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Abstract

Biological cells consist of many subunits that form distinct compartments and work
together to allow for life. These compartments are clearly separated from each
other and their sizes are often strongly correlated with cell size. Examples for
those structures are centrosomes, which we consider in this thesis. Centrosomes
are essential for many processes inside cells, most importantly for organizing cell
division, and they provide an interesting example of cellular compartments without
a membrane. Experiments suggest that such compartments can be described as
liquid-like droplets.

In this thesis, we suggest a theoretical description of the growth phase of centro-
somes. We identify a possible mechanism based on phase separation by which the
centrosome may be organized. Specifically, we propose that the centrosome material
exists in a soluble and in a phase separating form. Chemical reactions controlling the
transitions between these forms then determine the temporal evolution of the system.
We investigate various possible reaction schemes and generally find that droplet sizes
and nucleation properties deviate from the known equilibrium results. Additionally,
the non-equilibrium effects of the chemical reactions can stabilize multiple droplets
and thus counteract the destabilizing effect of surface tension. Interestingly, only a
reaction scheme with autocatalytic growth can account for the experimental data
of centrosomes. Here, it is important that the centrioles found at the center of all
centrosomes also catalyze the production of droplet material. This catalytic activity
allows the centrioles to control the onset of centrosome growth, to stabilize multiple
centrosomes, and to center themselves inside the centrosome. We also investigate a
stochastic version of the model, where we find that the autocatalytic growth amplifies
noise.

Our theory explains the growth dynamics of the centrosomes of the round worm
Caenorhabditis elegans for all embryonic cells down to the eight-cell stage. It also
accounts for data acquired in experiments with aberrant numbers of centrosomes
and altered cell volumes. Furthermore, the model can describe unequal centrosome
sizes observed in cells with disturbed centrioles. Our example thus suggests a general
picture of the organization of membrane-less organelles.





Zusammenfassung

Biologische Zellen bestehen aus vielen Unterstrukturen, die zusammen arbeiten,
um Leben zu ermöglichen. Die Größe dieser meist klar voneinander abgegrenzten
Strukturen korreliert oft mit der Zellgröße. In der vorliegenden Arbeit werden als
Beispiel für solche Strukturen Zentrosomen untersucht. Zentrosomen sind für viele
Prozesse innerhalb der Zelle, insbesondere für die Zellteilung, unverzichtbar und
sie besitzen keine Membran, welche ihnen eine feste Struktur verleihen könnte. Ex-
perimentelle Untersuchungen legen nahe, dass solche membranlose Strukturen als
Flüssigkeitstropfen beschrieben werden können.

In dieser Arbeit wird eine theoretische Beschreibung der Wachstumsphase von
Zentrosomen hergeleitet, welche auf Phasenseparation beruht. Im Modell wird ange-
nommen, dass das Zentrosomenmaterial in einer löslichen und einer phasenseparie-
renden Form existiert, wobei der Übergang zwischen diesen Formen durch chemische
Reaktionen gesteuert wird. Die drei verschiedenen in dieser Arbeit untersuchten Reak-
tionen führen unter anderem zu Tropfengrößen und Nukleationseigenschaften, welche
von den bekannten Ergebnissen im thermodynamischen Gleichgewicht abweichen.
Insbesondere verursachen die chemischen Reaktionen ein thermisches Nichtgleichge-
wicht, in dem mehrere Tropfen stabil sein können und der destabilisierende Effekt
der Oberflächenspannung unterdrückt wird. Konkret kann die Wachstumsdynamik
der Zentrosomen nur durch eine selbstverstärkende Produktion der phasenseparie-
renden Form des Zentrosomenmaterials erklärt werden. Hierbei ist zusätzlich wichtig,
dass die Zentriolen, die im Inneren jedes Zentrosoms vorhanden sind, ebenfalls diese
Produktion katalysieren. Dadurch können die Zentriolen den Beginn des Zentro-
somwachstums kontrollieren, mehrere Zentrosomen stabilisieren und sich selbst im
Zentrosom zentrieren. Des Weiteren führt das selbstverstärkende Wachstum zu einer
Verstärkung von Fluktuationen der Zentrosomgröße.

Unsere Theorie erklärt die Wachstumsdynamik der Zentrosomen des Fadenwurms
Caenorhabditis elegans für alle Embryonalzellen bis zum Achtzellstadium und deckt
dabei auch Fälle mit anormaler Zentrosomenanzahl und veränderter Zellgröße ab.
Das Modell kann auch Situationen mit unterschiedlich großen Zentrosomen erklären,
welche auftreten, wenn die Struktur der Zentriolen verändert wird. Unser Beispiel be-
schreibt damit eine generelle Möglichkeit, wie membranlose Zellstrukturen organisiert
sein können.
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Chapter 1

Introduction

A
ll organisms are made of cells, the basic building blocks of nature [1]. Cells
are complex machineries that contain many different substructures and their

interior is highly organized, see Fig. 1.1. This organization of the interior of cells
has excited scientists since centuries, but it is still not understood [2–4].

In this thesis, we investigate the formation of centrosomes, which are cellular
substructures important for cell division. We assume that the proteins these centro-
somes are made of attract each other and thus form assemblies, which we describe
as liquid-like droplets. Additionally, we introduce chemical reactions to control this
phase separation process. With such a model, we are able to account for the major
experimental observations of the dynamics of centrosomes. We try to keep the de-
scription general enough to be able to learn something about phase separation as a
possible organization principle in cells.

1.1 Organization of the cell interior

The cell is not just a homogeneous container of proteins and associated molecules, but
exhibits a pronounced spatiotemporal order. To achieve order, any physical system
has to work against reaching the thermodynamic equilibrium [3]. In biological
systems, this is accomplished by a complex process known as metabolism that alters
the material of the surrounding. In general, the food taken up by an organism
has lower entropy then the material it excretes. Consequently, living systems are
able to expel entropy and thus stay away from the entropy maximum associated
with the thermodynamic equilibrium [6]. Biological organisms are thus open, non-
equilibrium systems that can lower their own entropy without violating the second
law of thermodynamics.

This ejection of entropy is the reason that biological systems can stay away from
equilibrium. Although this argument explains why an organism can obtain spa-
tiotemporal order, it still does not clarify how such an order comes about. It is
thus still puzzling how proteins arrange in patterns on scales orders of magnitude
larger than themselves, e.g. at the scale of a cell or the whole organism itself. One
of the main questions in biology therefore is how the cell achieves the spatial orga-
nization of its proteins and maintains it over time despite the large separation of
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Figure 1.1: Internal organization of a cell in an artistic representation. The most impor-
tant organelles are shown. Centrioles and the surrounding matrix forming
centrosomes are highlighted. Image reprinted by permission of Pearson
Education, Inc., Upper Saddle River, NJ [5].

length-scales [7]. Most notably, this spatial organization of proteins is also required
to form substructures in cells, which are often called organelles.† There are many
different, indispensable types of these organelles in a typical cell, see Fig. 1.1, and it is
crucial that their size, their count, and their position is controlled to guarantee their
function. Indeed, the size of many cell organelles is correlated with cell size [10–12].
This brings up the question of how cells both measure and adjust the size of their
organelles [13–15]. We try to answer this question using the example of centrosomes,
which we introduce in the next section.

† The term «organelle» refers to “any of the specialized structures within a cell that perform a
specific function” [8]. Often times, the term is restricted to cellular substructures enclosed by
a membrane [9]. In this thesis, we argue that such a membrane is not necessary to form large,
stable, and well-defined substructures in a controlled manner and we therefore use the term
«organelle» in its broader sense.
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Figure 1.2: Anatomy of the model organism Caenorhabditis elegans. (A) Image of
an adult hermaphrodite worm obtained by differential interference contrast
microscopy. Eggs inside the body are highlighted and two laid eggs are
shown next to the adult. (B) Schematic drawing of anatomical structures.
(C) Schematic drawing of the first cell generations. The development of
the egg is shown from top to bottom until the four-cell stage and the cell
names are indicated. Panels A and B were modified from Ref. [17] and
Panel C was inspired by Ref. [18].

1.2 Biology of centrosomes

Centrosomes are examples of organelles that can occur in varying sizes. However, the
mechanisms regulating their size and their growth kinetics are not understood [16].
In this thesis, we present a model of centrosome growth, which we compare to
quantitative experimental data.

1.2.1 The model organism Caenorhabditis elegans

Many of the basic principles of cellular functions are the same in all organisms,
since they evolved a long time ago. It is thus conceivable that important processes,
like the division of a human cell, can be understood by studying simpler organisms,
which are easier to handle in the lab and are ethically less delicate than their human
counterpart.

The majority of the experimental data used in this thesis has been obtained
from experiments on the nematode Caenorhabditis elegans. This small roundworm
was first used in experiments by Sydney Brenner in 1974 [19]. The adult worm is
transparent and about 1mm long, see Fig. 1.2A. It occurs in two sexes, although the
hermaphrodites are usually much more abundant than the males. All experiments on
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A B C

Figure 1.3: Immunofluorescence stainings showing important structures in the cell: cen-
trosomes (red spots, highlighted by white arrows) are located near the DNA
(blue region) and organize the microtubules (green filaments). (A) Picture
of a cell of the human cell line U-251 MG in interphase. Image modified
from the Human Protein Atlas [25]. (B–C) Pictures of cells of the human
prostate cancer cell line DU-145 in mitosis. Two situations are shown: (B) a
normal, bipolar mitotic spindle with two centrosomes and (C) a multiplolar
mitotic spindle with an increased number of centrosomes. Panels B and C
were modified from Ref. [26]. Scale bars indicate 5µm.

C. elegans mentioned in this thesis were carried out with hermaphrodites, which each
have exactly 959 cells in the adult stage [20]. Interestingly, C. elegans was the first
multicellular organism whose genome was complete sequenced [21]. This enabled the
development of the powerful technique of RNA interference (RNAi), which can be
used to reduce the amount of specific proteins in the living organism [22]. Controlling
the concentration of single proteins allows to probe their function and the discoverers
of RNAi were therefore awarded the Noble Prize in 2006 [23]. All these properties
make C. elegans a popular model organism in molecular and developmental biology.

The life of a C. elegans worm starts inside its mother where the egg cell is fertilized
and the resulting embryo is protected by an egg shell. This initial phase is dominated
by rapid cell divisions, which lead to a highly stereotypical development, such that
the location and the structure of cells can be used to identify and name them, see
Fig. 1.2C . These cell divisions inside the embryo can be studied under the microscope
by dissecting the mother and isolating the eggs. In particular, this system has been
used to study centrosomes by our collaborators [24].

1.2.2 Cellular functions of centrosomes

The material properties and the shape of a cell are largely determined by its cy-
toskeleton [27]. The cytoskeleton is a scaffolding structure in cells, which consist of
various different kinds of filaments. Among these, microtubules are probably the
stiffest objects, which span the complete cell, see Fig. 1.3. They are involved in
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Figure 1.4: Schematic lifecycle of centrosomes. One centrosome organizes the mi-
crotubule network in the G1 phase [1]. After centriole duplication in the
synthesis phase (S phase), two centrosomes grow by accumulating pericen-
triolar material (PCM) in preparation of mitosis (M phase). They organize
the mitotic spindle and disintegrate prior to cell division. The two daughter
cells each inherit one pair of centrioles and the cycle starts again.

intracellular transport, positioning of the nucleus, and cell division [1]. In order to
control all these processes, the cell thus has to organize its microtubules in space
and time.

Centrosomes are the main microtubule organizing centers and therefore influence
most processes dependent on microtubules [28]. Generally, centrosomes regulate
the number of microtubules and their spatial structure [1]. They are important
both for dividing cells as well as for cells in interphase, i. e. the phase in-between
cell divisions. In interphase cells, microtubules emanate from a single centrosome
and span the entire cell volume, see Fig. 1.3A. Conversely, in dividing cells, two
centrosomes organize a bipolar, spindle-like structure, see Fig. 1.3B . This mitotic
spindle is responsible for the segregation of the duplicated chromosomes into the
daughter cells, see Fig. 1.4. Centrosomes are thus important for orchestrating cell
division [29]. In particular, it has been shown that in the nematode C. elegans,
centrosome size directly sets the length of the mitotic spindle [30]. The position
of the centrosome also determines the position of the cell division plane, which is
important for asymmetric cell divisions [31]. Although centrosomes are not strictly
needed for cell division in higher organisms, they still might increase the robustness
of cell division [32]. However, there is also the possibility that centrosomes localize
to the poles of the mitotic spindle to ensure the proper segregation of centrioles to
the two daughter cells [33].
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Figure 1.5: Electron micrographs of centrioles from human cells. (A) The cross-section
of a single centriole shows a nine-fold symmetry created by the regular
configuration of nine triplets of microtubules. Panel modified from Ref. [52].
(B) The side view shows a pair of centrioles connected by linker proteins.
The mother centriole (MC) has appendages (arrowheads) consisting of
additional proteins which are not present at the daughter centriole (DC).
Panel modified from Ref. [53]. (C) Schematic view of the pair of centrioles.

Cell division is arguably the most important event in the cell cycle and its failure
can lead to missegregation of the genetic information, thus yielding two compromised
cells. Abnormal cell division is a key aspect of all cancers and the role of centrosomes
in these diseases has been heavily discussed [34–38]. Often times, more than two
centrosomes are found in cancer cells, a phenomenon termed «centrosome amplifi-
cation» [39–44]. The multipolar spindles originating from the elevated centrosome
count are thought of being the cause for chromosomal missegregation, see Fig. 1.3C .

Besides organizing the microtubule network, centrosomes also have other functions
in the cell [45]: they play an important role in controlling the cell-cycle progres-
sion [46, 47], they are thought of interacting with endosomes [48], and they might
possibly have additional regulating functions, i. e. as a signaling hub [49]. Yet, it is
still debated whether centrosomes are strictly needed in these processes [50]. Gener-
ally, the role of centrioles and centrosomes may depend on the type of the cell that
contains them. Therefore, it is crucial to investigate the assembly and the structure of
centrosomes to understand their functions and eventually develop therapies targeted
at centrosomes, e.g. for curing cancer or diseases of brain development [50, 51].

1.2.3 The centriole pair is the core structure of a centrosome

Centrosomes consist of a pair of centrioles surrounded by a cloud of proteins, the
pericentriolar material (PCM), from which the microtubules emanate. The centro-
some count is set by the number of centriole pairs, since centrosomes can only form
around centrioles.
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Centrioles have an interesting structure, which is not completely understood [54].
The two barrel-shaped centrioles of a centrosome are typically linked by special
proteins, see Fig. 1.5. A single centriole consist of a cylindrical inner tube surrounded
by microtubules arranged in a nine-fold symmetry [55]. In higher animals, there
are nine triples of microtubules, see Fig. 1.5A, whereas other organisms may have
centrioles with nine single microtubules. This is for instance the case in C. elegans,
where a single centriole has a length of about 150 nm and a diameter of 100 nm [56].

The number of centrioles is regulated by the centriole duplication cycle, which
happens once every cell cycle, see Fig. 1.4. This duplication ensures that a cell has
two centrosomes at cell division, since it typically contains exactly one centrosome
before it starts to divide. After cell division of the mother cell, each daughter cell
inherits exactly one pair of centrioles and the cycle starts again. The duplication
of a centriole occurs in multiple steps and is not completely understood [53, 56–
60]. New centrioles usually grow perpendicular at the proximal end of preexisting
centrioles, which gives rise to the observed L-shaped arrangement, see Fig. 1.5B .
Apart from this duplication process, centrioles can also form de novo in cells lacking
centrioles [61]. Apparently, the usual centriole duplication cycle suppresses the de

novo formation, such that always two centrosomes are present at cell division [62]. It
is not yet known how this complex regulation of the centriole formation arose from
an evolutionary perspective [63]. Centrioles must have appeared at an early stage
of life, though, since centrosomes are present in all major eukaryotic animals [64].

Interestingly, centrioles also fulfill other roles apart from organizing centrosomes.
For instance, centrioles are found at the cell membrane, where they are called basal
bodies and are important for organizing cilia, which are cell appendages important
for motility and sensing. Because of their requirement for multiple basic processes
in cells, it is not surprising that centrioles are thought of being involved in many
diseases [49].

The role of the centrioles is difficult to disentangle from the function of the PCM
surrounding them [65]. In this thesis, we focus on the accumulation of the PCM
and are therefore less concerned with possible downstream effects onto the cell.
The interaction between centrioles and the surrounding PCM is important, though.
Centrioles evidently influence centrosomes size [66–68]. It has been hypothesized that
SAS-4, a protein localizing to the region of the centrioles, tethers PCM components
to the centriole [67–70]. Later in this thesis, we will show that the interaction
between centrioles and the PCM can supply a suitable mechanism to control the
formation of the PCM.

1.2.4 Pericentriolar material accumulates around the centrioles

The structure and material properties of the PCM are not known and it is usually
described as an amorphous cloud of proteins [16]. Although electron microscopy
studies and structural analysis were successfully used to examine the small centrioles,
see Fig. 1.5, the same techniques are less effective in gathering detailed information
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Figure 1.6: Structure of a centrosome. (A) Electron microscopy image of a centrosome
of C. elegans. The centrioles located at the center of the centrosome are
marked with arrows. The dashed circle indicates the approximate region of
the pericentriolar material (PCM). (B) 3D reconstruction of the same data.
The centrioles each consist of a inner tube (orange cylinder) surrounded by
nine microtubules (light blue cylinders). Microtubules (red lines) emanate
from the centrosome with their ends (white dots) apparently anchored at the
PCM surface (black void region). (C) Schematic picture of the centrosome,
where the pericentriolar material (PCM) is depicted as an orange sphere.
Panels A and B were modified from Ref. [71]. Scale bars indicate 200 nm.

about the surrounding PCM, see Fig. 1.6. However, new high-resolution microscopy
technologies begin to reveal substructures within the PCM [72, 73]. These studies
predict a hierarchical ordering of proteins, at least in interphase centrosomes of
humans and Drosophila melanogaster. Conversely, the PCM of the large centrosomes
in metaphase is still thought of being amorphous [74]. We thus adopt the view that
the PCM has no apparent structure to describe large centrosomes in this thesis.

The organization of centrosomes is regulated over the cell cycle, see Fig. 1.4 [1].
Initially, interphase cells have only one centrosome with little PCM surrounding a
single pair of centrioles. Either this pair is inherited from the mother cell at cell
division or the fertilizing sperm donates it to the egg cell, which lacks centrioles.
Before a cell divides, it first duplicates its DNA. Around the same time, the pair
of centrioles also duplicates as described above. Subsequently, these two pairs of
centrioles accumulate PCM in metaphase, a process termed «centrosome matura-
tion» [75]. The microtubule nucleating capacity increases accordingly and leads to
the formation of the bipolar mitotic spindle. The two centrosomes lose most of their
PCM after chromosome segregation, but before the cell divides physically. Finally,
the two daughter cells each inherit one pair of centrioles and the cell cycle starts
again. Centrosomes therefore have a dynamic life cycle, where they grow and dissolve
in synchrony with the cell cycle.

We want to describe how PCM accumulates around centrioles. To this end, we
have to know the structure of the PCM. There are hundreds of different kinds of
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proteins localizing to the centrosome [76–78]. They can be broadly categorized
into three classes: (i) proteins, that are necessary for the formation of centrioles
without which centrosomes would not form; (ii) proteins that are indispensable for
the accumulation of PCM around the centrioles; (iii) proteins that use the centrosome
to fulfill other functions, e.g. to regulate microtubule dynamics. Since, we consider
PCM accumulation, we focus on the second class, although some proteins may fall
into several classes. In the case of C. elegans, many of the centrosome proteins are
known and categorized. In a genetic screen, three proteins have been identified
that play a dominant role in PCM formation [79]: SPD-2, a coiled-coil protein
which is additionally involved in centriole duplication [80], SPD-5 another coiled-
coil protein [81], and AIR-1, a kinase which also has other roles, e.g. in spindle
assembly [82–85]. Additionally, the protein PLK-1 has been identified as another
kinase indispensable for centrosome growth [24, 86–89]. These four proteins seem to
be the core constituents of the PCM, although it is possible that additional proteins
not yet found are required to form PCM. The function of the proteins that are
not strictly required for PCM accumulation is less well understood, although some
of them have been investigated in more detail: γ-tubulin for instance plays a role
in anchoring and possibly nucleating microtubules [71, 90–96]; other proteins, like
TAC-1, ZYG-9, or KLP-7, control microtubule dynamics in C. elegans [79].

Apparently, many proteins associate only loosely with the centrosome, which
thus forms a dynamic structure [16]. Additionally, RNA has been found inside
the PCM [97], although its role is not yet known [98, 99]. Generally, RNA can
mediate attractive interactions between proteins and thereby play an important role
in organizing membrane-less organelles [100].

1.3 Other membrane-less organelles and their

organization

In addition to centrosomes, the cell contains other membrane-less organelles, e.g.
germ granules, Cajal bodies, and nucleoli, which are all spherical and usually exist
in multiple copies, see Fig. 1.7. They consist of many different kinds of proteins
exchanging quickly with the surrounding cytosol [101]. This dynamic organization
implies fast relaxation of mechanical stresses, a property that is reminiscent of fluid
droplets. Indeed, germ-granules are liquid droplets and their segregation dynamics
can be described by the interplay of droplet formation and a chemical gradient
over the complete cell [102, 103]. In fact, even non-spherical organelles without
membranes may have liquid-like properties. For instance, metaphase spindles were
described by a theory based on liquid crystal properties [? ]. This led to a successful
prediction of metaphase spindle size in dependence on kinematic parameters, which
was also confirmed experimentally [? ]. In summary, many membrane-less organelles
appear to behave like liquid droplets.
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A B C
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Figure 1.7: Examples of organelles without membrane in cells. (A) Germ-granules
(green) in Caenorhabditis elegans visualized using a GFP-tagged version
of the protein PGL-1. Panel modified from Ref. [102]. (B) Cajal-bodies
(green) in human HeLa cells marked by GFP-tagged coilin proteins. Panel
modified from Ref. [104]. (C) Nucleoli imaged by differential interference
contrast microscopy of a Xenopus laevis germinal vesicle. Panel modified
from Ref. [105].

Liquid droplets form due to attractive interactions between their constituents.
Attractive interactions between the involved proteins are presumably also the reason
for the formation of the membrane-less organelles [101, 106]. Similar systems have
already been studied in biology. For instance, attractive interactions can lead to
protein assemblies in various contexts: they may localize chemical reactions [107], act
as storage compartments [108], or function as waste disposal systems [109]. Aggrega-
tions of misfolded proteins are also involved in aging and various diseases [110]. As
an example, amyloid formation is hypothesized to cause Alzheimer’s and Parkinson’s
disease, amongst others [111]. It is therefore important to investigate the formation
of protein assemblies in the cell for both understanding the healthy cell as well as for
curing diseases. At the current point, the mechanical properties of these assemblies
are difficult to measure and it remains to be seen if they have liquid-like properties,
which is a likely possibility [112].

The formation of liquid droplets can be described as a liquid-liquid phase separation

process, where proteins segregate from the cytosol into the liquid droplets. These
liquid droplets thus have a distinct composition and could form the aggregates or
organelles mentioned above.

1.4 Phase separation as an organization principle

Phase separation is a general physical phenomenon that appears in many different
fields [113]. It describes how a mixture of components segregates and forms compart-
ments. Here, the components could be anything ranging from chemical molecules to
protein complexes, or even individual animals, depending on the scale at which the
phase separation occurs. In this context, compartments are homogeneous regions
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in the system with distinct composition, i. e. they are enriched in the respective
components. The compartments are separated by interface regions, which are small
compared to the size of the compartments themselves. Consequently, the process of
phase separation describes how a single-phase system becomes a multi-phase system.
In the context of liquids, this could be the process of separating a miscible solution
into two immiscible liquids.

Theories based on phase separation have been used successfully to describe struc-
tures in soft matter [114, 115], in particular in living systems [116, 117]. In the
biological science, the theory of phase separation has been applied to problems at
many different scales: at the sub-cellular level, it describes Cajal bodies inside the
nucleus [118] or lipid rafts found in the cell membrane [119–121]. Other protein
assemblies with liquid-like properties are found in the cytosol, e.g. the protein Di-
shevelled forms puncta, which seem to be functionally relevant [122, 123]. They
have been analyzed theoretically using a model based on phase separation [124, 125].
Furthermore, the concept also proved to be useful on the tissue level, e.g. for in-
vestigating pattern formation in bird wings [126]. In general, phase separation is a
generic physical mechanism for morphogenesis, i. e. it may explain how the shape
of tissues is controlled [127]. Interestingly, the range of applications extends to
problems at the population level: phase separation appears in the organization of
bacterial colonies [128, 129] and flocks of birds [130].

The theory of phase separation is therefore a widely used concept, which can
explain spatial inhomogeneities. We will also use it in this thesis to explain the
organization and formation of centrosomes. Before we introduce and analyze our
model, we summarize the basic theory of equilibrium phase separation in the next
section.

1.5 Equilibrium physics of liquid-liquid phase

separation

We develop the theory of phase separation in the minimal framework of a binary
fluid, where we distinguish two components that can segregate from each other.
To be consistent with the terminology used later in this thesis, we already call
these two components droplet material and solvent material. For simplicity, we
consider an incompressible fluid with constant and equal molecular volume ν for
the two components. We can then characterize the state of the system by the
volume fraction φ of the droplet material, which is proportional to its number
density n = φ/ν. Note that the volume fraction of the solvent material is given by
1− φ, since the solvent material together with the droplet material must occupy the
entire volume.
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Figure 1.8: Free energy density f of a binary fluid as a function of the volume fraction φ
of droplet material for different normalized temperatures θ = kBT/(νχ).
(A) The free energy density f(φ) is shown. (B) The chemical poten-
tial µ(φ) ∝ ∂φf(φ) is shown. The minima (blue dots) and inflection points
(orange hexagons) of f(φ) are indicated in both panels.

1.5.1 Spinodal decomposition and droplet formation

Phase separation is generally driven by the interactions between the components of
the binary mixture [113]. If concentrating components of the same kind lowers the
free energy, the system tends to phase separate. This ordering process is opposed
by entropy, which tends to mix the system. These two antagonistic processes are
captured by a simple choice of the free energy density

f(φ) =
kBT

ν

[
φ lnφ+ (1− φ) ln(1− φ)

]
+ χφ · (1− φ) , (1.1)

which stems from a simplified Flory-Huggins theory [131, 132]. The first term,
proportional to the temperature T and Boltzmann’s constant kB, describes the
entropy of mixing, which increases if components are concentrated. Conversely, the
second term accounts for the interaction energy, which is large if the system is mixed.

The ratio of entropic to enthalpic effects, quantified by the normalized temper-
ature θ = kBT/(νχ), determines whether the system can undergo phase separa-
tion [113]. For large θ entropic effects dominate, f(φ) has only a single minimum,
and the system is therefore always mixed, see Fig. 1.8A. Conversely, for small θ the
free energy has two minima and the system can separate into two phases, where the
volume fraction in these phases are given by the positions of the minima. Note that
two phases only form if the average fraction φ̄ of droplet material lies between the
two minima. Furthermore, spontaneous demixing of a homogeneous system, known
as spinodal decomposition, is only possible if f(φ) is concave at φ = φ̄ [113]. Other-
wise, the homogeneous state is metastable and fluctuations are necessary to initiate
demixing. The unstable and metastable regions are separated by the inflection points
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Figure 1.9: Phase diagram of a binary mixture as a function of the normalized temper-
ature θ = kBT/(νχ) and the composition φ̄ of the system. Regions with
qualitatively different behavior are separated by the binodal line (blue solid
line) and the spinodal line (orange dashed line), which touch each other in
the critical point (green star). The schematics on the right illustrate the
time-evolution of the system in the three different regions: (i) homogenous,
mixed system at large enough temperature, (ii) spontaneous spinodal de-
composition, and (iii) nucleation and growth of droplets of the minority
phase. The rightmost illustrations indicate possible equilibrium states.

of f(φ). Consequently, the minima and inflection points of f(φ) mark transition
points between qualitative different dynamics and they are therefore respectively
known as the binodal point and spinodal point [113]. They are shown as a function
of θ in the phase diagram in Fig. 1.9, which highlights the three possible regions:

(i) The system is homogeneous and well-mixed at high temperatures.

(ii) For low temperatures, a system prepared in the homogeneous state is unsta-
ble and will undergo spontaneous, global demixing to lower its free energy.
This spinodal decomposition at least transiently yields bicontinous structures
instead of droplets [133–135].

(iii) In between these two extremes lies a case, where the homogenous system
does not have the lowest energy, but is locally stable. Small perturbations
are not enough to drive the system from this metastable state toward the
equilibrium state. Instead, large fluctuations, which typically only occur rarely,
can nucleate droplets which then grow subsequently.

We consider phase separation in the context of centrosome formation within cells
in this thesis. The total volume of the centrosomes is typically much smaller than the
volume of the entire cell [24]. Consequently, we do not observe spontaneous spinodal
decomposition and bicontinous structures, but the system is rather in the droplet
nucleation and growth regime. We thus focus on the case, where a small number
of droplets form within the system. This common situation can also be observed
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A B

Figure 1.10: General droplet formation by phase separation. (A) Oil droplets in water.
Photography courtesy of Tétine [141]. (B) Schematic drawing of a spher-
ical droplet of radius R embedded in a system of volume Vc. The volume
fraction of droplet material inside and outside the droplet is φ− and φ+,
respectively.

in daily life, e.g. when mixing oil and water, see Fig. 1.10A. Generally, droplet
formation by phase separation is well understood [115, 136, 137]. For instance, the
size distribution of droplets over time can be predicted theoretically [138–140]. It
is still a challenge to control the nucleation and therefore the count and position of
droplets, though.

1.5.2 Formation of a single droplet

We first consider a single droplet of volume V located in a closed system of volume Vc,
see Fig. 1.10B . If the respective volume fractions within the droplet and in the solvent
are homogeneous, the free energy F of the system is given by

F = V f(φ−) + (Vc − V )f(φ+) + γA , (1.2)

where f(φ) is a suitable free energy density capturing the interactions of the material
with itself and the solvent, e.g. the one given in Eq. (1.1). Here, φ− and φ+ are the
homogeneous volume fractions inside and outside the droplet, respectively. The last
term in Eq. (1.2) accounts for the interface between the droplet and the solvent. The
associated surface free energy is given by the product of the surface area A of the
droplet and the surface tension γ, which is a material property [142].

In the thermodynamic equilibrium, the free energy given in Eq. (1.2) is minimal.
We calculate the droplet volume later in this section, but we can already state
that the equilibrium shape will be a sphere, since this geometry minimizes the
surface energy γA for a given droplet volume. The spherical droplet shape can be
parameterized by the droplet radius R. The volume V and the surface area A of the
droplet are then related by V = 4πR3/3 and A = 4πR2, respectively. Consequently,
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the two volume fractions, φ− and φ+, and any value quantifying the droplet size
describe the system completely.

We assume a closed system, such that the total amount of material is conserved.
The variables that the free energy depends on are therefore related by

φ̄Vc = V φ− + (Vc − V )φ+ . (1.3)

Here, φ̄ is the volume fraction of droplet material in the corresponding homogeneous,
mixed system. The conserved total volume of droplet material is thus given by φ̄Vc.
It is distributed between the droplet phase, described by the first term on the right
hand side of Eq. (1.3), and the solvent captured by the last term.

Nucleation of a single droplet

We first discuss the free energy given in Eq. (1.2) for a small droplet. In the simple
case investigated here, we consider a fixed volume fraction φ− inside the droplet. The
volume fraction φ+ outside the droplet can then be determined from the conservation
equation (1.3) and the droplet size becomes the only state variable. Since we consider
small droplets, φ+ will hardly deviate from the volume fraction φ̄ of the homogeneous
system. We thus expand the free energy density, f(φ+) ≈ f(φ̄) + µ̃(φ̄)(φ+ − φ̄), and
eliminate φ+ using the material conservation given by Eq. (1.3). Here, we introduced
the abbreviation µ̃(φ) = ∂f(φ)/∂φ, which is proportional to the chemical potential,
µ = νµ̃, with the molecular volume ν. Using these approximations, the free energy F
given in Eq. (1.2) simplifies to

F ≈ f(φ̄)Vc −∆f · V + γA , (1.4)

where ∆f = f(φ̄)− f(φ−) + µ̃(φ̄)(φ− − φ̄). The first term is the free energy of the
homogeneous reference system. Conversely, the other terms respectively describe the
bulk and surface contributions to the free energy that are caused by the formation
of a small droplet. This droplet can only be stable if the total free energy F is lower
than that of the homogeneous system. The surface tension γ is typically positive,
such that only the bulk term can reduce F . We thus consider the case ∆f > 0 in
the following.

The simplified free energy given in Eq. (1.4) only depends on the droplet size.
It exhibits an interesting scaling with the droplet radius R: while the bulk term
proportional to ∆f scales with V ∝ R3, the surface term proportional to γ only
scales with A ∝ R2. Consequently, the surface term dominates for small radii and
the free energy increases with growing droplets, see Fig. 1.11. Conversely, for large
radii, the bulk term typically lowers the free energy. If the droplet is larger than a
critical size, it can thus lower the free energy by growing further. Taken together,
droplets larger than a certain critical size grow spontaneously, while smaller droplets
dissolve.
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Figure 1.11: Free energy of a small droplet as a function of its radius R as given by
Eq. (1.4) without the constant term. The activation energy Ea is given
by the maximum at the critical droplet radius Req

crit, see Eq. (1.5).

The critical droplet size is given by the local maximum of F (R), where the deriva-
tive with respect to R vanishes, see Fig. 1.11. Using Eq. (1.4), we can solve for the
critical droplet radius,

Req
crit ≈

2γ

f(φ̄)− f(φ−) + µ̃(φ̄)(φ− − φ̄)
. (1.5)

We thus find the typical relation that the critical droplet radius is proportional to
the surface tension γ and vanishes in the limit γ → 0 [143]. Growth of small droplets
can therefore be understood as a competition between the attractive interactions in
the bulk and the thermodynamically unfavorable creation of interface. Consequently,
the spontaneous nucleation of a droplet that is larger than the critical size and
can thus overcome the energy barrier is a stochastic process driven by thermal
fluctuations in the system. The associated probability Pnuc is typically given by
Pnuc ∝ exp(−Ea/kBT) [144], where Ea = F (Req

crit) − F (0) is the height of the energy
barrier. Because of this exponential relationship, nucleation processes are typically
erratic and thus difficult to control.

Coexistence conditions at the droplet interface

Once a droplet is formed, it can be described as a dense phase of droplet material
immersed in the solvent, where different volume fractions φ of the droplet material
coexist inside and outside of the droplet surface. Local thermodynamic equilibrium
at the interface between the droplet and the solvent governs the conditions of this
coexistence. In order to derive general conditions, we will now lift the constraint that
the volume fraction φ− inside the droplet is constant. Still, the free energy given in
Eq. (1.2) is minimal if the system is in equilibrium and the partial derivatives of F
with respect to the state variables, φ− and V , must vanish. Note that φ+ is not a
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state variable, since we eliminate it using Eq. (1.3). The two necessary conditions
for the minimum of the free energy can thus be formulated as

0 = µ̃(φ−)− µ̃(φ+) (1.6a)

0 = (φ+ − φ−)µ̃(φ−) + f(φ−)− f(φ+) +
2γ

R
, (1.6b)

where again µ̃(φ) = ∂φf(φ). These two equations are the coexistence conditions
for the volume fractions inside and outside of the interface. Eq. (1.6a) states that
the chemical potentials µ = νµ̃ on both sides of the interface must match. This is
nothing else but the chemical equilibrium between the two phases. Similarly, the
second condition can be interpreted as the mechanical equilibrium of the pressures
inside and outside the droplet. This can be seen by considering the grand-canonical
Helmholtz free energy, F = Nµ−pV , where N = nV is the total number of molecules.
Dividing this expression by V , we get f = φµ̃ − p, which we use to eliminate f in
Eq. (1.6b). This yields

p(φ−)− p(φ+) = Π , (1.7)

where Π = 2γ/R denotes the Laplace pressure caused by the surface tension of the
curved interface [113]. Both surface tension γ and the droplet radius R enter the
Eqs. (1.6) only via the Laplace pressure. We can thus discuss their influence on
the coexisting volume fractions together. Note that the limit R → ∞ corresponds
to a flat interface without any Laplace pressure. Taken together, the coexistence
conditions are that the chemical potentials on both sides of the interface match and
that the pressure difference across the interface is equal to the Laplace pressure.

We now determine the coexisting volume fractions φ− and φ+ inside and outside of
the droplet, respectively. These two values are given by solving the Eqs. (1.6) for φ−

and φ+, where the functional form of f(φ) enters. Given a graph of f(φ), the solutions
can be determined geometrically using the so called Maxwell construction [145]: Two
tangents to the graph of f(φ) have to be constructed that have the same slope and
are separated by a distance equal to the Laplace pressure Π. The points where
these two tangents touch the curve of f(φ) are the solutions φ− and φ+ of Eqs. (1.6).
For a finite Laplace pressure, Π > 0, this procedure is visualized by the green lines
in Fig. 1.12. In the special case of vanishing surface tension or a flat interface,
Π = 0, the two tangents are identical, see solid orange line. Note that in this case
the droplet radius does not enter the Eqs. (1.6) and the solutions are thus uniquely
defined by f(φ), i. e. the material properties of the phase separating fluid. We
denote these special solutions for vanishing Laplace pressure by ψ− and ψ+, see the
dashed orange lines in Fig. 1.12. ψ− and ψ+ are the volume fractions that coexist
at equilibrium at a flat interfaces.

The Maxwell construction introduced above can be used to justify an analytical
approximation to the solution of Eqs. (1.6). Fig. 1.12 shows that the Laplace pres-
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Figure 1.12: The free energy density of a binary fluid (blue) is shown as a function of
the volume fraction φ of the phase separating material. The equilibrium
solutions given by the coexistence conditions of Eq. (1.6) at the interface
are indicated by dashed lines. They are obtained from the Maxwell con-
struction (solid lines) described in the main text for vanishing (orange)
and finite (green) Laplace pressure Π.

sure Π raises the equilibrium volume fractions slightly above the solutions for Π = 0.
To derive an expression for this correction, we expand the free energy density around
the reference solutions for vanishing surface tension, see Appendix A. Truncating
the expansion at the quadratic order and solving for φ− and φ+, we get

φ− ≈ ψ− +
γβ−
R

(1.8a)

φ+ ≈ ψ+ +
γβ+
R

, (1.8b)

where we introduced the coefficients β− and β+. They quantify the influence of the
surface tension onto the coexisting volume fractions and are related to the curvature
of the free energy density function, β± = 2/[f ′′(ψ±)(ψ− − ψ+)], see Eq. (A.8) in the
appendix. The coefficients β− and β+ are positive, since the free energy density
usually has a convex shape close to the basal solutions, f ′′(ψ±) > 0. The approxi-
mation leading to the Eqs. (1.8) is valid if the influence of Laplace pressure is small,
Π ≪ β−1

± . These equations are known as the Gibbs-Thompson equations and the
combined parameters γβ− and γβ+ are sometimes called «capillary length» [146].
In general, ψ−, ψ+, β− and β+ are material parameters, which can be derived from
the free energy density describing the phase separation. However, the full functional
form of the free energy density is often not known and we therefore use these four
parameters as a parameterization of the phase separation physics in this thesis.
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The coexisting volume fractions on both sides of the interface given by Eqs. (1.8)
increase with the Laplace pressure Π. This can be interpreted in a physical picture:
Eq. (1.7) states that the pressure p− inside the droplet rises by Π compared to the
situation of a flat interface. Using the Gibbs-Duhem relation, Ndµ = −SdT + V dp,
at constant temperature, this can be translated into an increase ∆µ = νΠ/ψ− of the
chemical potential inside the droplet [147]. Since the interface is in thermodynamic
equilibrium, the chemical potential right outside of the interface has to rise by the
same amount, see Eq. (1.6a). The effect of this change in the chemical potential
onto the volume fraction φ can be calculated by considering an ideal mixture for
simplicity, which is described by the free energy density given in Eq. (1.1) with
χ = 0. Differentiating the resulting expression twice with respect to the fraction φ
and assuming φ≪ 1 results in ∂φµ ≈ kBT/ψ±, where ψ± denotes the values of the
coexisting volume fraction at a flat interface. Consequently, we arrive at the change in
volume fraction ∆φ± ≈ ψ±∆µ/(kBT ), caused by a small increase ∆µ of the chemical
potential. Taken together, we can thus estimate ∆φ± ≈ 2νψ±γ/(kBTRψ−) [147].
Comparing this expression to the second term in Eq. (1.8), the series coefficients β−
and β+ associated with the influence of surface tension can thus be given as

β− ≈
2ν

kBT
and β+ ≈

2νψ+

kBTψ−

(1.9)

and are indeed positive. Using a typical molecular volume ν ≈ 120 nm3 of globular
proteins [27] and kBT ≈ 4 pNnm, we thus get β+ ≪ β− ≈ 6× 10−5 µm2/pN.

The order of magnitude of the surface tension γ can also be estimated. For soft,
biological matter, thermal fluctuations play a significant role, since the interaction
energies of molecules are usually of the order of kBT [148, 149]. Consequently, the
surface energy can be estimated as γ ∼ kBT/l

2, where l is the size of the molecules.
Typical surface energies determined from this approximation are γ ≈ 1 pN/µm [101].

Equilibrium configurations of a single droplet

The minimum of the free energy allowed us to derive the coexistence conditions given
in Eqs. (1.8). The droplet volume V is then set by the total amount of material, see
Eq. (1.3). Combining these equations yields

φ̄Vc ≈ V ψ− + (Vc − V )

(
ψ+ +

γβ+
R

)
, (1.10)

where we neglected the small effect of surface tension γ onto the volume fraction
inside the droplet by considering φ− ≈ ψ−. For large droplets, surface tension is also
negligible in the last term and we can solve for V , which yields

V ≈ Vc ·
φ̄− ψ+

ψ− − ψ+

, (1.11)
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This relation explains how phase separation leads to an automatic adjustment of the
droplet size to the system volume Vc. The critical size above which droplets grow
spontaneously can also be estimated. Typically, the critical size is small and we thus
consider Eq. (1.10) in the limit of small R. In this limit, the surface tension effects
are important, but the terms proportional to V are negligible. We can thus solve for
the critical radius, which reads

Req
crit ≈

γβ+
φ̄− ψ+

. (1.12)

As expected, the critical radius scales with the surface tension, compare to Eq. (1.5).
Similarly, we can use Eq. (1.10) to determine the minimal fraction φ̄eq

min above which
droplets can grow. For small droplets compared to the system size, V ≪ Vc, it reads

φ̄eq
min ≈ ψ+ +

4

3

(
4π(γβ+)

3ψ−

Vc

) 1
4

. (1.13)

The second term is a correction factor, which can be omitted for very large systems.
The qualitative results summarized here already show that phase separation can

concentrate material in a compartment whose size scales with the system size. This
mechanism can potentially be used by cells to scale their organelles. In such a
picture, the stable size is set by the available pool of material [150]. The size of
centrosomes is also limited by the amount of one of the constituents [24], which is
one motivation to base our theory of centrosome growth on phase separation.

1.5.3 Ostwald ripening destabilizes multiple droplets

So far, we considered single droplets, but centrosomes and other membrane-less
organelles often occur in multiple copies in a single cell. We thus next investigate
the equilibrium thermodynamics of multiple droplets. The state of m droplets is
characterized by the volume fractions φi of droplet material inside of the droplets,
their volume Vi, and their surface area Ai, where the index i = 1, . . . ,m enumerates
the droplets. The free energy F associated with such a configuration is analogous to
the one given in Eq. (1.2) and again consists of the bulk energies given by the free
energy density times the compartment volumes and the surface energies calculated
from the surface tension times the surface areas. The free energy thus reads

F = Vcf(φ0) +
m∑

i=1

[
f(φi)− f(φ0)

]
Vi + γ

m∑

i=1

Ai , (1.14)

where φ0 denotes the volume fraction in the solvent, i. e. outside droplets. The
minimum of F is again attained for spherical droplets, since this geometry minimizes
the surface area for a given volume. The droplets can thus be characterized by
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their radii Ri, from which the volume and the surface area follow. This allows us to
generalize the local equilibrium conditions given in Eq. (1.6) to

0 = µ̃(φi)− µ̃(φ0) (1.15a)

0 = (φ0 − φi)µ̃(φ0) + f(φi)− f(φ0) +
2γ

Ri

, (1.15b)

for i = 1, . . . ,m. These are the conditions for a stationary point of the free energy F
given in Eq. (1.14). Such a stationary point is only a minimum of F and thus a
stable equilibrium state if the associated Hessian matrix is positive definite. In fact,
it can be proven that this is never the case if m ≥ 2, see Appendix B. Consequently,
all stationary points with multiple droplets are unstable and at most one droplet
exists in an equilibrium system described by Eq. (1.14).

This result can be understood intuitively by noting that the total volume of all
droplets and therefore the bulk energy depends only weakly on the droplet count,
since the total amount of droplet material is conserved. Conversely, the surface area
of all droplets is typically reduced if there are fewer droplets, since larger spheres
have a smaller surface to volume ratio than smaller spheres. The minimal total
surface area for a given total droplet volume is thus achieved for a single spherical
compartment. This effect is dependent on the surface tension γ, since otherwise the
surface areas Ai would not matter in Eq. (1.14).

Surface tension γ causes a Laplace pressure Π = 2γ/R, which is smaller for droplet
with larger radius R and thus leads to a smaller chemical potential in the surrounding
solvent. This causes a gradient of the chemical potential between droplets of different
sizes, which leads to a flux of droplet material from smaller droplets to larger ones,
thus amplifying the mismatch in size. Consequently, large droplets grow at the
expense of smaller ones, thus reducing the total number of droplets while increasing
their mean size [138–140]. This process is known as Ostwald ripening [146].

The coarsening induced by Ostwald ripening is often undesirable, e. g. for making
emulsions, which are mixtures of many droplets in a solvent [151]. The macroscopic
physical properties of these emulsions are determined by the size and count of the
droplets, which is important in various applications, e. g. in controlling the properties
of foods, cosmetics, and technological processes [147, 152]. In order to preserve
emulsions for a long period, both droplet coalescence and Ostwald ripening has to be
suppressed. The effect of coalescence can be reduced by surfactants at the droplet
surface or by simply keeping the droplets spatially separated [147]. Ostwald ripening
on the other hand is more difficult to suppress. It can be delayed by surfactants [153]
and completely suppressed by a constant shear of the fluid [154]. Additionally, adding
extra components that are trapped inside the droplet can also prevent the coarsening
[155, 156]. These components modify the chemical potential and thereby inhibit the
diffusive flux of material. However, the size of such droplets is difficult to control,
since it depends on the amount of trapped species in each droplet [147]. Taken
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Figure 1.13: Pattern formation in phase separating systems augmented with chemical
reactions. The grey scale in the three panels corresponds to the value of
the order parameter Ψ. (A) Phase-contrast optical micrograph of a phase
separating polymer mixture where chemical reactions have been triggered
by ultraviolet light. The inset shows the light scattering pattern. The scale
bars indicate 10µm and 104 cm−1 for the panel and the inset, respectively.
Panel modified from Ref. [159]. (B) Monte Carlo simulation of a binary
mixture. Panel modified from Ref. [160]. (C) Numerical simulation of
Eq. (1.16). Panel modified from Ref. [173].

together, controlling the size and count of droplets is a technological challenge,
which is still not solved.

Biological systems face the same difficulties, since there are often multiple or-
ganelles of the same type in cells, see Fig. 1.7. If we describe these organelles using
the theory of phase separation, it is thus puzzling how they can be stable for a
long time. We will resolve this apparent contradiction in Chapter 4 for the model
discussed in this thesis. There, it will turn out that non-equilibrium features of the
model become important and the equilibrium considerations of this section are thus
not applicable.

1.6 Non-equilibrium phase separation caused by

chemical reactions

The Ostwald ripening of phase separating systems can generally be suppressed by
chemical reactions, which typically leads to regular patterns like the ones shown
in Fig. 1.13. Such systems have already been examined experimentally [157–159],
numerically [160–168], and analytically [167–174]. These works can be summarized
in a general theoretical framework, where the composition of the system is described
by an order parameter Ψ(r, t) as a function of position r and time t. For instance,
Ψ could be the difference of the volume fractions of two species A and B, which
phase separate from each other. The chemical reactions are then often implemented
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as an interconversion of these two species, which in the simplest case is described
by the reaction A ⇋ B with the same rate constant k for both reaction directions.
The dynamical equation for Ψ is typically given as a generalized reaction-diffusion
equation of the form

∂tΨ(r, t) =M∇
2 δF [Ψ(r, t)]

δΨ(r, t)
− kΨ(r, t) , (1.16)

whereM is a mobility parameter. Here, the first term on the right hand side describes
the phase separation dynamics, which tends to relax the system to an equilibrium
configuration set by the free energy functional F [Ψ]. A typical choice for F [Ψ] is

F [Ψ(r)] =

∫ {
f
(
Ψ(r)

)
+
κ

2

(
∇Ψ(r)

)2}
d3r , (1.17)

which has been proposed by Cahn and Hilliard [175]. Here, f(Ψ) is a free energy den-
sity containing the bulk entropic and enthalpic effects as described in Section 1.5.1.
The term proportional to the parameter κ penalties large gradients in Ψ(r), which
leads to interfaces of finite width between different phases [175]. The energy as-
sociated with κ induces a surface tension comparable to the one we introduced in
Eq. (1.2). Generally, a system described by the free energy F [Ψ] behaves similarly
to the one considered in the previous section. In particular, the relaxation toward
equilibrium can be deduced from F [Ψ] by assuming that gradients in the chemical
potential µ = δF [Ψ]/δΨ drive fluxes of the order parameter field Ψ, which explains
the first term of Eq. (1.16).

The chemical reactions captured by the second term in Eq. (1.16) are not de-
rived from equilibrium physics, but put in by hand. This artificial incorporation
“pushes aside the thermodynamics underlying the reaction-diffusion problem stud-
ied” [176]. However, this can be reconciled by assuming that the “reactions were
triggered and sustained by an external source [. . . ], and were thus, in general, far
from equilibrium” [177]. In fact, Eq. (1.16) dictates a chemical rate law instead of
deriving the reaction rates from chemical potentials. Consequently, the chemical
reactions described in this way “do not take into account the nonideality of the sys-
tems considered” [174]. On the other side, a thermodynamically consistent treatment
complicates the equations significantly, and Eq. (1.16) can therefore be considered as
a useful toy model for studying general reaction effects onto phase separation [174].

In this simple formulation, the chemical reactions tend to mix the system, i. e. any
deviation from the homogeneous state Ψ = 0 will decay with rate k if the equilibrium
dynamics are negligible. The chemical reactions thus oppose the phase separation
physics and may introduce additional, non-equilibrium effects. Interestingly, the
problem can be turned into an equilibrium one by rewriting Eq. (1.16) as

∂tΨ(r, t) =M∇
2µ′(r, t) , (1.18)
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where fluxes in the order parameter Ψ are driven by gradients in the new chemical
potential µ′ = δF ′[Ψ]/δΨ [175]. The dynamics of Ψ close to equilibrium are thus
solely derived from the new free energy functional [167]

F ′[Ψ(r)] = F [Ψ(r)] +
k

M

∫∫
Ψ(r)G(r, r′)Ψ(r′) d3r d3r′ , (1.19)

where G(r, r′) is a Green’s function defined by ∇2
rG(r, r

′) = −δ(r − r′). Both
Eq. (1.16) and Eq. (1.18) yield the same dynamic equation for the order parameter
field Ψ(r, t), but the final state is only at equilibrium with respect to F ′[Ψ(r)].
This equilibrium state can thus be determined by minimizing F ′[Ψ(r)]. For suit-
able boundary conditions, the Green’s function in three dimensions is the Coulomb
potential, G(r, r′) = (4π|r − r′|)−1. In this case, the last term in Eq. (1.19) there-
fore describes a long-ranged interaction, which is repulsive [167]. Conversely, the
attractive interactions causing the phase separation are short-ranged. This com-
petition of interactions can cause pattern formation [178]. Instead of coarsening
indefinitely, these systems typically favor a pattern with a finite wavelength [179].
The typical wavelength Λ of such patterns depends on the reaction rate constant k.
Christensen etal. found two different regimes with typical dependencies Λ ∝ k−1/3

and Λ ∝ k−1/4 for low and high reaction rates, respectively [167]. The equilibrium
situation is recovered in the limit of vanishing k where Λ diverges and the system
thus coarsens indefinitely. Generally, chemical reactions can therefore modify the
equilibrium picture of phase separation and lead to pattern formation.

Apart from this basic mechanism of pattern formation, multiple extensions of the
model given in Eq. (1.16) have been considered: In the case of unequal first-order rate
constants in the reaction A⇋ B, the order parameter Ψ will not be zero on average
and droplets of the minority phase are typically observed [162, 168]. Similarly,
considering the autocatalytic reaction A+B → 2B can also produce multiple stable
droplets of the B-phase [163]. Furthermore, considering a ternary mixture can
produce more complex patterns, including droplets [164]. Therefore, extending the
model typically breaks the symmetric state where the order parameter Ψ is zero
on average. This typically leads to a minority phase that forms droplets, which
are stable due to the non-equilibrium conditions caused by the chemical reactions.
Generally, a thermodynamically consistent treatment predicts that the system has
to have autocatalytic reactions that are sufficiently far away from equilibrium in
order to show pattern formation [174].

In this section, we showed briefly, that adding chemical reactions to a phase sepa-
rating system can produce stable patterns. If we use the theory of phase separation
to describe biological structures, we could thus expect similar phenomena. This is
because chemical reactions, e.g. phosphorylation, acylation, and methylation, are
very common in biological systems and drive them away from the thermodynamic
equilibrium. In this thesis, we will show that centrosomes can be described as active
droplets, i. e. the combination of phase separation and chemical reactions.
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1.7 Overview of this thesis

Although centrosomes have been studied for more than a century [180], their forma-
tion is not understood. Several models have been proposed [16], but none of these
provides a comprehensive picture of centrosome assembly.

In this thesis, we propose a theoretical model of centrosome growth that explains
key experimental facts. We derive this model in Chapter 2 based on experimental
facts and general assumptions. Here, centrosomes are described as active droplets,
where chemical reactions influence the phase separation process. We discuss different
properties of this model in the remaining chapters.

We start by considering isolated active droplets in Chapter 3. Here, we find
critical droplet sizes that suppresses spontaneous droplet formation. We propose
that catalytic active centrioles at the core of the centrosome control the droplet
nucleation and thereby determine the count of the centrosomes. Furthermore, we
find that surface tension causes the droplet to assume a spherical shape, as expected
from the equilibrium theory. Interestingly, we also find that the centrioles can
actively center themselves in the centrosome. In summary, the critical radius and
the spherical shape are qualitatively similar to the equilibrium phase separation
discussed in Section 1.5.

We find a striking difference to the equilibrium picture, when we investigate
multiple droplets in Chapter 4. Here, multiple droplets can be stable due to non-
equilibrium properties of the model. Ostwald ripening is suppressed and we can thus
explain how both centrosomes are stable inside the cell, despite the considerable
amount of thermal fluctuations due to the small system size. We consider the effect
of fluctuations in Chapter 5. There, we develop a stochastic simulation of the active
droplet model. Using these numerical simulations and some analytical models, we
find that the nonlinearities in the model can enhance fluctuations. Furthermore, we
vary the geometry of the system and find that this aspect only plays a minor role.

In Chapter 6, we compare the model to experimental data obtained from embryonic
cells of C. elegans. We first determine the model parameters by taking them from
the literature, estimating their order of magnitude, or determining them using a fit to
the experimental data. We then discuss how the model can explain the quantitative
experimental finding that the total volume of all centrosomes in a cell always adds
up to a value that is proportional to the cell volume. Our model also accounts for
some mutant data, where the cell size or the centrosome count has been disturbed.
Here, the most interesting experiment results in two centrosomes of different size
in the same cell. We can explain the full growth dynamics in this case and thus
speculate about the origin of the size mismatch. Finally, we conclude this thesis
with a summary and an outlook in Chapter 7.





Chapter 2

Physical Description of Centrosomes
as Active Droplets

T
he material properties of centrosomes are difficult to measure and are therefore
not known at present [16]. In this chapter, we propose a physical picture of the

centrosome material based on indirect experimental observations. We first introduce
a detailed model describing the dynamics of the centrosome material and then
consider three simple scenarios with distinct growth dynamics.

2.1 Physical description of centrosomes as liquid-like

droplets

Centrosome growth is an assembly process by which pericentriolar material (PCM)
accumulates around the centrioles. We describe this accumulation process as a phase
separation. In order to account for the cyclic growth of the centrosomes, we will
additionally add chemical reactions that control the phase separation process. In
this section, we first discuss the physical properties of the PCM and then give the
mathematical formulation of the model in the subsequent sections.

2.1.1 Pericentriolar material as a complex fluid

The PCM has no obvious structure if it is visualized by electron micrographs, see
Fig. 1.6A. Our model is thus based on the description of the PCM as a homogeneous
material. We assume that the PCM is visco-elastic and effectively behaves like a
liquid on long time scales. We propose that interactions between PCM constituents
cause the PCM to segregate from the cytosol in a phase separation process. In this
picture, the centrosome is a dense phase of PCM, which can be described as a droplet
in coexistence with the cytosol.

The lifecycle of centrosomes implies that droplet formation is regulated in time, see
Fig. 1.4. This could be achieved either by controlling the amount of PCM proteins
or by changing the interactions between the components during the cell cycle. If we
consider the first cell divisions of the C. elegans embryo, division is fast and protein



28 Chapter 2: Physical Description of Centrosomes as Active Droplets

a

R

soluble
form A

segregating
form B

Figure 2.1: Schematic representation of a centrosome consisting of centrioles (blue)
surrounded by a dense phase of pericentriolar material (PCM). In our model,
the building blocks of the PCM (green) exist in two conformations: a form A
that dissolves in the cytosol and a form B that segregates from the cytosol
into a droplet phase (orange). The dynamics of the system is governed by
diffusion of the components in the cytosol and transitions between the A and
the B form. Furthermore, the centrioles and the droplet can catalyze the
transition from A to B. The centrosome thus is described as a liquid droplet
of PCM, which is nucleated by the centrioles and grows autocatalytically.
Upper left: schematic representation of a cell with two centrosomes.

production and degradation can be neglected [181]. Consequently, the total amount
of PCM components in the cell is approximately constant. This argument suggests
that molecular properties of PCM components vary during the cell cycle to achieve
centrosome assembly and subsequent disassembly. It is known that kinases such
as PLK-1 are essential in regulating centrosome assembly [77, 86]. This raises the
possibility that kinase activity changes the molecular properties of PCM components
such that e.g. their solubility in cytosol is modified. In the following, we propose
a simplified model of centrosome assembly based on the idea that PCM is made of
subunits that can exist in two different forms: (i) building blocks that dissolve in
the cytosol. We call this form A. (ii) Droplet material that phase separates from
the cytosol and produces centrosomes. We call this form B. Chemical reactions
such a phosphorylation are assumed to switch between forms A and B and thereby
regulate centrosome growth and disassembly, see Fig. 2.1.

The dynamics of these forms are given by three different processes: (i) the diffusion
of PCM components, (ii) the chemical reactions converting the two forms into each
other, and (iii) the phase separation causing the segregation of the droplet material
of form B into the droplet phase. We will now describe these processes in detail.
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2.1.2 Reaction-diffusion kinetics of the components

Centrosomes are embedded in the cytosol, which we describe as a simple fluid. The
local composition of the system in the cytosol and also inside the centrosomes is
characterized by the volume fractions φA of soluble building blocks and φB of droplet
material. The components can diffuse and undergo chemical reactions in the cytosol
and in the centrosome. The diffusion constants DA and DB of the two forms may
in general differ inside and outside the centrosomes. The chemical reactions A⇋ B,
which switch the material between form A and form B, are described by the reaction
rate s, which depends on the local composition. These processes can be described
by reaction-diffusion equations,

∂tφ
A = DA∇

2φA − s(φA, φB) (2.1a)

∂tφ
B = DB∇

2φB + s(φA, φB) . (2.1b)

These equations are valid both inside and outside the centrosomes, however, not at
the interface between the centrosome and the cytosol (see below). The reaction rate s
enters as a sink in Eq. (2.1a) and as a source in Eq. (2.1b), but its dependence on the
composition is not known experimentally. Generally, chemical reactions in biological
systems are often driven by enzymes [1]. In its simplest form, the enzymatic catalysis
of creating droplet material can be captured by the chemical reaction A+E → B+E,
where E denotes the enzyme. The rate of this reaction obviously depends on the
concentration of E and therefore on its spatio-temporal dynamics. In the case of
centrosomes, the enzyme driving the droplet formation is not known and we thus
cannot write down a detailed model for it. In particular, we do not know the spatial
distribution of E. As a consequence, we will examine two simple, generic cases in the
following: (i) the enzyme is distributed homogeneously in the cell and the enzymatic
reaction therefore reduces to the first-order reaction A → B, and (ii) the enzyme
preferably segregates into the PCM phase or, alternatively, is only active within the
PCM phase. The latter possibility can be described by the autocatalytic reaction
A+B → 2B, where the presence of droplet material B catalyzes its own production
from form A. Considering these two contributions, we propose the simple form of
the bulk reaction rate

s(φA, φB) = kABφ
A − kBAφ

B + kcφ
BφA , (2.2)

where kAB and kBA are the rate constants for the first-order reactions A → B and
B → A, respectively. The coefficient kc in the last term describes the bimolecular,
autocatalytic reaction A + B → 2B. Note that this autocatalytic reaction will
typically dominate inside the centrosome, where the form B is enriched. We only
consider the case kc > 0 in this thesis. Negative kc would account for the reaction
A+B → 2A, which describes dissolving droplets.
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The reaction rate given in Eq. (2.2) relies on simple rate laws proportional to the
volume fractions of the reactants. Generally, chemical reaction rates are given by the
chemical potentials and the simple form used here thus neglects the non-ideality of
the system, as discussed in Section 1.6 and Ref. [174]. However, Eq. (2.2) can also be
considered as a Taylor expansion of s for small φA and φB. In general, there are two
additional terms quadratic in the volume fractions that are proportional to the square
of φA and φB, respectively. They also describe cooperative transitions. We neglect
those, since they do not yield the desired behavior: if the transition of the building
blocks to droplet material was cooperative, 2A→ A+B, the droplet material would
be predominately produced in regions of high concentrations of building blocks, i. e.
away from droplets. Conversely, cooperativity in the transition of droplet material
to the soluble form, 2B → A+ B, would destabilize droplets. In the bulk, we thus
only consider reactions captured by the flux given in Eq. (2.2). This form allows us
to discuss the effect of generic chemical transitions without the complications of a
thermodynamically correct treatment [174].

Conservation of material in the complete system

The eggshell, which encloses the C. elegans embryo and therefore our volume of
interest, is impermeable even to small molecules [182]. At the system boundary, we
thus impose no-flux conditions for the volume fractions, which read

n∇φA = 0 and n∇φB = 0 , (2.3)

where n is the surface normal vector at the boundary. Here, we assume no-flux
conditions at the interface between different cells of the same embryo. This restriction
is not significant, since all cells will have a similar concentration of PCM components
and diffusive fluxes between cells should thus cancel.

We already assumed in the previous section that the total amount of PCM com-
ponents in the cell is constant. This is obeyed by the reaction-diffusion system
introduced in this section. The material conservation law can be formulated as a
volume integral over the complete system volume,

φ̄Vc =

∫

cell

{
φA + φB

}
d3x , (2.4)

where Vc is the total volume of the system and φ̄ denotes the average fraction of
the PCM components in the system. The total volume of PCM components is thus
given by φ̄Vc.

So far, we introduced a reaction-diffusion system describing how the PCM com-
ponents behave in the bulk. It remains to discuss the centrosomes themselves. In
general there are multiple centrosomes in the cell. For notational simplicity, we con-
sider the case of spherical symmetry for each centrosome, where the volume fractions
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depend on the distance r from the center of the centrosome. In this case, the total
volume fraction flux passing a spherical shell at distance r is given by

JA(r) = −4πr2DA∂rφ
A(r) and (2.5a)

JB(r) = −4πr2DB∂rφ
B(r) (2.5b)

for the two forms of the PCM components. Here, J has units of volume per time.

2.1.3 Centrioles described as catalytic active cores

At the core of each centrosome are two centrioles, which we represent by a small
sphere of radius a. If centrioles only play a passive role, we would impose no-flux
boundary conditions on their surface. However, motivated by the fact that centrioles
can influence centrosome assembly [68], we propose that centrioles can catalyze the
chemical reaction A → B. This reaction induced by the centrioles is quantified
by the total volume per unit time J of PCM components that is converted from
form A to form B. We write J = QφA(a), which implies a first order reaction at the
centrioles, where the coefficient Q describes the centriolar enzymatic activity. The
amount of PCM components is conserved, i. e. all soluble building blocks undergoing
this reaction must appear as form B. This yields

− JA(a) = JB(a) = QφA(a) , (2.6)

which is a boundary condition for the Eq. (2.1) at the core of each centrosome. Note
that Q = 0 corresponds to passive centrioles. In this case, the above equations
reduces to no-flux conditions at the centrioles.

2.1.4 Droplet formation and growth kinetics

The reaction-diffusion system given in Eq. (2.1) together with the activity at the
centrioles create a locally increased concentration of form B that gradually decreases
at larger distances from the centrioles. However, so far there is no interface which
separates the PCM phase from the cytosol. Formation of a PCM phase can be
accounted for by phase separation of form B from the cytosol.

Coexistence condition at the interface

Considering the centrosome as a droplet phase implies that there exists an interface
that separates the droplet from the cytosol. We consider an infinitesimal thin
interface region, since the typically width of such interfaces is of the order of the size of
the molecules [183]. At the interface, different volume fractions of PCM components
coexist inside and outside the centrosome, see Section 1.5.2. The conditions of
coexistence are governed by the local thermodynamic equilibrium at the interface
between the droplet and the cytosol, see Fig. 2.2A. If the interface equilibrates
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Figure 2.2: Schematic representation of the conditions at the interface between the
droplet (orange) and the cytosol (blue). (A) A sketch of a test volume
containing part of the interface is shown for the situation at short timescales.
Here, the volume fractions φB

− and φB
+ equilibrate as if the test volume was

isolated. (B) A sketch of the same test volume is shown for the situation
at longer time scales, where fluxes JB of droplet material into and out of
the test volume lead to a displacement ∂tR of the interface.

fast compared to changes in the composition induced by diffusive fluxes, these
conditions can be taken from Eqs. (1.6). Consequently, the chemical potentials
of each component must be equal on both sides of the interface. Additionally, the
pressure difference between the inside and the outside is given by the Laplace pressure
that is generated by the surface tension γ of the curved interface. The curvature
of the interface is 1/R, where R is the radius of the spherical droplet representing
the centrosome. Using these thermodynamic principles, we obtain conditions for the
equilibrium volume fractions of form B inside and outside the droplet, which we call
φB
− and φB

+, respectively. These volume fractions have the form

φB
−(R) ≈ ψ− +

γβ−
R

(2.7a)

φB
+(R) ≈ ψ+ +

γβ+
R

, (2.7b)

for small surface tension, γ ≪ Rβ−1
± , and are equivalent to the equilibrium case given

in Eqs. (1.8). Here, ψ− and ψ+ are the volume fractions that coexist at equilibrium
at a flat interface. The coefficients β− and β+ describe the effects of surface tension,
see Appendix A. The five parameters ψ−, ψ+, β−, β+, and γ are material properties
of the PCM components and the cytosol. Note that we generally use the indices
“−” and “+” to denote values at the inside and the outside of the droplet surface,
respectively.
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Similar arguments also yield a coexistence condition for the soluble building blocks
of form A. Assuming that form A is well mixed with the cytosol and does not
contribute to phase separation, it passively follows the phase separation and exhibits
different solubilities in the two phases. This is described by

φA
+(R)

1− φB
+(R)

=
φA
−(R)

1− φB
−(R)

, (2.8)

where 1 − φB is the volume fraction of the mixture of cytosol and soluble compo-
nents A. This relation states that the building blocks occupy the same fraction of
the available volume, 1− φB, on both sides of the interface.

Rate of change of the droplet volume

The volume of a droplet is set by the number of its components together with their
molecular volumes. Droplet growth is driven by the addition of droplet material to
the droplet. Changes in volume can thus be related to compositional fluxes in and
out of the droplet, see Fig. 2.2B . The volume fraction flux at the droplet surface can
be derived from the fluxes passing a spherical shell defined in Eq. (2.5) and read

JB
+ (R) = lim

ε→0+
JB(R + ε) (2.9a)

JB
− (R) = lim

ε→0+
JB(R− ε) , (2.9b)

where JB
+ (R) is the total flux of droplet material away from the droplet surface. Con-

versely, JB
− (R) denotes the total flux from the inside of the droplet toward its surface.

The net flux of droplet material at the surface, ∆JB = JB
− (R)− JB

+ (R), thus drives
droplet growth. This flux has to compensate for the difference φB

−(R)− φB
+(R) in

the volume fractions between the inside and the outside of the droplet surface, see
Fig. 2.2B . In particular, the droplet material in a small shell around the droplet sur-
face obeys a balance equation, ∆JB = [φB

−(R)−φB
+(R)]∂tV . The rate of change ∂tV

of the droplet volume thus follows as

∂tV =
JB
− (R)− JB

+ (R)

φB
−(R)− φB

+(R)
. (2.10)

This equation captures the conservation of droplet material at the interface. The
conservation of soluble building blocks at the interface yields a similar condition
for φA at the interface, which reads

JA
− (R)− JA

+ (R)

φA
−(R)− φA

+(R)
=
JB
− (R)− JB

+ (R)

φB
−(R)− φB

+(R)
, (2.11)

where the JA
− and JA

+ are defined analogously to Eq. (2.9).
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2.1.5 Complete set of the dynamical equations

We thus arrive at a description of droplet growth that combines phase separation with
chemical reactions. The state variables are the droplet volumes Vi(t) together with
the volume fractions φA(r, t) and φB(r, t), respectively describing the distribution of
soluble building blocks and droplet material. They depend on the position r ∈ R

3

in space and on time t ∈ R. The time evolution of the state variables is given by a
reaction-diffusion system reading

∂tφ
A = DA∇

2φA − kABφ
A + kBAφ

B − kcφ
BφA and (2.12a)

∂tφ
B = DB∇

2φB + kABφ
A − kBAφ

B + kcφ
BφA (2.12b)

with no-flux conditions at the system boundary,

n(r) ·∇φA/B(r, t) = 0 , (2.13)

where n is the normal vector at the system boundary. We describe the i-th cen-
trosome by a sphere with radius Ri. Assuming spherical symmetry, we express
the volume fractions as functions of time t and the distance r to the center of the
centrosome. The rate of change of the volume Vi = (R3

i − a3)4π/3 then reads

∂tVi(t) =
JB
− (Ri, t)− JB

+ (Ri, t)

φB
−(Ri)− φB

+(Ri)
, (2.14)

where Jx
±(R) = −4πR2Dx · limε→0 [∂rφ

x(r, t)]r=R±ε and φx
±(R) = limε→0 φ

x(R ± ε)
for x = A,B. The droplet growth is thus coupled to the reaction-diffusion system of
Eqs. (2.12). The description is completed by boundary conditions at the surface of
the centrioles at r = a,

−DA ∂rφ
A(r, t)

∣∣
r=a

= DB ∂rφ
B(r, t)

∣∣
r=a

=
QφA(a, t)

4πa2
. (2.15)

Furthermore, the local equilibrium of the droplet interface imposes the conditions

φB
±(Ri) = ψ± +

γβ±
Ri

, (2.16a)

φA
+(Ri, t)

1− φB
+(Ri)

=
φA
−(Ri, t)

1− φB
−(Ri)

, and (2.16b)

JA
− (Ri, t)− JA

+ (Ri, t)

φA
−(Ri, t)− φA

+(Ri, t)
=
JB
− (Ri, t)− JB

+ (Ri, t)

φB
−(Ri)− φB

+(Ri)
. (2.16c)

The dynamics of droplet growth are thus given by coupled partial differential equa-
tions. Important in this description are the moving boundary conditions summarized
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in Eqs. (2.16). In the following, we will analyze both the transient dynamics and the
long-term behavior of these equations. Here, we first introduce simplified scenarios
based on limiting cases and then discuss more complex behaviors in the subsequent
chapters.

2.2 Three simple growth scenarios

The droplet growth rate is determined both by the rate of the chemical reactions
producing droplet material B and the rate at which material diffuses to the droplet.
In this section, we consider the case of fast diffusion, DA, DB → ∞, where the
droplet growth is limited by the rate of the chemical reactions and the volume
fractions are homogeneous in each compartment. For simplicity, we first consider
vanishing surface tension, γ = 0, and the strong segregation regime, ψ+ = 0, such
that there is no droplet material right outside of the droplet surface, φB

+ = 0. We
investigate m growing droplets of equal volume V placed in a system of volume Vc
and we denote by φA

1 and φA
0 the volume fraction of soluble building blocks inside

and outside of the droplets, respectively. They are linked by Eq. (2.8), which leads
to φA

1 = (1 − ψ−)φ
A
0 . With the assumptions from above, the volume fraction φB

1

of droplet material inside of droplets is given by ψ−, see Eq. (2.7a). Since we
consider strong phase separation and fast diffusion, the droplet material is confined
to the droplets in the simple scenarios discussed here. The material conservation
equation (2.4) then reads φ̄Vc = (ψ− + φA

1 )mV + (Vc −mV )φA
0 . It can be solved for

the volume fraction φA
0 of building blocks in the cytosol,

φA
0 ≈ φ̄−

ψ−mV

Vc
, (2.17)

where we assumed that droplets only occupy a small fraction of the total volume,
mV ≪ Vc. The rate of change of the droplet volumes is given by the change in the
amount of droplet material,

ψ−m∂tV = JS , (2.18)

i. e. the temporal change of the total volume of droplet material is given by the total
reaction flux JS in the system. JS can be determined by integrating the reaction
rate s given in Eq. (2.2) over the entire system volume and adding the effects of the
catalytic centrioles, see Eq. (2.6). In summary, this yields

JS ≈ kABVcφ
A
0 − kBAmV ψ− + kcmV φ

A
1 ψ− +mQφA

1 . (2.19)

Inserting JS into Eq. (2.18), we arrive at an ordinary differential equation for the
droplet volume V (t), which we can solve.
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We now investigate several limiting cases of the model to test whether a single
scenario can account for the dynamics of centrosomes observed in experiments. The
most important parameters of our model will be the reaction rates. There are three
different ways of producing droplet material of form B:

(i) by the first-order chemical reaction with rate constant kAB,

(ii) by the autocatalytic mechanism with rate constant kc, and

(iii) by the catalytic activity of the centrioles, parameterized by Q.

We start by individually examining the effects of these rates on the growth of
droplets. For this purpose, we will set the value of the other two parameters to zero
and examine what happens to droplet growth when only one of the parameters is
active.

2.2.1 Scenario A: First-order kinetics

We first examine the case where droplet material of form B is generated by first-order
kinetics from form A (kAB > 0, kc = 0, Q = 0). The droplet material is produced
in the complete system and can segregate in a preexisting droplet leading to droplet
growth. The time it takes for the material produced in the cytosol to diffuse to
the preexisting droplet is negligible in the reaction-limited case. The differential
equation for the droplet volume reads

∂tV ≈
φ̄kAB

mψ−

Vc −
(
kAB + kBA

)
V . (2.20)

This linear equation can be solved for the droplet volume as a function of time,

V (t) ≈
φ̄VckAB

mλAψ−

(
1− e−tλA

)
, (2.21)

where the growth rate is given by λA = kAB + kBA. The growth slows down due
to the depletion of the soluble building blocks of form A and the system reaches a
steady state after a characteristic time λ−1

A , see the blue lines in Fig. 2.3. In panel B
of this figure, we additionally show numerical solutions of the full model. The details
of the implementation are given in Appendix C. We compare the reaction-limited
case (blue line) with one where we include the effects of diffusion and surface tension
(green line). These additions slow down the growth of the droplet slightly. The
major deviation happens in the initial phase where the growth of the model with
diffusion accelerates. This is caused by the sudden activation of the chemical reaction
producing droplet material in the cytosol which then diffuses to the droplet. The
diffusive influx increases with growing droplets creating a positive feedback which
explains the initial acceleration of the droplet growth. Nonetheless, the growth of
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Figure 2.3: Droplet volume V as a function of time in scenario A, where the form B is
generated by first-order kinetics from form A. (A) Schematic growth curve
(blue line). The orange dashed line indicates the maximal volume growth
and the corresponding time dependence is given. The droplet material is
produced in the entire system, which is indicated by the bright colors in
the schematic inset. (B) Numerical simulations of the reaction-limited case
(blue) and the droplet growth including diffusion and surface tension (green).
The parameter values of scenario A are: Vc = 104 µm3, a = 0.075µm,
ψ− = 0.1, ψ+ = 0, DA/B = 5 µm2/s, kBA = 10−3 s−1, kAB = 0.016 s−1,
kc = 0, Q = 0, γ = 1 pN/µm, and β± = 10−6 µm2/pN.

the droplet in scenario A is qualitatively captured by Eq. (2.21) even if the effects
of a finite diffusivity and surface tension alter the initial phase.

Furthermore, we can also study the long time behavior of the model. The station-
ary state droplet volume,

V A ≈
φ̄VckAB

(kAB + kBA)mψ−

, (2.22)

is derived from the long time limit of Eq. (2.21). This expression can be understood
by comparing it to the droplet volume in an equilibrium system given in Eq. (1.11).
In the scenario discussed here, the droplet components can be either in their soluble
form A or in the phase separating form B. Only the latter form segregates into
droplets and its fraction φB in the system thus determines the final droplet size.
Consequently, φB can be used in Eq. (1.11) instead of the fraction φ̄ of droplet
material in the equilibrium system. We get the fraction φB of the B form by
assuming that the chemical reactions A ⇋ B are in equilibrium. This leads to the
simple solution φB = kABφ̄/(kAB+kBA), which we use instead of φ̄ in Eq. (1.11). The
resulting expression is identical to Eq. (2.22). Consequently, the chemical equilibrium
between the two forms determines the amount of droplet material and therefore the
droplet size in scenario A.
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Figure 2.4: Droplet volume V as a function of time in scenario B, where the form B
is generated by the autocatalytic reaction. (A) Schematic growth curve
(blue line). The orange dashed line indicates the maximal volume growth
and the corresponding time dependence is given. The droplet material
is produced inside the droplets themselves (orange region in schematic
inset). (B) Numerical simulations of the reaction-limited case (blue) and
the droplet growth including diffusion and surface tension (green). The
parameter values of scenario B are: Vc = 104 µm3, a = 0.075µm, ψ− = 0.1,
ψ+ = 0, DA/B = 5 µm2/s, kBA = 10−3 s−1, kAB = 0, kc = 100 s−1, Q = 0,
γ = 1 pN/µm, and β± = 10−8 µm2/pN.

2.2.2 Scenario B: Autocatalytic growth

Here, we consider the case where droplet material of form B is generated by a second-
order reaction that depends on the concentration of preexisting B (kAB = 0, kc > 0,
Q = 0). The droplet material of form B is thus predominately produced inside the
preexisting droplet itself. Because growth is autocatalytic, larger droplets recruit
material at a higher rate than smaller ones. The differential equation describing
droplet growth reads

∂tV ≈
[
(1− ψ−)φ̄kc − kBA

]
V −

(1− ψ−)ψ−mkc
Vc

V 2 , (2.23)

see Eqs. (2.17)–(2.19). The resulting growth,

V (t) ≈
VcλB

(1− ψ−)mkcψ−

(
1 + tanh

[
(t− t0)λB

])
, (2.24)

exhibits a sigmoidal shape, see Fig. 2.4. Here, the characteristic growth rate is given
by λB = 1

2
[(1− ψ−)φ̄kc − kBA] and t0 is a parameter set by the initial volume. The

sigmoidal shape is caused by the autocatalytic reaction: initially, there is sufficient
material in the cell and the growth rate is limited by the droplet size and therefore
proportional to the droplet volume. This leads to self-reinforcing growth and thus a
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droplet volume that increases exponentially with time. Conversely, if droplets are
large enough at later times, they have depleted their surrounding and the amount of
available building blocks becomes limiting. They then experience the same relaxation
to the stationary state that was also observed in scenario A.

Note that if only the autocatalytic reaction would produced droplet material of
form B, droplets could not form spontaneously: if there was no droplet material,
the autocatalytic reaction would be halted. It is thus plausible that droplets can
only grow in the autocatalytic scenario if enough material is present to overcome the
inevitable loss by the reaction B → A. This can also be observed in the stationary
state droplet volume,

V B ≈
Vc
mψ−

(
φ̄−

kBA

(1− ψ−)kc

)
, (2.25)

which is derived from the long-time limit of Eq. (2.24). This expression predicts
unphysical negative volumes for small volume fractions φ̄ of PCM components.
Proper droplets can thus only form if there is enough material in the system. The
threshold value

φ̄B
min =

kBA

(1− ψ−)kc
(2.26)

is calculated from the point where the right hand side of Eq. (2.25) vanishes. In the
autocatalytic scenario, droplet formation is thus only possible if φ̄ > φ̄B

min. This is
in contrast to the case of first-order kinetics, where droplets may also form for very
small amounts of material.

2.2.3 Scenario C: Incorporation at the centrioles

In this case, we consider that droplet material of form B is produced by a reaction
that happens at the surface of the centrioles (kAB = 0, kc = 0, Q > 0). Here, the
material naturally accumulates around the centrioles. Consequently, the number of
droplets and their position is dictated by the centrioles. The droplet growth rate is
given by the amount of material produced at the centrioles, which is proportional
to the concentration of the soluble building blocks. The differential equation for the
droplet volume is given by

∂tV ≈
(1− ψ−)φ̄Q

ψ−

−
(1− ψ−)mQ+ kBAVc

Vc
V , (2.27)

see Eqs. (2.17)–(2.19). The resulting droplet volume in dependence on time reads

V (t) ≈
1− ψ−

ψ−

·
φ̄Q

kBA + (λC − kBA)m

(
1− e−tλC

)
, (2.28)
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Figure 2.5: Droplet volume V as a function of time in scenario C, where the droplet
material B is generated at the centrioles. (A) Schematic growth curve (blue
line). The orange dashed line indicates the maximal volume growth and the
corresponding time dependence is given. The droplet material is produced at
the centrioles (blue region in schematic inset). (B) Numerical simulations
of the reaction-limited case (blue) and the droplet growth including diffusion
and surface tension effects (green). The parameter values of scenario C
are: Vc = 104 µm3, a = 0.075µm, ψ− = 0.1, ψ+ = 0, DA/B = 5 µm2/s,
kBA = 10−3 s−1, kAB = 0, kc = 0, Q = 100 µm3/s, γ = 1 pN/µm, and
β± = 10−7 µm2/pN.

i. e. growth slows down and the system reaches a steady state after a characteristic
time λ−1

C , with λC ≈ kBA + (1 − ψ−)mQ/Vc, see Fig. 2.5. The stationary state
volume,

V C ≈
1− ψ−

ψ−

·
φ̄QVc

VckBA + (1− ψ−)mQ
, (2.29)

is again derived from the long-time limit of the growth curve. It is proportional to
the activity Q of the cores in the limit of a large system. Since Q can be interpreted
as a reaction rate constant times the volume of the centrioles, the maximal growth
rate of the droplet, (∂tV )max ≈ (1 − ψ−)φ̄Q/ψ−, is proportional to the volume of
the centrioles. This raises the question whether the pictured scenario is sufficiently
efficient to produce droplets fast enough. For a very high rate of conversion of PCM
components, however, we can no longer assume that diffusion is fast. Fig. 2.5B
shows that the diffusion of PCM components can slow down the growth significantly.
In scenario C, it is therefore instructive to also consider the diffusion-limited case,
where the incorporation reaction at the core is fast and droplet growth is limited by
the diffusive influx.



2.3 Diffusion-limited droplet growth 41

2.3 Diffusion-limited droplet growth

We now consider the diffusion-limited growth of a droplet, where the droplet material
is incorporated at the centrioles. To simplify the calculation, we consider a single
droplet located at the origin of a spherical cell of radius Rc. We also neglect the
reaction B → A for simplicity, kBA = 0. With these approximations, the model
becomes a diffusion problem in spherical coordinates with a reflective boundary
condition at r = Rc and an absorbing boundary condition at the centrioles, at r = a.
It can be solved analytically using a modified Fourier method, see Appendix D.
Considering an initially homogeneous system, φ(r, t = 0) = φ̄, the droplet volume as
a function of time reads

V (t) =
φ̄

ψ−

[
Vc −

∞∑

k=1

(2 + 2R2
cα

2
k)4πa

2

(Rc − a)R2
cα

4
k − aα2

k

e−DAα2
kt

]
. (2.30)

The admissible inverse length scales αk are given by the positive solutions of the
equation αkRc = tan [(Rc − a)αk]. The αk have associated time scales τk = D−1

A α−2
k

that give the decay time of the modes in Eq. (2.30). The two longest time scales are

τ1 ≈
Vc

4πaDA

and τ2 ≈
Vc

3π2RcDA

, (2.31)

where we used that the centrioles are much smaller than the complete system,
a ≪ Rc. The longer time scale τ1 is dominant, since τ1/τ2 ≈ Rc/a ≈ 100, where we
used Rc ≈ 10µm [24] and a ≈ 100 nm [56]. We thus simplify the solution given in
Eq. (2.30) by only considering the slowest mode, which yields

V (t) ≈
φ̄Vc
ψ−

(
1− e−t/τ1

)
. (2.32)

Hence, τ1 is the characteristic time after which the stationary state is reached, i. e.
it is an estimate of how long it takes to deplete the complete system by taking away
soluble building blocks at the centrioles. As we show later, because of the small size
of the centrioles, the time scale τ1 is typically long, and diffusion thus significantly
limits the rate of droplet growth in scenario C, see also Fig. 2.5B .

In scenarios A and B, we neglected diffusion completely, although it might also
influence the growth dynamics there, see Fig. 2.3B and Fig. 2.4B . We will thus now
estimate the time scales of growth in these scenarios, assuming that the growth was
diffusion-limited. To this end, we can use the results of the previous paragraph,
i. e. the slowest growth time given in Eq. (2.31). This expression was derived for
a situation, where the centrioles deplete the cytosol of soluble building blocks in a
diffusion-limited manner. In scenario B, the soluble building blocks are converted
inside droplet. It is thus the entire droplet, which takes away soluble building blocks
from the system. In order to estimate the time scale of diffusion-limited growth, it
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is therefore sufficient to replace the radius a by a typical droplet radius in Eq. (2.31).
Strictly spoken, this is only true if the droplet would not change its size. However,
since we are only interested in a rough estimation of the droplet growth time, we
for simplicity neglect the complications that arise from the increasing droplet radius.
The time scale of growth in a diffusion-limited variant of scenario B can then be
estimated as τB1 ≈ Vc/(4πR̃DA), where R̃ is a typical droplet size. The diffusion-
limited variant of scenario A is similar: here, droplet material is produced in the
cytosol and has to diffuse to the droplet subsequently. If diffusion is limiting, the
time scale of droplet growth is thus determined by the diffusion of the droplet
material to the droplet. Since the incorporation of material still happens in the
entire droplet, we again replace a by R̃ and can thus estimate the growth time scale
as τA1 ≈ Vc/(4πR̃DB). Here, we replaced the diffusion constant of the building blocks
by that of the droplet material. In summary, droplet growth in scenarios A and B is
quicker than in scenario C by a factor R̃/a, assuming that the diffusion constants DA

and DB are comparable.

2.4 Discussion

We derived a theoretical model describing the accumulation of PCM and thus the
growth of centrosomes in this chapter. It is based on the idea that the PCM has
the inherent tendency to aggregate and therefore segregates from the cytosol in a
phase separation process. We proposed that the material has two conformations
with different segregation properties. The kinetics of the transitions between these
states regulate the droplet formation. Control over the transition rates could then
be used to steer the cyclic growth observed in experiments. In general, we thus
investigate a phase separation process augmented by chemical reactions.

Our model is based on a reaction-diffusion system, where we neglect directed
transport. This directed transport could happen along specific tracks, e.g. micro-
tubules [1], or by flows in the cytosol, which advects components. It has been
shown experimentally that microtubules do not influence centrosome growth in
C. elegans [82]. This is also seen from the fact that the size of centrosomes does
not change if the amount of the protein TAC-1 is reduced in C. elegans [184], al-
though TAC-1 strongly influences the length of microtubules [185]. Microtubules
therefore do not seem to play a significant role in centrosome growth. Conversely,
cytosolic flows have been reported for C. elegans [186]. Taking typical values for
the cytosolic flow speed of v ≈ 5 µm/min [186], a droplet radius of R ≈ 1µm [24],
and a diffusion constant of the PCM components of D ≈ 5 µm2/s [86], the associated
Péclet number is vR/D ≈ 1/60. The centrosomes themselves also move inside the
cytoplasm [187]. A typical speed is 15 µm/min, which then leads to a Péclet number
of 1/20. We will therefore consider stationary centrosomes, which only change their
size, but not their position. In summary, diffusion of monomers is dominant over
advection, which justifies our approximation.
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Table 2.1: Conversion table for terms used in this thesis.

Biological context Physical context

Cytosol ↔ Solvent

Centrosome/PCM ↔ Droplet

PCM components ↔ Droplet components

(Enzymatically active) centrioles ↔ (Active) core

We assume that the diffusive flux of PCM components is driven by gradients in
their volume fractions, which is a valid description for simple diffusion. However,
cytosol is generally expected to show subdiffusive behavior [188, 189], which would
modify the reaction-diffusion equation (2.1). Simple diffusion has been observed
in C. elegans embryos, though [190]. Additionally, diffusion will not be the major
factor determining the growth behavior in our model and we will often discuss the
limit of infinite diffusivity anyway. Taken together, approximating the generally
complex behavior of proteins in cells by a reaction-diffusion equation for the PCM
components seems justified in our case.

We describe the chemical reactions, which switch the PCM components between
the phase separating and the soluble form, by a generic reaction flux s that includes
reactions of first and second order. We used this general approach since the precise
biochemistry of the centrosome proteins is not know. We will discuss this issue in
some more detail when we compare the model to experimental data in Chapter 6.
The idea that post-translational modifications can influence the physical properties
of proteins is not completely new, though. The properties of many proteins can be
modified by a chemical reaction called phosphorylation where a phosphate group is
added to the protein [1]. Interestingly, phosphorylation has already been observed
to influence phase separation dynamics of proteins in cells [191, 192].

The key feature of our model is the interplay of phase separation and chemical
reactions. The model describes a non-equilibrium system, where energy can be
exchanged with the surrounding, thus allowing the system to stay away from the
thermodynamic equilibrium. We showed briefly that the chemical reactions can be
identified with a long-ranged repulsive interaction, while the phase separation is
driven by short-ranged attractive forces, see Section 1.6. Such systems may generally
lead to pattern formation [178]. We will investigate this point further in Chapter 4,
where we consider the stability of multiple droplets growing in the same system.

Generally, our model might apply to other system where droplets are formed by
phase separation and the droplet material is influenced by chemical reactions. We
thus use a neutral language, where we speak of (active) droplets that are immersed
in a solvent and have an (active) core at their center. In the context of the biological
example, these droplets are the centrosomes immersed in the cytosol with their
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centrioles at the center. The term «active» in this context describes the non-
equilibrium chemical reactions producing the droplet material, either in the droplet
or at the core. The relations of these terms are summarized in Table 2.1. After we
discussed the physical properties in the next three chapters, we compare the model
to experimental data in Chapter 6. There, we again focus on the case of centrosomes.



Chapter 3

Isolated Active Droplets

T
he active droplets we consider in this thesis form by phase separation of droplet
material. This droplet material is produced by chemical reactions from soluble

building blocks. We also allow for the possibility that an active core located at
the center of a droplet catalyzes the production of droplet material. The chemical
reactions in the bulk and at the core make the model non-equilibrium. This explains
the notation of «active droplets» and «active cores» that we use throughout the
chapter to distinguish our model from equilibrium systems.

We now examine the introduced model in more detail. In this chapter, we investi-
gate the behavior of individual droplets. We will first consider the initial phase of
droplet growth, where droplets are small. Later in the chapter, we investigate large
droplets and the stability of the spherical shape, which droplets typically exhibit
because of surface tension effects. The more complicated case of multiple droplets
will then be discussed in the subsequent chapter.

3.1 Compositional fluxes in the stationary state

We discussed three reaction-limited scenarios of the model in Section 2.2 and we
found that diffusion had only a significant impact on droplet growth in scenario C,
see Section 2.3. In this scenario, where the incorporation of droplet material is driven
by the active core, the diffusion of soluble building blocks limits the rate at which
the droplet can grow. Conversely, the droplet growth was not limited by diffusion
in the other two scenarios. However, diffusion also becomes relevant in scenarios A
and B when surface tension γ is considered. In this case, the coexisting volume
fractions at the droplet surface depend on the droplet radius R, see Eq. (2.7). Due to
this dependence, the droplet radius and the volume fractions at the surface influence
each other. It is thus difficult to look at surface tension in time-dependent droplet
growth and we first discuss the stationary states and their stability only.

Concentration profiles in the stationary state

We consider the model in the stationary state, where time derivatives vanish. The
reaction-diffusion system given in the Eqs. (2.1) then reduces to simpler equations
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where only spatial derivatives appear. We reduce the complexity further by con-
sidering a single droplet growing in a spherical geometry. In this geometry, the
complete system becomes spherical symmetric and the fractions φA(r) and φB(r) of
the two components only depend on the distance r to the center of the droplet. This
approximation simplifies notation and calculations greatly and changes the results
only slightly as we will show later in Section 5.4.

We next simplify the expression for the reaction rate s given in Eq. (2.2). Here, the
first-order reactions depend linearly on the volume fractions. However, the bimolecu-
lar reaction A+B → 2B yields a non-linear term, since it depends on the product of
the volume fractions of form A and form B. Form B drives the phase separation and
the associated volume fraction φB thus assumes vastly different values inside and
outside of the droplet. Surface tension effects and spatial inhomogeneities within
compartments are negligible compared to this difference and we thus approximate
φB by ψ− and ψ+ inside and outside of the droplet, respectively. This substitution
linearizes the non-linear term in the reaction rate of Eq. (2.2), which then reads

s ≈ kABφ
A − kBAφ

B +

{
kcψ−φ

A r < R

kcψ+φ
A r ≥ R

. (3.1)

This approximation is good if the gradients in φB are weak. Note that we only use
this approximation to simplify the reaction rate, but we keep track of the full volume
fraction profile of the droplet material otherwise.

We use the approximations introduced in this section to determine the stationary
state of the model, see Appendix F. The first result of this analysis are the profiles
of the volume fractions as a function of the distance r to the droplet center. The
volume fractions of the different forms vary by orders of magnitudes, which makes the
respective plots difficult to read, see Fig. F.1 in Appendix F. This is mainly caused by
the phase separation process, which concentrates droplet material of form B inside
the droplet leading to much higher volume fractions there. To simplify the discussion
in the following, we thus focus on a schematic representation of the stationary state
profiles given in Fig. 3.1. Here, the general shapes of the profiles are preserved, but
their values are not drawn to scale.

Fig. 3.1 reveals gradients in the volume fraction profiles, which are related to
compositional fluxes, see Eq. (2.5). These fluxes are caused by the chemical reactions
and can only exist in non-equilibrium systems. In fact, these non-equilibrium effects
are responsible for most results that we will describe in the following and we thus
start by quantifying the compositional fluxes further.

Compositional fluxes in the stationary state

The schematic picture in Fig. 3.1 shows the stationary state fluxes for the two growth
scenarios A and B. There is a qualitative difference in the direction of the fluxes:
for the case of first-order kinetics, droplet material of form B is mainly produced in
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Figure 3.1: Schematic representation of the stationary volume fraction profiles as a
function of the distance r to the droplet center. The droplet extends to the
interface at r = R (green line). Chemical reactions cause a conversion of
the droplet components (black arrows) and the activity of the core (grey
area) sets the slope at r = a (red line). Note that fluxes across the interface
are opposite in the two scenarios: (A) First-order kinetics, where droplet
material is produced in the whole system. (B) Autocatalytic growth, where
droplet material is produced inside droplets.

the solvent and then diffuses toward the droplet, where it concentrates due to the
phase separation; it then gets converted back to the soluble form A inside the droplet
and diffuses away from the droplet, closing the cycle, see Fig. 3.1A. Conversely, in
the autocatalytic scenario, droplet material of form B is predominately produced
inside the droplet and then partly diffuses away from the droplet; it gets turned back
to its soluble form A in the solvent and subsequently diffuses back to the droplet,
closing the cycle, see Fig. 3.1B . The material thus flows in opposite directions in the
two scenarios. In particular, the directions of the net flux induced by the chemical
reactions are opposite in the two scenario, see the black arrows in Fig. 3.1.

We are left to discuss the influence of the active cores, which impose a flux at the
inner boundary at r = a, see Eq. (2.6) and the red dashed lines in Fig. 3.1. We can
determine their importance in the stationary state by quantifying the material flux
induced by the reaction A → B in three important compartments: at the core, in
the droplet, and in the solvent. Using the concentration profiles in stationary state,
we plot the three associated integrated reaction fluxes versus the droplet radius in
Fig. 3.2. It is evident from this plot that the cores only contribute little to the
production of droplet material of form B for typical droplet sizes. Note that the
reaction fluxes are comparable for small droplets in the autocatalytic scenario.

Fig. 3.2 furthermore shows the magnitude of flux JB across the surface of the
droplet, which can be quantified using Eq. (2.9). Comparing the two scenarios, |JB|
is much larger in scenario A, since droplet material is predominately produced in
the solvent and flows toward the droplet there. In scenario B, the droplet material
is produced in the droplet and thus flows in the opposite direction.
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Figure 3.2: Integrated fluxes of material in the stationary state as a function of the
droplet radius R. The magnitude of the fluxes caused by the reaction
A→ B in the solvent (blue), in the bulk of the droplet (orange), and at the
active cores (green) are shown. The magnitude of the flux of droplet material
across the droplet surface is shown for comparison (black dashed line). R is
varied by changing the fraction φ̄ of droplet components. (A) First-order
kinetics with parameters given in Fig. 2.3. (B) Autocatalytic growth with a
catalytic activity Q = 0.1 µm3/s and remaining parameters given in Fig. 2.4.

Generally, the flux JB across the droplet surface can be estimated by looking at
a stationary concentration profile around the droplet and quantifying JB from the
definition given in Eq. (2.9), see Appendix E. This procedure has also been used in
the seminal paper by Lifshitz and Slyozov [138] and leads to

JB(R, φB
0 ) ≈ 4πDBR ·

(
φB
+(R)− φB

0

)
, (3.2)

see Eq. (E.4) in the appendix. JB is thus driven by the difference in the volume
fraction φB

+(R) at the interface and the volume fraction φB
0 far away from the droplet.

This flux destabilizes small droplets, which we investigate in the next section.

3.2 Critical droplet size: Instability of small droplets

Fig. 3.3 shows the droplet radius in the stationary state as a function of the fraction φ̄
of droplet components. Additionally, we indicate the stability of all states, which is
determined by a linear stability analysis, see Appendix F. In the strong segregation
regime, ψ+ = 0, and without surface tension effects, γ = 0, we only find stable
droplets in scenarios A and B, see the green lines in Fig. 3.3. These lines are consistent
with the analytical estimates given in Eqs. (2.22) and (2.25). In scenario A, droplets
exist for all values of φ̄, while φ̄ has to be above a threshold φ̄B

min in scenario B. We
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Figure 3.3: Radii of stationary droplets as a function of the overall volume fraction φ̄
of droplet components for different values of surface tension γ and basal
volume fraction ψ+. (A) First-order kinetics with parameters given in
Fig. 2.3. (B) Autocatalytic growth with parameters given in Fig. 2.4. The
dotted parts of the curves indicate unstable stationary states and the grey
dashed lines are estimates thereof, see Eq. (3.5) and Eq. (3.6).

already calculated this threshold earlier, see Eq. (2.26). Taken together, droplets are
thus always stable and their size increases if there are more droplet components if
we consider the strong segregation regime and neglect surface tension effects.

With surface tension, the stable droplet size is only slightly reduced, see the solid
orange lines in Fig. 3.3. The reduction is most dominant in scenario A and we derive
an analytical expression for the droplet size in Appendix G. The volume of droplets
in the stationary state in scenario A reads

V A =
Vc
mψ−

[
kAB

kAB + kBA

φ̄−

(
9(γβ+)

2kBAψ−

4DB

)1/3

− ψ+

]
, (3.3)

see Eq. (G.4) and the solid grey line in Fig. 3.3A. This expression reduces to the
familiar form given in Eq. (2.22) if γ = 0 and ψ+ = 0. The expression given in
Eq. (3.3) clearly shows that surface tension effects reduce the stationary state size.
Interestingly, the reduction due to surface tension is also dependent on the chemical
reactions.

Surface tension can furthermore induce a critical droplet size, which corresponds to
a second, unstable stationary state, see the dotted orange lines in Fig. 3.3. Droplets
smaller than this threshold dissolve spontaneously, while larger droplets grow until
they reach the size of the stable stationary state. This is reminiscent of droplet
formation in equilibrium systems, see Section 1.5.2, where the associated critical
radius is given in Eq. (1.12). We next derive analytical estimates of the critical
radius for active droplets to discuss their parameter dependencies and compare it
with the equilibrium result.
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Analytical estimates of the critical droplet size for scenarios A and B

In scenario A, the droplet material is predominately produced in the solvent. Droplets
reach a stationary state size if the influx of droplet material ceases. This is the case if
φB
+(R) equals φB

0 , see Eq. (3.2). While φB
+ is directly given by Eq. (2.7b), we estimate

the fraction φB
0 of droplet material in the solvent by assuming that the chemical

reactions are in equilibrium in the solvent. This leads to kBAφ
B
0 ≈ kABφ

A
0 , where

φA
0 is the fraction of soluble building blocks in the solvent. We can then use the

material conservation, φ̄Vc ≈ mψ−V + (φA
0 + φB

0 )Vc to derive a value for φB
0 . Using

the equality φB
+ = φB

0 , we can thus derive the stationary state condition

ψ+ +
γβ+
R

≈
kAB

kAB + kBA

(
φ̄−

mV ψ−

Vc

)
. (3.4)

In the case of the small droplets associated with the critical size, the amount of
droplet material they contain is negligible, mV ψ− ≪ Vcφ̄. With this approximation,
we get an estimate for the critical droplet size that reads

RA
crit ≈

(kAB + kBA)γβ+
kABφ̄− (kAB + kBA)ψ+

. (3.5)

This value approximates the critical radius well, see the grey dashed line in Fig. 3.3A.
Note that the critical radius is proportional to the surface tension parameter γβ+
and depends on the rate constants of the chemical reaction.

In scenario B, the droplet material is predominately produced by the droplet itself.
We can again consider the case where the chemical reactions are in equilibrium in the
solvent, which now leads to φA

0 ≈ φ̄. The droplet components are thus almost entirely
in their soluble form A. Inside the small droplet there is a reaction flux JS produc-
ing droplet material driven by both the activity of the core and the autocatalytic
reaction. This reaction flux is given by JS ≈ (Q+ kcψ−V )(1− ψ−)φ

A
0 − kBAψ−V ,

see Eq. (2.19). In the stationary state, JS must compensate the flux JB
+ of droplet

material away from the droplet. For small droplets, this efflux can be estimated by
JB
+ ≈ 4πDBγβ+, see Eq. (3.2). This approximation assumes the strong segregation

regime, ψ+ = 0, such that there is hardly any droplet material in the solvent, φB
0 ≈ 0.

The critical droplet size is then given by the balance of the two fluxes and reads

V B
crit ≈

4πDBγβ+ − (1− ψ−)Qφ̄

(1− ψ−)kcφ̄ψ− − kBAψ−

. (3.6)

We also present a more detailed calculation of the critical droplet size in Appendix G.
We deduce from that calculation that Eq. (3.6) is a good estimate for the critical size
if surface tension effects are small and if the catalytic activity does not dominate
the droplet growth. The critical radius calculated from V B

crit is shown as a function
of φ̄ as a grey dashed line in Fig. 3.3B . If the core is passive, Q = 0, the critical
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Figure 3.4: Radii of stationary droplets as a function of the overall volume fraction φ̄
of droplet components in scenario C, where the incorporation is driven by
the catalytic activity Q = 10 µm3/s of the core. The figure shows curves for
diffferent values of surface tension γ and basal volume fraction ψ+.

size of an active droplet scales with the surface tension γ in scenario A and B.
This is reminiscent of equilibrium droplets where this scaling is also observed, see
Eq. (1.5). Note that while in the equilibrium case and in scenario A the radius of
the droplet scales with γ, in scenario B it is the droplet volume. This already hints
at a fundamental difference in the origin of the critical size.

Fig. 3.3 also shows the stationary states in the case where the phase separation is
weaker, i. e. where ψ+ > 0 (blue lines). Here, the stable droplet size found in the case
ψ+ = 0 is only slightly reduced (compare green and blue solid lines), much like in the
case of surface tension discussed in the preceding paragraph. However, the emergence
of a critical size due to ψ+ is only observed in scenario B, see the dotted blue line
in Fig. 3.3B . In scenario A, ψ+ reduces the droplet size in stationary state, but it
does not introduce a critical droplet size. This is also captured in the approximate
equation (3.5), where surface tension is required for a critical size. Additionally,
ψ+ causes a threshold for the fraction of droplet components, below which droplet
formation is impossible. The effect of ψ+ is thus more difficult to discuss and we
ignore it in the following for simplicity. The interesting phenomenon of a critical size
can be created using surface tension in both scenarios and we therefore concentrate
on this parameter.

Influence of surface tension in scenario C

So far, we focused on scenarios A and B and discussed the stationary states therein,
where we found that surface tension typically causes a critical size. Conversely, in
scenario C, surface tension has a minor effect and a critical size only appears in a
small parameter regime, see Fig. 3.4. This is because the droplet material of form B
is directly produced at the active core and incorporated in the droplet there. In
scenario C, droplets therefore form spontaneously if the activity Q at the core is
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strong enough. Otherwise, if surface tension is large, droplet formation is typically
suppressed completely. The threshold value QC

min that is necessary to overcome these
surface tension effects reads

QC
min =

4πDBkBAVcγβ+
(1− ψ−)(kBAVcφ̄− 4πmDBγβ+)

, (3.7)

see Eq. (G.9b) in Appendix G.
In summary, surface tension causes a critical droplet size in scenario A and B,

similar to the equilibrium situation sketched in Section 1.5. It is important that
this property carries over to the non-equilibrium model discussed in this chapter,
since it makes spontaneous droplet nucleation unlikely. This allows for controlled
droplet growth at nucleation sites, which we discuss subsequently. In scenario C,
droplets form spontaneously around the core, however in a diffusion-limited process,
which leads to slow droplet growth and thus small droplets in a given time span, see
Section 2.3.

3.3 Droplet nucleation facilitated by the active core

In order to be able to create large droplets quickly, we now consider scenarios A
and B with an additional enzymatic activity at the core, Q > 0. This combines
the advantage of scenarios A and B to produce droplet material efficiently with
scenario C to trigger droplet formation around the core.

In scenario A, where droplet material is produced in the entire system, there exists
a critical radius even for Q > 0, see Fig. 3.5A. Consequently, spontaneous nucleation
can still be suppressed. Although the activity Q does not have a great influence, the
presence of the core may still facilitate nucleation: if the core is wetted by the droplet
material of form B, a small surface layer will form around it. In this case, the core
acts as a classical nucleation site. Considering this surface layer as a small droplet,
we can estimate its size by the radius a of the core. If this radius is larger than the
critical radius RA

crit given by Eq. (3.5), droplet growth proceeds spontaneously. The
critical value φ̄A

crit for the fraction of droplet components above which droplets grow
spontaneously can then be given as

φ̄A
crit ≈

kAB + kBA

kAB

(
ψ+ +

γβ+
a

)
. (3.8)

Fig. 3.5A shows that this expression predicts the observed threshold very well. In
summary, a passive core can act as a nucleation seed in scenario A if it is wetted
by droplet material of form B. The catalytic activity at its surface does not play a
significant role in this process.

In scenario B, where the droplet material is produced inside the droplet by the
autocatalytic reaction, the influence of the active core is dramatically different. Here,
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Figure 3.5: Radii of stationary droplets as a function of the overall volume fraction φ̄ of
droplet components for different values of the catalytic activity Q at the core.
(A) First-order kinetics with parameters given in Fig. 2.3. (B) Autocatalytic
growth with parameters given in Fig. 2.4. The grey area marks the size of
the core and the dotted curves indicate unstable stationary states.

the critical radius disappears for Q > QB
crit (see blue line in Fig. 3.5B), implying

that beyond a critical enzymatic activity QB
crit, nucleation of a droplet at the core

is guaranteed. Note that spontaneous nucleation is still suppressed in the cytosol,
see the orange dotted line in Fig. 3.5B . This mechanism therefore ensures that the
droplet grows reliably around the active core and not anywhere else in the system.
The critical activity QB

crit can be estimate from the expression for the critical droplet
volume given in Eq. (3.6) and reads

QB
crit ≈

4πDBγβ+
φ̄

. (3.9)

We will show in the next section that this expression gives a good estimate of the
critical catalytic activity.

In summary, while both growth scenarios A and B suppress spontaneous droplet
formation away from active cores, only the autocatalytic case provides a way to
control nucleation. In this scenario, droplets grow around the active cores if Q > QB

crit.
Conversely, in scenario A, the catalytic activity at the cores has no significant
influence, but the cores may still act as classical, passive nucleation seeds.

3.4 Interplay of critical droplet size and nucleation

In the previous sections, we found that surface tension γ induces a critical droplet
size that suppresses spontaneous droplet nucleation. We also studied the effect of
a catalytic activity Q at the core, which can remove the critical size and thereby
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Figure 3.6: Stationary state configurations of a single droplet for different parameter
sets: (A, B) passive core, Q = 0, (C, D) active core with γ = 1 pN/µm,
and (E, F) low fraction of material, φ̄ = φ̄B

crit = 1.4× 10−5. Two scenarios
are considered: (A, C, E) first-order kinetics with parameters given in
Fig. 2.3 and (B, D, F) autocatalytic growth with parameters given in
Fig. 2.4. Shaded areas indicate the different possible states: no droplet
(white regions), one stable droplet (green filled region), or a stable droplet
with a critical size (green hatched regions). The red lines indicate the
critical thresholds given in Eqs. (3.8) and (3.9) and the blue lines mark the
minimal fraction φ̄ necessary to grow droplets, see Eqs. (3.11) and (2.26).
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guarantee the droplet nucleation. During these investigations, we found three possible
stationary state configurations, see Figs. 3.3 and 3.5:

(i) No droplets, i. e. all initial conditions lead to a homogeneous system.

(ii) One stable stationary state, where all initial conditions yield a single droplet
of defined size.

(iii) An unstable stationary state that separates initial conditions for which the
droplet dissolves from those for which it grows to a defined size.

These three possible stationary state configurations therefore describe the regimes
in which droplet growth can happen. It is thus sufficient to determine into which of
these categories the system falls to get a qualitative idea about the dynamics of the
system. Using these ideas, we now investigate the interplay of the critical droplet size
and nucleation in dependence on γ and Q. We show the different possible stationary
state configurations for the growth scenarios A and B in Fig. 3.6. In these diagrams,
each point corresponds to a different set of parameters where the color indicates the
stationary state category.

For the case of first-order kinetics, scenario A, we again find that a critical frac-
tion φ̄A

crit of material is necessary to trigger droplet formation, see Fig. 3.6A. φ̄A
crit

increases with the surface tension γ, which is in agreement with Eq. (3.8). Figs. 3.6C
and 3.6E show that the catalytic activity Q at the core only has a minor effect on
the dynamics of droplet formation. Here, we also observe a minimal fraction φ̄A

min

that is necessary for droplets to form. We can estimate its value using the sta-
tionary state condition given in Eq. (3.4). Solving this equation for φ̄, we get
φ̄ ≈ ψ+κ

−1 + (κR)−1γβ+ +mV ψ−V
−1
c , where κ = kAB/(kAB + kBA). The right

hand side of this expression attains its minimal value for R = RA
min, where

RA
min ≈

(
(kAB + kBA)Vcγβ+

4πmkABψ−

) 1
4

. (3.10)

The minimal fraction of droplet components necessary to build droplets thus reads

φ̄A
min =

kAB + kBA

kAB

[
4

3

(
4π(γβ+)

3mkABψ−

(kAB + kBA)Vc

) 1
4

+ ψ+

]
. (3.11)

We show this solution as the blue line in panel A and C of Fig. 3.6. In summary,
in scenario A the overall fraction φ̄ must exceed threshold values φ̄A

min and φ̄A
crit in

order to support and nucleate stable droplets, respectively. These threshold values
dependent only weakly on Q.

Conversely, in scenario B, the catalytic activity Q has a dramatic effect. If the
core was passive, Q = 0, the critical size would persist independent of the amount of
material in the system, see Fig. 3.6B . This can be easily explained by noting that the
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Figure 3.7: Radii of stationary droplets as a function of the overall volume fraction φ̄
of droplet components for different values of the catalytic activity Q at the
core in the autocatalytic scenario with a basal volume fraction ψ+ = 10−7

of droplet material in the solvent. The grey area marks the size of the core
and the dotted parts of the curves indicate unstable stationary states. The
model parameters are given in Fig. 2.4.

autocatalytic reaction ceases if there is no droplet material, φB = 0. Consequently,
there is no way of producing droplet material in this case and the homogeneous
system, where only soluble building blocks exist, must be stable. If there is enough
material in the system, φ̄ > φ̄B

min, a stable droplet can exist, but it only forms, if
the initial droplet size is above the critical size. Evidently, the minimal amount φ̄B

min

depends only weakly on the surface tension and the catalytic activity at the core, see
Figs. 3.6B and 3.6D . The minimal value derived for Q = 0, see Eq. (2.26), is therefore
a good approximation to φ̄B

min in general. Fig. 3.6D additionally shows that a small
catalytic activity Q can trigger droplet formation. If Q is above QB

crit, a droplet of
finite size is the only stationary state and all initial conditions must therefore lead
to this configuration. The boundary of the stable region is well approximated by
the analytical expression of Eq. (3.9) derived in the previous section. The critical
catalytic activity not only depends on the fraction φ̄ of droplet components, but also
on the strength of the surface tension, see Fig. 3.6F . This functional dependence is
also captured by Eq. (3.9).

In this section, we only considered single droplets. Of course, more complicated
situations could arise in the case of multiple droplets. We investigate this problem
later in Chapter 4. Nonetheless, also in the case of a single droplet additional
effects can be observed for certain choices of the parameters. For instance, Fig. 3.7
shows that bistable systems can occur in scenario B if additionally a basal volume
fraction ψ+ of the droplet material outside of the droplet is added (see orange line).
Here, the two stable stationary states correspond to two different ways of organizing
the droplet material: the larger state resembles the situation discussed above, where
the droplet material is mainly produced by the autocatalytic reaction in the droplet
volume. Conversely, the smaller stable stationary state corresponds to a situation,
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where the droplet material is predominately produced at the core. Here the activity
at the core is not quite strong enough to push the droplet size above the critical
size, where the droplet would then grow further to reach the larger stable size. This
behavior only occurs in a narrow parameter regime and is therefore most likely
irrelevant for the biological case.

In summary, surface tension typically causes a critical droplet size, both in equilib-
rium thermodynamics, see Section 1.5, and in the non-equilibrium system discussed
in this thesis, see Section 3.2. Interestingly, the nucleation barrier associated with
this critical size can be removed by chemical reactions, at least in the autocatalytic
growth scenario. Here, a catalytic core facilitates the formation of an initial droplet
and thereby controls the nucleation properties. The interplay of phase separation
and chemical reactions can thus cause a behavior that is qualitatively different from
the associated equilibrium system without chemical reactions. In the next section,
we investigate whether qualitative differences between the growth scenarios are also
observed for droplets at their maximal size. Here, we expect stable droplets, which
are spherical in equilibriums systems.

3.5 Perturbations of the spherical droplet shape

Droplets are typically spherical, since this configuration has the lowest surface area
for a given volume and thereby minimizes the total free energy [183]. If a droplet
is perturbed from its spherical shape, it typically returns to the preferred shape
in an oscillating manner [193]. The time scale associated with this behavior can
be measured experimentally and compared to theoretical predictions to extract
information about material parameters [194–196]. These theoretical models typically
consider small deviations from the spherical shape and employ a linear stability
analysis to deduce the oscillation time scale [193, 197, 198]. The theory is well
established for passive droplets, but we are not aware of any comparable studies of
droplet formation under the influence of chemical reactions.

In this section, we investigate whether droplets are always spherical in the model
discussed in this thesis. This model neglects inertial effects of the fluid, owing to
the typical small Reynolds number inside biological cells. The droplet shape can
therefore only change by the chemical reactions that rebuild the droplet. This is in
contrast to examples discussed above, where the observed droplet oscillations are
caused by inertial effects [193], and we will thus not be able to compare the results
directly. However, we can still investigate whether surface tension stabilizes the
spherical shape or if thermal fluctuations destroy this symmetric state. Furthermore,
we will consider the effect of chemical reactions to see whether they again revoke
the expectations from the equilibrium theory. Both questions can be answered by
investigating small perturbations of the spherical droplet shape in a linear stability
analysis. Interestingly, this approach also allows us to investigate the centering of
the core inside the droplet.
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Size change, Translation, Perturbation of droplet shape, 

Figure 3.8: Perturbation modes of the spherical droplet shape. Axisymmetric pertur-
bations (colored surface) of degree L and order M = 0 are shown in
comparison to the spherical symmetric state (grey).

3.5.1 Linear stability analysis of the spherical droplet shape

It is convenient to describe the perturbations of the droplet shape using spherical
harmonic functions, since this allows us to consider changes in volume, displacement
of the droplet, and shape changes within the same formalism, see Fig. 3.8. We
describe the system in a convenient spherical coordinate system (r, θ, ϕ) with its
origin at the center of the unperturbed droplet. The droplet surface is given by its
distance R to the origin,

R(θ, ϕ, t) = sR +
∞∑

L=0

L∑

M=−L

εL,M(t)YL,M(θ, ϕ) , (3.12)

for all angles θ and ϕ. Here, sR is the radius of the undisturbed, spherical droplet,
εL,M are the magnitudes of the small perturbations, |εL,M | ≪ sR, and the functions
YL,M(θ, ϕ) are the real spherical harmonics, see Appendix H.1. The perturbation
mode is defined by the degree L and order M of the spherical harmonics, see Fig. 3.8.
Similar descriptions of droplet perturbations have been used since a long time [199].

The shape of the droplet is defined by the magnitude of the perturbations εL,M at
any time. The temporal evolution of εL,M is readily generalized from Eq. (2.10), see
Appendix H.2. For simplicity, we consider the case where the perturbations εL,M are
the only slow variables in the system. That is, the volume fraction profiles φA and φB

of the soluble building blocks and droplet material are assumed to equilibrate quickly,
i. e. on timescales shorter than the dynamics of the perturbation. We furthermore
consider fast diffusion of the soluble building blocks, which should not influence the
result much since φA does not directly enter Eq. (2.10), which describes the droplet
growth. Using these approximations, we can determine the functions φA(r) and
φB(r) analytically, see Appendix H.3. Assuming that the perturbations are small,
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we linearize the dynamical equations and the volume fraction profiles with respect
to εL,M and arrive at the solution

εL,M(t) = εL,M(0) eλLt , (3.13)

see Appendix H.4. The perturbation growth rates λL are given by the implicit
equation (H.40). Interestingly, these growth rates only depend on the degree L
of the spherical harmonics while their order M does not influence the associated
growth rate. Note also that all perturbation modes decouple, i. e. the dynamics of
the mode (L,M) does not depend on the amplitude of other modes. This allows
us to discuss all perturbation modes separately. In the following, it is therefore
sufficient to consider only the axisymmetric perturbations with M = 0, keeping in
mind that other orders only change the spatial configuration but not the dynamics of
the perturbation. The special mode L = 0 is the only one where the droplet volume
changes. Since it simultaneously is also the only isotropic perturbation, we already
calculated the perturbation growth rate in Section 3.1. We use these results to test
the derivation presented here in the case of isotropic perturbation with L = 0, see
Fig. H.2 in the Appendix H.4.

The perturbation growth rates λL derived here are real numbers. This is because
they are directly calculated from the volume fraction profiles and their gradients,
see Eq. (H.40) in the Appendix H.4. Consequently, the droplet does not return to
the spherical shape in an oscillating manner, an effect that would be described by
the imaginary part of λL.

3.5.2 Active cores can center themselves in droplets

We now use the analysis given in the previous section to investigate the stability
of the spherical shape of active droplets. We first investigate perturbations with
L = 1, which are translations of the droplet, see Fig. 3.8. To remove the effect of the
system boundary, we consider the limit of an infinite system, Vc → ∞, while keeping
the droplet volume finite. In this limit, the only object that breaks translational
symmetry is the core at the origin. The translation of the droplet can therefore also
be interpreted as the core moving relative to the droplet. We will adapt this view
in the following discussion.

In the first-order kinetics case, scenario A, the core always has the tendency to
be centered within the droplet, see the left column in Fig. 3.9. This effect is quite
small for the standard set of parameters, but can be enhanced by a catalytic activity
Q > 0 at the core. In the case of autocatalytic growth, scenario B, the effect of
such a catalytic activity is even more pronounced. Here, the growth rate is even
larger than in the first-order kinetics case, see the bottom row of Fig. 3.9. This is
surprising because in the autocatalytic case, a passive core exhibits a weak tendency
to move away from the center, λ1 > 0, see the upper right panel of the figure. The
opposite behavior of passive cores in the two scenarios is likely due to the differences
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Figure 3.9: Response of an active droplet to translational perturbations (degree L = 1).
The droplet surface (black solid line) has been distorted with respect to the
symmetric case (black dotted line). Arrows indicate in which direction the
surface moves according to Eq. (H.41) and the speed is given by the length
of the arrow. The perturbation growth rate λ is indicated in the bottom
left of each panel and the distortion φ̂B of the volume fraction of droplet
material is shown as a heat map in the background. We consider passive
cores (Q = 0, grey disc) and active cores (Q = 1 µm3/s, green disc) for the
two growth scenarios, first-order kinetics and autocatalytic growth, where
the parameters values are given in Fig. 2.3 and Fig. 2.4, respectively.
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Figure 3.10: Response of an active droplet to shape perturbations. The droplet surface
(black solid line) has been distorted with respect to the spherical case
(black dotted line). Arrows indicate in which direction the surface moves
according to Eq. (H.41) and the speed is given by the length of the arrow.
The perturbation growth rate λ is indicated in the bottom left of each panel
and the distortion φ̂B of the fraction of the droplet material is shown as a
heat map in the background. The small grey circle in the center indicates
the passive core with Q = 0. Two growth scenarios, first-order kinetics
and autocatalytic growth, are considered with parameters given in Fig. 2.3
and Fig. 2.4, respectively.
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in the stationary state fluxes, which we discussed in Section 3.1 and which is also
apparent in the reversed background colors between the two cases visible in Fig. 3.9.
Although these observations are dependent on the choice of parameters, they are
also in line with our earlier observation that the activity at the core has a stronger
influence in the autocatalytic scenario, see Section 3.3.

The centering of the core in the autocatalytic scenario can be explained intuitively:
Soluble building blocks entering the droplet may diffuse toward the core, but there
is a chance that they get incorporated into the droplet by the autocatalytic reaction.
The propensity of conversion is larger if the building blocks stay inside the droplet
longer. In a droplet where the core is off-center, the concentration of building blocks
is larger on the site of the core that is located closer to the droplet surface since the
diffusion of the building blocks toward the core takes time. A larger concentration of
building blocks leads to a higher conversion rate and thus to more incorporation of
droplet material at this site of the core. If the core is located away from the center,
this mechanism leads to a stronger growth on the side of the core that is closer
to the droplet surface. The droplet thus grows quicker on that side and the core
experiences an effective centering force. This mechanism also works in the stationary
state, where it relies on the material turnover since the overall droplet size does not
change.

3.5.3 Surface tension stabilizes the spherical shape

We next consider shape fluctuations, where the droplet volume stays constant and the
droplet center is not moved, i. e. modes with L ≥ 2, see Fig. 3.8. We consider both the
scenario A with first-order kinetics as well as the scenario B with autocatalytic droplet
growth and plot the results in Fig. 3.10. In both scenarios, perturbations with degree
L ≥ 2 decay and the droplet returns to its spherical shape. This effect is in general
stronger for perturbations with higher degree, i. e. the perturbation growth rate λL
has a larger absolute value for higher L. The direction of the movement of the droplet
interface is correlated with the correction φ̂B to the stationary state volume fraction
in its vicinity. The interface expands if there is less droplet material, presumably
because the efflux of droplet material is reduced. Conversely, the interface retracts
if the volume fraction of droplet material is above the stationary state value. In
scenario A, we observe a quicker relaxation to the stationary state than in the
autocatalytic scenario B, although this behavior again depends on the specific choice
of parameters.

3.5.4 First-order kinetics destabilize large droplets

The stability of a spherical droplet with respect to perturbations of its shape is
given by the sign of the perturbation growth rates. Here, we can distinguish several
different scenarios, depending on whether the size of the droplet, its shape, or only
the position of the core becomes unstable, see Fig. 3.11. These diagrams confirm
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Figure 3.11: Stability diagrams of a spherical droplet. Droplets are either stable (green)
or unstable with respect to the droplet size (orange), the droplet shape
(yellow), or the position of the core (blue). Mixture of these instabilities
can also occur (hatched regions). Various parameters are varied: (A, B)
surface tension γ and droplet radius sR at Q = 0; (C, D) activity Q at the
core and sR at γ = 1 pN/µm; (E) Q and γ at sR = 0.5µm. The droplet size
is varied by adjusting φ̄ and two scenarios are considered: (A, C, E) first-
order kinetics with parameters given in Fig. 2.3 and (B, D) autocatalytic
growth with parameters given in Fig. 2.4. A droplet with radius sR =
0.5µm and finite Q is always stable in the autocatalytic case and the
associated panel is thus omitted.
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the earlier result that small droplets are unstable in the autocatalytic scenario if
the core activity is too low, see Fig. 3.11D . In the first-order kinetics scenario,
small droplets are also unstable, but the activity at the core cannot compensate
for this. Interestingly, there is another regime for large droplets, where the shape
becomes unstable, i. e. perturbations with L ≥ 2 grow spontaneously, see Fig. 3.11A.
Consequently, there are lower and upper bounds for the droplet size in the case of
first-order kinetics. Taking together the results from both scenarios A and B, active
cores center themselves within a droplet and surface tension stabilizes the spherical
shape, which is reminiscent of the equilibrium situation [183]. Furthermore, the
stability of the droplet in the autocatalytic case is assured if the catalytic activity
at the core is strong enough. Interestingly, droplets are always spherical in this case,
while large droplets tend to be non-spherical in the case of first-order kinetics.

3.6 Discussion

In this chapter, we analyzed active, isolated droplets. We found that all aspects
of the droplet physics are influenced by the additional chemical reactions. Most
notably, active cores that catalyze the production of droplet material can influence
the nucleation behavior and the morphology of the droplet.

In accordance with the equilibrium situation, we found that surface tension can
cause a critical size that droplets have to overcome in order to grow spontaneously.
This critical size is larger if droplets are build by the autocatalytic mechanism since
a large enough droplet is required to produce sufficient droplet material. Generally,
such a critical size acts as a nucleation barrier and makes spontaneous droplet
formation unlikely. However, this nucleation barrier can be overcome by a core that
acts as a suitable nucleation site. If such a core additionally catalyze the production
of droplet material at the surface, its nucleation capacity can be enhanced drastically,
at least in the autocatalytic scenario. Taken together, the influence of the active cores
depends on the reactions that produce the droplet material from soluble building
blocks, see Fig. 3.12.

The active cores also have the interesting property that they can center themselves
within the droplet and they also tend to make droplets spherical, see Fig. 3.12.
This spherical shape is also stabilized by surface tension effects, comparable to the
equilibrium picture, where the surface energy is minimized by the spherical shape.
Conversely, the first-order kinetics can destabilize large droplets and it is tempting
to speculate that these droplets break up into many smaller ones which would then
be stable. To investigate such a behavior, it is thus necessary to examine states with
multiple active droplets, which we do in the next chapter.
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Figure 3.12: Summarized behavior of isolated active droplets. The droplet material
(orange) is either produced by first-order kinetics in the whole system (left
column) or by an autocatalytic reaction inside the droplet (right column).
Additionally, an active core (green disc) may catalyze the production of
droplet material and thereby for instance center itself within a droplet.
Typically, droplets grow after their nucleation until they reach their final
size, where they are either stable or break up into smaller droplets.





Chapter 4

Multiple Interacting Active Droplets

W
e now consider systems of multiple droplets, which can exchange material
through a common solvent. In a passive system, which reaches equilibrium

after a long time, this exchange of droplet material leads to Ostwald ripening, see
Section 1.5.3. Ostwald ripening is the phenomenon by which emulsions of many small
droplets coarse into a system with fewer and larger droplets. In equilibrium, only
the state with a single droplet is stable. We will now show that Ostwald ripening
can be suppressed in the system of active droplets we discuss in this thesis.

4.1 Approximate description of multiple droplets

The model defined in Section 2.1 readily accounts for the case of multiple droplets.
We describe droplets as stable cores surrounded by droplet material that is pro-
duced from soluble building blocks. The cores may also catalyze the production of
droplet material and thereby support droplet growth. For simplicity, we consider the
case where the droplets are homogeneous, i. e. the droplet components diffuse quick
enough such that gradients in the volume fractions can be neglected. The differential
equation describing the growth of droplet i given by Eq. (2.10) then reads

∂tVi =
JS
i (V )− JB

i (V )

ψ−
, (4.1)

where i = 1, . . . ,m enumerates the droplets and we approximated the difference of
the fraction of droplet material between the inside and the outside of the droplet
by ψ−, thus neglecting the small surface tension effects. Here, JS

i is the reaction flux
inside the droplet and JB

i denotes the flux of droplet material away from the droplet.
Both these quantities generally depend on all droplet volumes V = {V1, V2, . . . , Vm}.
The reaction flux inside the droplet reads

JS
i (V ) ≈ (kcψ−Vi +Q) (1− ψ−)φ

A
0 (V )− kBAViψ− , (4.2)

which contains both the bulk reactions, see Eq. (2.2), and the catalytic activity of
the cores, parameterized by Q, see Eq. (2.6). Here, φA

0 is the fraction of building
blocks in the solvent and we approximate the respective fraction inside the droplet
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bare coreproper droplet

Figure 4.1: Schematic drawing of a system where active cores (blue dots) are possibly
surrounded by droplet material (orange). Two proper droplets and a bare
core are shown. This example configuration is described by the state vector
V = {V, V, 0} of the droplet volumes, assuming that V1 = V2 = V .

by (1 − ψ−)φ
A
0 , which works well in the strong segregation regime, see Eq. (2.8).

Additionally, we neglect the first-order reaction A → B inside the droplet, since it
has only a minor influence.

In the description of the dynamics of the droplet volume, we have to employ a
constraint, Vi ≥ 0, to ensure that the volumes do not become negative. In fact, there
are situations in which the production of droplet material is not strong enough to
overcome the critical radius created by surface tension effects, see Section 3.3. In
these cases, the droplet volume is zero. The associated cores are not surrounded by
droplet material and we thus call them «bare cores», see Fig. 4.1. Note that the
droplet material created by the catalytic activity of such cores immediately ends up
in the solvent and diffuses away from the core without forming a droplet. We have
to consider this special case in the expression for the flux JB

i of droplet material
away from the droplet surface, which consequently reads

JB
i (Vi, φ

A
0 , φ

B
0 ) ≈

{
4πDBRi ·

(
φB
+(Ri)− φB

0

)
Vi > 0

QφA
0 Vi = 0

, (4.3)

where the two branches follows from Eq. (3.2) and Eq. (2.6), respectively. Here, φA
0

is the fraction of building blocks in the solvent and φB
0 is the fraction of droplet

material far away from droplets. Note that Eq. (4.3) assumes that the flux away
from a droplet is driven by the difference of the fraction φB

+ right at its surface and
the mean fraction φB

0 in the solvent. The direct influence of other droplets is thus
neglected and we only consider a mean-field model of multiple droplets. It remains
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Figure 4.2: Droplet volume as a function of time for a single droplet in the approximate
model (blue line) in comparison to numerical solutions of the full equations
(dashed lines). (A) First-order kinetics with parameters given in Fig. 2.3.
(B) Autocatalytic growth with parameters given in Fig. 2.4. Different
diffusivities DA of the building blocks A are compared.

to consider the fractions φA
0 and φB

0 in the solvent. The fraction φA
0 of building

blocks can be derived from the conservation equation (2.4) and reads

φA
0 (V , φB

0 ) ≈ φ̄− φB
0 −

ψ−

Vc

m1∑

i=1

Vi . (4.4)

The fraction φB
0 can be determined by considering its dynamics in the solvent: The

amount of droplet material in the solvent changes by the compositional fluxes given
in Eq. (4.3) and by the chemical flux jS0 ≈ kABφ

A
0 − kBAφ

B
0 in the solvent. Taken

together, φB
0 changes according to

∂tφ
B
0 = jS0 +

1

Vc

m∑

i=1

JB
i , (4.5)

where we approximated the solvent volume by Vc. For simplicity, we consider the
case, where φB

0 is in the stationary state, ∂tφB
0 = 0. This approximation allows us

to combine Eqs. (4.3)–(4.5) and solve for φB
0 , which yields

φB
0 (V ) =

4πDB

∑m1

i=1Riφ
B
+(Ri) + (kABVc +m0Q)

(
φ̄− ψ−V

−1
c

∑m1

i=1 Vi
)

m0Q+ (kAB + kBA)Vc + 4πDB

∑m1

i=1Ri

. (4.6)

Here, we assumed without loss of generality that V is arranged such that m1 proper
droplets with Vi > 0 are in front of the m0 bare cores with Vi = 0. Note that the
total number of cores is conserved, m0 +m1 = m.

Taken together, the droplet volumes V are the only state variables and the dy-
namics of the system are given by the m coupled differential equations of Eq. (4.1).
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We solve these equations numerically employing a simple Euler-scheme, which allows
for a straight-forward implementation of the constraint Vi ≥ 0 [200]. The growth
dynamics of single droplets are not affected significantly, despite the multiple simpli-
fications introduced in this section, see Fig. 4.2. The figure shows that the stationary
state volumes are unchanged and that the shapes of the curves agree qualitatively.
Furthermore, the deviations found in the autocatalytic scenario decrease if the diffu-
sivity of the building blocks is increased beyond the standard value, see Fig. 4.2B .
This is to be expected, since we assumed an infinite diffusivity DA to derive the
approximate model. The approximate model thus agrees well with the full model in
the case of a single droplet. We take this observation as a justification to study the
approximate model in the case of multiple droplets in the system.†

4.2 Linear stability analysis of the symmetric state

The stability of a stationary state with multiple droplets can be assessed by con-
sidering small perturbations of their volumes. The linear part of the temporal
evolution of these perturbations are captured by the Jacobian Jij = ∂fi(V )/∂Vj,
where fi(V ) = ∂tVi(V ) is the growth rate of the i-th droplet, see Eq. (4.1). Using
these definitions, the Jacobian can be decomposed as Jij = Aij + Biδij with

Aij = − (kcψ−Vi + kABVi +Q)
1− ψ−

ψ−

(
∂φB

0

∂Vj
+
ψ−

Vc

)
+

4πDBRi

ψ−
·
∂φB

0

∂Vj
(4.7a)

Bi = (kcψ− + kAB)
1− ψ−

ψ−
φA
0 − kBA +

DB

R2
iψ−

(
φB
0 − ψ+

)
, (4.7b)

where φA
0 and φB

0 are given in Eqs. (4.4) and (4.6). The eigenvalues of the matrix Jij

are the rates with which the perturbations evolve in time [201]. If all these rates are
negative, perturbations decay and the associated stationary state is stable. Here, we
have to treat the special case of bare cores with vanishing volume separately. They
must have a negative growth rate, ∂tVi ≤ 0, in the stationary state, since otherwise
proper droplet would grow around them. Because of this negative growth rate, bare
cores are always stable and for the stability analysis it is thus sufficient to consider
proper droplets, i. e. the submatrix of Jij with 0 ≤ i, j ≤ m1.

We next consider the symmetric case, where all proper droplets have the same
volume, Vi = sV for i = 1, 2, . . . ,m1. Later, it will turn out that this state is anyway
the only relevant one. The Jacobian of this state is particularly simple and its
eigenvalues read

λ0 = m1A+ B and λm = B , (4.8)

† The reader is invited to follow the arguments given here using the publicly available webpage
http://www.david-zwicker.de/centrosomes, where the solution of Eq. (4.1) are shown and
all model parameters can be varied interactively.

http://www.david-zwicker.de/centrosomes
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where λm has the multiplicity m1− 1 and is only present if there are multiple proper
droplets. Consequently, the stability of a single droplet is given by the sign of A+B,
which can be either positive or negative as discussed in Chapter 3. In the case
of multiple droplets, the first mode given by the eigenvalue λ0 has an associated
eigenvector ξ1 = (1, 1, . . . , 1)⊤ and thus describes the dynamics of the total droplet
volume Vtot. If λ0 is positive, Vtot and therefore also the droplets are unstable. This
case is related to the instability of single droplets and we thus do not discuss it further
in this chapter. Conversely, if λ0 is negative, the stability of the droplets depends
on λm = B. This case is interesting, since here Vtot is stable and therefore stays
constant, but droplets may exchange material and thereby change their individual
volumes.

In summary, the dynamics of the perturbations can be decomposed in the dynamics
of the total droplet volume, which evolves with a rate λ0, and the dynamics of the
volume differences of droplets. The latter are described by vectors of the eigenspace
associated with the eigenvalue λm, which spans all possible configurations where the
total droplet volume is fixed. Differences in the droplet volumes thus all evolve with
the rate λm.

4.3 Late stage droplet dynamics and Ostwald ripening

In order to understand the behavior of multiple droplets, we start by considering
the simple case of two droplets. We express their volumes V1 and V2 using the total
volume Vtot = V1 + V2 and the difference δV = V1 − V2. The volume fraction φB

0 of
droplet material in the solvent developed in terms of these variables reads

φB
0 =

4πDBm1
sRφB

+( sR) + (kABVc +m0Q)
(
φ̄− ψ−VtotV

−1
c

)

m0Q+ (kAB + kBA)Vc + 4πDBm1
sR

+O
(
δV 2

)
, (4.9)

see Eq. (4.6). Here, sR is the radius of the droplets of volume V1 = V2 = sV in the
symmetric stationary state. Note that φB

0 only depends on quadratic and higher-
order terms of δV and we may thus neglect this dependence in our linear stability
analysis. Equivalently, φA

0 also only depends on δV 2 and higher powers, see Eq. (4.4).
In the case where Vtot is stable, i. e. λ0 < 0, we can discuss the dynamics of two

droplets by considering only their volume difference δV (t). This is the late stage of
droplet coarsening, where the solvent is depleted of droplet components and their
volume fractions φA

0 and φB
0 are constant. Consequently, the total volume Vtot of all

droplets has reached its stationary state. However, the distribution of this volume
among the droplets might still change by compositional fluxes between the droplets.
In fact, the volume fraction φB

+(Ri) right outside of droplet i depends on its radius Ri

because of surface tension effects, see Eq. (2.7b). Droplets of different size thus
impose different volume fractions in the solvent, which leads to the compositional
fluxes between the droplets, see Fig. 4.3. In an equilibrium system, these fluxes are
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Figure 4.3: Schematic explanation of Ostwald ripening in the late stage of droplet
growth, where the solvent (yellow) has been depleted. Consequently, the
fraction φA

0 , the fraction φB
0 , and the total droplet volume have reached

their stationary state value. Conversely, droplets (orange discs) may have
different volumes Vi, which lead to different volume fractions φB

+ right
outside their interfaces and thus compositional fluxes (orange arrow) from
the smaller toward the larger droplet.

oriented from smaller to larger droplets and thus cause larger droplets to grow at
the expense of smaller ones, which is known as Ostwald ripening, see Section 1.5.3.

The flux of droplet material between droplets ceases only if they have the same
size. This qualitative argument presented here thus already suggests that all droplets
are of the same size if the stationary state is stable.

4.4 Active droplets can suppress Ostwald ripening

We analyze the situation of multiple droplets using the approximate model introduced
in Section 4.1. Its numerical solution shows that the passive system without chemical
reactions indeed shows Ostwald ripening, see Fig. 4.4A. However, in the case of
active droplets, Ostwald ripening can be suppressed, see Fig. 4.4B . Here, droplets
wtih different volumes exchange material until they reach the same size. In the
following, we analyze the reasons and determine the required model parameters for
this qualitatively different behavior.

The stationary states of the dynamical system are defined by Eq. (4.1) with a
vanishing time derivative. The resulting system of algebraic equations can be solved
for the droplet volume assuming that all droplets have the same size. The analysis
presented in Section 4.2 is then used to determine the stability of these stationary
states. Fig. 4.5 shows the droplet sizes in stationary state for the scenarios of first-
order kinetics and autocatalytic growth. The case of droplets without surface tension
effects discussed in Section 2.2 is shown as a reference (orange lines). All the other
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Figure 4.4: Volumes Vi of two droplets i = 1, 2 as a function of time t. (A) Data
of an equilibrium system with initial conditions V1(0) = 10.01µm3 and
V2(0) = 10µm3 are shown. The model parameters are that of Fig. 2.3,
but without chemical reactions, kAB = kBA = 0, kc = 0, and Q = 0.
(B) Data of active droplets with first-order kinetics and initial conditions
V1(0) = 17µm3 and V2(0) = 0 are shown. Model parameters have been
taken from Fig. 2.3.

lines cover cases where surface tension effects are included. Analogously to the case
of a single droplet, which we discussed in Section 3.2, surface tension does not change
the stable droplet size much if there are multiple droplets.

If droplets are large, their volumes are thus well approximated by Eq. (2.22) and
Eq. (2.25) derived for the respective scenarios A and B without surface tension. These
expressions assume that the amount of droplet material in the system is independent
of the droplet count m and is equally distributed between all droplets. The volume of
a single droplet is thus proportional to m−1. This argument explains why in Fig. 4.5
the stable branch for the case m = 1 (solid gray lines) is at significantly larger radii
than that for m = 2 (blue lines).

The unstable branch of the curve describing the stationary state of a single droplet
(dotted gray lines) can be attributed to a critical size, see Section 3.2. We find
a similar behavior in the case of multiple droplets, compare the lower branch of
the gray and blue lines in Fig. 4.5. Apparently, the critical size a droplet has to
overcome in order to grow spontaneously does not depend strongly on the number m
of droplets in the system. This is in contrast to the size of the stable stationary
state discussed in the previous paragraph. Consequently, the nucleation properties
discussed in Section 3.3 are retained: in the case of first-order kinetics, a critical size
is observed below a critical fraction φ̄ of droplet components. The threshold value
is only weakly dependent on the catalytic activity Q of the core. Conversely, in the
autocatalytic scenario, a critical size exists for all values of φ̄ but the critical size
vanishes completely for sufficiently large Q. The nucleation of droplets can therefore
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Figure 4.5: Radii of stationary droplets as a function of the overall volume fraction φ̄ of
droplet components for different values of the droplet count m, the catalytic
activity Q at the cores, and surface tension γ. (A) First-order kinetics with
parameters given in Fig. 2.3. (B) Autocatalytic growth with parameters
given in Fig. 2.4. The grey area marks the core and the dotted parts of the
curves indicate unstable stationary states.

be seen as a local phenomenon, which is only weakly influenced by the presence of
other droplets.

A major difference between the case of multiple and single droplets is the stability
of large droplets, compare the upper branch of the red and blue lines in Fig. 4.5. For
first-order kinetics, multiple droplets are only stable if there is a sufficient fraction φ̄
of droplet components in the system. The threshold value of φ̄ for this stability
depends weakly on the catalytic activity Q of the cores, compare the blue and the
green line in Fig. 4.5A. Conversely, in the case of autocatalytic growth, multiple
droplets are always unstable if the cores are passive, Q = 0. Multiple droplets
can be stable if Q exceeds a threshold value, compare the blue and the green line
in Fig. 4.5B . In both scenarios, multiple droplets can thus be stable or unstable.
We next determine conditions for the parameter values, where this stability can be
observed.

4.4.1 Perturbation growth rate in the simple growth scenarios

We consider the late stage of droplet growth, where the volume fractions in the
solvent and the total droplet volume have reached their stationary state value and
are stable with respect to perturbations. For this typical case, the linear stability
analysis presented in Section 4.2 yields the rate λm = B with which the difference of
volumes of multiple droplets evolves. It reads

λm = (kcψ− + kAB)
1− ψ−

ψ−
φA
0 (Vtot)− kBA +

DB

sR2ψ−

[
φB
0 (Vtot)− ψ+

]
, (4.10)
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see Eq. (4.7b). Note that the volume fractions φA
0 and φB

0 only depend on the total
droplet volume Vtot, see Section 4.3, and we can thus solve for the growth rate λm
without knowing the exact distribution of droplet volumes. Additionally, the growth
rate ∂tVi vanishes at the stationary state Vi = sV , which leads to the condition

0 =
(
kcφ

A
i − kBA

)
sV +

QφA
i

ψ−
+

4πDB

ψ−

[
(φB

0 − ψ+) sR− γβ+
]
, (4.11)

see Eq. (4.1), where φA
i = (1− ψ−)φ

A
0 . Using the expressions for φA

0 and φB
0 in the

stationary state, see Eqs. (4.4) and (4.6), we can thus determine λm for different
parameter sets.

Scenario A: First-order kinetics

In scenario A, we have kc = 0 and Q = 0, which we use together with Eq. (4.11) to
solve for φB

0 . With this result, the growth rate λm becomes

λAm(sV ) ≈
4πDBγβ+

3sV ψ−
−

2kBA

3
. (4.12)

This expression still contains the droplet volume sV , which is well approximated by
neglecting surface tension effects, see Fig. 4.5. We thus use Eq. (2.22) to arrive at

λAm ≈
(kAB + kBA)m 4πDBγβ+

3φ̄VckAB

−
2kBA

3
, (4.13)

which only depends on model parameters. Fig. 4.6A shows that this expression
captures the behavior of the approximate model of Section 4.1 very well. The
analytical expression of λAm can be used to determine the parameter values, where
the associated stationary state is stable, i. e. where λAm < 0. We use the equality
λAm = 0 to derive the minimal fraction of material

φ̄A
stab ≈

kAB + kBA

kABkBA

·
2πmDBγβ+

Vc
(4.14)

above which m droplets are stable in scenario A.
According to Eq. (4.14), the stability of multiple droplets depends on the strength

of the chemical reaction: if either reaction rate constant, kAB or kBA, vanishes,
the threshold fraction φ̄A

stab diverges and multiple droplets cannot be stable. One
important consequence of the chemical reactions are the induced fluxes of material
in the stationary state. These fluxes allow us to explain the stability qualitatively:
the chemical reactions convert droplet material of form B into its soluble form A
predominately inside the droplet. The associated integrated reaction flux scales with
the droplet volume, i. e. with R3. The droplet material lost in this way must be
compensated for by the influx across the droplet surface. This flux typically scales
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Figure 4.6: The volumes V1(t) and V2(t) of two droplets are shown as a function of
time t. The semi-logarithmic plots show the difference to the stationary
state volume sV and the associated analytical rates λm are indicated by black
lines. The insets show the trajectories V1(t) and V2(t). (A–C) Two unequal
droplets (V1(0) = 0, V2(0) = 15µm3) approach the same size in the three
non-equilibrium scenarios: (A) first-order kinetics, (B) autocatalytic growth,
and (C) incorporation at the cores. The model parameters are taken from
Figs. 2.3, 2.4, and 2.5, respectively, and the rates λm are respectively given
in Eqs. (4.13), (4.16), and (4.20). (D) Ostwald ripening of an equilibrium
system is shown. Two droplets of similar volume (V1(0)−V2(0) = 10−8

µm3)
are simulated in a passive system without chemical reactions, kAB = kBA =
0, kc = 0, and Q = 0, but including surface tension effects, γβ+ = 10−6

µm.
Their volumes diverge with a rate λeqm given in Eq. (4.21).
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with Rn, where n ≤ 1. Because of these different scalings, the droplet loses more
material than it gains if it grows beyond its stationary state size where the two
fluxes are balanced. Consequently, larger droplets will shrink back to the stationary
state size. This explains intuitively why multiple droplets can be stable in the
non-equilibrium model with first-order reaction kinetics.

Scenario B: Autocatalytic growth

In scenario B, the droplet material is predominately produced inside the droplet
by the autocatalytic reaction. The flux of droplet material is thus opposite to
the one in scenario A, see Fig. 3.1. Additionally, the fraction of droplet material
outside of droplets can be estimated by φB

0 ≈ φB
+, which is a good approximation

for small systems, where the length scale α−1 =
√
DB/kBA of the droplet material

distribution is large compared to the system size. Using Eq. (4.11), we can then
express the growth rate as

λBm(sV ) ≈
4πDBγβ+

3sV ψ−
−

QkBA

Q+ kc sV ψ−
. (4.15)

In the following, we consider the case of a small catalytic activity, Q≪ kc sV ψ−, for
scenario B. Here, the stationary state droplet volume sV is well approximated by
Eq. (2.25), see Fig. 4.5. Using these approximations, we arrive at

λBm ≈
m

Vc

(
φ̄−

kBA

(1− ψ−)kc

)−1 [
4πDBγβ+

3
−
kBAQ

kc

]
. (4.16)

This expression for the perturbation growth rate agrees very well with numerical
simulations, see Fig. 4.6B . These simulations show that the associated stationary
state with multiple droplets can be stable, i. e. λBm can take negative values. Generally,
the sign of λBm is determined by the sign of the square bracket, since φ̄ must be larger
then φ̄B

min given in Eq. (2.26) and the round bracket is thus positive. We can use
the equality λBm = 0 to determine the minimal catalytic activity QB

stab above which
multiple droplets are stable in the autocatalytic scenario. This threshold reads

QB
stab ≈

4πDBkcγβ+
3kBA

. (4.17)

In scenario B, multiple droplets are thus only stable if the catalytic activity Q at
their cores is strong enough to overcome the destabilizing effects of both surface
tension γ and the autocatalytic reaction quantified by the rate constant kc.

Moreover, Eq. (4.17) can be used to discuss the influence of the chemical reac-
tions on the stability of multiple droplets. Comparable to scenario A, the stability
threshold diverges if the rate constant kBA of the reaction B → A vanishes. Conse-
quently, multiple droplets can only be stable if the chemical reactions are present.
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Figure 4.7: Radius of droplets built by active cores in scenario C as a function of the
fraction φ̄ of droplet components. The stationary state size is shown with
(blue line) and without (orange line) surface tension effects. The model
parameters have been taken from Fig. 2.5.

Interestingly, the stability threshold QB
stab increases for larger rate constants kc of

the autocatalytic reaction. The autocatalytic reaction thus has a destabilizing effect.
This can be explained qualitatively by noting that the reaction flux of the autocat-
alytic reaction scales with the droplet volume. Larger droplets gain more droplet
material and grow quicker than smaller ones because of this scaling. If fluctuations
increase the droplet volume beyond its stationary state size, these fluctuations will
be enhanced at the expense of the volumes of other droplets and the associated
stationary state is therefore not stable.

We showed that the autocatalytic reaction destabilizes multiple droplets and that
the reaction flux at the core can counteract this behavior. Here, it is important
to note that the reaction flux at the core does not only depend on the quantity Q,
which describes the strength of the catalytic reaction, but also on the fraction φA(a)
of soluble building blocks at the core. Since soluble building blocks are turned into
droplet material in the whole volume of the droplet by the autocatalytic reaction,
their fraction is typically lower close to the core. This effect thus weakens the
stabilizing effect of the core. The magnitude of the decrease depends on the details
of the reaction-diffusion system. We investigate this problem in more detail in
Appendix I. Accounting for this depletion effect alters the results quantitatively
and shift the calculated stability thresholds, see Fig. I.1. More importantly, the
qualitative, general stability criteria are conserved, i. e. multiple droplets are stable in
the case of first-order kinetics if there is enough material in the system. Conversely,
a strong enough catalytic activity at the cores is required to stabilize multiplied
droplets in the autocatalytic growth scenario.

Scenario C: Incorporation by the active cores

The size and stability of multiple droplets built by active cores can also be investigated
using the stationary state analysis presented in Section 4.1. Fig. 4.7 shows that the
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droplet size is not much modified from the analytical value given in Eq. (2.29), where
surface tension γ is ignored. However, surface tension introduces a minimal amount
of material necessary to grow droplets. This threshold value can be estimated
from Eq. (4.11). For simplicity, we consider the strong segregation regime, ψ+ = 0,
and neglect droplet material outside of droplets, φB

0 ≈ 0. We additionally assume
that the fraction of soluble building blocks is roughly given by φA

0 ≈ φ̄, which is a
good approximation for small droplets. Taken together, we solve Eq. (4.11) for the
fraction φ̄ of droplet components, which yields the threshold value

φ̄C
min ≈

4πDBγβ+
(1− ψ−)Q

. (4.18)

Equivalently, we get the minimal catalytic activity Q required to form droplets at a
given fraction φ̄, which reads

QC
stab ≈

4πDBγβ+
(1− ψ−)φ̄

. (4.19)

Furthermore, we get the rate λm at which perturbations of the stationary state decay
by setting kc = 0 in Eq. (4.15). This yields

λCm ≈
4πDBγβ+
3ψ−V C

− kBA . (4.20)

We can recover Eq. (4.19) from the condition λCm > 0 if we approximate the droplet
volume V C by Eq. (2.29) and assume that surface tension effects are small. Interest-
ingly, the second term of Eq. (4.20) is dominant and the perturbation growth rate
is thus very well captured by λCm ≈ −kBA, see Fig. 4.6C . Interestingly, we find that
droplets are almost always stable, which underlines the stabilizing effect of the active
cores found in the previous section.

Ostwald ripening of an equilibrium system

The main result of this chapter is the existence of multiple stable droplets in several
non-equilibrium scenarios. Interestingly, the perturbation growth rates of Eqs. (4.13),
(4.16), and (4.20) all converge to the same expression in the limit of vanishing reaction
rates, kBA → 0. The perturbation growth rate then becomes

λeqm ≈
4πDBmγβ+

3φ̄Vc
. (4.21)

This rate is positive and multiple droplets are thus unstable. The value of λeqm also
agrees very well with the numerical simulations, see Fig. 4.6D . In the limit kBA → 0,
all droplet components are turned into their phase separating form B. Consequently,
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λeqm is the rate at which droplets exchange material in an equilibrium system of
multiple droplets.

The perturbation growth rate λeqm has been derived for the late stage of Ostwald
ripening, where the total droplet volumes stays constant. Additionally, the theory
only considers cases where the droplets are far apart from each other such that the
mean field description is valid. Similar considerations have been used earlier to derive
the coarsening rate of precipitates [202]. λeqm describes how individual droplets evolve
in time in the presence of other droplets. Small droplets will eventually disappear
from the solution, which leads to a decrease of the droplet count and thus to an
increase of the average volume over time. For large systems, this process typically
leads to an average droplet volume that increases linearly with time [138].

4.4.2 Parameter dependence of the stability of multiple droplets

We found that the stability of multiple droplets depends on the choice of model
parameters. In this section, we explorer the conditions under which multiple droplets
can coexist in the scenarios A and B. Here, we use numerical simulations of the
dynamical system introduced in Section 4.1 and compare these to the approximate,
analytical results of the previous section.

For simplicity, we first consider the situation of at most two droplets forming.
Assuming that there are two cores in the system, there are three different stationary
state configurations: two bare cores (m0 = 2, m1 = 0), a single droplet and a bare
core (m0 = m1 = 1), or two droplets of the same size (m0 = 0, m1 = 2). The analysis
of the stationary states works as follows: we first determine the droplet volumes
associated with the three possible stationary states mentioned above. Using these
results, we then determine their stability by numerically calculating the eigenvalues of
the Jacobian given in Eq. (4.1). This allows us to identify the set of stable stationary
states for each parameter configuration. The procedure is explained in more detail
in Appendix J and is also illustrated in Fig. J.1. With this method, we can analyze
the stability as a function of two model parameters using different colors for the
different states, see Fig. 4.8.

We show the possible stationary states for both the first-order kinetics and the
autocatalytic growth scenario in Fig. 4.8. A first observation is that all three droplet
configurations can be stable in both scenarios. Typically, no droplets form and only
bare cores exist if there is not enough material in the system. Panels A and B

highlight that the reaction rate constant kBA must be sufficiently large for multiple
droplets to be stable. If kBA is small, almost all the droplet components are in
form B and we recover the equilibrium situation in the limit kBA → 0.

The stability of multiple droplets also depends on the strength of the surface
tension, see panels C and D of Fig. 4.8. Typically, configurations of one or two
droplets are only stable if the surface tension is low enough. Furthermore, the
stability of the droplets is influence by the catalytic activity Q at the cores, see
panels E and F. In the case of first-order kinetics, Q only has a minor effect and
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Figure 4.8: Stable stationary states of droplets growing around two cores. We distin-
guish configurations with no droplets (white region), one stable droplet
(blue region), and two stable droplets (green region). Regions with mul-
tistability are drawn in a hatched style with colors corresponding to the
states mentioned before. The fraction φ̄ of droplet components is varied
in addition to (A, B) the reaction rate constant kBA, (C, D) the surface
tension γ, and (E, F) the catalytic activity Q at the core at γ = 1 pN/µm.
The remaining parameters depend on the scenario: (A, C, E) First-order
kinetics with parameters given in Fig. 2.3. The dashed orange lines mark
stability thresholds derived from Eq. (4.14) for m = 2. (B, D, F) Auto-
catalytic growth with Q = 0.1 µm3/s and other parameters given in Fig. 2.4.
The dashed orange lines mark stability thresholds derived from Eq. (4.17).
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Figure 4.9: Stability diagrams of two droplets built by active cores in scenario C. We
distinguish configurations with no droplets (white region), one stable droplet
(blue region), and two stable droplets (green region). Regions with multi-
stability are drawn in a hatched style with colors corresponding to the states
mentioned before. (A) Stability diagram as a function of the fraction φ̄ of
droplet components and the reaction rate constant kBA. The dashed orange
line marks the threshold given in Eq. (4.18). (B) Stability diagram as a
function of the fraction φ̄ of droplet components and catalytic activity Q.
The dashed orange line marks the threshold given in Eq. (4.19). The model
parameters have been taken from Fig. 2.5 in both panels.

the stability is mainly determined by the fraction φ̄ of droplet components in the
system. Conversely, Q has a dominating role in the autocatalytic scenario. Here,
multiple droplets can only be stable, if Q is sufficiently large.

The orange dashed lines in Fig. 4.8 additionally indicate the approximate, analyt-
ical stability thresholds of Eqs. (4.14) and (4.17) calculated in the previous section.
Both values predict the onset of stability of two droplets with reasonable accuracy.
There are notable deviations, especially for small volume fractions in the autocat-
alytic growth scenario. We attribute these differences to the approximation of the
volume fraction φB

0 of droplet material in the solvent.

Remarkably, the state of a single droplet becomes unstable in scenario A if the
fraction φ̄ is sufficiently large, see the left column of Fig. 4.8. This is surprising
because it means that a single large droplet becomes unstable and spontaneously
split up into smaller droplets in this case. In fact, this observation is in accordance
with the shape instability of large droplets that we discussed earlier, see Fig. 3.11
in Section 3.5.4. That is, the system favors a certain finite droplet size, which is
reminiscent of the pattern formation discussed in Section 1.6. In the autocatalytic
scenario, a similar effect is observed, see the right column of Fig. 4.8. Here, the
effect is introduced by catalytic cores, which may nucleate droplets if Q is sufficiently
large. Generally, a catalytic activity at the cores stabilizes multiple droplets. This
is especially apparent in scenario C, where it is the only way of creating droplet
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Figure 4.10: Quantification of the final state of an ensemble of numerical simulations
of the evolution equation (4.1) with random initial conditions. Each dot
indicates one set of tested parameters, where the color corresponds to the
observed result: no stable droplets (white), no droplets or a single one
(red), only a single droplet (orange), a single or two droplets (blue), only
a pair of droplets (green). Regions where the numerical method was not
conclusive are marked in black. (A) First-order kinetics with parameters
given in Fig. 2.3. (B) Autocatalytic growth with parameters given in
Fig. 2.4.

material. The stability thresholds in this case were calculated in Eqs. (4.18) and
(4.19) and are compared to the associated stability diagrams in Fig. 4.9.

Figs. 4.8 and 4.9 furthermore identify regions in parameter space, where multiple
stationary states can be stable. Here, the attained stationary state configuration
depends on the initial condition. In order to determine the importance of these
multistable regions, we now simulate the dynamical system given in Eq. (4.1) nu-
merically. In this way, we can test the stability diagrams obtained above and we
also get a better insight into the dynamics of the system. We start each individual
simulation with a random initial configuration of two droplet volumes, each chosen
uniformly from the interval [0, Vmax], with Vmax = φ̄Vc/(mψ−). For each parameter
point investigated, we simulate 103 trajectories for t = 107 s and record the two final
droplet volumes, V1 and V2. We then compile a histogram of the frequency of the
pairs (V1, V2). We locate clusters in this distribution of the final droplet volumes to
judge which configuration has been reached, see Appendix J and Fig. J.2. From this
analysis we determine the stability diagram in an alternative way, see Fig. 4.10. This
procedure is a Monte Carlo method to sample phase space and detect the stationary
states.
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The two ways of determining the stability diagram show a similar structure of the
possible stationary states, compare the panels A and F of Fig. 4.8 with Fig. 4.10. One
difference between the two methods becomes apparent when the stability boundaries
of multistable regions are considered. The regions of multistability predicted by the
linear stability analysis are much larger than the corresponding ones in the stability
diagram obtained with the Monte Carlo method. This is to be expected, since
multistability can only be observed with the right choice of initial conditions in the
Monte Carlo method. When the stability boundary is approached, the number of
initial conditions leading to the less likely configuration reduces until it vanishes
at the boundary. In the Monte Carlo method, we only consider a finite number of
different initial conditions, thus possibly missing initial conditions leading to other
final configurations. On the other hand, this numerical investigation provides an
estimate of the size of the basin of attraction of stationary state configurations: a
given stationary state configuration that does not appear in the Monte Carlo method
is unlikely to be relevant in experiments, since it is only reached from a small number
of initial conditions. All in all, the Monte Carlo method therefore should give a better
picture of what to expect in experiments, while the stability diagram obtained from
the analytical analysis is a more accurate representation of the possible solutions of
the dynamical system.

4.4.3 Stability of more than two droplets

So far, we only showed results of the situation of at most two droplets. We found
that the non-equilibrium system sometimes favors the situation of multiple droplets
over those containing only a single droplet, which can be unstable. In this section,
we investigate whether this is a general trend and whether such phase separating
systems typically favor a certain number of droplets or a specific droplet size. To
examine these questions, we investigate the stability of configurations with more
than two droplets.

For simplicity, we only consider configurations with up to four droplets. We thus
have to investigate five different configurations containing anything from zero to
four droplets. For each parameter point, we assess the stability of these states
numerically. The analysis is the same as the one for two droplets, see Section 4.4.2.
Fig. 4.11 shows the stability regions of configurations with up to four droplets. In
both scenarios A and B, we again find that all possible configurations are only stable
in a limited parameter range and that multistable regions exists. Note that any state
with multiple droplets is only stable between a minimal and a maximal reaction rate
constant kBA. The stability thresholds depend both on the fraction φ̄ of droplet
components and on the number m of droplets that we investigate. Generally, we find
that both the minimal and the maximal threshold of φ̄ increase with larger values ofm.
For a given set of parameters, there thus exist lower and upper bounds for the droplet
count m of possible stable configurations. Alternatively, we can interpret these
bounds as upper and lower limits for the associated droplet volume. This is because
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Figure 4.11: Stability diagrams of the possible stationary states of up to four droplets.
The state with m droplets is stable in the regions enclosed by the solid
and the dotted line of the respective color: blue, orange, green, and red
for m = 1, 2, 3, 4. The state without droplets is only stable for values of φ̄
below the threshold indicated by the dotted black line. (A) First-order
kinetics with parameters given in Fig. 2.3. (B) Autocatalytic growth with
parameters given in Fig. 2.4.

the droplet volume is roughly inversely related to m, see Eqs. (2.22) and (2.25). The
non-equilibrium model discussed in this thesis thus has the interesting property that
it selects for a certain droplet size.

We next examine analytical expressions approximating the stability bounds that
we observe numerically. Here, we focus on the first-order kinetics of scenario A,
where the number of droplets that can coexist increases with both the reaction
rate constant kBA and the fraction φ̄ of droplet components, see Fig. 4.11A. The
associated lower and upper bounds on the droplet volume can be derived analytically.
The minimal droplet radius,

RA
min ≈

(
(kAB + kBA)Vcγβ+

4πmkABψ−

) 1
4

, (4.22)

has already been calculated in Eq. (3.10). Conversely, the maximal volume V A
max of

droplets is related to the minimal value for φ̄ at which m droplets are stable, see
Eq. (4.14). Solving this equation for m and inserting it into the expression for the
droplet volume, Eq. (2.22), we retrieve the maximal volume V A

max of a droplet such
that it is stable in scenario A. The approximate expression reads

V A
max ≈

4πDBγβ+
kBAψ−

. (4.23)
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We can thus analyze how the chemical reactions influence the minimal and maximal
droplet size. Using the expressions from above, we find that RA

min ∝ κ−1/4 and
RA

max ∝ k
−1/3
BA , where κ = kAB/(kAB + kBA). The minimal droplet size thus depends

on the chemical equilibrium constant kAB/kBA. Conversely, the maximal droplet
size is determined by the rate constant kBA. The scaling of RA

max with the reaction
rate constant is reminiscent of the result obtained in other system combining phase
separation with chemical reactions [167]. The typical length scales of patterns that
form in these systems also scales with k−1/3

BA in the strong segregation regime where
the interface between droplet phase and solvent is sharp [167]. In our model, the
droplet radius can be interpreted as a typical length scale characterizing the system.
The analogous scaling behavior with the chemical reaction rate constant thus suggests
that our scenario A is very similar to the systems studied earlier.

4.5 Discussion

Multiple droplets can be stable in the non-equilibrium model discussed in this
thesis. This is in contrast to the equilibrium case, where only the state with a
single droplet can be stable because of Ostwald ripening, see Section 1.5.3. We
can recover this result as a limiting case of our non-equilibrium model by letting
kBA → 0. In this limit, all the material would end up in the phase separating form B
and all the chemical reactions would cease. In accordance with the equilibrium
results, the perturbation growth rate λeqm of a state with multiple droplets is positive,
indicating that multiple droplets can never be stable in this limit. This emphasizes
the importance of the stationary state fluxes driven by chemical reactions.

The analysis of the stationary states showed that surface tension tends to desta-
bilize the situation of multiple droplets in all scenarios considered here. This is
again in agreement with the equilibrium situation, where the configuration with a
single droplet minimizes the surface energy. Interestingly, the chemical reactions of
the non-equilibrium model can either be stabilizing or destabilizing: if first-order
kinetics dominate droplet growth, multiple droplets are stable. Conversely, an au-
tocatalytic mechanism producing droplet material tends to destabilize the state of
multiple droplets. These differences are related to the different directions of the com-
positional fluxes in the stationary state. The overall stability of multiple droplets
depends on the combination of stabilizing and destabilizing effects. In the case of
the autocatalytic scenario, which is inherently unstable, the catalytic activity at the
cores can provide a stabilizing mechanism. This is also the reason why multiple
droplets are typically stable if they are solely built by active cores.

The growth of multiple small droplets occurs in two stages until they reach the
stable stationary states discussed in this chapter. Initially, all the droplets grow
until their total volume approaches the stationary state value that we discussed in
Section 2.2. Droplet material is then exchanged between the droplets until they reach
a state where all droplets have the same size. This second phase happens with a
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different time scale and is driven by the stabilizing factors discussed in the paragraph
above. The time scales of these two processes can be markedly different. For instance,
in the autocatalytic scenario with parameter values given in Fig. 2.4, the growth
rate λB = 1

2
[(1− ψ−)φ̄kc − kBA] of the first stage is about four orders of magnitude

faster than the rate λBm associated with the tendency to get droplets of the same
size, see Eq. (4.16). Consequently, these autocatalytic droplets quickly reach their
final total size, but initial mismatches decay comparatively slowly. For all examples
considered here, these two growth regimes are well separated as indicated by the
excellent agreement between the numerical results and the theoretical predication
of the transient dynamics, see Fig. 4.6. This separation of time scales allows us to
discuss the two growth regimes independently to arrive at simple analytical results.

All results of this chapter are based on the approximate model that we introduced
in Section 4.1. The model is based on a mean-field description of the droplet
interaction, where the position of droplets is unimportant. This is an approximation,
since droplets could in general be close together and the active behavior might facility
coalescences or repel the droplets from each other.

In a more general view, the interplay of phase separation and chemical reactions
causes new behavior that is not present in the equilibrium case where chemical reac-
tions are absent. These systems for instance favor a certain number of droplets and
thus provide a mechanism for controlling droplet size and count. This is reminiscent
of the system discussed in Section 1.6, where pattern formation caused by the non-
equilibrium nature of the chemical reactions has been observed. The configuration
of multiple droplets investigated here can also be seen as a kind of pattern and
the results are therefore related. In summary, it seems to be a general feature of
non-equilibrium phase separating systems that they can support states with multiple
structures of a defined size.





Chapter 5

Active Droplets with Fluctuations

P
roteins are produced by translating mRNA transcribed from the respective
genes [1]. This gene expression is a stochastic process that leads to randomness

in the copy number of proteins [203–205]. These fluctuations are significant for
many processes inside cells since each type of protein only exists in a low number of
copies, where a typically order of magnitude is 104 [206]. Estimating the size of the
fluctuations by the square root of the copy number [207], the relative uncertainty
of the protein copy number is thus about 1%. This number seems low enough
to allow for a robust function of the proteins. However, signaling molecules and
enzymes often exist at much lower copy numbers and many proteins only function
in a sub-volume of the cell. Consequently, the effective copy number of the proteins
taking part in chemical reactions can be much lower than the total number in the
cell. Moreover, the explicit formation and translation of mRNA [208], as well as
slow promoter-state fluctuations [209, 210], could lead to bursts in protein synthesis.
Here, several proteins are produced within a short time and fluctuations in mRNA
copy number would thus amplify fluctuations in protein copy numbers. Under these
situations, the relative fluctuations are much higher and may contribute significantly
to randomness in the protein function. Taken together, noise is an important aspect
each cell has to deal with. This motivates us to investigate the effect of finite copy
numbers in our model.

The small copy number of proteins influences chemical reactions happening in the
cell. Here, the copy number of the product of a chemical reaction fluctuates both due
to the randomness in the number of reactants as well as due to the stochastic nature
of the chemical reaction itself. If non-linear processes are involved, fluctuations
in copy numbers may be amplified [207] or they may trigger qualitatively different
behaviors, e. g. oscillations in an otherwise non-oscillatory system [211]. Investigating
the effect of fluctuations is thus even more important if non-linearities dominate the
deterministic situation. Such systems of chemical reactions are often discussed in
the context of a well-stirred mixture at constant temperature in a fixed volume [212].
For this special case, efficient simulation algorithms for solving the chemical master
equation, for instance the Gillespie algorithm [213], have been developed. These
algorithms cannot be used in our case, since a key feature of our model is the
droplet formation causing spatial inhomogeneities. We therefore have to develop an
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Figure 5.1: Schematic representation of an active droplet in the stochastic model. Par-
ticles in the soluble form A (green dots) diffuse freely and become form B
with a rate k inside the droplet (orange). Individual B particles are not
considered, but their amount defines the droplet radius R. The blue circle
of radius a represents the active core, where A particles are turned into
form B with a rate kQ.

algorithm that also accounts for this spatial structure. This will allow us to examine
how noise influences the interplay of chemical reactions and phase separation.

In the next section, we introduce a stochastic version of our model. The algorithm
itself and its implementation as a computer program were developed with the help
of a Master student, Coleman Broaddus. After describing the stochastic simulations
briefly, we compare them to a numerical solution of the deterministic model. We focus
on scenario B, since the autocatalytic growth discussed there results in multiplicative
noise. In the remaining sections, we then analyze this stochastic model and find that
the autocatalytic term amplifies fluctuations and accelerates droplet growth.

5.1 Stochastic version of the active droplet model

In this section, we define a stochastic version of the model that we introduced in
Section 2.1. Here, we consider the droplet components of form A and B as individual
particles that diffuse in the system and undergo chemical reactions A ⇋ B as
introduced in Section 2.1.2. The B particles accumulate into droplets and thereby
define distinct compartments within the system. At any point in time, the system
is fully described by the positions and types of these particles.
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Table 5.1: Standard values of the parameters of the stochastic simulations.

Quantity Symbol Value Remark

Model parameters:

Cell volume Vc 104 µm3




Parameters of the

autocatalytic scenario,

see Fig. 2.4 or Table 6.2

Radius of the core a 75 nm

Rate constant of B → A kBA 10−3 1/s

Fraction of B in droplets ψ− 0.1

Diffusion constant DA 5 µm2/s

Droplet component fraction φ̄ 2× 10−4

Autocatalytic rate constant kc 100 1/s

Activity of the core Q 0.1 µm3/s

Simulation parameters:

Time step ∆t 10−3 s Estimated, see Appendix K

Number of particles N 104 Low fluctuations, see Section 5.3

Initial droplet volume V0 0.1µm3 Arbitrary small volume

In order to arrive at a simple description, we focus on the autocatalytic scenario
and therefore set kAB = 0. We furthermore consider the strong segregation regime,
ψ+ = 0, and neglect surface tension, γ = 0. Consequently, droplet material of form B
only exists within droplets. The fraction ψ− of form B in the droplet is typically
large compared to the volume fraction of form A anywhere in the system. We take
this as a justification to neglect the individual particle positions of B and only keep
track of their number NB

i within each droplet i = 1, . . . ,m. The volume of droplet i
is then given by

Vi =
ν̃NB

i

ψ−
, (5.1)

where ν̃ = φ̄Vc/N is the particle volume and N denotes the total number of particles.
Spatial fluctuations of the volume fraction of form B inside the droplets are thus
ignored. In contrast, the soluble building blocks of form A are subjected to micro-
scopic dynamics. Here, we keep track of the individual positions xj for j = 1, . . . , NA,
where NA is the number of A particles. We thus consider a simplified version of the
deterministic model, where we focus on the effects of introducing stochasticity in
the number of droplet components and concentration of building blocks, see Fig. 5.1.
We will also account for the stochastic nature of the chemical reactions, although we
neglect the effect of catalyzing enzymes, whose spatial distribution is an additional
source of noise.
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Figure 5.2: Droplet volume as a function of time in both the stochastic model (blue,
N = 1 000) and the deterministic one (orange lines). (A) All 32 individual
trajectories of an ensemble of stochastic simulations are shown. (B) The
ensemble average of the data from panel (A) is shown. The blue solid line
denotes the mean droplet volume while the width of the blue shaded area
indicates the associated standard deviation. Model parameters are given in
Table 5.1.

The numerical implementation of this stochastic model is essentially a Monte Carlo
simulation, where we update the position xj of the A particles by performing a step
of a random walk during each time step of duration ∆t. The chemical transitions
are implemented by switching the identity of a particle with probability k∆t, where
k is the associated reaction rate. Here, we also update the count NB

i of B particles
in all droplets and calculate the associated volumes using Eq. (5.1). The catalytic
active cores are implemented similarly, i. e. A particles can diffuse into the region
occupied by the cores and have a large rate kQ = 3Q/(4πa3) of becoming form B
there. More details on the numerical implementation are given in the Appendix K.
With such an algorithm, we are able to simulate the stochastic growth dynamics of
active droplets, which we analyze in the following.

5.1.1 Comparison with the deterministic model

We first compare the stochastic simulations to the deterministic results to validate the
numerical implementation of the stochastic model. Fig. 5.2 shows the droplet volume
as a function of time for both cases. The curves converge to the same stationary state
value at large times and the qualitative shape of the growth curves is similar. The
curve of the deterministic model lies within one standard deviation of the results of
the stochastic simulations. However, the mean droplet volume is consistently higher
in the stochastic simulations. We now introduced suitable quantifications of the
fluctuating droplet volumes to investigate this interesting feature later.
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Figure 5.3: Average droplet volume in stationary state for different number of parti-
cles N in the stochastic simulation. (A) The ensemble average 〈V 〉 of
n = 32 independent simulations is shown. (B) The time average V̄ of a
single simulation is shown. The error bars indicate the standard error of the
mean given by σV

1 /
√
n. The model parameters used in the simulations are

given in Table 5.1.

5.1.2 Ensemble statistics and ergodicity

We investigate the fluctuating droplet volumes Vi(t) determined from multiple simu-
lations with the same parameters but different realizations j of the random numbers.
The volumes V (j)

i (t) are thus stochastic quantities both with respect to time t and
the realization j. This is in contrast to the deterministic model, where droplets
reach a certain stationary state volume after a typical growth time. To compare
the stochastic and the deterministic results, we define the mean stationary droplet
volume 〈Vi〉 in the stochastic model according to

〈Vi〉 = lim
t→∞

1

n

n∑

j=1

V
(j)
i (t) , (5.2)

where n denotes the number of realizations. If the stochastic version of our model is
ergodic, 〈Vi〉 is identical to the volume V̄i of a single droplet averaged over time [201],
which we define as

V̄i = lim
t→∞

1

t

∫ t

0

Vi(t
′)dt′ (5.3)

for a single realization. The ensemble and time average defined above are similar for
various different numbers N of particles in our stochastic simulation, see Fig. 5.3.
Consequently, we conclude that the system is ergodic and we will only investigate
the ensemble average in the following [201].
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5.1.3 Quantification of fluctuations by the standard deviation

Fig. 5.3 also indicates the uncertainty of the volume average. This uncertainty
stems from the finite sample set and is quantified by the standard error of the mean
σV
i /

√
n [214]. Here, σV

i is the standard deviation of the volume of droplet i reading

σV
i =

√
n

n− 1
·
√
〈V 2

i 〉 − 〈Vi〉2 , (5.4)

where 〈·〉 denotes the ensemble average defined in Eq. (5.2). Here, the prefactor in
the definition of σV

i corrects for a possibly small number n of realizations [215].
The value σV

i quantifies the typical deviation of the droplet volumes from their
mean value. It can thus additionally be used to quantify the magnitude of the
fluctuations of these volumes. Fig. 5.3 shows that the fluctuations decrease if the
number N of particles in the system increase. This is to be expected, since the
system should recover the deterministic limit without fluctuations in the limit of
large N .

In order to compare the fluctuations of different systems, we also need to quantify
the error of estimating the standard deviation σV

i from an ensemble of n values. As-
suming that the original random quantities are normally distributed with a standard
deviation σ, the probability of measuring a certain standard deviation x is given by
the Chi distribution Pχ(x; σ, n) with the probability density function

Pχ(x; σ, n) =

√
n 21−

n
2

σ Γ
(
n
2

)
(
x
√
n

σ

)n−1

· exp
(
−nx

2

2σ2

)
, (5.5)

where Γ(x) denotes the gamma function [214]. Using this probability distribution,
we can estimate the confidence interval [σV

i −∆σ, σV
i +∆σ] that contains the true

standard deviation σ with 95% certainty. We determine ∆σ by solving

∫ ∆σ

−∆σ

Pχ

(
σV
i + y; σV

i , n
)
dy = 0.95 (5.6)

for the measurement error ∆σ.

5.2 Noise amplification by the autocatalytic reaction

We next develop a simple stochastic model, which we can analyze analytically and
then use to understand the effects seen in the previous section. The main ingredient
of this model is the autocatalytic growth. This term is non-linear and could therefore
explain the amplification of noise [207]. We focus on the early growth regime, where
droplets are still small, since this part shows the amplification of fluctuations, see
Fig. 5.2. For simplicity, we neglect the depletion of the building blocks, i. e. we
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assume that their amount stays constant. Additionally, we consider a homogeneous
distribution of the building blocks. The rate of droplet growth is then given by

∂tV (t) = λ(t)V (t) , (5.7)

where λ is the instantaneous growth rate at time t. This growth rate is determined
by both the incorporation of droplet material due to the autocatalytic reaction and
the loss of droplet material caused by the reaction B → A. The rate of the first
process is given by the product of the volume fraction of building blocks φA and
the reaction rate constant kc. The second process is quantified by the reaction rate
constant kBA. With the approximations introduced above, the instantaneous growth
rate reads λ(t) ≈ kcφ

A(t)− kBA.
In the deterministic model, the assumption that the amount of building blocks in

the system is conserved would lead to a constant volume fraction of building blocks
inside the droplet. However, in the stochastic version of the model discussed here, the
volume fraction of building blocks inside the droplet fluctuates. Combining all terms
without fluctuations in a constant quantity λ0, we can then write the growth rate as
λ(t) = λ0 + η(t). Here, η(t) describes a random process modeling the fluctuations
of the growth rate due to randomness in the volume fraction of the building blocks.
For simplicity, we assume that η(t) is Gaussian white noise with

〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = ωδ(t− t′) , (5.8)

where 〈·〉 denotes the ensemble average and ω quantifies the strength of the fluc-
tuations. The differential equation (5.7) therefore becomes a stochastic differential
equation with multiplicative noise, which reads

∂tV (t) = λ0V (t) + V (t)η(t) . (5.9)

We postulated that η(t) describes external noise due to the diffusion of the A particles.
For this situation, the Stratonovich interpretation of the multiplicative noise is
appropriate [207]. Using the substitution V (t) = V0e

z(t), we simplify Eq. (5.9) to

∂tz(t) = λ0 + η(t) , (5.10)

which is a stochastic differential equation for z(t) with additive noise η(t). Examining
this simpler equation will allow us to solve the more complicated Eq. (5.9) and it
will also serve as a reference case in the subsequent discussion.

Linear stochastic model with additive noise

The linear model given in Eq. (5.10) can be interpreted as the evolution equation
of the position z of an overdamped particle. In this picture, the right hand side
consists of a constant velocity λ0, which causes a drift of the position, and a random
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velocity η(t) of average strength ω, which will cause diffusive motion. The evolution
of an ensemble of these overdamped particles is described by the associated Fokker-
Planck equation, which reads [207]

∂tP (z, t) = −λ0∂zP (z, t) +
ω

2
∂2zP (z, t) . (5.11)

This equation describes how the distribution P (z, t) of z-values changes in time.
Here, the drift term causes a steady probability flux proportional to λ0, while the
random force appears as a diffusive term with a diffusivity proportional to ω. The
partial differential equation (5.11) is solved by

P (z, t) =
1√
2πωt

exp

[
−(z − λ0t)

2

2ωt

]
, (5.12)

where we consider the initial condition z(0) = δ(0), i. e. the quantity z is localized at
the origin at time t = 0 [207]. We characterize this Gaussian probability distribution
by the time evolution of its mean,

〈z〉 =
∫ ∞

−∞
P (z, t)zdz , (5.13)

and its standard deviation,

σz =

(∫ ∞

−∞
P (z, t)z2dz − 〈z(t)〉2z

) 1
2

, (5.14)

which evaluate to 〈z〉 = λ0t and σz =
√
ωt. Consequently, both the mean value

of z and the mean square displacement σ2
z grow linearly in time. The evolution

of the mean is exclusively determined by the drift term, while the mean square
displacement characterizes the diffusion process.

Autocatalytic stochastic model with multiplicative noise

We now investigate the Langevin equation (5.9) with multiplicative noise, which
describes the initial phase of the autocatalytic growth of a droplet. We already
showed that the equation can be transformed to the linear model with additive
noise that we just discussed. Consequently, we get the solution to the Fokker-Planck
equation associated with the autocatalytic model by using the result of the simple
system given in Eq. (5.12). After substituting z = ln(V/V0), we get the probability
density function for the droplet volume V , which reads

P (V, t|V0) =
1

V
√
2πωt

exp

[
−(lnV − lnV0 − λ0t)

2

2ωt

]
, (5.15)
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Figure 5.4: Distribution of droplet volumes at time (A) t = 100 s and (B) t = 1000 s.
Both panels show the measured data (blue histogram) as well as the prob-
ability density functions of a log-normal distribution (orange lines) and a
Gaussian distribution (green lines) with the same mean and standard devia-
tion as the data. The integrated squared deviations χ2 between the data
and the distributions are indicated. The histogram is obtained by measuring
the volume of a single droplet in n = 1024 realizations of the stochastic
model with parameters taken from Table 5.1.

assuming that the droplet had volume V0 at time t = 0 [207]. This distribution
is known as the log-normal distribution, i. e. the logarithm of V is distributed nor-
mally [216]. Log-normal distributions often arise when stochastic effects are multi-
plicative and their logarithm thus follows a Gaussian distribution according to the
central limit theorem. Consequently, log-normal distributions appear in many differ-
ent fields of science, including the size distribution of ultrafine iron particles [217],
the distribution of species in ecosystems [218], and the size distribution of galax-
ies [219]. Generally, distributions of strictly positive quantities where the mean and
the standard deviation are comparable are often log-normal [216].

Our result indicates that the volume of autocatalytic droplets also follow a log-
normal distribution, which we now test by comparing the probability density function
of Eq. (5.15) to a histogram of simulated droplet volumes. We quantify the deviation
between these two measures using the squared residual χ2, which is defined as

χ2 =
∞∑

j=1

([
hj − P (Vj, t)

]
∆V

)2
, (5.16)

where hj is the frequency of recorded volumes of the simulation in the j-th bin of
the histogram, which covers the volume interval [Vj − ∆V

2
, Vj +

∆V
2
]. The histogram

is normalized,
∑

j hj∆V = 1, such that it can be directly compared to the test
distribution P (x, t). Consequently, χ2 quantifies the integrated squared deviations
of the measured data from the distribution.
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Fig. 5.4 shows the comparison of the simulation data to both a log-normal dis-
tribution and a Gaussian distribution. Both distributions were chosen such that
they have the same mean and variance as the data. Consequently, they both agree
reasonably well with the measured data, especially in the long-time limit shown in
panel B. Conversely, for short times the Gaussian distribution deviates stronger than
the log-normal distribution. This observation indicates that the volumes of small
growing droplets are indeed distributed according to a log-normal distribution, while
the two distributions are indistinguishable for large droplets.

We now consider small droplets and assume that their volume is distributed
according to a log-normal distribution. The associated mean droplet volume at
time t calculated from Eq. (5.13) is then given by

〈V 〉 = V0e
Λt , (5.17)

with the modified growth rate Λ = λ0 + ω/2. The standard deviation of the droplet
volume as a function of time is defined in Eq. (5.14) and reads

σV = V0e
Λt
√
eωt − 1 . (5.18)

The growth equation for the droplet volume with multiplicative noise has the inter-
esting feature that the mean droplet volume depends on the strength of the noise,
see Eq. (5.17). It shows an exponential growth, comparable to the deterministic
model, albeit with an increased growth rate Λ = λ0 + ω/2. This explains why our
stochastic simulations show consistently larger droplet volumes compared to the
deterministic model, see Fig. 5.2. Such a behavior is not observed in the simple
model of Eq. (5.10), where the mean value does not depend on the strength of the
noise. The enhancement of the droplet growth rate by the fluctuations is thus an
effect of the multiplicative noise caused by the autocatalytic reaction.

The autocatalytic reaction also has an influence on the magnitude of the fluc-
tuations of the droplet volumes. Here, the fluctuations quantified by σV increase
exponential with time, while they are proportional to the square root of time for
a linear model. The rapid growth of the fluctuations observed in Fig. 5.2 can thus
only be explained by the autocatalytic reaction causing a positive feedback on the
droplet growth.

The simple stochastic model with multiplicative noise given in Eq. (5.9) can thus
explain two effects of the initial growth phase: the fluctuations are strongly amplified
and the mean droplet volume grows more quickly than expected from the determinis-
tic model. These effects are caused by the autocatalytic growth term, which amplifies
fluctuations that increase droplet volume more strongly than it attenuates opposite
fluctuations.



5.3 Transient growth regime of multiple droplets 99

5.3 Transient growth regime of multiple droplets

In this section, we investigate the initial amplification of fluctuations for one and
two droplets in the same system. The growth curves of single droplets are shown
in Fig. 5.5A for different numbers N of particles in the system. The mean volume
quantified in panel B is independent of N , but the fluctuations quantified by σV

1

shown in panel C decrease with N , as already mentioned in Section 5.1.3.
In the case of two droplets in the same system, the average growth dynamics are

again independent of N , see Fig. 5.5D . However, we observe much larger fluctuations
of the droplet volume, if we investigate one of the two droplets individually, see
panels E and F . Here, the variations between stationary state droplet volumes of
different realizations are increased by about an order of magnitude compared to the
case of a single droplet shown in the first row. Conversely, we recover the result
of the single droplet if we quantify the total volume Vtot of both droplets, see the
last row of Fig. 5.5. Taken together, the total volume of both droplets exhibits only
small fluctuations while the difference of their volumes is strongly erratic.

The observation that individual droplet volumes vary widely can be explained
by the deterministic dynamics in the strong segregation regime, ψ+ = 0, without
surface tension, γ = 0. Using the equations given in Section 4.1, the total droplet
volume Vtot = V1 + V2 evolves according to

∂tVtot =
[
(1− ψ−)kcφ̄− kBA

]
Vtot −

(1− ψ−)ψ−kc
Vc

V 2
tot , (5.19)

which is equivalent to Eq. (2.23) for m = 1. Consequently, the total volume behaves
as if it would be a single droplet of the simplified scenario B discussed in Section 2.2.2.
This already explains why the quantifications of a single droplet are very similar to
that of the total droplet volume in the case of multiple droplets, compare the first
and the last row of Fig. 5.5.

The stationary state of the total volume of all droplets can be calculated from
Eq. (5.19) and is given by Eq. (2.25) for m = 1. However, the distribution of this
total volume among the individual droplets is not given by this equation, but rather
depends on the initial condition. This can be explained qualitatively by noting that
the distribution would merely influence the total surface area of the droplets, which
is unimportant since we neglect surface tension effects here. Transferred to the
stochastic simulations discussed in this chapter, this would mean that the individual
volumes are influenced by both the initial conditions as well as the accumulated
fluctuations of the growth phase. The fluctuations in individual droplet volumes
are thus integrated over the entire growth duration, where they are possibly also
enhanced by the autocatalytic mechanism, see Section 5.2. The observed enhanced
fluctuations of individual droplet volumes could therefore be an artifact of neglecting
surface tension. We thus expect qualitatively different results for more realistic
simulations that account for surface tension effects.
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Figure 5.5: Fluctuations of droplet volume in the stochastic model for different particle
numbers N . (A, D, G) The droplet volume (shaded area is the mean
± the associated standard deviation) as a function of time is shown. The
geometry is illustrated by the yellow insets, where the quantified droplets are
shown in orange. (B, E, H) The mean droplet volume 〈V 〉 in the stationary
state is shown. (C, F, I) The associated standard deviation σV of droplet
volumes is shown. In all panels, ensemble averages from 32 independent
runs are compared for the case (A–C) of a single droplet, (D–F) of one of
two droplets, and (G–I) of the sum of two droplets. Stationary states are
quantified at t = 2000 s and error bars indicate 95% confidence intervals.
Model parameters are given in Table 5.1.
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Figure 5.6: Droplet volume of a single droplet as a function of time in different geome-
tries (line: mean; shaded areas: mean ± standard deviation for an ensemble
of 32 trajectories; N = 10 000). (A) The system shape is varied. The
ratio of the lengths of the three axes of the ellipsoid given in the legend are
varied while keeping the volume constant. (B) The droplet position xdrop is
varied along the long axis of a system with axes in a ratio of 5:3:2. Model
parameters are given in Table 5.1.

5.4 Influence of the system geometry on the droplet

growth

The stochastic simulations additionally allow us to investigate the droplet growth
in different geometries of the system. In this section, we first examine the case of a
single droplet and then consider multiple droplets, where the relative position will
cause differences in their growth behavior.

We first discuss the growth of a single droplet in the center of an ellipsoidal
geometry with varying lengths of the principle axes. For instance, the first cell of
the C. elegans embryo can be approximated by an ellipsoid with principle axes of
50µm, 30µm, and 20µm length [220]. Fig. 5.6A compares simulations with these
values to the spherical case with the same volume. Evidently, the growth curves
are very similar and the geometry only has a significant influence if the system is
very elongated, see the green line. The slower growth in elongated systems is caused
by the increased average time it takes for a particle to diffuse to the droplet from
a random position in the system. Similarly, the position of the growing droplet
in the system is of minor importance, see Fig. 5.6B . The growth only slows down
significantly if the droplet is located close to the system boundary.

In summary, the growth of the droplet is rather insensitive to modifications of
the system shape or its position therein. Anyhow, a single droplet reaches the
same stationary state volume in all cases. This is to be expected since the volume
fractions of droplet components in the solvent are approximately homogeneous in
the stationary state and the shape of the boundary thus cannot have a strong effect.
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Figure 5.7: Volumes of two droplets as a function of time for different relative positions
(line: mean; shaded areas: mean ± standard deviation for an ensemble of
32 trajectories; N = 10 000). The blue droplet is located at the origin, while
the orange one is shifted by x2 towards the right in a ellipsoidal geometry
with axes in a ratio of 5:3:2. (A) mild asymmetry, x2 = 10µm (B) strong
asymmetry, x2 = 20µm. Model parameters are given in Table 5.1.

In the case of two droplets growing in the same system, there is a competition
for building blocks between the droplets. The relative position of the droplets deter-
mines which part of the system they can access and therefore deplete. Consequently,
droplets located closer to the system boundary grow slower, see Fig. 5.7. Addi-
tionally, the fluctuations of the volumes of both droplets are reduced, if they grow
asymmetrically. These two effects are stronger if the mismatch in position is more
pronounced. However, the total volume of both droplets behaves similarly to the
case of one droplet.

5.5 Discussion

We introduced a simple stochastic version of our model in this chapter. This simula-
tion reproduces the droplet growth curves of the deterministic model, although the
growth rate is slightly higher. We showed that this is likely caused by the interplay
of the autocatalytic reaction and the number fluctuations of the soluble building
blocks. The non-linear reaction amplifies noise, such that fluctuations increasing
the droplet volume dominate over those that decrease it. Interestingly, in the case
of multiple droplets, the final volumes of individual droplets can vary significantly.
This behavior might be due to the simplification of neglecting surface tension effects
in the stochastic simulations. Nevertheless, these simplified simulations show that
the geometry of the system has only a minor influence on the growth dynamics. This
result thus justifies the spherical geometry that we introduce for convenience in the
previous chapters.



Chapter 6

Comparison Between Theory and
Experiment

W
e derived a general model of centrosome growth in Chapter 2. This model is
based on the picture that centrosomes are liquid-like droplets and that their

assembly is controlled by chemical reactions. We then analyzed this model in the
next three chapters where we focused on the stability of droplets and their nucleation
properties. It remains to be shown that the model is able to explain the behavior of
centrosomes observed in experiments.

In this chapter, we compare our model with experimental data to establish a
set of model parameters that can explain the measurements quantitatively. In the
corresponding section, it will turn out that only a single combination of the previously
discussed simple scenarios can achieve this: the autocatalytic growth of scenario B
accounts for the centrosome growth dynamics, while the catalytic activity at the
centrioles, scenario C, is important for the initiation of centrosome formation. Using
direct measurements and fits of the model to experimental data, we thus arrive at
a parameter set consistent with all experimental measurements that are available
to us. We then use these parameters to discuss additional experiments, where the
normal centrosome formation has been disrupted. We close this chapter by briefly
considering the disintegration phase of centrosomes toward the end of the cell cycle.

6.1 Summary of the experimental observations

The most important quantitative experimental data available to us is the size of the
centrosomes measured in C. elegans embryos. Decker etal. quantified the centrosome
volume by tagging fluorescent probes to centrosome proteins, typically γ-tubulin [24].
Centrosomes then appear as bright spots under the microscope, see Fig. 6.1A and
Fig. 6.1B . These spots are then automatically detected and quantified by a computer
program [184]. The quantification involves the fitting of a two-dimensional Gaussian
function to the observed intensity distribution. Using twice the standard deviation
of this Gaussian function gives a first estimate of the centrosome radius. This value
is then refined by using the original intensity data from the raw image. Decker etal.
define the centrosome radius as the point where the radial intensity distribution
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Figure 6.1: Quantification of centrosome size. (A) Maximum projection of a z-stack
captured with a spinning-disk confocal microscope using γ-tubulin::GFP in
C. elegans embryos [24]. The image was taken from the centrosome size
project [221]. (B) Intensity profile of a fluorescently marked centrosome
as it appears under the microscopy in a 3D plot and as a grey scale image
(inset). (C) Analysis of the radial intensity profile (black) to measure the
radius of the centrosome involving a Gaussian fit (red). Panel B and C are
modified from Ref. [184].

has the value of the fitted Gaussian at the estimated radius, see Fig. 6.1C and
Ref. [184]. The volume of the centrosome can then be calculated by assuming that
it has a spherical shape. Decker etal. used this method to quantify the centrosome
volume using time-lapse microscopy in cells at various developmental stages and
under different genetic conditions [24]. We will test our model using this published
data and additional unpublished data from our experimental collaborators.†

Fig. 6.2 shows the centrosome size versus time for different wild-type cells of the
embryo, where the names of the cells correspond to Fig. 1.2C . Generally, centrosome
growth starts slowly, followed by a rapid growth phase of about 500 s duration. The
centrosomes reach their final size around the time of the nuclear envelope breakdown
(NEBD) in the four-cell stage and descendant cells. Such a plateau is not visible
in the earlier cell stages, likely because the growth is interrupted by cell division.
Typical centrosome growth curves are thus sigmoidal. Decker etal. also quantified
the final centrosome size and showed that it depends on the number of centrosomes in
the cell and the cell volume. Notably, the combined total volume of all centrosomes
is independent of the centrosome number, but is proportional to the cell volume.
From this and other observations, the authors conclude that centrosome size is set
by the total amount of a limiting component in the cell [24].

The experiments leave many questions unanswered: how is the centrosome as-
sembled and how is its size regulated? What are the important chemical reactions?
What is the role of the centrioles? Why does PCM accumulate only around centrioles

† M. Decker, S. Jaensch, and A. A. Hyman at the Max Planck Institute of Cell Biology and
Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany [222]
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Figure 6.2: Centrosome growth curves measured in C. elegans embryos [222]. (A)
Radius and (B) volume as a function of time are shown for several different
cells, which are indicated by the schematics on the right. The grey region in
(A) marks the centrioles of radius a as a reference. Error bars are standard
error of the mean and times have been measured relative to the nuclear
envelope breakdown (NEBD). The schematics on the right were modified
from Ref. [24].

and there is no spontaneous accumulation in the cytosol? To clarify some of the
above questions, we now compare our model to the experimental data.

6.2 Estimation of key model parameters

Some model parameters are known from experimental studies. We set the radius of
the sphere representing the centrioles, a = 75 nm, to half the length of a single cen-
triole determined by electron microscopy [56]. Decker etal. measured the volume Vc
of cells in different early stages of development, see Table 6.1. Diffusion constants
where reported for the centrosomal protein PLK-1 [86], which we use to motivate
our choice, DA = DB ≈ 5 µm2/s. For simplicity, we use the same diffusion constants
inside and outside of the droplet, which does not alter the centrosome dynamics
qualitatively, see Appendix I. The rate constant of the reaction converting droplet
material back to soluble building blocks, kBA ≈ 10−3 s−1, is chosen consistently with
the longest reported turn-over time of centrosomal proteins [16]. Not known are
the other chemical reactions rate constants, the parameters describing the phase
separation, and the concentrations of the components in the system, see Table 6.2.

Our strategy to determine the remaining parameters was the following. First, we
use the known parameters to discuss general features of the growth in the three
scenarios that do not depend on precise value of the other parameters. Subsequently,
we identify one plausible scenario for which we determine parameter values by fitting
the model to the experimental data.
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Table 6.1: Measured cell volumes Vc and centrosome volumes V (mean ± standard
deviation) of C. elegans. V was quantified 150 s after nuclear envelope breakdown as
described in Section 6.1 and Vc was obtained from 3D reconstruction [220].

Cell Stage Cell volume Vc Centrosome volume V Ratio Vc/V

P0 1 cell 22000µm3 (11.5± 2.0)µm3 1900

AB 2 cells 12700µm3 (7.6± 1.6)µm3 1700

P1 2 cells 8600µm3 (6.5± 1.0)µm3 1300

ABa 4 cells 6200µm3 (4.2± 1.1)µm3 1500

ABp 4 cells 6200µm3 (3.9± 1.1)µm3 1600

EMS 4 cells 4400µm3 (3.5± 0.6)µm3 1300

P2 4 cells 4400µm3 (3.2± 1.0)µm3 1400

P3 8 cells 2200µm3 (2.4± 0.5)µm3 920

First order assembly kinetics, scenario A, does not exhibit the observed sigmoidal
growth curves, see Fig. 2.3. Note also that in scenario A, nucleation cannot be at the
same time strongly favored at the centrioles, while being suppressed in cytosol, see
Fig. 3.5A. The growth of scenario B, which assumes autocatalytic assembly, exhibits
sigmoidal growth curves, see Fig. 2.4. However, it does not allow for spontaneous
nucleation. In scenario C, centrosome assembly happens exclusively at the centrioles.
Because of this, growth curves are not sigmoidal. In addition, the typical estimates
for the diffusion coefficients do not allow for the observed growth rates. The minimal
growth time is λ−1

D = Vc/(4πaDA) ≈ 2000 s, see Eq. (2.31). Here, we used the cell
volume, the centriole size, and the diffusion constant that were measured. Thus,
scenario C alone cannot account for the observed sigmoidal growth, which lasts
about 500 s. Therefore, none of the scenarios on their own can explain the observed
growth of centrosomes.

We next test whether a combination of the scenarios is viable. The growth phase
of centrosomes must be dominated by the autocatalytic mechanism of scenario B to
exhibit sigmoidal growth curves. An additional catalytic activity of the centrioles, as
defined in scenario C, can account for the controlled nucleation, which is absent in
scenario B on its own. Consequently, the combination of scenario B with a centriole
activity results in a growth curve that is consistent with experiments and allows for
controlled nucleation at the centrioles. Note that this is the only combination of
scenarios that can account for the basic features of centrosome growth.

The scenarios B and C are respectively characterized by the choice of the autocat-
alytic reaction rate constant kc and the catalytic activity Q at the centrioles. Here, it
is important that the autocatalytic growth dominates for the resulting growth curves
to be sigmoidal. We thus determine kc and Q using the following strategy: Since
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the growth dynamics should be dominated by kc, we first fit a model with Q = 0 to
the experimental data to determine a plausible value for kc. We then determine Q
from the requirements that it has to be strong enough to initiate droplet growth. At
the same time Q must not have a strong influence on the growth curves.

6.3 Fits to experimental data

We now compare the growth curves of scenario B to experimental data to determine
the autocatalytic reaction rate constant kc and the fraction φ̄ of PCM components
governing the centrosome growth phase. In Section 2.2.2, we already determined an
approximate solution of the growth curve in scenario B by assuming that diffusion
is fast. During the subsequent discussion of the general model, however, we found
that diffusion plays an important role in scenario C and that it generally affects the
stability of small centrosomes. Diffusion of the PCM components might thus also
influence the growth curves in scenario B. We will thus use an alternative solution
of the model that includes diffusion effects for the quantitative comparison to the
experimental data.

We use a numerical algorithm to solve the partial differential equation of the
general model defined in Section 2.1. For simplicity, we consider the growth of a single
centrosome in a spherical geometry, which does not alter the growth significantly,
see Section 5.4. The numerical algorithm explained in detail in Appendix C allows
us to simulate the full time evolution of a single droplet. In order to approximate
the solution in cases of m droplets in the same system, we divide the system volume
in m equal sized, spherical compartments, where the droplets grow independently,
thus neglecting all interactions between them.

We first use the numerical solution of the model to assess the influence of the
model parameters on the shape of the growth curves. Fig. 6.3 shows that most of
the unknown parameters have a weak effect. The final centrosome size is strongly
influenced by the cell volume Vc, see Fig. 6.3A. Additionally, the ratio of the fraction φ̄
of the available material and the fraction ψ− of droplet material in the centrosome
effects centrosome size, see Fig. 6.3 panels B,C, and L. All the other parameters only
have a weak influence on the final droplet size. However, three additional parameters
effect the shape of the growth curve: the fraction φ̄ of available material (Fig. 6.3B),
the autocatalytic reaction rate constant kc (Fig. 6.3D), and the diffusion constant DA

of the building blocks (Fig. 6.3J ). These parameters influence the droplet growth
dynamics, but have only a minor effect on the stationary state size. Taken together,
only four parameters are important for the centrosome growth curves: the cell
volume Vc, the diffusion coefficient DA, the autocatalytic assembly rate constant kc,
and the ratio φ̄/ψ− of the average fraction of material to the fraction in the droplet.
Note that while Q > 0 is needed for nucleation, it is less relevant for the shape of
the growth curve.
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Figure 6.3: Centrosome radius as a function of time in simulations, where model param-
eters deviate from their standard value. (A–K) A single parameter is varied
from the standard value (orange line) yielding larger (blue dashed line) or
smaller (green dotted line) centrosomes as indicated in the legend. (L) The
total fraction φ̄ of PCM components and the fraction ψ− of droplet material
in the centrosome are varied with their ratio kept constant. All parameters
not given in the legends are taken from the autocatalytic scenario given in
Table 6.2.
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Figure 6.4: Comparison of the centrosome volume as a function of time of the theory
(lines) with experimental data (shaded areas, mean ± standard deviation) of
centrosome growth in C. elegans for several cell sizes [222]. (A) Cells of the
P-lineage and (B) two other cell types are shown. Time t = 0 corresponds
to nuclear envelop breakdown (NEBD). The autocatalytic reaction rate kc =
100 s−1, the overall fraction of PCM components, φ̄ = 2 × 10−4, and the
initial centrosome volumes are determined by a fit of the theoretical curves
to the data. All model parameters are summarized in Table 6.2.

We next use the numerical simulations to determine open model parameters by
fitting the simulated growth curves to experimental data. Here, we set the parameters
with a weak influence on the growth curves to zero and only determine the values
of the important parameters. Since the cell volumes Vc, the rate constant kBA,
and the diffusion coefficient DA are known from experimental measurements, the
only fit parameters are the autocatalytic rate constant kc and the ratio φ̄/ψ−. We
determine their value by comparing the simulated growth curves to experimental
results from different wild-type cells. To get the best possible estimate of the
parameters describing centrosome growth, we include all available data sets, i. e.
centrosome growth curves from the eight embryonic C. elegans cells P0, P1, AB, P2,
EMS, ABp, ABa, and P3 [24]. Each individual data set also possesses an additional fit
parameter for the initial volume, since we cannot detect the initiation of centrosome
growth. The optimal model parameters are determined by numerically minimizing
the squared residual, which is a measure for the distance of the model predictions to
the experimental data. The total residual is calculated by adding up the residuals
of each individual experimental data set. Using this algorithm, we are able to fit
several data sets simultaneously with the same model parameters for each data set.

The fitting procedure allows us to compare the model to the experimental data.
Fig. 6.4 shows that they agree quantitatively. The estimated model parameters
resulting from the fit are the autocatalytic reaction rate constant, kc = 100 1/s, and
the ratio of volume fractions, φ̄/ψ− = 0.002. Assuming a typical fraction of droplet
material in the droplet, ψ− = 0.1 [223], we can thus also get the fraction of PCM
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Figure 6.5: Comparison of the centrosome volume as a function of time of the theory
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of centrosome growth in disturbed C. elegans embryos [222]. (A) Data
from cells with aberrant number m of centrosomes. (B) Data from cells
with altered cell volume Vc as indicated. Times t = 0 corresponds to
nuclear envelop breakdown (NEBD) and the initial centrosome volumes are
fit parameters in both panels. The model parameters are given in Table 6.2.

components, φ̄ = 2 × 10−4. Using this value together with a typical cell volume,
Vc ≈ 104 µm3 from Table 6.1, and a typical molecular volume ν ≈ 120 nm3 of globular
proteins [27], we can estimate the number N of PCM components in the cell. The
resulting value N = φ̄Vc/ν ≈ 2 × 107 is much bigger than the largest number of
particles that we investigated in our stochastic simulations in Chapter 5. We would
thus expect to see the stochastic effects investigated there only if the basic building
blocks of the PCM have a significantly larger volume than ν and the estimated N
would therefore be smaller. This could be the case if pre-assembled building blocks
are incorporated at the centrosome.

So far, we only considered the wild-type situation. To also test the model for
different number of centrosomes, we next compare the numerical solution to growth
curves from disturbed embryos: zyg-1 mutants show cells with aberrant number of
centrosomes [24]. By only adjusting the number m of centrosomes in our simulations,
we can reproduce the observed growth curves, see Fig. 6.5A. Similarly, the model
agrees with data from cells with altered volume using ani-2 (RNAi) conditions, see
Fig. 6.5B . Here, the cell volume Vc is a fit parameter. Our model can thus quan-
titatively account for the observed growth curves in wild-type embryos and under
mutant conditions.

We determined the most important model parameters to describe centrosome
growth in this section. The droplet volume of the approximate model in scenario
B is thus fully determined, see Section 2.2.2. Conversely, the parameters of the
growth scenarios A and C cannot be determined from experimental observations. To
also obtain a parameter set for these scenarios, we set the associated reaction rate
constants by demanding that the stationary state volume is comparable to scenario
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Figure 6.6: Centrosome volume as a function of cell volume. Centrosome volume has
been quantified in cells of the C. elegans embryo at metaphase. Three
different proteins have been marked using GFP and a linear fit has been
added to emphasize the correlation. Figure modified from Ref. [24].

B discussed here. The reaction rate constant kAB describing the first-order reaction
in scenario A is thus given by combining Eqs. (2.22) and (2.25). Solving for the
reaction rate constant yields kAB = (1− ψ−)φ̄kc − kBA ≈ 0.016 s−1. For scenario C,
a similar consideration leads to the estimate Q ≈ kBAVc ≈ 10 µm3/s. The parameters
derived in this section are summarized in Table 6.2. They are the standard set of
parameters used in most plots of this thesis.

6.4 Dependence of centrosome size on cell volume

and centrosome count

We identified the cell volume as a major factor determining centrosome size in the
previous section. In fact, centrosome volume shows a strong correlation with cell
volume in experiments, see Fig. 6.6. Interestingly, the reported centrosome size
depends on the chosen marker protein, but the correlation with the cell volume is
always present irrespective of that choice. Consequently, all reported centrosome
volumes are only correct to a constant factor, which depends on the chosen marker
protein and the measurement procedure.

Assuming that the final measured centrosome size represents the stationary state
value, we can relate our model to the experimental observation. The stationary state
centrosome volume of the autocatalytic scenario,

V =
Vc
mψ−

(
φ̄− kBA

(1− ψ−)kc

)
, (6.1)
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Table 6.2: Standard values of the parameters used in this thesis. The top part lists
general parameters, while the three sections at the bottom give parameters for the simple
growth scenarios. The physiological relevant parameters for centrosomes in C. elegans

correspond to the autocatalytic growth scenario.

Quantity Symbol Value Source of the value

General parameters:

Cell volume Vc 104 µm3 Typical value, see Table 6.1

Number of centrosomes m 2 Wild-type count [24]

Size of centrioles a 75 nm Half of centriole length [56]

Rate constant of B → A kBA 10−3 1/s Slowest PCM turnover rate [16]

Concentration in droplet ψ− 0.1 Typical value [223]

Diffusion constants DA, DB 5 µm2

s Typical value for PLK-1 [86]

Concentration in cytosol ψ+ 0 Minor influence, neglected

Surface tension γ 1 pN
µm Typical value [101]

Surface tension parameter β− 0 µm2

pN Minor influence, neglected

Fraction of PCM components φ̄ 2× 10−4 Fit result, see Section 6.3

Initial centrosome volume V0 various Fit result for each data set

Scenario A: First-order kinetics:

Rate constant of A→ B kAB 0.016 1/s Drop size similar to scenario B

Autocatalytic rate constant kc 0 1/s Neglected in scenario A

Centriolar activity Q 0 µm3

s Minor influence, neglected

Surface tension parameter β+ 10−6 µm2

pN Similar effect as in scenario B

Scenario B: Autocatalytic growth (C. elegans centrosomes):

Rate constant of A→ B kAB 0 1/s Neglected in scenario B

Autocatalytic rate constant kc 100 1/s Fit result, see Section 6.3

Centriolar activity Q 0.1 µm3

s Estimated, see Section 6.5

Surface tension parameter β+ 10−8 µm2

pN Estimated, see Section 6.5

Scenario C: Incorporation at the centrioles:

Rate constant of A→ B kAB 0 1/s Neglected in scenario C

Autocatalytic rate constant kc 0 1/s Neglected in scenario C

Centriolar activity Q 10 µm3

s Drop size similar to scenario B

Surface tension parameter β+ 10−7 µm2

pN Similar effect as in scenario B
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has already been derived in Eq. (2.25). It is proportional to the cell size Vc in
accordance with experiments, see Fig. 6.6. This formula also predicts that the
volume is inversely proportional to the number m of centrosomes. There are always
two centrosomes growing in embryonic cells of C. elegans under wild-type conditions.
Using several mutants, Decker etal. were able to have only a single centrosome in
the one-cell stage or up to twelve centrosomes in the two-cell stage, where only four
centrosomes are found in wild-type embryos [24]. Irrespective of the perturbation,
the total volume of all measured centrosomes always adds up to the same value,
indicating that the volume of a single centrosome indeed scales inversely with the
number of centrosomes. These data show that the total amount of centrosome
material sets centrosome size [24].

Our model can quantitatively account for the full centrosome dynamics in wild-type
embryonic cells and under disturbed conditions with aberrant number of centrosomes
or cell sizes. Due to the underlying phase separation process, the total droplet volume
is essentially given by the total amount of material, see Section 1.5. This explains the
dependence of the centrosome volume on the cell size and the number of centrosomes.

6.5 Nucleation and stability of centrosomes

The comparison of the theory to the observed growth curves does not allow us to
determine the values of the catalytic activity Q of the centrioles and the surface
tension parameter γβ+. These parameters, however, play an important role in
centrosome nucleation and stability.

An upper bound on the value of Q exists because the combination of scenarios B
and C shows a sigmoidal growth curve only if the autocatalytic assembly dominates
over the centriole activity. The integrated reaction fluxes associated with the reaction
at the centrioles, the first-order reaction, and the autocatalytic reaction read QφA,
kcV ψ−φ

A, and kABVcφA, respectively. Here, we consider a homogeneous distribution
of the soluble building blocks for simplicity. In order to show sigmoidal growth, the
autocatalytic term must be dominant over the other two reactions. This leads to
conditions, which read

Q≪ kcV ψ− ≈ 3 µm3/s (6.2a)

kAB ≪ kc
V ψ−

Vc
≈ 3× 10−3 s−1 . (6.2b)

Here, the numerical estimates are obtained for the smallest centrosome volume for
which sigmoidal growth can be observed, V ≈ 0.3µm3, see Fig. 6.2. Although a
small first-order reaction rate constant kAB is allowed by the data, see Eq. (6.2b),
we still set this value to zero for simplicity, kAB = 0. Conversely, we cannot assume
that Q vanishes, since it is important to ensure that droplets nucleate and that more
than one centrosome is stable. We thus set Q = 0.1 µm3/s to fulfill the condition given
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in Eq. (6.2a). Using the estimated molecular volume ν ≈ 120 nm3 [27], and the
maximal fraction of building blocks φA ≈ φ̄ = 2× 10−4, we can evaluate the rate at
which PCM components are incorporated at the centrioles, QφA/ν ≈ 170 s−1. This
number is not extraordinarily large and the chosen value of the catalytic activity Q
seems thus plausible.

The chosen value for the catalytic activity Q must be large enough to ensure
droplet nucleation and to stabilize multiple centrosomes. The two associated thresh-
old values QB

crit and QB
stab depend on γβ+, see Eqs. (3.9) and (4.17). This provides

two upper bounds for γβ+. From the requirement of the stability of two centro-
somes it follows that γβ+ < kBAQ/(4πkcDB) ≈ 1.6× 10−14 m. Note that γβ+ must
be positive in order to suppress spontaneous nucleation in the cytosol. This moti-
vates our choice, γβ+ = 10−14m. Choosing a typical surface tension γ = 1 pN/µm
for soft interfaces [101], we thus also get β+ = 10−8 µm2/pN. At first sight, these
numbers seem to be unphysical small since γβ+ is on the order of the diameter
of a proton. However, γβ+ is not a physical length, but determines corrections
to volume fractions, see Eq. (1.8). According to this equation, γβ+ divided by a
typical droplet radius, e.g. R ≈ 1µm, should be comparable to typical volume frac-
tions. In fact, we already estimated β+ from physical arguments in Section 1.5.2,
which led to β+ ≈ 2νψ+/(kBTψ−), see Eq. (1.9). Using a typical molecular volume
ν ≈ 120 nm3 of globular proteins [27], kBT ≈ 4 pNnm, and ψ− = 0.1, we thus arrive
at β+ ≈ 6× 10−4 µm2/pN · ψ+, which explains the typical small value of γβ+. For
this reason, the surface tension parameter γβ− for the volume fraction inside the
droplet has only a minor effect, since ψ− is large compared to the effect of surface
tension, see Eq. (1.8). We thus set β− = 0 for simplicity. This concludes the choice
of parameters for the scenario B, which describes centrosome growth in C. elegans .

The surface tension parameter of scenario A can be estimate by comparing its
critical droplet size, see Eq. (3.5), with that of scenario B, see Eq. (3.6). We estimate
the order of magnitudes of the involved quantities and arrive at β+ = 10−6 µm2/pN for
scenario A, which produces comparable critical droplet radii, see Fig. 3.3. Surface
tension has a weaker influence in scenario C and we thus chose β+ = 10−7 µm2/pN
there.

In summary, we choose values for the catalytic activity Q and the surface tension
parameter γβ+ of scenario B that are consistent with the requirements to (i) sup-
press spontaneous centrosome formation in the cytosol, (ii) ensure nucleation of
centrosomes at the centrioles, (iii) stabilize multiple centrosomes, and (iv) account
for the observed sigmoidal growth. The value of γβ+ in the other two scenarios is
then determined by comparing the critical radius to scenario B. We thus arrive at a
standard set of parameters for all three scenarios, which are summarized in Table 6.2.
These parameters have also been used in various figures throughout this thesis.
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Figure 6.7: Centrosomes with unequal sizes. (A) Representative image of centro-
somes and DNA in wild-type (wt, top panel), and disturbed (sas-4(RNAi),
lower panel) cells. The scale bar represents 5µm. Panel modified from
Ref. [30]. (B) Total centrosome volume in wild-type (wt, green), and dis-
turbed (sas-4(RNAi), blue) cells. Individual data points are shown as circles
and the mean individual volume of the centrosomes located in the anterior
and posterior part of the cell are shown as different shades inside the bars.
Panel modified from Ref. [24].

6.6 Multiple centrosomes with unequal sizes

Centrosomes can have unequal sizes if their centrioles are perturbed, see Fig. 6.7A.
In these experiments, centrioles within the same cell were compromised to different
extends thus leading to the observed unequal sizes of the respective centrosomes [68].
Interestingly, the total volume of the two centrosomes in a cell was equal in the
perturbed and the unperturbed case, see Fig. 6.7B . This can be explained by the
droplet picture of centrosomes, where the total size is set by the amount of droplet
material. If the two centrosomes have an unequal size, the large one must thus be
larger than in the unperturbed case, where they are of equal size.

We now investigate whether our theory can account for the observed unequal
sizes. In the model, centrioles control the PCM formation around them by virtue of
their catalytic activity Q. We thus model unequal centrioles by assuming different
values of Q for the two pairs of centrioles in the cell. For simplicity, we consider the
strong segregation regime, ψ+ = 0, ignore surface tension effects, γ = 0, and assume
that soluble building blocks diffuse fast. The growth rates ∂tV1 and ∂tV2 of the two
centrosomes then follow from Eqs. (2.18) and (2.19). They read

∂tVi ≈
kcψ−Vi +Qi

ψ−
(1− ψ−)φ

A
0 − kBAVi , (6.3)



116 Chapter 6: Comparison Between Theory and Experiment

where i = 1, 2 and generally Q1 6= Q2. These are two ordinary differential equations,
which are coupled via the volume fraction φA0 of soluble building blocks. Its value is
given by the conservation of material in the cell and reads φA0 ≈ φ̄− (V1 + V2)ψ−/Vc.
We analyze Eq. (6.3) by first considering the total centrosome volume Vtot = V1 +V2.
Solving for the stationary state, we get

V ∗
tot ≈

Vc
ψ−

(
φ̄− kBA

(1− ψ−)kc

)
+

(Q1 +Q2)kBA[
(1− ψ−)kcφ̄− kBA

]
kcψ−

. (6.4)

This expression is identical to the stationary state volume of a single droplet with
catalytic activity Q1 +Q2, see Eq. (G.7a) in the Appendix G. Using the parameters
describing centrosomes under wild-type conditions, see Table 6.2, the first term is
four orders of magnitude larger than the second one and the influence of the catalytic
activities on the total volume is thus negligible. This is in line with the observation
that the catalytic activities hardly affect centrosome volume for a single centrosome,
see Fig. 6.3E . The total volume of the two centrosomes is thus set by the amount of
droplet material, explaining the experimental observation shown in Fig. 6.7B .

The individual volumes V ∗
i of the centrosomes in stationary state follow from

Eq. (6.3) by setting the time derivative to zero and solving for Vi, which yields

V ∗
i = Qi

1− ψ−

ψ−

φA0
kBA − (1− ψ−)kcφA0

. (6.5)

Note that the volume of a centrosome is proportional to the activity of its centrioles,
V ∗
i ∝ Qi. Here, the factor of proportionality only depends on global quantities and

is thus the same for both centrosomes. Consequently, the individual volumes of the
centrosomes read V ∗

i = V ∗
totQi/(Q1 +Q2).

We next analyze the full dynamics of the individual centrosome volumes. The
temporal evolution of the ratio of the two volumes can be written as

d
dt

(
V1
V2

)
=
V2Q1 − V1Q2

V 2
2

· (1− ψ−)φ
A
0

ψ−
, (6.6)

which is derived from Eq. (6.3). The right hand side of this equation vanishes if the
ratio of the volumes is equal to the ratio of the catalytic activities, V1/V2 = Q1/Q2.
If the system is prepared with bare centrioles, the droplet volumes vanish initially,
Vi(0) = 0. In the early growth phase, droplet material is then predominately
produced by the centrioles and the growth rate is thus directly proportional to their
catalytic activity, ∂tVi ≈ Qiφ

A
0 /ψ−. For small centrosomes, we thus get Vi ∝ Qi and

the right hand side of Eq. (6.6) vanishes. This implies that the ratio of the volumes
stays constant all the time. Hence, V1/V2 = Q1/Q2 holds for the entire growth
process and the ratio of the volumes of the two centrosomes is always dictated by
the activity of their centrioles.
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Figure 6.8: Radii of two centrosomes with unequal centrioles as a function of time
for two representative cases. The solid lines show fits of the theory to
the experimental data (squares and circles) obtained in the 2-cell stage
(AB-cell) of C. elegans [222]. Fit parameters are the catalytic activity Q2

of one centriole pair, the overall fraction φ̄ of PCM components, and the
time t0 of growth initiation. The remaining model parameters are taken
from Table 6.2. The symmetric model with Q1 = Q2 = 0.1 µm3/s is shown
as a comparison (grey line).

Experimentally, Kirkham etal. found that the ratio of the sizes of the large to
the small centrosome correlates strongly with the respective ratio of the fluorescent
intensities of the protein SAS-4, which typically localizes to the centrioles [68].
If we assume that the activity at the centrioles is determined by the amount of
SAS-4, we can thus explain the experimental observation. To investigate this point
further, we finally solve Eq. (6.3) numerically in order to compare the model of
unequal centrosomes with experimental data. Here, we use the parameters of the
autocatalytic scenario given in Table 6.2, which we found to account for the observed
centrosome growth in unperturbed cells. Note that there are three parameters that
might have changed due to the perturbations in the experiment: the catalytic
activity Q2 at one of the centriole pairs, the fraction φ̄ of PCM components, and the
time point where both centrosomes start to grow. We determine these parameters
by fitting the centrosome growth curves of the model to the experimental data. Here,
we keep the catalytic activity of one of the centrioles fixed to the standard value,
Q1 = 0.1 µm3/s. Fig. 6.8 shows that the model considered in this section can account
for the growth curves of centrosomes with compromised centrioles. The fits suggest
that the catalytic activity of the compromised centriole is reduced by about an order
of magnitude.

The analysis in this section underlines the importance of the catalytic activity at
the centrioles for the formation of centrosomes. In our model, centrioles directly
determine how the PCM is distributed between the centrosomes. It is important to
note that we neglected surface tension effects in the analysis presented here. This
analysis might thus be oversimplified since Ostwald ripening effects are absent. On
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Figure 6.9: Disintegration of a centrosome. (A) Sequence of images of a disintegrating
centrosome located in the posterior region of a C. elegans embryo in the
one-cell stage. A maximum projections of a z-stack, which was captured
with a spinning-disk confocal microscope using γ-tubulin::GFP embryos, is
shown [24]. The time indicated in the panels is measured relative to the
nuclear envelope breakdown and the scale bar indicates 2µm. Raw image
data were taken from the centrosome size project [221]. (B) Centrosome
volume as a function of time. A growth phase lasting 1000 s is followed
by a dissolution phase modeled by setting Q = 0 and kc = 0 at the point
indicated by the black dashed line. Here, simulations for two different
reaction rate constants kBA turning the droplet material back to the soluble
building blocks are shown. The other parameters have been taken from the
scenario B given in Table 6.2.

the other hand, the time scale of redistribution of PCM between centrosomes due to
Ostwald ripening is approximately given by kcsV ψ−/kBA ≈ 103 min, see Eq. (4.15).
Ostwald ripening is thus slow and might be irrelevant in the case of C. elegans

embryos, where centrosomes are typically observed over shorter durations [24].

6.7 Disintegration phase of centrosomes

Centrosomes disintegrate by dissolving their PCM at the end of the cell cycle. After
cell division, each daughter cell inherits one pair of centrioles without much PCM,
see Fig. 1.4. This disintegration phase can also be observed under the microscope,
see Fig. 6.9A. Unfortunately, this process is far less stereotypical than the growth
phase. While disintegrating, centrosomes often deform and fragment, which is partly
caused by forces exerted on the centrosome by microtubules that are responsible for
the segregation of the DNA [24]. These forces are visible in the periodic movement of
the mitotic spindle and therefore also the centrosomes [224, 225]. They also deform
the centrosome from a spherical shape, see Fig. 6.9A. A thorough quantification of
the disintegration phase is thus difficult.
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The qualitative picture shown in Fig. 6.9A suggests that centrosomes do no shrink
significantly in their disintegration phase. They rather seem to dissolve by gradually
reducing the volume fraction of droplet material in the entire volume. Our theory
does not support such a process, since it would require that the coexisting volume
fractions given in Eq. (2.7) change over time. Such a change could be caused by
gradually varying the physical properties of the droplet material, which we do not
consider. Consequently, we do not aim at describing the disintegration phase in
detail, but we will still consider a possible disintegration scenario.

In our model, centrosomes form because the phase separating form B of the PCM
components segregate from the cytosol. Conversely, droplets disintegrate if this
droplet material is turned back to its soluble form. To achieve that, the equilibrium
of the chemical reaction A⇋ B must be strongly biased towards the soluble form A.
To get an idea of the possible disintegration time scales, we thus consider a scenario
where only the reaction B → A remains. In this case, the rate constant kBA
of this reaction determines the time scale of the dissolution. If we use the value
kBA = 0.001 s−1 suggested by the slowest turn-over of centrosome components [16],
dissolution would take about 20min, which is much longer than the observed time
scale of a few minutes [24]. In order to account for this quick disintegration, we
would thus have to increase kBA by about an order of magnitude, see Fig. 6.9B .
Such a model would lead to droplets that disintegrate fast enough, although they
do this by decreasing their volume instead of gradually reducing the volume fraction
of droplet material.

Consequently, in order to have droplets dissolving fast enough, the reaction rate
constants of our model have to be changed completely: the reactions producing
droplet material from soluble building blocks have to cease, while the opposing
reaction has to become stronger. Such a change of the rate constants is conceivable
assuming that regulating enzymes play an important role. On the other hand, our
model cannot account for the gradual disintegration observed in experiments and
thus likely does not capture the disintegration phase correctly.





Chapter 7

Summary and Outlook

I
n this thesis, we developed and discussed a model of active droplets. Most impor-
tantly, this model can explain the formation of centrosomes and quantitatively

accounts for all experimental data available to us. This is surprising, since the model
is based on only a few main ideas and does not contain detailed biochemical informa-
tion. The key feature of the model is the interplay of phase separation with chemical
reactions, which allows for controlled nucleation and leads to non-equilibrium effects
like stable states with multiple droplets.

Centrosomes are autocatalytic droplets of PCM organized by centrioles

It is long been known that centrosomes have an amorphous structure formed by
assembly and disassembly of PCM components. This growth is nucleated and
organized by centrioles. However, the principles governing centrosome dynamics and
mechanisms of centrosome assembly remain unclear. What type of material is the
centrosome made of? How do the subunits from the cytosol become incorporated in
the PCM?

Any model for centrosome growth in C. elegans must explain why PCM only grows
near centrioles but does not form spontaneously in the cytosol, why two centrosomes
have the same size, and why centrosomes in smaller cells are smaller. Here, we show
that a model based on the idea of centrosomes forming around centrioles by auto-
catalytic growth of a PCM droplet phase in the cytosol can quantitatively account
for key features of centrosome growth in C. elegans . The model has three key ingre-
dients: (i) the PCM components exist in a soluble, cytosolic and a condensed, PCM
phase. The PCM phase corresponds to the droplet phase in the model. (ii) The
interconversion between these two phases is driven by a centrosome-localized auto-
catalytic chemical reaction, which can also be catalyzed by the centrioles. (iii) The
dense phase segregates from the cytosol by phase separation.

One of the problems in considering the centrosome as a droplet phase is that two
centrosomes do coexist. This is interesting because Ostwald ripening would lead in
passive systems to the growth of a larger droplet at the expense of smaller droplets.
Even if two droplets have the same size initially, this state would be unstable. Our
model accounts for the absence of this instability in the case of centrosomes, because



122 Chapter 7: Summary and Outlook

of the effect of centriole activity that suppresses Ostwald ripening if surface tension
is low enough.

Another problem with considering the centrosome as a droplet phase is the fact that
PCM grows only at centrioles and accidental nucleation in the cytosol is absent. If
centrosome formation were only dependent on nucleation and growth, spontaneous
nucleation might occasionally occur in the cytosol. This spontaneous nucleation
would be rare because surface tension suppresses the growth of small droplets. How-
ever, in our model nucleation is suppressed even more strongly because of the auto-
catalytic nature of growth. Therefore, spontaneous nucleation is strongly suppressed
even for small surface tension where Ostwald ripening does not occur. Because of
the suppression of nucleation in the cytosol, the centriole activity is required to
initiate droplet growth. The centriole activity thus plays a double role: it reliably
controls the droplet nucleation and it suppresses Ostwald ripening. Thereby, our
model provides a robust mechanism by which centrioles control the location and
timing of centrosome formation, while the centrosome size is determined by the
amount of PCM components in the cell and thus by the cell volume. Interestingly,
the catalytic activity of the centrioles can also explain why they are centered in the
centrosome.

The centrosome joins a growing class of biological compartments that have liquid-
like properties driven by the colloidal nature of biological macromolecules [102, 105,
191]. The phase separation process that controls the formation of these compart-
ments also leads to a clear interface between the centrosome and cytosol. Such phase
separated compartments in the cytosol therefore provide specific chemical environ-
ments and permit the cell to separate different chemical reactions in space without
using membranes. One advantage of such an organization is that the compartments
can be regulated in synchrony with the cell cycle and might thus provide a cue for a
large number of dependent reactions. For instance, the centrosome is largest during
mitosis and it might function as a signaling hub during this period [226]. In this way,
the centrosomes could organize cell division not only mechanically by controlling the
microtubules, but also chemically by providing a suitable reaction container. Such
phase separated compartments found in biology provide a paradigm for a new class
of non-equilibrium emulsions that couple phase separation with chemical reactions.

Active droplets can suppress Ostwald ripening

There is a growing interest in physics and chemistry to study chemical reactions
that couple to phase separation. Interesting phenomena including stable emulsions
and pattern formation have been reported for such systems [159, 174, 227]. The
example from biology discussed here adds new elements to such systems, namely
the autocatalytic phase separation and chemically induced nucleation. To capture
different aspects of active droplets, we consider three different scenarios, where either
the usually discussed first-order reaction, an autocatalytic reaction, or a catalytic
activity at a stable core structure is dominant.
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Table 7.1: Summary of the main results of the physics of active droplets discussed in this thesis. Each table row corresponds to
a different limit of the parameters of the model for the droplet dynamics: (Eq) Equilibrium phase separation is contrasted with
three non-equilibrium scenarios: (A) First-order kinetics, (B) Autocatalytic growth, and (C) Incorporation at the active cores.
The references above the approximate signs indicate the equations where the respective results have been derived in this thesis.
Here, we consider the simplified case of strong phase separation, ψ+ = 0, and define the abbreviations κ ≡ kAB/(kAB + kBA),
k̃BA = kBA/(1− ψ−), D̃B ≡ 4πDB/(1− ψ−), and Γ ≡ γβ+ for conciseness.
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Table 7.1 summarizes the results for these three scenarios and contrasts it with the
equilibrium situation. Our scenario A is very close to the systems already discussed in
the literature, since it contains only first-order reactions. Interestingly, the expression
for the droplet size and also the critical radius predicted by this scenario are very
similar to the ones found for equilibrium systems, albeit with a correction factor
due to the chemical reactions. The major difference to the equilibrium picture is
that multiple droplets can be stable and Ostwald ripening is thus suppressed, see
Fig. 4.4. In the analysis of our model we generally find that multiple droplets can be
stable if either the first-order reaction or the catalytic activity at the core is strong
enough. These stabilizing features are counteracted by surface tension effects and
the autocatalytic reaction, which both destabilize multiple droplets. In summary, we
thus find that droplet coarsening can be prevented due to non-equilibrium conditions
created by chemical reactions.

Furthermore, we found that the autocatalytic reaction has the interesting effect of
strongly suppressing spontaneous droplet nucleation. However, a core structure that
has a small catalytic activity can overcome this suppression and efficiently nucleate
these active droplets. Such an active core can therefore be used to control the droplet
formation, see Fig. 3.12. Interestingly, this catalytic activity also centers the core
within the droplet. This system could therefore also be exploited to engineer droplets
with a stable core at their center. Here, the suppression of homogeneous nucleation
would simultaneously prevent the formation of droplets without this core.

Systems that combine phase separation and chemical reactions can thus produce
nanometer sized patterns [227]. More generally, “[. . . ] open physiochemical systems
far from equilibrium and involving nonlinear feedback processes are endowed by the
capacity to undergo self-organization processes” [228]. It is thus not surprising that
self-organization has been observed in various other system, e.g. in reaction-diffusion
system without phase separation. Here, the coupling of autocatalysis and lateral
inhibition can produced patterns [229]. In fact, this process is thought of producing
many patterns found in biological organisms [230]. These patterns typically have a
fuzzy boundary and may therefore be inefficient in forming well-defined structures
on small scales. Conversely, such structures can be formed by the combination of
a reaction-diffusion system with phase separation, as we showed in this thesis. It
might thus be interesting to investigate whether phase separation also plays a role
in other reaction-diffusion systems.

Other biological problems where our model might be applicable

Despite being interesting for applications in physical chemistry and chemical engi-
neering, our model might also be useful to examine other biological problems. There
are many membrane-less organelles in cells that could potentially be organized sim-
ilar to centrosomes [101]. Some of these organelles, e.g. the Cajal bodies and the
nuclear bodies, lack stable cores like the centrioles in the case of centrosomes. For
these structures, a description based on the scenario A of our model might be more
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suitable. It would still allow multiple stable structures of controlled size, but the
nucleation would be more erratic.

The model might also apply on larger scales, for instance on the tissue level where
cells might phase separate from on another [231]. In a coarse grained description,
cell division and cell death could be described by chemical reactions similar to the
ones considered in our model. Here it might be necessary to account for viscoelastic
effects, which tissues usually show [232, 233]. Our scenario B with autocatalytic
growth might then be adequate for describing tumor growth in cancer. This is
because the cells in a tumor typically divide rapidly and the growth of a tumor is
thus self-reinforcing [234–236]. Here, the soluble building blocks of our model could
mimic nutrition factors diffusion through the tissue and the droplet material could be
identified with the cancerous cells, which phase separate from the healthy tissue due
to adhesive interactions between the cancer cells. The resulting interface between
the cancer and the healthy tissue is usually soft an the stability of the shape is a
common question in the field [237]. It is likely that our model has to be extended in
order to describe tissues satisfactorily, but the results obtained here could serve as a
starting point.

Possible extensions of our model

The model developed in this thesis makes many simplifying assumptions. For in-
stance, viscoelastic effects could play a role on intermediate time scales or when other
materials such as tissues are described. The associated theory of viscoelastic phase
separation, among other things, predicts a «moving droplet phase» where droplet
coalescence is suppressed [238, 239]. Such effects could change the phase separation
physics and taking them into account might be necessary. This would likely also
influence the Ostwald ripening of multiple droplets, which we only considered using a
mean-field model in Chapter 4. If the direct interaction of the concentration fields of
droplets would be taken into account, we could examine whether droplet growth and
coalescence is facilitated or attenuated. Phenomena like these have been studied for
passive systems undergoing Ostwald ripening, where they are important if droplets
are close together [240–242]. Depending on their size, these droplets can either ex-
hibit an attractive or a repulsive interaction, which leads to directed movement [243].
It would be interesting to examine this problem in the case of active droplets to
investigate whether the turnover induced by the chemical reactions has a significant
impact. Here, numerical simulations similar to the ones presented in Chapter 5
including surface tension effects could be helpful. We currently work on an extension
of our stochastic model together with the master student Coleman Broaddus, where
we incorporate the local equilibration at the droplet surface to study the interaction
of active droplets numerically.





Appendix

A Coexistence conditions in a ternary fluid

A ternary fluid can be characterized by the volume fractions φA and φB of two compo-
nents, while the volume fraction of the third component is given by φC = 1− φA − φB.
We consider a fluid undergoing phase separation, which is described by a simplified
Flory-Huggins free energy density [131, 132] reading

fFH(φ
A, φB) =

kBT

ν
·
(
φA lnφA + φB lnφB + φC lnφC

)
+ χφB · (φA + φC) , (A.1)

where ν is a molecular volume, which is assumed to be equal for all components. Here,
the first term describes the entropy of mixing proportional to the temperature T
and the last term accounts for enthalpic effects. Phase separation of form B from A
and C occurs if the interaction parameter χ is large enough. The free energy F of a
system with two compartments of respective volume V− and V+ reads

F (φA−, φ
A
+, φ

B
−, φ

B
+, V−, V+) = V−f(φ

A
−, φ

B
−) + V+f(φ

A
+, φ

B
+) + γA , (A.2)

where the “−” and “+” used as indices distinguish the values in the two compartments,
A is the area of the interface between the compartments, and γ is an associated sur-
face energy. Additionally, there are conservation laws for the volume and the amount
of material, dV− = −dV+ , d

(
φA−V−

)
= −d

(
φA+V+

)
, and d

(
φB−V−

)
= −d

(
φB+V+

)
. The

energy F must be minimal in equilibrium, yielding the coexistence conditions

0 = µ̃A− − µ̃A+ (A.3a)

0 = µ̃B− − µ̃B+ (A.3b)

0 = (φA+ − φA−)µ̃
A
− + (φB+ − φB−)µ̃

B
− + f(φA−, φ

B
−)− f(φA+, φ

B
+) + 2γH , (A.3c)

where µ̃x± = ∂f(φA±, φ
B
±)/∂φ

x
± is proportional to the chemical potential of compo-

nent x = A,B and H = 1
2
∂A/∂V denotes the mean curvature of the interface, which

we assume to be constant. It is given by H = 1/R for a spherical compartment of
radius R. For the free energy fFH given in Eq. (A.1), condition (A.3a) yields

φA−
φA+

=
1− φB−
1− φB+

. (A.4)
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If the component A only occupies a small fraction, φA ≪ φC , the system reduces
to a binary fluid described by a free energy density f(φB) = limφA→0 fFH(φ

A, φB)
and coexistence conditions given by Eqs. (1.6). For a flat interface, we define their
solutions as ψ− and ψ+, since they only depend on material parameters. We can then
expand the free energy density f(φB) around ψ− and ψ+ and use the abbreviations
∆φ± = φB

± − ψ± to turn the coexistence conditions into

0 ≈ f ′′(ψ−)∆φ− − f ′′(ψ+)∆φ+ (A.5a)

0 ≈ (φ+ − φ−) f
′′(ψ−)∆φ− +

f ′′(ψ−)

2
∆φ2

− − f ′′(ψ+)

2
∆φ2

+ + 2γH . (A.5b)

Solving the first equation for ∆φ+ and substituting the result into the second one
leads to a single equation for ∆φ−, which reads

0 ≈
[
f ′′(ψ−)− f ′′(ψ+)

]
f ′′(ψ−)

2f ′′(ψ+)
∆φ2

− − (ψ− − ψ+)f
′′(ψ−)∆φ− + 2γH . (A.6)

For small ∆φ− or the symmetric case f ′′(ψ−) = f ′′(ψ+), the right hand side is
dominated by the last two terms and we thus get the approximate solution

∆φ− ≈ 2γH

(ψ− − ψ+)f ′′(ψ−)
. (A.7)

The same result can also be obtained by solving the quadratic equation and expanding
the result to linear order in γH. Introducing the abbreviations

β− =
2

(ψ− − ψ+)f ′′(ψ−)
and β+ =

2

(ψ− − ψ+)f ′′(ψ+)
, (A.8)

the result reduces to Eq. (1.8). The sensitivity parameters β− and β+ measure the
influence of surface tension on the volume fractions in local equilibrium. In the case
of the ternary fluid introduced in Eq. (A.1), we thus obtain the solutions

φB
− ≈ ψ− + β−γH and φB

+ ≈ ψ+ + β+γH . (A.9)

The coefficients β− and β+ for the free energy density fFH given in Eq. (A.1) read

β± ≈ 2

ψ− − ψ+

(
kBT

ν

[
1

ψ±
+

1

1− ψ±

]
− 2χ

)−1

, (A.10)

where we again considered the case of a dilute fraction of A, φA ≪ 1. For small ψ+,
we get β+ ≈ 2νψ+/(kBTψ−), which we also obtained from physical arguments, see
Section 1.5.2.
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B Instability of multiple equilibrium droplets

We consider m spherical droplets of radii Ri with volumes Vi = 4πR3
i /3 and surface

areas Ai = 4πR2
i for i = 1, . . . ,m. The free energy F is given in Eq. (1.14) and reads

F (φ,V ) = Vcf(φ0) +
m∑

i=1

[
f(φi)− f(φ0)

]
Vi + γ

m∑

i=1

Ai , (B.1)

where the φi are the volume fractions inside droplets, f(φ) is the free energy density
describing the fluid, γ denotes the surface tension, φ0 = (φ̄Vc −

∑
i Viφi)/V0, and

V0 = Vc −
∑

i Vi.
Equilibrium configurations are necessarily stationary points of F . Here, the partial

derivatives with respect to all state variables vanish. A stationary point is only stable,
if the Hessian matrix H evaluated at the point is positive definite. H is defined as

H =
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The matrix elements of H follow from the derivatives of F (φ,V ) and read
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where i, j = 1, 2, . . . ,m. We construct a vector x according to

x =
(√

2V −1
1 , −
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which is only defined for multiple droplets, m ≥ 2. From this, we calculate

x⊤Hx = − γ

2π

(
1

(φ0 − φ1)2R4
1

+
1

(φ0 − φ2)2R4
2

)
. (B.5)

The expression x⊤Hx/x2 gives an upper bound to the largest eigenvalue of the
symmetric, real matrix H. Since x⊤Hx is negative, H has at least one negative
eigenvalue, H is not positive definite, and all stationary points are unstable. Conse-
quently, multiple droplets are always unstable in equilibrium systems if γ > 0.
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C Numerical solution of the droplet growth

We consider the simplified case of a single droplet growing in a spherical geometry..
The system is thus described by the droplet radius R(t) and the two volume fraction
profiles φA(r, t) and φB(r, t). We discretize the radial coordinate r using an adaptive
grid [200, 244], with N supporting points r(j) defined at

r
(j)(R) =





a+
(
j + 1

2

)
∆x−(R) j ∈ {0, 1, . . . ,M − 2}

R j ∈ {M,M − 1}
R +

(
j −M − 1

2

)
∆x+(R) j ∈ {M + 1,M + 2, . . . N − 1} .

, (C.1)

where ∆x−(R) = (R− a)/(M − 1) and ∆x+(R) = (Rc−R)/(N −M − 1). Here, Rc

is the system radius and a denotes the radius of the core at the center. Furthermore,
M and N − M are the number of supporting points inside and outside of the
droplet, respectively. The adaptive grid introduced here simplifies the evaluation
of the interface conditions, since the interface at r = R(t) will always lie on a
supporting point. We thus define the discretized volume fractions f(j)x (t) = φx(r(j), t)
for x = A,B. The associated time derivatives then read

∂tf
(j)
x (t) =

[
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+
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∂r
∂tr
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]

r=r
(j)

, (C.2)

where the speed ∂tr
(j) of the j-th grid line enters [200]. It can be calculated from

the speed ∂tR of the interface and evaluates to

∂tr
(j) =
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
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r
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(j)

Rc−R ∂tR M ≤ j ,
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where a is the radius of the inner core. The discretization in time is given by the
time step ∆t, leading to the definitions R

(l) = R(l∆t), f(j,l)x = φx(r(j,l), l∆t), and
r
(j,l) = r

(j)(R(l)) for the discretization of the radius, the volume fractions x = A,B,
and the grid lines, respectively. Using the Forward-Time Central-Space method [245],
we discretize the partial differential equation (2.1), which yields
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where the Dx are the diffusivities and ηx = −1,+1 for x = A,B, respectively. Here,
the reaction rate s

(j,l) = kABf
(j,l)
A − kBAf

(j,l)
B + kcf

(j,l)
B f

(j,l)
A follows from Eq. (2.2) and
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(j) (C.5)
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for x = A,B, where the first term on the right hand side stems from the Laplace
operator in spherical coordinates and the second term accounts for the moving grid,
see Eq. (C.2). The solution of the discretized diffusion equation is numerically stable
if ∆t < ∆tmax, where ∆tmax = 0.5 (∆x)2/Dmax and Dmax denotes the largest diffusion
constant in the system [246]. We use an adaptive time step ∆t chosen such that it
is smaller than ∆tmax/2 to obey this stability condition.

Eq. (C.4) can be solved for the values f(j,l+1)
x at the next time step if f(−1,l)

x and f
(N,l)
x

at the boundary are known. We derive expressions for these virtual supporting points
using the boundary conditions of the continuous equations. We get f(N,l)x = f

(N−1,l)
x

for the no-flux condition at r = Rc. The catalytic activity at the core imposes

f
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2DB

(
f
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A

)
+ f
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where q = Q/(4πa2). The values at the supporting points r
(M−1) and r

(M) at the
interface can be directly computed from the interface conditions given in Eqs. (2.7),
(2.8), and (2.11). The rate of droplet growth follows directly from Eq. (2.10).

The discretization given in Eq. (C.1) breaks down for small radii, R → a, since
then ∆x− → 0, which would also require ∆t→ 0 for a stable simulation. For small
droplets we thus use an alternative scheme assuming that the volume fraction profiles
inside the droplet are in stationary state. We can solve for these profiles analytically,
see Section 3.1, and use the results instead of the discretized version presented here.
Taken together, we are able to solve for the time evolution of the droplet growth for
all droplet sizes.

D Diffusion-limited growth of a single droplet

For simplicity, we consider a single droplet in a spherical geometry of radius Rc

resulting in spherical symmetric volume fractions φA(r, t) and φB(r, t), where r is the
distance from the center. We furthermore consider kAB = kBA = 0, kc = 0, γ = 0,
ψ+ = 0, and large Q for simplicity. The dynamics of the soluble building blocks are
then given by ∂tφA = DA∇

2φA with reflective boundary conditions at r = Rc and
an absorbing boundary condition φA(a) = 0 due to the large enzymatic activity Q
at the core. The full solution then reads [245]

φA(r, t) =
∑

k

bk
sin[(r − a)αk]

r
e−DAα

2
kt , (D.1)

where the length scales α−1
k are solutions to

αkRc = tan[(Rc − a)αk] , (D.2)
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Figure D.1: Graphical solution of Eq. (D.2) defining the admissible length scales of
diffusion-limited growth. The solutions (green dots) are given by the inter-
section of the left hand side (blue line) and the right hand side (orange line).
Here, d = αa. (A) Original equation (D.2). (B) Reciprocal equation.

see Fig. D.1. Approximating tan(x) ≈ x+x3/3, the smallest, positive solution reads

α1 ≈
√

3a

(Rc − a)3
. (D.3)

The inverse of Eq. (D.2), 1 = αkRc cot[(Rc − a)αk], is used to approximate the
solutions for k ≥ 2, αk ≈ (2k−1)π/[2(Rc−a)]. The amplitudes bk of the fundamental
solutions are set by the initial condition, φ(r, 0) = φ̄, and given by

bk =
(2 + 2R2

cα
2
k)φ̄a

(Rc − a)R2
cα

3
k − aαk

, (D.4a)

where we used the orthogonality of the fundamental functions. The droplet volume,

V (t) =
φ̄

ψ−

[
Vc −

∞∑

k=1

(2 + 2R2
cα

2
k)4πa

2

(Rc − a)R2
cα

4
k − aα2

k

e−DAα
2
kt

]
, (D.5)

is given by the amount of material that left the system divided by the volume
fraction ψ− in the droplet. The slowest associated timescale is

τ1 =
1

DAα2
1

≈ (Rc − a)3

3DAa
, (D.6)

see Eq. (D.3). τ1 is the important time scale which determines the relaxation behavior
of the system.
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E Approximate efflux of droplet material

We calculate the compositional flux JB+ of droplet material away from the droplet
surface by evaluating the gradient of the volume fraction φB. For simplicity, we
consider a droplet of radius R in a spherical geometry such that all volume fractions
are spherically symmetric and we have JB+ = − 4πDBr

2∂rφ
B(r, t)

∣∣
r=R

. In general,
the functional form of φB(r, t) is governed by the reaction-diffusion equation (2.1b)
augmented with boundary conditions on the droplet surfaces, Eq. (2.7b), and a no-
flux condition at the system boundary, Eq. (2.3). For simplicity, we assume that φB

is in the stationary state and thus obeys

0 =
DB

r2
∂

∂r
r2∂rφ

B(r) + jAB − kBAφ
B(r) , (E.1)

where DB is the diffusivity of the component and kBA is the rate constant of the
first-order reaction B → A. Here, jAB accounts for the creation of components
of form B, which we assume to be homogeneous and constant for simplicity. The
differential equation (E.1) is solved by basis functions of the form e±rα/r with
α =

√
kBA/DB. Interestingly, the volume fraction falls off faster than exponential

and any direct interactions between the concentration fields of droplets will therefore
be short-ranged. This functional form is very similar to a Yukawa potential, which
has historically been used to describe the exchange interaction of massive particles
encountered in particle physics [247].

The full solution φB(r) to Eq. (E.1) additionally has to fulfill the two boundary
conditions φB(R) = φB+(R) and ∂rφB(r)

∣∣
r=Rc

= 0, which fix the integration constants.
For simplicity, we consider the case of a large system, Rc ≫ α−1, which results in

φB(r) ≈ φB0 +
(
φB+ − φB0

) eα(R−r)R

r
. (E.2)

Here, φB0 = jAB/kBA is the fraction of form B at the boundary, i. e. far away from
the droplet. The flux JB+ (R) at the droplet surface then reads

JB+ (R) ≈ 4πDBR · (1 + αR)
(
φB+(R)− φB0

)
(E.3)

and is driven by the difference of the fractions φB+ at the droplet surface and the
fraction φB0 far away. For the parameters considered in this thesis, see Table 6.2, the
correction due to the chemical reactions are negligible, αR ≪ 1. Hence,

JB+ (R) ≈ 4πDBR ·
(
φB+(R)− φB0

)
. (E.4)

This form has also been used in the seminal paper by Lifshitz and Slyozov [138].
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F Determining stationary states of single droplets

For simplicity, we solve for the stationary state of a single droplet in a spherical
geometry, where the volume fractions sφA(r) and sφB(r) are only functions of the
radial coordinate r. They must be solutions to the dynamical equations (2.12) with
vanishing time derivatives, where we linearize the non-linearity in the reaction rate
according to Eq. (3.1) in Section 3.1. sφA(r) and sφB(r) must thus fulfill

0 =
DA

r2
∂r
[
r2∂rsφA±(r)

]
− kAB sφA±(r) + kBAsφB±(r)− kcψ±sφA±(r) and (F.1a)

0 =
DB

r2
∂r
[
r2∂rsφB±(r)

]
+ kAB sφA±(r)− kBAsφB±(r) + kcψ±sφA±(r) , (F.1b)

where the suffixes “−” and “+” distinguish the volume fractions inside and outside of
the droplet. Here, DA and DB are diffusivities, kAB and kBA are first-order reaction
rate constants, kc is the rate constant of the autocatalytic reaction, and ψ− and ψ+

denote the volume fractions at a flat interface. These equations are supplemented
by eight boundary conditions,

0 = sφA′+ (Rc) = sφA′+ (Rc) ,
QsφA−(a)

4πa2
= DA

sφA′− (a) = −DB
sφB′
− (a) , (F.2a)

sφA′− ( sR) = sφA′+ ( sR) , sφB′
− ( sR) = sφB′

+ ( sR) , (F.2b)

sφB±( sR) = ψ± +
γβ±

sR
, and sφA+( sR) =

1− sφB+( sR)

1− sφB−( sR)
sφA−( sR) , (F.2c)

see Eqs. (2.13)–(2.16). Here, Rc is the system radius, Q parameterizes the catalytic
activity of the core with radius a, γ is the surface tension, β± denote its effect onto
the volume fractions, and sR is the unknown droplet radius. Solving the sum of the
Eqs. (F.1), we find a relation between the two volume fraction profiles,

sφB±(r) = ∆φ± − DA

DB

sφA±(r) , (F.3)

where ∆φ− and ∆φ+ are two unknown constants. Eq. (F.1a) is then solved by

sφA±(r) =
kBA
k±

∆φ± +
C±

1

r
e−rα± +

C±
2

r
erα± (F.4)

with k± = kAB + kcψ± + kBADA/DB and α± =
√
k±/DA. Together with Eq. (F.3),

we can thus substitute sφA(r) and sφB(r) in the boundary conditions to get at set
of linear equations for the six coefficients ∆φ±, C±

1 , and C±
2 . These equations can

be solved analytically, although the resulting expressions are lengthy and therefore
omitted here. The stationary droplet radius sR is determined by the total amount ΦA
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Figure F.1: Stationary volume fractions as a function of the radial coordinate r. The
volume fraction of the soluble building blocks (blue) and the droplet material
(orange) are shifted by an amount indicated by the label next to the curves
and have been put on a broken y-axis to account for the different orders
of magnitudes. The insets show the same data in a semi-logarithmic plot.
The droplet extends from the core (grey area) to the interface at r = R
(green line). (A) First-order kinetics with catalytic activity Q = 1 µm3/s at
the core and the remaining parameters given in Fig. 2.3. (B) Autocatalytic
growth with Q = 0.1 µm3/s and remaining parameters given in Fig. 2.4.

and ΦB of droplet components in the system given by the integrals of the volume
fractions, which depend on sR. The conservation equation (2.4) thus becomes

φ̄Vc = ΦA( sR) + ΦB( sR) . (F.5)

We plot the right hand side of this expression against the amount φ̄Vc of droplet
components, e. g. in Figs. 3.3–3.5. This can be interpreted as the necessary amount
needed to support a given stationary state radius sR.

Additionally, we show the function φA(r) and φB(r) for two representative choices
of model parameters in Fig. F.1. The volume fractions of the different forms differ
in their order of magnitude, which makes the plot difficult to read. This is mainly
caused by the phase separation process, which concentrates droplet material of
form B inside the droplet leading to much higher volume fractions there.
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Next, we analyze small perturbations of the stationary state by a linear stability
analysis. We expand the volume fractions φA and φB to linear order around their
stationary state value, which yields

φx±(r, t) =
sφx±(r) + εF x

±(λ, r)e
λt , (F.6)

for x = A,B. Here, ε is the amplitude of the perturbation, which evolves with a
growth rate λ in time [201]. The functions F x

±(λ, r) encode the spatial perturbations
of the volume fractions and can be derived from the differential equations, which re-
sult from plugging Eq. (F.6) into the Eqs. (2.12). We can solve these equations using
the linearization introduced in Eq. (3.1) and assuming that the diffusion constant is
the same for both forms, DA = DB = D. The complete solution then reads

FA
± (λ, r) =

kBAĈ
±
1

r
e−αλr +

kBAĈ
±
2

r
eαλr +

Ĉ±
3

r
e−α

±

λ r +
Ĉ±

4

r
eα

±

λ r (F.7a)

FB
± (λ, r) =

k̃±Ĉ
±
1

r
e−αλr +

k̃±Ĉ
±
2

r
eαλr − Ĉ±

3

r
e−α

±

λ r − Ĉ±
4

r
eα

±

λ r , (F.7b)

where we introduced k̃± = kAB+kcψ± as well as the inverse length scales αλ =
√
λ/D

and α±
λ =

√
(k± + kBA + λ)/D. The eight coefficients Ĉ±

1 , Ĉ±
2 , Ĉ±

3 , and Ĉ±
4 can be

determined from a linear set of equations that is obtained by inserting Eqs. (F.7) into
the boundary and interface conditions given by Eqs. (2.13)–(2.16). The perturbation
growth rate λ can be determined by a linearized version of the droplet growth rate
given by Eq. (2.14). This leads to an expression for λ, which reads

λ =
D

ψ− − ψ+

·
[
∂2r

sφB+(r)− ∂2r
sφB−(r) + ∂rF

B
+ (λ, r)− ∂rF

B
− (λ, r)

]
r= sR

, (F.8)

where we approximated φB±(R) by ψ± in the denominator of Eq. (2.10) for sim-
plicity. Both the stationary state profiles sφx(r) and the spatial perturbation func-
tions F x(λ, r) for x = A,B have been determined above. Eq. (F.8) is thus a single,
non-linear equation for the perturbation growth rate λ. The solution with the largest
real part then determines the evolution of the stationary state, which is stable if this
value is negative.
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G Droplet size including surface tension effects

Surface tension effects typically influence the stable stationary droplet volumes only
slightly, see Section 3.2. Here, we show this by explicitly taking the surface tension γ
into account to derive expressions for the droplet volume that are more accurate
than the ones given for the simple scenarios discussed in Section 2.2.

Scenario A: First-order kinetics

If first-order kinetics dominate, kAB > 0, kc = 0, Q = 0, droplet material is mainly
produced in the solvent and converted back to soluble building blocks inside the
droplet. This latter conversion is quantified by the reaction flux JS− ≈ −kBAψ−V ,
where we neglect the reaction A → B inside the droplet for simplicity. JS− must
be balanced by the compositional flux JB+ at the droplet surface given by Eq. (E.4).
Using JS− = JB+ , we arrive at a cubic equation for the droplet radius R,

kBAψ−

3DB

R3 −
(
φB0 − ψ+

)
R + γβ+ = 0 , (G.1)

that must be fulfilled in stationary state. Here, DB is the diffusivity of building
blocks and γβ+ quantify the surface tension effects. This equation only has real
solutions if its discriminant is positive. We use this condition to derive the minimal
fraction φB0,min of droplet material in the solvent necessary to have any droplets,
which reads

φB0,min =

(
9(γβ+)

2kBAψ−

4DB

) 1
3

+ ψ+ . (G.2)

The volume fraction φB0 of droplet material outside of droplets can be estimated from
the balance of reaction fluxes in the complete system, mJS− + JS+ = 0, where the flux
in the solvent reads JS+ = (kABφ

A
0 − kBAφ

B
0 )Vc. Additionally using the conservation

of material, φ̄Vc = (φA0 + φB0 )Vc +mψ−V/Vc, we thus get

φA0 =
kBA

kAB + kBA
φ̄ and φB0 =

kAB
kAB + kBA

φ̄− mψ−V

Vc
. (G.3)

Putting φB0 = φB0,min, we can thus solve for V , yielding the result

V A =
Vc
mψ−

[
kAB

kAB + kBA
φ̄−

(
9(γβ+)

2kBAψ−

4DB

)1/3

− ψ+

]
. (G.4)

This expression gives an approximation to the droplet volume in scenario A assuming
that the fraction of building blocks in the solvent assumes the minimal value φB0,min.
At this value, droplets cannot grow further and the stationary state is thus reached.
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Scenario B: Autocatalytic growth

In scenario B, the production of droplet material is predominately driven by the
autocatalytic reaction with a rate constant kc. For simplicity, we consider kAB = 0
and ψ+ = 0, but allow for a catalytic activity Q at the core. The droplet material
is then predominately produced inside the droplet by the associated reaction flux
JS− ≈ (1− ψ−)(Q+ kcψ−V )φA0 − kBAV ψ−. The efflux of material is quantified by
JB+ ≈ 4πDBγβ+ and the conversion back to the soluble building blocks is captured
by the reaction flux JS+ ≈ −kBAVcφB0 in the solvent. The stationary state droplet vol-
ume V can then be determined from the balance of the reaction fluxes in the system,
JS+ +mJS− = 0, the balance of fluxes in a droplet, JS− = JB+ , and the conservation of
material in the complete system, φ̄Vc ≈ (φA0 + φB0 )Vc +mψ−V . Putting everything
together, we arrive at an equation for the droplet volume V B in scenario B, which
reads

(mQ+ kBAVc)J
B
+ + kBAQφ̄Vc =

mkBAkcψ
2
−(V

B)2 +
[
([kBA − kcφ̄]Vc +mQ)kBA −mkcJ

B
+

]
ψ−V

B . (G.5)

This quadratic equation is solved by

V B = ±

√√√√kBAQVcφ̄+
(
mQ+ kBA

1−ψ−
Vc
)
JB+

kBAkcm2ψ2
−

+

[
mQ+

(
kcφ̄− kBA

1−ψ−

)
Vc

2kcmψ−
− JB+

2kBAψ−

]2

+
JB+

2kBAψ−
+
mQ+

(
kcφ̄− kBA

1−ψ−

)
Vc

2kcmψ−
. (G.6)

These solutions must be real, at least in the parameter region, where droplets can
exist. We can furthermore develop the two solutions to first order in Q and γ, which
yields

V B
large ≈

Vc
mψ−

[
φ̄− kBA

(1− ψ−)kc

]
+
k2BAQ− 4π(1− ψ−)

2DBγβ+k
2
c φ̄

[(1− ψ−)kcφ̄− kBA]kckBAψ−
(G.7a)

V B
small ≈

4πDBγβ+ −Qφ̄

kcφ̄ψ− − kBAψ−
. (G.7b)

Here, V B
large corresponds to the larger droplet, where both Q and γ only have a minor

effect on the volume, see Section 3.2. Specifically, we recover Eq. (2.25) from V B
large

in the limit Q → 0 and γ → 0. Conversely, V B
small represents a small stationary

state caused by surface tension effects, which can be interpreted as a critical size,
see Section 3.2. This critical size can be overcome by the catalytic activity Q, since
V B
small has no positive solutions for large enough Q. Note that Eq. (G.7b) is identical

to the expression for the critical size given in Eq. (3.6).



Appendix G: Droplet size including surface tension effects 139

0 0.2 0.4 0.6 0.8 1

Surface tension γ [pN/µm]

0

2

4

6

8

10

C
or
e
ac
ti
vi
ty

Q
[µ

m
3

/s
]

0 2× 10
−5

4× 10
−5

Fraction of droplet components φ̄

a

0.2

0.4

0.6

0.8

R
ad
iu
s
R

[µ
m
]

γ = 1 pN/µm, ψ+ = 0

γ = 0, ψ+ = 10−6

γ = 0, ψ+ = 0

A B

Estimated

Figure G.1: Stationary states of a single droplet organized by the catalytic activity at
the centriole (scenario C) (A) Droplet radius as a function of the fraction φ̄
for Q = 10 µm3/s and different values of the surface tension γ and the basal
volume fraction ψ+ outside of droplets. The grey line indicates the estimate
of Eq. (G.8). (B) Stability diagram with either no droplets (white regions),
one stable droplet (green filled region), or a combination (hatched regions).
Here, the total amount of material was kept fixed at φ̄Vc = 0.25. The
orange dashed line shows the threshold given in Eq. (G.9b). The model
parameters in both panels are given in Fig. 2.5.

Scenario C: Incorporation at the centrioles

The solution in scenario C, kAB = 0, kc = 0, Q > 0, is already contained in Eq. (G.6)
for a vanishing rate constant kc of the autocatalytic reaction. The associated droplet
volume V C then reads

V C =
1

ψ−

[
(1− ψ−)φ̄QVc

VckBA + (1− ψ−)mQ
− 4πDBγβ+

kBA

]
. (G.8)

This expression reduces to Eq. (2.29) if surface tension effects are neglected, γ = 0.
Note that the expression derived here predicts significantly larger droplets than the
detailed numerically calculations, see Fig. G.1A. This is caused by the simplified
treatment of the diffusion of building blocks, which overestimates its fraction at the
core. Nonetheless, the minimal values of φ̄ and Q necessary to form droplets can be
obtained from the condition V C > 0 and read

φ̄C
min =

4πDBγβ+
1− ψ−

[
(1− ψ−)m

kBAVc
+

1

Q

]
(G.9a)

QC
min =

4πkBAVcDBγβ+
(1− ψ−)(kBAVcφ̄− 4πmDBγβ+)

. (G.9b)

These thresholds agree well with the numerical results, see Fig. G.1.
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H Distortions of the spherical droplet shape

Distortions of a spherical shape can generally be described by spherical harmonic
functions. Here, we first introduced the mathematical tools and then apply them in
a linear stability analysis of a stationary spherical droplet.

H.1 Harmonic distortions of a sphere

We use spherical coordinates r = (r, θ, ϕ) defined by their conversion,


x
y
z


 =



r cosϕ sin θ
r sinϕ sin θ
r cos θ


 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π , (H.1)

to Cartesian coordinates (x, y, z). We give the spherical harmonic functions,

Y m
l (θ, ϕ) =

√
2l + 1

4π
· (l −m)!

(l +m)!
· eimϕ · Pm

l (cos θ) , (H.2)

with the degree l ∈ N and the order m ∈ Z ,−l ≤ m ≤ l, where Pm
l (x) are the

associated Legendre polynomials [248]. The Y m
l (θ, ϕ) are complex functions, which

can be used to define the real spherical harmonics Yl,m reading

Yl,m =





1√
2

(
Y m
l + (−1)mY −m

l

)
if m > 0

Y m
l if m = 0
1

i
√
2

(
Y −m
l − (−1)mY m

l

)
if m < 0 .

(H.3)

To simplify the notation, we introduce a single index, k = l · (l + 1) +m ∈ N, from
which the original indices follow using the relations lk = ⌊

√
k⌋ andmk = k−lk ·(lk+1),

where ⌊x⌋ is the largest integer not greater than x. Defining Yk(θ, ϕ) = Ylk,mk
(θ, ϕ),

we introduce the functional

IK [f(θ, ϕ)] =
∫ π

−π
dϕ
∫ π

0

dθ sin θ YK(θ, ϕ)f(θ, ϕ) (H.4)

to summarize the normalization, IK [1] = 2
√
πδK0, and the orthogonality relation,

IK [Yk(θ, ϕ)] = δKk [248].
We consider the perturbations of a spherical droplet of radius sR located at the

origin of the coordinate system. The perturbed surface A is then defined by the
distance R(θ, ϕ) of each surface point to the origin, which reads

R(θ, ϕ) = sR +
∞∑

K=0

εKYK(θ, ϕ) , (H.5)
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where |εK | ≪ sR. The droplet volume V enclosed by the surface A reads

V =

∫ π

−π
dϕ
∫ π

0

sin(θ)dθ
∫ R(θ)

a

r2dr = sV + ε0V̂ +O
(
ε2
)
, (H.6)

where sV = ( sR3 − a3)4π/3 and V̂ = 2
√
π sR2. Up to linear order of the perturbation,

the volume is thus only influenced by the first mode k = 0. The normal vector n of
the surface A in spherical coordinates reads

n(θ, ϕ) ≈
(
1, −

∞∑

k=0

εk∂θYk
sR

, −
∞∑

k=0

εk∂ϕYk
sR sin θ

)⊤

. (H.7)

The mean curvature H(θ, ϕ) is given by the divergence of n, which yields

2H(θ, ϕ) = ∇n ≈ 2
sR
−

∞∑

k=0

εk
sR2

{
2Yk + ∂2θYk + cot θ · ∂θYk +

∂2ϕYk

sin2 θ

}
. (H.8)

The last term becomes ∂2ϕYk = −m2
kYk, following from the definition of the spherical

harmonics. The remaining derivatives read

∂2θY
m
l + cot θ · ∂θY m

l ∝
[
sin2 θ · ∂2uPm

l (u)− 2 cos θ · ∂uPm
l (u)

]
u=cos θ

, (H.9)

where the constant of proportionality can be read of Eq. (H.2). Substituting u = cos θ,
the right hand side of Eq. (H.9) simplifies to

∂u
[
(1− u2)∂uP

m
l (u)

]
= ∂u

[
(l +m)Pm

l+1(u)− luPm
l (u)

]

=
(l +m)(l + 1)uPm

l+1(u)− (l +m)(l +m+ 1)Pm
l+2(u)

u2 − 1

+
lu(l +m)Pm

l+1(u)− (lu)2Pm
l (u)

u2 − 1

=
l2 + l −m2 − (1 + l)lu2

u2 − 1
· Pm

l (u) , (H.10)

where the derivatives and the recurrence theorem for the associated Legendre poly-
nomials Pm

l (u) have been taken from Ref. [248]. In summary, Eq. (H.8) yields

H(θ, ϕ) =
1
sR
+

∞∑

k=0

εkhkYk(θ, ϕ)
sR2

, (H.11)

where we defined the strength hk = (l2k+lk−2)/2 of the curvature effect. Interestingly,
the deviation of the curvature only depends on the degree lk of the perturbation and
is proportional to the radial deviation εkYk(θ, ϕ) at any surface point.
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H.2 Physical description of the perturbed droplet

For simplicity, we consider the case where the volume fractions are in stationary
state such that the droplet shape described by Eq. (H.5) is the only dynamic variable.
Its dynamics are deduced from Eq. (2.10) and read

∂tR · er ≈ DB · ∂rφ
B
+(r)− ∂rφ

B
−(r)

ψ− − ψ+

· er ∀ r ∈ A , (H.12)

where surface points only move radially to first order in the perturbation. Here,
er is the radial unit vector, DB is the diffusivity of droplet components, ψ− − ψ+

approximates the volume fraction difference between the inside and the outside
of the droplet, and φB±(r) is the associated volume fraction profile of the droplet
material, which now also depends on the angular coordinates θ and ϕ. We neglect
the influence of surface tension in the denominator of Eq. (2.10), since ψ− dominates
this expression. Note that this approximation is exact if β− = β+. Furthermore,
we consider that soluble building blocks of form A diffusive quickly, since their
distribution does not enter Eq. (H.12) directly. This leads to homogeneous fractions
φA− and φA+ respectively inside and outside the droplet, which approximately obey
φA+ ≈ φA−/(1− ψ−), see Eq. (2.8). The stationary state of φB is given by Eq. (2.1b)
with vanishing time derivatives together with the linearization of Eq. (3.1) yielding

0 = DB∇
2φB− − kBAφ

B
− + ν−φ

A
− ∀ r ∈ V (H.13a)

0 = DB∇
2φB+ − kBAφ

B
+ + ν+φ

A
− ∀ r /∈ V , (H.13b)

where V denotes the droplet region and we defined ν− = (kcψ− + kAB)/kBA and
ν+ = kAB/[(1− ψ−)kBA]. The boundary conditions for these equations follow from
Eqs. (2.3)–(2.7) and read

DB∂rφ
B
−(r) = −qφA− for |r| = a (H.14a)

φB−(r) = ψ− + γβ−H(r) for r ∈ A (H.14b)

φB+(r) = ψ+ + γβ+H(r) for r ∈ A (H.14c)

∂rφ
B
+(r) = 0 for |r| = Rc , (H.14d)

where q = Q/(4πa2) and Rc is the system radius. The boundary conditions at the
droplet surface depend on the mean curvature, similarly to Eqs. (A.9).

H.3 Volume fraction profiles in the perturbed droplet

The partial differential equations (H.13) are Helmholtz equations solved by

φB±(r) = ν±φ
A
− +

∞∑

k=0

f̃k(r) · Yk(θ, ϕ) , (H.15)
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Figure H.1: Fundamental spatial solutions of the differential equation (H.13) for the
inverse length scale λ =

√
kBA/DB ≈ 0.014µm−1 used in the model.

leading to an ordinary differential equation for the fundamental spatial modes f̃k,

0 =
DB

r2
∂

∂r

(
r2
∂f̃k(r)

∂r

)
−
(
DBlk(lk + 1)

r2
+ kBA

)
f̃k(r) . (H.16)

This second order equation is solved by f̃k(r) = Akfk(r) + Bkgk(r), where

fk(r) =
1√
r
I 1

2
+lk

(
r

√
kBA
DB

)
and gk(r) =

1√
r
K 1

2
+lk

(
r

√
kBA
DB

)
(H.17)

are the fundamental solutions, see Fig. H.1, while Ak and Bk are coefficients that
we determine later. Here, In(x) and Kn(x) are the modified Bessel functions [248].
The volume fraction of the droplet material,

φB±(r) = ν±φ
A
− +

∞∑

k=0

(
A±
k fk(r) + B±

k gk(r)
)
· Yk(θ, ϕ) , (H.18)

is thus a linear combination of the fundamental spatial solutions. The series coeffi-
cients A±

k and B±
k must be linear functions of the magnitudes of the perturbation,

A±
k = sA±

k +
∞∑

K=0

εKÂ
±
kK and B±

k = sB±
k +

∞∑

K=0

εKB̂
±
kK . (H.19)

Similarly, the volume fraction profiles of form A and B can be decomposed as

φA± = sφA± +
∞∑

K=0

εK φ̂
A
±,K and φB±(r) =

sφB±(r) +
∞∑

K=0

εK φ̂
B
±,K(r) . (H.20)

In general, bars denote stationary state quantities and hats indicate derivations
therefrom, which depend on the perturbation mode K. The series coefficients,
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sA±
k , Â±

kK , sB±
k , and B̂±

kK , are determined by plugging Eq. (H.18) into the boundary
conditions, Eqs. (H.14), and the conservation of material. The latter follows from
Eq. (2.4) and reads

Vcφ̄ = (Vc − V )φA+ + V φA− +

∫

Vc

φB(r)d3r . (H.21)

Additionally, the total integrated reaction flux must vanish in the stationary state,

0 = kBA

∫

cell

sφB(r)d3r − (ψ−kc + kAB)sV sφA− − kAB · (Vc − sV )sφA+ −QsφA− . (H.22)

We now expand these conditions to linear order in the perturbations.

Boundary conditions: The boundary conditions at the core, Eq. (H.14a), yield

f ′
k(a) sA−

k + g′k(a) sB−
k = −2

√
πq

DB

· δk0sφA− (H.23a)

f ′
k(a)Â

−
kK + g′k(a)B̂

−
kK = −2

√
πq

DB

· δk0φ̂A−,K , (H.23b)

where k,K ∈ N. Equivalently, we get

f ′
k(Rc) sA+

k + g′k(Rc) sB+
k = 0 (H.24a)

f ′
k(Rc)Â

+
kK + g′k(Rc)B̂

+
kK = 0 (H.24b)

for the outer system boundary, Eq. (H.14d).

Coexistence conditions at the droplet surface: Eq. (H.14b) leads to

∞∑

k=0

([
A−
k fk(

sR) + B−
k gk(

sR)
]
· δk′k +

[
sA−
k f

′
k( sR) + sB−

k g
′
k( sR)

]
·

∞∑

K=0

εKCk′Kk

)

= 2
√
πδk′0 ·

(
ψ− +

γβ−
sR

− ν− ·
(

sφA− +
∞∑

K=0

εK φ̂
A
−,K

))
+
γβ−
sR2

εk′hk′ . (H.25)

which is one equation for each k′ ∈ N. Here, the Ck′Kk = Ik′ [YK(θ, ϕ)Yk(θ, ϕ)] are
Clebsch-Gordan coefficients [247]. In particular, CkK0 = δkK/(2

√
π). Furthermore,

sAk and sBk vanish for k ≥ 1 due to the spherical symmetry, reducing Eq. (H.25) to

Â−
k′Kfk′(

sR) + B̂−
k′Kgk′(

sR) +
[

sA−
0 f

′
0( sR) + sB−

0 g
′
0( sR)

]
· δk′K
2
√
π

=
γβ−
sR2

hk′δk′K − 2
√
πν−φ̂

A
−,K · δk′0 . (H.26)
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The analogous equation (H.14c) right outside of the droplet surface follows analo-
gously. Taken together with Eqs. (H.23), we find that the perturbations Â−

kK and
B̂−
kK are diagonal matrices. We thus use a simplified notation, Â±

kK = Â±
k δkK and

B̂±
kK = B̂±

k δkK . In summary, Eqs. (H.23), (H.24), and (H.26) completely define the
series coefficients for the profile of the droplet material if the values sφA−, φ̂A−,K , and
sR are known.

Global conditions on the volume fractions: The material conservation, Eq. (H.21),
and the total reaction flux at the stationary state, Eq. (H.22), contain the integral

∫

Vc

φBd3r =

∫ 2π

0

dϕ
∫ π

0

dθ sin θ

{∫ R(θ,ϕ)

a

φB−r
2dr +

∫ Rc

R(θ,ϕ)

φB+r
2dr

}
. (H.27)

Expanding the first term in the bracket to linear order in ε, we get

∫ R(θ,ϕ)

a

φB−(r, θ, ϕ)r
2dr ≈

∫ sR

a

φB−(r, θ, ϕ)r
2dr +

∫ R(θ,ϕ)

sR

sφB−(r)r
2dr . (H.28)

Using a Taylor expansion, the integral over the shape deviations becomes

∫ 2π

0

dϕ
∫ π

0

dθ sin θ
∫ R(θ,ϕ)

sR

sφB−(r)r
2dr ≈ ε0 sR2sφB−( sR) . (H.29)

We abbreviate the integrals over the basis functions,

F−
0 = 2

√
π

∫ sR

a

f0(r)r
2dr , F+

0 = 2
√
π

∫ Rc

sR

f0(r)r
2dr , (H.30a)

G−
0 = 2

√
π

∫ sR

a

g0(r)r
2dr , and G+

0 = 2
√
π

∫ Rc

sR

g0(r)r
2dr , (H.30b)

to write the first term of Eq. (H.27) as

∫ 2π

0

dϕ
∫ π

0

dθ sin θ
∫ R(θ,ϕ)

a

drr2φB−(r, θ, ϕ)

≈ ν−φ
A
−

sV + A−
0 F

−
0 +B−

0 G
−
0 +

[
2
√
πν−sφA− + sA−

0 f0( sR) + sB−
0 g0( sR)

]
ε0 sR2 . (H.31)

The second term of Eq. (H.27) follows analogously, and Eq. (H.21) becomes

Vcφ̄ =

[(
1− ψ+

1− ψ−
+ ν+

)
Vc +

(
ν− +

ψ+ − ψ−

1− ψ−
− ν+

)
sV +

(
ψ+ − ψ−

1− ψ−

)
ε0V̂

]
φA−

+ sR2ε0 ·
[
2
√
π(ν− − ν+)sφA− + ( sA−

0 − sA+
0 )f0( sR) + ( sB−

0 − sB+
0 )g0( sR)

]

+ A−
0 F

−
0 +B−

0 G
−
0 + A+

0 F
+
0 +B+

0 G
+
0 , (H.32)



146 Appendix H: Distortions of the spherical droplet shape

Because the perturbations εk can be arbitrary, the above equations must hold for all
values of ε. This allows us to separate the terms without any εk,

Vcφ̄ =
(
ΞcVc + ΞsV

)
· sφA− + sA−

0 F
−
0 + sB−

0 G
−
0 + sA+

0 F
+
0 + sB+

0 G
+
0 , (H.33)

from the terms containing ε0,

0 = ΞcVcφ̂
A
−,0 + ΞsV φ̂A−,0 + Â−

0,0F
−
0 + B̂−

0,0G
−
0 + Â+

0,0F
+
0 + B̂+

0,0G
+
0

+ ΞsφA−V̂ + sR2 ·
[
( sA−

0 − sA+
0 )f0( sR) + ( sB−

0 − sB+
0 )g0( sR)

]
, (H.34)

and the ones containing εk with k ≥ 1,

0 =
(
ΞcVc + ΞsV

)
· φ̂A−,k , (H.35)

where Ξc = ν+ + (1 − ψ+)/(1 − ψ−) and Ξ = 1 + ν− − ν+ − (1 − ψ+)/(1 − ψ−).
Using Eq. (H.35), we find that φ̂A−,k vanishes for k ≥ 1, which is consistent with the
idea that these perturbations do not influence the droplet volume, see Eq. (H.6).
Furthermore, the condition that the integrated reaction flux vanish in the stationary
state, see Eq. (H.22), yields

Q

kBA
· sφA− = sA−

0 F
−
0 + sB−

0 G
−
0 + sA+

0 F
+
0 + sB+

0 G
+
0 . (H.36)

The droplet radius sR and the fractions sφA− and φ̂A−,k of the building blocks are then
obtained by solving Eqs. (H.33)–(H.36).

Resulting stationary state conditions: The stationary state values are obtained
from the above equations by setting ε = 0. This leads to a system of linear equations
for the five unknowns sA±

0 , sB±
0 , and sφA−, which reads

sA−
0 f

′
0(a) +

sB−
0 g

′
0(a) +

sφA− · 2
√
πq

DB
= 0 (H.37a)

sA−
0 f0(

sR) + sB−
0 g0(

sR) + 2
√
πν−sφA− = 2

√
π

(
ψ− +

γβ−
sR

)
(H.37b)

sA+
0 f

′
0(Rc) +

sB+
0 g

′
0(Rc) = 0 (H.37c)

sA+
0 f0(

sR) + sB+
0 g0(

sR) + 2
√
πν+sφA− = 2

√
π

(
ψ+ +

γβ+
sR

)
(H.37d)

sA−
0 F

−
0 + sB−

0 G
−
0 + sA+

0 F
+
0 + sB+

0 G
+
0 − Q

kBA
sφA− = 0 . (H.37e)

The solution can be obtained analytically, but they are complicated and therefore
omitted here.
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Conditions for the perturbations of the volume fraction profiles: The series
coefficients of the perturbations, Â±

k , B̂±
k , and φ̂A−,0, are obtained by matching terms

with the same power in εk. The resulting system of linear equations reads

Â−
k f

′
k(a) + B̂−

k g
′
k(a) + φ̂A−,0 ·

2
√
πq

DB
· δk0 = 0 (H.38a)

Â−
k fk(

sR) + B̂−
k gk(

sR) + 2
√
πν−φ̂

A
−,0 · δk0 =

γβ−
sR2

hk −
sA−
0 f

′
0(

sR) + sB−
0 g

′
0(

sR)

2
√
π

(H.38b)

Â+
k fk(

sR) + B̂+
k gk(

sR) + 2
√
πν+φ̂

A
−,0 · δk0 =

γβ+
sR2

hk −
sA+
0 f

′
0(

sR) + sB+
0 g

′
0(

sR)

2
√
π

(H.38c)

Â+
k f

′
k(Rc) + B̂+

k g
′
k(Rc) = 0 , (H.38d)

Â−
0 F

−
0 + B̂−

0 G
−
0 + Â+

0 F
+
0 + B̂+

0 G
+
0 +

(
ΞcVc + ΞsV

)
φ̂A−,0

= sR2 ·
[
( sA+

0 − sA−
0 )f0(

sR) + ( sB+
0 − sB−

0 )g0(
sR)
]
− ΞV̂ sφA− , (H.38e)

where we used the fact that the droplet volume is only affected by the isotropic
perturbation mode, see Eq. (H.6). The Eqs. (H.38) hold for each k ∈ N, giving rise
to solutions for the unknowns Â±

k , B̂±
k , and φ̂A−,0. Note that these equations contain

the stationary state series coefficients, which therefore have to be calculated first.

H.4 Perturbation growth rates

The dynamical equation (H.12) together with the definition of the droplet surface,
Eq. (H.5), lead to the evolution equation for the perturbations,

∂tεk =
DB

ψ− − ψ+

· Ik
[
∂rφ

B
+

(
R(θ, ϕ), θ, ϕ

)
− ∂rφ

B
−
(
R(θ, ϕ), θ, ϕ

)]
. (H.39)

The right hand side of this equation is linear in ε. It turns out that the different
modes do not interact, i. e. the right hand side of Eq. (H.39) only depends on εk.
Consequently, the perturbations evolve exponentially, εk(t) = εk(0) · eλkt, defining
the perturbation growth rates λk. Inserting the volume fraction profile given in
Eq. (H.18) into Eq. (H.39), we arrive at an implicit condition for the λk, which reads

λk =
DB

ψ− − ψ+

·
((

Â+
k − Â−

k

)
f ′
k( sR) +

(
B̂+
k − B̂−

k

)
g′k( sR)

+
1

2
√
π
·
[(

sA+
0 − sA−

0

)
f ′′
0 ( sR) +

(
sB+
0 − sB−

0

)
g′′0( sR)

])
. (H.40)

Note that growth rates λk only depend on the degree of the perturbation l = ⌊
√
k⌋.

This is because both the curvature of the droplet surface, see Eq. (H.11), and the
fundamental solutions of the volume fractions, see Eq. (H.17), are independent of
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Figure H.2: Growth rate λ0 of perturbations preserving spherical symmetry as a function
of the droplet radius sR calculated in three different approximations: for
general distortions described by spherical harmonics (blue solid line, this
appendix), for a spherical droplet with the full dynamics of the volume
fractions (orange dashed line, see Section 3.2), and for the reaction-limited
case (green dotted line, see Section 2.2). (A) First-order kinetics with
parameters given in Fig. 2.3. (B) Autocatalytic growth with parameters
given in Fig. 2.4. The stationary state radius sR is varied by adjusting φ̄.
Grey areas mark the region of the passive core with Q = 0.

the order mk. The growth rates given in Eq. (H.40) allow us to define the speed of
each interface point, v = ∂tR, which reads

v(θ, ϕ) =
∞∑

k=0

λkεkYk(θ, ϕ) . (H.41)

We verify the calculations of this section by relating the growth rates of isotropic
perturbations, k = 0, to the spherical symmetric perturbation analysis of Section 3.2.
Fig. H.2 shows the associated perturbation growth rates as a function of the droplet
radius. The curves generally agree very well, compare the blue solid and the orange
dashed line. We attribute the small deviations to the fact that we consider the
limit of fast diffusion of the building blocks in this section. Additionally, we show
the perturbation growth rates of a reaction-limited model, where we also consider
fast diffusion of the droplet material, see green dotted line in Fig. H.2. Here, the
deviations are larger, but the transition point, where the system switches from an
unstable to a stable configuration, is well captured by all three cases. The verification
presented here obviously only confirms the correctness for the isotropic case, k = 0,
but since this requires the most sophisticated calculation and the other cases use the
same formulas, we trust the result for all k.
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I Multiple droplets with gradients inside droplets

The model of multiple droplets presented in Section 4.1 considers the simplified
case of homogeneous distributions of building blocks within droplets. Here, we test
whether this approximation is also applicable in the autocatalytic scenario, where
soluble building blocks entering the droplet have a high propensity to get converted
to droplet material. This generally leads to a dilution of building blocks away from
the droplet surface and may thus impair the effect of the catalytic core.

In this section, we extend the approximate model introduced in Section 4.1 to
also take into account the spatial distribution of components inside droplets. For
simplicity, we consider a spherical geometry for each droplet and assume that the
distributions φA(r) and φB(r) are in stationary state. They are thus determined
by the Eqs. (2.1) with vanishing time derivatives. Adding these two equations, we
retrieve 0 = ∂rj with the local flux j = −DA∂rφ

A −DB∂rφ
B, where j vanishes both

at the cores and at the system boundary. j is therefore zero everywhere and we use
this property to relate the two profiles, DAφ

A(r) +DBφ
B(r) = DAφ

A
−(R) +DBψ−,

where we integrated j once and derived the right hand side using the fractions at the
inner droplet surface, which read φA−(R) ≈ (1 − ψ−)φ

A
0 and φB− ≈ ψ−, respectively.

Using this relation between the volume fractions, we get a single reaction-diffusion
equation for the fraction of the soluble building blocks, which reads

0 =
DA

r2
∂

∂r

(
r2∂rφ

A(r)
)
− k−φ

A(r) +

(
ψ− +

DA

DB

φA−(R)

)
kBA , (I.1)

where k− = kcψ− + kAB + kBADA/DB and we used the linearization presented in
Eq. (3.1). The associated boundary conditions read DA ∂rφ

A(r)
∣∣
r=a

= qφA(a) and
φA(R) = φA−(R), where q = Q/(4πa2). The solution to this ordinary differential
equation evaluated at the surface of the core reads

φA(a) =
2DAe

(a+R)αA
−

DBk− ·
(
e2Rα

A
−

[
DA + aq + aDAαA−

]
− e2aα

A
−

[
DA + aq − aDAαA−

])

·
[
kBA ·

(
DAφ

A
−(R) +DBψ−

) (
aαA− cosh

[
(a−R)αA−

]
− sinh

[
(a−R)αA−

])

+RαA− ·
(
(DBk− −DAkBA)φ

A
−(R)−DBkBAψ−

)]
, (I.2)

where αA− =
√
k−/DA. Fig. I.1A shows φA(a) as a function of the droplet radius R.

Apparently, the fraction of building blocks at the core is reduced due to the gradients
inside the droplet. However, this reduction is small for the standard parameters given
in Table 6.2, although it depends strongly on the diffusion constantDA of the building
blocks, which directly enters the decay constant αA− of the exponential functions in
Eq. (I.2). We therefore also show φA(a) for a reduced diffusivity, DA = 1 µm3/s, using
dashed lines in Fig. I.1A. Clearly, the reduction of the volume fraction of building
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Figure I.1: Approximate model with gradients inside the droplets. (A) Fraction φA(a)
of building blocks at the core normalized to the value φA− close to the surface
as a function of the droplet radius R for diffusivities DA = 5 µm3/s (solid
lines) and DA = 1 µm3/s (dashed lines). (B–D) Stability diagrams showing
regions with no droplets (white region), one stable droplet (blue region), and
two stable droplets (green region). Regions with multistability are drawn in
a hatched style with colors corresponding to the possible stable states. The
model parameters of (B) first-order kinetics and (A, C, D) autocatalytic
growth are given in Fig. 2.3 and Fig. 2.4, respectively.

blocks at the core is now stronger than in the case for the standard diffusivity. Since
the diffusivity inside centrosomes has not been measrued and it is quite reasonable
to assume that it is lower there [86], we use the arbitrarily reduced diffusivity
DA = 1 µm3/s to discuss the effect of gradients on the droplet stability.

We repeat the stability analysis presented in Section 4.4 using the reduced concen-
tration profiles of the soluble building blocks obtained in this section. Fig. I.1 shows
the results for both scenarios A and B and for different diffusivities DA. Apparently,
multiple droplets can still be stable in all cases, but the stability thresholds are
shifted with respect to the simplified model discussed in the main text, e.g. compare
Fig. I.1D to Fig. 4.8F . All in all, accounting for the diffusion profile within the
droplets changes the results quantitatively, but multiple droplets can still be stable
and the qualitative conclusions drawn in Section 4.4 thus still hold.
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J Numerical stability analysis of multiple droplets

The dynamics of multiple droplets are captured by a system of ordinary differential
equations, see Section 4.1. In a stationary state of such a system all proper droplets
must have the same volume, since otherwise there would be a flux of material
between the droplets, see Section 4.3. We can thus generally classify stationary
states configurations by the number m1 of proper droplets with volume V and
consequently m0 = m −m1 bare cores without surrounding droplet material. For
example, in the case of two cores in a common system, there are three possible
stationary configurations: V (0) = {0, 0}, V (1) = {V, 0}, and V (2) = {V, V }. We then
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Figure J.1: Stability diagrams of at most two droplets forming in the autocatalytic
scenario. The catalytic activity Q of the cores and the fraction φ̄ of droplet
material are varied. (A–C) Stability of m1 = 0, 1, 2 proper droplets,
which are either stable (green), unstable (red), or have both stable and
unstable solutions (blue). No stationary states exist in the white regions.
(D) Combined result of panels A–C (identical to Fig. 4.8B). Here, two bare
cores (white region), a single droplet (blue region), or two droplets (green
region) can be stable. Regions with multistability are drawn in a hatched
style with colors corresponding to the possible states. In all panels, the
model parameters are taken from Fig. 2.4.
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Figure J.2: Histograms of stationary droplet volumes obtained from numerical simula-
tions of two droplets. For each panel, 103 simulations with random initial
conditions were performed and the final volumes V1 and V2 of the two
droplets were recorded. All panels share the same ordinate and the model
parameters of the autocatalytic growth given in Fig. 2.4 are used. The
total amount of material φ̄Vc and the catalytic activity Q were modified
as indicated to highlight common scenarios: (A) no droplets; (B) a single
droplet and a bare core; (C) a multistable state with either a single or two
droplets; (D) a pair of droplets.

determine their stability by numerically calculating the eigenvalues of the associated
Jacobian given by Eq. (4.7). This procedure is performed for all possible droplet
configurations, see panels A–C of Fig. J.1. We thus identify regions of parameter
values where different number of droplets can be stable. By using different colors
for these states, the results can be summarized in a single stability diagram, see
Fig. J.1D .

We also present an alternative way of determining stability diagrams, which
relies on the numerical solution of the evolution equation (4.1). Here, we ran-
domly choose the initial droplet volumes Vi(t = 0) from the interval [0, Vmax] with
Vmax = φ̄Vc/(mψ−). For each parameter point investigated, we simulate 103 trajec-
tories with different initial conditions for a duration of 107 s. We record the final
droplet volumes corresponding to stationary states and summarize these data in
histograms like the ones shown in Fig. J.2. The clusters in these histograms are then
classified according to the number of proper droplets they contain. This procedure
allows us to determine the possible stationary state configurations for each parameter
point, which we then plot in a stability diagram, see Fig. 4.10.
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K Numerical implementation of the stochastic model

We developed a stochastic version of our active droplet model in Chapter 5. For
simplicity, we neglect the creation of droplet material in the solvent, kAB = 0, ignore
surface tension effects, γ = 0, and consider strong phase separation, ψ+ = 0, which
abolishes droplet material in the solvent. Consequently, the state variables of the
system are the number NB

i of B particles inside droplet i and the positions xj of A
particles, where j = 1, . . . , NA. Here, we give detailed information on the numerical
implementation, which is summarized in the illustration Algorithm A.

Diffusion of A particles: We simulate the diffusion of A particles using Brownian
dynamics [249, 250], where we discretize time with a constant time step ∆t, which
is a parameter of the algorithm. At each time step, the position xj = (xj, yj, zj)

⊤ of
the j-th particle is changed by a random amount,

xj(t+∆t) = xj(t) +∆xj(∆t) , (K.1)

where ∆xj is a vector of three random variable chosen from the step size distribution,

P (∆x; ∆t) =
1√

4πDA∆t
e
− ∆x2

4DA∆t , (K.2)

which depends on ∆t and the diffusivity DA [215]. The standard deviation of this
distribution sets the typical step size σP =

√
2DA∆t. Due to the no-flux condition at

the system boundary, this stepping scheme must be modified there. We approximate
the boundary by a plane, since its radius of curvature is much larger than σP . The
associated probability distribution of step sizes can be determined analytically [251].
In the one-dimensional case with a boundary at x = x0, it reads

Pwall(∆x|x0; ∆t) = P (∆x; ∆t) + P (2x0 −∆x; ∆t) , (K.3)

where ∆x ≤ x0 [251]. This solution can be interpreted as placing a mirror particle
on the opposite side of the boundary, which can be generalized to higher dimension.
However, we avoid the required geometrical calculations by using an alternative
stepping scheme, where we reject a step if a particle would move out of the system,
see lines 3–10 in Algorithm A. This is equivalent to replacing the second term on the
right hand side of Eq. (K.3) by a Dirac delta function with an appropriate weight,

P̃wall(∆x|x0; ∆t) = P (∆x; ∆t) + δ(∆x)

∫ ∞

x0

P (x′; ∆t)dx′ , (K.4)

where again ∆x ≤ x0. This expression obeys detailed balance in equilibrium, but it
reduces the diffusion constant in a layer of thickness σP near the boundary, which is
unimportant for our results, since the droplets are far away from the boundary.
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Data: model parameters and initial droplet configuration
Result: droplet volumes Vi over time t

1 initialization of particle positions and types;

2 while t < tend do

3 foreach particle A do
4 try a step of the random walk with time step ∆t;
5 if new position is inside the system then
6 place particle at new position;
7 else
8 keep particle at old position;
9 end

10 end

11 foreach droplet i do
12 foreach particle A inside droplet i do
13 if UniformRandom(0, 1) < k∆t then // A→ B in droplet

14 increase NB
i by one;

15 turn particle into type B;
16 end
17 if particle inside core of droplet i and

UniformRandom(0, 1) < kQ∆t then // A→ B at core

18 increase NB
i by one;

19 turn particle into type B;
20 end

21 end
22 foreach particle B inside droplet i do
23 if UniformRandom(0, 1) < kBA∆t then // B → A in droplet

24 decrease NB
i by one;

25 turn particle into type A;
26 choose position of particle randomly within droplet i;
27 end

28 end

29 calculate droplet volume Vi based on NB
i ;

30 end

31 t = t+∆t;
32 end

Algorithm A: Summarized logic of the stochastic simulations. In this pseudocode,
UniformRandom(0, 1) denotes a function that returns a pseudo random number
chosen from the uniform distribution over the interval [0, 1).
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Figure K.1: Droplet volume as a function of time for different time steps ∆t in the
stochastic model withN = 1 000 particles. (A) Single realizations. (B) En-
semble average of 32 independent runs (line: mean volume; shaded areas:
mean ± standard deviation).

Chemical reactions: The autocatalytic reaction catalyzes the production of droplet
material B from soluble building blocks A inside the droplet. The probability to
turn a single A particle into the B form during a time step ∆t is approximated by
k∆t, where k = ψ−kc is the associated rate constant. This transition is implemented
by comparing k∆t to a random number chosen uniformly from the interval [0, 1),
see lines 13–16 of Algorithm A, and thus only works reliably if ∆t ≪ k−1. The
catalytic activity of the cores is implemented similarly, where we allow particles to
diffuse into the core of volume Va = 4πa3/3 where they become B particles with
probability kQ∆t, see lines 17–20 in Algorithm A. Here, kQ = Q/Va is the associated
rate constant, where Q parameterizes the core activity.

Likewise, each B particle can become an A particle with rate kBA, see lines 23–27
in Algorithm A. After the reaction occurred, we also assign a random position within
the droplet, since we do not keep track of the position of B particles.

Choosing the optimal time step: The run time required to simulate Algorithm A
scales linearly both with the number N of particles and with the inverse time
step ∆t−1 if we simulate the system for a fixed duration tend. Here, a single com-
putation step is given by the lines 2–31 in Algorithm A. To minimize the run time,
it is therefore advisable to choose large time steps. However, the diffusing particles
only sample space fine enough if ∆t . a2/DA, where the radius a of the core marks
the smallest length scale in the system. Additionally, the chemical reactions are only
simulated correctly if ∆t ≪ k−1

Q , where kQ is assumed to be the largest reaction
rate constant. Taken together, we thus get ∆t . 1ms using the parameters of the
autocatalytic scenario from Table 6.2. Using ∆t = 1ms gives reasonable growth
curves, see Fig. K.1, and we thus use it for all simulations shown in this thesis.



Nomenclature

This is a list of important symbols and abbreviations used in this thesis:

A Surface area of a droplet; A = 4πR2 for a spherical shape

a Size of the core (the centrioles) located at the center of the droplet, page 31

D Diffusion constant, page 29

F Helmholtz free energy, page 14

f Helmholtz free energy density

J Integrated material flux, page 31

kAB Rate constant for the chemical reaction A→ B, page 29

kB Boltzmann constant, kB ≈ 1.38× 10−23 J/K, page 12

kBA Rate constant for the chemical reaction B → A, page 29

kc Rate constant for the chemical reaction A+B → 2B, page 29

m Number of droplets in the system, page 35

N Total number of molecules

n Number density, page 12

NEBD Nuclear envelope breakdown; time cue used to align data, page 104

n Surface normal vector, page 30

p Pressure, page 17

P (x; y) Probability distribution of x given y

PCM Pericentriolar material; surrounds centrioles to define centrosomes, page 7

Q Strength of the catalytic activity at the core (the centrioles), page 31

(r, θ, ϕ) Spherical coordinate system, see Eq. (H.1), page 140

R Droplet radius
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RNAi RNA interference; reduces the amount of a specific protein in a cell, page 4

S Entropy, page 19

T Temperature

t Time

V Droplet volume; V = 4πR3/3 for a spherical shape

Vc System (cell) volume

(x, y, z) Cartesian coordinate system, page 140

YL,M Real spherical harmonic function with degree L and order M , page 58

α Inverse length scale, e. g. for solving diffusion equations, page 41

β−, β+ Sensitivity parameters determining the influence of surface tension onto
the coexisting volume fractions at the interface, page 18

χ2 Squared residual quantifying the difference between the model and experi-
mental data, page 109

δ(x) Delta-distribution, which is only non-zero if x = 0, page 24

∆t Time step in numerical simulations, page 92

φ Volume fraction given by φ = νn, page 12

φ̄ Average fraction of droplet components in the system, page 15

γ Surface tension, page 14

λ Growth rate (of a droplet or of a perturbation)

µ̃ Derivative of the free energy density f with respect to the volume fraction φ.
Here, µ = νµ̃ is the chemical potential, page 15

ν Molecular volume, page 12

Π Laplace pressure, Π = 2γ/R for a spherical droplet of radius R, page 17

τ Droplet growth time scale, page 41

ψ−, ψ+ Coexisting volume fractions at a flat interface between two phases, page 18
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