“+.mpipks TECHNISCHE
. @ UNIVERSITAT
: DRESDEN

Emergence and persistence of diversity
in complex networks

Dissertation
zur Erlangung des akademischen Grades
Doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt von
Gesa Angelika Bohme,

geboren am 09.03.1985 in Miinchen






Abstract

Complex networks are employed as a mathematical description of complex sys-
tems in many different fields, ranging from biology to sociology, economy and
ecology. Dynamical processes in these systems often display phase transitions,
where the dynamics of the system changes qualitatively. In combination with
these phase transitions certain components of the system might irretrievably go
extinct. In this case, we talk about absorbing transitions. Developing mathe-
matical tools, which allow for an analysis and prediction of the observed phase
transitions is crucial for the investigation of complex networks.

In this thesis, we investigate absorbing transitions in dynamical networks,
where a certain amount of diversity is lost. In some real-world examples, e.g. in
the evolution of human societies or of ecological systems, it is desirable to main-
tain a high degree of diversity, whereas in others, e.g. in epidemic spreading, the
diversity of diseases is worthwhile to confine. An understanding of the underly-
ing mechanisms for emergence and persistence of diversity in complex systems
is therefore essential. Within the scope of two different network models, we
develop an analytical approach, which can be used to estimate the prerequisites
for diversity.

In the first part, we study a model for opinion formation in human societies.
In this model, regimes of low diversity and regimes of high diversity are sepa-
rated by a fragmentation transition, where the network breaks into disconnected
components, corresponding to different opinions. We propose an approach for
the estimation of the fragmentation point. The approach is based on a linear
stability analysis of the fragmented state close to the phase transition and yields
much more accurate results compared to conventional methods.

In the second part, we study a model for the formation of complex food webs.
We calculate and analyze coexistence conditions for several types of species in
ecological communities. To this aim, we employ an approach which involves an
iterative stability analysis of the equilibrium with respect to the arrival of a new
species. The proposed formalism allows for a direct calculation of coexistence
ranges and thus facilitates a systematic analysis of persistence conditions for
food webs.

In summary, we present a general mathematical framework for the calculation
of absorbing phase transitions in complex networks, which is based on concepts
from percolation theory. While the specific implementation of the formalism
differs from model to model, the basic principle remains applicable to a wide
range of different models.



Zusammenfassung

Komplexe Netzwerke werden zur mathematischen Beschreibung komplexer Sys-
teme in vielen Bereichen eingesetzt, angefangen von der Biologie, iiber die Sozio-
logie und Wirtschaft, bis hin zur Okologie. Dynamische Prozesse in solchen Sys-
temen weisen oft Phasentibergange auf, bei welchen sich die Dynamik des Sys-
tems qualitativ dndert. Im Zusammenhang mit derartigen Phasentibergangen
kann es vorkommen, dass bestimmte Komponenten des Systems unwiederbring-
lich verloren gehen. In diesem Fall sprechen wir von einem absorbierenden
Ubergang. Die Entwicklung mathematischer Methoden zur Analyse und Vorher-
sage der beobachteten Phaseniibergange ist entscheidend fiir die Untersuchung
von komplexen Netzwerken.

In dieser Arbeit behandeln wir absorbierende Ubergéinge in dynamischen
Netzwerken, in welchen Diversitat verloren geht. In manchen Beispielen aus der
realen Welt, z.B. in der Entwicklung einer Gesellschaft oder eines Okosystems,
ist es wiinschenswert ein hohes Mafl an Diversitat zu erhalten, wahrend es in
anderen, z.B. bei der Ausbreitung von Krankheiten, erstrebenswert ist die Diver-
sitat an Erkrankungen einzudammen. Dafiir ist ein Verstandnis der zu Grunde
liegenden Mechanismen fiir die Enstehung und das Bestehen von Diversitét
essentiell. Im Rahmen zweier verschiedener Netzwerk Modelle entwickeln wir
einen analytischen Ansatz, der verwendet werden kann um notwendige Voraus-
setzungen fiir Diversitat abzuleiten.

Im ersten Teil betrachten wir ein Modell, das Meinungsbildungsprozesse in
einer Gesellschaft beschreibt. In diesem Modell sind Phasen geringer Diver-
sitat von Phasen hoher Diversitat durch einen Fragmentierungsiibergang ge-
trennt, in welchem das Netzwerk, entsprechend den unterschiedlichen Meinun-
gen, in separate Komponenten zerfallt. Wir entwickeln einen Ansatz fiir die
Bestimmmung des Fragmentierungspunktes. Der Ansatz basiert auf einer li-
nearen Stabilitatsanalyse des fragmentierten Zustands in der Nihe des Phasen-
tibergangs und liefert wesentlich genauere Ergebnisse im Vergleich zu konven-
tionellen Methoden.

Im zweiten Teil betrachten wir ein Modell, das die Enstehung von komplexen
Nahrungsnetzen beschreibt. Wir berechnen Koexistenzbedingungen fiir ver-
schiedene Typen von Spezies in einer 6kologischen Population. Dafiir verwenden
wir einen Ansatz, der eine schrittweise Stabilitatsanalyse des Gleichgewichtszu-
standes vor der Ankunft einer neuen Spezies beinhaltet. Der Formalismus
erlaubt eine unmittelbare Berechnung der Koexistenzbereiche von Nahrungs-
netzen und ermoglicht somit eine systematische Untersuchung der Bedingungen
fiir deren Erhalt.

Insgesamt formulieren wir eine mathematische Vorgehensweise fiir die Berech-
nung von absorbierenden Phaseniibergangen in komplexen Netzwerken, welche
auf Konzepten aus der Perkolationstheorie basiert. Wahrend sich die jeweilige
Umsetzung unseres Ansatzes von Modell zu Modell unterscheidet, ldsst sich das
Grundprinzip auf einen weiten Bereich unterschiedlicher Modelle iibertragen.
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1 Introduction

In our world of ongoing globalization we are experiencing an increasing diver-
sity in many aspects. Starting with the broad variety of different products in
supermarkets, to a wide range of newspapers and media channels in different
languages and, not at last, to the incredible amount of options the internet
offers, diversity has become an ubiquitous feature in our every-day life. Un-
doubtedly, this development is a great achievement, as the coexistence of many
different opinions, languages and traditions constitutes an enrichment for the
human society and promotes exchange and, desirably, tolerance. At the same
time, it can be observed that an increased exchange between continents and cul-
tures leads to a loss of traditions, to disappearance of languages or to extinction
of species [1-3]. Therefore, a major challenge consists in maintaining diversity
in a more and more “connected” world.

It is evident that not only human society, but nature itself displays an ex-
ceptional degree of diversity at any level of observation. For example, there are
many different proteins and cell types, a great variety of microorganisms and
organisms and an immense number of different ecological species. Considering
this biological diversity, one can ask why there are so incredibly many varia-
tions in nature. While there is certainly no exhaustive answer to this question,
the advantages of diversity are rather obvious: first of all, different compo-
nents can accomplish different functions, so that a division of labour is realized,
which makes, for example, a cellular process much more efficient [4]. A second
positive aspect is an enhanced resilience. For this reason, in many technical
systems redundant diversity is intentionally implemented in order to minimize
sensitivity against attacks [5, 6]. So, one can state that diversity, apart from
being “exciting” and “interesting”, comprises benefits in terms of efficiency and
stability for a system.

Next, one can ask how the coexistence of these incredibly many variations
in nature is achieved, i.e. what are the prerequisites to facilitate the emergence
and persistence of diversity in a system? This leads directly to the central
question of the present work. Here, we mathematically explore the conditions
which are required for a system in order to exhibit diversity. Understanding the
principles for the development of diversity constitutes not only a fundamental
ingredient for studying evolution and functioning of these systems, but it is also
essential for maintaining diversity in given systems and for engineering diversity
in artificial systems.

The systems we are referring to are so-called complex systems. All the exam-
ples mentioned above, from single cells to systems of cells and from ecological
systems to human societies, represent complex systems. There exist many dif-
ferent definitions for the term complezity, depending on the context and the
field [7, 8]. Concerning complex systems, it is widely agreed upon, that these
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are systems which comprise one common characteristic, namely the emergence
of collective properties [9-11]. This means, complex systems exhibit features
which emerge as a result of the local interactions between many interacting
components. Remarkably, the emergent features are not present at a local scale,
i.e. they are not inherent to the individual components, but rather emerge at
the system level, due to the aggregate interactions.

Examples for emergent phenomena are synchronization, ordering and swarm-
ing processes [12-14], or the formation of patterns, of complex, hierarchical
structures and distinct communities [15-17]. While the first examples suggest,
that emergent properties tend to blur all distinctions at the individual level,
the latter ones indicate that also the opposite can happen, namely diversity can
arise in an initially homogeneous system.

Intriguingly, there are also systems which display both, regimes of diversity
and regimes of homogeneity, separated by a phase transition. A transition to
a state of lower diversity implies the extinction of part of the initial amount
of components in the system. These phase transitions are therefore called ab-
sorbing transitions. In real-world situations, absorbing transitions often imply
profound changes, as they lead to irretrievable loss of species, languages, tra-
ditions or opinions. Conversely, such transitions can be beneficial, when for
example infectious diseases, vermin or criminality go extinct. Because of their
particular importance for real-world applications absorbing transitions are the
major concern of the present work. Our goal is to identify the conditions which
have to be imposed on the parameters of the system, in order to drive the system
into a specific regime.

A convenient representation of complex biological, technological or social sys-
tems can be obtained by introducing networks [18-21]. A network description
involves a reduction of the system’s components to nodes and a reduction of
the interactions between the components to links, connecting the nodes. Natu-
rally, in a network description many details of the original system are neglected.
However, the simplification still captures the essential features and facilitates a
mathematical analysis. For example, structural properties of the derived net-
work can provide insight into functioning and failure of the system under con-
sideration, or allow for an identification of critical and redundant components
of the system.

As most complex systems in nature are not static, but underly constant evo-
lution and rearrangement, one typically has to deal with dynamical networks.
The large number of degrees of freedom and the typically stochastic and non-
linear nature of the dynamical processes, make the analysis of large dynamical
networks difficult. Computer simulations of the microscopic dynamics, though
in principle viable, often require immense computational effort and give little in-
sight into general mechanisms. Therefore, one is interested in developing feasible
analytical methods to describe dynamics in complex networks. A common ap-
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proach is the derivation of a low-dimensional system of equations which captures
the dynamics of macroscopic quantities and thus provides valuable information
about statistical properties and equilibrium states of the system [18, 22, 23]. In
particular, it allows for the investigation of phase transitions, characterized by
an abrupt change in the nature of the equilibrium states. One challenge in this
approach is to find adequate macroscopic variables, which faithfully predict the
global behavior of the full system.

In the present work we consider network models which exhibit both, homo-
geneous phases and phases of considerable diversity. Investigating the require-
ments for diversity, our goal is to determine the conditions where phases of high
diversity appear or disappear, respectively. To this aim we develop a math-
ematical approach for the calculation of phase transitions in network models.
The approach allows for the estimation of the parameter ranges where diversity
emerges, and those regions in parameter space where diversity is lost.

We demonstrate our approach using two different classes of models. The first
model describes opinion formation in a human society, while the second model
describes the formation of ecological communities. Although the specific proce-
dure depends on the type of the model and, in particular, on the nature of the
phase transition, the general idea is similar for both cases: We study percolation
in a state close to the phase transition. Then, using linear stability analysis, we
identify the conditions where the steady state becomes unstable, corresponding
to a percolation threshold. We argue that the proposed approach can be applied
to a wide range of different models.

The outline of the present work is the following: In Chapter 2, we give a
glimpse into complex network theory and dynamical systems theory, providing a
methodological basis for the subsequent chapters. We start with a brief overview
of the basic definitions in complex networks theory and introduce the most
important properties of real-world networks and network models. Then, we
discuss dynamical processes in networks and provide methods for the analysis
of dynamical networks.

In Chapter 3, we discuss a paradigmatic model for opinion formation in a
human society, a so-called adaptive voter model. The model exhibits a phase
transition between a globally homogeneous state and a state where several opin-
ions coexist within separated subgroups of the system. Common analytical
approaches fail in predicting this phase transition faithfully. In this work we
propose an alternative analytical approach for the calculation of the phase tran-
sition in the adaptive voter model, which yields a very good agreement with
simulation results. We first explain our approach in detail for the simplest ver-
sion of the model and then extend our analysis to more sophisticated variants of
the model. For example, we consider an extension of the model to an arbitrary
number of states. For this multi-state voter model we obtain a phase diagram in
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which three distinct regimes occur. Furthermore, our calculations reveal classes
of equivalent systems in the space of all multi-state voter models, i.e. systems
which behave similarly with respect to certain phase transitions. The crucial
point of our approach is the choice of an appropriate basis set for the derivation
of low-dimensional equations, constituting the main result of this chapter.

In Chapter 4, we study the formation of complex food webs in ecological com-
munities, employing a so-called metacommunity model. We develop a mathe-
matical framework which allows for the computation of the parameter range,
where several (competing) species coexist in the system. Then, we analyze the
dependence of this parameter range on the interactions between species, the
food web, and on the properties of the underlying landscape, the network of
resource-patches. The main achievement of this chapter constitutes a general-
ized framework for the calculation of coexistence ranges for ecological species,
applying an approach which originates in the calculation of epidemic thresholds.

In Chapter 5, we summarize the main results obtained in the course of this
work. We point out that the mathematical formalisms developed here uses a
simple, but powerful concept to obtain analytical results for absorbing transi-
tions in network models, which makes it a promising tool for the analysis of
existing and future models from different fields.



2 Basic concepts of network theory

In this chapter, we give a short introduction into the terminology and the basic
concepts of network theory. Furthermore, we provide an outline of dynamical
processes in networks and discuss some important tools for the analysis of such
processes.

We note that the selection and the scope of the presented topics do not con-
stitute an extensive survey of network theory or dynamical systems theory. The
aspects discussed here rather aim to provide a reasonable background for under-
standing and assessing the specific problems and results presented in this work.
For a broader analysis of the subject, we refer to comprehensive textbooks as
e.g. [18, 22, 24-26].

Further, we note that some of the theoretical concepts introduced here, al-
though mathematically sound, are not presented in a mathematically rigorous
way. We rather try to illustrate the definitions and approaches in a way that
is accessible for the nonspecialist reader and that emphasizes the general idea.
References to the corresponding profound literature are provided.

We start in Section 2.1 with basic definitions concerning the structure and
properties of networks and introduce the most important network models. In
Section 2.2 we discuss dynamics in networks. We illustrate different types of
dynamical processes using a simple example model. In Section 2.3 we provide
some central mathematical concepts for the analysis of network dynamics.

2.1 Network structure

A network is an abstract description of a complex system comprising many in-
teracting components. The central aim of network theory is to understand the
functioning and failure of complex systems in nature. Often, the function of
these systems is closely related to the interaction pattern of the components,
i.e. the underlying network structure. In order to compare and classify different
types of networks with respect to their structural properties, a quantitative de-
scription of networks is sensible. Based on the main characteristics of real-world
networks, i.e. networks representing biological, social or technological systems
in nature, one can then construct network models which resemble the observed
properties.

In the following we present the most important characteristics of networks
and their quantification. Then, we introduce commonly used network models
and discuss their properties. This section is mainly based on [18, 20, 27].
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2.1.1 Properties of networks

Describing a complex system as a network implies a reduction of its components
to nmodes and a reduction of the interactions between the components to links
between the nodes. Then, the system can be depicted as a graph with a given
number of nodes N and a given number of links L (see Fig. 2.1 for examples).
We will refer to the size of a network by the total number of nodes, N, it is
composed of.

Two nodes which are connected via a link are said to be neighboring, or
adjacent nodes. A path is a sequence of nodes, where consecutive nodes in the
sequence are adjacent and every node in the sequence appears only once. A
cycle is a closed path, i.e. a sequence of at least three adjacent nodes where the
first and the last node in the sequence coincide. In this work we consider simple
graphs. This means, we do not allow for multiple links connecting the same pair
of nodes and we do not allow for loops, i.e. links going from a node to itself.

A specific graph is completely defined by its adjacency matrixz, a N x N-matrix
A with elements

g - 1 if there is a link from node ¢ to node 3,
“ 10 if there is no link from node i to node 7.

If A is symmetric, the corresponding graph is undirected, otherwise the graph
is directed. A directed graph represents unidirectional relationships between
neighboring nodes. For example food webs, which describe predator-prey rela-
tionships, or gene regulatory networks, which describe activating and inhibitory
interactions between proteins, are represented by directed graphs. On the con-
trary, networks of human acquaintances or many technological networks are
usually assumed bidirectional and are therefore described by undirected graphs.

Depending on the system under consideration, some links might have more
importance than others, giving rise to link weights. In this case, the entries of
the corresponding adjacency matrix W assume values w;; (in general w;; # 1)
if 7 is connected to j, and 0 otherwise. For illustration of the different graph
types, two simple example graphs and their corresponding adjacency matrices
are given in Fig. 2.1.

The number of neighbors of a node ¢ is called the degree k; of the node. Given
the adjacency matrix of a graph, the degree of a node 7 can be calculated as

J J

In a directed network, as A;; # Aj;, it follows that in general the out-degree k?**,
corresponding to the number of links emanating from node i, and the in-degree
kin corresponding to the number of links arriving at node 4, are different. Out-
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Figure 2.1: Examples for simple graphs. Shown are a) an undirected, un-
weighted graph and b) a directed, weighted graph with the corresponding ad-
jacency matrices. Nodes are depicted as circles, undirected links as lines and
directed links as arrows. Different arrow widths correspond to different weights.
The nodes are numbered corresponding to their position in the adjacency ma-
trix.

and in-degree of a node ¢ are accordingly given by,
EM=) Ay, kM=) A
J J

After this brief description of the main building blocks of a network we now
turn to the most important statistical properties, which allow for a certain dis-
tinction and classification of networks. It is obvious that two networks, though
comprising equal numbers of nodes and links, in general differ with respect to
their structure. A characterization of the structural properties of a network
often provides information about the functioning of a related real-world system
and becomes crucial when considering dynamics on networks, as we will see
later.

One important network property is the degree distribution, which captures the
probability P(k) that a randomly chosen node has degree k. The mean degree
of a network is fully determined by the total number of nodes and links,

k) = S kP() = %Zk:%

The degree distribution quantifies the heterogeneity of nodes with respect to
their connectivity.
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We talk about a degree-homogeneous network if the degree distribution is a
narrow function in k, or more precisely, if the probability for a node to have a
degree k > (k) decreases exponentially with increasing deviation from the mean
degree!. An extreme case is a degree-regular network where every node has
exactly the same degree and the degree distribution is a d-function. A complete
graph, where all possible links are realized, is also a degree-regular graph.

In a degree-heterogeneous network, in contrast, the probability to find a node
with k& > (k) decreases slower than exponentially, implying that a significant
amount of nodes with very high degrees exists. Heterogeneous networks are of
particular interest for applications, as many real-world networks exhibit broad
degree distributions [20, 21]. A characteristic feature of such degree distribu-
tions is a scale-free behavior, described by a probability function P(k) ~ k7.
Expressed in words, this means that most of the nodes have very few links,
while few nodes have a large percentage of all links. The extreme case of a
heterogeneous network is a star graph, where the focal node connects to all the
remaining nodes in the network, while each of the fringe nodes has only a single
connection.

A degree-related quantity is the (degree)-assortativity, which captures cor-
relations between the degrees of neighboring nodes. An (in average) positive
correlation is called assortative and implies that nodes with high degree are
most likely connected to other high-degree nodes, while nodes with low degree
tend to connect to other low-degree nodes. An (in average) negative correla-
tion is called disassortative and refers to networks where high-degree nodes are
typically attached to low-degree nodes. Social networks tend to be assortative,
while technological and biological networks are disassortative [28]. Degree corre-
lations can be quantified via the conditional probability P(k’|k), which denotes
the probability for a node of degree k to have a neighboring node of degree k’.
In the absence of degree correlations the conditional probability becomes

K P(K')
(k)

Equation (2.1) implies that the probability to find a node of degree k' by fol-
lowing a random link increases with &’. So, it is likely to pick a node of high
degree by following a random link. This can be intuitively understood, as there
are k' possibilities to reach a node of degree k’. Accordingly, when considering
dynamical updates in networks it makes a difference whether one picks a node
or a link at random, in one update step (see e.g. [29]).

Another important characteristic of networks is the transitivity, or clustering.
There exist many different ways of quantifying clustering. Here, we introduce

P(K'|k) = (2.1)

!The same applies for k < (k), but as the degree is bounded from below, we are mainly
interested in the upper tail of the distribution.
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the clustering coefficient as (see e.g. [20])

O 3 x number of triangles

number of triplets

where a triplet is a subgraph of the network consisting of three nodes which are
joined by at least two links, and triangles are cycles of three nodes. In other
words, C' quantifies the probability that two neighbors of a node are connected.
Social networks typically show high clustering coefficients, which supports the
statement “the friend of a friend is a friend “.

The last property we mention here is the average shortest path length (1),
which describes the reachability of any node in the network from a given node.
The length of the shortest path between two nodes ¢ and j in the network is the
minimum number of links, one has to follow in order to reach node j, starting
at node ¢. Then, the average is taken over all possible pairs of nodes.

A small average shortest path length compared to the network size has be-
come known as the small-world property, suggesting that any pair of nodes is
relatively “close” to each other, despite of a large total number of nodes in the
network. Quantitatively, this means that the average shortest path length scales
logarithmically with the network size: (I) ~ In N [30]. The pioneering experi-
ment which measured the shortest path length in human societies was conducted
by Milgram in 1967 [31]. He found that the average shortest path length in a
network of acquaintances is (I) = 6, coining the expression “six degrees of sep-
aration”. This phrase became a popular synonym for the small-world property,
though it only refers to the small average path length and does not reflect the
typically high clustering coefficient in small-world networks.

2.1.2 Network models

For studying real-world systems it is not only essential to analyze the properties
of their underlying network structure, but also to build artificial networks which
reproduce features observed in real-world networks. To this aim, a variety of
network models has been proposed. In the following we briefly discuss three
of them, which are widely used in the networks literature and highlight their
respective characteristic properties. Example graphs of the three construction
algorithms are shown in Fig. 2.2.

First, let us consider the Erdds-Rényi random graph model [32]. Starting from
a given number of nodes N, every pair of nodes is connected with probability
p. The mean degree of the resulting network is related to the probability p
through (k) = p(N —1). The degree distribution can be described by a Poisson

distribution,
(NN kg Nk~ (k)Fe~ ™
P(/f)—(k)p(l P E



2.1 Network structure

where the last equality is valid in the limit of large N and for fixed mean degree.
By construction, there are no degree-correlations between degrees of neighboring
nodes and clustering tends to 0 for large N (C' ~ 1/N) [33]. Erdds-Rényi random
graphs display the small-world property, as [ ~ In N/In(k) [34]. The Erdés-
Rényi model has been widely used because of its simplicity and mathematical
tractability. Although the properties might not reflect all the features observed
in real-world networks, the results obtained using Erd6s-Rényi random graphs
provide valuable insights and serve as reference point for more realistic models.

As a low average shortest path length and a high clustering coefficient turned
out to be characteristic for social networks, the network model introduced by
Watts and Strogatz [30, 33] aimed to combine these two properties. Watts and
Strogatz proposed to start with a periodic regular lattice, in the simplest case a
ring of NV nodes, where every node is connected to its m nearest neighbors. Then,
each link is randomly rewired with probability p. The degree of randomness
can be tuned via the parameter p, which is accompanied by an interpolation
between graphs with high clustering (p = 0, regular lattice) and graphs with
small average path length (p = 1, random graphs). Numerical simulations show
that there is an intermediate regime where both, a small average path length
and high clustering are realized [30].

Finally, in order to obtain networks with more realistic degree distributions,
the Barabdsi-Albert model was introduced [35]. The construction algorithm is
the following: Starting with a small number of connected nodes my, in every
time-step a new node ¢ with m < mg links is added. One of the new links is
connected with probability

kj

b= Zz ki

to an already existing node j. This procedure is continued until a maximal
number of nodes N is reached. Because the probability for a node j to gain a
new link is proportional to the actual degree of the node, k;, the link attachment
process is called preferential attachment. Growth and preferential attachment
lead to a network with scale-free degree distribution for large N. More precisely,
the emerging degree distribution follows P(k) ~ k=7 with v = 3, which makes
the Barabasi-Albert model a favored candidate model for many real-world ap-
plications. In the Barabasi-Albert model, degree correlations are mainly present
between “old” and “new” nodes, i.e. between nodes which entered the network
at an early stage and those that were added at a later time-step. Degree corre-
lations between randomly chosen pairs of nodes vanish for N — oo [28].

Although none of the three described models captures all the properties which
are observed in real-world networks, each of them reproduces some relevant as-
pects. So, altogether, the presented network models serve as a useful toolbox for
the development of more realistic models and comprise toy models for testing

10
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a) Erdds-Rényi b) Watts-Strogatz c) Barabési-Albert

Figure 2.2: Illustration of three different network models. Shown are small
example networks constructed according to the algorithms described in the text.
Parameters: N =10, a) L =20,b) m=2,p=10.2,¢) mg=1,m = 1.

analytical methods and running simulations. In particular, these models pro-
vide means for studying the influence of the network structure on the network
dynamics. While so far, we considered static networks, it is evident that bio-
logical, social and technological systems underly constant changes, which have
to be described within a framework of dynamical networks. In the following
section we discuss dynamical processes in networks.

2.2 Network dynamics

The term “network dynamics” includes two types of dynamics, namely dynamics
of the network and dynamics on the network. In general, a network can display
both types of dynamics. In particular, the dynamics of the network and the
dynamics on the network can occur to be coupled. In this case, the network is
called an adaptive network.

2.2.1 Dynamics of networks

Dynamics of the network refers to the evolution of the network structure, i.e. to
an evolving network topology. Mathematically, the dynamics of the network be-
comes manifest in a time-dependent adjacency matrix A(t). If one is interested
in the evolution of the network structure rather than in the final topology, the
network models discussed in the last section can actually be seen as dynamic
models. Apart from these models, one can think of processes where links are
deleted, added or rewired according to some given rule. As rewiring rules leave
the number of links constant, they are better to treat analytically.

While studies of evolving network topologies mainly focus on network growth
[36, 37] and preferential attachment [38-40], the investigation of dynamics on
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networks covers a variety of different processes, ranging from spreading and
percolation to synchronization and cooperation processes on networks (see [18]
and references therein). In the following section we study dynamics on the
network in more detail and discuss a simple model for epidemic spreading as an
example.

2.2.2 Dynamics on networks

Dynamics on the network refers to a dynamical process taking place on an
underlying (static) network structure. This type of dynamics can be captured
by introducing node states?, i.e. assigning variables o;(t) to the network nodes,
which are time-dependent. The node states are drawn from a discrete set or a
continuous range; in some cases the node states are vectors. In this work, we
consider scalar and discrete states.

For example, in a computer network the spreading of a computer virus is
a dynamical process where the nodes correspond to computers which assume
states from a discrete set {H, I}. Switching from a “healthy” state (o; = H)
to an “infected” state (0; = I) can be due to a contamination caused by a
connected computer in the network, by an external source, or by some intrinsic
failure.

In general, we call node state dynamics that involve interactions with neigh-
boring nodes contact processes. Although there might be additional intrinsic
and external influences affecting the node states, the contact process is the only
one which depends on the network topology. So actually, when we talk about
dynamics on networks, at least some kind of contact process is involved. How-
ever, in a broader sense, a contact process is not necessarily a local interaction
occurring between nearest neighbors, but it can involve long-range interactions,
e.g. between next nearest neighbors.

One example where contact processes become relevant in real-world systems is
the spreading of a disease. While individuals can catch a disease spontaneously
with a certain probability, an epidemic outbreak becomes only possible because
infected individuals pass the disease to their social environment, their neighbors
in the network. The study of epidemic spreading has been one of the main con-
cerns since the very beginnings of network research [41-44], offering a promising
fields where results from network theory can be used for the development of vac-
cination strategies and containment of diseases. However, only recently, since
data of international traffic networks, computer networks and social networks
is available for testing the theoretical results obtained in models, the ultimate

2In principle, one can also account for link states, giving rise to (additional) dynamics. In
the present work, however, we do not explicitly consider different link states, but rather
define the state of a link through the states of the nodes it connects to. Consequently, we
regard potential changes in link states as secondary effects of the node state dynamics.
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goal of understanding and controlling epidemic outbreaks seems to come into
reach [45-47].

As an example for a dynamical process taking place on a network, let us
in the following briefly discuss a simple and paradigmatic model for epidemic
spreading, the SIS-model [41]. The letter S stands for the “susceptible” and
the letter I for the “infectious” state. In this model network nodes correspond
to individuals which assume states from the set {5, '}, according to their condi-
tion. The network links correspond to contacts between individuals. Susceptible
individuals can be infected by infectious neighbors with a rate g, whereas infec-
tious individuals recover with a rate -, independent of their neighborhood, and
become susceptible again. These two processes are captured in the following
transition equations:

S+

8

— I+1
T (2.2)

A

I
I S.

The crucial question is, whether an epidemic can invade and persist in the
system. The corresponding characteristic parameter is the epidemic threshold e,
beyond which an epidemic outbreak becomes possible. For degree-homogeneous
networks, the epidemic threshold is given by 1/(k). This means, for

oo L (2.3)

Y (k)’

an epidemic outbreak is prevented. For scale-free degree distributions the epi-
demic threshold is given by the maximal eigenvalue of the adjacency matrix,
e = A(A), implying that the epidemic threshold vanishes for infinite network
size. Thus, an epidemic can always persist in a scale-free network, though at
low prevalence level [48, 49].

The S1S-model and many of its variants have been extensively studied in the
past decade [48-53]. Thereby, the model represents not only a paradigmatic
model for its original purpose, the spreading of diseases, but its applications
extend to other fields where spreading processes are important, such as infor-
mation and rumor spreading in social networks and online communities [54-57].
Furthermore, refined versions of the S1S5-model, so-called compartmental models
consider more than two states [58, 59] and are closely related to metacommunity
models in ecology, which will be discussed in Chapter 4.

One of the most intriguing results for epidemic spreading involves a mapping
to percolation processes on networks [60, 61]. As percolation on regular lattices
had been thoroughly studied in statistical physics, concepts from percolation
theory were extended to complex networks and to the study of dynamical pro-
cesses on networks. The analytical approach we develop in Chapter 3 for the
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Figure 2.3: Phase diagram for the adaptive SIS-model (figure adapted from
[72]). Depending on the rewiring rate w and the infection rate /3 (recovery rate
~ = 0.002) healthy, endemic, oscillatory or bistable regimes are observed. Phase
diagrams of this kind, offering a multitude of different dynamical regimes are a
common feature of adaptive networks.

calculation of fragmentation transitions, as well as the mathematical framework
provided in Chapter 4 for the calculation of persistence ranges are inspired by
the idea of percolation.

In this section, we considered dynamics on networks, assuming a static net-
work topology. In many systems in nature, however, the network itself, i.e. the
pattern of interactions, evolves in time. Moreover, the network topology does
not change independently of the network nodes, but can be affected by the cur-
rent state of the network nodes. Conversely, the evolution of the node states
depends on the current network topology. If such a feedback between node state
dynamics and dynamics of the network topology exists, the network is called
adaptive network.

2.2.3 Adaptive networks

Adaptive networks have recently gained particular attention [62], as a vari-
ety of collective phenomena like swarming [63, 64], synchronization [65], self-
organization to critical states [66, 67] or the emergence of complex topologies
(68, 69] and distinct classes of nodes [70, 71] from an initially homogeneous pop-
ulation have been observed. A remarkable phenomenon is the appearance of
different phases, in combination with phase transitions [72-74]. Reference [23]
provides a comprehensive survey on adaptive networks.

As an example for an adaptive network model let us again consider the SIS-
model introduced above, where we incorporate an additional process. The pro-
cess takes into account that susceptible individuals try to avoid contact with
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infectious individuals and is defined in the following way:
SI % SS. (2.4)

This means, with probability w a link from a susceptible to an infectious in-
dividual is broken. The susceptible individual then acquires a new link to a
randomly chosen susceptible node from the network. It is intuitively clear that
the additional rewiring rule in the adaptive SIS-model helps to contain an epi-
demic. Indeed, it was shown that the epidemic threshold increases, compared
to the original SIS-model [72]. But, more interestingly, the dynamics of the
adaptive STS-model gives rise to a phase diagram where homogeneous regions
(i.e. regions where either only healthy or only infectious individuals remain in
the system), as well as regions of bistability and oscillatory behavior appear (see
Fig. 2.3).

These rich dynamics, which are a common feature of adaptive networks, are
mainly due to a competition between the dynamics of the network and the dy-
namics on the network. In Chapter 3 we discuss in detail an example where a
contact process, which is coupled to a rewiring process leads to several emergent
phases, separated by phase transitions. A central aim in this work is to deter-
mine the parameter regions where different phases occur, i.e. to calculate the
phase boundaries. In the next section we provide the mathematical framework
which is necessary for these calculations.

2.3 Network analysis

Capturing and analyzing network dynamics is one of the biggest challenges in
the field of network science. Because of the typically huge amount of network
constituents (nodes and links), their degrees of freedom give rise to an immensely
high-dimensional state space. In order to make such a system mathematically
tractable, one has to find methods to reduce the degrees of freedom, while keep-
ing the relevant information. Having obtained a low-dimensional (approximate)
description of the complex system, tools from dynamical systems theory can be
applied to analyze the network dynamics.

In this section, we describe a common method to reduce the state space of a
system consisting of many interacting subunits, which originates in statistical
physics. Then, we introduce the basic concepts for analyzing the reduced system
by means of dynamical systems theory.

2.3.1 Reduction of the state space

The complete information about the network at a certain time instant ¢ is cap-
tured in the microstate n(t), which is defined by the adjacency matrix A(t) and
the states of all nodes &'(t). Network dynamics then corresponds to a walk in the
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state space, spanned by all possible topological configurations and all possible
distributions of node states. Tracking the precise position of the network at any
time t is in most cases not possible because of the high dimensionality of the
state space and the stochasticity of the dynamical processes.

However, one can determine transition probabilities t;; between microstates
n; and n;. This leads to the so-called master equation,

—Pnl, ZtﬂPnj, — ti;P(n;,t), (2.5)

which is a differential equation for the probability P(n;,t) to find the network in
microstate n; at time t. Accordingly, > . P(n;,t) = 1 holds at any time instant.
Note that the master equation in (2.5) only applies to Markov processes, where
the transition probabilities only depend on the current state, and not on the
previous history of the dynamics. In many applications, Markov processes serve
as reasonable descriptions of the actual dynamic processes.

In practice, it is in most of the cases not viable to determine all transition
probabilities which enter in the master equation and then actually solve the
equation. Typically, one considers therefore a reduction of the state space,
which corresponds to a coarse graining. Such a reduction is in the first place,
though a strong assumption, not a particularly restricting one. Usually, when
considering dynamic networks, one is not interested in the state of every single
node at a given time instant, i.e. in the microstate of the system, but rather in
global quantities, i.e. the macrostate of the system. Such global quantities of
interest are for example the number of nodes, or the number of links of a certain
kind.

For example, in the S7S-model introduced above one is interested in the
number of infected individuals, while their precise distribution, and the network
topology are often irrelevant. This means, one can average over all irrelevant
degrees of freedom, i.e. over all different microstates with the same number of
infected individuals and thus reduce the dimensionality of the system drastically.

The described transition from microstates to macrostates is a principal con-
cept in statistical mechanics. Formally, this form of coarse graining corresponds
to a deterministic projection of the master equation, leading to average densi-
ties which can be described by deterministic equations [18]. These deterministic
equations are valid in the “thermodynamic” limit, i.e. for infinitely large net-
works, but yield a good approximation already for sufficiently large finite sys-
tems. In order to capture the stochasticity of the process, one can, for example,
manually add intrinsic or extrinsic noise to the coarse grained equations [75-77].

Passing from the master equation in (2.5) to evolution equations for average
macroscopic quantities involves an additional practical aspect: The evolution
equations for network motifs can often be directly derived from the dynamical
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rules of the system. Here, we introduced the general term motif, referring to a
(usually small) subgraph of the network. The simplest motif is just one node.
The ultimate goal is, to describe the network dynamics in terms of a set of
differential equations for (appropriately chosen) motifs, or, more precisely, for
motif densities.

The simplest set of motifs is given by the network moments, where the zeroth
moment corresponds to the density of nodes, the first moment to the density
of links, the second moment to the density of triplets, etc. The derivation of
evolution equations for these moments, given a set of dynamical rules, is called
moment expansion.

For illustration, we employ again the S1.S-model introduced above and write
down the evolution equation for the zeroth moment, the density of I-nodes [78]:

411 = 1]+ B[S, (2.6)

Here, [I] and [SI] denote the densities of I-nodes and SI-links, i.e. their re-
spective numbers divided by N. In words, equation (2.6) captures the loss of
I-nodes due to recovery and the gain of I-nodes due to infection of susceptible
neighbors, as described by the rules in (2.2). Despite the simple form of the
equation, it is not straight-forward to solve it, because of the unknown link
density [ST].

Although we might proceed, deriving evolution equations for the first mo-
ments, the link densities, we will not arrive at a closed system of equations.
The fact that the evolution equations for network moments depend on moments
of higher order is inherent to a contact process and requires some sort of clo-
sure. Approximations which express higher order moments in terms of lower
order ones are called moment closure approrimations. The order of the approx-
imation corresponds to the highest moment appearing in the equations. So,
zeroth order equations only contain node densities, first order equations contain
node densities and link densities, second order equations contain node densities,
link densities and triplet densities, and so on.

Moment closure approximations are typically based on some kind of mean-
field assumption. This means, they neglect heterogeneities and correlations
beyond a certain order by assigning global averages to local variables. For
example, in the simplest case the global connectivity (k) is assumed to hold
for every single node in the network. In other words, all nodes are assumed
to have mean degree. Consequently, every node is supposed to have in average
(k)[I] neighboring I-nodes, irrespective of its own state. These assumptions
lead directly to the zeroth order approximation, often simply called mean-field
approzimation, where [ST] is approximated as [SI]| ~ [S][I|(k) and (2.6) becomes

411 = —~[1] + BRIS]I] 2.7)
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Taking conservation of nodes into account, i.e. [I] + [S] = 1, the equilibrium
density of infected nodes yields

I =1—-—

pk)

A comparison with (2.3) confirms a non-zero density of infected nodes beyond
the epidemic threshold e. As mentioned earlier, this result is only valid for
sufficiently homogeneous and uncorrelated networks. Otherwise, heterogeneous
mean-field approaches can be used, where nodes are divided into classes ac-
cording to their state and degree. Nodes belonging to the same class are then
considered to be equivalent. This corresponds to an expansion of the motif ba-
sis {[1],[S]} to a set of motifs of type {[Ix], [Sk]}, where k is the degree. Such
enhanced mean-field approaches have been successfully applied to scale-free net-
works [48, 49] and networks with correlated degrees [79, 80].

For analyzing the dynamics in adaptive networks, a zeroth order approxi-
mation is in principle not applicable, because in order to capture topological
changes, at least the equations for the link densities have to be considered. The
lowest possible order of closure is therefore a first order approximation, also
referred to as pair-approximation. For the adaptive SIS-model the evolution
equations for the link densities can be directly derived from the rules in (2.2)
and (2.4), yielding [78]

[S1] = =(y + PIST] + 2 [11] + B([SST] = [151]),

(2.8)
[11] = B([ST] + [151]) — 2~[11].

o Sl

In the pair-approximation, triplet densities are expressed in terms of link
densities in the following way [50, 78]:

W for A# B and B # C
5] ’
[ABC] = (2.9)
AABIBC] s
5] for A= Bor B=C.

Accounting for conservation of links, [ST] 4 [I1] + [SS] = (k)/2, and using the
approximation scheme given in (2.9) the equations (2.6) and (2.8) constitute a
closed set of differential equations for the zeroth and first network moments,
which can be solved numerically [72].

Here, we presented a powerful approach to reduce the probabilistic, and in
general not solvable master equation to a deterministic low-dimensional set of
(non-linear) differential equations for network motifs. The crucial point in this
procedure is to choose an appropriate motif set and to check the validity of the
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closure. The motif set and the approximations discussed here have been used
in many applications, including adaptive networks [72, 81-85]. However, there
are situations where this kind of approximation fails, because relevant hetero-
geneities and correlations are neglected. It has been shown that in these cases
even closures of higher order or heterogeneous mean-field approximations do
not significantly improve the predictions [83]. Therefore, it appears reasonable
to consider a different motif set. This issue will be discussed in more detail in
Chapter 3, where we develop an appropriate motif set for a class of models,
which cannot be treated with a conventional moment closure approximation.

2.3.2 Tools from dynamical systems theory

In the last section, we sketched a method for the derivation of a low-dimensional
system of deterministic differential equations, which describes the dynamics of
macroscopic network quantities. Having obtained such a (in general non-linear)
system of differential equations,

—(t) = F(Z(t), {p:}), (2.10)

for the motif densities # and a set of parameters {p;}, further investigation
of this system requires some concepts from dynamical systems theory. So, in
the following we briefly introduce the basic ideas and tools from the theory of
dynamical systems which we will employ in the course of this work. For further
reading we refer to common textbooks as e.g. [25, 86].

First of all, we note that (2.10) is an autonomous system of differential equa-
tions, i.e. the temporal evolution of the variables does not explicitly depend on
time. Solutions Z(t) of (2.10) for a specified vector field F and given parame-
ters {p;} are called trajectories in the state space. Depending on the systems
complexity, individual trajectories can be computed analytically or numerically.
However, the focus in this work is less on the temporal evolution of a dynamical
system, but rather on the steady states, and in particular on the nature of the
steady states.

A steady state or fized point 2*(t) is a special trajectory, namely a point in the
state space corresponding to a constant solution of the dynamical system. This
implies F (@*,p) = 0. The nature of the fixed point determines the behavior of
trajectories close to the fixed point. More precisely, if a trajectory starting close
to the fixed point stays close, the fixed point is said to be stable, otherwise, if
a trajectory starting close to the fixed point moves away, the fixed point is said
to be unstable. If a trajectory, starting in the neighborhood of a fixed point
reaches the fixed point for ¢ — oo, the fixed point is said to be asymptotically
stable. A major concern in analyzing systems of type (2.10) in the context of
network theory is to find the fixed points and determine their stability.
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For example in the SIS-model, a fixed point of (2.7) is clearly [I]* = 0, the
global healthy state. If this fixed point is stable, a small perturbation of this
state, i.e. a small number of infected individuals does not lead to an epidemic
outbreak, but the global healthy state is recovered. If the fixed point is unstable,
a small number of infected individuals propagates the disease and causes further
infections, driving the system away from the fixed point.

A mathematical framework to determine the stability of a fixed point is linear
stability analysis. 1t is based on a first order Taylor expansion of F(Z(t), {p:})
in the fixed point 7*, leading to a linearized system

S0 = 3@, .11)

which is locally qualitatively equivalent® to the original system in (2.10). The
Jacobian matriz J is defined as J;; = 0F;/0z;. For the linear system in (2.11),
the stability of the fixed point ¢* = 0 is determined via the eigenvalue spectrum
of J. More precisely, if all eigenvalues of J have negative real parts, * is stable,
otherwise ¥* is unstable. In practice, one often uses the maximal real part of
all eigenvalues, \(J), as an indicator for stability. This leads to the following

classification of fixed points:

tabl
AT <0 = stable, (2.12)
>0 = unstable.

In this work, when we deal with purely real eigenvalue spectra, we refer to A\(J)
simply as the “largest eigenvalue” of J.

So far, we ignored the parameters {p;} that appear in the model and therefore
in the derived dynamical equations. But we have to consider that the nature of
the fixed points depends on these parameters. So, for example, a stable fixed
point can turn into an unstable one or vice versa if one or more of the parameter
values are altered.

Recalling again as an example the SIS-model, we find that the Jacobian matrix
at the fixed point [I|* = 0 is given by J(0) = —v + S(k), when we consider
the mean-field approximation given in (2.7). In this case, the Jacobian matrix
is just a number and we obtain with (2.12) that the global healthy state is
stable if 5/y < 1/(k). This example shows that the fixed point is only stable
under certain conditions on the parameters, whereas at some critical parameter
setting, it becomes unstable. In the SIS-model the critical parameter setting is
called epidemic threshold (compare (2.3)).

3Two dynamical systems are qualitatively equivalent if the number, the ordering and the
nature of their fixed points are the same. The equivalence to the corresponding linearized
system only applies if all eigenvalues of J have non-zero real parts [25].
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In general, the critical parameter setting {p$} where a fixed point changes its
nature is called a bifurcation. Bifurcation theory comprises a variety of different
types of bifurcations [86]. Here, we are mainly concerned with local bifurcations,
and among local bifurcations with those bifurcations where a fixed point changes
stability?. Due to (2.12), a fixed point for example looses stability if the real
part of the largest eigenvalue of the corresponding Jacobian matrix becomes
positive. The physical manifestation of a bifurcation is a phase transition. The
critical parameter settings define points, lines, or higher dimensional manifolds,
which separate two distinct phases. In our example, the line € = 1/(k) separates
a healthy phase from an endemic phase.

Now, we have come to the point where we have all the prerequisites to compute
phase transitions in network models. The remainder of this work is dedicated to
refinements of these principal concepts and to applications for different classes
of network models. In the considered models we particularly focus on phase
transitions between phases of high diversity and phases of low diversity.

4In our applications we are not interested in those fixed points which possibly appear or
vanish in a bifurcation, but only in the fixed point that changes stability.
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3 Fragmentation transitions in models for opinion
formation

A flourishing field of applications for network science is the complex dynamics
of social systems [87-90]. Related investigations comprise both, the analysis
of data available from online social networks or from mobile phone calls [91-
97], and the analytical and computational modeling of dynamical processes in
networked societies [57, 98, 99]. Concerning both approaches, studying opinion
dynamics has currently attracted particular attention [57, 100-103].

Typically, in models for opinion formation a society is described as a network,
where nodes correspond to individuals and links correspond to social relation-
ships. The opinion of an individual is captured by the internal state of a node,
which changes in time due to interactions with the social environment. The pat-
tern of interactions, which is described by the network topology, in turn evolves
according to the internal states of the nodes. So, this type of opinion forma-
tion process, where the opinion dynamics on the network and the dynamics of
the network topology are coupled, can be adequately captured by an adaptive
network [23, 62].

Depending on the specific model, the node states can be discrete, resembling
a voter situation, where individuals choose one candidate or one party from
a given set of options [73, 100, 104]. The node states can alternatively be
treated as continuous variables, representing e.g. the strength of a belief or the
inclination to some opinion [105-108], or the node states assume vectors, taking
into account a whole set of individual traits [109, 110].

The interactions between individuals can be implemented in many different
variants [29, 82, 101, 111-113]. However, usually there are two main processes
governing the dynamics of the system: social adjustment and social segregation.
Social adjustment accounts for the tendency of individuals to copy the opinion
of their closest acquaintances, while social segregation captures the tendency of
individuals to preferably interact with like-minded people. As both processes
aim to reduce conflicts and convey homogeneity, in the absence of external influ-
ences like media and spontaneous intrinsic opinion changes, the dynamics stops
as soon as there are no individuals with different opinions connected to each
other. This can be the case, either when the whole system reaches a homoge-
neous state, i.e. everyone holds the same opinion, or when the system breaks
into disconnected groups of different opinions, which are internally homoge-
neous. The first outcome is referred to as consensus, while the latter represents
a fragmentation of the system.

Whether consensus or fragmentation is reached, depends on the balance be-
tween adaptation and segregation, or more precisely on the relative rates at
which both processes occur. In the limit where adaptation is much faster than
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segregation consensus is reached, whereas if segregation is much faster than
adaptation, fragmentation occurs. The phase transition in parameterspace from
a consensus to a fragmented state is called fragmentation transition. Fragmenta-
tion transitions have been frequently observed in simulations [73, 100, 101, 105].
However, common analytical approaches that faithfully capture other phase
transitions [72, 81, 84| yield only rough approximations for the fragmentation
threshold [114, 115]. In this chapter we present a novel approach, which allows
for a precise analytical estimation of fragmentation thresholds. A major part of
the described methods and applications was published in [115-118].

In Section 3.1 we introduce the adaptive voter model as a simple and paradig-
matic example for the discussion of fragmentation transitions. Then, in Section
3.2, we propose an analytical approach for the calculation of fragmentation
transitions and apply it to the adaptive voter model. We extend the analysis of
fragmentations to voter models with an arbitrary number of states in Section
3.3 and present further applications of our analytical approach in Section 3.4.
Section 3.5 provides a summary and discussion of the present chapter.

3.1 The adaptive voter model

The adaptive voter model was introduced as a paradigmatic model for opinion
formation in networked populations [29, 73, 114, 119]. It is based on the original
voter model [120], which describes a network where nodes represent agents and
links represent social contacts. Each agent can hold either of two opinions, say A
and B. Then, the opinions are updated by randomly choosing two neighboring
nodes and changing the opinion of one of the nodes. Because in the original
model the topology remains fixed, the dynamics continues until global consensus
is reached.

Adaptive variants of the voter model take an additional process into account,
the rewiring of links. Rewiring leaves the number of agents and links unchanged
but alters the structure of the network. Specifically, it can cause a fragmenta-
tion of the network, such that both opinions survive in disconnected network
components which are internally in consensus.

3.1.1 Definition of the model

There exist many different implementations of the adaptive voter model, con-
cerning the update rule [29, 115, 119] and the type of rewiring [83, 100, 111, 112].
Here, we discuss an adaptive voter model with the following update mechanism
(see Fig. 3.1): in every time step one random link is chosen. If it is an inert
link, i.e. a link which connects nodes in equal states (AA- or BB-link), nothing
happens. If the chosen link is an active link, i.e. a link which connects nodes
in different states (AB-link), then with probability p a rewiring event occurs
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Figure 3.1: Update rule for the adaptive voter model (link update). On a
randomly chosen active link with probability 1 — p a copying event occurs,
whereas with probability p a rewiring event occurs. In a copying event, one of
the nodes is set to the neighbor’s state. In a rewiring event, the original link
is removed and replaced by a new link between one of the two nodes and a
randomly chosen node in the same state. Both, copying and rewiring, occurs
with equal probability to either of the nodes from the selected pair.

and with probability 1 — p an opinion update occurs. In a rewiring event the
AB-link is removed and a new link is established between either the B-node
and a randomly chosen node of state B, or between the A-node and a randomly
chosen node of state A. In an opinion update, one of the connected agents copies
the other’s state, i.e. either the B-node becomes an A-node or vice versa. In
this so-called link update rule, it is decided randomly and with equal probability
which one of the chosen pair of nodes adopts the opposite opinion or rewires a
link.

The adaptive voter model is characterized by two different dynamical regimes,
as a consequence of the competing timescales which govern adoption and rewiring
processes [73, 114]. As both processes are coupled by one single parameter, the
rewiring rate p determines the long-term behavior of the system: 1) For rel-
atively small values of p the system reaches consensus, i.e. basically all nodes
assume the same state. Note that in this regime, the system first reaches an
active steady-state, where both types of nodes are still present. Only eventually
finite size fluctuations lead to the disappearance of one type of nodes. 2) For val-
ues of p beyond a critical value p., the system fragments into two disconnected
clusters of opposite states. One challenging task is to predict the fragmentation
threshold p., where the phase transition occurs.
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Figure 3.2: Steady states in the adaptive voter model. For p = 0.1 and p = 0.3
the system performs a random walk on a parabola of steady states until one of
the absorbing consensus states is reached. For p = 0.5 the parabola of steady
states does not exist and the system rapidly reaches a fragmented state. Lines
correspond to the expression given in (3.1), obtained from a pair-approximation.

It becomes clear that the conventional approach is only valid for p < p.. N =
104, (k) =4, a =0.5.

3.1.2 Conventional calculation of the fragmentation transition

One way to analyze the fragmentation transition in the adaptive voter model
is by means of a conventional moment expansion [73, 83, 114, 115]. As de-
scribed in Section 2.3.1, in this approach network moments are defined as node
densities, link densities, triplet densities, etc. Then, evolution equations for
these moments are formulated and evaluated at the steady state. Typically,
the evolution equation for one specific moment involves higher order moments.
Therefore, one has to break up the expansion at a certain order and close the
system of equations. This is called a moment closure approximation [50].
Using a first order moment closure approximation, a pair-approximation, one
can calculate the equilibrium value of the active link density [83, 112, 115]:

2k -p)- 1)
B~ 1)

Here, p denotes the active link density, i.e. the number of AB-links devided by

a(l —a). (3.1)
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the total number of links and « denotes the fraction of A-nodes. Equation (3.1)
corresponds to a parabola in the p-a-plane (see Fig. 3.2). In the limit of infinite
system size, fluctuations vanish [73|, which implies that the initial fraction of
A-nodes, and consequently the initial fraction of B-nodes, is conserved. This
means that in the thermodynamic limit every point on the curve described
by (3.1) corresponds to an attractor for a certain initial distribution of node
states. In finite systems, the numbers of nodes in state A and B fluctuate,
and accordingly the active link density varies. In fact, the system performs a
random walk in the p-a-plane, constrained by the shape of the parabola, until it
reaches one of the absorbing endpoints a = 0 or & = 1. Once an absorbing state
is reached, the dynamics stops, as either all nodes are in state A or all nodes
are in state B and there are no active links remaining. The described behavior
corresponds to regime 1) where (eventually) consensus is reached. Note that
the time to actually reach consensus can take immensely long in large systems
[29]. We therefore often refer to this regime as an active phase, because it is
characterized by a finite density of active links during a relatively long time
period.

On the other hand, from (3.1) follows that at p. = ((k) —1)/(k) the parabola
of steady states vanishes. So, for p > p. only the line p = 0 is attractive and
the system quickly reaches an absorbing state on that line (see Fig. 3.2). For
example, if we start with equal distribution of states, an absorbing state at
a ~ 1/2 is reached. This means that half of the nodes is in state A, half of the
nodes is in state B and there are no links connecting nodes in different states.
This corresponds to regime 2), the fragmented state.

In Fig. 3.2 we plot the active link density for different values of p, comparing
simulation results and the analytical approximation given in (3.1). One can
clearly see the parabolic shape of the active link density for p-values below the
critical point, as predicted by (3.1), and a rapidly decaying active link density for
p above the critical point. However, it also becomes clear that the precision of
the pair-approximation decreases close to the fragmentation point. In particular,
the critical point itself is significantly overestimated: for (k) = 4 simulations
yield p. = 0.46, while the pair-approximation predicts p, = 3/4.

The reason for the failure of the moment closure approach in predicting the
fragmentation threshold is the following [115, 121]: Close to the fragmentation
point, the remaining active links are not homogeneously distributed all over the
network, as it is assumed in the mean-field-like approximation. In fact, they
are rather concentrated in a small number of bundles connecting the almost
fragmented clusters of opposite states (see Fig. 3.3). In the following section we
introduce an analytical approach which accounts for this specific situation by
choosing an appropriate basis for the moment expansion.

26



3 Fragmentation transitions

Figure 3.3: Network configuration close to the fragmentation point. For illus-
tration, we show a network with a small number of nodes. Active links which
connect the two components of opposite states are scarce but concentrated at
few nodes (active motifs). Such a situation is the starting point for the perco-
lation approach.

3.2 Percolation approach for the calculation of
fragmentation thresholds

In this section, we present an alternative approach, which allows for a precise
estimation of fragmentation thresholds. A major part of this section was pub-
lished in [116]. We use the adaptive voter model introduced in Section 3.1.1
as an example to explicitly demonstrate the procedure of our approach and
compare the results to agent-based simulations. However, we emphasize that
the approach is applicable to a wide range of models employing various update
mechanisms.

The approach we propose here is inspired by the concept of percolation. Per-
colation theory was originally applied to study flows in porous media [122].
There, one is interested in a situation, where the fluid traverses (percolates)
the porous media. Because of the parallels to cluster formation in networks,
percolation theory has proven a powerful concept in network science, both for
the characterization of graph topologies (e.g. in the context of giant component
formation [123-125]) and for the characterization of the dynamics taking place
on networks, like invasion and spreading processes [126-128]. Nevertheless, in
adaptive network models, where the dynamics affects the topology and the node
states, percolation approaches were barely used so far.
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3.2 Percolation approach

Typically, models for disease spreading make use of the percolation idea for the
computation of epidemic thresholds [129-131]. In these models, one considers
a network of susceptible agents and determines the probability for an epidemic
outbreak, i.e. an infection of a finite fraction of the population, starting from a
single infected individual. Here, the idea is to study percolation of active links.
This means, we determine the probability for a single active link to propagate
in an inert environment, i.e. in a cluster of inert links. Therefore, we consider a
situation close to the fragmentation point, where the network is composed of two
almost disconnected homogeneous clusters of opposite opinions, which are joined
by only few active links® (see Fig. 3.3). Then, we determine the probability for
these active links to spread within the homogeneous compartments.

In order to account for multiple active links connecting to the same node we
introduce a basis of active motifs for the derivation of the evolution equations.
In the following, we present two possible motif bases: a simple one which al-
lows for a quick and reasonable estimation of the fragmentation point and a
refined variant which yields predictions with high accuracy. Using these basis
sets, we derive dynamical equations capturing the net change in the density of
active motifs. If this change is negative then the number of active links de-
clines exponentially leading eventually to the fragmented state. If the balance
is positive then active links proliferate and prevent the network from reaching
the fragmented state. The critical point, where the fragmentation transition
occurs corresponds to a vanishing net change in the density of active motifs.

3.2.1 Basis of g-fans

First, let us consider the simplest set of active motifs which captures the essential
features relevant for the prediction of the fragmentation transition. This basis is
a set of g-fans. A g-fan is defined as a subgraph consisting of one node holding
a given opinion and ¢ neighbors of the node holding the opposite opinion. The
node holding the solitary opinion is denoted as the base node of the fan, whereas
the other nodes are denoted as the fringe nodes. For instance a 4-fan contains
a base node and four fringe nodes, which are connected to the base node via
active links. Note that the base node has at least one inert link, leading to the
neighbor which caused the opinion change (see Fig. 3.3). For the g-fan basis
we assume that the base node has exactly one inert link. Later we relax this
assumption.

For simplicity, let us first assume that the network is degree-regular, meaning
that every node has exactly the same number of neighbors, & = (k). The
dynamics of active motifs for the special case of k = 3 is illustrated in Fig. 3.4.

5By few active links we mean that the number of active links is small compared to the total
number of links. One can interpret this situation as a perturbation of the fragmented
state.
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Figure 3.4: Illustration of the evolution of g-fans in a degree-regular network
with degree k = 3. Agents are depicted as nodes which are open or solid
depending on their opinion. Shown is the network in the neighborhood of an
active link connecting two clusters of different opinions. Arrows correspond to
adaptation and rewiring events and are labeled with the corresponding transition
rates. Depending on the parameters, the updates lead to proliferation or decline
of isolated active links (encircled dashed) and 2-fan motifs (encircled dotted).

We start from a single active link (left half of figure) connecting two almost
fragmented clusters of opposite opinions. In an update event, with probability
p the active link is rewired becoming inert (not shown) or, with probability 1—p,
one of the nodes adopts the other’s opinion. In the adoption event the original
active link becomes inert, but the two other links of the adopting agent become
active, giving rise to a 2-fan. We continue by studying how updates affect this
2-fan (Fig. 3.4, right half). If an update is a rewiring event (probability p) then
it decreases the width of the fan, turning the 2-fan into a single active link.
If the update is an opinion adoption event (probability 1 — p) then there are
two possible scenarios occurring with equal probability. In the first scenario the
node at the base of the fan changes its opinion. In this case the 2-fan becomes
inert, but one new active link is formed at the base of the fan. In the second
scenario one of the fringe nodes of the fan adopts the base node’s opinion, in this
case the width of the fan is reduced by one, but an additional 2-fan is activated.
Because the two active motifs in the latter scenario are now separated by an
inert link they can be assumed to be independent to good approximation.

The transitions for the ¢-fans give rise to a k£ — 1-dimensional system of dif-
ferential equations (see Fig. 3.5). For the example of degree-regular networks
with k£ = 3 we obtain the following two-dimensional system,

{1} = —{13+{2},
2} = {2} + 0 -p{1}+ 10 -p)i{2},

(3.2)
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where {q} is a rescaled ¢-fan density, referring to the number of ¢g-fans multiplied
by the number of active links in the fan, ¢, and normalized by the total number
of links L.

As the systems of equations obtained by this approximation are linear, the
Jacobian matrix is just the coefficient matrix. In general, for non-linear systems
the stability of the fragmented state can be tested by a local linearization, where
the Jacobian matrix is given by J;; = 0{i}/0{j} (see Section 2.3.2). Here, for

k=3,
J= (1__1p 14 ;1 B p)> : (3.3)

The fragmented state, {i} = 0 (i = 1,2), is stable if all eigenvalues of the
Jacobian matrix have negative real parts. For linear systems this state is then
also globally attractive. The fragmentation transition occurs in the bifurcation
where eigenvalues cross the imaginary axis. For k = 3 the transition point can
be calculated from (3.3) and yields p. = 1/3.

We note that the stability of global consensus states, which are also character-
ized by {i} = 0 is not captured by the same Jacobian because these states violate
our assumption of the presence of two almost disconnected clusters. Although
adaptations for other transitions may be possible, the method, as proposed here,
only captures transitions to the fragmented state.

Degree-regular networks with £ > 3 can be treated analogously to the k£ = 3
example. The corresponding equations for £ = 4 and the generalization to
arbitrary k£ are shown in Fig. 3.5. An update affecting an active link deactivates
the link and activates a k — 1-fan with probability 1 — p. An update affecting
a g-fan either a) deactivates the fan and activates a single link (probability
(1 —p)/2); b) decreases the width of the fan by one, turning the ¢-fan into
a ¢ — 1-fan (probability p); or ¢) decreases the width of the fan by one and
activates a new k — 1-fan (probability (1 —p)/2).

As it can be seen in Fig. 3.6, already this simple motif set yields a more
precise estimate of the fragmentation point than the pair-approximation. In the
following, we introduce an enhanced basis which also accounts for the number
of inert links. Moreover, we allow for in principle arbitrary degree distributions,
as degree-regularity, even if present in the initial network, is destroyed by the
rewiring process.
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Figure 3.5: Illustration of the transitions for ¢-fans in degree-regular networks
with degree k. Motifs and transitions are depicted as in Fig. 3.4. Additionally,
the corresponding systems of differential equations and the Jacobian matrices
are shown.
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Figure 3.6: Fragmentation threshold in the adaptive voter model. Shown are
numerical results from agent based simulation (e), pair-approximation (dashed
line), the analytical approach proposed here (x), and its refined variant (o).
The proposed approaches yield a better match with the numerical results than
the established procedure. N = 10°.

3.2.2 Basis of spider motifs

In order to improve the prediction for the fragmentation threshold we introduce
spider motifs. Spider motifs consist of one central base node connecting to m
nodes of its own opinion and ! nodes of the opposing opinion. The {m, [}-spider
thus holds m inert links and [ active links, leading to a total degree k = m + [.
As before, we do not account for all motifs in the network but consider only
active spiders, i.e. [ > 0.

The effects of updates on a spider motif are shown schematically in Fig. 3.7.
In a rewiring event either the rewired link is kept by the fringe node and the
{m, [}-spider is turned into a {m, ! — 1}-spider or the rewired link is kept by the
base node turning the {m, [}-spider into a {m + 1,1 — 1}-spider. In an opinion
adoption event either the base node is convinced, which turns all active links
into inert links and vice versa, leading to a {l, m}-spider, or one of the fringe
nodes is convinced by the base node giving rise to a new {1, g}-spider while in
the focal spider one active link turns into an inert link. The evolution of spider
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Figure 3.7: Transition probabilities for a {3,4}-spider. Diagrams and arrows
represent motifs and transitions in analogy to Fig. 3.4. The dashed links in-
dicate the number of next-nearest neighbors, which is drawn from the degree
distribution (here, Poissonian distribution).
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where the degree of the activated spider is drawn from the degree distribution®.
In an adaptive network the degree distribution is often unknown because it is
reshaped by the rewiring events. However, the success of the degree-regular
approximation suggests that good results can be obtained if reasonable distri-
butions are used. The results in Fig. 3.6 were obtained by assuming a Poissonian
degree distribution P(k) = e~*)(k)*/(k). Further, we considered only spiders
up to a maximal degree of k.« = 50. We constructed the Jacobian matrix
by computer algebra and determined the fragmentation point from numerical
computation of eigenvalues. Fig. 3.6 shows that the results from the refined
procedure are in good agreement with numerical simulations.

The small discrepancy between our theoretical estimation and simulation re-
sults for high mean degrees (Fig. 3.6) might stem from the approximations

SNote that, as the focal node of the new spider can be reached only via one possible link,
this situation is not the same as following a random link.
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involved in our analytical approach. There are basically three approximations,
still present in the refined variant: 1) We do not account for additional inert
links due to rewiring. 2) We assume independence of a new active motif from
the originating motif. 3) We neglect cycles.

Regarding approximation 1), let us recall that we consider the limit of van-
ishing spiders, where it is very unlikely for the target node in a rewiring event
to coincide with the focal node of a spider. Moreover, as our simple basis set
(which does not account for the number of inert links at all) already yields good
results, the rare event of a spider gaining an inert link is not likely to have a
significant effect on the estimated fragmentation point.

Approximation 2) implies that a process where a new spider is created (last
transition in Fig. 3.7) is irreversible. This means, the remainder of the origi-
nating spider and the new spider are considered to be independent and there
is no process which simultaneously deactivates the new spider and recovers the
originating spider in its previous form. Although it is hard to estimate the
magnitude of the introduced error, one can argue that approximation 2) should
lead to an overestimation of the fragmentation point. What we see in Fig. 3.7
is an underestimation of the fragmentation point for high mean degrees. So, we
can argue that if approximation 2) has an effect on the result, there must be an
opposing effect which is stronger.

Finally, let us consider approximation 3), which neglects any links between
fringe nodes. While in a random graph clustering is negligible for N — oo
[132], it turns out that the rewiring rule implemented in the adaptive voter
model facilitates the formation of triangles. Simulations show that the clustering
coefficient increases for p — p.. As the clustering coefficient also increases
with the mean degree, we conclude that ignoring cycles presumably yields the
strongest assumption in our approach and therefore might be responsible for
the minor discrepancies in our analytical results.

Let us summarize the main content of this section. Here, we presented an ap-
proach for the analytical estimation of fragmentation thresholds which is based
on the idea of percolation. Starting from a configuration close to the fragmen-
tation threshold we derive evolution equations for active motifs. Demanding a
positive net balance of active links then yields a condition from which we can ex-
tract the fragmentation threshold. The crucial point in this procedure is to find
a suitable basis of motifs which comprises the main feature of the system close
to the fragmentation point. The motif sets we propose account for the cluster-
ing of active links which is observed close to the fragmentation point, implying
simultaneous creation of several active links which are connected to the same
node. Even in the limit of low average active link density, such links cannot be
treated independently because they all become inert at once if the focal node
changes its opinion. Mean-field-like approximations (like moment closure ap-
proximations) ignore these correlations by assuming a well-mixed system. This
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might explain their poor estimate for the fragmentation threshold. Using the
example of an adaptive voter model we showed that the results obtained from
the approach described here match the fragmentation points observed in simu-
lations very well. In the following sections we present further examples for the
applicability of the described approach.

3.3 Fragmentation transitions in multi-state voter models

In this section, we study fragmentation transitions in more realistic voter mod-
els, using the analytical approach described in the previous section. The work
presented here was published in [118].

While most of the voter-like models only consider a binary choice of opinions,
many real-world situations offer a large number of choices. In the physics litera-
ture some models for opinion formation, which consider arbitrary-many opinions
have been studied [83, 100, 111]. In these models all opinions are “equidistant”
in the sense that all interactions between any given pair of (different) opinions
follow the same dynamical rules. Models recognizing that the outcome of inter-
actions may depend on a measure of similarity (or distance) between opinions
are often considering an uncountable set of opinions and are therefore hard to
treat analytically [105, 106].

In the following, we consider a natural extension of the original adaptive voter
model, where we allow for an arbitrary countable set of opinions. In the proposed
model the rewiring rate that governs the interaction of conflicting agents is
assumed to depend on the specific pairing of opinions held by the agents. The
model can thus account for heterogeneous “distances” between opinions. A large
distance, characterized by a high rewiring probability, indicates a controversial
pairing, whereas a small distance, and correspondingly low rewiring probability,
indicates that the respective opinions are almost in agreement.

The assumption of heterogeneity in the space of opinions gives rise to a com-
plete, weighted graph representing the relationships between different opinions.
We will refer to this graph as the network of states. In contrast, the network
of individuals is an unweighted graph with a given degree distribution, which
represents the interactions between individuals. Fragmentations in this system
occur naturally at the level of individuals, namely when several groups of indi-
viduals holding different opinions, separate from each other. However, for the
analysis of fragmentations it is convenient to consider the state-network and
associate a fragmentation in the network of individuals with a loss of links in
the state-network.
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3.3.1 Definition of the multi-state voter model

We define the multi-state voter model as a natural extension of the adaptive
voter model with link update, introduced in Section 3.1.1. Each node « holds
a state s,, indicating its opinion. Initially node states are drawn randomly and
with equal probability from the set of all states I' = {g1, 92,93, ..., 9c}, where
the total number of states is |I'| = G and we assume G < N, i.e. the number
of states is much smaller than the number of individuals. Then, the system
is updated as follows: In each update step a random link («, 3) is chosen. If
Sq = Sg, nothing happens. If s, # sg, an update occurs on the link. A given
update is either a rewiring event or an opinion adoption event, depending on the
similarity of the respective opinions. For individuals «, § with opinions s, = g;
and sg = g;, the update is a rewiring event with probability p;; and an opinion
adoption event otherwise (probability 1 — p;;). Following the conventions for
the adaptive 2-state voter model, the parameters p;; are called rewiring rates.

In a rewiring event, the focal link («, /3) is severed, and a new link is created
either from « to a randomly chosen node v with s, = s,, or from 3 to a
randomly chosen node v with s, = sg. The choice between the two outcomes
is made randomly with equal probability. In an opinion update, either node
a changes its state to sg or node 3 changes its state to s,, where the choice
between both outcomes is again made randomly with equal probability. In the
following, we assume symmetric interactions, which implies p;; = pj; such that
the specific model is characterized by a set {p;;} of G(G — 1)/2 parameters.
More specifically, the model preserves the symmetry of the direct interaction of
two opinions postulated in the adaptive voter model, i.e. in direct comparison
no opinion is stronger than the other. However, it breaks the symmetry between
different pairings of opinions such that rewiring is more likely in certain pairings
than in others.

In Section 3.1.2 we saw that the fragmentation transition separates an active
regime, where a finite density of active links persists (until fluctuations drive the
system eventually to an absorbing consensus state), from a fragmented regime,
where disconnected components emerge. Because the G-state model contains
several different types of active links (corresponding to all possible pairings in
'), regimes can occur where active links of a certain type vanish while others
prevail. This can lead to configurations where a certain subset of the states only
appears in one component of the network in which no state not belonging to this
subset is present. In the following we call this situation a partially fragmented
state.

In contrast to the fully fragmented state, where every component is internally
in consensus, the dynamics in the partially fragmented state can continue in
some components while others may be frozen in internal consensus. The partial
fragmentation cannot be undone, so that achieving global consensus is impos-
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Figure 3.8: State-network of a 3-state voter model. The nodes in this network
correspond to three opinions A, B and C. The rewiring rates pi,ps or ps,
encode the degree of controversy between agents holding the respective pairings
of opinions AB, BC or C'A. The ellipse and dashed lines illustrate the example
described in the text: partial fragmentation with respect to A.

sible after partial fragmentation has occurred. However, the ongoing dynamics
in the active components will eventually lead to an absorbing state in every
component. The absorbing state which is ultimately reached after a partial
fragmentation therefore in general consists of 1 < v < G major components,
holding the ~ surviving opinions, respectively. For v = G we recover full frag-
mentation and the case where v = 1 we denote as the fully active regime where
all types of active links prevail. Only in the latter case (due to finite-size effects)
global consensus can be reached eventually.

3.3.2 Fragmentation transitions in a 3-state model

We start our exploration of the proposed multi-state voter model by considering
the case G = 3, as this is the simplest case which is not trivial (G = 1) or ex-
tensively studied (G = 2) [73, 114-116]. Let us consider the set of opinions I" =
{A, B, C}, giving rise to three different rewiring rates {pag, pac, ppc} which we
denote as {p1, p2, p3} according to the state-network depicted in Fig. 3.8.

In principle, in the limit of large N a 3-state system can reach five different
final states: a fully active regime, full fragmentation and partial fragmentation
with respect to A, B, or C. Here, partial fragmentation with respect to a certain
state refers to a situation where a component of nodes in that particular state
fragments from an active component (a mixed component of nodes in the other
states).

For the calculation of the fragmentation threshold, i.e. the transition from a
fully active to a fragmented regime, we follow the approach described in Section
3.2. We determine the evolution equations for the number of active motifs
starting from a situation close to the fragmentation threshold. For simplicity,
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we only use the fan motif set here. We emphasize that all calculations below
can also be carried out using more elaborate motif bases, but at the price of
having to deal with considerably larger matrices.

Previously, we defined g-fans as a bundle of ¢ active links emanating from
the focal node. Recall that we do not account for the number of inert links
connecting to this focal node. Because in a 3-state model we have three types of
active links, the set of g-fans in principle consists of all possibilities for choosing
q active links from three types of active links. For simplicity, we consider only
pure fans, i.e. fans which contain only one type of active link. For example,
an AB-fan is a bundle of AB-links, connected to a single A- or B-node. We
confirmed that the incorporation of mixed fans barely influences the results.

This can be understood as follows: In the case where p3 is close to or beyond
the fragmentation threshold, it is obvious that the probability to create a mixed
fan goes to zero. If ps is much below the fragmentation threshold, mixed fans
tend to be converted into pure fans before the next update occurs on an AB- or
AC-fan. This is because we assume a situation where only few active links of
type AB and AC' are left, and therefore almost all updates occur on BC-links.
Most of those updates are opinion adoption events and thus tend to destroy
mixed fans. For p3 =~ 0 and for large mean degrees, the deviation might become
significant. In this case, one can incorporate mixed fans in order to obtain more
accurate results.

We start by calculating the condition for partial fragmentation with respect
to A (see Fig. 3.8). The A-cluster fragments from the rest of the network when
all AB-motifs and all AC-motifs vanish. Because in general p; # ps, we have to
treat AB- and AC-motifs separately. We start by considering a network with
two almost disconnected clusters, one of which is composed purely of A-nodes
and the other one of B- and C-nodes. Then, we ask whether the fragmented
state is stable, such that fragmentation is reached, or unstable, such that the
system avoids fragmentation.

In the almost fragmented state the expected effect of network updates on
the active motifs is captured by the procedure described above. For the case
of k = 3 we obtain the transitions rules shown in Fig. 3.9. New active motifs
are created when an opinion update occurs. We approximate the degree of
the focal node k by the networks mean degree (k). Because of the clusters
being almost-separated the newly formed active motif is a k — 1-fan. This
fan can subsequently lose active links due to subsequent opinion updates and
rewiring events. We account for a finite density of active BC-links in the active
component (captured by p3) by creating an AC-fan (AB-fan) instead of an
AB-fan (AC-fan) with probability ps when a new fan is created by a B-node
(C-node) adopting opinion A. Starting with equal distribution of states, the
relation p3 = [BC|/(k[B]) = [BC]/(k[C]) holds, where [B] and [C] denote the
numbers of B-nodes and C-nodes, respectively. Note that ps differs from the
global BC-link density p\*) = [BC]/L.
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5(1—p2)
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-

Figure 3.9: Transitions of AB- and AC-fans for a degree-regular network with
k = 3 for the scenario of partial fragmentation with respect to A. Black, white
and grey nodes correspond to agents holding opinion A, B, and C', respectively.
The active link densities p; and p, are assumed to vanish close to the partial
fragmentation point, whereas ps, the density of BC-links is possibly finite.
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Figure 3.10: Schematic fragmentation diagram for a 3-state system. The region
where fragmentation with respect to A occurs depends on the BC-link density
ps: If p3 = 0, fragmentation with respect to A occurs only in region III. If p3 > 0,
fragmentation with respect to A can occur additionally in part of the dashed
region. For p3 = pne. the maximal extension of the fragmentation region (II
+ III) is realized. In region I, no fragmentation with respect to A occurs. If
p1 > ps and py > ps, this fragmentation diagram suffices to determine the final
state of the whole system.

The set of transitions for & = 3 (see Fig. 3.9) defines a dynamical system,
describing the time evolution of the densities of active motifs close to partial
fragmentation with respect to A. The stability of the partially fragmented state
in this system is governed by the block-structured Jacobian matrix,

J(p1,p2, p3) = (Dpl);:((;;)(pg) Dmx_plégp:;)(p:g)) ) (3.4)

where . )
-1 5(1—-p) s(1=pi)
D,=|1 i{1-p)—1 0 : (3.5)
1 0 L1 —py)—1
and .
0 %(1 - pz’)ﬂj 0
Xpi(pi) =10 5(1=pi)p; 0] . (3.6)
0 0 0

The diagonal blocks in the Jacobian matrix given in Eq. (3.4) can be interpreted
as “self-interaction” terms, capturing contributions from the same motif-type,
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and the off-diagonal terms as “exchange” terms, capturing contributions from
different motif-types. The structure of this Jacobian matrix remains unchanged
for any partial fragmentation of a 3-state system, while the matrices (3.5) and
(3.6) change when the motif set is altered. In particular, the dimension of
these matrices increases with increasing mean degree and/or number of motifs
considered.

The partially fragmented state is stable if all eigenvalues of the Jacobian
matrix J are negative. Therefore, demanding A\(J) = 0, where A(J) is the leading
eigenvalue of J, yields a condition for the fragmentation transition, depending
on the three parameters pi,ps, and p3. The phase diagram in Fig. 3.10 is a
projection of this fragmentation condition on the p;-po-plane for the extreme
values of ps.

Let us first consider the case where p; = 0, which is encountered if p3 exceeds
pe, the fragmentation threshold of the adaptive 2-state voter model. In this
case, X becomes zero and the set of eigenvalues of the Jacobian matrix J is
the conjunction of the eigenvalues of the matrices D,, and D,,. Thus, A\(J) is
negative if A(D,,) and A\(D,,) are negative. Indeed matrices D,, and D,, are
the Jacobian matrices of the two uncoupled 2-state systems A — B and A — C.
Thus fragmentation of A requires that the 2-state fragmentation condition is met
separately for the AB- and AC-subsystems. In other words, if the links between
B and C' nodes vanish (p3 = 0), fragmentation occurs when both p; > p. and
p2 > pe (see Fig. 3.10 region III).

For studying the case p3 > 0 we first note that every matrix-valued row of
J sums to D,,, where i = 1,2. Below, when we consider the general case of
G states, we show that these rowsums imply bounds for A(J). More precisely,
A(J) is bounded by A(D,,) and A(D,,). Therefore, fragmentation with respect
to A is guaranteed when p; > p. and ps > p. (region III), but can already occur
when only either p; > p. or ps > p, is satisfied (region II).

The maximal extension of region II is observed when p3 = 0. The correspond-
ing maximal value p3 = ppe can be determined to good approximation by a
first order moment closure approach (pair-approximation). To illustrate this,
let us calculate the maximal active link density in an active cluster of s states
in a G-state system. If we assume p;; = 0 for all rewiring rates within the active
cluster, the evolution equation for the number of active links of type zy is given
by

fry] =l + 5 (Clezn] + S lwes] — S laye] — 3 [l

zF#T z#Y 27y z#T

Then, using the pair-approximation formulae given in (2.9), the number of active
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links in the steady-state yields,

_1 [z2][zy] | Oleyllyy] | lea]ley] o [ryllye] o [radley)
=5 (P X T )

(3.7)

2FL,Y

For equal distribution of states we can write for any x and y:
[I] = ;7 [Iy] =G, [ZL‘ZE] =1,

where n denotes the number of nodes in the active component. The total number
of links [ in the active component is in this notation given by

(s=1)

S
| =
SN+ —— ¢,

which yields for (3.7)

(= ;S(S —-2)+ 2% — 2%28(8 —1).

With kn = 2[, we find for the maximum active link density in a cluster of s

states,
s(s—1)¢  (s—1)(k— 1).

Prmaz 2 sk

For three states, we have s = 2, so that the maximal active link density yields
in this case

kE—1
Pmaz = 7 (38)
Note that (3.8) is in agreement with the expression for two states given in (3.1)
for p = 0 and (k) = k, because the active subsystem consists of two states, B
and C'.

Now, solving the condition A\(J(p1, p2, Pmaz)) = 0 numerically yields the curve
separating regions I and II in Fig. 3.10. Moreover, from the diagram in Fig. 3.10
it is clear that this curve implies the existence of a minimal rewiring rate p,,n,
such that for p; < ppin or P2 < pmin partial fragmentation with respect to A
becomes impossible, in the infinite size limit.

Let us emphasize, that calculations of fragmentation thresholds for partial
fragmentations build on the estimation of the active link densities from given
rewiring rates. As there is no accurate analytical expression for p(p) in the
whole p-range (see [115] and Section 3.4.1), the long-term behavior can only be
predicted with certainty in regions I and III of the fragmentation diagram.

Evaluating the partial fragmentation condition with respect to A4, i.e. A(J) =0
with J given in (3.4), leads to a phase diagram like the one shown in Fig. 3.10,
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Figure 3.11: Numerical phase diagram for the 3-state model. Plotted is the
density of links, connecting the A and the BC-cluster (p; + p2) over the rewiring
rates p; and py. Light regions correspond to fragmentation with respect to
A. The left panel shows the case p3 = 0(ps = 0.5). This corresponds to an
uncoupled system: the critical rewiring rates for p; and p, are the same as
for the 2-state voter model with the same mean degree, p. = 0.46. In the
right panel, ps is maximal (p3 = 0). Here, the active link density in the active
cluster leads to an extension of the fragmentation region. Black lines represent
analytical results. Link densities were measured at t = 1000, i.e. long before the
active phase decays due to finite-size effects. N = 10000, (k)=4, averaged over
20 realizations.

where three different regions can be distinguished: In regions I and III partial
fragmentation occurs or is avoided regardless of p3, whereas in region II partial
fragmentation depends on ps and consequently on the setting of the related
rewiring rate p3. We found that these results are in very good agreement with
data obtained from agent-based simulations of large networks (Fig. 3.11). In
order to extract the transition between fragmentation and active phase from
simulations of a finite network, one has to consider a timeframe where the
system is far from reaching a finite-size induced absorbing state (see [118] for a
more detailed discussion of the finite-size behavior).

So far, we studied partial fragmentation with respect to one specific state
(state A). In order to predict the final state of the whole system, one has to
analyze the corresponding partial fragmentation diagrams for each of the three
states. Let us assume p; > py > p3. Then, there are four cases to distinguish
(see Fig. 3.12):
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if .
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p3>p:; < g <5 o
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P2 Ps p2 full fragm.
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sl sl & \ .<j
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Figure 3.12: Fragmentation diagrams for partial fragmentation with respect
to state A, C' or B for p; > py > ps3 in the limit of infinite network size. There
are four different cases, according to the conditions given on the left-hand side
of the chart. The positions of the points P = (pa, p1), @ = (p3, p1), R = (p2, p3)
indicate for each case whether partial fragmentation is reached for the respective
state. The final state of the whole system can be deduced from the outcomes
for all three states and is given on the right-hand side of the chart. For the
first, second and forth case the final state can be predicted without ambiguity.
In the third case, either partial fragmentation with respect to A or an active
equilibrium can be reached, depending on the specific parameter setting (the
two possibilities are indicated by two different symbols o and x in the first
diagram and a solid and a dashed line in the second diagram of the third row).
It can be seen that partial fragmentation is only possible with respect to the
state with the largest rewiring rates (here A).
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L. ps > pe,
2. p3 < pc and p2 > p,
3. p2 < pe and p1 > pe,
4. p1 < pe.

In case 1) full fragmentation is reached, because all points P = (ps,p1), @ =
(p3,p1) and R = (p2,p3) lie in the region IIT of their respective diagrams. In
case 2) P lies in III and @ and R in I. Thus, partial fragmentation with respect
to A occurs, while B- and C-nodes form an active cluster and in a finite system
eventually reach consensus. In case 3) the point P lies either in region I or II of
the corresponding fragmentation diagram for A, whereas () is always in region
I, because py > p3 and p3 > py. This means that in this case either partial
fragmentation with respect to A occurs or the system reaches an active phase,
depending on the specific values of py, pa, p3. In case 4) P, @) and R lie in the
region I of their respective diagrams, implying that the active phase is reached.
Note that this shows that partial fragmentation can only occur with respect to
that state, which is connected via the largest rewiring rates to the two other
states in the state network.

In summary, we showed that in the 3-state voter model either consensus,
partial fragmentation or full fragmentation occurs. Full fragmentation is only
reached when all rewiring rates exceed p.. Analyzing the phase diagram with
respect to the state which is connected via the largest rewiring rates to the
other states suffices for the prediction of the final state of the whole system.
For quantitative predictions in region II of the diagram the active link density
corresponding to the lowest rewiring rate has to be known. Qualitatively, one
can say that whenever partial fragmentation occurs, it is with respect to the
“most different” state.

3.3.3 Fragmentation transitions in a G-state model

When we consider a general system of GG states, in contrast to the 3-state model,
partial fragmentations can also occur with respect to a group of states. A
general multi-state network can thus fragment into several active components.
In the following, we calculate the condition for a system to fragment into two
components containing s and G — s states, respectively (see Fig. 3.13). This is in
principle no restriction, as a fragmentation into more than two components can
be treated as a fragmentation into two components where the active components
in their turn fragment.

For clarity we only use one level of indices from now on: we write D;; and
X;; instead of D,,; and X, .. Furthermore, in order to distinguish indices which
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refer to one component from those referring to the other component we use
indices i € {1,..., s} for the component with s states and indices i € {1,...,s}
for the component with s = G — s states. For example, the inter-component
rewiring rates are then denoted as p;; and intra-component active link densities
as p;; and p;;, respectively.

In analogy to the treatment of the 3-state model, we consider a situation
where the two clusters are almost fragmented. We then determine the evolution
equations for a set of active motifs connecting the two components. In the 3-
state case these were of two types, AB- and AC-fans, which led to a Jacobian
matrix of 2 X 2 matrix-valued entries and a fragmentation condition which was
a function of the rewiring rates p; and p; and the active link density ps. In
the general case the Jacobian matrix contains ss x ss matrix-valued entries,
according to the s - s inter-component links in the state-network (see Fig. 3.13)
and the fragmentation condition is a function of all inter-component rewiring
rates {p;;} and all intra-component active link densities {p;;} and {p;;}.

Following the same procedure as for the 3-state system, one finds that the
general Jacobian matrix exhibits a block-structure of s x s submatrices,

Ay (P@ Plj) & (,012) T & (Pls)

J(pn' Pij pij) = < (,021) Az (pﬁ’ ij)
7 B e 5(5—1) (p(s—l)s)
&s(psr) o Glseen) Al psg)

(3.9)

where A; and &; are matrices of s X s matrix-valued entries,

]jz'; (Pga Pz‘j) Xi1 (PQ) T Xi1 (pLS)
Xi2(p21) Diy (P@ pij) ' .

A, (,0@ pz’j) =

Xi§ (pﬂ) T Xig(ps(s—l)) is (;027 plj)
and
Xiulpy) 0 = 0
0 X (4 :
& (pij) = . 12.(/) i)
: .. .. 0
00 Xi(w)

Here, we introduced the abbreviation

Dii(pij pi) =Dis— Y Kiilpi) = Y Xliilpi).

J=Lj#i J=1j#1
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For k = 3, the matrices D and X were given in (3.5) and (3.6) and the matrix
X' yields

0 0 %(1 — Pii)Pij

00 0 ) (3.10)
0 0 1(1-pi)py

The latter matrix appears for fragmentations where both of the fragmenting
components are active, i.e. for 1 < s < G — 1.

Note that every matrix-valued row of the Jacobian matrix sums to D;; and
refers to one specific type of inter-component link with rewiring rate p;; in the
state-network. One such row thus represents the transitions for one motif-type.
Entries D on the diagonal capture the creation of motifs of the same type,
while off-diagonal entries X and X’ denote transitions to different motif-types,
which arise from the intra-component link densities p;; and p;;, respectively. For
example, the entries in one row describing the transitions of g;go-fans depend
on the rewiring rate between the states g; and go, which is pja, the active
link densities between ¢, and all other states in the first component, p;,, with
xz € {2,...,s}; and the active link densities between go and all remaining states
in the second component, p,,, with y € {1,3,...,s}.

In analogy to the 3-state model the active link densities p;; entering in the
(@)
]

X'ii(pij) =

Jacobian matrix relate to the global active link density p;.” as

gl _Glag] G ()

and analogously for p;;.

Stability analysis of the general Jacobian matrix in (3.9) leads to a fragmen-
tation condition which depends directly or indirectly (through the active link
densities) on all G(G — 1)/2 different rewiring rates. In contrast to the estima-
tion of the active link density in a 2-state system, in a multi-state system the
active link density of a certain link-type does not only depend on the rewiring
rate of that specific link-type, but also on the rewiring rates and active link
densities of the neighboring links in the state-network. Inferring the link densi-
ties analytically from the rewiring rates is presently an unsolved challenge (see
also Section 3.4.2). So, even for given rewiring rates it is in general not possible
to make quantitative predictions about fragmentation thresholds. Neverthe-
less, the structure of the Jacobian matrix reveals some further insights about
fragmentation transitions, as we will see in the following.

Therefore, let us recall some theorems about upper and lower bounds of the
largest eigenvalue A\(IM) of a nonnegative irreducible matrix M. The well-known
Frobenius inequality states (see e.g. [133])

mkin Sk < A(M) < m]?XSk,
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s states G — s states

Figure 3.13: Schematic representation of a state-network with G states. El-
lipses illustrate a fragmentation into two (possibly) active clusters of s and G —s
states. Dashed lines correspond to inter-cluster links with rewiring rates {p;;},
connecting every state in one cluster with every state in the other cluster. The
number of inter-cluster links, s- (G —s) = s- s, determines the dimension of the
(matrix-valued) Jacobian matrix. Solid lines correspond to intra-cluster links
within both clusters with active link densities {p;;} and {p;;}, respectively.

where S; is the rowsum of the i-th row of M. A generalization of the above
inequality for a partitioned nonnegative irreducible square matrix M is given in
[134]. Let us assume that M can be partitioned into square submatrices M;;,
such that

M;; M -+ My
M — Mm Mzz : MQN
Mpyi1 Mpyo -+ Mpyy

We define generalized, matrix-valued, rowsums
N
Sp=> My, k=1,..N
j=1

Then, the following inequality holds [134]:

)\(mkin Sk) < AM) < )\(ml?X Sk)- (3.12)

The expressions min; and max; have to be understood element-wise, i.e. the
matrix miny S, is the matrix which is obtained when we take element-wise the
minimum over all S; and analogously for the maximum.

In the following, we apply the theorem quoted above to the Jacobian matrix
given in (3.9). This is possible because J can be written as J = T — 1, where T
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is a nonnegative irreducible matrix and 1 is the identity matrix of appropriate
dimension. We will consider two different partitions.

First, let us consider a partition (P1) of the Jacobian matrix into ss subma-
trices. Then, the matrix-valued rowsums corresponding to this partition yield

J=1j#i Jj=1,j#i

:Dija k':l,...,$§.

The matrices D;; only depend on p; and it can be seen from (3.5) that all
non-constant entries in D,, increase with decreasing p. Therefore, we get for the
upper and lower bounds of \(J)

ADp) < AJ) < A(Dy), (3.13)

where

Pmax = Max pi;, Pmin = I Py
1,1

'L 252

From (3.13) we deduce the following statements:

e When all inter-cluster rewiring rates p;; are below the threshold p., no
fragmentation occurs, because A(D,,..) > 0.

e When all inter-cluster rewiring rates p;; exceed the threshold p,, fragmen-
tation occurs, because A(D,,_, ) < 0.

o If prin = Puax, Necessarily all inter-cluster rewiring rates must be equal.
In that case, the fragmentation condition is the classical condition of the
2-state voter model, A(J) = A(D,) = 0, which yields the critical rewiring
rate p..

The first two results represent an intuitive generalization of our findings for the
3-state case. The last result implies that if all inter-cluster rewiring rates are
equal then the value of these rewiring rates, p, is the only parameter, which the
fragmentation transition depends on. In this case a precise analytical estimation
of the fragmentation point is possible because the active link densities arising
from the intra-cluster links, do not enter. Furthermore, note that this result is
independent of the number of opinions. This implies that in the special case
of equal inter-cluster rewiring rates, systems of any size behave identically to a
properly-initialized adaptive 2-state voter model.

We test the latter result in a 5-state system, considering a fragmentation into
two components of two and three states, respectively (inset in Fig. 3.14). Simu-
lations show that for randomly chosen rewiring rates r; within the two clusters,
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Figure 3.14: Numerical test of the reduction principle. We run simulations for
a b-state system (inset) assigning random values to the rewiring rates r;. Plotted
is the density of inter-cluster links (dashed links) for three different values of
p (and ten independent simulations each). For comparison, the corresponding
active link density of a 2-state model with the same rewiring rate and a ratio
2:3 for the number of nodes in opposite states is shown. It can be seen that
the inter-cluster density does not depend on r; and that it reaches a steady-
state value corresponding to the inter-cluster density (active link density) in the
adaptive 2-state voter model. N = 10000, (k) = 4.

the inter-cluster link density reaches the same steady-state value (Fig. 3.14). A
further comparison shows, that the behavior of a 5-state model closely matches
the behavior of a 2-state model.

Now we consider another partition, (P2), of the Jacobian matrix, which is
a partition into s submatrices. Then, the corresponding generalized rowsums
yield

SEPQ) = A, (pg, plj) + Z &i(pij)

J=Lj#i

e

a(p

—_
~—
s
=
[y
v}
~—

f)il (Pg)
Xz (/) 1 ﬁig (ng)
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where

s
Dii(py) =D~ Y Xulpy).
J=1j#i

(P2)
i
in a system of 5+ 1 states. More precisely, the set {ng)} describes a collection
of s single-state-fragmentations where for every 7 a single state g; is taken sepa-
rately from the s-cluster. This single state (i.e. now s = 1) then forms the first
component of the partial fragmentation, while the second component is given
by the whole s-cluster.

First, we observe that every matrix S corresponds to a partial fragmentation

Now, building the element-wise extrema of {SEPQ)} means to compare all the
single-state-fragmentations by comparing every matrix-entry of the correspond-
ing generalized rowsums. Taking min; sf.PQ) (max; ng)) yields therefore in every
matrix-entry the minimum (maximum) value, i.e. that one which comprises the
maximal (minimal) rewiring rate. The resulting matrix corresponds to a par-
tial fragmentation with respect to a single state where the inter-cluster rewiring
rates are chosen extremal according to the described comparison. We will re-
fer to such a system as bounding system (see Fig. 3.15 for exemplary bounding
systems).

For a partition of type (P2) the leading eigenvalue of the general Jacobian
matrix satisfies

A(min SI?) < A(J) < A(max S{™?). (3.14)

The lower bound corresponds to the fragmentation of a system where the largest
inter-cluster rewiring rate of each state in the second component is connected
to a single state. The upper bound corresponds to the fragmentation of a
system where the smallest inter-cluster rewiring rate of each state in the second
component is connected to a single state.

As in the Jacobian matrix in (3.9) the matrices X and X’ can be interchanged,
one can consider a corresponding partition where the second component is re-
duced to a single state, i.e. s = 1 and the first component remains unchanged.
This leads to a different set of bounding systems, as illustrated in Fig. 3.15 a)
and b).

From (3.14) we can draw the following conclusions:

e If the lower bounding system does not fragment (\(min, SZ(-PQ)) > 0), the
original system does not fragment.

e If the upper bounding system fragments (A(max; SEPQ)) < 0), the original
system fragments.

e If upper and lower bounding systems coincide (min; SEPQ) = max; SZ(PQ)),

the fragmentation of the original system is exactly described by the Jaco-
bian matrix of the bounding system.
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Figure 3.15: Schematic representation of the generalized Frobenius inequal-
ities for a 5H-state system and a partial fragmentation into a 2-state- and a
3-state-cluster. Comparisons refer to the corresponding largest eigenvalues of
the Jacobian matrices describing the indicated fragmentations. The inequalities
in a) and b) represent two different sets of bounding systems obtained from
a partition of type (P2), as described in the text. In c) a special case of a)
is shown, where the upper and lower bounding systems coincide. In this case
the considered fragmentation of the original system is fully captured by the
corresponding fragmentation in the lower-dimensional system.

The latter case is realized if every state in one component is connected via equal
rewiring rates to every state in the other component (see Fig. 3.15 c)). For state-
network topologies which display this property the dimension of the Jacobian
matrix reduces significantly and thus the fragmentation condition becomes much
more tractable.

The results from the second partition show that for the leading eigenvalue
of a Jacobian matrix, corresponding to a partial fragmentation into two active
clusters, upper and lower bounds can be given, which correspond to single-
state-fragmentations in (properly constructed) lower-dimensional systems. In
particular, the leading eigenvalue of the full Jacobian matrix can be exactly
calculated as the leading eigenvalue of a lower-dimensional Jacobian matrix if
special state-network topologies are given. Otherwise, when such a reduction
is not possible, the bounding systems provide necessary conditions for a partial
fragmentation to occur. So, calculating fragmentation conditions for the much
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simpler bounding systems in some cases suffices to predict the occurrence or
absence of fragmentations in the full system.

To summarize, in this section we extended the analysis of fragmentation tran-
sitions to a family of multi-state voter models. For the 3-state model our analysis
revealed a phase diagram in which three distinct types of behavior are observed.
Depending on the parameters the system either approaches a consensus state,
a partially fragmented state ultimately leading to two surviving opinions or a
fully fragmented state in which all three opinions survive.

In a general scenario with an arbitrary number of states making precise pre-
dictions is more difficult. In particular, the computation of fragmentations gen-
erally requires the estimation of active link densities inside the clusters between
which the fragmentation occurs. By exploiting the specific structure of tran-
sition rates in the system, one can nevertheless gain analytical insights into
the fragmentation dynamics. For example we identified a class of special cases
in which adaptive multi-state voter models exactly recover the behavior of the
adaptive 2-state voter model.

While the ultimate goal of understanding opinion formation in the human
population is still far away, the presented model illustrates how analytical un-
derstanding can be pushed to more complex models.

3.4 Further applications of the percolation approach

In this last section of Chapter 3, we briefly discuss two further applications of the
proposed percolation approach. First, we illustrate an application to directed
networks by calculating the fragmentation point in a directed adaptive voter
model. Then, we demonstrate how the approach can be used to estimate the
active link density in the original adaptive voter model.

3.4.1 Directed voter model

In the following, we consider fragmentation transitions in a directed voter model.
From the methodological point of view, this model is beneficial for testing the
validity of the percolation approach twofold: 1) Showing the applicability of the
approach to directed network models means a significant broadening of the class
of models which can be treated with the percolation approach. 2) The directed
voter model can be used for testing the performance of our approach for broad
degree distributions.

From the sociological point of view, the directed voter model incorporates
one additional feature, which is likely to be present in real societies, namely
the directionality of influence. A directed link in the directed voter model thus
encodes who is influenced by whom or, in the context of Twitter, “who follows
whom“ [117]. The additional feature of directionality makes it therefore easier to
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compare analytical and numerical results obtained from the model to data from
online social communities, a subject which has recently gained much attention
(92, 96, 135].

In the directed voter model, we start with N nodes, L directed links and an
equal distribution of node states, say A and B. Every node i holds a state
s; € {A, B}. Then, in one update step a random link ¢ — j is chosen. With
probability p the link is removed and a new link between ¢ and a randomly
chosen node k with s, = s; is established. With probability 1 — p, node 7 adopts
the state of node j, such that s; is set to s;.

The rewiring rule assures a constant out-degree distribution, which means
that the number of outgoing links of each node remains unchanged, while the
in-degree distribution becomes Poissonian due to the random rewiring process.
This allows for studying the impact of different out-degree distributions on the
(fragmentation) dynamics of the model. In the undirected voter model, an arbi-
trary initial degree distribution becomes roughly Poissonian due to the rewiring
process, impeding the analysis of more realistic degree distributions.

Note that here, in contrast to the update rule for the original adaptive voter
model introduced in Section 3.1, an update also affects inert links. This slight
difference in the update rule prevents a so-called early fragmentation [117], which
cannot be described by the percolation approach. Here, we stick to the discus-
sion of implications of directionality and degree distribution for the prediction
of fragmentation transitions. For an extensive analysis of the directed voter
model, in particular the effect of early fragmentation, we refer to [117].

For the calculation of the fragmentation point in the directed voter model,
the procedure is very similar to the one outlined in Section 3.2: Assuming a net-
work configuration close to the fragmentation point, we evaluate the transition
equations for active motifs regarding their stability.

Here, we choose spider motifs as a basis. Because the center node of a spider
motif can only switch its opinion when an opinion update on one of its outgoing
active links occurs, and a new spider motif can only arise if an opinion update
on one of its incoming active links occurs, spider motifs have to track four types
of links: outgoing and incoming inert links and outgoing and incoming active
links. Thus, a specific spider motif is characterized by a 4-tuple capturing the
numbers of the four types of links. In Fig. 3.16 the transitions for a general
spider motif close to the fragmentation point are illustrated. The prefactors
in the transition probabilities account for the probability of choosing an active
incoming link out of all active links and the probability of choosing an active
outgoing link out of all active links, respectively.

We find that for Poissonian in- and out-degree distributions the predicted
fragmentation point matches quite closely the critical point obtained from sim-
ulations. For example, for (k) = 8 the percolation approach yields p. = 0.8,
while in simulations p. = 0.78 is observed [117]. So, the directionality of the
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Figure 3.16: Schematic of the transitions of spider motifs in a directed voter
model. In order to account for incoming and outgoing active links and in-
coming and outgoing inert links, every motif is characterized by a 4-tuple
(Min, Mouts lins lowt). The probability for the creation of a new spider of a certain
type is determined by the in- and out-degree distributions P;, and P,,;. Here,
we assume that the in- and out-degree of a node is uncorrelated, so that the
joint probability becomes the product of the respective individual probabilities
-Pin ' Pout‘

network does not implicate any difficulties in applying the percolation approach,
despite the fact that the dimension of the transition matrix becomes larger as
we have to distinguish between incoming and outgoing links in the spider motifs.

It turns out that the effect of the degree distribution on the calculation of the
fragmentation point is more significant [117]. In particular, considering broad
degree distributions comes along with a loss of precision of the fragmentation
point. However, this is not a conceptual problem of the approach, but rather
due to limited computational power. For broad degree distributions the cut-off,
i.e. the maximal out-degree which is taken into account, would ideally chosen to
be equal to the largest out-degree in the actual network. But, for the directed
voter model the dimension of the Jacobian increases quadratically with the cut-
off (see Fig. 3.17). This behavior becomes clear when doing the combinatorics
for the number of different 4-tuples corresponding to given k!.5* and kJ.**. We
conclude that there is a trade-off between precision and computational effort,
which becomes particularly relevant for broad degree distributions and large
networks.
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Figure 3.17: Dimension of the Jacobian in dependence of the cut-off degree.
The dimension increases for increasing k" and fixed £]"** = 10 approximately

out

quadratically. For comparison, the dashed line shows (k™4*)2. Diagonalisa-
tion of the corresponding large matrices constitutes the major limitation for
the precision of the fragmentation point in networks with scale-free out-degree

distributions.

The example discussed in this section shows in which respect the percolation
approach can be used for more involved models and where limitations arise. We
saw that directionality can be immediately implemented in the approach, while
the drawback of considering broad degree distributions lies in the difficulty to
choose an adequate cut-off degree.

3.4.2 Estimation of active link density

As a last application of the percolation approach, let us again consider the orig-
inal two-state voter model introduced in Section 3.1. In (3.1) an expression for
the active link density p as a function of the rewiring rate p was given, which can
be obtained from a first order moment closure approach (pair-approximation).
For equal distribution of states (o = 0.5) relation (3.1) reads

L B-p) -1
2(k)(1 = p)
The corresponding curve for (k) = 4 is plotted in Fig. 3.19 (dashed line). It can

be seen that this theoretical estimation for the active link density matches the
simulation results (black dots) quite well for p < p.., while for rewiring rates close

(3.15)
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Figure 3.18: Transitions for fan motifs in a degree-regular network with k =
(k) = 3. In contrast to Fig. 3.4, here we assume that neighboring motifs are
already activated with probability p, so that in an opinion-adoption event they
might become deactivated. As a consequence, new 2-fans are created with
decreased probability. This variation allows for an estimation of the active
link density (away from the fragmentation point).

to the fragmentation point it fails drastically. As mentioned earlier, the reason
for this failure is due to the assumption made in mean-field-like approaches,
that active links are homogeneously distributed in the system throughout the
whole p-range. Indeed, homogeneity in the active link distribution is only war-
ranted for relatively low rewiring rates, but is destroyed for p-values close to the
fragmentation point [115].

In the following, we demonstrate how the percolation approach introduced in
Section 3.2 can be used to obtain an alternative estimate of the active link den-
sity. Therefore, we use a variant of the procedure described in Section 3.2. Now,
we account for the presence of active links within the two components, which
were previously assumed to be homogeneous. This implies that the activation
of new active motifs becomes less probable as there is a non-zero probability of
deactivating an already active motif, instead.

For illustration, let us consider again the degree-regular case where k = (k) =
3, and assume a set of fan motifs (Fig. 3.18). A single active link gives rise
to a 2-fan with probability 1 — p, provided that the neighboring links are not
active already. If we assume p to be the probability for both links to be active,
then the probability of creating a 2-fan in an update-event of a single active
link becomes (1 — p)(1 — p). Similarly, in the second transition, the creation of
a new 2-fan out of a 2-fan occurs with probability (1 — p)(1 — p)/2. Here, we
made the assumption that neighboring fan motifs are either completely active or
completely inactive, inspired by the observation that active links tend to cluster
close to the fragmentation point [115].

The transitions in Fig. 3.18 lead to the following Jacobian matrix,

J— <—1 (1=p)(1—p) ) (3.16)

1 —1+501-p)A-p)
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Figure 3.19: Active link density in the adaptive voter model. For compari-
son, we show the results obtained from simulations (e), from the percolation
approach with g¢-fans (x), from the percolation approach with spider motifs
(o) and from pair-approximation (dashed line). Note that spider motifs, which
yield more accurate results for the fragmentation point, estimate the active link
density for p < p. worse than ¢-fans. N = 10°, (k) = 4.

from which we obtain a condition for the active steady state A(J(p, p)) = 0 and
therefore an expression for the active link density in the steady state,
1-3p

p(p) 30— (3.17)
The corresponding curve for (k) = 4 is shown in Fig. 3.19 (symbol x). We
find that the active link density obtained from a percolation approach yields,
in contrast to the estimation from pair-approximation, a very good agreement
with simulation results close to the fragmentation point, while it becomes less
accurate for low values of p. The latter observation is expected, as we used
features (e.g. clustering of active links) which are specifically present in the
vicinity of the fragmentation point. Analogously, it turns out that for increased
precision of the fragmentation point, i.e. by taking the spider motif set, the
estimation of the active link becomes worse for p < p., compared to the fan
motif set (see Fig. 3.19).

Note the similarity of the matrix in (3.16) to previously discussed cases: 1)
For p = 0 the matrix becomes the Jacobian matrix in (3.3), which determines
the stability of the fragmented state. Consequently, one can interprete the
matrix in (3.16) as the Jacobian matrix governing the stability of the active
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steady state. 2) The matrix in (3.16) structurally corresponds to the diagonal
“self-interaction” terms in the Jacobian matrix of the 3-state model, (3.4). The
only difference is that in (3.4), p refers to the link density of BC-links, while in
(3.16), the link density of AB-links itself is denoted by p. Consequently, in the
latter case, whenever an already active motif is met, it vanishes (becomes inert)
with probability (1 — p)/2 while in the multi-state model it becomes an active
motif of different type. So, formally we can represent the matrix for the active
link density in (3.16) as a Jacobian matrix describing a partial fragmentation
into two AB-clusters.

To summarize, a variant of the percolation approach which accounts for ad-
ditional active motifs within the fragmenting components, allows for an esti-
mation of the active link density in the adaptive voter model. For rewiring
rates close to p. the obtained estimate from this procedure is quite accurate,
while for low rewiring rates pair-approximation yields more precise results (see
Fig. 3.19). How to properly combine both approaches in order to obtain a rea-
sonable expression for the active link density in the whole p-range is presently
an unsolved challenge. A heuristic way to do so, is to construct a function p(p)
which smoothly extrapolates between pyc(p) for small p and ppa(p) for large
p.” However, even though the resulting curve matches the simulation results
better than any of the original curves, it is rather artificial and does not provide
insight about the actual process going on in the system. The goal is to describe
the transition from a regime where active links are homogeneously distributed
(p = 0) to a regime where active links are highly clustered (p =~ p.). Ideally,
one would find a mathematical description for the aggregation process of active
links in dependence on the rewiring rate p.

3.5 Discussion

In this chapter, we developed a method for the analytical estimation of fragmen-
tation thresholds and tested the performance of our approach in specific exam-
ples. Fragmentation transitions are a common feature of adaptive networks for
opinion formation and characterize a transition from a global homogeneous state
to a fragmented state where diverse opinions coexist in separate components.
From a sociological point of view, it is desirable to understand phenomena such
as the formation of subpopulations or the establishment of global consensus. A
mathematical description of the phenomenon is crucial for the investigation of
existing and upcoming models. As the widely used moment closure approxi-
mation yields poor estimates for fragmentation thresholds, there had been no
analytical approach available which faithfully predicted the fragmentation point.

"Here, by pmc(p) we denote the moment closure result from (3.15) and by ppa (p) we denote
the percolation approach result, which is for (k) = 3 given in (3.17) and which can be
analogously obtained for arbitrary (k).
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3.5 Discussion

Inspired by the idea of percolation, we proposed an alternative approach where
we derived evolution equations for a set of active motifs assuming a network
configuration close to the fragmentation point. Then, evaluating the stability of
the fragmented state yields an estimate for the fragmentation threshold. We find
that this estimate is much more precise than predictions from moment closure
approximations. We believe that the main reason for the good performance of
the percolation approach is that, in contrast to mean-field-like approximations,
our approach takes clustering of active links close to the fragmentation point
into account.

The fact that active links are concentrated at few network nodes is captured
in the choice of the basis set. We presented two possible bases for the derivation
of our system of equations. The first one, the basis of ¢-fans allows for a quick
and reasonable estimation of the fragmentation point, whereas the second one,
the spider motif set, comprises more computational effort but allows for a very
precise prediction of the fragmentation point.

After introducing the percolation approach in detail using the example of
an adaptive voter model, we demonstrated its applicability to more elaborate
models for opinion formation.

First, we considered a multi-state voter model, where agents choose an opinion
from a discrete set of arbitrary-many opinions. Using the percolation approach,
we were able to analyze partial fragmentations of the network, and we identified
a class of equivalent models with respect to fragmentations. If there exists an
equivalent model of lower dimension than the original system, the analysis of
fragmentation transitions simplifies considerably.

Then, we studied fragmentations in an adaptive voter model on a directed
network. This model is particularly instrumental for testing the performance of
our approach with respect to broad degree distributions. We pointed out that
the cut-off degree influences the precision of the estimated fragmentation point
to large extent, which makes it computationally costly to obtain good results
for scale-free networks.

Finally, we used the percolation approach to calculate the active link density
in the original adaptive voter model. As expected, the obtained expression is
reasonable for rewiring rates close to the fragmentation threshold. For rewiring
rates much smaller than p. the predicted active link density overestimates the
actual value. Now, a challenge for future work is to combine the mean-field pic-
ture, which is valid for small rewiring rates, with the picture of highly clustered
and localized active links, which is true close to the fragmentation point, in
order to obtain an analytical description of the active link density in the whole
parameter range. Our approach, and the reasoning which led to its development
comprise an important contribution to this currently unsolved problem.

To summarize, our approach provides a framework for the calculation of frag-
mentation thresholds, which is quite general. The crucial prerequisite is that
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3 Fragmentation transitions

the update rule is based on a contact process. Otherwise, if active links arise
spontaneously, the fragmented state is not absorbing and clustering of active
links cannot be assured. The percolation approach in principle allows for the
treatment of many variants of the adaptive voter model, including direct and
reverse node update [29] or different rewiring schemes [111, 112]. Furthermore,
it can be used for the analysis of fragmentations in more realistic models, which
account for asymmetric relationships between opinions (biased voter model),
intrinsic preferences [136], bounded confidence [105, 106, 137], the influence of
many neighbors in the same state [138], and similar refinements. In specific
cases, further information about degree distributions and (degree-) correlations
have to be considered.
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4 Persistence of complex food webs in
metacommunities

Ecological systems are complex systems which typically offer a high degree of di-
versity. A central aim of ecology is to understand the emergence of the enormous
diversity of ecological species in order to facilitate its maintenance. Therefore, it
is conducive to study the conditions for emergence and loss of diversity in model
systems. In this chapter, we use a network approach to investigate conditions
for the coexistence of different species in ecological communities.

In a network description of an ecological system, the network nodes repre-
sent single organisms, whole species, or entire populations composed of several
species, depending on the level of coarse graining. Among these options, a com-
monly chosen representation of ecological systems is a description in terms of
food webs [139-144].

Food webs are networks where nodes correspond to species and directed links
correspond to trophic interactions, pointing from a resource species to a preda-
tor. Such predator-prey interaction patterns can be obtained from observations
and analyzed with respect to their size, structure and connectivity. In particu-
lar, it has been found that most food webs observed in nature comprise a large
number of different species and exhibit a high level of complexity [145-148].

Recent investigations have identified several factors that contribute to the
stability of large food webs and thus promote diversity [149-153]. However,
growing evidence suggests that, at least in some systems, the food web emerges
only on a regional scale, whereas simple food chains are observed if specific
locations (patches) are considered in isolation. This points to a need for a non-
local perspective, in which one explicitly accounts for the spatial distribution of
resource patches and dispersal of species across these patches.

Then, the question arises, how different communities can be sustained in a
network of similar patches. This question was first discussed in the context
of metapopulation theory, introduced in [154, 155]. Metapopulation models
consider several species which spread over a system of identical patches, such
that each patch is either occupied by one species or vacant. It was found that,
due to spatial dispersal, different species can coexist at the metapopulation level,
even though individual patches only host one species type.

A similar feature was observed for a class of metacommunity models that was
recently proposed in [156-158]. In metacommunity theory, the metapopulation
framework is extended to account for predator-prey interactions. Thus, various
trophicaly interacting species can inhabit a single patch. Due to dispersal across
patches, and as different compositions of species may be realized in different
patches, a complex interaction pattern can arise at the metacommunity level.
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In other words, metacommunity theory describes an ecological system as a
network of networks, where the food webs encoding trophic interactions within
patches are coupled via a patch-network, representing the spatial dispersal
routes of species. It is self-evident that the emergent food web at the meta-
community scale, which in general differs from the local food webs within the
patches, depends both, on the structure of the predator-prey interactions, and
on the structure of the patch-network. In this chapter we develop a mathemati-
cal framework which facilitates the analysis of these two types of dependencies.

We start in Section 4.1 with a detailed description of the metacommunity
model. Then, using as an example a simple linear food web, we illustrate the
idea of our mathematical approach for the calculation of persistence conditions.
In Section 4.2 we extend our approach and calculate persistence conditions for
predators in more complex food webs. The obtained conditions reveal explicit
relations between species diversity and food web topology. In Section 4.3 we
study the influence of the patch-network on species diversity. We consider
patch-networks with multiple types of habitat and patch-networks which ex-
hibit heterogeneous degree distributions. We summarize and discuss our results
in Section 4.4.

4.1 Introduction to metacommunity theory

In the present chapter, we employ a metacommunity model which has recently
been proposed by Pillai et al. [156-158]. This model is relatively simple and
therefore conducive to a detailed analysis. A crucial assumption of the model is
that within each patch competitive exclusion precludes the formation of complex
food webs. This means, within patches the model does not allow for more than
one predator feeding on the same prey species. Thus any single patch can
only harbor a food chain. However, as different food chains may be realized in
different patches a complex food web emerges at the system level (see Fig. 4.1).

In this section, after introducing the model in detail, we focus on the emer-
gence of linear chains in the metacommunity. Such food chains are the simplest
form of emergent food webs. We use this simple example as an introduction and
for illustration of our method, which we subsequently apply to more complex
food webs in Section 4.2.

4.1.1 Definition of the model

Following [156, 157|, we consider a metacommunity consisting of s species which
populate a network of interconnected patches. The proposed model does not
account for the abundance of a species i € {1,2,...,s} found in a specific patch,
but captures only the presence (or absence) of this species by a boolean variable.
Thus, every patch can either be empty or occupied by a set of species.
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Figure 4.1: Schematic illustration of the emergence of complex food webs.
Spatially coupled local patches with simple food webs give rise to complex food
webs at the metacommunity scale. Figure extracted from [157].

The dynamics of the model includes two processes: local extinction and colo-
nization of adjacent patches. Every species i goes locally (i.e. within each patch)
extinct with a constant probability e;. As a consequence of the extinction of
species 7 in a specific patch, all species directly or indirectly feeding upon species
1 also go extinct. For example, in a patch with three species where species 3
feeds upon species 2 and species 2 feeds upon species 1, species 1 goes extinct
with probability e;, species 2 goes extinct with probability e; 4+ e; and species
3 goes extinct with probability e; + es + es.

Colonization allows a species ¢ that is established in a patch to establish itself
in suitable patches with a constant rate ¢;. A patch is considered suitable if a) it
can be reached from the source patch, b) prey for the focal species is established
in the patch and c) no superior competitor is already established in the patch.

Regarding a) we assume that the patches form a complex network. In this
network every node represents a patch, and a link between two nodes indicates
that colonization between the corresponding patches is possible.

Regarding the availability of suitable prey, b), we assume that only certain
species, so-called basal species, can occupy empty patches. All other species
have a set of at least one suitable prey species. A given species cannot colonize
or persist in a patch unless at least one suitable prey is already established in
the patch. These potential predator-prey relationships define a second network.
In this network the nodes represent species, whereas directed links represent
potential predator-prey interactions. This network is also the maximal food web
that can be observed at the metacommunity scale. In any case, the emergent
food web is a subgraph of the maximal food web, where potentially some nodes
are missing, if species vanish.
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Regarding competition, c), following Pillai et al. [156, 157] we assume that
specialists, which feed on