contributed to the rate of segmen-
tation. Using our experimental phase maps, we found that such a Doppler effect
and a dynamic wavelength effect indeed occur in vivo. We quantified the magnitude
of these effects and found that they induce a 9% offset between the posterior and
anterior oscillation frequency. Moreover, using data obtained by our collaborators,
we showed that the anterior frequency coincides with the rate of segment formation.
We thus concluded that in addition to the time scale of genetic oscillations, a second
time scale, which stems from a Doppler effect and a dynamic wavelength effect, reg-
ulate the rate of morphological segment formation. The research presented in this
chapter is the result of a highly collaborative effort and part of the results have been
published [133].
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Chapter 5

Cell-based Model of
Self-organized Segmentation

In this chapter, we present a cell-based computational model of vertebrate segmenta-
tion that combines tissue growth, morphogen gradient formation, coupled oscillations,
and cell differentiation. We show that this model is capable of describing a growing
tissue that segments in a self-organized way. Our model provides a starting point to
study the interplay of cellular oscillation dynamics and tissue mechanics in a unified
framework.

5.1 Cell-based Model with Dissipative Particle Dynamics

To complement the coarse-grained continuum theories presented in the previous
chapters, we introduce a computational model in which the single cells of the pre-
somitic mesoderm are distinct mechanical entities that interact with each other. We
show that simple mechanisms of cell growth, division, and differentiation, together
with morphogen production and coupled oscillations, are sufficient to generate a
growing tissue that exhibits self-organized segmentation. Over the last years, several
approaches to describe the properties of tissues using cell-based models have been
developed [16, 20, 104, 114, 122, 124]. We here adapt and modify a cell-based tissue
model developed by Basan et al. [16], which itself is based on dissipative particle
dynamics [59]. Dissipative particle dynamics is a computational model for hydro-
dynamic simulations that represents fluid elements as particles. The particles are
Newtonian mass points subject to pairwise repulsive, adhesive, dissipative and ran-
dom forces. For their cell-based tissue model, Basan et al. represent a cell of a tissue
by a pair of particles instead of a single particle. The interactions between parti-
cles belonging to such a pair determine the dynamics of cell growth and division.
The interactions between particles belonging to different cells determine the cell-cell
interactions and thus the collective behavior of the resulting tissue. We favor this
cell model over simpler approaches since events like cell division, cell elongation,
and mechanical feedback of surrounding cells can be implemented in a simple and
conceptually clear manner.

We extend this model by equipping each cell with a phase variable that repre-
sents the state of its genetic oscillator and let the phases of the cells be subject to
coupled dynamics with coupling delays. Furthermore, each cell is able to express a
morphogen, which diffuses through the tissue. The morphogen concentration in a cell
sets the frequency of the cell-autonomous oscillator and determines when cell differ-
entiation takes place. Different cell types are implemented through their individual
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mechanical properties. The interplay of these mechanisms of tissue growth, mor-
phogen production, oscillator dynamics, and cell differentiation leads to a separation
of cell clusters that correspond to formed segments, as we will show later.

5.1.1—
State space

The central entities of the model are the particles and the cells that they con-
stitute. We now give formal definitions.

• Particle. A particle is a Newtonian mass point. Hence, its state is specified by
the 6-tuple

P = (x,v) = (x1, x2, x3, v1, v2, v3) , (5.1)

where x = (x1, x2, x3) is its position and v = (v1, v2, v3) is its velocity. All
particles have the same mass m. Particle indices are denoted by latin letters
i, j, . . ., e.g., Pi = (xi,vi).

• Cell. A cell is constituted by a pair of particles and characterized by a cell type
that determines its mechanical properties as well as its ability to exhibit genetic
oscillations. Moreover, the cell can express a morphogen. The state of a cell is
specified by the 5-tuple

C = (X,Q, ϕ, i, j) , (5.2)

where X denotes the cell type, Q denotes the morphogen level within the cell,
ϕ denotes the phase of its autonomous intracellular oscillator, and i and j refer
to the indices of the two particles Pi and Pj belonging to this cell. The four
cell types in our model are presomitic mesoderm (psm), rostral somite (rst),
caudal somite (cdl) and mesenchymal somite (msc). The cell types rst and
cdl constitute segment boundaries, while msc constitutes the interior of the
formed segments. Cell indices are denoted by greek letters µ, ν, . . ., e.g., Cµ =
(Xµ, Qµ, ϕµ, iµ, jµ). Since each particle belongs to a unique cell, we define µi as
the index of the cell that particle i belongs to.

• System. At each point in time, the system Σ is specified by the number of cells n
(implying 2n particles) and the configurations of all particles P1, . . . , P2n and
cells C1, . . . , Cn,

Σ = (n, xW, vW;P1, . . . , P2n;C1, . . . , Cn) . (5.3)

Moreover, it depends on the position xW and speed vW of a movable wall rep-
resenting a tissue boundary that we introduce in Sec. 5.1.4.

For any pair of particles (Pi, Pj), we define the following coordinates (Fig. 5.1),

xij = xi − xj ,

xij = |xij | ,
eij = xij/xij ,

cij = (xi + xj)/2 ,

vij = vi − vj .

(5.4)

For each cell Cµ, we define the center of mass qµ and the cell size sµ by

qµ = (xiµ + xjµ)/2 ,

sµ = |xiµ − xjµ | ,
(5.5)

where iµ and jµ are indices of the two particles that belong to cell µ.
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Figure 5.1 Schematic depiction of particle and cell coordinates introduced in Eqs. (5.4) and
(5.5). We graphically represent cells as tubes with spherical caps around the corresponding pair
of particles. The radius of the tube is determined by the typical distance of particles in the
tissue due to interparticle interactions, see also Figs. 5.4 and 5.5.

5.1.2—
Equations of motion

The time evolution of the particles is governed by Newtonian mechanics: the
coordinates of particle i evolve according to

dxi

dt
= vi ,

dvi

dt
=

Fi

m
,

(5.6)

where m is the mass of a particle. The total force acting on a particle is the sum of
three types of forces: a conservative force FC, a dissipative force FD, and a random
force FR, specified in the next section. All interparticle forces on particle i act in
the direction eij , Eq. (5.4), and are symmetric in i and j,

Fi =
∑
j ̸=i

(FC
ij + FD

ij + FR
ij ) eij . (5.7)

5.1.3—
Interparticle forces

All particles are subject to three types of interparticle forces: conservative, dis-
sipative, and random forces, specified in the following.

• Conservative forces. The conservative forces between particles cause cells to
grow to a certain preferred cell size and ensure volume exclusion and adhe-
sion [16]. The conservative force between two particles i and j belonging to the
same cell (µi = µj) is given by

FC
ij = f0

(
e−(xij−ρ0)/ρ − 1

)
, (5.8)

where the length scale ρ determines the range of the force and ρ0 is the preferred
cell size as FC

ij = 0 for xij = ρ0 (Fig. 5.2A).

The conservative force between two particles i and j belonging to different cells
(µi ̸= µj) is given by

FC
ij =

[
fRij

(
ρ5

x5ij
− 1

)
− fAij

]
1xij<ρ , (5.9)

see Fig. 5.2B. The coefficients fRij and fAij determine the strength of the inter-
particle repulsive and attractive forces, respectively. These coefficients depend



96 CHAPTER 5. CELL-BASED MODEL OF SELF-ORGANIZED SEGMENTATION

A

0 Ρ0

-f0

0

xij

F
ijC

,
V

ijC

B

0 Ρ

-gij

Μij

0

xij

Figure 5.2 Schematic depiction of the forces FC
ij (xij) (solid) and corresponding potentials V C

ij (xij)
(dashed) between particles i and j belonging to the same cell (A), Eq. (5.8), and particles belong-
ing to different cells (B), Eq. (5.9). Forces and potentials are related by FC

ij (x) = −dV C
ij (x)/dx.

on the cell types involved in the interaction in order to describe different cell
types with different mechanical properties. The force (5.9) is zero whenever
particles are sufficiently far away, xij > ρ, or at the stable equilibrium point,
xij = ρ/(1+fAij/f

R
ij )

1/5, where repulsive and adhesive forces balance (Fig. 5.2B).
The coefficients fRij and fAij are parametrized in the following way. We specify
reference strengths fR0 and fA0 and scale them by dimensionless numbers ZR

ij and
ZA
ij ,

fRij = fR0 Z
R
ij , (5.10)

fAij = fA0 Z
A
ij . (5.11)

To reduce the number of parameters, we set ZR
ij = ZA

ij = 1 unless one of the
following cases applies:

(1) particles i and j both belong to rst cells or both belong to cdl cells,

(2) one of particles i and j belongs to a cdl cell and one belongs to a rst cell,

(3) one of particles i and j belongs to a msc cell and one belongs to either a
cdl cell or a rst cell

In such a case, ZR
ij = zRc and ZA

ij = zAc , where c = 1, 2, 3 denotes the correspond-
ing case number. In summary, the conservative forces for particles belonging to
different cells are specified by the parameters fR0 , fA0 , zR1 , z

R
2 , z

R
3 , z

A
1 , z

A
2 , and

zA3 .

We typically choose these parameters such that cells of the rst and cdl type
repel each other, while all other cell types tend to adhere. As will be shown
later, this choice of parameters makes it possible that clusters of cells segregate
from the tissue and can therefore be identified with formed segments.
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• Dissipative force. The dissipative force describes cell–cell friction [114]. The
dissipative force between two particles i and j is given by

FD
ij = −Λ(xij)

2(vij · eij)×

{
γ̃ µi = µj

γ µi ̸= µi

, (5.12)

where γ and γ̃ are intercellular and intracellular dissipation constants, respec-
tively, and

Λ(x) =

(
1− x

ρ

)
1x≤ρ . (5.13)

is a function that linearly interpolates between Λ|x=0 = 1 and Λ|x=ρ = 0 and
satisfies Λ|x>ρ = 0 [99]. Here, 1a<b = Θ(b−a) is an indicator function equivalent
to the Heaviside Theta function Θ.

• Random force. The random force mimics motility forces from the cytoskele-
ton [16]. The random force between two particles i and j is given by

FR
ij =

√
2γϑΛ(xij)ξij , (5.14)

where ϑ is an effective temperature and ξij is additive Gaussian white noise
satisfying the relations ⟨ξij(t)⟩ = 0 and ⟨ξij(t)ξkl(t′)⟩ = (δikδjl + δilδjk)δ(t− t′).
Moreover, ξij is symmetric, ξij = ξji, to ensure momentum conservation [99].
The relation between the functional forms of the dissipative and random forces,
Eqs. (5.12) and (5.14), is motivated by the fluctuation–dissipation theorem [42].

5.1.4—
Boundary forces

To direct the growth of the tissue, we confine it to a cuboid bounding box with
edge lengths b1, b2, and b3. We here define the 1-direction as the direction of the
body axis (see also Fig. 3.1A). Hence, we choose the length b1 of the bounding box to
be much larger than the width b2 and the height b3, which determine the extension
of the growing tissue in the transversal directions. We define the positive 1-direction
as the posterior direction and the negative 1-direction as the anterior direction. The
walls of the bounding box have infinite mass and interact with particles through a
smooth but steep wall potential which exerts a force

FW(x) =
fW

ex/ρW − 1
(5.15)

on the particles, where fW is a force scale, ρW is a length scale that sets the steepness
of the wall potential, and x is the distance from the wall in perpendicular direction.
The simulation starts by placing a single cell near one end of the cuboid bounding
box (Fig. 5.4). From this cell, a tissue grows by cell division (see next section).
Growth proceeds isotropically until the tissue hits the walls of the bounding box in
2- and 3-direction. Subsequently, the tissue can only grow in positive 1-direction
(Fig. 5.4). In this way, the initial condition breaks the directional symmetry.

To ensure that the tissue remains confined to the anterior part of the bounding
box, we put a movable two-dimensional wall inside the box that has to be pushed in
posterior direction by the outgrowing tissue (Fig. 5.4). This mimics the effects of the
tissues that surround and confine the cells of the presomitic mesoderm. The state
of the wall is characterized by its position xW and velocity vW in 1-direction. The
wall has a mass mW and its motion is damped by friction with friction coefficient
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γW. The wall interacts with particles through the same force as the bounding box,
Eq. (5.15). Hence, the equations of motion for the wall are given by

dxW
dt

= vW , (5.16)

dvW
dt

= −γWvW +
∑
i

FW(|x1i − xW|) , (5.17)

where the sum runs over all particles, x1i is the 1-component of the position vector of
particle i, and FW(x) is the force (5.15). The position xW of the wall also marks the
position of the posterior tip and serves as a reference point for a restricted region in
which cells divide (Sec. 5.1.5) and produce the morphogen (Sec. 5.1.6).

5.1.5—
Cell division

In the model, cell division is the main mechanism of tissue growth. It occurs in a
restricted outgrowth region of length x0 adjacent to the posterior tip. A cell divides
when the cell size reaches a certain threshold value. Upon cell division, two new
particles are inserted in a random direction at a specific distance from the particles
of the mother cell [16]. Cells inherit their cell type from their mother cell as well
as their phase, which is perturbed by a random contribution upon division. The
morphogen level is divided half and half between the two cells. Formally, division of
a cell Cµ = (Xµ, Qµ, ϕµ, iµ, jµ) corresponds to a discrete process1 that takes place if
(i) the cell is in the outgrowth region, ∆µ < x0, where

∆µ = |q1µ − xW| (5.18)

is the distance of cell µ from the movable wall, and (ii) the cell size exceeds the
division threshold, sµ ≥ ρ, where the sµ was defined in Eq. (5.5).

5.1.6—
Morphogen dynamics

Morphogen production and decay takes places inside the cells. Adjacent cells
can exchange morphogen, which leads to diffusion of the morphogen throughout the
tissue. Morphogen production only takes place in the vicinity of the posterior tip2,
in the same region where cells divide (Sec. 5.1.5). The morphogen level Qµ of cell µ
evolves according to

dQµ

dt
= βµ + E

n∑
ν=1

Uµν(Qν −Qµ)− hQµ . (5.19)

The first term describes morphogen production with a production rate βµ, which is
non-vanishing only in the posterior region where cells divide,

βµ = β01∆µ<x0 . (5.20)

1Upon cell division, the system goes from the state

Σ = (n, xW, vW;P1, . . . , Piµ , . . . , Pjµ , . . . , P2n;C1, . . . , Cµ, . . . , Cn) ,

where Piµ = (xiµ ,viµ) and Pjµ = (xjµ ,vjµ ), to the state

Σ′ = (n+ 1, xW, vW;P1, . . . , P
′
iµ
, . . . , P ′

jµ
, . . . , P2n, P2n+1, P2n+2;C1, . . . , C

′
µ, . . . , Cn, Cn+1) ,

where

C′
µ = (Xµ, Qµ/2, ϕµ, iµ, 2n+ 1) , Cn+1 = (Xµ, Qµ/2, ϕµ + η∗ξ, jµ, 2n+ 2) ,

and

P ′
iµ

= (xiµ ,0) , P2n+1 = (xµ + ρ∗ζ,0) ,

P ′
jµ

= (xjµ ,0) , P2n+2 = (xjµ + ρ∗ζ′,0) .

Here, ξ is a Gaussian distributed random number and ζ and ζ′ are unit vectors with random direction.
2We have used a similar prescription for the theory presented in Chapter 3, Sec. 3.5.1, see Eq. (3.48).
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Here, 1 is the indicator function introduced below Eq. (5.13), ∆µ is the distance
of cell µ from the wall, defined in Eq. (5.18), and x0 is the length of the region in
which cell division takes place (Sec. 5.1.5). The second term in Eq. (5.19) describes
the exchange of morphogens between adjacent cells: E is the morphogen exchange
rate, and Uµν is a time-dependent proximity matrix that depends on the distances
to particles of other cells,

Uµν =
1

4

[
Λ(xiµiν ) + Λ(xiµjν ) + Λ(xjµiν ) + Λ(xjµjν )

]
, (5.21)

where Λ is given by Eq. (5.13) and xiµjν is the distance between the particles iµ and
jν of cells µ and ν (see Sec. 5.1.1 for notational conventions). Note that Uµν takes
values from 0 to 1 and satisfies Uµν = Uνµ, which ensures conservation of mass. The
third term in Eq. (5.19) describes morphogen decay with decay rate h.

5.1.7—
Phase dynamics

Cells of the psm type can exhibit genetic oscillations. The intrinsic frequency ωµ

of the cellular oscillators depends on the morphogen level of the corresponding cell µ,

ωµ = ω0Qµ/Q0 , (5.22)

where Q0 is a reference morphogen level that is chosen to be of the same order as the
maximum morphogen level that levels out at the posterior tip3. To describe coupling
upon cell contact4, the coupling strength to other cellular oscillators depends on
their distance through the same proximity matrix as used for morphogen exchange,
Eq. (5.21). To account for delays in cell-cell signaling, we also include an effective
coupling delay5 [93]. The dynamic equation for the phase of psm type cells is given
by

dϕµ
dt

= ωµ +
ε

uµ

n∑
ν=1

Uµν sin(ϕν,τ − ϕµ) + ηξµ , (5.23)

where ϕν,τ (t) = ϕν(t − τ), Uµν is the proximity matrix defined in Eq. (5.21),
uµ =

∑
ν Uµν is a normalization factor for the coupling strength, and η is the noise

strength. The Gaussian white noise term ξµ satisfies ⟨ξµ(t)⟩ = 0 and ⟨ξµ(t)ξν(t′)⟩ =
δµνδ(t − t′) and represents the effects of stochasticity in gene expression on the os-
cillatory dynamics. For cell types other than psm, the phase is irrelevant and does
not change over time, dϕµ/dt = 0.

5.1.8—
Cell differentiation

To describe physical segmentation of the tissue, that is, segregation of cell clus-
ters from the presomitic mesoderm, we include a mechanism of cell differentiation
that leads to a formation of segment boundaries. In our model, cell differentiation
takes place when the morphogen level Qµ of a cell µ drops below a threshold level Q∗.
Hence, the position where the average morphogen level drops below Q∗ marks the
anterior end of the presomitic mesoderm. Differentiation of a cell Cµ = (Xµ, Qµ, ϕµ,
iµ, jµ) with cell type Xµ = psm is a discrete process that changes the cell type
according to the value ϕµ of the phase at the time of differentiation,

Xµ → X ′
µ =


cdl 0 ≤ ϕµ < ψ1

rst ψ1 ≤ ϕµ < ψ2

msc ψ2 ≤ ϕµ < 2π

. (5.24)

3We have used a similar prescription for the theory presented in Chapter 3, Sec. 3.5.1, see Eq. (3.53).
4Note that the Notch signaling pathway, which is thought to couple the oscillations in the presomitic

mesoderm, requires cell contact, see Sec. 1.2.4 and Fig. 1.6.
5For details on the effects of coupling delays, see Chapter 2, Sec. 2.4; Chapter 3, Sec. 3.2; and

Chapter 6.
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Here, ψ1 and ψ2 are phase thresholds that determine which phase intervals give rise
to which cell type.

5.2 Self-organized Segmentation

We now demonstrate with a proof-of-principle result that the cell-based model
introduced here is able to describe tissue formation and extension, morphogen gra-
dient formation, pattern formation, and segment formation. To this end, we study
a realization of the system with parameters given in Table 5.1. Details on the nu-
merical procedure are given in Appendix H. Fig. 5.3 shows global system properties
as a function of time, such as the position of the movable wall, the number of cells
of different cell types, the length of the presomitic mesoderm, and the average cell
size. Figs. 5.4 and 5.5 show snapshots of the system at different times in a three-
dimensional representation. Fig. 5.6 shows one-dimensional averaged profiles along
the axial direction6 of the cell density ϱ, the normalized morphogen level Q/Q0, the
cell speed v1 in 1-direction, the oscillation amplitude A, and a phase order param-
eter Z indicating synchrony. The order parameter Z takes values between 0 and 1,
where 1 indicates perfect synchrony and 0 indicates total phase dispersion [77].

5.2.1—
Tissue formation

and extension

The simulation starts with the movable wall being located near the anterior end
of the bounding box and a single cell located inside the space confined by the wall
(Fig. 5.4). A tissue is formed by ongoing cell division in the outgrowth region near
the wall. As the tissue grows and fills the confined space, it exerts a pressure on
the movable wall and causes it to move in posterior direction. Since cell division is
restricted to a region near the movable wall, whose filling with cells is nearly constant,
tissue growth is nearly linear. This behavior is illustrated by tracking the total cell
number and the position xW of the wall over time and finding a linear behavior after
the initial transient (Figs. 5.3A,B). In a reference frame comoving with the posterior
tip, the anteroposterior velocity profile of cells (Fig. 5.6) qualitatively agrees with
the shape that we have considered for the continuum theory presented in Chapter 3,
cf. Eq. (3.28).

6These profiles are obtained by averaging in 2- and 3-direction. To obtain smooth profiles, contribu-
tions of different cells were weighted by a Gaussian f(x) = (2πc2)−1/2e−x2/2c2 with variance c = ρ/2,
centered around a position x1 on the 1-axis. The profiles of the different observables are given by

ϱ(x1) =
∑
µ

f(q1µ − x1) , cell density (5.25)

Q(x1) =
1

ϱ(x1)

∑
µ

f(q1µ − x1)Qµ , morphogen level (5.26)

v1(x1) =
1

ϱ(x1)

∑
µ

f(q1µ − x1) v1µ , velocity in 1-direction (5.27)

A(x1) =
1

ϱ(x1)

∑
µ

f(q1µ − x1) sinϕµ , oscillation amplitude (5.28)

Z(x1) =
1

ϱ(x1)

∣∣∣∣∑
µ

f(q1µ − x1) eiϕµ

∣∣∣∣ . phase order parameter (5.29)

Here, q1µ is the 1-component of the center of mass of cell µ as defined in Eq. (5.5).
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Figure 5.3 Global system properties as a function of time for a realization with parameter given
in Table 5.1. A. Position xW of the movable wall as a function of time (green) and linear fit
(black dashed). B. Number of cells of different cell types in the system as a function of time:
psm (light gray), msc (dark gray), cdl (cyan), rst (red), and total number of cells (black thick).
C. Length a of the presomitic mesoderm, Eq. (5.30), as a function of time. D. Average cell size s
as a function of time.

5.2.2—
Formation of a
morphogen gradient
and the presomitic
mesoderm

As the tissue grows, the morphogen is produced in the same region where cells
divide (Figs. 5.5 and 5.6). Due to diffusion and decay in the tissue, a robust mor-
phogen gradient emerges that decays in anterior direction. Since cells of the psm
type are only found in the region where Q > Q∗, we characterize this region as the
presomitic mesoderm. At each time point, the length of the presomitic mesoderm is
accordingly given by

a = max
x1

{xW − x1 ; Q(x1) ≥ Q∗} . (5.30)

After an initial transient, during which the tissue grows and builds up the morphogen
gradient, a presomitic mesoderm of roughly constant length evolves (Fig. 5.3C).

5.2.3—
Formation of
kinematic waves

Since the frequency of oscillations in the cells is proportional to the morphogen
concentration, the emerging morphogen gradient corresponds to a frequency gradi-
ent7. This frequency gradient leads to the formation of kinematic waves in the tissue

7This is the same mechanism that we have already invoked in the continuum theory of interacting
morphogens and oscillators, presented in Chapter 3, Sec. 3.5.
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KINEMATIC WAVE

FORMED SEGMENT
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Figure 5.4 Snapshots of a simulation at different points in time. Cell types are color coded (see
legend). For cells of the psm type, the brightness indicates the sine of the cell’s phase. Black
labels indicate model specifications, blue labels indicate phenomena that emerge from the model
dynamics. Parameters are given in Table 5.1.

by the same pattern forming mechanism introduced in Chapter 3, Sec. 3.1. In the
presomitic mesoderm, the coupling of oscillations in neighboring cells tends to even
out phase differences and thus promotes the formation of a coherent pattern that is
robust against frequency noise and random cell movement8. This is reflected in the
behavior of the phase order parameter Z, showing a large degree of phase coherence
in the presomitic mesoderm (Fig. 5.6).

5.2.4—
Segment formation

The morphogen level decays in anterior direction and, when the tissue has ex-
tended sufficiently, falls below the threshold for cell differentiation. Cells differentiate
into different cell types according to their phase at this arrest front (Fig. 5.4). The
formation of a kinematic wave pattern with a fairly smooth phase profile thus implies
that the three cell types rst, msc, and cdl follow each other in the order deter-
mined in Sec. 5.1.8, thereby forming a segment. Due to the lack of adhesion between
the rostral (rst) and caudal (cdl) cell types, an intersegmental furrow (apparent in
Fig. 5.4) forms when these two cell types immediately follow each other. A signa-

8In fact, is has been shown that random cell movement in the posterior presomitic mesoderm can
promote phase coherence as it effectively increases the coupling range [148].
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Figure 5.5 Snapshots of the same simulation as in Fig. 5.4, illustrating the formation of the
morphogen gradient. Brightness indicates the relative morphogen concentration Q/Q0.

ture of this furrow is the decreased cell density ϱ between the formed segments (see
Fig. 5.6 at 300 min). The timing of segment formation can be studied by tracking
the global number of cells of different cell types. Whenever a new segment is formed,
the number of segment boundary cells (rst and cdl) increases during a short period
of time after which it remains constant (Fig. 5.3B).

5.3 Summary

In this chapter, we have introduced a cell-based model of segmentation based
on local rules of cell mechanics, cell differentiation, morphogen dynamics, and oscil-
lator dynamics. To this end, we have modified a tissue model based on dissipative
particle dynamics [16] and extended it with phase oscillator dynamics, the dynamics
of morphogen production, exchange, and decay, and cell differentiation. Previous
cell-based models of vertebrate segmentation have involved computationally inten-
sive multi-scale 2D models with a multitude of parameters [57] and 3D models which
represent the underlying tissue as a rigid cubic lattice [139]. In contrast, our model
describes the cells of the presomitic mesoderm and the formed segments as me-
chanical entities in three dimensions, while keeping the number of parameters at a
manageable level.
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Figure 5.6 One-dimensional profiles of observables, Eqs. (5.25–5.29), in the reference frame
comoving with the wall at 150min and 300min (corresponding snapshots also shown in Figs. 5.4
and 5.5). The x-axis indicates the distance from the movable wall in 1-direction. The plots show
the cell density ϱ, the relative morphogen level Q/Q0, the speed in 1-direction relative to the
wall, v̄1 = v1 − ẋW, the oscillation amplitude A, and the order parameter Z. The shaded areas
indicate the standard deviation. The horizontal dashed line indicates the threshold concentration
Q∗/Q0 for cell differentiation. The vertical gray line indicates the position a of the anterior end
of the presomitic mesoderm, Eq. (5.30). Parameters are given in Table 5.1.
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We have shown with an example that this cell-based model is able to describe
tissue formation and extension, morphogen gradient formation, pattern formation,
and segment formation in a self-organized way. While we here illustrated the phe-
nomenology of the model with a specific example, systematic investigations of the
model can be carried out by statistical analysis of different noise realizations of the
model trajectories. Taking into account the interplay of biochemical and mechanical
mechanisms [61], our model provides a starting point for the theoretical descrip-
tion of pattern formation and tissue dynamics during vertebrate segmentation in a
unified framework. It complements the continuum theories of vertebrate segmen-
tation introduced in the previous chapters, which describe pattern formation on a
coarse-grained level. In going beyond such a coarse-grained description, the cell-
based model presented here enables to address, e.g., the interplay of random cell
movement and oscillator synchronization, the sharpness of segment boundaries de-
pending on the noise in both the oscillator dynamics and the cell dynamics, and the
interplay of time scales of oscillations, morphogen production, and tissue extension.
Moreover, this cell-based model can easily be extended to include other types of
tissue growth such as inflow of cells and convergence-extension. Hence, it permits
to study the compatibility of these growth mechanisms and tissue reorganization
by convergence-extension cell movements with the mechanism of pattern formation
through a frequency gradient.
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Parameters and Symbols used in Chapter 5

PARAMETER UNIT VALUE

CELL MECHANICS

f0 PL2 0.7 growth coefficient
ρ0 L 1.4 typical cell size
ρ L 1.2 range of pair potentials / threshold for division
γ̃ PLT 10.0 intracellular dissipation constant
γ PLT 5.0 intercellular dissipation constant
ρ∗ L 1.2× 10−5 distance at which new particles are inserted
ϑ PL3 5.0× 10−3 effective temperature
fR0 PL2 0.1 repulsive cell–cell potential coefficient
fA0 PL2 0.2 attractive cell–cell potential coefficient
m PLT2 0.33 particle mass

zR1 , z
R
2 , z

R
3 1 1.0, 5.0, 1.0 coefficients determining repulsive forces

zA1 , z
A
2 , z

A
3 1 1.5, 0.0, 1.5 coefficients determining adhesive forces

x0 L 4 length of outgrowth region

MORPHOGEN DYNAMICS

β0 NT−1 0.2 morphogen production rate
E T−1 5 morphogen exchange rate
h T−1 0.03 morphogen decay rate
Q∗ N 0.15 threshold level for cell differentiation
Q0 N 1.5 morphogen reference level

OSCILLATOR DYNAMICS

ω0 T−1 0.22 maximum autonomous oscillator frequency
ε T−1 0.07 oscillator coupling strength
τ T 21 coupling delay
η T−1 0 noise intensity
η∗ 1 0 noise intensity upon cell division
ψ1 1 π/2 phase threshold for cell differentiation
ψ2 1 π phase threshold for cell differentiation

WALL AND BOUNDING BOX PROPERTIES

b1, b2, b3 L 200, 2.5, 7 size of the bounding box
γW PLT 1 friction coefficient
mW PLT2 0.1 mass of the wall
ρW L 0.3 repulsion range of the wall
fW PL2 0.3 repulsion strength of the wall

SIMULATION SPECIFICATIONS

∆t T 0.006 integration time step

Table 5.1 List of parameters and typical values used in this chapter. The physical units are
T = 1min, L = 10µm, and P = 1kPa [16].
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LIST OF SYMBOLS

µ, ν, . . . cell index
i, j, . . . particle indices
µi index of the cell that particle i belongs to
Σ state of the system
Cµ state of cell µ
Pi state of particle i

xi = (x1i , x
2
i , x

3
i ) position vector of particle i

vi = (v1i , v
2
i , v

3
i ) velocity vector of particle i

xij distance vector between particles i and j
xij distance between particles i and j
eij unit vector in direction of xij

cij center of mass of particles i and j
vij velocity difference vector between particles i and j
qµ center of mass of cell µ
sµ size of cell µ
Xµ cell type of cell µ
Qµ morphogen level of cell µ
Qij average morphogen level of particles i and j
ϕµ phase of cell µ
iµ, jµ indices of particles belonging to cell µ
xW position of the movable wall
vW velocity of the movable wall
Fi net force on particle i
FC
ij conservative forces between particles i and j

FD
ij dissipative forces between particles i and j

FR
ij random forces between particles i and j

Λ cutoff function specifing the range of forces
ξij Gaussian white noise
FW force that boundary walls exert on particles
∆µ distance of cell µ to the movable wall
βµ morphogen production rate of cell µ
Uµν proximity of cells µ and ν
uµ normalization factor for the coupling strength
ωµ intrinsic frequency of the oscillator of cell µ
f Gaussian distribution
a position of the arrest front
1 indicator function, equivalent to the Heaviside Theta function,

1x>y = Θ(x− y)
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Chapter 6

Regulation of Synchronization by
Coupling Delays and Phase Shifts

In this chapter, we investigate the synchronization dynamics of a generic assembly
of coupled oscillators in the presence of coupling delays and phase shifts. We show
that while phase shifts and coupling delays have equivalent effects on the collective
frequency of the synchronized state, they can have profoundly different effects on the
synchronization dynamics.

6.1 Coupled Oscillators with Delays and Phase Shifts

6.1.1—
Synchronization
dynamics depends on
coupling properties

In the previous chapters, we investigated systems of coupled genetic oscillators,
with and without noise, in small and large assemblies, in static and dynamic me-
dia, and with moving oscillators and oscillators at rest. Despite these differences,
these systems share generic properties with each other as well as with other coupled
oscillator systems. This is reflected by the fact that synchronization phenomena of
very different nature can be described by the same class of phase oscillator models,
introduced by Kuramoto [1, 77]. Earlier in this thesis, we have demonstrated that
such phase oscillator models are capable of describing the collective frequency and
the modes of synchrony of a nonlinear stochastic system of coupled genetic oscillators
(Chapter 2). Moreover, we found that continuum limits of coupled phase oscillators
are viable theories to describe pattern formation during vertebrate segmentation
(Chapters 3 and 4). All these systems had in common that the properties of oscil-
lator coupling such as time delays had profound impact on the oscillator dynamics
(Secs. 2.4 and 3.2). Motivated by these observations, we here address the question of
how synchronization dynamics of generic systems of coupled phase oscillators depend
on the properties of the coupling.

6.1.2—
Complex signaling
induces coupling
delays and phase
shifts

In general, if the processes involved in signaling take a time τ comparable to the
oscillation cycle, they introduce a delay in the coupling that can play a significant
role for the dynamics of the system [5, 38, 93, 129, 163]. They can lead to multi-
stability of several synchronized states with different collective frequencies [38, 163],
see also Chapter 2, Sec. 2.4. While coupling delays are often regarded as undesired
features which inevitably arise from the slow dynamics of the system’s constituents,
constructive roles of delays on the synchronization dynamics have been reported
[33, 120].

In addition to coupling delays, there are several ways how the receiving oscillator
can internally coordinate its response to the received signal. It may tend to minimize
or maximize the phase difference to the received signal, or to keep it at a constant
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Figure 6.1 A. For an oscillatory signal with a constant frequency, X(t) = cosϕ(t) with ϕ(t) = Ω0t
(dark blue), the delayed signal X(t − τ) (light blue), is equivalent to a phase-shifted signal,
X(t − τ) = cos(ϕ(t) − α) with α = Ω0τ . The dashed black lines indicate the phase shift Ω0τ
between the instantaneous and the delayed signal. B. For an oscillatory signal with varying
frequency, the relation between X(t) and X(t − τ) cannot be characterized by a single phase
shift as the same phase shift occurs in different time intervals (dashed lines).

value α. In phase oscillator models, a simple way to account for these differences in
coupling mechanisms is a phase shift α in a generic coupling function. It provides a
rigid offset to the received phase signal that alters the coupling behavior. Depending
on the phase shift α, coupling between oscillators may thus be attractive or repulsive.

Intuitively, it is clear that in a synchronized state, where all oscillators evolve
with a collective frequency Ω0, a transmission delay τ between the oscillators renders
the delayed signal indistinguishable from a signal that has been phase-shifted by α =
Ω0τ (Fig. 6.1A). However, away from such a perfectly synchronized state, coupled
oscillator systems usually exhibit transient periods during which the frequency is
not constant. In such a case, the simple equivalence between delays and phase shifts
breaks down (Fig. 6.1B). We are thus led to the question whether the dynamics
of the system in the vicinity of the synchronized state is indeed similar if coupling
delays are substituted by phase shifts.

In the remainder of this chapter, we will investigate the synchronization dynam-
ics of coupled oscillator systems in the presence of phase shifts and coupling delays
using a generic theory of coupled phase oscillators. Since we obtain exact results
for the linearized dynamics of the system, this chapter is of a more technical nature
than the previous ones.

6.1.3—
Phase oscillator

description

The phase dynamics for a network of coupled identical phase oscillators in the
presence of a discrete coupling delay τ and a phase shift α is given by [121, 163]

d

dt
ϕµ(t) = ω +

ε

uµ

n∑
ν=1

cµνg(ϕν(t− τ)− ϕµ(t)− α) . (6.1)

Here, ϕµ is the phase of oscillator µ, ω is the intrinsic frequency of the oscillators, ε
is the coupling strength, and n is the total number of oscillators. Oscillator coupling
is described by the 2π-periodic coupling function g. The coupling topology is defined
by the adjacency matrix cµν with cµν ≥ 0, where cµν ̸= 0 indicates a link between
oscillators µ and ν. The coupling strength is normalized by the total weight of links
of oscillator µ, given by uµ =

∑
ν cµν . For the generic case g(φ) = sinφ, a vanishing

phase shift (α = 0) corresponds to an attractive coupling that tends to minimize
the phase difference between coupled oscillators in the absence of coupling delays,
whereas α = π corresponds to a repulsive coupling that tends to maximize it. In
such a case, the phase shift α can be considered as interpolating between attractive
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and repulsive coupling.
The system Eq. (6.1) can exhibit an in-phase synchronized state1,

ϕµ(t) = Ωt , (6.2)

in which all oscillators evolve with the same collective frequency Ω. Using Eq. (6.2) in
the dynamic equation (6.1), we find that the collective frequency Ω obeys2 [129, 163]

Ω = ω + εg(−Ωτ − α) (6.3)

and thus depends on τ and α. For non-vanishing delays, multiple synchronized
states with different collective frequencies can coexist [163] (see Chapter 2, Sec. 2.4.3,
Fig. 2.16B for the case g(φ) = sinφ and α = 0).

6.1.4—
Equivalence of delays
and phase shifts in
the synchronized
state

Intuitively, in a synchronized state with a well-defined constant frequency Ω0,
a coupling delay τ induces an effective phase shift Ω0τ in the signal transmitted
between oscillators that is indistinguishable from a rigid phase shift α = Ω0τ . This
is reflected by the fact that the collective frequency, Eq. (6.3), only depends on the
sum Ωτ+α. Hence, the existence of an in-phase synchronized solution with collective
frequency Ω = Ω0 is preserved under the transformation

τ → τ ′ ,

α→ α+Ω0(τ − τ ′)
(6.4)

for arbitrary τ ′ > 0. For a fixed value of ∆ ≡ Ω0τ +α, we thus find a one-parameter
family of systems in the (τ, α)-plane that can exhibit the same in-phase synchronized
state with collective frequency

Ω0 = ω + εg(−∆) . (6.5)

We parametrize these systems by letting the phase shift α be a function of the
coupling delay according to

α(τ) = ∆− Ω0τ , (6.6)

where ∆ is chosen to fix the collective frequency according to Eq. (6.5). While
the collective frequency does not change under the transformation (6.4), we will
show that the synchronization dynamics, that is, the dynamics of the system in
the vicinity of the synchronized state, does change. To this end, we linearize the
dynamics in the vicinity of the synchronized state and determine the relaxation rate
r0 of small perturbations for the class of systems parametrized by Eq. (6.6). Since r0
determines the rate at which the system converges towards the synchronized state,
we call it the synchronization rate. A precise definition of r0 will be given in Sec. 6.3.
Before performing a general analysis of the synchronization rate, we introduce two
motivating examples that will guide our analysis.

1This ansatz has already been used in Chapter 2, Eq. (2.56).
2Note that the earlier encountered equations for the collective frequency of delay-coupled phase

oscillators, Eqs. (2.60) and (3.24), are special cases of Eq. (6.3) for g(φ) = sinφ and α = 0.
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Figure 6.2 A. Synchronization rate r0 as a function of the coupling delay τ for a globally coupled
system, obtained from numerical simulations of Eqs. (6.1) and (6.6) (circles) and from Eq. (6.15)
(line) for a globally coupled system with g(φ) = sinφ and n = 40. B. Imaginary part β0 = Im γ0
from Eq. (6.15). Parameters are ∆ = 5.5, ω = 1, and ε = 0.15. All systems exhibit the same
collective frequency Ω0 = 1.11.

6.2 Motivating Examples

6.2.1—
Synchronization of a

globally coupled
system

As a first example, we consider globally coupled oscillators, for which the ad-
jacency matrix is given by cµν = 1 − δµν , and a sinusoidal coupling function,
g(φ) = sinφ. Fig. 6.2A displays the relaxation rate r0 of small perturbations to
the synchronized state as a function of the coupling delay τ . The circles show r0
obtained from numerical solutions to Eq. (6.1)3. The solid line in Fig. 6.2A shows
the analytical solution for r0, derived below. Fig. 6.2A indicates that for global cou-
pling, a maximum of the synchronization rate r0 occurs at a non-vanishing value of
the coupling delay τ . The analytical solution exhibits a characteristic cusp at this
value of the delay.

6.2.2—
Synchronization of a

nearest-neighbor
coupled system

As a second example, we consider nearest-neighbor coupled oscillators in one
dimension with periodic boundary conditions (Fig. 6.3A,A’). The curves display an-
alytical solutions for r0, derived below, each curve corresponding to a Fourier mode of
the oscillator lattice. Each Fourier mode, characterized by its wavevector k = 2πp/n
with p ∈ {−n/2,−n/2 + 1, . . . , n/2 − 1}, relaxes independently with a relaxation
rate r0(k). (We here consider the system size n to be even.) For long-wavelength
modes, |k| < π/2, the relaxation rate r0 decreases with increasing wavelength and
coupling delay (Fig. 6.3A, dashed red lines). For short-wavelength modes, |k| > π/2,
r0 displays a cusplike maximum (Fig. 6.3A, solid blue lines), which we already found
in the globally coupled system considered above (Fig. 6.2A). Both the position and
the height of this maximum depend on the wavevector k.

3The relaxation rate can be obtained by starting the system in the synchronized state with a random
perturbation added and determining the exponential relaxation time of the perturbation to perfect
synchrony [156].
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Figure 6.3 A, A’. Synchronization rates r0 for a system with nearest-neighbor coupling and peri-
odic boundary conditions in d = 1 dimension with a system size of n = 22 oscillators and Λ = 0.1.
Different curves correspond to different wavevectors k = 2πp/n and have different brightness for
visual clarity. Dashed red lines correspond to p = 1, . . . , 5 (long-wavelength modes), solid blue
lines correspond to p = 6, . . . , 11 (short-wavelength modes), ordered in direction of increasing p
at τ = 0. The dotted line shows the curve Λ + 1/τ , Eq. (6.32), which is an envelope for the
maxima. B, B’. Imaginary part β0 = Im γ0 from Eq. (6.15) for the same modes as in panels A,
A’. Long-wavelength modes (red dashed curves in A, A’) have zero imaginary part.

6.3 General Analysis of Synchronization Rates

6.3.1—
Linear stability
analysis

Motivated by these examples, we investigate the synchronization rate of the
general class of systems described by Eqs. (6.1) and (6.6) as a function of coupling
delay and phase shift. Earl and Strogatz [38] showed that the in-phase synchronized
state (6.2) is stable if and only if Λ > 0, where

Λ = ε
dg

dφ

∣∣∣∣
φ=−∆

. (6.7)

The constant Λ depends on the coupling strength ε, the coupling function g, and
the value of ∆, which sets the collective frequency according to Eq. (6.5). We only
consider these stable cases and linearize the dynamics near the synchronized state.
To this end, we use the ansatz4

ϕµ(t) = Ω0t+ δξµ(t) (6.8)

4This ansatz has already been used in Chapter 2, Eq. (2.63).
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in Eq. (6.1), where δ is an expansion parameter and ξµ is a perturbation of order
unity. For simplicity, we restrict the coupling topologies to cases, for which the
normalized adjacency matrix

bµν =
cµν
uµ

(6.9)

satisfies bµν = bνµ and bµµ = 0. Global coupling and nearest-neighbor coupling with
periodic boundary conditions, as introduced above, fall within this class of systems.
The time evolution of the perturbation is given by

d

dt
ξµ(t) = Λ

n∑
ν=1

bµν(ξν(t− τ)− ξµ(t)) + O(δ) . (6.10)

We drop all terms of order δ and higher and introduce the collective perturbation
modes

ψµ(t) =
n∑

ν=1

d−1
µν ξν(t) , (6.11)

where dµν is the change of basis matrix that diagonalizes the adjacency matrix bµν
according to

∑
νη d

−1
µν bνηdησ = vµδµσ and vµ with µ = 1, . . . , n are the n eigenvalues

of bµν . The eigenvalues vµ are real and obey |vµ| ≤ 1, as can be shown using
Gershgorin’s circle theorem [38, 46]. The collective modes ψµ evolve independently
according to

d

dt
ψµ(t) = Λvµψµ(t− τ)− Λψµ(t) . (6.12)

Since this expression is diagonal in µ, we drop the index µ for notational simplicity.

6.3.2—
Characteristic

equation

The characteristic equation for the relaxation rates γ of a collective mode ψ
with eigenvalue v is obtained using the ansatz ψ(t) = e−γt in Eq. (6.12) [6, 84]. This
yields

Λ− γ = vΛeγτ . (6.13)

The solutions to Eq. (6.13) in γ can be expressed through the Lambert W function [3],
which is defined by the relation

W (z)eW (z) = z (6.14)

for z ∈ C. Since the equation W eW = z has infinitely many solutions in W , the
Lambert W function has discrete branches Wσ(z) separated by branch cuts, where
σ ∈ Z is the branch index [25]. The solution to Eq. (6.13) is thus given by γσ =
Λ − τ−1Wσ(vΛτe

Λτ ). Hence, each branch σ of W corresponds to one relaxation
rate rσ = Re γσ. We here only consider the smallest relaxation rate for a given
collective mode ψ, since it describes the long time behavior of ψ. This smallest rate
is given by the principal branch σ = 0 of the Lambert W function (Fig. 6.4A), which
has the property ReW0 ≥ ReWσ for all σ ∈ Z [132]. Hence, the solution with the
smallest relaxation rate is given by

γ0 = Λ− 1

τ
W0(zτ ) , (6.15)
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Figure 6.4 A. Principal branch W0(z) of the Lambert W function for z ∈ R. The dashed green
line shows regions with z < 0, the solid green shows regions with z > 0. The black arrows
indicate the direction of increasing z. The value Ξ = W0(1) ≈ 0.567 is the so-called Omega
constant. B. The blue solid line shows Λ − r as a function of r for fixed Λ. The dashed lines
show vΛerτ cos(βτ) as a function of r for different values of cos(βτ) ∈ [−1, 1]. The leftmost
intersection with Λ− r is found for cos(βτ) = 1 (thick dashed line).

where

zτ = vΛτeΛτ . (6.16)

In the following, we consider collective modes with v > 0 and v < 0 separately. In
nearest-neighbor coupled systems, collective modes with v < 0 are Fourier modes
with short wavelengths and v > 0 are Fourier modes with long wavelengths, as
shown below (Sec. 6.4). Hence, we occasionally refer to modes with v < 0 and v > 0
as ‘short-wavelength modes’ and ‘long-wavelength modes’, respectively, even though
the corresponding modes might have a different interpretation for other coupling
topologies.

6.3.3—
Synchronization rates
of long-wavelength
modes

For modes with v > 0, the synchronization rate r0 decreases monotonically with
increasing coupling delay τ and satisfies r0 → 0 for τ → ∞ (Fig. 6.3A’, dashed red
lines). To show this, we separate Eq. (6.13) into real and imaginary parts. This
yields

Λ− r = vΛerτ cos(βτ) , (6.17a)

−β = vΛerτ sin(βτ) , (6.17b)

where β = Im γ. By plotting both sides of Eq. (6.17a) as a function of r, we note
that the solutions to Eq. (6.17a), indicated by intersections of both curves, decrease
monotonically with increasing cos(βτ) (Fig. 6.4B). Since β0 = 0 is a solution to
Eq. (6.17b), and cos(τβ0) = 1, the real part r0 corresponding to β0 = 0 is the
smallest among all solutions to Eqs. (6.17). Differentiating the remaining real part
equation

Λ− r0 = vΛer0τ (6.18)

with respect to τ shows that r0 satisfies the differential equation

dr0
dτ

= − r0
τ + (Λ− r0)−1

. (6.19)
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Since τ > 0, r0 > 0, and Λ− r0 > 0 according to Eq. (6.18), we find the bound

dr0
dτ

< 0 . (6.20)

Furthermore, Eq. (6.18) implies that

τ =
1

r0
log
(
v
[
1− r0

Λ

])
, (6.21)

which reveals that r0 → 0 corresponds to τ → ∞. Hence, the collective modes with
v > 0 become stationary for large coupling delays.

Eq. (6.18) furthermore implies that for two modes with v1 ≥ v2 > 0, the respec-
tive synchronization rates satisfy r

(1)
0 ≥ r

(2)
0 by an argument similar to the one given

below Eqs. (6.17). In Fig. 6.3A, this is illustrated by the fact that the dashed lines
never cross.

6.3.4—
Synchronization rates

of short-wavelength
modes

For collective perturbation modes with v > 0, the synchronization rate r0 dis-
plays a cusp at a specific coupling delay τ = τ∗. We will now show that τ∗ is given
by

τ∗ =
1

Λ
W0

(
e−1

|v|

)
. (6.22)

The cusp of r0 at τ = τ∗ is a consequence of the definition of the principal branch
W0 of the Lambert W function. We show that dr0/dτ has opposite sign in the two
regions τ ≤ τ∗ and τ > τ∗, which implies that the cusp is located at the maximum of
r0, as suggested by the examples shown in Figs. 6.2A and 6.3A. To obtain dr0/dτ , we
first compute dγ0/dτ and then take the real part. The derivative of γ0, Eq. (6.15),
with respect to τ is given by

dγ0
dτ

=
1

τ2
W0(zτ )−

1

τ

dzτ
dτ

dW0

dz

∣∣∣∣
z=zτ

. (6.23)

The derivative dW0/dz of the Lambert W function can be obtained by differentiating
the defining relation (6.14) with respect to z and solving for dW/dz,

dW

dz
=

1

eW (z)

1

1 +W (z)

=
1

z

W (z)

1 +W (z)
,

(6.24)

where, in the second line, we have multiplied numerator and denominator by W (z)
and again used the defining relation (6.14). The derivative of zτ , Eq. (6.16), is
obtained straightforwardly as

dzτ
dτ

= zτ
1 + Λτ

τ
. (6.25)

Using the results (6.24) and (6.25) in Eq. (6.23), and using W (zτ ) ≡ U + iV , we
obtain

dγ0
dτ

=
W0(zτ )

τ2
W0(zτ )− Λτ

1 +W0(zτ )

=
1

τ2
(U − Λτ)(U + U2 + V 2)− V 2

(1 + U)2 + V 2
+ i

V

τ2
2U − Λτ + U2 + V 2

(1 + U)2 + V 2
.

(6.26)
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Hence, the derivative of the real part r0 is given by

dr0
dτ

=
1

τ2
(U − Λτ)(U + U2 + V 2)− V 2

(1 + U)2 + V 2
. (6.27)

For τ ≤ τ∗, which implies zτ < e−1, we find V = 0, which follows from the properties
of the principal branch W0 (see also Fig. 6.4A). Eq. (6.27) thus simplifies to

dr0
dτ

=
U − Λτ

τ2
U

1 + U
, (6.28)

and, since U ∈ [−1, 0], implies dr0/dτ ≥ 0 for τ ≤ τ∗.
We complete our proof by showing that dr0/dτ < 0 for τ > τ∗ using Eq. (6.27).

The term U −Λτ is negative. This can be seen by taking the real part of Eq. (6.15)
and using the fact that r0 > 0. Furthermore, V ̸= 0 in this region, which implies
that γ0 acquires an imaginary part (Fig. 6.3B). The term U + U2 + V 2 is positive.
To see this, we express this factor entirely in terms of V : We insert the definition
W (zτ ) = U + iV into the defining relation of the Lambert W function, Eq. (6.14),
which we write in the form W (zτ ) = zτe

−W (zτ ). This yields a complex equation
whose real and imaginary parts are given by

U = zτe
−U cosV , (6.29)

V = −zτe−U sinV . (6.30)

These equations yield the relation U = −V cotV . Hence, the term U +U2 +V 2 can
be rewritten as

U + U2 + V 2 =
V

(sinV )2

(
V − sin(2V )

2

)
. (6.31)

Since V ∈ [0, π], the above expression is positive. We have thus found that for v < 0,
dr0/dτ ≤ 0 for τ > τ∗. The corresponding synchronization rate r0 thus decreases
as the coupling delay increases. According to Eqs. (6.15) and (6.22), the maximal
synchronization rate r∗0 at τ = τ∗ is given by

r∗0 = Λ+
1

τ∗
. (6.32)

6.3.5—
Symmetry of short
and long wavelengths
for large delays

We obtain the behavior of r0 in the limit of large τ by an expansion of r0 in
powers of τ−1,

r0 = − ln |v|
τ

+ O(τ−2) . (6.33)

This shows that the asymptotic behavior of the synchronization rate only depends on
the absolute value |v| of the eigenvalue v characterizing the collective mode. Hence,
modes with same |v| but opposite signs approach the same asymptotic behavior.
Fig. 6.3A’ illustrates this behavior for the case of nearest-neighbor coupling.

6.4 Globally Coupled and Spatially Extended Systems

So far, all our results have been completely general and hold for all coupling
topologies that fall within the class specified in the beginning of Sec. 6.3. We now
apply our results from Sec. 6.3 to two prominent cases, namely, systems with global
coupling and spatially extended systems with nearest-neighbor interactions and pe-
riodic boundary conditions.



118 CHAPTER 6. PHASE SHIFTS AND COUPLING DELAYS

6.4.1—
Fastest

synchronization for
non-zero delays

In Sec. 6.2.1, we have considered a globally coupled system to numerically il-
lustrate the non-monotonic behavior of the synchronization rate as a function of
the coupling delay (Fig. 6.2A). Using the results from Sec. 6.3, we are now able to
understand this behavior in detail. For a globally coupled system, the normalized
adjacency matrix, Eq. (6.9), is given by

bµν =
1− δµν
n− 1

. (6.34)

The largest eigenvalue of bµν is v0 = 1 and corresponds to the neutrally stable global
phase shift. All other collective modes have the same eigenvalue v1 = −(n−1)−1 and
therefore exhibit the same synchronization rate. Since v1 < 0, their τ -dependence is
non-monotonic (Sec. 6.3.4). According to Eq. (6.22), the system synchronizes fastest
for the delay

τ∗ =
1

Λ
W0(e

−1[n− 1]) , (6.35)

which depends on the system size and the constant Λ.
Fig. 6.2B shows the imaginary part β0 = Im γ0 corresponding to the solution γ0

with smallest real part r0. As described in Sec. 6.3.4, β0 vanishes for τ < τ∗ but
attains non-zero values for τ > τ∗. A non-zero imaginary part corresponds to an
oscillatory decay of the collective perturbation mode ψ, Eq. (6.11).

Note that for the example shown in Fig. 6.2, fastest synchronization is found
for the delay τ∗ ≃ 18.6. The corresponding phase shift is given by Eq. (6.6) as
α∗ = α(τ∗) ≃ −15.1, which is equivalent to (α∗ mod 2π) ≃ 1.2π. For this phase
shift and sinusoidal coupling, g(φ) = sinφ, the shifted coupling function in Eq. (6.1)
effectively describes repulsive coupling, since sin(φ − α∗) ≃ sin(φ − π) = − sinφ.
The system without delays, τ = 0, has a phase shift of α0 = α(0) ≃ 1.8π, describing
attractive coupling. This demonstrates that a system with non-attractive coupling
and coupling delays can synchronize faster than a system with attractive coupling
and no delays.

6.4.2—
Fastest

synchronization for
intermediate
wavelengths

We now apply our results to spatially extended systems with nearest-neighbor
coupling and periodic boundary conditions. We have encountered the special case of
such a system in one dimension in Sec. 6.2.2. For the generalized case of d dimen-
sions, the collective modes are Fourier modes of the linear perturbations ξ to the
synchronized state (Appendix G),

ψk1,...,kd
(t) =

n1−1∑
µ1=0

. . .

nd−1∑
µd=0

e
−i

d∑
i=1

kiµi

ξµ1,...,µd
(t) . (6.36)

It is straightforward to check that the Fourier modes ψ satisfy Eq. (6.12) as the
perturbations ξ satisfy Eq. (6.10). The corresponding eigenvalues are given by

vk1,...,kd
=

1

d

d∑
i=1

cos ki , (6.37)

where ki = 2πpi/ni with pi ∈ {−ni/2,−ni/2 + 1, . . . , ni/2 − 1}, and ni is the size
of the system in i-direction (i = 1, . . . , d). The eigenvalues vk1,...,kd

thus refer to
the respective Fourier modes with wavevector (k1, . . . , kd). Hence, our results from
Sec. 6.3 explain the mode structure observed in Fig. 6.3A: the synchronization rates
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Figure 6.5 Oscillator synchronization in a two-dimensional nearest-neighbor coupled system of
100× 100 oscillators with periodic boundary conditions for no coupling delay (A–C) and finite
delay (D–F) with the same collective frequency. A,D. Snapshots of simulations of Eqs. (6.1) and
(6.6) at time t = 24. Each lattice site corresponds to one oscillator µ and its brightness indicates
the relative value of sinϕµ. Initial conditions at t = 0 are the synchronized state, Eq. (6.2),
perturbed by phases randomly chosen from the interval [−0.4π, 0.4π]. The separated plots
show 2× magnifications of the dashed regions. B,E. Logarithmic power spectra of images A,D.
Axes scaling is the same in both panels. C,F. Synchronization rate r0 as a function of the
wavevector (kx, ky) as obtained from Eq. (6.15). Bright colors correspond to small, dark colors
to large values. Axes are the same as in panels B,E. Parameters are ∆ = 6, ω = 1, ε = 0.2, with
τ = 0 (A–C) and τ = 10 (D–F) and α given by Eq. (6.6). The coupling function is g(φ) = sinφ.
Both systems exhibit the same collective frequency Ω = 1.06.

of long-wavelength modes monotonically decrease with increasing delay, whereas the
synchronization rates of short-wavelength modes show a non-monotonic behavior
in τ .

In addition, we illustrate the effects on nearest-neighbor coupled systems for
the case of two dimensions (Fig. 6.5). We consider two systems of 100 × 100 oscil-
lators on a square lattice with periodic boundary conditions, one without coupling
delay and one with finite coupling delay. The corresponding phase shifts α(τ) are
given by Eq. (6.6), all other parameters are identical. We prepare these systems in
the same synchronized state, perturbed by randomly chosen phases in the interval
[−0.4π, 0.4π]. We then let the system relax towards the synchronized state and in-
vestigate the spatial features of the relaxing pattern. Fig. 6.5A,D shows simulation
snapshots at a point in time when not all of the perturbations have relaxed yet. For
the case of no delays (Fig. 6.5A), the system first synchronizes on the shortest spatial
scale. This behavior is clearly revealed by the logarithmic power spectrum Fig. 6.5B,
where the intensity of long wavelengths (small wavevectors) is much larger than the
one of short wavelengths (large wavevectors). As the oscillators are coupled to their
nearest neighbors, such a synchronization behavior is expected. Interestingly, for the
case of finite delays (Fig. 6.5B), the system exhibits partially synchronized clusters
on intermediate length scales with persisting phase differences on nearest-neighbor
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scale. The logarithmic power spectrum Fig. 6.5E indeed reveals that perturbations
have decayed fastest at intermediate wavelengths. Both behaviors are described by
the results found in Sec. 6.3: For no delays, the synchronization rate of a Fourier
mode increases with increasing wavevector (Fig. 6.5C, see also Fig. 6.3A at τ = 0.) As
the delay increases, the curves for short-wavelength collective modes reverse their or-
dering (Fig. 6.3A), resulting in fastest synchronization on intermediate wavelengths
(Fig. 6.5F). A similar reversal of the synchronization rate of collective modes has
been observed in systems without delays as a function of the coupling strength [54].

6.5 Summary

In this chapter, we have investigated the synchronization dynamics of coupled
phase oscillators whose coupling includes phase shifts and time delays. We started
with the observation that the collective frequency of the synchronized state is invari-
ant under a specific substitution of coupling delays by phase shifts, Eq. (6.4). This
led us to study the synchronization dynamics of different systems connected by the
transformation (6.4). To this end, we obtained exact results for the linearized dy-
namics around the synchronized state. We found that the synchronization dynamics
crucially depend on the specific combination of phase shift and coupling delay. In
globally coupled systems, the synchronization rate attains a maximum for non-zero
coupling delay. This leads to the remarkable behavior that for the same collective
frequency, a system with a non-attractive coupling and coupling delays can exhibit
a synchronized state that is more robust against noise than a system with attractive
coupling and without delays. In spatially extended systems with nearest-neighbor
interaction, the combined effect of phase shifts and coupling delays can induce fastest
synchronization on spatial scales larger than the interaction range.

In natural and engineered systems of coupled oscillators, the collective frequency
is often intimately tied to the system’s function. This is the case, e.g., for the
circadian clock that regulates the metabolism in higher organisms with a period
of about 24 hours (Chapter 1, Sec. 1.1.1), for the coupled genetic oscillations in
the presomitic mesoderm of developing vertebrate embryos (Chapters 3–5), whose
frequencies play a role for the length of body segments, but also for engineered
systems of coupled lasers or electronic oscillators [74, 144]. Here we have shown that
phase shifts and coupling delays are a viable way to regulate the synchronization
rate while keeping the collective frequency at a specific value. The results presented
in this chapter have been published in Ref. [66].
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Parameters and Symbols used in Chapter 6

LIST OF SYMBOLS

ϕµ phase of oscillator µ
ξµ perturbation of oscillator µ to the synchronized state
ψµ collective mode µ for which the linearized dynamics decouple
γ exponent describing the relaxation of the collective mode ψ
r synchronization rate (r = Re γ)
r0 slowest synchronization rate
β β = Im γ
ω intrinsic frequency
ε coupling strength
cµν adjacency matrix
bµν normalized adjacency matrix
dµν change of basis matrix that diagonalizes bµν
vµ eigenvalues of bµν
uµ total weight of links of oscillator µ
n total number of oscillators
g coupling function
τ coupling delay
τ∗ coupling delay yielding maximum r0 for collective modes with v < 0
α coupling phase shift
Ω collective frequency
∆ total ‘virtual’ phase shift determining the collective frequency
Λ quantity that indicates stability of the synchronized state
Wσ σth branch of the Lambert W function
zτ vΛτeΛτ

U ReW0(zτ )
V ImW0(zτ )
d number of dimensions
ki wavevector in i-direction
pi integer number indexing the possible values for ki
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Chapter 7

Summary and Outlook

In this thesis, we investigated genetic oscillations and their role during the segmenta-
tion of the vertebrate body axis. We developed theoretical models of coupled genetic
oscillators as well as quantification methods for experimental data using methods
from dynamical systems theory, the theory of stochastic processes, nonlinear time
series analysis, and particle-based simulations. Importantly, we showed that our the-
ory of coupled phase oscillators in a dynamic medium can account for the key features
of vertebrate segmentation as observed in experiments with zebrafish embryos.

Stochastic coupling regulates precision and synchronization of genetic oscillators

In Chapter 2, we presented a generic Markov chain model of coupled genetic oscil-
lators, in which both the internal dynamics of an oscillator as well as the coupling
mechanism are intrinsically stochastic. We first analyzed the dynamical features of
an uncoupled oscillator and derived effective estimates for amplitude and frequency
in terms of its biochemical parameters.

We then turned to the full system of two coupled oscillators and investigated
the effects of stochastic coupling on precision, synchronization, and frequency of
the oscillators. We found that coupling can considerably increase the precision of
oscillators with the amount of precision increase being closely tied to the degree
of synchrony that the oscillators exhibit. The increase in precision and the mode
of synchrony of both oscillators, in-phase or anti-phase, crucially depend on the
coupling delays induced by complex signaling processes. Furthermore, we found that
the increase in precision was achieved without significantly altering the turnover of
gene expression products of the oscillators. These findings indicate that stochastic
coupling is a viable way to improve the precision of genetic oscillators. Moreover,
we found that coupled oscillators can exhibit stochastic switching between in-phase
and anti-phase synchronized states, a phenomenon induced by stochasticity.

We complemented this study with a phase oscillator approximation that takes
into account distributed coupling delays. By comparison to the stochastic model, we
showed that the phase model can capture the dependence of the collective frequency
on the coupling delay as well as the stability of the in-phase and the anti-phase syn-
chronized states. Hence, phase oscillator approximations can be used to describe the
collective dynamics of systems of coupled genetic oscillators while being compara-
tively simple and easy to implement.

Large assemblies of coupled genetic oscillators are found, e.g., in the mammalian
circadian clock and the rhythmically segmenting presomitic mesoderm of developing
vertebrate embryos. Our results indicate that in these and similar systems, stochastic
coupling might not only have a functional role in synchronizing the oscillations but
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also in substantially increasing their precision to keep a well-defined rhythm that is
robust against internal and external fluctuations. Even though our model is inspired
by cell-autonomous genetic oscillators that couple through a signaling pathway, it is
generic and could equally well represent two genetic oscillators with different genetic
components within the same cell but subject to intracellular coupling. A redundant
genetic network of this kind has, for instance, been proposed to be at work in the
cells of the presomitic mesoderm of developing vertebrate embryos [127]. Testing
the model predictions in experiments requires the ability to independently measure
oscillating gene expression in autonomous and coupled genetic oscillators. A cor-
responding experimental setup could be achieved by combining recently developed
transgenic live reporters for oscillating gene expression in zebrafish [31, 133] with the
ability to dissociate single oscillating cells from the embryo [154]. Using the fact that
oscillations couple through the Notch signaling pathway, which requires cell contact,
the precision and sychronization properties of coupled and uncoupled cellular genetic
oscillators could be measured and compared with our theoretical results.

Continuum theories of coupled phase oscillator descibe the key features
of vertebrate segmentation

In Chapter 3, we presented a continuum theory of coupled phase oscillators in a
dynamic medium. We applied this theory to describe the kinematic wave patterns of
gene expression in the presomitic mesoderm of vertebrate embryos. We started out
with simplifying assumptions, describing a tissue of constant length with homoge-
neous cell flow to illustrate the basic mechanism of pattern formation with oscillators
through a frequency gradient and advection. We then sequentially extended our the-
ory to take into account biologically relevant factors such as coupling delays due to
complex signaling processes, local growth of the tissue, and a time-dependent tissue
length. We studied their effects on pattern formation and found that in particular
the decreasing tissue length has important effects on the timing of segmentation.
The decreasing tissue length was found to induce a Doppler effect as one end of the
tissue moves into the kinematic wave pattern. In addition to the time scale of genetic
oscillations, this Doppler effect introduces a second time scale that contributes to the
rate of segment formation. This Doppler effect is accompanied by a dynamic mod-
ulation of the wavelength of the pattern, which leads to a complex interplay of the
time scales of oscillations and tissue length decrease. We complemented this study
with a hypothetic reaction-diffusion mechanism involving interacting morphogens
and oscillators that describes the shortening of the tissue and the termination of the
segmentation process in a self-organized way.

The theory of coupled oscillators in a dynamic medium presented here is highly
general and can be applied to other scenarios than the ones studied here. Within
the context of vertebrate segmentation, our theory could, for instance, be used to
describe segmentation of different vertebrate species and mutant animals exhibiting
different kinematic wave patterns in the presomitic mesoderm. In a broader context,
our theory can be applied whenever coupled oscillations with long-wavelength phase
patterns in a dynamic medium are studied.
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Changing tissue length regulates the timing of vertebrate segmentation
through a Doppler effect

In Chapter 4 we studied the dynamics of vertebrate segmentation in zebrafish using
experimental data obtained by our collaborators and/or published in the literature.
We measured the time evolution of the length of the segmenting tissue and the ve-
locity field in the segmented region from brightfield time-lapse movies of zebrafish
segmentation. We used these results to determine parameters of the theory intro-
duced in Chapter 3. We showed that our theory is capable of capturing the time
dependence of the morphological segmentation period and the segment size upon
formation as observed in wildtype embryos.

We then quantified experimental data on kinematic wave patterns of gene ex-
pression in zebrafish embryos, for which the theory yielded independent predictions.
To this end, we constructed a phase representation of the wave patterns using a
wavelet transform, which allowed a quantitative analysis of their spatio-temporal
properties. We compared the time-dependent number of kinematic waves in the pre-
somitic mesoderm with results of the theory presented in Chapter 3 and found very
good agreement. Moreover, the analysis of the experimental wave patterns revealed
a Doppler effect and a dynamic modulation of the wavelength as described by our
theory. Hence, we have successfully tested the viability of our theory by comparison
to experimental data from wildtype and transgenic embryos. Moreover, we have
shown that in addition to the time scale of genetic oscillations, a Doppler effect in-
duced by the changing tissue length regulates the timing of segment formation in a
hitherto unanticipated way.

The quantification methods developed here are easily adaptable tools that can
be employed to study and compare the spatio-temporal dynamics of kinematic wave
patters under different conditions, e.g., in mutant animals, animals in which gene
expression has been experimentally inhibited or enhanced, and animals of different
vertebrate species. Together with the theory introduced in Chapter 3, quantified
data on perturbed kinematic wave patterns can be used to perform precise tests of
our understanding of vertebrate segmentation on tissue level.

A cell-based model describes segmentation as a self-organized process

In Chapter 5, we introduced a three-dimensional cell-based model of a segmenting
tissue. This model builds on an existing tissue model based on dissipative particle
dynamics [16, 114] and extends it by the dynamics of coupled oscillators, morphogen
expression, and cell differentiation. It describes cells as distinct entities with mechan-
ical properties, which can divide, differentiate, and grow a tissue. The cells carry
autonomous genetic oscillators which couple with those of adjacent cells. Moreover,
these cells produce, degrade, and exchange a morphogen that sets the local frequency
of oscillations and controls cell fate decisions. We showed proof-of-principle results
demonstrating that self-organized pattern formation and segmentation emerges from
the interplay of these mechanisms of tissue growth, morphogen gradient formation,
and oscillation dynamics.

We propose this model as a starting point to study the interplay of pattern for-
mation and tissue mechanics during vertebrate segmentation in a unified framework
involving a three-dimensional tissue with cells as distinct mechanical entities. Going
beyond the coarse-grained theories of segmentation presented in Chapter 3, this cell-
based model enables to address, e.g., the effects of random cell movement on pattern



126 SUMMARY AND OUTLOOK

formation and on the morphology of segments as well as the compatibility of dif-
ferent growth mechanisms (cell division, inflow of cells, convergence-extension) with
the established mechanisms of pattern formation with oscillators. Combined with
the coarse-grained continuum theories, this model permits to address new questions
about how the embryonic body axis grows and how growth interacts with biochemical
patterning to generate the vertebrate body plan.

Coupling delays and phase shifts regulate synchronization of dynamic oscillators

Motivated by the biological oscillator systems studied in the previous chapter, we
turned to generic systems of coupled oscillators in Chapter 6. We analyzed their syn-
chronization behavior in the presence of coupling delays and phase shifts, properties
of oscillator coupling that generically arise in complex signaling processes. While
the collective frequency of the synchronized state is invariant under an appropriate
substitution of coupling delays by phase shifts, we showed that the synchronization
dynamics is not invariant under this substitution. For globally coupled systems with
a constant collective frequency, our results imply than fastest synchronization occurs
for non-vanishing coupling delays. In particular, we showed that non-attractive os-
cillator coupling together with coupling delays can yield a synchronized state that is
more robust to phase noise than attractive coupling without coupling delays. In spa-
tially extended systems, we found that fastest synchronization can occur on length
scales larger than the coupling range, giving rise to novel synchronization scenarios.

In natural and engineered systems of coupled oscillators, the collective frequency
is often intimately tied to the system’s function. This is the case, e.g., for the cir-
cadian clock regulating the metabolism in higher organisms, for the coupled genetic
oscillations in the presomitic mesoderm of developing vertebrate embryos, but also
for engineered systems of coupled lasers or electronic oscillators [35, 74, 102, 144].
Our results show that phase shifts and coupling delays can regulate the dynamic be-
haviors and the resilience of coupled oscillator networks, while keeping the collective
frequency at a specific value.

In summary, we used discrete and continuous theories of genetic oscillators to study
their dynamic behavior, comparing our theoretical results to experimental data where
available. We covered a wide range of different topics, contributing to the general
understanding of genetic oscillators and synchronization and revealing a hitherto
unknown mechanism regulating the timing of embryonic pattern formation. Parts of
the results presented in this thesis have been published [5, 66, 133].
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Appendix A

Analytical Treatment of the
Markov Chain Models

A.1 Time Evolution of Expectation Values

In this section, we show how to obtain Eqs. (2.21–2.23) governing the time evo-
lution of the expectation values ⟨xi⟩ =

∑
x xiP (x, t) from the master equation (2.1).

The time derivative of ⟨xi⟩ is given by

d

dt
⟨xi⟩ =

∑
x

xi
∂P

∂t
(x, t) =

∑
x

xi(ΛP )(x, t) , (A.1)

where
∑

x ≡
∑∞

x0=0 . . .
∑∞

xn=0 and Λ is the operator describing the dynamics of an
autonomous oscillator, Eq. (2.2). In the last equality, we have used the master equa-
tion (2.1) to replace the time derivative of P . For the sake of brevity, we introduce the
notation

∑[i1,...,im]
x , which indicates that summation over the occupation numbers

xi1 , . . . , xim is omitted. For 1 ≤ j ≤ n− 1, we find

d

dt
⟨xj⟩

= λ
n−1∑
i=0

(∑
x

xj(xi + 1)P (x0, . . . , xi + 1, xi+1 − 1, . . . , xn, t)−
∑
x

xjxiP (x, t)

)

+ κ

(∑
x

xj(xn + 1)P (x0, . . . , xn + 1, t)−
∑
x

xjxnP (x, t)

)

+ α

(∑
x

xjh(xn)P (x0 − 1, . . . , xn, t)−
∑
x

xjh(xn)P (x, t)

)

= λ
∑

i ̸=j−1,j

(
[i,i+1]∑

x

∞∑
xi=1

∞∑
xi+1=−1

xjxiP (x, t)−
∑
x

xjxiP (x, t)

)

+ λ

(
[j−1,j]∑

x

∞∑
xj−1=1

∞∑
xj=−1

(xj + 1)xj−1P (x, t)−
∑
x

xjxj−1P (x, t)

)

+ λ

(
[j,j+1]∑

x

∞∑
xj=1

∞∑
xj+1=−1

(xj − 1)xjP (x, t)−
∑
x

x2jP (x, t)

)

+ κ

(
[n]∑
x

∞∑
xn=1

xjxnP (x, t)−
∑
x

xjxnP (x, t)

)
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+ α

(
[0]∑
x

∞∑
x0=−1

xjh(xn)P (x, t)−
∑
x

xjh(xn)P (x, t)

)

= λ
∑

i ̸=j−1,j

∑
x

(
xjxi − xjxi

)
P (x, t)

+ λ
∑
x

(
(xj + 1)xj−1 − xjxj−1

)
P (x, t)

+ λ
∑
x

(
(xj − 1)xj − x2j

)
P (x, t)

+ κ
∑
x

(
xjxn − xjxn

)
P (x, t)

+ α
∑
x

(
xjh(xn)− xjh(xn)

)
P (x, t)

= λ
∑
x

(
xj−1 − xj

)
P (x, t)

= λ (⟨xj−1⟩ − ⟨xj⟩) .

In the first identity, we have used Eq. (A.1) and have evaluated the action of the
creation and annihilation operators E±

i on P . In the second identity, we have treated
the indices j−1 and j in the sum

∑n−1
i=0 separately and performed index shifts in the

appropriate sums to restore the form P (x, t) in every term. In the third identity, we
have restored the original lower summation bound to 0. This is possible because the
respective term to sum over contains either a factor of xi that does not contribute if
the case xi = 0 is included, or a factor of P (x, t), which is zero for negative molecule
numbers. In the fourth identity, we have removed all terms that cancel.

In a similar fashion, the time evolution for ⟨x0⟩ and ⟨xn⟩ is obtained. We here
omit the now obvious steps,

d

dt
⟨x0⟩ = λ

(
[0,1]∑
x

∞∑
x0=1

∞∑
x1=−1

(x0 − 1)x0P (x, t)−
∑
x

x20P (x, t)

)

+ α

(
[0]∑
x

∞∑
x0=−1

(x0 + 1)h(xn)P (x, t)−
∑
x

x0h(xn)P (x, t)

)

= ⟨h(xn)⟩ − λ⟨x0⟩ ,

d

dt
⟨xn⟩ = λ

(
[n−1,n]∑

x

∞∑
xn−1=1

∞∑
xn=−1

(xn + 1)xn−1P (x, t)−
∑
x

xnxn−1P (x, t)

)

+ κ

(
[n]∑
x

∞∑
xn=1

(xn − 1)xnP (x, t)−
∑
x

x2nP (x, t)

)

= λ⟨xn−1⟩ − κ⟨xn⟩ .
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Analogous dynamic equations can be derived for correlation functions of the type

⟨xi(t)xj(0)⟩ =
∑
x,x′

xix
′
jP (x, t|x′, 0)P (x′, 0) , (A.2)

where P (x, t|x′, t′) is the conditional probability of finding the state x at time t given
that the system was in state x at time t′ < t. It satisfies the equal-time relation
P (x, t|x′, t) = δxx′ . In this case, the time evolution is given by

d

dt
⟨xi(t)xj(0)⟩ =

∑
x,x′

xix
′
j(ΛP )(x, t|x′, 0)P (x′, 0) , (A.3)

which can be evaluated in the same way as in the examples above.

A.2 Closed Governing Equations for Expectation Values

A.2.1—
Closed
integro-differential
equation for ⟨xn⟩

We show the derivation of Eq. (2.25) from Eqs. (2.21–2.23), which govern the
time evolution of the expectation values ⟨xi⟩. The solution of Eq. (2.21) for the
initial product x0 reads

⟨x0(t)⟩ = c0e
−λt + α

∫ t

0

e−λ(t−t′)⟨h(xn(t′))⟩dt′ , (A.4)

where c0 depends on the initial condition. The equations for the intermediate prod-
ucts Eq. (2.22) have analogous solutions,

⟨xi(t)⟩ = cie
−λt + λ

∫ t

0

e−λ(t−t′)⟨xi−1(t
′)⟩dt′ , (A.5)

for 1 ≤ i ≤ n− 1. For any i in this range, repeated insertion of Eq. (A.5) yields

⟨xi(t)⟩ = cie
−λt + ci−1λe

−λt

∫ t

0

dt′ + λ2
∫ t

0

dt′
∫ t′

0

dt′′ e−λ(t−t′′)⟨xi−2(t
′′)⟩

= cie
−λt + ci−1λte

−λt + λ2
∫
D

d(t′, t′′) e−λ(t−t′′)⟨xi−2(t
′′)⟩

= (ci + ci−1λt)e
−λt + λ2

∫ t

0

dt′′
∫ t

t′′
dt′ e−λ(t−t′′)⟨xi−2(t

′′)⟩

= (ci + ci−1λt)e
−λt + λ2

∫ t

0

dt′′ (t− t′′) e−λ(t−t′′)⟨xi−2(t
′′)⟩ ,

(A.6)

where the integration domain D is the triangle D = {(t′, t′′) : 0 ≤ t′′ ≤ t′ ≤ t}. With
this result, it is straightforward to show by induction that in general,

⟨xi(t)⟩ = e−λt

j∑
k=0

(λt)k

k!
ci−k +

∫ t

0

Gλ,j+1(t− t′) ⟨xi−j−1(t
′)⟩dt′ , (A.7)

for 0 ≤ j < i ≤ n − 1, where Gλ,n is the Gamma distribution (2.26). The solution
to Eq. (2.23) for the final product xn can thus be expressed in the form

d

dt
⟨xn(t)⟩ ≃ −κ⟨xn(t)⟩+ α

∫ t

0

Gλ,n(t− t′) ⟨h(xn(t′))⟩ dt′ , (A.8)

where all terms of order tke−λt for 0 ≤ i ≤ n have been dropped.
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A.2.2—
Closed

integro-differential
equation for Γ

The differential equation (2.42) governing the time evolution of the autocor-
relation Γ can be obtained as follows [94]. The time evolution of the correlation
functions ⟨xi(t)xn(0)⟩ is calculated by the method presented in Sec. A.1. The re-
sulting hierarchy of differential equations, similar to Eqs. (2.21–2.23), can be closed
with a procedure analogous to the one that leads to Eq. (A.8). This yields

dΓ

dt
≃ −κΓ(t) + α

∫ t

0

Gλ,n(t− t′)Σ(t′) dt′ , (A.9)

where

Σ(t) = ⟨h(xn(t′ + t))xn(t
′)⟩ − ⟨h(xn)⟩⟨xn⟩ . (A.10)

Expansion of h(x) to third order at x = x̄, where x̄ is the mean product level
Eq. (2.44), yields

Σ(t) = h′(x̄)Γ2(xn(t
′ + t), xn(t

′))

+
h′′(x̄)

2
Γ3(xn(t

′ + t), xn(t
′ + t), xn(t

′))

+
h′′′(x̄)

6

(
3Γ2(xn(t

′), xn(t
′))Γ2(xn(t

′ + t), xn(t
′))

+ Γ4(xn(t
′ + t), xn(t

′ + t), xn(t
′ + t), xn(t

′))

)
+ O(⟨(xn − x̄)4⟩) ,

(A.11)

where Γm is the connected correlation function of m-th order, defined by

Γm(xi1(t1), . . . , xim(tm)) = (−i)m
δm logZ

δyi1(t1) . . . δyim(tm)

∣∣∣∣
y1=0,...,yn=0

. (A.12)

Here, δ/δyi(t) denotes the functional derivative with respect to the function yi(t)
and Z is the generating functional of the correlation functions, defined by [44]

Z =

⟨
exp

(
i

n∑
i=1

∫
yi(t)xi(t) dt

)⟩
. (A.13)

Note that Γ2(xn(t
′ + t), xn(t

′)) = Γ(t), Eq. (2.41). We thus obtain a closed equation
for Γ by neglecting all connected correlation functions of order m = 3 and higher in
Eq. (A.11) [161],

Σ(t) ≃
(
h′(x̄) + h′′′(x̄)

Γ(0)

2

)
Γ(t) . (A.14)

Using this result and the definition of η, Eq. (2.43), in Eq. (A.9), we obtain Eq. (2.42)
[94].

A.3 Characteristic Equation for the Autocorrelation

A.3.1—
Characterisic

equation

We show the derivation of the approximate characteristic equation (2.46) from
Eq. (2.42). Consider the integral

Π(t) =

∫ t

0

Gλ,n(t− t′) Γ(t′) dt′ , (A.15)
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which appears in Eq. (2.42). Using the definition of the Gamma distribution Gλ,n,
Eq. (2.26), this integral can be expressed as

Π(t) =
λn

(n− 1)!

∫ t

0

(t− t′)n−1e−λ(t−t′) Γ(t′) dt′

=
λn

(n− 1)!

(
− ∂

∂λ

)n−1 ∫ t

0

e−λ(t−t′) Γ(t′) dt′ .

(A.16)

To find a characteristic equation for Γ, we use the exponential ansatz Γ(t) = e−zt

with z = k + iω as introduced in Sec. 2.2.4. Inserting this ansatz into Eq. (A.16)
yields

Π(t) =
λn

(n− 1)!

(
− ∂

∂λ

)n−1
e−zt − e−λt

λ− z
. (A.17)

We now assume the following hierarchy of time scales, motivated in Sec. 2.2.4,

k < ω ≪ λ . (A.18)

Hence, if Π(t) is evaluated at times larger than ω−1, we can safely approximate
e−λt ≃ 0 and obtain

Π(t)

∣∣∣∣
t>ω−1

≃ e−zt

(
λ

λ− z

)n

. (A.19)

Using this result in Eq. (2.42), we obtain the approximate characteristic equation
(2.46).

A.3.2—
Closed frequency
estimate

We derive a closed analytical approximation for the oscillator frequency ω = Im z
from Eq. (2.46). Defining reiθ = λ−z = λ−k− iω, the characteristic equation (2.46)
can be rewritten as

z = κ− η
λn

rn
e−inθ . (A.20)

Using the hierarchy of time scales (A.18), we approximate

r2 = |λ− z|2

= (λ− k)2 + ω2

≃ λ2 + ω2

(A.21)

and

tan θ =
Im(λ− z)

Re(λ− z)

= − ω

λ− k

≃ −ω
λ
.

(A.22)

Taking the imaginary part of Eq. (A.20) and using these approximations, we find an
implicit equation for ω,

ω ≃ −η
(

1

1 + ω2/λ2

)n/2

sin

(
n arctan

ω

λ

)
. (A.23)



134 APPENDIX A. MARKOV CHAIN MODELS

We use Eq. (A.23) to compute a correction to the simple estimate Eq. (2.40) using
the ansatz ω = π/u+ ε and expanding Eq. (A.23) to first order in ε at ε = 0. This
yields a closed equation for ε which can be solved exactly. The result for ω is given
by

ω ≃ π

[
n

λ
− 1

η

(
1 +

π2

n2

)n/2+1]−1

,

=
π

u

(
1 +

1

ηu

)
+ O(n−3) ,

(A.24)

where u = n/λ is the mean feedback delay, Eq. (2.27).

A.3.3—
Approximation of η

We show how to derive Eq. (2.48) from the definition of η, Eq. (2.43),

η = αh′(x̄) + αh′′′(x̄)
Γ(0)

2
, (A.25)

where the mean product level x̄ and the variance Γ(0) of the product level are given
by Eqs. (2.44) and (2.45). Using the explicit Hill-type form of h, Eq. (2.24), with
Hill exponent p = 2, we find that its derivatives satisfy

h′(x) = − 2

q2
xh(x)2 , (A.26a)

h′′′(x) =
1

q
f(x)h′′(x) , (A.26b)

where

f(x) = −6x

q

(
1

1 + (x/q)2
+

1

1− 3(x/q)2

)
. (A.27)

Using Eqs. (A.26a,b) to replace the derivatives in Eq. (A.25), we obtain

ηq = f0 + εf(x̄) . (A.28)

where

f0 = −2α
x̄

q
h(x̄)2 , (A.29)

ε = αh′′(x̄)
Γ(0)

2
. (A.30)

Eq. (2.25), which describes the time evolution of ⟨xn(t)⟩, can be used to obtain an
expression for ε that only depends on x̄, so that its dependence on the variance Γ(0)
can be eliminated: in Eq. (2.25), we expand the function h(x) inside the expectation
value to second order at x = x̄, and consider the limit of large times, t→ ∞. In this
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limit, ⟨xn(t)⟩ attains its steady state value x̄, which implies d⟨xn⟩/dt→ 0 and thus

0 ≃ lim
t→∞

(
−κ⟨xn(t)⟩+ α

∫ t

0

Gλ,n(t− t′) ⟨h(xn(t′))⟩dt′
)

≃ −κx̄+ α lim
t→∞

∫ t

0

Gλ,n(t− t′)

(
h(x̄) + h′(x̄)(⟨xn(t′)⟩ − x̄)

+
h′′(x̄)

2
(⟨xn(t′)2⟩ − x̄2)

)
dt′

= −κx̄+ α

(
h(x̄) + h′(x̄)(x̄− x̄) + h′′(x̄)

Γ(0)

2

)
lim
t→∞

∫ t

0

Gλ,n(t− t′) dt′

= −κx̄+ α

(
h(x̄) + h′′(x̄)

Γ(0)

2

)
,

= −κx̄+ αh(x̄) + ε ,

(A.31)

where in the last identity, we have used the definition of ε, Eq. (A.30). We can solve
this equation for ε and obtain

ε ≃ κx̄− αh(x̄) . (A.32)

We have thus eliminated Γ(0) from the equation for η. The only remaining unknown
is the mean product level x̄. We estimate x̄ through the method introduced in
Sec. 2.2.3 as x̄ ≃ x∗ with x∗ defined in Eq. (2.37). Since x∗ satisfies κx∗−αh(x∗) = 0
(see Sec. 2.2.3) implying ε ≃ 0, it seems natural to approximate the term εf(x̄) in
Eq. (A.28) to zero. Indeed, we expect that ε is much smaller than each of the
contributions in Eq. (A.32),

ε≪ κx̄ , (A.33a)

ε≪ αh(x̄) , (A.33b)

but, since x̄ ≃ x∗ only holds approximately, ε ̸= 0. Hence, we have to analyze the
magnitude of f(x̄) and confirm that it does not spoil the approximation εf(x̄) ≃ 0.
To this end, we compare the term εf(x̄) to the contribution f0 in Eq. (A.28). We
assume that x̄ ∼ q (where ∼ denotes ‘of the same order as’) and later show that this
is the case for typical scenarios. For x > q, it is straightforward to obtain the bounds

h(x) < 0.5 for x > q , (A.34a)

|f(x)| < 1.32 for x > q . (A.34b)

Using these bounds and assuming x̄ ∼ q, we find from Eq. (A.29) that f0 ∼ α.
Ineqs. (A.33b) and (A.34b) imply εf(x̄) ≪ αh(x̄) < α. Taken together, we obtain
εf(x̄) ≪ f0. These considerations show that under the condition x̄ ∼ q, neglecting
the term εf(x̄) in Eq. (A.28) is warranted. We now have to evaluate under which
circumstances x̄ ∼ q and to this end, we use the approximation x ≃ x∗ introduced
above. Using the definition of x∗, Eq. (2.37), we find that x∗ > q if the condition

g0 > 1 (A.35)

holds, where g0 = α/2κq has been defined in Eq. (2.38). For typical parameter values
for which the system exhibits oscillations, this threshold is satisfied, see Fig. 2.6. Our
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approximation εf(x̄) ≃ 0 thus relies on the condition (A.35) to be fulfilled. From
Eq. (A.28), we thus obtain

η ≃ αh′(x∗) , (A.36)

where we have used the identity (A.26) to restore the original form of the contribution
f0, given in Eq. (A.25). With the definitions of h, Eq. (2.24), and x∗, Eq. (2.37), this
equation yields an explicit analytical estimate for η. However, the resulting expres-
sion is lengthy and can be further simplified. The estimate x∗ for the mean product
level, Eq. (2.37), depends on the two dimensionless quantities g0 and g1, Eqs. (2.38)
and (2.39). Since our approximation only holds under the condition (A.35), we can
assume that g20 ≫ 1/27 and Eq. (2.39) can thus be approximated by

g1 ≃ (2g0)
1/3 . (A.37)

This yields

η ≃ 2κ
g21(1− 3g21)

1/3 + g21(2 + 3g21)
. (A.38)

The condition (A.35) implies g1 > 21/3, which implies g21(2 + 3g21) > 10.7 for the
second term in the denominator. We can thus safely neglect the term 1/3 in the
denominator and obtain

η ≃ 2κ
1− 3g21
2 + 3g21

= −2κ

(
1− 1

2/3 + g21

)
. (A.39)

Using Eq. (A.37) and the definition of g0, Eq. (2.38), we thus obtain Eq. (2.48).



Appendix B

Phase Oscillators with
Distributed Delays

B.1 Phase Dynamics with Distributed Delays

We seek a description of coupled oscillators in terms of their phase dynamics
that takes into account a distribution of delay times in the coupling. We demand
that the dynamics of this equation is invariant under the transformation

ϕµ → (ϕµ mod 2π) , (B.1)

where ϕµ is the dynamical phase. The invariance of the dynamics under the trans-
formation (B.1) characterizes the parametrization of a limit cycle in terms of a phase
variable [107]. To include distributed delay times into a phase oscillator description,
we first consider phase dynamics without coupling delays, given by [77]

dϕµ
dt

= ωµ +
εµ
uµ

∑
ν

cµν sin(ϕν − ϕµ) , (B.2)

where ϕµ is the phase of oscillator µ, ωµ is its intrinsic frequency, εµ is the coupling
strength, cµν is an adjacency matrix that encodes the coupling topology, and uµ =∑

ν cµν is the number of oscillators that oscillator µ couples to. The strategy pursued
here is to write the phase equation without delays in terms of the complex oscillatory
signal

Xµ = eiϕµ (B.3)

and then include distributed delays in the signals Xν of the sending oscillators. This
procedure preserves the invariance of the dynamics under the transformation (B.1)
and intuitively accounts for the fact that it is information about the oscillatory signal
rather than the phase that is transmitted between oscillators via coupling. The time
evolution of Xµ can be obtained using Eq. (B.2),

dXµ

dt
= iωµXµ + iεµXµ ImZµX

∗
µ , (B.4)

where Zµ = u−1
µ

∑
ν cµνXν represents the combined signals of the sending oscilla-

tors1. We introduce a distribution G(t) of delay times in the signal Zµ through the

1Note that the Zµ are order parameters associated to the adjacency matrix cµν . For the case of
global coupling, cµν = 1, we recover the Kuramoto order parameter Zµ = Z = n−1

∑n
ν=1 e

iϕν , where n
is the total number of oscillators [77].
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replacement

Zµ(t) →
∫ ∞

0

G(t′)Zµ(t− t′) dt′ , (B.5)

which yields

dXµ

dt
= iωµXµ(t) + iεµXµ(t) Im

∫ ∞

0

G(t′)Zµ(t− t′)X∗
µ(t) dt

′ . (B.6)

Transforming this equation back to a phase equation yields

dϕµ
dt

=
1

iXµ

dXµ

dt

= ωµ + εµ
∑
ν

cµν

∫ ∞

0

G(t′) sin(ϕν(t− t′)− ϕµ(t)) dt
′ .

(B.7)

For the case of two identical coupled oscillators, in which ωµ = ω, εµ = ε, and

(cµν) =

(
0 1
1 0

)
, (B.8)

we obtain Eq. (2.55).
Alternative approaches to account for the effects of distributed coupling delays

on oscillator dynamics have been forwarded by others [7, 156]. In these approaches,
the integral over delay times appears inside the coupling function instead of outside
as in Eq. (B.7). This yields qualitatively different results. However, to describe
the negative-feedback oscillator presented in Chapter 2 of this Thesis, the above
description is the appropriate one as demonstrated in Sec. 2.4.

B.2 Analytical Results for Synchronized States

B.2.1—
Collective frequency

In this section, we derive Eq. (2.58) for the collective frequency of the in-phase
synchronized state of two coupled phase oscillators with distributed coupling delays.
We will recast occurring expressions into a form where we can use the identity∫ ∞

0

tn−1e−zt dt =
(n− 1)!

zn
(B.9)

for z ∈ C, given that Re z > 0 and n ∈ N. Using the in-phase synchronized state
ansatz ϕµ(t) = Ωt and the definition of the Gamma distribution Gλ̃,ñ, Eq. (2.49), in
Eq. (2.55) yields

Ω = ω − ε
λ̃ñ

(ñ− 1)!

∫ ∞

0

tñ−1e−λ̃t sin(Ωt) dt

= ω − ε
λ̃ñ

(ñ− 1)!
Im

∫ ∞

0

tñ−1e−(λ̃−iΩ)t dt

= ω − ελ̃ñ Im
1

(λ̃− iΩ)ñ

(B.10)
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In the last equality, Eq. (B.9) was used. We define reiθ = λ̃− iΩ and obtain

Ω = ω − ελ̃ñ Im
e−iñθ

rñ

= ω + ε
λ̃n

rñ
sin(ñθ)

= ω − ε

(
1

1 + Ω2/λ̃2

)ñ/2

sin

(
ñ arctan

Ω

λ̃

)
,

(B.11)

which is Eq. (2.58). Note that the simple identity θ = arctanΩ/λ̃ holds since λ̃ > 0.

B.2.2—
Characteristic
equation

In this section, we derive the characteristic equation (2.67), which determines
the stability of the in-phase synchronized state of of two coupled phase oscillators
with distributed coupling delays. Eq. (2.66) can be rewritten as

γν
ε

= νE(γν)− E(0) , (B.12)

where

E(γ) =

∫ ∞

0

Gλ̃,ñ(t) cos(Ωt) e
−γt dt . (B.13)

For notational simplicity, we define

γ = γ′ + iγ′′ ,

a = λ̃+ γ′ ,

b± = Ω± γ′′ ,

z± = a− ib± ,

(B.14)

and remind the reader of the trigonometric identities

(cosx)(cos y) =
cos(x+ y) + cos(x− y)

2
, (B.15a)

(sinx)(cos y) =
sin(x+ y) + sin(x− y)

2
. (B.15b)

Using the definition of the Gamma distribution, Eq. (2.26), we obtain for Eq. (B.13)

E(γ) =
λ̃ñ

(ñ− 1)!

∫ ∞

0

tñ−1e−(λ̃+γ)t cos(Ωt) dt

=
λ̃ñ

(ñ− 1)!

(∫ ∞

0

tñ−1e−(λ̃+γ′)t cos(γ′′t) cos(Ωt) dt

− i

∫ ∞

0

tñ−1e−(λ̃+γ′)t sin(γ′′t) cos(Ωt) dt

)
=

λ̃ñ

(ñ− 1)!

(∫ ∞

0

tñ−1e−at cos(b+t) + cos(b−t)

2
dt

− i

∫ ∞

0

tñ−1e−at sin(b+t)− sin(b−t)

2
dt

)
=

1

2

λ̃ñ

(ñ− 1)!

(
Re

∫ ∞

0

tñ−1
(
e−z+t + e−z−t

)
dt
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− i Im

∫ ∞

0

tñ−1
(
e−z+t − e−z−t

)
dt

)
=

1

2

λ̃ñ

(ñ− 1)!

(
Re

(ñ− 1)!

zñ+
+Re

(ñ− 1)!

zñ−
− i Im

(ñ− 1)!

zñ+
+ i Im

(ñ− 1)!

zñ−

)
=
λ̃ñ

2

(
Re z−ñ

+ − i Im z−ñ
+ +Re z−ñ

− + i Im z−ñ
−

)
=
λ̃ñ

2

[
(z−ñ

+ )∗ + z−ñ
−
]

=
λ̃ñ

2

[
(z∗+)

−ñ + z−ñ
−
]

=
λ̃ñ

2

(
1

(λ̃+ γ + iΩ)ñ
+

1

(λ̃+ γ − iΩ)ñ

)
.

The characteristic equation (2.67) follows from this.



Appendix C

Spatial Continuum Limits of
Coupled Phase Oscillators

In this appendix, we provide the derivation of the spatial continuum limits of coupled
phase oscillators with and without coupling delays used in Chapter 3. These con-
tinuum limits are viable for long-wavelength solutions in which the phase differences
between neighboring oscillators are small in a sense specified below. The resulting
continuum theories are more amenable to analytical manipulations than the discrete
theories they are derived from.

C.1 Continuum Limit of Coupled Oscillators

C.1.1—
Derivation of the
continuum limit

We start with a system of phase oscillators with nearest-neighbor coupling in
d = 1 dimension,

dφµ

dt
= ωµ +

ε̃µ
uµ

∑
ν=±1

g(φµ+ν(t)− φµ(t)) . (C.1)

Here, φµ is the phase of oscillator µ, ωµ is its intrinsic frequency, ε̃µ is its coupling
strength, uµ is the number of neighbors of oscillator µ, and g is a 2π-periodic coupling
function. We replace the discrete lattice of oscillators φµ by a continuous phase field
φ(x, t) and assume an infinite chain of oscillators, for which the number of neighbors
is given by uµ = 2. Furthermore, we assume that there are continuous interpolations
of the intrinsic frequency and the coupling strength, ω(x, t) and ε̃(x, t), which satisfy
ω(µs, t) = ωµ(t) and ε̃(µs, t) = ε̃µ(t), where s is the lattice spacing. The generalized
dynamics of φ is given by

∂φ

∂t
(x, t) = ω(x, t) +

ε̃(x, t)

2

∑
ν=±1

g(φ(x+ νs, t)− φ(x, t)) . (C.2)

The long-wavelength approximation that we introduce relies on two assumptions: (i)
the phase differences on the length scale s are small in the sense that the coupling
function g can be approximated by the first terms of its power series expansion1,
and (ii) the variation of φ on the length scale of s does not significantly differ from
a quadratic behavior2.

1For the common choice g(φ) = sinφ, a second order expansion of g about an arbitrary expansion
point φ0 yields a reasonable approximation for |φ− φ0| ≲ π/4.

2Note that these two assumptions do not imply each other. For instance, assumption (ii) is fulfilled
for φ(x) = px with arbitrary p, which however violates assumption (i) for sufficiently large p. Likewise,
assumption (i) is fulfilled for φ(x) = q sin px with sufficiently small q and arbitrary p, which however
violates assumption (ii) for sufficiently large p.
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Using assumption (i), we rewrite the argument of the coupling function as φ(x+
νs, t) − φ(x, t) = γ∆ν(x, t), where ∆ν is a function of order unity and γ is small in
the above sense. We expand the coupling function to second order in γ,

g(γ∆ν) = g(0) + g′(0)(γ∆ν) +
1

2
g′′(0)(γ∆ν)

2 + O(γ3) . (C.3)

Using assumption (ii), we expand the function γ∆ν to second order in s,

γ∆ν = νs
∂φ

∂x
+
s2

2

∂2φ

∂x2
+ O(s3) , (C.4)

where we have used ν2 = 1. Using this expansion in Eq. (C.3), we obtain

g(γ∆ν) = g(0) + νsg′(0)
∂φ

∂x
+
s2

2
g′′(0)

(
∂φ

∂x

)2

+
s2

2
g′(0)

∂2φ

∂x2
+ O(s3) . (C.5)

Dropping all orders higher than quadratic in s, and using this expansion in Eq. (C.2)
thus yields

∂φ

∂t
= ω + ε̃g(0) +

ε̃s2

2
g′′(0)

(
∂φ

∂x

)2

+
ε̃s2

2
g′(0)

∂2φ

∂x2
. (C.6)

Note that terms of linear order in s cancel out. This implies that keeping only zeroth
order terms yields an equation that is exact to first order in s. Similar derivations
for coupled phase oscillator systems without delays have been presented previously,
see, e.g., Ref. [96].

C.1.2—
Phase dynamics in a

comoving frame

We now derive the dynamic equation for the phase field in a co-moving reference
frame with speed v0,

ϕ(x, t) = φ(x− v0t, t) . (C.7)

The time evolution of ϕ is therefore given by

∂ϕ

∂t
= −v0

∂φ

∂x
(x− v0t, t) +

∂φ

∂t
(x− v0t, t) . (C.8)

The resulting terms can be expressed in terms of ϕ using φ(x, t) = ϕ(x+ v0t, t). We
thus obtain

∂ϕ

∂t
+ v0

∂ϕ

∂x
= ω + ε̃g(0) +

ε̃s2

2
g′′(0)

(
∂ϕ

∂x

)2

+
ε̃s2

2
g′(0)

∂2ϕ

∂x2
(C.9)

For the case of sinusoidal coupling, g(φ) = sinφ, we obtain g(0) = g′′(0) = 0 and
g′(0) = 1. Hence, we find Eq. (3.1) using the renormalized coupling strength

ε = s2ε̃ , (C.10)

which has the dimension of a diffusion constant.

C.2 Continuum Limit of Delay-Coupled Oscillators

C.2.1—
Derivation of the
continuum limit

We now extend the derivation presented in the previous section to a system of
coupled oscillators with discrete coupling delays. We have presented this derivation
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in Ref. [5]. We start with a system of phase oscillators with nearest-neighbor coupling
and coupling delays in d = 1 dimension,

dφµ

dt
= ωµ +

ε̃µ
2

∑
ν=±1

g(φµ+ν(t− τ)− φµ(t)) , (C.11)

where τ > 0 is the coupling delay and all other parameters are the same as in
Eq. (C.1). We repeat the steps in Sec. C.1 and write down the corresponding equation
for a continuous phase field φ(x, t),

∂φ

∂t
(x, t) = ω(x, t) +

ε̃(x, t)

2

∑
ν=±1

g(φ(x+ νs, t− τ)− φ(x, t)) . (C.12)

We introduce the notation

φτ (x, t) = φ(x, t− τ) , (C.13)

φν,τ (x, t) = φ(x+ νs, t− τ) , (C.14)

and rewrite Eq. (C.12) as

∂φ

∂t
= ω +

ε̃

2

∑
ν=±1

g(φν,τ − φ) . (C.15)

We decompose the argument of the coupling function φν,τ−φ = (φν,τ−φτ )+(φτ−φ)
into a part that is local in time but non-local in space, φν,τ − φτ , and a part that is
local in space but non-local in time, φτ −φ. Using the same argument as in Sec. C.1,
we define γ∆ν,τ = φν,τ −φτ , and expand the coupling function to second order in γ,

g(φν,τ − φ) = g(φτ − φ+ γ∆ν,τ )

= g(φτ − φ) + g′(φτ − φ)(γ∆ν,τ ) +
1

2
g′′(φτ − φ)(γ∆ν,τ )

2 + O(γ3)

(C.16)

In the spirit of Sec. C.1, we expand the function γ∆ν,τ to second order in s,

γ∆ν,τ = νs
∂φτ

∂x
+
s2

2

∂2φτ

∂x2
+ O(s3) . (C.17)

Using this expansion in Eq. (C.16), we obtain

g(φν,τ − φ) = g(φτ − φ) + νsg′(φτ − φ)
∂φτ

∂x
+
s2

2
g′′(φτ − φ)

(
∂φτ

∂x

)2

+
s2

2
g′(φτ − φ)

∂2φτ

∂x2
+ O(s3) .

(C.18)

Dropping all orders higher than quadratic in s, and using this expansion in Eq. (C.15)
thus yields

∂φ

∂t
= ω + ε̃g(φτ − φ) +

ε̃s2

2
g′′(φτ − φ)

(
∂φτ

∂x

)2

+
ε̃s2

2
g′(φτ − φ)

∂2φτ

∂x2
.

(C.19)

Note that terms of linear order in s cancel out. The extension of this derivation
to nearest-neighbor coupled oscillators on cubic lattices in arbitrary dimension d is
straightforward. Introducing a phase field φ(x, t) with x ∈ Rd, we obtain

∂φ

∂t
= ω + ε̃g(φτ − φ) +

ε̃s2

2d
g′′(φτ − φ)(∇φτ )

2 +
ε̃s2

2d
g′(φτ − φ)∇2φτ , (C.20)

where ∇ = (∂/∂x1, . . . , ∂/∂xd)
T.
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C.2.2—
Phase dynamics in a

comoving frame

We now derive the dynamic equation for the phase field in a co-moving reference
frame with speed v0,

ϕ(x, t) = φ(x− v0t, t) . (C.21)

The time evolution of ϕ is therefore given by

∂ϕ

∂t
= −v0

∂φ

∂x
(x− v0t, t) +

∂φ

∂t
(x− v0t, t) . (C.22)

We use Eq. (C.19) to replace the partial time derivative of φ. The resulting terms
can be expressed in terms of ϕ using φ(x, t) = ϕ(x+ v0t, t),

φ(x− v0t, t) = ϕ(x, t) , (C.23)

φτ (x− v0t, t) = φ(x− v0t, t− τ)

= ϕ(x− v0t+ v0(t− τ), t− τ)

= ϕ(x− v0τ, t− τ)

≡ ϕ̄τ (x, t) .

(C.24)

We thus obtain

∂ϕ

∂t
+ v0

∂ϕ

∂x
= ω + ε̃g(ϕ̄τ − ϕ) +

ε̃s2

2
g′′(ϕ̄τ − ϕ)

(
∂ϕ̄τ
∂x

)2

+
ε̃s2

2
g′(ϕ̄τ − ϕ)

∂2ϕ̄τ
∂x2

.

(C.25)

We find Eq. (3.21) for the case of sinusoidal coupling, g(φ) = sinφ, using the renor-
malized coupling constant ε, Eq. (C.10), and the renormalizing factor

Z =
1

s2
. (C.26)

C.3 Steady State Solution

C.3.1—
Phase profile

For time-independent frequency and coupling profiles, ω(x, t) = ω(x) and ε̃(x, t) =
ε̃(x), the system described by Eq. (C.19) can exhibit a steady state solution of the
type Eq. (3.13), ϕ(x, t) = Ωt + ψ(x). Using this ansatz and the definition ψ̄τ (x) =
ψ(x− v0τ), we find

Ω + v0
dψ

dx
= ω + ε̃g(ψ̄τ − ψ − Ωτ)− ε̃s2

2
g′′(ψ̄τ − ψ − Ωτ)

(
dψ̄τ

dx

)2

+
ε̃s2

2
g′(ψ̄τ − ψ − Ωτ)

d2ψ̄τ

dx2
,

(C.27)

which can be solved given appropriate boundary conditions. For the case of sinusoidal
coupling, g(φ) = sinφ, using the renormalized coupling constant ε, Eq. (C.10), and
the renormalizing factor Z, Eq. (C.26), we find Eq. (3.21).



Appendix D

Analytical Approximation of
Doppler Effect and
Dynamic Wavelength Effect

In this appendix, we derive the approximate relation Eq. (3.45) between the anterior
and the posterior frequency for a presomitic mesoderm whose length decreases lin-
early with time. This approximation is valid if (i) the effects of coupling on pattern
formation are weak (see Sec. 3.1) and (ii) the approximation of the velocity profile by
a constant, v(x) ≃ v0, does not yield a significantly different kinematic wave pattern
(see Sec. 3.3). We thus approximate the dynamic equation (3.32) by

∂ϕ

∂t
+ v0

∂ϕ

∂x
= ω(x/a(t)) , (D.1)

where a(t) is the time-dependent length of the presomitic mesoderm. The general
solution to this equation is given by

ϕ(x, t) = ψ(t− x/v0) +
1

v0

∫ x

0

ω

(
x′

a(t− (x− x′)/v0)

)
dx′ , (D.2)

where the function ψ(u) depends on the initial and boundary conditions. The partial
derivatives of this solution are given by

∂ϕ

∂t
(x, t) = ψ̇(t− x/v0)− ν(x, t) , (D.3)

v0
∂ϕ

∂x
(x, t) = −ψ̇(t− x/v0) + ν(x, t) + ω(x/a(t)) , (D.4)

where ψ̇ = dψ/du, and

ν(x, t) =
1

v0

∫ x

0

x′
ȧ(t− (x− x′)/v0)

a(t− (x− x′)/v0)2
ω′
(

x′

a(t− (x− x′)/v0)

)
dx′ , (D.5)

with ȧ = da/dt. Note that for ȧ = 0, we find ν = 0.
The explicit form of ψ(u) can be found using initial and boundary conditions.

We evaluate Eq. (D.4) at x = 0 using open boundary conditions, ∂ϕ/∂x|x=0 = 0,
Eq. (3.4), to obtain

ψ̇(t) = ω0 . (D.6)

Using the initial condition ϕ|t=0 = 0 and evaluating Eq. (D.2) at t = 0, we likewise
find

ψ(−x/v0) = − 1

v0

∫ x

0

ω

(
x′

a(−(x− x′)/v0)

)
dx′ . (D.7)
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Since we solve for ϕ(x, t) in the domain t > 0, x > 0, Eq. (D.6) determines ψ(u) for
u > 0 whereas Eq. (D.7) determines ψ(u) for u < 0. According to Eq. (D.2), u > 0
describes the solution at positions x < v0t. We are only interested in the behavior
of the anterior frequency at large times, for which a(t) < v0t, and thus neglect the
solution of ψ(u) for u < 0. From Eq. (D.6), we thus obtain

ψ(u)
∣∣∣
u>0

= ω0u , (D.8)

where we have set the arbitrary integration constant to zero. Using Eq. (D.8) in
Eqs. (D.3) and (D.4), we find for the anterior frequency ΩA, Eq. (3.39),

ΩA(t) =
∂ϕ

∂t
(a(t), t) + ȧ

∂ϕ

∂x
(a(t), t)

= ω0 − νA(t) +
ȧ

v0
[ω1 − ω0 + νA(t)]

=

(
1− ȧ

v0

)
[ω0 − νA(t)] +

ȧω1

v0

(D.9)

where νA(t) = ν(a(t), t) and ω1 = ω(1). So far, we have not assumed a specific time-
dependence of a(t) and the result is completely general. We now consider linear
tissue shortening with shortening speed v∗,

a(t) = a0 − v∗t . (D.10)

Using Eq. (D.10) in Eq. (D.5), we find for νA,

νA(t) = −
∫ a(t)

0

γx

((1 + γ)a(t)− γx)2
ω′
(

x

(1 + γ)a(t)− γx

)
dx (D.11)

where

γ =
v∗
v0

. (D.12)

For a(t) > 0, we can transform the integration variable to

ξ =
x

(1 + γ)a(t)− γx
. (D.13)

This reveals that νA is independent of time,

νA = −
∫ 1

0

γξ

1 + γξ
ω′(ξ) dξ . (D.14)

Integration by parts yields

νA = − γξ

1 + γξ
ω(ξ)

∣∣∣∣1
0

+

∫ 1

0

γ

(1 + γξ)2
ω(ξ) dξ

= − γ

1 + γ
ω1 + ηω0 ,

(D.15)

where

η =

∫ 1

0

γ

(1 + γξ)2
ω(ξ)

ω0
dξ . (D.16)
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Using the result (D.15) and ȧ = −v∗ in Eq. (D.9), we thus obtain

ΩA = (1 + γ)(1− η)ω0 . (D.17)

The posterior frequency ΩP = ∂ϕ/∂t|x=0 can be obtained using Eq. (D.3) and (D.8),
which yields ΩP = ω0. Thus, we can interpret Eq. (D.17) as a relation between
anterior and posterior frequency,

ΩA = (1 + γ)(1− η)ΩP . (D.18)
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Appendix E

Steady States of
Morphogen Gradients

E.1 Approximation of the Steady State of Q

In this section, we compute an analytic approximation of the steady state of
the morphogen Q, Eq. (3.48), in the absence of interactions with the morphogen R.
This approximation sheds light on the effects of parameters on the overall shape of
the morphogen gradient. To decouple the dynamics of Q from R, we set h1 = 0
throughout this section. Furthermore, we use the nondimensionalization scheme
introduced in Sec. 3.5, in which α = E = h0 = 1. The governing equation for the
steady state Q(x) is therefore given by Eq. (3.48) with ∂Q/∂t = 0,

d

dx
(vQ) =

d2Q

dx2
−Q+ J(x) , (E.1)

where the source J is of the form J(x) = 10<x<x0 as introduced in Sec. 3.5. Since
the velocity field depends on Q through Eq. (3.52),

dv

dx
= κQ , (E.2)

the steady state equation is a non-linear integro-differential equation,

κQ2 + κ
dQ

dx

∫ x

0

Q(x′) dx′ =
d2Q

dx2
−Q+ 10<x<x0 . (E.3)

Due to the simple nature of the integral, this equation could be written as a nonlinear
third-order ordinary differential equation. However, in the subsequent treatment, we
do not have to resort to this rewriting.

Region 0 < x < x0We first derive an approximation in the region 0 < x < x0, in which the source
of Q is active. The solution in this region is denoted by Q< = Q|x<x0 . We make
a steady-state ansatz that relies on the assumption that Q< only slightly deviates
from a constant value q0,

Q<(x) = q0 + δq(x) , (E.4)

where δ is a formal expansion parameter and q is the deviation. According to
Eq. (E.2), the corresponding velocity field is given by

v(x) = κq0x+ δκ

∫ x

0

q(x′) dx′ . (E.5)
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Using this ansatz, we expand the governing equation (E.3) to first order in δ,

0 = 1− q0 − κq20 +

(
d2q

dx2
− κq0x

dq

dx
− (2κq0 + 1)q

)
δ + O(δ2) . (E.6)

To zeroth order in δ, we obtain an equation for q0, whose only positive solution is
given by

q0 =

√
4κ+ 1− 1

2κ
. (E.7)

Note that for κ → 0, the solution behaves as q0 → 1. To first order in δ, we obtain
a differential equation for q,

κq0x
dq

dx
=

d2q

dx2
− (2κq0 + 1)q . (E.8)

Since we consider the region 0 < x < x0, the coefficient κq0x on the l.h.s. is bounded
from above by κq0x0. For the typical parameter values that we choose (Table 3.3),
we find that 0 < κq0x ≲ 0.6, while the coefficient of d2q/dx2 is unity and the
coefficient of q is 2κq0 +1 ≃ 1.6. We therefore propose an approximation scheme, in
which we set the l.h.s. to zero. With boundary conditions dQ/dx|x=0 = 0 (implying
dq/dx|x=0 = 0) and Q(x0) = q0 − q1 (implying q(x0) = −q1), we find the solution

q(x) = −q1
coshµx

coshµx0
, (E.9)

where

µ = (4κ+ 1)1/4 . (E.10)

The constant q1 has to be determined from smoothness conditions (see below).

Region x > x0 We now derive an approximation in the region x > x0, in which there is no source
of Q. We denote the solution in this region by Q> = Q|x>x0 . Since we expect Q to
form a gradient that is rapidly decaying outside the source region, we use Eq. (E.2)
to approximate the velocity field v in this region by a constant, v ≃ v0. Numerical
solutions to the exact steady state equation (E.1) confirm that for small values of κ
this assumption is warranted. The value of v0 has to be determined self-consistently
from the relation

v0 = κ

∫ ∞

0

Q(x) dx (E.11)

after deriving the functional form of Q(x). In the region x > x0, we thus obtain the
governing equation

v0
dQ

dx
=

d2Q

dx2
−Q . (E.12)

Using the boundary condition limx→∞Q(x) = 0, we find the solution

Q>(x) = q2e
−ν(x−x0) , (E.13)

where

ν =

√
4 + v20 − v0

2
. (E.14)
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Junction x = x0We connect the functional forms found for the two regions at the junction x = x0
via smoothness conditions. Since the steady state equation (E.1) is of second order,
we require Q<(x0) = Q>(x0) and Q

′
<(x0) = Q′

>(x0). From these two conditions, we
obtain the constants q1 and q2,

q1 =
q0

1 + µν−1 tanhµx0
, (E.15)

q2 = q0 − q1 . (E.16)

For typical parameter values used here (Table 3.3), we find µx0 ≫ 1 and we may
thus approximate tanhµx0 ≃ 1 to obtain

q1 ≃ q0
1 + µν−1

. (E.17)

Together with Eqs. (E.4) and (E.9), this leads to

Q<(x) = q0 −
q0

1 + µν−1

coshµx

coshµx0
. (E.18)

Furthermore, using Eq. (E.13), we obtain

Q>(x) =
q0

1 + µ−1ν
e−ν(x−x0) . (E.19)

We can now fix v0 via Eq. (E.11),

v0
κ

=

∫ x0

0

Q<(x) dx+

∫ ∞

x0

Q>(x) dx

= q0

(
x0 +

1− (µ−1ν)2 tanhµx0
ν(1 + µ−1ν)

)
≃ q0(x0 − µ−1 + ν−1) .

(E.20)

The last equality again employs the approximation tanhµx0 ≃ 1 (see above). The
r.h.s. of Eq. (E.20) depends on v0 through ν, Eq. (E.14). Since solving for v0 is
cumbersome, we solve for ν instead. From Eq. (E.14), we obtain v0 = ν−1−ν, which
we insert into the l.h.s. of Eq. (E.20) to obtain

ν =
κq0
2

(
µ−1 − x0 +

[
(µ−1 − x0)

2 − 4

κq0

(
1− 1

κq0

)]1/2)
. (E.21)

In summary, we have found the approximate steady state solution

Q(x) = q0 ×


1− 1

1 + µν−1

coshµx

coshµx0
x < x0

1

1 + µ−1ν
e−ν(x−x0) x ≥ x0

, (E.22)

where q0, µ, and ν are given in terms of the parameters through Eqs. (E.7), (E.10),
and (E.21). Comparison of the analytical approximation Eq. (E.22) with numerical
solutions of Eq. (E.1) show that the approximation is in very good agreement with the
exact solution in the limit of small κ (Fig. E.1). This is expected as κ determines the
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Figure E.1 Comparison of the analytical approximation for the steady state of Q (dashed black),
Eq. (E.22), and the exact numerical solution of Eq. (E.1) (solid green) for different values of κ.
All other parameters are provided in Table 3.3.
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Figure E.2 Comparison of the analytical approximation for the steady state of Q (dashed black),
Eq. (E.22), and the exact numerical solution of Eq. (E.1) (solid green) for different values of x0.
All other parameters are provided in Table 3.3.
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strength of self-interaction. Furthermore, the approximation shows better agreement
with the exact solution for increasing values of x0 (Fig. E.2).

The terminal speed v0 is given by Eq. (E.20) as

v0 = κq0(x0 − µ−1 + ν−1) . (E.23)

Since v0 is related to Q(x) via Eq. (E.11), the expression (E.23) is consistent with the
naive assumption that Q(x) can be approximated by a rectangle with side lengths
x0 and q0, but includes the correction terms µ−1 and ν−1 that account for diffusion
and advection. From Eq. (E.22), we also obtain an approximation for the length a0
of the presomitic mesoderm in the steady state by solving Q(a0) = Q∗ for a,

a0 ≃


x0 − ν−1 log

(
[1 + µ−1ν]

Q∗

q0

)
Q∗ ≤ q0

1 + µ−1ν

µ−1 arcosh

(
[1 + µν−1]

(
1− Q∗

q0

)
coshµx0

)
Q∗ >

q0
1 + µ−1ν

.

(E.24)

E.2 Approximation of the Steady State of R

In this section, we compute an analytic approximation of the steady state of the
morphogen R, Eq. (3.49), in the absence of interactions with the morphogen Q. To
decouple the dynamics of R from Q, we here set k1 = 0. Typically, non-vanishing
levels of R are found in the region where Q < Q∗. In this region, we assume
that the velocity is constant, v = v0 (for arguments warranting this assumption, see
Sec. E.1). For simplicity, we consider a case in which the phase field ϕ exhibits a single
wavenumber, ϕ(x) = px. The governing equation for the steady state distribution
R(x) is therefore given by Eq. (3.49) with ∂R/∂t = 0,

v0
dR

dx
= D

d2R

dx2
− k0R+ β0 + β1X(px) , (E.25)

where X(ϕ) is the oscillatory signal associated to the phase ϕ, Eq. (3.51). We make
the ansatz

R(x) = R0 +R1 cos px+R2 sin px (E.26)

and obtain

0 = β0 +
β1
2

− k0R0 + (v0R1p−DR2p
2 − k0R2) sin px

+

(
β1
2

− v0R2p−DR1p
2 − k0R1

)
cos px

(E.27)

Comparison of coefficients of sin px, cos px, and the constant term yields three equa-
tions for the three unknownsR0, R1, and R2. The solution to this system of equations
is given by

R0 =
β0 + β1/2

k0
, (E.28)

R1 =
β1
2

Dp2 + k0
(Dp2 + k0)2 + (pv0)2

, (E.29)

R2 =
β1
2

pv0
(Dp2 + k0)2 + (pv0)2

. (E.30)
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We express the ansatz (E.26) in the form

R(x) = R0 + r cos(px+ ϕ0) . (E.31)

Using standard trigonometric identities, we obtain

tanϕ0 =
R2

R1
=

pv0
Dp2 + k0

, (E.32)

r =
√
R2

1 +R2
2 =

β1
2

1√
(Dp2 + k0)2 + (pv0)2

. (E.33)

We thus find that in such a scenario, the steady state of R can be described by a
base level R0, Eq. (E.28), which is modulated by spatial oscillations with the same
wavenumber p as the phase field and amplitude r, Eq. (E.33). The amplitude r grows
linearly with the production rate β1 and decreases with diffusion D, wavenumber p,
decay rate k0, and velocity v0.



Appendix F

Experimental Phase Maps of
Kinematic Wave Patterns

In this appendix, we describe how to obtain the phase maps presented in Chapter 4,
Sec. 4.2, from experimental intensity kymographs. The method presented here has
been published with minor modifications in Ref. [133].

F.1 Generating Phase Maps using a Wavelet Transform

In Chapter 4, Sec. 4.2.1, we have described how to obtain intensity kymographs
of the spatio-temporal wave patterns along the presomitic mesoderm from time-
lapse movies of m = 18 embryos (example shown in Fig. F.1A). The time interval
between rows in the kymograph is δT = 5min and the spacing between columns is
δX = 1.26µm. To convert these intensity kymographs into phase maps, we apply the
following steps to each kymograph (summary shown in Fig. F.1).

Step 1. We apply a Gaussian filter of radius 3 in spatial direction to the intensity
kymograph to enhance the coherence of the resulting phase map in the posterior.

Step 2. For each column c of the intensity kymograph, we carry out the follow-
ing procedure: we consider the time series of the intensity signal along this column
(Fig. F.1A) and apply a wavelet transform (Chapter 4, Sec. 4.2.2) to obtain the
corresponding phase time series φσ(k) (Fig. F.1B). By applying this procedure to
every column c, we obtain a phase map φσ(c, k) for the entire intensity kymograph
(Fig. F.1C). The characteristic period of oscillation depends on the column c. Typ-
ically, the period along the columns slightly increases from posterior to anterior.
Hence, we choose a wavelet scale σ(c) for each column c that is appropriate for the
respective characteristic period. By convention, wavelet scales are parameterized in
an equal-tempered scheme,

σαβ = 2α−1+β/β̄T̄−1 , (F.1)

where α is called the octave number, β the voice number, β̄ is the number of voices
per octave, and T̄ is the so-called Fourier period of the Gabor wavelet function,
Eq. (4.6), which is given by [143]

T̄ =
4π

6 +
√
2 + 62

. (F.2)

We here choose α = 4 and β̄ = 50 for all columns. We choose the voice β to depend
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Figure F.1 Flow chart of the procedure to obtain phase maps (C) from intensity kymographs
(A) using a wavelet transformation. See Sec. F.1 for details. Figure adapted from Ref. [133].

on the column c, counted from the posterior, in the following way,

β(c) =


5 c ≤ 100

[ c−5
20 ] 100 < c ≤ 400

20 400 < c

, (F.3)

where [·] denotes the nearest integer value. This yields σ(c) = 23+β(c)/50T̄−1. Hence,
we obtain a phase map φ(x, t) that assigns a phase to every point in time t = kδT
and space x = cδX, using the wavelet scale σ(c). We choose x = 0 to correspond to
the position of the posterior tip and t = 0 to the formation time of the 7th segment.

Step 3. For a fixed time t, the phase φ(x) displays jumps from 2π to 0. We obtain
a continuous phase signal ϕ(x) by removing these jumps, ϕ(x) = Cxφ(x), where Cx

denotes the removal of jumps in x-direction. Practically, we use an algorithm that
first smoothes the signal using a moving median of width 5 in x-direction and then
detects the phase jumps and eliminates them. Carrying out this procedure for every
time point t, we obtain a phase map ϕ(x, t) = Cxφ(x, t), which displays no jumps in
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x-direction. In a similar way, we obtain a continuous signal of the posterior phase,
ϕP(t) = Ctφ(0, t), where Ct denotes the removal of jumps in t-direction.

We apply this procedure to the intensity kymographs of m = 18 embryos and
thus obtain 18 phase maps, denoted by ϕi(x, t) with i = 1, . . . ,m, and the corre-
sponding posterior phases ϕP,i(t). Furthermore, we determine the time-dependent
length ai(t) of the presomitic mesoderm from the kymographs for each embryo.

F.2 Construction of the Average Phase Map

In this section, we show how to obtain the average phase map Φ(x, t) from
m = 18 embryos, presented in Chapter 4, Fig. 4.6. From the phase maps ϕi(x, t)
obtained in the previous section, we determine the phase profiles

θi(x, t) = ϕi(x, t)− ϕi(x0, t) (F.4)

with x0 = 210µm for each embryo i = 1, . . . ,m. We use the position x0 = 210µm as
subtraction point since the phase maps show the least degree of noise in this region
(see, e.g., Fig. 4.5). We then determine the median of θi at each x and t,

θ̄(x, t) = mediani θi(x, t) . (F.5)

The median profile θ̄ is considerably less noisy than each single phase profile but
still not smooth enough to take numerical derivatives. As a smoothing technique, we
perform fits of differentiable functions to the median phase profile θ̄ that capture its
spatio-temporal key features. For a fixed time t, we fit the median phase profile θ̄(x)
with the function Θ(x) given in Table F.1 using the fit parameters θ0, β, χ, and ξ.
Carrying out this procedure for every time point, we obtain a time series for each of
the fit parameters (green dots in Fig. F.2). We then calculate the phase profile

Ψ(x) = Θ(x)−Θ(0) , (F.6)

which renders Ψ independent of the parameter θ0. We capture the time depen-
dence of the remaining parameters β, χ, and ξ by fits of the functions fβ(t), fχ(t),
and fξ(t) given in Table F.1. Using these fits in Ψ(x), we obtain a differentiable
function Ψ(x, t). Likewise, we compute the median of the posterior phase ϕ̄P(t) =
mediani ϕP,i(t) and perform a fit of the function ΦP(t) given in Table F.1. The
average phase map is thus given by

Φ(x, t) = ΦP(t) + Ψ(x, t) . (F.7)

Furthermore, we compute the average length of the presomitic mesoderm from all
embryos at each time point t, ā(t) = meani ai(t) and perform a fit of the function
A(t) given in Table F.1. All fit results are shown in Fig. F.2 (dashed black curves)
and the resulting fit parameters are provided in Table F.2. Note that all used fit
functions are phenomenological and not derived from a dynamic theory.
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Figure F.2 A–C. Time dependence of the fit parameters β, χ, and ξ that parametrize the phase
profile Θ(x) for each time point (green dots). The black dashed lines show fits of the time
evolution of these parameters by the functions fβ (A), fχ (B), and fξ (C) (black curves). D.
Averaged posterior phase ϕ̄P for each time point (green dots) and fit of the function ΦP (black
curve). E. Averaged length ā of the presomitic mesoderm (green dots) and fit to the function A(t)
(black curve). All fit functions are provided in Table F.1. Data also published in Ref. [133].
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FIT FUNCTION FIT PARAMETERS

Θ(x) = θ0 −
β

2

(
x+

1

χ
log coshχ(x− ξ)

)
θ0, β, χ, ξ

fβ(t) = β0 + β1 tanhβ2(t− β3) β0, . . . , β3

fχ(t) = χ0 + χ1 tanhχ2(t− χ3) χ0, . . . , χ3

fξ(t) = ξ0 +
ξ1
2

(
t+

1− ξ2/ξ1
ξ3

log cosh ξ3(t− ξ4)

)
ξ0, . . . , ξ6

− ξ2
2ξ5

log cosh ξ5(t− ξ6)

ΦP(t) =
p0
2
t+

p0
2p1

(
log cosh p1p2 − log cosh p1(t− p2)

)
p0, . . . , p2

A(t) = a0 + a1 tanh a2(t− a3) a0, . . . , a3

Table F.1. Fit functions used in Sec. F.2.

PARAMETER UNIT VALUE

β0 µm−1 5.90024× 10−2

β1 µm−1 1.53338× 10−2

β2 min−1 1.53837× 10−2

β3 min 2.8925× 102

χ0 µm−1 1.20872× 10−2

χ1 µm−1 6.03996× 10−3

χ2 min−1 2.48799× 10−2

χ3 min 2.0299× 102

ξ0 µm 1.89063× 102

ξ1 µmmin−1 −7.91625× 10−1

ξ2 µmmin−1 2.54169× 10−1

ξ3 min−1 3.69293× 10−2

ξ4 min 2.00622× 102

ξ5 min−1 2.38447× 10−2

ξ6 min 3.44444× 102

p0 min−1 1.51274× 10−1

p1 min−1 5.28693× 10−3

p2 min 6.40844× 102

a0 µm 4.17045× 102

a1 µm 2.02541× 102

a2 min−1 −5.08818× 10−3

a3 min 1.919× 102

Table F.2. Numerical values of the fit parameters of the functions given in Table F.1.
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Appendix G

Decoupling Perturbation Modes
by Fourier Transformation

In this appendix, we show that a spatial Fourier transformation decouples the collec-
tive perturbation modes for the phase oscillator system Eq. (6.1) if nearest-neighbor
coupling on a square lattice in d dimensions with periodic boundary conditions is
considered. Concretely, we derive Eqs. (6.36) and (6.37) from Eqs. (6.10) and (6.12).
According to Eq. (6.10), the time evolution of the perturbations ξµ1,...,µd

for such a
system is given by

d

dt
ξµ1,...,µd

= Λ
d∑

i=1

ni−1∑
ν=0

Bµiν

(
ξ(τ)µ1,...,µi−1,ν,µi+1,...,µd

− ξµ1,...,µd

)
, (G.1)

where ni is the number of oscillators in i-direction, ξ
(τ)
µ1,...,µd(t) = ξµ1,...,µd

(t − τ) is
the perturbation with delayed argument, and

Bµν =
1

2d
(δµ,ν−1 + δµ,ν+1) . (G.2)

Instead of encoding the nearest-neighbor coupling topology in d dimensions in a single
adjacency matrix bµν , which is cumbersome, we here use the one-dimensional nearest-
neighbor adjacency matrix Bµν and perform the summation for each dimension i =
1, . . . , d separately in Eq. (G.1). The spatial Fourier transform of the perturbations
and its inverse are given by

ψk1,...,kd
(t) =

n1−1∑
µ1=0

. . .

nd−1∑
µd=0

e
−i

d∑
i=1

kiµi

ξµ1,...,µd
(t) , (G.3)

ξµ1,...,µd
(t) =

1∏d
i=1 ni

∑
k

e
i

d∑
i=1

kiµi

ψk1,...,kd
(t) , (G.4)

where
∑

k denotes the summation over all ki = 2πpi/ni with pi ∈ {−ni/2,−ni/2 +
1, . . . , ni/2 − 1} and ni being the size of the system in i-direction (i = 1, . . . , d),
which we consider to be even. Inserting Eq. (G.4) into Eq. (G.1) yields

1∏
i ni

∑
k

e
i

d∑
i=1

kiµi d

dt
ψk1,...,kd

=
Λ∏
i ni

d∑
i=1

ni−1∑
ν=0

Bµiν

∑
k

(
e
ikiν+i

∑
j ̸=i

kjµj

ψ
(τ)
k1,...,kd

− e
i

d∑
i=1

kiµi

ψk1,...,kd

)
.

(G.5)
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Carrying out the summation over ν on the r.h.s. yields

∑
k

e
i

d∑
i=1

kiµi d

dt
ψk1,...,kd

=
Λ

2d

d∑
i=1

∑
k

(
[eiki(µi+1) + eiki(µi−1)]e

i
∑
j ̸=i

kjµj

ψ
(τ)
k1,...,kd

− e
i

d∑
j=1

kjµj

ψk1,...,kd

)

=
Λ

2d

d∑
i=1

∑
k

e
i

d∑
j=1

kjµj
(
[eiki + e−iki ]ψ

(τ)
k1,...,kd

− 2ψk1,...,kd

)

=
∑
k

e
i

d∑
i=1

kiµi Λ

d

d∑
i=1

(
(cos ki)ψ

(τ)
k1,...,kd

− ψk1,...,kd

)
.

(G.6)

Comparison of coefficients for all i = 1, . . . , d yields

d

dt
ψk1,...,kd

=

(
1

d

d∑
i=1

cos ki

)
Λψ

(τ)
k1,...,kd

− Λψk1,...,kd
. (G.7)

This shows that the dynamics of the Fourier modes decouple. Moreover, comparing
Eq. (G.7) with Eq. (6.12), we find that the eigenvalues vk1,...,kd

are given by

vk1,...,kd
=

1

d

d∑
i=1

cos ki . (G.8)

This completes the derivation of Eqs. (6.36) and (6.37).



Appendix H

Numerical Simulations and
Data Processing

Chapter 2. In Chapter 2, direct numerical solutions of the master equations (2.1)
and (2.5) are impracticable due to the high dimensionality of the state space. Instead,
a stochastic simulation algorithm of the Gillespie-type was written that yields exact
realizations of trajectories of the model [48]. Expectation values were obtained by
computing averages of the respective observable over multiple realizations. The data
shown in Figs. 2.9, 2.10, 2.13, and 2.15 were obtained by averaging over 50 realizations
for each data point.

Chapter 3. The dynamic equations investigated in Chapter 3 are formally equiv-
alent to advection-diffusion equations. To numerically integrate these partial differ-
ential equations, simple finite-difference algorithms of the FTCS type (forward-time
central-space) were written [108].

Chapter 4. Image analysis of experimental time lapse movies and images were
carried out using FIJI image analysis software [125]. Data processing and plotting
was done using Wolfram Mathematica [159].

Chapter 5. To integrate the equation of motion of the cell-based model, a
velocity-Verlet based integration scheme as described in Refs. [16, 99] was imple-
mented and extended by the dynamics of coupled phase oscillators, morphogen re-
actions, and cell differentiation as described in Chapter 5.

Chapter 6. Numerical results for the phase oscillator model presented in Chap-
ter 6 were obtained using an Euler algorithm.

All algorithms have been written in Fortran 90 and compiled with the Intel
Fortran Compiler IFORT, partly using the Intel Math Kernel Library IMKL. The
OpenMP API has been used to parallelize the code whenever appropriate. Simu-
lations were run on workstations and/or the computer cluster of the Max Planck
Institute for the Physics of Complex Systems, Dresden, Germany.
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Przemeck, and M. Hrabé de Angelis, Cell-based simulation of dynamic expression patterns
in the presomitic mesoderm, J. Theor. Biol. 248 (2007), no. 1, 120–129.
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