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Abstract

The subject of this thesis is the generation of spatial tealstructures in living cells.
Specifically, we studied the Min-system in the bacteridstherichia coli It consists of
the MinC, the MinD, and the MinE proteins, which play an imjaait role in the correct
selection of the cell division site. The Min-proteins okt# between the two cell poles
and thereby prevent division at these locations. In this, \Eaygoli divides at the center,
producing two daughter cells of equal size, providing thath the complete genetic pat-
rimony.

Our goal is to perform a quantitative study, both theorétioa experimental, in order
to reveal the mechanism underlying the Min-oscillations.

Experimentally, we characterize the Min-system, meagltia temporal period of the
oscillations as a function of the cell length, the time-agerd protein distributions, and the
in vivo Min-protein mobility by means of different fluorescence m&copy techniques.

Theoretically, we discuss a deterministic descriptioreldasn the exchange of Min-
proteins between the cytoplasm and the cytoplasmic merataad on the aggregation
current induced by the interaction between membrane-bpunteéins. Oscillatory solu-
tions appear via a dynamic instability of the homogenousgmmalistributions. Moreover,
we perform stochastic simulations based on a microscogicrijgion, whereby the prob-
ability for each event is calculated according to the cqoesling probability in the mas-
ter equation. Starting from this microscopic descriptioe, derive Langevin equations
for the fluctuating protein densities which correspond todbterministic equations in the
limit of vanishing noise. Stochastic simulations justifyst deterministic model, showing
that oscillations are resistant to the perturbations iedury the stochastic reactions and
diffusion. Predictions and assumptions of our theoretivatlel are compatible with our
experimental findings.

Altogether, these results enable us to propose furtherrempeets in order to quan-
titatively compare the different models proposed so far tangst our model with even
higher precision. They also point to the necessity of parfog such an analysis through
single cell measurements.
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Chapter 1
Introduction

A famous remark by the biologist Francgis Jacob assertg dream of every cell is to
become two cells” [2] Fulfilling that dream requires a long list of molecular lolirig
blocks, spatial regulatory mechanisms, and the energyssangto carry out the cell divi-
sion process. The subject of this thesis concerns one op#t@kregulatory mechanisms
in the bacteriuntscherichia coli

Why does a cell need regulatory mechanisms for division? dstrprokaryotic and
eukaryotic species, cell division takes place through tdimnétion of a cell wall (plant
cells, yeast, and prokaryaotic cells) or a contractile riagihal cells), and the consequent
creation of two daughter cells. After chromosome replaratnd segregation, correct
placement of the division site is crucial for the transnaanf genetic information from
parental to progeny cells. To achieve this goal, both eukarand prokaryotic cells have
developed extremely reliable division site selection na@i$ms.

Spatial and temporal oscillations of the Min-protéiisE. coli provide one of these
mechanisms that permit the bacterium to identify the prépeation of the division site.

1Also quoted in [3] p. 20.
2For a review of spatial control of division-site placemenbacteria and eukaryotes see [4, 5]
3A remark about notations. A fully functional cell line, orain, found in the wild is called a wild type

(wt). If a mutant cell is found that is missing a particulanétion or showing a new characteristic, the gene
carrying the mutation is named in relation to that functiokloaracteristic. For examplepain gene is one
encoding a protein required for correct placement of thésibim plane. A cell with such a defean{n™)
makes the division plane, but in abdiit% of all divisions the cell wall grows close to one of the two g®l
giving rise to mini-cells. From here the prefix “min”. Usuathe first gene of this type to be identified is
calledminA (in italics), the second is callethinB, and so on throughout the alphabet. When the protein
encoded by the gene is identified, it is called MinA (captiedi and in Roman type).
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Z/-ring
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Figure 1.1: a) Schematic representatiorEotoli during the division process. The division plane
is determined by the location of the Z-ring, a structurettndm FtsZ-filaments. A mechanism
called “nucleoid occlusion” restricts the formation of tBeing to a region void of DNA. After
duplication and segregation of the chromosome, threelgedsications of ring formation remain:
at the cell center and close to the two cell poles. The Mirtesysselects the center so that each
daughter cell receives the complete genetic patrimonynth)cd FtsZ-GFP (GFP stands for Green
Fluorescence Protein, see chapter one) localizes tonoteoid regions. Individual cells of
JM109/pZG stained with 4,6-diamidino-2-phenylindole ([BlAblue fluorescence), viewed for
DAPI fluorescence only (top part), GFP fluorescence onlyofsggart from top), and DAPI +
GFP (lower two parts, composite images, with lowest parketzed to improve the visualization
of the inter-nucleoid space). Bar 1um. b) and c) Taken from [6].

Like all prokaryotic cellsg. colihas no nucleus and, due to the spatial distribution of the
chromosomes for the daughter cells to either side of the medtise spatially symmetric
division is essential (see figure 1.1). In this study, we stigate possible mechanisms
underlying the Min-oscillations by means of experimentstmematical modeling, and
numerical simulations.

Over the last fifteen years, the discovery of cytoskelgtadteins in prokaryotic cells
changed the old view of bacteria as simple containers ofrapzy9-11]. The absence of

4The cytoskeleton is a subcellular structure in the cytoplasilt from protein filaments. It gives the
cellits shape, the capacity for direct movement, orgarttzestracellular transport, and plays an important
role during cell division [7, 8]. Its components are actiatilents, microtubules, and intermediate filaments
(IFs).



a cytoskeletal structure was once believed to be a decistation between prokary-
otes and eukaryotes. However, work in the past years hasnstiav bacteria actually
possess a full complement of cytoskeletal proteins indgdictin, tubulin, and interme-
diate filament protein homologoues [9-19].

Elements of the division machinery i. coli have been identified as a part of the
bacterial cytoskeleton. FtsZ, the first protein to asserabtbe future division site [20],
is supposed to share a common ancestor with tubulin, the @oeemp of microtubules in
eukaryotic cells. The two proteins have a modest homolodleif sequences but a very
similar three-dimensional structure [21]. MinD belongstfarge and functionally diverse
family of ATPases proteins that have a conserved deviank&Wal motif and dimerize
in an ATP-dependent manner [22—24]. These proteins haeatlgdeen suggested to be
part of a new family of cytoskeletal proteins which are regdifor the spatial regulation
of chromosome patrtitioning and cell division [25] and haweknown direct counterpart
in the cytoplasm of eukaryotes. In addition, proteins ofthreB family, present in a wide
range of rod-shaped bacteria, includiagcoli, are actin homologoues regulating the cell
shape [26]. Finally, crescentin (CreS), an IF protein thaalizes toaCaulobacteis inner
curvature and regulates the cell shape, resembles IFsnmahoells [17].

Bacteria are simpler than eukaryotic cells and can in sorsescae studied more eas-
ily. Their study can offer the opportunity to discover basgtiular mechanisms common
to eukaryotic and prokaryotic cells, which have been preseduring evolution [9]. For
instance, the Min-system was also found to determine thisidivsite in plant cell chloro-
plasts [27], which are believed to have originated from phgihthetic bacteria. Homol-
ogoues of MinD, MIinE and FtsZ proteins were identified in tlielear genome ofra-
bidopsis In particular, the importance of the MinBrabidopsishomologue (AtMinD1)
in plastid division was corroborated by the phenotype oletdiwhen the AtMinD1 ex-
pression was altered [28]. Overexpression of AtMinD1 iitsithe chloroplast division
as overexpression of MinD inhibits the growth of the Z-rimgd. coli. In addition, the
reduction of AtMinD1 concentration gives rise to heteragjgnin chloroplast size, that
is reminiscent of mini-cells formation i&. coli. This suggests a functional conservation
between thérabidopsisAtMinD1 and theE. coli MinD.

Moreover, proteins homologous . coli Min-proteins are present in many other
bacteria [4], with cases of the conservation of the funckietween species. An example
is shown by the ability of MinD (MinDV g) and MinE (MIinEN g) proteins fromNeisseria
gonorrhoeado function as the usual Min-proteins when they are intreduatoE. coli.
MinD (MinD Ng) and MIinE (MIinEN g) also cause a division block when overexpressed
in Neisseria gonorrhoeadut it is not yet known whether the proteins oscillate witthie
cell. In B. subtilis MinCD proteins prevent septation near the poles as they &o ¢oli,
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but remain in position at both poles without showing ostiias.

The study of bacteria is also important in its own right; iotfdacteria are practically
everywhere, and understanding how they work is useful ifedint fields from clinical
treatment of infectious diseases to the production of gnerg

Besides its biological relevance, the Min-system is anaaxttinary example of how
guantitative modeling may lead to new insight into the megra of self-organization in
cells [29]. Because of the low number of Min-proteins, it istaan appropriate system
to study stochastic effects in spatially extended systeihss surprising that, despite
the fluctuations in the number of involved molecules, mo#itilze events are precisely
regulated, as is, in our case, the positioning of the dinigiane.

Other proteins not related to the cell division process sbpatial-temporal patterns
in bacteria. Examples are Par-B waves [30], and pole to ma#lation of FrzS, a protein
required for direct motility inMyxoccocus xanthy81]. In general, oscillations occur in
many biological conditions [32—36]. Spatiotemporal patseappear spontaneously in a
wide range of physical, chemical, and biological systememthey are driven sufficiently
far from thermodynamic equilibrium. From a theoreticalngaf view they can be de-
scribed in terms of a dynamic instability, a property of tlyggtem by which a spatially
uniform state loses stability and passes into a non-uniiate, for example as a conse-
quence of local fluctuations [37]. The first description oft@an formation in biological
systems using this approach was introduced by Turing in 1382

In a broader context, our work may be seen as a paradigm ohirsqal approach to
living systems. Traditionally, physics and biology deysd different approaches for the
study of inanimate and living systems. Galileo’s study otimmis a prototypical exam-
ple of the physics approach. He found mechanics negledtictgoh, although friction is
a crucial ingredient of everyday life. As a consequence nhtheoretical physicist tries
to understand how a system like Bncoli cell works, he looks for universal laws, and his
model should contain the minimum in possible ingredierpdiully the key ingredients
of the system. This means that, at the very least, the modst make predictions that
can be experimentally tested. On the other hand, a biologite past century sought
to understand the re&. coli, not a hypothetical one. His approach was much more de-
scriptive. Understanding the system means to describeygters in all possible detafls
which makes quantitative predictions difficult.

SThis is an oversimplification of the real situation. In fatiie desire to study biological problems
using tools from other sciences has alway been present,ifiackdt approaches in the last century were
used by biologists, such as thelistic one, where biological systems are described in their whaslgnor
the reductionisticone, where the system is characterized in all single compenénterested readers are
invited to consult the book of B.O. Kupper [39], or the higtat account of E. Mayr [40]



In the last twenty years, the situation has drastically gedn Technological advances,
for example in fluorescence microscopy techniques or neoqas manipulation of sin-
gle molecules as DNA [41], have revolutionized our views mwiidgical systems. This
new situation opened the door to developing biology as atifative, predictive science.
Theoretical physicists were attracted to this possibéitg started to apply methods from
the statistical physics of systems out of the thermodynaeqiglibrium and non-linear
dynamics to study biological systems. For a long time, omelsyuits for small devia-
tions from the equilibrium were available in statisticalyplts [42]. Perhaps it is not
by chance that new theoretical results have recently apdaarthis field, in particular
concerning fluctuation theorems and dynamical phase tram$ar from the equilibrium,
just when technological advances allow for a comparisoh xperiments in living sys-
tems [43, 44]. Moreover, people from different fields andwdtifferent backgrounds as
biologists, chemists, engineers, mathematicians, andigbis organized meetings and
began to collaborate, looking for a new common approactviegisystems. Due to the
complexity of biological systems, finding general prinefpis a difficult task. Neverthe-
less, using the words of Uri Aldnwe believe that biological system contain an inherent
simplicity: “Although cells evolved to function and did netolve to be comprehensible,
simplifying principles make biological design understabig to us” [45].

We hope that by bringing the physics approach to biology neexpected results
and applications in biotechnology and medicine can be fouAd Eric Siggia writes
on his Lab Web Page “Nowadays, physics applied to cell biplisgless reductionist
than biochemistry. The challenge for the theorist is to dedoovel and quantitative
conclusions from less than full chemical detail. The oppwittes for doing so are when
physics contributes to the experimental design rather beaing added at the end to fit
curves”. This is the approach we followed in this thesis. &ntioular, we focus on the
following issues: theoretical study of the Min-protein dymics, by i) deterministic, and
i) stochastic descriptions; iii) experimental charaiz&tion of the Min-system and test
of the predictions of our theoretical model by means of déife fluorescence microscopy
techniques.

The road map of this thesis is as follolwd he first chapter is devoted to experimen-
tal results. First the typical characteristics of the Mimithations, observed by means
of video-rate fluorescence microscopy, will be shown. Thka,measure of the values
of Min-protein mobility, obtained by means of Fluorescer@arelation Spectroscopy
(FCS). In the second chapter, a deterministic theoreticalehis introduced, and predic-

6«Simplicity in Biology”, course at the summer school on: {Riics of cellular objects”, Cargése 2006.
"For didactic reasons the order in which the different topids be introduced does not follow the

chronological order in which the work was carried out.
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tions of the model are compared with the experimental firglofghe first chapter. In the
third chapter, stochastic effects on the Min-system wilshalied. Finally, the results and
possible future perspectives will be discussed.



Chapter 2

Experimental characterization of the
Min-system

“With four parameters | can fit an elephant, and with five | caakenhim
wiggle his trunk”

John von Neumann (as cited by Enrico Fermi)

Introduction

The Min-system has been characterized by intensive bioida¢and genetic studies. In
this introduction, the principal results of these studié$lve reported, and the goal and
the motivations of our experimental work, the results of efhwill be presented in the
rest of the chapter, will be given.

Biochemistry and genetics of the Min-system E. coli is a rod-shaped bacterium
that lives in our intestine It is 2 — 6m length andl — 1.5um in diameter. The cell,
which weighs only 1 picogram, is aboa0% water. Some strains are flagellated and
motile; others are non-flagellated and non-motile. The mlosome ofE. coli consists

of a single double-stranded chain of DNA about 700 times déorigan the body of the
cell. There are 4,639,221 base pairs specifying 4,288 geanest of which encode
proteins. The functions of only approximatel9% of these proteins are known. Their
total number in each cell is on average4 x 10°. WhenE. coli grows, it first becomes
longer and then divides in the middle. In a sense it is imnibktacause the mother cell

1The following general information aboi&. coli are taken from “Motility Behavior of Bacteria” by

Howard Berg in http://www.physicstoday.org/pt/jan0G¢atim.
2This statement may be too strong, see [46] about aging arttl ole. coli
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is replaced by two daughters essentially identical to théhero The molecules of DNA
in the members of a given set of descendants are identicapexar mutations which
occur spontaneously for a given gene at the rate of abibutper generation.

When it is grown in a rich medium (such as salts plus a mixtdranoino acids),
and held at the temperature of the human intest¥ie’(), E. coli can synthesize and
replicate everything it needs to make a new copy of itselfbowt 20 minutes. The
division plane is determined by the location of the Z-rind@,[48]. This structure is built
from FtsZ-filaments and forms on the inner bacterial memdramhe Z-ring recruits
additional proteins, leading to the formation of a divismaachinery capable of carrying
out cell division. In wt cells, the Z-ring assembles at mell@and is in residence for
at least half the cell cycle before there is a visible invagon. During septation, the
Z-ring contracts at the leading edge of the invaginationingy$luorescence Recovery
After Photobleachinty(FRAP) with FtsZ-GFP it was demonstrated that the Z-ring is a
highly dynamic structure that undergoes remodeling [494, more recently it was shown
that its half-life is approximatel9s [50]. Finally, it was demonstrated by Fluorescence
Resonance Energy Transfer (FRET) that protofilaments wgnwith the same dynamics
in vitro [51]. In turn, the position of the Z-ring is first oflaletermined by the distribution
of the nuclear material inside the cell. A mechanism ternmectleoid occlusion” restricts
the formation of the ring to regions void of DNA [52-54]. Sa this mechanism is
poorly understood. After duplication and segregation efcthromosonte three possible
locations of ring formation remain: at the cell center arakelto the two cell poles. The
selection of the center as the correct division site is agluidy the Min-system [57, 58].
The deletion of any of the Min proteins results in divisiomptseforming close to one
of the two cell poles in approximately 50% of all divisions1 these cases, DNA-free
mini-cells are formed [59], which led to the name Min-system

The Min-system consists of three proteins, MinC, MinD, andB) whose molecular
weights are25kD, 30kD, and10kD, respectively. Out of these, MinC induces the de-
polymerization of FtsZ-filaments and thus inhibits the fation of the Z-ring [60]. The
distribution of MinC on the membrane changes periodicaiiphwme in such a way that
in one half of the cycle, MinC accumulates at one pole whilgcitumulates at the op-
posite pole in the second half of the cycle [61, 62]. Formmatbthe Z-ring is thereby
suppressed at the cell poles.

The oscillations of MinC require the presence of both, Minid MinE, which them-
selves also oscillate [63, 64]. In fact, MinC binds to MinDdellows its dynamics [65].

3See appendix B for a short introduction to this technique
4Also the mechanism underlying chromosome segregationdtehia is still elusive. Recent studies

suggest that is a spontaneous process directly related trethength [55, 56].



Figure 2.1: Oscillations of GFP-MinD iR. coli. Fluorescence images of GFP-MiInD in three cell
at subsequent time points separatety. Scale barlum.

Figure 2.1 shows an example of GFP-MiInD protein oscillaioRemarkably, MinC is
not necessary to generate oscillations, as MinD and Minlatgcalso in the absence of
MinC [63]. In vitro experiments have shown that the ATPase MinD has a high gffinit
for the inner bacterial membrane when bound to ATP [66]. Forcentrations of MinD
exceeding a critical value, filamentous MinD aggregate$areed on phospholipid vesi-
cles [66,67]. The formation of MinD aggregates on vesicezglk to the formation of
membrane tubes of a diameter of 50-200[66]. Around these tubes, MinD is wound
in form of a helix with a pitch of abouinm, the linear extension of the MinD molecule.
As for MinE, it associates with the membrane only in the pneseof MinD. There it
stimulates hydrolysis of the ATP bound to MinD, which evettyidrives the protein off
the membrane [66].

Thesein vitro results are compatible with the behavior of MinD and MinEvivo. In
MinD depleted cells, it was observed that MinE is dispersethé cytosol, while MinD
is homogeneously distributed on the cytoplasmic membrNBnE is absent [63].In
vivo, the helices formed by MinD on the cytoplasmic membrane lzapéch of a few
hundrednm [68]. The significance of the helical structures for the b&ton mechanism
is still not understood. During the relocation of MinD fromeocell half to the other, not
all of the MinD seem to switch. We can speculate that the omesmining might be used
to reassemble the new helix in the next cycle. As MinE is néeduto the membrane by
MinD, its arrangement follows the helical MinD pattern. &y, the oscillatory behavior
does not depend on the synthesis and degradation of the tdiaips [63]. A schematic
representation of the MinD/MInE oscillations is preseritefigure 2.2.
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& MinD BB MinD-filament
¢« MinE m» MinDE

Figure 2.2: Schematic representation of MinD/MInE ostithas inE. coli. Three successive time
instances are illustrated. MinD forms a membrane-bountk relone half of the cell; MIinE is
associated with this structure, predominantly towardsctheer. (a) MinE stimulated detachment
of MinDE from the membrane, setting free the cell center faisibn. (b) MinD and MinE diffuse
in the cytosol, and, driven by the dynamical instability,M/MinE form a helix at the opposite
end of the cell, (c) and the process repeats. Taken from [29].

Goal and motivation of our experimental work. Theoretical studies have provided
strong evidence that the pole-to-pole oscillations arenéat by the self-organization of
MinD and MinE [29]. All mechanisms proposed so far rely essdliy in one way or
another on the formation of aggregates of membrane-boun®Much aggregates were
observed in vitro and in vivo [66, 68]. We will analyze in déthese mechanisms in
chapter two. They can roughly be divided into two classescodoperative attachment
models (CAM), MinD-aggregates are formed through collexéffects during binding to
the cytoplasmic membrane [69-75]. In aggregation currerdets (ACM), aggregates
are formed after the proteins have bound to the membrane/¥i6, In figure 2.3 a
schematic representation of the two mechanisms is shownM @4 well as ACM
can capture the qualitative features of the Min-oscillagioand there is experimental
evidence for both processes i coli. A study of MinD attachment to phospholipid

vesicles in the presence of A1B, a non-hydrolyzable ATP analogue, suggests a two-step

mechanism for the formation of aggregates of membraneMinD first involving the
binding of MinD to the membrane and subsequent aggregaiig) [n yeast two-hybrid
assays MinD-MinD interactions were observed to be stronigéoth proteins were
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Figure 2.3: Schematic representation of (a) aggregatioecumodel (ACM) and (b) cooperative
attachment model (CAM).

membrane-bound than if at least one partner was cytosdic [@n the other hand, the
concentration-dependence of MinD binding to phospholipeimbranes deviates from
Langumir isotherm [79, 80]. Furthermore, the amount of MinBding to liposomes as a
function of the MinD-concentration in the surrounding abbk fitted by a Hill equation
with a Hill coefficient of 2 [80].

In order to reveal whether either cooperative attachmeiiggregation currents are
dominant inE. coli, a quantitative comparison of the models with experimentsec-
essary. This requires to examine assumptions and speafiicfions of the theoretical
models, and to determine the model parameters by measuiemen

To this end, in the first part of this chapter, fluorescence®ithte microscopy and
Laser scanning Confocal Microscopy (LSCM) will be used t@amee the space and time
dependence of the protein distribution, the time-averaggetkin distributions, and the
temporal period of the oscillations as a function of the tatigth. These observations
will be compared with theoretical predictions in the secchdpter. In the second part
of this chapter, the results of measurements of the Min prot®bilities in vivo using
Fluorescence Correlation Spectroscopy (FCS) will be shaMehave analyzed the data
assuming that either aggregation currents or cooperataghsment is dominant and, thus,
obtained key parameters of the various models.
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Figure 2.4: Fluorescence intensifynormalized by the maximum valug,,, of GFP-MinD pro-
teins inE. coli as a function of the time. The decay of the maxima values dutie oscillation
is due to photobleaching. A schematic representation oféfles shown in the upper right side.
The yellow area shows, form the top, the point from which teréscence intensity light was
collected.
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Figure 2.5: Histogram of oscillation period measured folP@%inD in a singleE. coli cell from
the fluorescence intensity signal in figure 2.4. The totaktiior the measurements was approx-
imately half an hour.# is the number of periods measured. In the upper right sideligoeete
Fourier transform (DFT) of the fluorescence intensity sigméigure 2.4 is shown.
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2.1 Min-oscillations

2.1.1 General aspects

To follow the temporal evolution of the Min protein concexiton we used Min proteins
tagged with GFP, a fluorescent protein cloned from the jslyfiequorea victoria GFP
has as-barrel shape that contains an amino-acid triplet (Ser&ly) which undergoes a
chemical rearrangement to form a fluorophore. When profases] to GFP are expressed
in cells, they often retain the original protein functiomdatherefore can be used as a
fluorescent tag to study protein localization. See appeAdor more information.

From a physical point of view, the two principal charactécsof the Min-oscillations
are the temporal and spatial period. Concerning the terhperend, values of about one
minute were found [61, 63]. These values agree with our nmreasents that range from
40s to 120s, see figure 2.14. An example of a long record of GFP-MinD teains is
shown in figure 2.4. Figure 2.5 shows the corresponding dpiata of the period and its
(discrete) Fourier transform (DFT). The peaks in the histogand in the DFT are proof

Figure 2.6: Sequences of fluorescence images of GFP-Minrée wifferentE. coli cells. Start-
ing from the left, the images for each cell at subsequent fioiets are separated by (H)s, (b)
20s (c) and25s, and show patterns with one, two and four stripes respégtividne cell lengths
are approximately (&pm, (b) 12um, and (c)20um. Scale bar2um.
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that the spatio-temporal dynamics of the Min-proteingyearrespond to an oscillatory
process. In bacteria of a length that exceeds a certainhibicksa striped oscillatory

pattern appears, where the number of stripes increasesnertasing cell length. This
observation is indicative of an intrinsic spatial waveg#nof the oscillations. Typical

spatial wave-length values range franum to 5um. In figure 2.6, examples of three
cells with one, two and four stripes respectively, are shown

The spatial distribution of MinE is more complex than the oh#linD. The analysis
of fluorescence images of MinE-GFP show clear accumulatwdridinE as displayed
in figure 2.7, termed MinE-rings [81]. It was shown, that tivggris not stationary, but
oscillates [64]. More recently, using deconvolution tegues, MinE was found to be
arranged in a helix with accumulation for the one stripegrattase close to the cell center
and, although weaker, at the cell poles [68]. It was sugddheg the helical arrangement
of MInE is induced by the helical arrangement of MinD and tthe accumulation of
MinE occurs at the ends of the MinD helix [68]. In cells mutémt MinE, oscillations
were observed in the absence of a MinE-ring [82]. In that ctsetemporal period is
larger than in non-mutant cells. Still, this experimengeche shows that the MinE-ring is
not necessary for the oscillations.

We analyzed hundreds of videos, and the majority of them stddivat MinD oscilla-
tory pattern correspond to a standing wave, see figure 2 \&reless, in approximately
ten cases we found traveling waves, i.e. protein transtmtationg the cell from the
one side to the opposite side. Figure 2.9 shows an examplardd Mavelling waves.
Contrary to [74] we didn’t observe switching between stagdind traveling vawes.

Figure 2.7: Fluorescence image of MinE-GFP. Three MinEgifigdicated by the arrows) are
clearly visible. Other MinE structures are visible, theyong to a distorted rings at the end of the
depolymerization process. Scale bzum.
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Figure 2.8: An example of a standing wave of GFP-MinD. a) Fdgoence images in a cell at
subsequent time points separated by 9s. Scale ham. The cell length isz 6.6um. b) Fluo-
rescence intensity | in arbitrary units obtained from a kgan of the fluorescence signals in a).
Yellow lines in a) indicate the area considered for the lioans and in each point of the x axis
the intensity value was obtained by averaging the fluoregcsignal in the transversal direction
to these lines.
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Figure 2.9: An example of a traveling wave of GFP-MinD. a)dfkscence images in a cell at
subsequent time points separated by 15s. Scale han. ZThe cell length isc 8.5um. b)
Fluorescence intensity | in arbitrary units obtained frofina scan of the fluorescence signals in
a). Yellow lines in a) indicate the area considered for the §can, and in each point of the x axis
the intensity value was obtained by averaging the fluorescesignal in the transversal direction
to these lines.
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2.1.2 Time-averaged distributions

Figure 2.10 shows the time-averaged MinD distribution.ds la pronounced minimum
in the middle of the cell. This minimum suggests a possiblelmaaism for selecting the
division site. The MInC proteins spend most of the time atdék poles and therefore
preclude the FtsZ ring from growing there, leaving the médaf the cell as the only

possible division site. In figure 2.11 it is also shown howitti@imum in the cell center

is preserved during many oscillations. However, for otleiseexamined, the minimum
of the time-averaged fluorescence intensity was much makoshor even absent, see
figure 2.12. On the one hand, this might reflect deviationh@tbtal protein density
in individual bacteria from the average total protein dgnsi a bacterial colony. On

the other hand, considering different cells of differemgths, we have found that, at
least qualitatively, the value of the minimum decreases tie system length up to the
point when the oscillation pattern acquires a new stripgesponding to a cell length of
~ 2.5 — 3.5um, see, for instance, the red curve in figure 2.12. It wouldnberésting to

verify this point in a single cell experiment. In longer sethe two maxima at the poles

a) 0s b) 20s ¢) 40s  d) 60s

Figure 2.10: Oscillations of GFP-MInD i&. coli. a-d) Fluorescence images of GFP-MinD in a
cell at subsequent time points separated by 20s. e) Tinragwef all frames during one oscil-
lation period. Two subsequent frames are separated by Fud)escence intensity | obtained
from a line scan of the fluorescence signal in (e). The backgt®ignal was subtracted from the
total signal which was then rescaled with the maximum intgm&iring the oscillation. The slight
asymmetry is due to bleaching during the observation peigwéle bar: Lm. The cell length is
L. =2.8um.



2.1. Min-oscillations 17

0.4
0.3
02 } . .
0.1 | "."' ooooo ot

Figure 2.11: a) Time-average of all frames during one agailh period. Two subsequent frames
are separated by 2s. b) Time-average of all frames duringgeiflation period. c) Up (red)
curve: time-average of all frames during one oscillatioriqueobtained from a line scan of the
fluorescence signal in (a). Down (black) curve: time-averafjall frames during ten oscillation
periods, obtained from a line scan of the fluorescence sign@). The background signal was
subtracted from the total signal which was then rescalet thi#¢ maximum intensity during the
oscillation. The slight asymmetry and likely also the dasieg of the intensity value at the poles
are due to bleaching during the observation time. The cegjtteis L. = 5.2um.
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Figure 2.12: Time-average of all frames of fluorescence end&gfP-MinD during one oscillation
period for different cells. Starting from the top the celhdgh is 2.4im, 2.6um, 2.um, 3.4um,
6.6um, respectively for the black, red, green, blue, orange dithe vertical axis the fluorescence
intensity is reported, with the same unity as in figure 2 Y1@@it the curves are shifted, one with
respect to the other, to avoid over-positions.
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Figure 2.13: Oscillations of MinE-GFP . coli. a-d) Fluorescence images of MinE-GFP in a cell
at subsequent time points separated by 50s. e) Time-avefadleframes during one oscillation
period. Two subsequent frames are separated by 2s. f) Bemwee intensity | obtained from a
line scan of the fluorescence signal in (e). The backgrougbbsiwas subtracted from the total
signal which was then rescaled with the maximum intensitginduthe oscillation. The slight
asymmetry is due to bleaching during the observation peiswéle bar: 2m. The cell length is
L. = 5um. The steps are due to the finite resolution of the fluorescanensity detector.

move toward the middle. This might indicate a coupling betéhe cell length and the
assembly of the Z-ring. Finally, in figure 2.13, the time4aged MinE distribution is

reported with a maximum in the center. This maximum refldotgaresence of the MinE
ring.

2.1.3 Oscillation period as a function of the cell length

We measured the temporal period of the oscillation&.ircoli containing GFP-MinD
as a function of the cell length, see figure 2.14. The periadsrf the range of 50s to
120s, even for bacteria of 1 in length. Measurements were carried out with video-
rate-microscopy. Because of photobleaching, this methodsfor recording only a few
periods in each single cell. Consequently, in figure 2.14ryeyoint corresponds to a
different cell. In order to minimize the error in the cell tgh, we considered only cells
with their complete body in focus. The data indicate largeatens in the oscillation
period for cells of approximately the same length.

To investigate the origin of these variations, the oscdlatin a single cell was
recorded for approximateBOmin with LSCM. In comparison to video-rates-microscopy,
LSCM allows for measuring the oscillation period by collegtthe fluorescent light from



2.1. Min-oscillations 19

T(s) .
° oo. +
100 | + T
‘.o ° " (| X
80 .:.:”..4:. T 8
Tt
°,° + 4
60 | . 0
40 [ 1 1 1 1 1

0o 2 4 6 8 L(um)

Figure 2.14: Oscillation period measured for GFP-Min[Eircoli as a function of the cell length.

Black dots: oscillation pattern as in figure 2.6(top), redsses: oscillation pattern as in fig-
ure 2.6(middle), green and blue dots: oscillation patteith three and four stripes, respectively.
Error bars are of about the size of the symbols.

a smaller volume of the cell. Together with the small powethaf exciting laser this
allows for significantly lower photobleaching. In this wagxtensive recording of the
oscillations of up tol5min is possible, see figure 2.4.

We considered the distribution for the values of the permdsiome cells, keeping
the temperature constantz°C. Under these conditions the cell grows very slowly. In
figure 2.5, a typical histogram of the oscillation period h@wn. The little asymmetry
in the distribution and the secondary peak in the DFT may bedination that the cell
had grown a little, but here the important information isttte standard deviation (SD)
of this distribution is smaller than the variation of theipds at approximately the same
length in cell population, figure 2.14.

Therefore, fluctuations in the period of the single cell caly gartially account for
the spread in figure 2.14. The main contribution is likely eodue to different protein
concentrations in different cells. In fact, experimentaservations [63] indicate that the
period increases with the MinD concentration and decreagbshe MinE concentration;
in addition we expect every cell to have a different prot@neentration [83, 84].

We performed the same measuremert7at’, allowing for the growth by somgm
in length within30min as shown in figure 2.15(b). In figure 2.15(a) a measurement of
the period as a function of time in a single cell3atC' is shown. In order to reduce
the effects of photobleaching, the measurement was stogiped25min and restarted
approximately7min later, but at that point the signal was much noisier, and ther e
in the value for the oscillation period was higher. In additidue to photobleaching, it
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Figure 2.15: a) Oscillation period measured for GFP-Min@ isingleE. coli cell. As error bars,
not shown, we can consider the SD in figure 2.5 of approximates in the first part up t@®5s
and a greater error in the second part. i) Bright field imadgékseosame cell at different moments
in time. Starting from the top the first image shows a dashexldorresponding to a cell length of
4pm.

was possible to check on the spatial pattern only at the bhegjnof the measurement
and the cell length in the dark field at some moments in timeerdfore, we were not
able to ascertain if the cell acquired a new stripe or not,fartier measurements will be
necessary.

2.2 Measurement of Min-protein mobility

The are several non invasive techniques based on fluoresseectroscopy that can be
used for measurements in living cells; for a general revieses[85, 86]. Three of them
were used for measurements of protein mobility in bactddisect measurements of the
displacement of individual proteins were employed to deiee the mobility of mem-
brane proteins irCaulobacter crescentud87]. FRAP, where the fluorescent proteins
present in a defined region are bleached and the recoveredfutrescence is mon-
itored, was used to measure the diffusion constants of tagopc proteins [88]. The
third method, FCS, exploits the fluctuations in the fluorasedantensity emanating from
an illuminated region with respect to the mean signal in ptdeassess dynamic prop-
erties [89]. It was used to measure the dynamics of CheY weebin chemotaxis [90]
and transcription activity at the RNA level [91, 92]. We haweed FCS to measure the
mobility of MinD and MinE tagged to GFP. As a control we alsoasered the mobility
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Figure 2.16: The actual confocal FCS setup applied to Mitgime mobility measurements. See
"Optical Setup” in appendix A for details.

of the Enhanced Green Fluorescent Protein (EGFP). Theiexpatal setup is shown in
figure 2.16. For a short introduction to FRAP and FCS see ajip&h

2.2.1 Quasi-steady states during oscillations

The analysis of fluorescence fluctuations requires a wéiheld average state. Seem-
ingly, this is not the case for the Min-system which osodtatvith a period of approxi-
matively80s. However, there are regions in the bacteria in which the ésognce signal
Is quasi-stationary for approximatively 10s. In figure Z)7 we present the fluores-
cence intensity in a confocal volume positioned in one call. There are phases of high
and low constant fluorescence as well as phases of stronghngafluorescence. Re-
spectively, these phases reflect the dwelling of MinD in oslelalf for a large fraction
of a half-period as well as the comparatively rapid traositio the opposite cell half.
Figure 2.17 (c) displays the fluorescence intensity alomghbidcterial long axis for six
different times separated by 2s. The intensity variatiaméng this period are less then
5%. The fluorescence profiles in cross-sections perpendituliie long axis also show
only moderate fluctuations, figure 2.17(d) and (e). The fofrthe mean profiles in the
low- and high-intensity regions differ significantly: waithe profile in the low-intensity
region is uni-modal, it is bi-modal in the high intensity i@g. This results from a low
fraction of membrane-bound MinD in the low intensity regamd a high fraction in the
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Figure 2.17: Quasi steady states. a) GFP-MinD fluorescemEe ¢oli at different phases of the
oscillation cycle. Scale bariym. b) Fluorescence intensity in a confocal volume located in
one cell-half as a function of time. Oscillations with a periof 60s are clearly seen. Around
states of maximal and minimal intensity, time-intervalsaighly constant fluorescence intensity
can be detected. c,d,e) Fluorescence intensity along tigedris (c) and the cross-sections (d,
e) indicated in (a) for six different times separated by 2shed he curves vary around a quasi-
stationary mean profile. The differences in the cross-@egtiofiles (d) and (e) reflect the different
fractions of membrane-bound proteins in the low- and higbrisity phases in a cell half.
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high-intensity region [63]. The fluorescence profiles fdfedent times then indicate that
the respective amounts of cytoplasmic and membrane-bounD Bre quasi-stationary
within the 10s shown.

2.2.2 Diffusion constants and residence times

EGFP. We first measured the autocorrelation of the fluorescenceuditions of EGFP
in living E. coli, see appendix A "Materials and Methods”. A typical autoetation
curve is depicted in figure 2.18(a). From a fit of the correlatcurve expected for a
single diffusing species in two dimensions, equation (B.Ovith F' = 1, see appendix
A, an apparent diffusion constant 6f, = 12.9 4+ 2.3um?/s is obtained. There are two
sources contributing to the error in the value of the diffusconstant. First, a system-
atic error results from uncertainties in determining tree 9f the detection volume. The
size of the detection volume is needed for transforming ét@xation time that can be
extracted from the correlation curve into a diffusion canst The value of this error
was estimated to b&5%. Secondly, the fit is of finite accuracy due to noise present in
the experimental correlation curve (arouts). For the curve in figure 2.18(a), the fit
quality is reasonable with?> = 1.6. In view of the measurements on MinD and MinE,
further models were used for analyzing the correlation esinFitting the data to the au-
tocorrelationG ;¢ expected for two independent populations of diffusingipkes, equa-
tion (A.0.1) whereF" is now a fit parameter, the fit quality was significantly impzdy
x? = 1.1. For the curve in figure 2.18(a), the apparent diffusion tamsof the fast com-
ponentisD; = 17.7 & 3.6um?/s. Furthermore, we considered the case of the molecules
switching between a mobile and an immobile sté&tg, equation (A.0.3) (appendix A).
For the diffusion constant in the mobile state, we found= 14.8 + 2.8um?/s with

x? = 1.1. Previous reports suggest deviations from normal difiusibEGFP in vivo or
crowded in vitro environments [93-97]. The mean-squarpldeement of a diffusing
particle in three dimensions in a continuous and isotropédiomm is usually given by
(r?(t)) = 6Dt. The derivation of this expression is based on the Fick’s latich is
an established phenomenological law for diffusion in igpit fluids. On the other hand,
in a crowded and complex media as in the cytoplasm there ishgsigal reason why
the Fick’s law should apply and one might expect the meamugqdisplacement to obey
a power law(r?(t)) = 6I't™, where the transport coefficieft is a constant that does
not depend on time. Microscopically the origin of the anasnal diffusion can be un-
derstood with the following simple argument.(*(¢)) is much bigger or much smaller
of a characteristic (square) length scélecorresponding to the obstacles or the different
constituents of the medium where the protein diffuse, weeapecting normal diffusion,



24 Chapter 2. Experimental characterization of the Min-gyste

T T
o experiment g
— 1 component
— anomalous A
— 2 components
exchange

10 20

30

Figure 2.18: Diffusion coefficients of EGFP . coli measured by Fluorescence Correlation
Spectroscopy. a) Typical autocorrelati@iir) for EGFP (black circles) and non-linear least square
fits of correlation curves expected for different processaeen: diffusion, equation (A.0.1) with
F =1, qgivesD =129 + 2.3@ with x? = 1.6. Pink: anomalous diffusion, equation (A.0.2),
yieldsa = 0.83 + 0.01 andIl" = 4.7 + 0.75@ with xy? = 1.1. Blue (the blue curve is hidden
behind the yellow curve): two independent diffusing popiales, equation (A.0.1), yield®, =
17.7 + 3.612% Dy = 0.3 +0.22% and F = 0.96 + 0.01 with x> = 1.1. Yellow: exchange
between a diffusing and an immobile state, equation (A.@i8)ds D = 14.8 + 2.8‘{%2, T =

2.3 4+ 1.0s, andF = 0.97 4 0.004 with x> = 1.1 No significant autofluorescence of cells was
detected, but there was a non-correlated background of 8fidiz the medium. b) Histogram
of anomalous exponents obtained from 1021 measuremeniid.li8e: normal distribution with
meana = 0.88 and variances? = 0.09 c) Histogram of diffusion coefficients obtained from
fitting Gqi to the same curves as in (b). Solid line: log-normal distrdsuwith geometric mean
D= 17.9f§j“7m2. In (b) and (c) only fits withy? < 1.2 were considered.
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but when(r?(t)) ~ &2, diffusion can be anomalous. We therefore considered anoma
lous diffusion of EGFP, where the mean square displacenggotg as a power law in
time with an exponent < 1. Whereas two-dimensional membrane diffusion has been
clearly shown to be anomalous [98-100], in our knowledgélsercytoplasm anomalous
protein diffusion has not been conclusively demonstrat&ing the correlationz, we
obtained an anomalous exponentof= 0.83 4+ 0.01 and an anomalous transport coeffi-
cientl’ = 4.7 + 0.75um?/s* with x> = 1.1 As can be seen in figure 2.18(a), the three
different fits are barely distinguishable.

A histogram of the diffusion constant obtained by fittiég; to 1021 curves is pre-
sented in figure 2.18(c). The histogram is well described lhygaormal distributioh
with a geometric mean @b = 17.9734™° Within the accuracy of our measurements,
different cells give the same value for the EGFP diffusionstant. Figure 2.19 shows
an example of diffusion constant values in single cell. TBeisSof the some order as in
measurements in different cells. An hand-selection ofesi(gee figure 2.20), as is often
done in FCS measurements, reduced liheonfidence interval but did not change the
geometric mean, For the data shown in figure 2.20 we checleehdividual correlation
curve for unusually big spikes of intensity and/or inacteitzaselines, and we discharged
it if necessary. The fraction of the fast component Wwas- 0.96 + 0.03 indicating that

5 Whereas Gaussian distributions describe processes that sum of random variables with finite
mean and variance, lognormal distributions charactenpegsses with severabultiplicative stochastic
steps [101].

j: Hwﬁ [HHN I [ \ H ----

Figure 2.19: Diffusion coefficient of EGFP in a single celladd of the31 points correspond to
one single measurement in the same focal volume. The da&fiited with the autocorrelation
curve Ggig. Error bars have been calculated fraD = D(2Aw/w + A7 /7). The red dashed
line is the mean value corresponding/fio= 17.1@ with SD = 2.7um?/s.
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Figure 2.20: Hand-selected data for EGFP. Histogram ofakediffusion coefficient assuming
two diffusing species, for 482 correlation curves in 19 B{2E3)pLys cells, hand-selected be-
tween 1021 curves in 22 cells. Only fits wifff < 1.2 were considered. a) Original scale. b)
Logarithmic scale. D™ = 18.7f§;’f“7m2 is the median value ang is the number of correlation
curves measured. Cyran areas, from the median to both smlesspond to one SD. Dashed line:
fit with normal distribution with mea; = 18.6um? /s, and variancer?, = 0.18 in dimension-
less unit.# is the number of hand-selected curves.

most of the dynamics results from diffusion. We arrived & ame conclusion using
G for the data analysis, see tables 2.1 and 2.2. Figure 2.p8ésents a histogram
of anomalous exponents from analyzing the same curves Gsingrhe mean value is
a=0.83+0.1

Adding a His-tag to EGFP were reported to strongly alterytsainical properties [88]
giving rise to a broad distribution of the diffusion value®/e examinedHis6-EGFP
expressed in the same strain as was used for the measurenigBFB mobility. Using
eitherGgg or G, we found a decrease in the diffusion constant of approxuslgt20%
and a slightly broader distribution compared to EGFP. Basethe anomalous diffusion
model, we found a slightly reduced value for the anomaloubilityg I' = 5.63;;“—?2&,
while the anomalous exponent remained the same; 0.88 + 0.1 The six histidine
residues inserted at the N terminus of the EGFP protein calidglate the interaction
of the protein with the environment and explain in part theddng of the diffusion
constant value.

GFP-MinD. MinD-mobility was measured in the strain JS964. For the F@8l-a
ysis of the MinD-mobility, only fluorescence curves takeonfrregions in quasi-steady
state were considered. Every individual measuremenid&steA typical autocorrelation
curve is shown in figure 2.21(a). From the graph it is obvidwas two distinct time-scales
are present. For the laser power used, the bleaching timenfmobilized molecules
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Figure 2.21: Correlation analysis of MinD mobility - two iependent diffusing species. a) Typical
autocorrelation curve for GFP-MiInD in a region of quasiastg state (black circles) and non-linear
least square fits of different expected correlation cur@sen and pink: diffusion and anomalous
diffusion, respectively. Essential features of the experital curve are misseq{ = 5.6 and1.8,
respectively). Blue (the blue curve is partially hiddenibdrthe yellow curve): two independent
diffusing populations, equation (A.0.1), yield3; = 19.8 + 4.3“%2, Dy = 0.11 £ 0.02%,
and F = 0.74 £ 0.01 with x? = 1.1. Yellow: exchange between a diffusing and an immobile
state, yieldsD = 15.7 + 3.1“%2, 71 = 302 £ 25ms, andF = 0.83 + 0.004 with y? = 1.18 b)
Apparent diffusion constant®; and D, for 10 curves admitting a good fif¢ < 1.4) among 30
subsequent measurements on a single cell. The mean vaéuBs ar 16.4 + 2“—?2 (meantSD)
andDs; = 0.1 + 0.09“—18r12 (meantSD). c) Fluorescence intensity and fast fraction for theesam
measurements as in (b). The fast fraction is higher for lawnisities. d,e) Histograms of the
diffusion constants. Only curves with quasi-steady fluceese intensity and a fit quality gf <

1.5 were retained. Solid lines: log-normal distributions wgéometric mean®; = 17.03;2“7“‘2
andDy = 0.17+0 14 .
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was on the order of seconds (data not shown). Furthermaeatnelation curves were
largely independent of the excitation intensity (data rinaven). We therefore concluded
that the second time scale is not due to bleaching of imnesullimolecules but due
to further dynamical processes in addition to cytosoliéudibn. The existence of two
MinD populations - on the one hand dissolved in the cytosolihe other hand bound
to the membrane - suggests two obvious candidate procesadisd to the additional
time-scale visible in the correlation curves. The secotaketion time may for one be
due to the diffusion of MinD on the membrane. For the other d@ymesult from the

exchange of MinD between the membrane and the cytosol.

We analyzed the measured correlation curves using the tifierefit models sepa-
rately. Of course, the two processes are not mutually eixelul would thus be desirable
to analyze the correlation curve using a model that accdantiffusion and for binding
and unbinding. However, the expected correlation curvieifonly in small amounts
from the curves for either of the two alternatives sepayageld the accuracy of our mea-
surements does not allow for distinguishing between them.

We will first present the results assuming two states of aifie mobility. Fig-
ure 2.21(b) displays the results for the two diffusion cansd obtained from a fit ¥ y;¢,
equation (A.0.1), to different correlation curves meadiufor a single cell. We interpret
the faster diffusion constant to represent the mobilityyabsolic MinD. It is of the same
order as the diffusion constant of EGFP, see table 2.1. Tralandiffusion constant
Is interpreted as corresponding to membrane-bound Minkx i§supported by the esti-
mated value of the fraction of the fast component: In agree¢nvéh the measurements of
the cross-sections, figures 2.17(d) and (e), the fractidastimoving proteins is larger in

Ptk Tl

Figure 2.22: Apparent diffusion constarts for a) 9, and b) 12 hand-selected curves admitting a
good fit (¢? < 1.3) among 30 subsequent measurements on a single cell. Thevalaas SD)
are a)D; = 15.0 + 0.6542 and b)D; = 18.2 + 0.5422,
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the low-intensity regions than in the high-intensity regipsee figure 2.17(c). The stan-
dard deviation of the mean is smaller than the estimatea efra single measurement,
showing that the quality of our results is not limited by treiations within a cell. See

also figure 2.22 for the fast diffusion constant from haniedated measurements within
one cell.

Histograms of fast and slow diffusion constants summagiseries of measurements
on different cells are shown in figure 2.21(d) and (e). Bositdgrams are well described
by a log-normal distribution. The geometric mean value Far fast diffusion constant
is D, = 1702394 For the slow diffusion constant we founld, = 0.17+§44m%,
This value is one order of magnitude higher than the diffugionstant measured for the
membrane-bound histidine kinase PleC measured by singteiprtrackingC. crescen-
tus [87]. On the other hand, using FRAP, a similar value has bdxaimed in [102]
for integral plasma membrane proteins (TatA) fused with ®FR £ 0.03um?s~t. The
authors of this work measured also the diffusion constanthi® TorA-GFP on the cyto-
plasm. They found a value 6f0 & 2.1um?s~!. In this case because for the cytoplasmic
TorA-GFP the bleaching time was of the same order of the fiaenece recovering time
they bleach the cell with very high laser power level for oflys and considered elon-
gatedE. colicells in order to observe the recovery of the bleach comiognfregions of
the cell far from the bleached area. This value is similahtodne found in [88] using the
same technique and both of them are different from the vakiéownd. The difference

12 16 20 24 Di(um’/s)

Figure 2.23: Histogram of the fast diffusion constant asagrntwo independent diffusing species,
for 214 hand-selected correlation curves between 1207esuirv 38 JS964 cells. Only curves
with quasi-steady fluorescence intensity and a fit qualityof< 1.3 were retained. The mean
value £SD)is D; = 18.2 + 3.0%. # is the number of hand-selected curves. Notice that
here the original sample of curves is smaller in respectéaatitomatic selection based only on
convergence of the fit algorithm and quality of the fit.
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is on the order of the SD in our measurements, therefore w ikinot significative.
Nevertheless we notice that different cell strains was usdle different experiments,
that FRAP and FCS use different approximations in the das#dysis and that FCS is
in principle a less invasive technique when compared witAFRvhich usually need to
send laser light a quite hight intensity level. Even betwe&#P and MinD-GFP there is
a factor of two in size is not surprising they turn out have iy gémilar diffusion constant.
In fact a factor of two in size correspond to a factoafs in the diffusion constant, i.e.
based only in size considerations we are expecting for EGHfusion constant equal to
0.85 times the diffusion constant of GFP-MinD. This value is wedlide one SD from the
actual value we found. Figure 2.23 shows the histogram ofastediffusion constant for
hand-selected curves. No correlation could be detectedeeetthe values of the fast and
slow diffusion constants (data not shown). Separating thees into those of low and
high average intensity does not reveal significant diffeesrbetween the respective fast
and slow diffusion constants, see table 2.1. The fradtica 0.81 + 0.1 of the fast diffus-
ing component, however, is larger in the low-intensity o&gi than in the high-intensity
regions, wheregl" = 0.71 £+ 0.10. The difference in the fractions is more pronounced
when averaging over several measurements on a single aeellvhen averaging over
measurements on different cells, figure 2.21(c). This predaly reflects different protein
concentration in different cells.

The same data was analyzed based on the exchange of MinDdmeawaobile (cy-
tosolic) state and an immobile (membrane-bound) stateuggested by the cross-section
profiles, figure 2.17(e) and (f), we assumed the averagadraof mobile molecules to
be constant during one measurement. In that case, themesitimmesr; andr, of MinD
in the mobile and immobile states, respectively, are rdlé&dethe fractionF' of mobile
molecules byF' = 71 /(7 + 72). The results obtained from analyzing the same curves as
in figures 2.21(b) and (c) are displayed in figures 2.24(a)(Bhdrl he diffusion constants
are in the same range as the values of the fast diffusion aonebtained above. The
same holds for the value of the mobile fraction. The histograf the diffusion constant
and the residence time in the mobile state are presenteduresi@.24(c) and (d). The
differences in the values for low- and high-intensity regi@re not significant, although
the residence times seem to be larger in the low-intensifipns, see table 2.1.

We repeated the measurement using a different strain (WB)125he average
cytosolic diffusion constants are smaller in this straimjiles the average residence
time is somewhat larger, see tables 2.1 and 2.2. In view ofbtlo@dness of the
distributions, however, the differences are not significaBue to the small number
of good curves, a separation between regions of low and highsity was not performed.
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Figure 2.24: Correlation analysis of MinD mobility - exclgenbetween diffusing and immo-
bile state. a) Apparent diffusion constants and resideimest in the mobile state for the

same 30 subsequent measurements on a single cell as in figdl®e@ The mean values are
D =15.0%* 1.9”—212 andr = 783 + 651ms (mear:-SD). b) Fluorescence intensity and mobile

fraction for the same measurements as in (a). The mobiléidrais higher for low intensities.

¢,d) Histograms of the diffusion constants and residemediobtained from the same 2017 mea-
surements as in figure 2.21(d) and (e). Solid lines: log-mbdistributions with geometric means

Dy = 14.4%288% andr, — 322712,
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Figure 2.25: Correlation analysis of MinE. a) Quasi-stesidye of the MinE distribution along a
cell's long axis. Five curves separated each by 3s are varmthd a mean profile. An accumu-
lation of MIinE close to the cell center, commonly know as Mimfg), can clearly be recognized.

It moves slowly to one cell pole. The cell length is approxieta10um. b,c) lines: log-normal
distributions with geometric meari3; = 11.2+294%% and D, = 0.20*9:%3 4% g e) Histograms

of the diffusion constants and residence times obtained the same measurements as in (b,C) as-
suming exchange between a diffusing and an immobile stale $es: log-normal distributions

i i 2.3 pm? 888
with geometric mean® = 9.3* 7042 andry = 396153 ms.
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Figure 2.26: Fluorescence images of two straing.afoli. a) Strain BL21 expressing His6-EGFP.
b) Strain BL21 , wild-typeE. coli. ¢) Strain BL21 , wild-typeE. coliin dark field. Scale bar:Am.

MiIinE-GFP. For measuring the mobility of MinE we employed the same stats
for MinD. An example of a quasi-steady state of the MinE dbsttion is shown in fig-
ure 2.25(a). As for MinD, two distinct relaxation times candetected in the correlation
curves. These curves were analyzed using the same modelsMmD. The histograms
of the two different diffusion constants and of the diffusiconstant and the residence
time in the mobile state, respectively, are presented indigu25(b) and (e). As before,
the histograms are well described by log-normal distrimgi Assuming two independent
populations with different mobilities, we fint, = 11.2+2912° and D, = 0.20+§:23 0%,
The fraction of the faster diffusion populationis = 0.79 + 0.10. Assuming the other
model, we obtainD = 9.3*234%° and7 = 3967553ms. The mobile fraction is in this
casel’ = 0.86 + 0.09 Separating the curves into those from a low-intensity aondetof
a high-intensity phase, no significant differences betwberwalues of the diffusion con-
stants or the residence times in the different phases caetbetdd, see tables 2.1 and 2.2.

Controls. To ascertain that we observed only EGFP and not cellularflaotes-
cence we imageé. coli strains BL21 expressing His6-EGFP, figure 2.26(a), BL21 wt
figure 2.26(b) and JS964 figure 2.26(c) under identical onstances. In figure 2.26(b),
the low autofluorescence &. coliis shown. Figure 2.26(a) shows the homogenous
distribution of cytoplasmic EGFP. Similar checks, not showere carried out for the
other strains.



34 Chapter 2. Experimental characterization of the Min-gyste

Ntot Nsol Dl (,ur;lQ D2 (,LLI;IQ F N
EGFP 1021 179757 | 022835 | 0.9620.03 | 652
His6-EGFP 555 14.9737 | 0.14953 1 0.967001 | 214

GFP-MinD 2017| 438 || 17.0732 | 0.17704 | 0.777011 | 181

GFP-MinD>* L.i. 191 16.773% | 0.18%9:48 | 0.81701% | 105
GFP-MinD* h.i. 247 || 17.472% 1 0.15734 | 0.717510 | 76
GFP-MinD' 738 | 102 || 14.3%29 | 0.16%318 | 0.8210% | 50
MinE-GFP 1807 528 | 11.2*29 | 0.2079% | 0.79*519 | 307
MIinE-GFP L.i. 310 || 114735 | 0.217557 | 0.82775 | 198
MinE-GFP" h.i. 218 | 10.9%3} | 0207070 | 0.75501} | 109

Table 2.1: Mobility of EGFP, His6-EGFP, GFP-MinD, MinE-GFRwo diffusion model.
For the Min proteins, curves from low-intensity phases)(l.and high-intensity (h.i.)
phases were analyzed separatély,;: total number of correlation curves analyzed,,
D,: diffusion constants for two independent populatiafisfraction of the faster/mobile
population,N: number of curves allowing for a sufficiently good fit. Valugsre only
considered from curves where the fit produced a< 1.5 (for EGFPy? < 1.3) and where
the intensity was constant. Displayed are the mean valukthanos confidence interval.
For EGFP, the values ab; are well described by a log-normal distribution, while the
values of D, vary too strongly as that, or any other, a distribution cdadgdidentified.
For the Min proteins, the values @¥,, D,, are well described by a log-normal distri-
bution. For all strains, the values éf follow a normal distribution.“BL21(DE3)pLys,
’BL21(DE3)pLys,~JS964WM1255,°WM1079.
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Niw | Nea | D) | 7i(ms) | F | N
EGFP 1021 17.9734 | 1100550 | 0.97.904 | 690
His6-EGFP 555 15.0757 | 187012200 | 0.97+5:95 | 220
GFP-MinDr 2017 | 438 | 14.4125 | 322722 | 0.797011 | 217
GFP-MinDF L.i. 191 || 14.7732 | 464737 | 0.86700s | 104
GFP-MinD' h.i. 247 || 14.1733 | 230130 | 0.737040 | 113
GFP-MinD! 738 | 102 || 12.471% | 5227738 | 0.847057 | 43
MIinE-GFP 1807 | 528 || 9.3%33 | 396155 | 0.86,00 | 350
MIinE-GFP Li. 310 9.6750 | 4787439 | 0.88 008 | 223
MiInE-GFP h.i. 218 || 8.8717 | 2851052 | 0.81,0¢08 | 127

Table 2.2: Mobility of EGFP, His6-EGFP, GFP-MInD, MinE-GFP exchange model
D, : diffusion constant and residence time in the mobile statepfoteins switching
between a mobile and an immobile stake,fraction of the faster/mobile populationy;:
number of curves allowing for a sufficiently good fit. Valuesre only considered from
curves where the fit produced\@ < 1.5 (for EGFPy? < 1.3) and where the intensity
was constant. Displayed are the mean values andatmnfidence interval. For EGFP,
the values ofD are well described by a log-normal distribution, while tteuesr, vary
too strongly as that, or any other, a distribution could lentdied. For the Min proteins,
the values ofD, andr, are well described by a log-normal distribution. For alasis, the
values ofF follow a normal distribution.?BL21(DE3)pLys,’BL21(DE3)pLys,cJS964,
IWM1255,°“WM1079.
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2.3 Discussion

Here, we analyze and give an interpretation of the FCS dédtde wthe implications of
these measurements and of the video-rate-microscopy &uadyderstanding the Min-
oscillations will be discussed in the final chapter.

The possibility to apply FCS relies on the existence of ggtationary steady states
in some regions of the bacterium for time intervals of atidés, see figures 2.17(c) and
() and 2.25(a) and (b). Our correlation data clearly shosvekistence of more than one
relaxation time, which can satisfactorily be explained bguaning for both, MinD and
MinE, two states of different mobility. This is compatiblétinvthe current view that MinD
and MinE are exchanged between the cytosol and the memBAgnaterpret the faster
component as resulting from the dynamics of cytosolic pngteThe second time-scale
could result from the mobility of proteins in the membraraibd state or from transitions
between the cytoplasm and the membrane.

The measured correlation curves do not allow for to detangisimultaneously all
parameters associated with these processes. Therefommaleed the data assuming
that there are either no transitions between the cytosotidlae membrane-bound states
or that membrane-bound proteins are immobile. The latermaption is appropriate if the
relaxation time resulting from diffusion of membrane-bdiinD or MinE is larger than
the maximal time interval for which we recorded correlatmmves. The same applies
to the first assumption of negligible transitions betweentthio states. The differences
in the corresponding correlation curves, see appendix Ataous (A.0.1) and (A.0.2),
are too small to be detected in our setup. Correspondingdyfownd that all in all both
models fit equally well to the data, even though for individuarves there can be sig-
nificant differences in the fit quality. Another situationwhich an analysis based on
these reduced models is appropriate occurs when the rglaxahes corresponding to
the diffusion of membrane proteins and their transitiomieetn membrane and cytoplasm
are similar. In that case, our analysis gives the valuesdtn,ihe diffusion constant of
membrane-bound proteins as well as the transition rate.

Using either the two correlation curveSg;g or G, for analyzing the experimental
data, we found values aroun@um?/s and 10um?/s for the respective cytosolic diffu-
sion constants of GFP-MIinD and MIinE-GFP, where the lattéckdy form dimers. The
difference in these values confirms the findings of referg@8gthat the diffusion con-
stant is also determined by other factors than geometry)idact, based on size alone, a
MinE-GFP dimer of approximatively twice the size of GFP-Mishould have a diffusion
constant of approximatively 13n*/s.

The values for the diffusion constants of membrane-bounteprs are approxima-
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tively two order of magnitude smaller than the cytosolicstants and about one order of
magnitude larger than the diffusion constant for mobileCRle Caulobacter{87]. How-
ever, PleC is a transmembrane protein, whereas MinD bindset@olar heads of the
lipids forming the membrane. Contrary to the cytosolicubfbn constant, the diffusion
constants of membrane-bound MinE and MinD are the same.i§ b@npatible with the
MinE being bound to MinD on the membrane.

Comparing the different values measured in high- and laerisity phases, respec-
tively, we find that the fraction of cytosolic proteins is alyg larger in the low-intensity
phases. Note, that FCS possibly overestimates the fraofiamytosolic proteins. In
fact, membrane-bound MinD was reported to form helices,[@8|d if MinD in the
helices is immobilized, it does not contribute to the flutiuas around the average
intensity and can thus not be detected by FCS. Note also hieatlifferences in the
cytosolic fraction are present in individual cells, seefggR.21(c) and 2.24(b). From the
differences between the cytosolic fractions in the low- aigh-intensity regions, one
might expect also differences in the cytosolic residenge tof MinE which requires
MinD as a substrate to locate on the membrane. Assuming aecatbge attachment
mechanism underlying the Min-oscillations, one might extple same for the residence
time of cytosolic MinD. While the mean values we measuretb¥olthis expectation,
the differences are not significant in view of the error baf&e conclude that from our
data only a small effect of membrane-bound proteins on tlagtatinent rates of cytosolic
proteins can be deduced.
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Chapter 3

Deterministic analysis of the
Min-oscillations

Introduction

In this chapter a theoretical study of the Min-oscillationl be performed. Previous
investigations suggest that the periodic translocatiacgh@Min proteins can be attributed
to a collective effect of many interacting molecules raaglfrom a dynamic instability.
In chapter one we divided all of the proposed models in twesda: CAM [69-75]
and ACM [76, 77]. Central to all of the mechanisms is the &aent of MinD to
the cytoplasmic membrane, recruitment of MinE to the meméray MinD, and the
dissociation of MinD from the membrane induced by MIinE. Nd&t, us examine the
deterministic models in more detail.

Aggregation current models. The essence of aggregation models is the formation
of MinD-aggregates on the membrane by a two-step procesaDNlrst binds to the
membrane and then aggregates, see figure 3.1. This chatctdistinguishes this
mechanism from reaction-diffusion systems where the Inigtia of the stationary
homogeneous distribution that gives rise to oscillatiendriven by the reactions. Here,
the instability is driven by the aggregation current of MinRinD first binds to the
membrane, then recruits MinE. However, the protein nundeonserved.

Cooperative attachment models.The principal difference with AC models is that
membrane-associated MinD aggregates are assumed to feronie-step process where
MinD form the cytosol binds directly to membrane-bound Minihe first model of this
kind was proposed by Meinhardt and deBoer [69]. The mechatiigy considered be-
longs to the class of classical reaction-diffusion systeuitis short-range activation and
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long-range inhibition, where the inhibition is due to suatt depletion. Both, MinD and
MinE, attach cooperatively to the membrane. In additiomBbinds to the membrane
only in presence of membrane-bound MinD and the attachna¢atdlepends on the con-
centration of membrane-bound MinD and MinE; it is maximal &ofinite value of the
MinD concentration and decays to zero for large concewotnatof both membrane-bound
MinD and MinE. The synthesis and degradation of the Min prnstglays an essential
role. In particular, MinD and MiInE are destroyed upon unimgdrom the membrane.

Howard and coworkers [70], assume that MinD and MinE form plaxes in the cy-
toplasm which then bind to the membrane. Membrane-bindngaimpered by MIinE
present on the membrane. This mechanism does not fall i®cclss of classical
reaction-diffusion systems as MinD and MiInE protein nunsheme conserved. Denot-
ing the protein densities of cytoplasmic MinD and MinE asIvasl of MinD and MinE
attached to the membrane by, Cg, ¢4, andc,, respectively, the dynamic equation are

dep = Dpdicp — “DeD + WdeCeCd (3.0.1)
1+ pece
2 WeCe
8tcE = DE&BCE — wWpCpCg + ——— (302)
I+ ppep
Orcq = 1?;1@ — WdeCeCd (3.0.3)
Oy = waeCpep — —t (3.0.4)
1+ ppep

wherewp describes the spontaneous rate of MinD binding to the memebitg, ¢ the

rate of MinE recruitment to the membrane by cytoplasmic MiaRc. the rate of MinE
induced dissociation of MinD, and finally, is the spontaneous rate of MinE release from
the membrane. Spontaneous dissociation of MinD from the lonene and spontaneous
association of MinE with the membrane were neglected ineageat with experiments.
The parameters, and . describe suppression of MinD binding to the membrane due
to membrane-bound MinE and suppression of MinE unbindiaghfthe membrane due
to cytoplasmic MinD. A similar model based on a combinatidbigeometric effects and
reaction-diffusion dynamics, was applied to study proteralization inBacillus sub-
tilis [103].

In the model proposed by Huang et al. [71] the CA characterisas remarkable
consequences. Firstly, it is essential to describe the Miradhics in a three-dimensional
geometry to obtain striped oscillatory patterns in londsceSecondly, a finite ADP to
ATP exchange rate for cytosolic MinD is a key ingredient. Dime dimensional version
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of the equations is the following:

depp = Dpd2cpp — WpTCpp + WaeCae, (3.0.5)
dicpr = Dpd2cpr — wprcpp — [wp + pap(ca + cae)lepr, (3.0.6)
dcp = Dp0icp + WaeCacCE, (3.0.7)
Oicqg = —wpcqcp + [wp + prap(ca + cae)lepr, (3.0.8)
OiCde = WdeCde — WECICE - (3.0.9)

Here,cpp andepr denote the cytosolic distributions of MinD bound to ADP aad\T P,
respectively. Furthermorep is the rate of spontaneous binding of MinD-ATP to the
membraney.;p describes the modification of this rate due to the presenktrdd on the
membrane, whilew,r describes the rate of exchange of ADP to ATP in cytosolic MinD
As transport is purely diffusive, the instability leadingthe oscillations is in this case
essentially of the same kind as in the other reaction diffusystems [69, 70]. These
equations were also analyzed in a spherical geometry [104].

A first attempt to introduce the polymerization mechanisnthe model was carried
out by Drew et al. [72]. They made the following assumptior(§: initial MinD
attachment to the membrane can only occur at or near the (idlepembrane-bound
MinD recruits cytoplasmic MinD to form polymers, extendifrgm the polar binding
site to mid-cell; (iii) MinE has a higher binding affinity faerminal MinD units of the
polymers than to internal units. In contrast to all previmosdels, here, a polar zone
formation is initiated specifically at nucleation sitestad tell pole. On the other hand,
the existence of stripes in long cells where the divisiorlagked, suggests that the polar
location in normal cells is not the result of a membrane priypgique to the ends of the
cell.

In this chapter an AC model, conceptually similar to the madé&oduced by
Kruse [76] is being considered. In [76] the aggregation ombene-bound MinD was
formulated in terms of a kinetic hopping model. Here, we wgk a phenomenological
description which allows for a quantitative comparisonhagixperimental results. The
chapter is organized as follows: First, we will describe ¢lqeiations governing the dy-
namics of the protein distributions in the cytosol and onrtteenbrane. We then analyze
the system in the limiting case of homogenous cytosolicganotlistributions and dis-
cuss the oscillatory solutions. The dependence of the teathpecillation period on the
system length is then compared to experimental data. Aftetsvwe discuss possible
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Figure 3.1. Schematic representation of the dynamics oDMind MInE. a) Exchange of MinD

and MinE between the cytosol and the membrane. 1) MinD u@srg conformational change
upon binding ATP, 2) ATP-bound MinD binds to the membraneM®)E binds to membrane-

bound MinD, and 4) MinE-induced ATP hydrolysis leads to dbhtaent of MinDE-complexes

from the membrane. b) Interaction of membrane-bound pretieiads to the formation of MinD

aggregates.

mechanisms underlying the formation of the MinE-ring. Hyabur results in relation
to the other proposed mechanisms as well as implicationsdfesible future experiments
will be discussed.

3.1 Dynamic equations

As mentioned in chapter one, the periodic changes in thelaisibns of the Min proteins
require the presence of MinD and MinE but not of MinC. Therefdn the following
we will focus on the dynamics of MinD and MIinE. Motivated bypeximental obser-
vations, the dynamics of the Min proteins is assumed to beedrby four properties of
the Min proteins [76]: (i) a high affinity of ATP-bound MinD fdhe membrane; (ii) a
high affinity of MinE for membrane-bound MinD; (iii) a MinEiduced increase of the
ATP hydrolysis-rate by MinD which leads to the detachmen¥iaiDE-complexes from
the membrane; and (iv) interactions between membraneebproteins. The last prop-
erty accounts for the formation of MinD aggregates on the brame which is likely to
result from self-assembly of membrane-bound MinD [66, @8] addition, proteins are
transported by diffusion. A schematic representation ef Min dynamics is given in
figure 3.1.

Formally, the dynamics is given in terms of the concentregiof cytosolic MinD and
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MiInE, ¢ andcg?, as well as the concentrations of membrane-bound MinD amDR+
complexes¢, andcg.. In the direction perpendicular to the long axis of the biacte,
diffusion homogenizes the cytosolic distributions on tiseales that are short when com-
pared to the temporal oscillation period. Assuming in addithat MinD aggregates into
a linear structure on the membrane, the dynamical equattoribe protein densities in
the cell can thus be reduced so that they depend only on tlit@pmosalong the long axis
of the bacterium, see appendix C. Explicitly,

Oicp = —wp(Cmax — Cd — Cae)CD + WaeCae + Dpdiep (3.1.1)
OcE = WaeCae — wpcacp + Dpdicy (3.1.2)
Oicg = wWp(Cmax — Cd — Cde)CD — WECACE — Orjd (3.1.3)
OiCige = —WieCie + WpCICE — Orjde (3.1.4)

The properties (i)-(iii) lead to an exchange of MinD and Mib&ween the cytosol and
the membrane. The corresponding reactions are descrildfgdtaand second-order pro-
cesses. The density of available binding sites for MinD anrtiembrane is given by
Cmax — Cd — Cde, Wherec,,., is the maximal possible value for the protein density on the
membrane, andp(cuax — ¢4 — cqe) IS the binding rate of MinD to the membrane. The
binding rate of MinE to membrane-bound MinDug ¢4, while wy, is the detachment rate
of MinDE complexes from the membrane. That complexes amgnasd to consist of one
MinD and one MInE molecule.D and Dy are the respective diffusion constants for
cytosolic MinD and MinE, and the interactions of membraioexid proteins are captured
by the currentg, andj,.. Note that in these equations the re-binding of ATP to MinD af
ter detachment from the membrane is assumed to occur on eiexuiffy short time-scale
so that it does not need to be incorporated explicitly. Tlecebf a finite ATP exchange
rate will be discussed below.

The current of membrane-bound MinD has a diffusive part apdradue to the inter-
action between MinD proteins. In order to capture geneffiects of the interaction, the
current of membrane-bound MinD is taken to be of the Cahfiatil form. Explicitly,

ja = —Dg0zcq+ Cd(Cmax —Cq— Cde) [k‘laxcd + kﬁicd + Elaxcde + Egaicde]. (3.1.5)
In this expression), is the diffusion constant of the MinD proteins on the membkrand

the coefficientd:; andk, are phenomenological parameters that describe the ititarac
between MinD molecules. Possible modifications of thisraxt@on due to the presence

IMinE forms dimers [105] andg; is actually the distribution of MinE dimers. In the follovgnthe term
“MinE molecules” will refer to these dimers.
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of MinE are taken into account by the parametersindk, that describe the interaction
between MinD and MinDE-complexes. Note that for an attvactnteractionk; > 0,
while k; < 0 in the opposite case. Stability on small length scales regiéty > 0. The
current of MinDE complexes has the same form, but for sinitgliwill be omitted in the
following.

Finally, the boundary conditions need to be specified. Erpaits have shown that
oscillations are independent of protein synthesis [63{l @rerefore apparently do not
directly rely on the regulation of gene expression. Thaefwe impose zero flux at the
boundaries so that the total protein numbers

L)2
/ dx (cp +c¢q+cqe) = LD (3.1.6)
—L/2
L/2
/ dr (cg +cqe) = LE (3.1.7)
—L)2

are conserved. Herd, denotes the length of the system abf» and LE are the total
numbers of MinD and MinE molecules in the system, respelgtive

3.2 Homogenous cytosolic distributions

We now analyze the dynamic equations (3.1.1)-(3.1.4) itithiéing case of homogenous
cytosolic MinD and MiInE distributions, i.ecp(z,t) = cp(t) andeg(z,t) = cg(t). This
corresponds to the case where the tifygs needed for MinD and MiInE to diffuse along
the whole length of the bacterium, equalté/Dp and L?/ D respectively for MinD
and MinE, are short as compared to all other relevant tinagesaénvolved. According to
the measured values for the diffusion constatg; ranges front.1s for cells1um long,
to 1s for cells10m long. Considering the residence time values shown in teeiqus
chapter, the cytosolic distribution can be considered lgamous for cell lengths &fum
or less.

In this case, the dynamics of the cytosolic distributiondascribed by ordinary dif-
ferential equations

d

Pl —wp(Cmax — D+ cp)ep + wae(€ — cg) (3.2.1)
d
pric i —wg(D—E& —cp+cp)ep + wee(E —cp) . (3.2.2)

Here, the distributions of membrane-bound MinD and MinDEeaveliminated using
equations (3.1.6) and (3.1.7).



3.2. Homogenous cytosolic distributions 45

a) b)
[ -~ E
o // V m (s1] um 1t homogenous
| | 400 F oscillatory

300 f
200 f

100 F
A ol T
0 1| 2 3 4 qum 0 500 1000 1500 D [um]

4

7’

Figure 3.2: Linear stability of the homogenous state. a)l e, solid line) and imaginary
part (Im, dashed line) of the eigenvalues of the linear dper@escribing the dynamics of small
perturbations around the homogenous state as a functiomeofvave numbey. Modes with
wave numbers betweeruin~—! and 2.2zm~! are oscillatory and unstable. b) Stability of the
homogenous state as a function of the average total MinD aimdE MensitiesD and£. The
solid line indicates a line of oscillatory instabilities ikhthe dashed lines indicate stationary
instabilities. The values of the parameters afe = 4 - 10 °ums™!, wp = 3 - 10~ ums™1,
Wge = 0.04571, Dg = 0.06um?s71, cpax = 1000pm=1, k; = 1.5 - 10 Sumis=!, ky = 1.8 -
107 7umbs™, ky = —1.2- 107 %um*s™!, ko = 1.2 - 107 0umbs~1. In (@) D = 900um~' and

£ = 350pum~L.

Under the conditions < ¢p < D and0 < ¢ < &, the above equations have one
and only one fixed point. This point is always stable and, gayptically, the cytosolic
distributions will approach the corresponding stationaalpesC, andCg, respectively.

In this limit, the dynamics of the Min proteins is describegd tivo partial differential
equations for the distributions of the proteins bound tontleenbrane:

Oica = wpCp(tmax — €4 — Cae) — wpCEcy — Opja (3.2.3)
8tcde = —WgeCde + wECEcd . (324)

Note that the reaction terms in these equations are linghmdascribe relaxation to a
stationary value; only the current contains non-lineasititnd can generate an instability.
This feature distinguishes this system from classicaltreadiffusion systems, where
transport is due to diffusion and where instabilities aeated by the reaction terms.

The homogenous statg(x) = D — & —Cp + Cg andey. () = € — Cg is a stationary
state of the dynamic equations (3.2.3) and (3.2.4). It islstainless:; exceeds a critical
valuek, .. The results of a linear stability analysis for a supercaitvalue oft; are shown
in figure 3.2(a). The stability region of the homogenousestat a function of the total
MinD and MInE concentrations and&, is shown in figure 3.2(b). At the instability
an inhomogeneous stationary state appears if the detathmaterof MinDE complexes



46 Chapter 3. Deterministic description of the Min oscillzuso

a) - - b) _
Cat+Coe Cae
ti L ‘
160s 4 160s 4
120s - 120s
80s - 80s -
40s 40s -
0s- 05 |
0 X Lo
¢) d) - -
t Ca+Cqe
{Cd+Cde> A
”° \e_/ o
0.4} 120s -
03 80s A
w 40s
0.2} . . . . . 0s J
0 X Ly } i

1
LO X 2L0

0

Figure 3.3: Oscillatory solutions of the dynamic equati¢®d<.3) and (3.2.4). a,b) Space-time
plots of the total MinD and MinDE distributions on the memiac; + c4e = (¢4 + Cde)/Cmax
andcge = cqe/cmax, respectively, for system size) = 2um. Both distributions show pole-to-pole
oscillations with a temporal period of about 80s. c) TheltbtenD and the MinDE distribution
averaged over one temporal period shown in (a) and(th}+ c4.) and(cq.). Both distributions
display a clear minimum at = Ly/2. d) Space-time plot of the total MinD distribution on the
membrane¢,; + ¢4 for system siz&L,. The pattern has doubled as compared to the pattern in
the system of lengtth,. Parameters arle, = 2.1-1075um*s~1, ky = 2.5- 1077 umbs~1, and the
remaining values as in figure 3.2(a).
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from the membrane is above a certain critical valug,> wq. .. In the opposite case, an
oscillatory state appears. Oscillatory instabilitiesyomtcur if the protein density on the
membrane cannot exceed a maximal valye. For an oscillatory instability the unstable
mode is of the form

cqg o cos(2t) cos(q.T) (3.2.5)
Cge o< c08(Qet + @) cos(q.r) (3.2.6)

This standing wave reflects the qualitative features of tiseoved Min-oscillations. The
wave numbey. = nr/L, wheren is a natural number, and the frequeiiyof the critical
mode depend on the system parameters. For instance, we find

ot = (wpCp + wge +wrCE)
¢ C(d(cmax - C(d - Cde)kQ ’

(3.2.7)
and |f/2‘1 = ]2’2 =0
Qg = WDWECDCE_Wge (328)

A linear stability analysis in term of microscopic paranstassociated with the phe-
nomenological parameteks andk, and for the non-homogenous cytosolic case is given
in appendix D.

The oscillatory patterns can be obtained from the numentadration of the dynamic
equations (3.2.3) and (3.2.4) (see appendix E for a remarldtahe numerical stability
criterion valid for the these equations). A typical examigeshown in figures 3.3(a)
and (b). For some time the total MinD-distribution+ ¢, is localized in the one half
and then switches to the other. In this process, the transiime is very short when
compared to the dwell time in the one half. This is in agreegmeéth the experimental
observations shown in chapter one, in particular with thes@nce of the quasi-steady
state. The MinE distribution shows a similar behavior, et transition between the two
halves is less rapid. The time-averaged distribution ohpbdtinD and MIinE shows a
minimum in the center and increases towards the system laoiesd see figure 3.3(c).
The parameters were chosen so that the temporal periodis 80s, which is similar to
the values observed in experiments with fluorescently labélinD, see figure 2.10. The
figure also displays the time-averaged MinD-distributiathvea minimum in the center.

In the model, the transition of MinD from the one half to theetcan be understood
as follows. If MinD is localized in the one half, MinE will bthand drive MinD off the
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Figure 3.4: Oscillation period of solutions to the equati¢d.2.3) and (3.2.4) as a function of the
system length. Black dots: oscillation pattern as in figuBfe8, red crosses: oscillation pattern as
in figure 3.3(b), green and blue dots: oscillation patterthwhree and four stripes, respectively.
For the system length where the oscillation pattern chanibeperiod shows a discontinuity. The
parameters values are as in figure 3.3(a).

membrane. Although the distribution of cytosolic MinD isrthogenous, MinD preferen-
tially binds in the other half because there are more aVailainding sites. The resulting
inhomogeneity of membrane-bound MinD is then amplified byMaggregation. As a
consequence of the homogenous distribution of cytosolicBylithe spatial dependence
of the attachment rate of MinE follows the profile of membrémoeind MinD, and the
distribution of MinDE complexes is similar to the one of Mird» the membrane, see
figure 3.3(a) and (b). In particular, the positions of the mexof ¢, are linked to the
position of the maxima of;. In the example given in figures 3.3(a) and (b), the maxima
are always located at the boundaries 0 andz = L.

As the system size is increased, the patterns change antlipiesl patterns for, and
cqe appear, see figure 3.3(d). This reflects the finite wave numbtre critical mode.
In addition to changes in the oscillation pattern, the terapperiod also changes as the
system size is varied. It increases monotonically with ffsteIn size but at certain sizes
jumps back towards a lower value, see figure 3.4. The disuaitigs occur for the system
sizes where the oscillatory pattern acquires a new “stripef the parameter values used
here, a new stripe appears for a system size.af.3n the case displayed in figure 2.10(f),
the minimum at the center is more pronounced than for ther¢tieal calculation: while
experimentally the minimum is at about 50% of the maximuns @t about 70% in the



3.2. Homogenous cytosolic distributions 49

0.5

0.45

0.4

0 x/ LC 1

Figure 3.5: Oscillatory solutions of the dynamic equati¢®d2.3) and (3.2.4). The total MinD
distribution averaged over one temporal peri¢g, + cq.), for different lengths. The black, red,
green and blue lines correspond to cell lengti @fum, 1.6m, 2.0um and2.6um respectively.
The orange dashed curve corresponds to a cell lengt8pfn, just before the system acquires a
new stripe. Parameters akg = 2.1 - 10 %um*s=!, ky = 2.5 - 10~ umSs~!, and the remaining
values are as in figure 3.2(a).

numerics. However, as is shown in figure 2.12, for other @{mined, the minimum is
much shallower or even absent. This might reflect deviatiorise total protein density
in individual bacteria from the average total protein dgngi a bacterial colony. In

particular, in the numerics, see figure 3.5, the value of themum decreases with the
system length up to the point at which the oscillation patBsquires a new stripe. This
behavior is consistent with the experimental data showm ifigure 2.12. It would be

interesting to test this dependence of the average MinDiloligion on the cell length in

single cells.

When increasing the cell length, the oscillation periodsfibfor the dynamic equa-
tions (3.2.3) and (3.2.4), see figure 3.4, span the same @gjee experimentally ob-
served ones, shown in figure 2.14. Furthermore, experirihemta observed striped os-
cillation patterns only for bacteria longer thanr8, however, there is no sharp transition
length in which the pattern changes. This behavior, as hes @escribed in section 2.1.3,
could be due to variations in the protein densities betwdésrent bacteria, and the con-
sequent variation of the oscillation period [63], and thelect the individuality of the
cells. It could also be a noise effect due to the low proteimber which gives rise to
fluctuations in the oscillation period in each single celln &xperimental verification
would require the measurement of the protein concentratian individual cell together
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Figure 3.6: a) Oscillation period in the model as a functibthe average total MinD concentration
D. The period initially increases and then decreases sjigtith D. b) The same as (a) but for
the average total MinE concentratiégh The period decreases with the amount of MinE. The
parameters values are as in figure 3.3(a), the system le@jttmi.

with the temporal period and the cell length.

In the model, the temporal oscillation period also dependshe total MinD and
MinE concentrationsp andé&, see figure 3.6(a) and (b). It increases monotonically with
the amount of MinD until it starts to descend slightly. As adtion of the number of
MinE molecules, the period decreases.

3.3 The MinE-ring

In the one-dimensional description presented above, Mings correspond to the max-
ima in the MinDE distribution. In the examples given so farcls maxima only occur at
the system boundaries. For system lengths close to the aaigch the pattern acquires
a new stripe, maxima can be detected closer to the systentsrcélowever, this is un-
likely to be the mechanism for MinE-ring formation i coli, because no dependence
of the existence of the ring on the cell size was reportedthieamore, as argued above,
in the limit of homogenous cytosolic MinD- and MinE-distuifions, the maxima in the
MinDE-distribution were induced by the maxima in the MinBstdibution. MinD-rings
were not observed experimentally, though.

There are at least three other possible mechanisms thaimaynciple, account for
the observed accumulation of MinE at the ends of the MinDxheln the first mech-
anism, the diffusion length of cytosolic MinEg = (Dg/wgcmax)'/? , is shorter than
half of the cell length. In this case, cytosolic MinE will pil@minantly attach before it
has reached the opposite cell pole, which might lead to amnagiation close to the cell
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center. This seems to be the mechanism of MinE-ring formatidhe models proposed
in [70, 71]. Accordingly, the ring vanished in [71] when théeghment rate of MinE was
reduced, leading to an increase pf To test whether this mechanism is supported by the
equations (3.1.1)-(3.1.4), we studied the system for fwvalees of D, and Dg. In this
case the cytosolic distributions, andcyz were not homogenous, and all four equations
had to be solved simultaneously. For the parameter valuesidered above, the oscil-
lation patterns do not change significantly as long as tHasidn constant®, and Dy

are larger than 0;Am*/s and no maxima of,. independent of maxima ef, were found.
The diffusion lengthi is also influenced by the value of;. For Dp = Dy = 2.5um?/s,

the values for diffusion in the cytosol used in CA models, salies ofw; smaller than
3.2 -10~*um/s the same behavior was found. Still larger valuesotlestroy the oscilla-
tions. Note that by assumption the one-dimensional desanifs only appropriate if the
diffusion length/g is larger than the cell diameter, i.&z, > 1m. We concluded that this
mechanism is not supported by the dynamic equations pextabbve and can be tested
only in a three-dimensional description.

Two other mechanisms of minE-ring formation are suggestestindies of kinesin-
subfamily Kin1l3 members [106, 107]. These proteins indunee depolymerization of
microtubules. In this process they accumulate at both ehtiteonicrotubule. As MinE
might act on MinD filaments in much the same way, accumulatiavinE could follow
from a similar mechanism as accumulation of the Kin13-kimesThe latter could be a
consequence of a higher affinity of the microtubule end fodhig the motor. Related
ideas for the binding of MinE to MinD were proposed in [69] aado in [76]. In the
present description, additional terms as the special imm&k form for the attachment of
MinE to the the membrane-bound MinD used in [76], can give aBiing. The anal-
ogy with Kinl13-kinesins offers still another explanatiar the accumulation of MinE,
namely a dynamic accumulation due to processive depolyatérn [108]. The present
framework for studying the dynamics of Min-proteins is noitable for studying these
effects as filaments are not explicitly incorporated.

3.4 Discussion

A phenomenological description of the dynamics of MinD anthlin E. coli has been
presented. The description is based on the binding of Minibeacytosolic membrane,
recruitment of MinE to the membrane by membrane-bound MMDE-induced detach-
ment of MinD, as well as an interaction between molecules\ida the membrane. For a
sufficiently strong attraction between membrane-boundMimolecules, these processes
generate pole-to-pole oscillations of the Min-proteinke phenomenological form of the
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current for membrane-bound MinD used in the present workutap generic features of
the protein interaction and does not refer to a specific mmypic mechanism. It allows
for a quantitative comparison between the oscillatory tsmhs of the dynamic equations
and experimental findings. In agreement with the latterllatons with a temporal pe-
riod from 40s to 120s can be obtained. This value is essntdatermined by the de-
tachment ratev,, of MinDE-complexes. For the parameter values given in thg the
oscillatory pattern acquires a second stripe for a systemadi 3:m, which agrees well
with the smallest bacterial length for which period douglia seen in figure 2.14. This
length is essentially determined by the ratio of the paramsét andk,.

Our analysis of the dynamic equations (3.1.1)-(3.1.4) was$ed on the case of ho-
mogenous cytosolic distributions of MinD and Ming; andcg. The solutions in this
limit are very similar to the solutions of the full equatiorighe diffusion constants of
both MinD and MinE have the measured value of approximati¥gl:m?/s. This implies
that the approximation of constaty} andc is appropriate and provides a reduced set of
equations that is more convenient to study than the fourteansaof the full system. An
implication of our analysis is that the number of availakleding sites might need to be
limited in order to produce oscillations.

Other mechanisms that were suggested for the Min-osoilatagree in the essential
assumptions with the one studied here, namely the abili§Téf-dependent binding of
MinD to the membrane, the recruitment of MinE to the membrapeMinD, and the
release of MinD from the membrane driven by MIinE. The proposechanisms dif-
fer, however, in essential points. Meinhardt and deBoegesigd that protein synthesis
might be an essential element [69], which is not supporteeldpgriments where the syn-
thesis of proteins was interrupted and the oscillatioriscsintinued [63]. Howard et al.
assumed that MinD and MInE form complexes in the cytosol and bogether to the
membrane [70]. They found an exponential increase of th@deah period of the oscil-
lations with the system length with a period of 1000s for aeaysof length 7zm. This
is qualitatively different from the behavior reported foetmechanism examined in our
study, see figure 3.4(a). The experimental data presenfeyline 3.4(b) show oscillation
periods that do not exceed 120s for bacteria of a length obu®tm. However, more
experiments are needed in particular for obtaining simeiaisly values for the protein
densities and the oscillation period of individual baceri

The system studied by Huang et al. differs from the one stulgze in the way that
MinD-aggregates are formed on the membrane [71]. In thaicmation, MinD aggrega-
tion follows a one-step process: attachment to the memlwenas with a higher rate at
locations where MinD is already bound. This characterihesthiodels that we define as
cooperative attachment models. In contrast, we considetawd step-process, namely,
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cytosolic MinD binds first to the membrane and only then ssembles into a filament,
corresponding to an aggregation current model. This diffee might at first sight seem
minor. However, it leads to striking differences in the bebaof the models. First of

all, in assuming a one-step process for MinD aggregationreetdimensional geometry
as well as a finite ATP-exchange rate is required to genetigped oscillation patterns in

long systems. Secondly, in the model by Huang et al. thera@uescillatory solutions at

all for homogenous cytosolic distributions. Moreover, antrast to the model by Huang
et al., MinE-rings were not found to form in the model studnedle.

In chapter five the differences between the two classes oela@€CM and CAM will
be further discussed and, suggesting new experimentaniblecations of our measure-
ments concerning the possibility of quantitatively disgeg between different models
will be also considered.

Fluctuations due to the moderate number of Min-moleculegtralso play an impor-
tant role. This point will be addressed in the next chapter.
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Chapter 4

Stochastic description of the
Min-oscillations

In that Empire, the Art of Cartography attained such Peidadhat the map
of a single Province occupied the entirety of a City, and tlag mof the Em-
pire, the entirety of a Province. In time, those Unconsdid@daps no
longer satisfied, and Cartographers Guilds struck a MapeoEthpire whose
size was that of the Empire, and which coincided point fonpuwiith it. The
following Generations, who were not so fond of the Study oft@graphy as
their Forebears had been, saw that that a vast Map was Usahelsisot with-
out some Pitilessness was it that they delivered it up torkkkeinencies of
the Sun and Winters. In the Deserts of the West, still todegret are Tattered
Ruins of the Map, inhabited by Animals and Beggars; in alllthed there is
no other Relic of the Disciplines of Geography.

Jorge Luis Borges and Adolfo Bioy Cesares, “On Exactitudedience?

Introduction

In this chapter our theoretical investigations on the tecity Min-system will be ex-
tended on the effects of fluctuations. Because the numbewohied Min molecules in
each bacterium is rather small, only a few thousand [109], lst6chastic fluctuations
are expected to be significant [83,111]. Unfortunatelyrdhare only measurements of
protein numbers averaged over a population of cells [L13.aAonsequence, assum-
ing an average length of the cell, only an approximate esiimaf 700 MinE/um and

'English translated version from J. L. Borg€sllected FictionsA. Hurley, trans., Penguin, New York
(1999).
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Figure 4.1: MinD oscillations. (a) Fluorescence intenditgf MinD-GFP measured by LSCM,

rescaled by the maximum valug,., during the oscillations (in a confocal volume correspogdin
to the yellow area in the sketch), as a function of the time Stochastic simulations of MinD

concentration on the membrane, as explained in thertgX: nge = (g + Nge)/Nmax at site

1 = 1,2, as function of the time.

1000 MinD /um is possible, corresponding to a concentration of apprateig1 M. Fig-
ure 4.1 clearly shows fluctuations in the oscillatory flucege intensity signal due to
the low number of proteins. All of the FCS measurements wibpeed (see section 2.2)
were only possible because of the presence of such fluatgatio

The effects of noise were studied for some spatially extépdéternse.g.Ca"* dis-
tributions [112—-116]. Inside the cells, mostly models withspatial degrees of freedom
were considered [117-119]. Only recently, first attemptsttioly the influence of fluctu-
ations on the Min-oscillations were undertaken [74, 75 12Z2]. All these studies were
carried out in the context of CA models. A stochastic studyg warried out also for a
different bacterial system, namely Soj protein®ecillus subtilis[123].

Howard and Rutenberg [120] considered a stochastic modi$ofete particles mov-
ing in a one-dimensional lattice. The occupancy atv'siimf}, with j = D, d, E, e rep-
resenting cytoplasmic MinD, membrane MinD, cytoplasmiciliand membrane MinE,
respectively. Given the size of a lattice sile, in a timeAt, particles hop to the neigh-
boring sites with probabilitie; At/(Az)?. The transformation of cytosolic particles
into membrane bound particles and vice versa occurs in the e interval with prob-
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abilities given by

Pp_.q=0pAt/(1+ fient?), (4.0.1)
Py.p = @genliPAt, (4.0.2)
Pp_.. = Gppnil At, (4.0.3)
Popp = @/(1+ fipniy)). (4.0.4)

Numerical simulations of this model show pole-to-pole bations for particle num-
bers in which the corresponding continuum model [70] dodsosoillate. Particularly
interesting is the result at low protein concentrationserelfluctuations induce and sus-
tain oscillatory patterns.

A one-dimensional stochastic model incorporating memdraonlymerization of
MinD, was considered by Tostevin and Howard [74]. In thisteah they also stud-
ied Min oscillations during the division process, simuigta closing septum through its
effects on the cytosolic diffusion constant. In agreemeith weports of oscillations in
constricting cells [61, 63], and with our observation of fi@eted oscillations during di-
visior?, they found that oscillations cut off sharply at some timamiyithe closing of the
septum and then the daughter cells show independent discia They also found that
the fraction of Min-proteins in the daughter cells vary widdrom 50% — 50% up to
85% — 15% of the total from the parent cell. In the most extreme cases,td the low
protein number, oscillations were not supported in one efdaughter cells. However,
wt? cells without pole-to-pole oscillations have not been regmbso far.

Pavin et al. [73] considered a 3-D stochastic extention of the model psed by
Huanget al. Their model generated pole-to-pole oscillations of the toieme-associated
MinD proteins, MInE ring, as well as filaments of the membréoend MinD proteins.
To this end they considered four different rates for thedwtsent process of MinDE:ATP
complexes, depending on many bonds a MinD:ATP formed wstMinD:ATP neighbors.
In particular, in order to generate oscillations, the rateesponding in the case of four
bound ones has to be significantly small when compared wétlothers.

Different stochastic versions of the model introduced it Were considered in [75,
121,122].

Kerr et al.[75] made stochastic simulations in three spatial dimersad the model
introduced by Huangt al. [71], using MCELL, a Monte Carlo modeling program for
cellular microphysiology [124]. In contrast to Howard andt@&berg [120] they found

2Figure 2.7 is one single frame of a video showing such behavia long cell, just before the birth of
a minicell (right down). Oscillation started immediatefythe new-born cell.
30f course to be observed cells have to express GFP fusednsote
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that fluctuations destroy oscillations in the range of valokthe protein numbers where
the deterministic version of the model still shows osditias.

Finally, Fange and EIf [122] considered-D stochastic reaction-diffusion kinetics
of the Min proteins for all documented mutant phenotypes @rdpared the results to
the corresponding deterministic mean-field descriptioheylfound thatvt and ftsZ~
cells are well described by the mean-field model but that ehststic model is necessary
to reproduce the characteristics of the sphericaf 4 ~) and phospathedylethanolamide-
deficient (°£~) phenotypet In particular, for spherical cells, the mean-field model is
bi-stable and the system can get trapped in a non-oscylatate, however, when the
intrinsic noise is considered, the experimental behavicerges.

In the vast and growing literature covering noise in phyisicad, more recently, bi-
ological systems, words such asise external noisginternal noise fluctuations have
been applied to processes of different origin. In order tocinisunderstandings, we will
specify here our use of these words. We differentiate batwieee different sources of
noise: (i) instrumental, (ii) external noise, (iii) intedmoise (of course, a larger classifi-
cation is possible [125]).

Instrumental noise is the noise intrinsically associatéti the measurement proce-
dure.

External noise depends on how the system interacts withetsteof the world. An
idealization of a physical system, needed for modelinggggiace through the precise
identification of its boundaries, and every system is caliplgh whatever there is outside
these boundaries. In mathematical modeling, this type @fenig usually introduced by
simply adding noise to the deterministic equations. Forgpecific case of the Min-
system, sources of external noise can, for example, betttaealular environment or the
gene expression of proteins [44] that give rise to fluctuetio the protein numbers.

Internal noise, which is the kind of noise we focus on in thagky does not have an
external origin. By internal noise we refer to the molecudamposition of real phys-
ical systems that are otherwise described by coarse gragedtions. The associated
macrovariables, which are protein densities in the det@stic equations, represent a
sort of averaging over an underlying microscopic desaipti Consequently, intrinsic
fluctuations of molecular origin are associated with eachrmaariable.

There are several approaches to studying intrinsic fluictusit In traditional statistical
physics, fluctuations are of thermal origin, giving rise madl departures from a mean
value. They go to zero as one approaches the thermodynaniichear equilibrium, the
Onsager theory can be used, and the fluctuation-dissipagiation, which connects the
strength of the fluctuations to the magnitude of associas=ihtive parameters, is valid.

4MinD is localized in tight clusters which randomly appeadalisappear at a minute timescale [80].
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Far from equilibrium, these tools are not available. Indfehe system can be described
by the probability of being in a certain state. The dynamidafie probability distribution

is given by the master equation [126]. A direct integratiéith@ master equation is, in
general, impossible, and different methods of analysig hawe developed.g. the so
called Gillespie metho128]. Nevertheless, most of these methods, includinge&iiie
method, do not work when space is taken into account

Here, we perform computer simulations of a particle basestrijgtion, where the
probability for each event is calculated according to theesponding probability in the
master equation. Stochastic simulations are compareddetdrministic simulations and
experimental data from LSCM. We compare, numerically anzbarentally, the contri-
bution to the large spreading of the values of the period ateal fiength that result from
cell to cell variability with the contribution resultingdm the internal noise in single
cells. In the last five years, the importance of going fronhepulation measurements to
single cell measurements has become more and more obwioursstance in the context
of gene regulation [44]. The final goal, in our case, is to eepthe true dependence of
the oscillation period as a function of the length of a singgé as opposed to the cell
population measurement in figure 2.14.

A general aspect that we want to emphasize is the ability olim@ar systems to sus-
tain organized behavior even in the presence of a subdtanta@unt of fluctuations [115].
In this context, noise need not only be a nuisance that dessthe desired behavior of a
system, but might lead to a behavior that is absent in themetestic limit. An example
for the Min-system are “fluctuation driven instabilitiediat were found for the model
introduced in [120].

Finally, in order to bridge the gap between our microscogsatiption and the de-
terministic one used in chapter two, Langevin equationssjlfer the fluctuating protein
densities will be derived through coarse graining of theroscopic master equation. The
deterministic limit of these LEs corresponds to equati@2.8) and (3.2.4).

In the last 20 years, we have seen a growing interest in stichghenomena in the
context of nonlinear dynamics and instabilities away frajqaikbrium. A LE describes
microscopic stochastic dynamics in terms of a determmitid a noise part. This de-
scription was studied in the last decade under differercuanstances, from the kinetic

5The Gillespie method was previously introduced in the oxnté the Ising spin system by Boret
al. [127].

5The Gillespie method automatically sets up the time stepeigaing directly the time when each single
event occurs. The application of this method to spatialtgeded systems requires modifications which
does not make it an advantageous method in that case (ksa¥gdélec “Microtubule functions: Three
examples of modeling using simulations” course at summera@cPhysics of Cellular Objects”, Cargese
2006).
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theory of adsorbates [129-141] to the study of the excharey&eh[142] and turbulent

cascades [143]. However, to our knowledge, there are nacapiphs of that approach to
spatially extended biological systems. In the kinetic tigead adsorbates, lateral interac-
tions between adsorbed molecules play a key role in detaigthe process of pattern
formation at nanoscales on metal surfaces similar to the ptalyed by the interaction

between MinD proteins in our model.

4.1 Analysis of the master equation

Here, we introduce a particle-based description of the ptotein dynamics based on
the same processes used in the deterministic descripti@nflUctuation effects are fully
incorporated into the model by discrete particles. Thetisgpoint is al-D micro-
scopic lattice model with lattice length, /N total number of sites an@ sites per unit
length. Each site can either be empty or occupied by a singteip MinD or a complex
MinDE, i.e. the multiple occupation of a site is not perndtt@he master equation for the
multidimensional distributiomp({n41, - .., "N}, {Nde1, - - -, Naen }, ), Which gives the
probability of findingngi,...,nany andng1, ..., n4e n proteins MinD or MinDE, re-
spectively, in the boxes positionedaat . . .,z at the timet is given in equation (F.0.5).
We first carried out lattice simulations where the probapiif each event is calculated
according to the corresponding probability in this mastgration. Since such a single
site description is numerically too expensive, the latti@s soon after coarsely grained,
i. e, the entire lattice was divided in boxes. Moreover, due to the finite resolution of
the instruments, coarse graining allowed for a better corsga with the experimental
data. This situation correspond to the master equatiorh®ntultidimensional distribu-
tion P(ng1 - .. Nam, Nde.1 - - - Nde.m, t) ShOwn in equation (F.0.11) (appendix F). Now, each
box can be occupied by a maximum numbgr,, of proteins and has a lengthmuch
smaller than the characteristic length of the spatial pagtevhich appear. This length
characterizes the resolution of our system. Complete gidhal mixing is assumed to
take place inside each box so that single proteins cannotstiagliished inside a box.
We define the ratesp p = wp pCmax, Wherewp, g are the parameters introduced in equa-
tions (3.2.3) and (3.2.4), and to simplify the notationghe following the “tilde” will be
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dropped. For each boxthe probabilityP of attachment in a time stefyt is given by

N , -
Ppg= At wp (—D) (1 . m) (4.1.1)
m Nmax
Poge = At wp <&) g (4.1.2)
m ) Nmax

for MinD and MinE respectively, and
Pde—>E+D = At WdeTde,j (413)

for the detachment process of MinDE. The variablgs andn,. ;, are, respectively, the
number of MinD and MInDE proteins in each bgx The parameterd/, and N are
the total numbers of cytosolic MinD and MInE proteins, redpely. Their values are
updated at every time step. At each time step, the probabibif a transition between the
neighboring boxes of the MinD proteinB(j; — ;7 + 1), are proportional to the number
nq,; Of proteins in thejth box and to the fractiod — (14 ;11 + 7de j+1)/Mmax Of €EMPLY
sites in the neighboring box. Moreover, it depends on threraation between membrane-
bound proteins, and according to the Metropolis dynamicswite:

Pijn = <DC;T2AI€) N, (1 — nd’jﬂnz:de’jﬂ) jjt (4.1.4)
where
1 if AE; <0
Lz = exp(?{ijEﬂj) if AE; >0, (4.1.3)
with AE; = V;.; — V,. The potentialV'(z), describes the interaction between Min-

proteins on the membrane. Concerning the shapé,afile chose a square hole potential:

Rq Raqe
V() =- [Z Gdnd,j — Z §dende,j] (4.1.6)

=—Ry J=—Rge

whereR,; and R, are the number of boxes over which the sum is taken and whick-co
spond to the interaction rangesg,~ o x Ry andry. ~ Iy X R4.. The parameterg, and
Jqe are the "coarsely grained” (renormalized) interactioersiiths:

~ gd

~ Gde
gda = R 7 Yde = Bae (4.1.7)
2 Eji—Rd Nmax ¢

2> 52 py, Mmax
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We controlled that for a fixed interaction range and strengjtferent shapes fov; would
lead to similar results.

4.1.1 Simulations

In our stochastic simulations, we use a time step= 1/(Ppaxwr), WhereP,,., is the
maximum possible value for the sum of all probabilities,itafly, At = 5 x 107°s. The
box length id, = 0.033um, so that0 boxes model @um bacterium. The number of sites
in each box isi,.. = 33, corresponding to,,., ~ 1000/um. We useD,; = 0.15um?s ™,

ga = 30kgT, gse = —20kgT, 14 = 800nm, rge = 22nm wp = 0.04s7 !, wp = 0.3571,
andwg. = 0.04s!. For each box the probability for each possible event is calculated
at every time step\t and then the occupancies for all boxes are simultaneouslgtag.
We recorded the number of particles in each box, after a numloé time steps such
that At x s > 74, wherer; = [2/D, is the mixing time due to pure diffusion on the
membrane. The value used foy; is the same we found experimentally (see table 2.1).
An estimation ofc,,.x, 94, 9ae, 74 @Nd 7. IS given in appendix H, the values of and

rq Will be also discussed in section 4.3, and the values of tteewa, wp andw,. are
compatible with the residence times we found experimegn(aéie table 2.2).

4.1.2 Macroscopic limit

Numerically, the macroscopic limit can be approached instioehastic simulations by
appropriate rescaling some of the parameters. Keepingthe ofm fixed we considered
the macroscopic limit by sending,.x and N, to co, whereN,, is the average total Min-
protein density. Then we considered the new rescaled digentj, ande

ﬁmax = NMmax X pﬂy (418)
N, =N, x p° (4.1.9)

We found numerically that by choosingando equal to 1 the deterministic limit is
recovered with good approximation. In figure 4.2 the spaoe-plots for the total MinD
concentrations for four different values pfire shown. We want to point out that this is
not the macroscopic mathematical limit (see section 4\&t®re the box sizé, goes to
zero, difficult to obtain numerically. Its consistency igpported by the simulations.



4.1. Analysis of the master equation 63

(Nd+Nde) (Nd+Nde)
t 1] -
140s 140s
70s 70s
Os Os 1
(Nd+Nde) (Nd+Nde)
T t
140s 140s
70s 70s
0s Os
1 ] 1 ]
I 1 I 1
0 X Lo 0 X Lo

Figure 4.2: Macroscopic limit of microscopic simulatiolgpace-time plots of the total MinD and
MinDE distributions on the membrane, for system sige= 2:m, and for different values of the
rescaling parametep = 1, p = 5, p = 10, andp = 20. For all values ofp, the distributions
show pole-to-pole oscillations with a temporal period opgx. 70s. Increasing the particle
distribution approaches the continuum limit.
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Figure 4.3: Simulations. Local MinD concentration as fimciof time. Full red lines: stochastic
dynamics,ng = ng/nmax at sitei = 1. Dashed lines: deterministic dynamics with equivalent
parameters;(0) = c4(0)/cmax- (@) D = 360pm~! andE = 134um~!, (b) D = 945um~! and

E =368um~!. D/FE ~ 2.6 in both cases. System lengtpm.

4.1.3 Fluctuation-driven instability

To study the effects of stochasticity in our model, we chantpe average total protein
concentrationV,, keeping fixed all other parameters. Figure 4.3 comparesdtezrdin-
istic with the stochastic case, at low and high values/pf At low values, in the deter-
ministic case (starting from a perturbation of the homogesesteady state) the protein
concentrations rapidly decay to the homogeneous stategatieegular oscillations con-
tinue for the stochastic model, figure 4.3(a). The opposfplened at high total protein
concentration, figure 4.3(b). To investigate this issue arardetail, we reported the os-
cillation period as function oV, = D + £, the average total MinD concentratiéh and
the average total MinE concentratién The value of the period was calculated by con-
sidering the discrete Fourier transform (DFT) as a funatittme period and by taking the
value corresponding to the maximum of the DFT as the valubeperiod. For the error
of the period, we considered the width at half height of th& DIFhe DFT was performed
in a time interval of20min. We checked that much longer intervals shift the value of
the period only by a small fraction of the error. Figure 4.4wh the oscillation period
as a function ofN,. The stochasticity shifts the regime of oscillations to éswalues
and reduces the range of the values\gfsupporting oscillations. In the stochastic case,
oscillations continue to very low concentration§, ~ 400um ~*, and stop around the
middle of the deterministic range. The qualitative behaigonaintained, i.e. the period

decreases with the amount of the total Min-protein averageentration in both cases,
stochastic and deterministic.
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Figure 4.4: Dependence of the oscillation periban the average total Min concentratid),.
Red dots stochastic simulations, black dots determingtiwlations. 1) Region of the values
of the average total Min concentratia¥, where oscillations are possible only in the stochastic
case. Il) Region of oscillatory solutions for both casededrinistic and stochastic. 1ll) Region
of oscillatory solution only in the deterministic case. IRggion where oscillatory solutions are
not possible. Error bar for the stochastic case are catmlil@king the width at half heigh of the
discrete Fourier transform (DFT) performed in a time in&krmef 20min. The system length is
2pm.
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Figure 4.5: Standard deviation of the peridsl]". as a function of the average total Min-protein
density NV,,. System lengtt2;m.
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Figure 4.6: Dependence of the oscillation periBcbn the average total MinE concentration
£. Red dots stochastic simulations, black dots determingithulations. 1) Region of the values
of the average total MinE concentratiéghwhere oscillations are possible only in the stochastic
case. Il) Region of oscillatory solutions for both casegenwinistic and stochastic. 1ll) Region
of oscillatory solution only in the deterministic case. IRggion where oscillatory solutions are
not possible. Error bars for the stochastic case are céécutaking the width at half heigh of the
DFT performed on a time interval of 20min. The system lengtuim.

We also notice that the value of the period itself decreas#se stochastic case com-
pared to the deterministic one. A similar behavior was fotorddifferent values of the
parameters and different rati@¥/E (considered in this particular case, data not shown).
The standard deviation (SD) of the period, figure 4.5, qathily increases at low values
of IV, but does not show a regular behavior. At the expected valu®s im wt cells [110],
it oscillates betweefis and30s. Figure 4.6 shows the oscillation period as a function of
the average total MinE density. Similar considerations, as for the case of the total
Min-protein concentration, can be carried out. Furtheenthe range ofV, supporting
oscillations is even more reduced. Figure 4.7 shows thelatsan period as a function
of the average total MinD densi®. In this case, the stochasticity shifts the rang&of
values supporting oscillations up to higher values witlpees to the deterministic case.
The deterministic behavior is qualitatively maintained, ithe period initially increases
and then decreases slightly with However, the stochasticity considerably reduces the
variation of7’, whose values stay betweéfs and80s.

Figure 4.8 shows the time-averaged total MinD concentnafs opposed to [75] we
did not perform the average over the entire cell cycle tim&eiin but over three periods
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Figure 4.7: Dependence of the oscillation peribdn the average total MinD concentrati@h
Red dots stochastic simulations, black dots determingitimlations. ) Region of the values of
the average total MinD concentratidh where oscillations are possible only in the deterministic
case. ) Region of oscillatory solutions for both casegedginistic and stochastic. Ill) Region
of oscillatory solution only in the stochastic case. 1V) Regwhere oscillatory solutions are not
possible. Error bars for the stochastic case are calculakath the width at half heigh of the DFT
performed on a time interval of 20min. The system lengtyis.

only. In fact, the cell spends only a small fraction of thie¢ion selecting the division site.
The figure clearly shows that, lowering,, the minimum of the spatial averaged profile
becomes deeper and the profile less noisy apparently inasntr the fact that the local
fluctuations increase at low values df,. Because the period increases when lowering
N, this might be due to the fact that the average was carriedoow longer time at a
low proteins levels. However, this characteristic is prese considering average times of
20min. A possible explanation of this non-intuitive behavior higpe the following. At
low protein levels and at some time during the oscillati@hlgroteins accumulate at one
pole (roughly within an half period) and then switch almdst@gether to the opposite
pole and stay there during the next semi-period, leavingygdvone pole and the mid-cell
empty and without fluctuations at all. In contrast when thetgin levels are increased
not all of the proteins switch from one pole to the other dgrscillations. In fact, the
interaction is not strong enough to aggregate all proteirsna pole, in addition, the
maximum valuen,,,, also prevents this possibility. Then, a small number ofginst is
alway present at one pole and at the middle of the cell. As aagurence, very strong local
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Figure 4.8: The total MinD distribution averaged over thpsgiods (i, + 7i4.), for different
total protein concentrationd,. Black dotsN,, = 1187um~!, red squaresV,, = 935um~!, green
crossesV, = 683um~1, blue plusesV, = 431um~!, orange diamond®/, = 179um~1. The
ratio between the MinD and MinE average total concentratie® /& ~ 2.6.

fluctuations appear that make the time-averaged spatiilgonmisier and the minimum
in the middle of the cell less pronounced.

Finally, we noticed that for very low protein numbers, ~ 180um™*, stationary
patterns appear (orange diamonds in figure 4.8). In this cadeacing the value of the
interaction range; and keeping the same system length, stationary statesnattisthe
maxima at both poles. This indicates that the present modagitralso apply to the case
of the Min-system irB. subtilis where MinD and homologues of MinE are present.

4.1.4 Oscillation period as a function of the cell length

Figure 4.9 shows the oscillation period as a function of tak length with constant
protein density. For the system length at which the osmitapattern changes in the
deterministic case, i.e. arourdgkm, the stochastic simulations show two peaks in the
DFT, see figure 4.9(c). The intrinsic noise cannot accounttfe large variations of the
oscillation period at approximately fixed length observed icell population measure-
ment, see figure 2.14. In fact, the SD is always much smalker the variation of the
period, according to the experimental data in single cell measergsn(figure 2.5 and

"Has to be notice that the SD increase if we calculate withima shorter thar20min and if we take
the parameter value gfequal to 1 in the simulations.
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Figure 4.9: a) Oscillation period of stochastic simulasias a function of the system length.
Black dots: oscillation pattern as in figure 4.2, red, gream blue dots: oscillation pattern with
two, three and four stripes, respectively. Error bars aleutsted taking the width at half heigh
of the DFT performed within a time interval of 20min. b), chdad) DFT performed on a time
interval of 20min, for system length @t8m, 2.6m, and3um, respectively.

data not shown). Figure 4.9 shows the oscillation period fametion of the cell length
with constant protein density.

Figure 4.10 shows the oscillation period of solutions to dieéerministic equations
(3.2.3) and (3.2.4) as a function of the cell length. For eawcl of the data points a
different value of the protein densiti¢sandD was used. In particular, for each kind
of spatial pattern (one, two, three and four stripes) theesaomber of points as in the
reported experimental data were considered. Experimgntygbical values of the cell-
cell variations in protein concentrations are on the ordi¢emmpercent of the mean [144—
147]. However, in order to reproduce the experimental deavelues o€ andD were
chosen in a larger interval compared to a variation of thepement of the mean. Of
course, as figure 4.10 shows, with so many free parametesitssible to reproduce
quite well the experimental data. Although the contribatto the large variations of
the oscillation period at approximately fixed length thanedrom cell-cell variations in
protein concentrations seems to be higher when comparédtmétone due to internal
noise, our simulations indicate that both of them must b&uded. Further studies are
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Figure 4.10: Oscillation period of solutions to the equagid3.2.3) and (3.2.4) as a function of
the system length. Black dots: oscillation pattern as inrédi3(a), red pluses: oscillation pattern
as in figure 3.3(b), green squares and hbNig: oscillation pattern with three and four stripes,
respectively. For each point different valuesébandD were chosen. All the other parameters
values are as in figure 3.3(a).

necessary in order to quantitatively specify this pointnafly, numerically we found
(data not shown) that the periddand its standard deviation (SD) increase and decrease,
respectively, withD,.

4.2 Langevin equation

In 1954 it was pointed out by D. K. C. MacDonald that for noekn equa-
tions the addition of a Langevin force is inconsistent [I48]. One cannot
add indiscriminately a Langevin term to a macroscopic eqoawvhen that
equation is not linear. This was forcefully expressed byghestion: Does
a diode rectify its own fluctuations? This situation gave ris some dis-
cussion, involving the notorious Ito-Stratonovich dileay;, for literature see
reference [126]. The conclusion was that it is necessartatd fsom a more
fundamental level which includes the physical cause andtheal form of
the noise. This episode, however, was soon forgotten irr fafvthe so con-
venient Langevin device.

Niko van Kampen [150]
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In the previous section we analyzed through MonteCarlo Eitrmns the processes
considered in the deterministic model. These stochagsticlstions correspond to the
coarsely grained master equation (F.0.11) derived in agipéh In appendix F, starting
from a microscopic master equation (F.0.5), we derivedpubh coarse graining, a
functional Fokker-Planck equation (FPE), and the assedigEs for the protein densities
¢q andcg.. The deterministic limit of these LEs corresponds to theagigns (3.2.3)
and (3.2.4). This correspondence (obtained analyticalipwved us to compare the
stochastic simulations performed in the previous sectidth ¥he deterministic ones
shown in chapter three. Below, after a short general intbdn to the LE, the LEs for
the membrane-bound protein concentrations in the caseeofidinogeneous cytosolic
distribution will be presented, and an outline of the pragedused for the derivation
of these equations will be given. In particular, we will ayz the hypothesis used and
discuss the space and time scales involved. Furthermaresxression of the current
jq used in the equations (3.2.3) and (3.2.4) will be derivedistafrom the expression
(F.0.28) obtained in appendix F, and, in this way, the phesratogical parameters,
ks, k1 and ks, in the equations (3.2.3) and (3.2.4) will be linked with thecrscopic
guantities used for the microscopic simulations in the jotev section.

A stochastic differential equation (SDE) in the case in White noise term appears
linearly, is a Langevin equation. Let us see what this meassigely. A SDE is a differ-
ential equation which contains a stochastic proc¢ss:

) _ et e (4.2.1)

whereG depend on three variables(t) is a stochastic process: a family of functions
¢.(t) depending on the outcomenf an experiment (for example a numerical experiment)
S. As a consequence, as SDE is not a single differential emuétit rather a family of
ordinary differential equations:

dey(t)
dt

= G(cu(t), t,&u(t)) . (4.2.2)

Therefore, the family of solutions,(¢) of these differential equations, constitutes a
stochastic proceg$t). To “solve” a SDE means to completely characterize the ststit
process:(t), i.e. to give then-times probability density functiop(cy, ...., ¢ t1, .., t),
which, in general, is quite a difficult task.

8See [151] for a short introduction to stochastic processens & physical point of view.
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When the stochastic proceé(st) appears linearly one speaks of a Langevin equation,
which has the following general shape:

de(t)

W = f(C, t) + g(C, t)&@) (423)

(from now on, to simplify the notation, the “hat” will be drppd). In the LE£(¢) is
usually referred to as the “noise” te¥mif the functiong(c, t) has a constant value, the
noise is said to badditive otherwisemultiplicative

The stochastic integral associated with a SDE with muttgilve noise is not uniquely
defined [152]. For instance, when we consider the integral

/t g(c(s))E(s)ds (4.2.4)

to be computed in the limik — 0. The unbounded variation of the stochastic process
£(t)dt leads to a lack of mathematical rigor and gives rise to somlelpms of interpreta-
tion. Among the many interpretations that can be given ®ititegral, two are frequently
used [126,152]: the Stratonovich interpretation thatkel the standard rules of calculus
but gives rise to nonintuitive statistical properties @ ttoise terms and the Itd interpreta-
tion that avoids this problem, at the expense of requiring nées of calculus. Here, we
are not interested in the mathematical definitions of theserterpretations [126, 15%)

but only in what they differ concerning possible applicado our study. The rule that
links the two interpretations is the following. Consideria white noise, i.e. a stochastic
procesg,,, satisfying the correlations

(Eu(t) =0 (4.2.5)
(Cu(t)u(te)) =6(t1 —t2) (4.2.6)

the SDE
10— fe) + gle)eut @27

in the 1td sense is equivalent to the SDE

0 _ 1100+ 300229 1 ot 428

9The word “noise” comes from the random “noise” one can attuaar in electric circuits
105ee also reference [153] for a brief introduction to Itécadis (pages 40-41 contain a compact defini-
tion of Itd and Stratonovich stochastic integral), anarehce [154] for more mathematical details.
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in the Stratonovich sense. Both interpretations coinaidé¢tfe additive case. Thus, given
a stochastic equation with multiplicative noise, as is thgechere, the result depends on
the interpretation, and a preliminary analysis of the ptglgproblem has to be performed
to make an appropriate choice [155]. In any physical prqdésse is a finite correlation
time 7 for the noise variables. The Stratonovich prescriptionvithite noise gives us
the result one would get for a time-correlated noise in thgtlof vanishing correlation
time. In our case, we are considering internal noise whigingple due to the fact the
number of proteins is finite. We assume that the noise is gehuuncorrelated even for
the closest time moments, and therefore we consider thetéfpretation. We notice that
this assumption cannot be made in the context of cooperatisehment process and that
also in our case is an approximation. In fact because of themuan possible coverage
for the proteins on membrane, the probability of an attactireeent in the same spatial
point is modified by a previous attachment process.

In the case of homogenous cytosolic distributions, as wawshn the previous sec-
tion, the effects of noise are negligible for the cytosolancentrations that fluctuate
around an average value. In fact, there is no interactiowdst the proteins in the
cytosol that can create confined agglomerations of prateind local fluctuations are
immediately quenched by fast diffusion. In the followinge will neglect these fluctu-
ations, assuming a constant uniform value for the proteicentrations in the cytosol.
In appendix G, we will derive the LEs for the case of thdimensional system and will
explicitly show, in this particular case, how the amplituafehe relative fluctuations in
the cytosol is small when compared to the ones on the memfitamabsolute values of
the fluctuations associated with each one of the reactiocepses are exactly the same,
as a simple consequence of the conservation of the proteihe).

The deterministic equations (3.2.3) and (3.2.4) in chafitexe can be seen as the
deterministic limit of the following Langevin equation (@eed in appendix F) for the
fluctuating proteins density; andc,,:

Orcg = wpCp(l — ¢4 — cge) —wpCrcy — Oyja
(4.2.9)

+£d(x7t) )

O0iCige = —WaeCae + wpCECq + fde(:c, t) , (4.2.10)

where now the protein concentrations are dimensionlestufiting fieldsc, 4.(r,¢), de-
fined ascq e = Ca4e/cmax, Whereé, 4. are the protein densities of equations (3.2.3) and
(3.2.4). All the other symbols in the deterministic part&@#ve same meaning as in equa-
tions (3.2.3) and (3.2.4), included the current teim However, now the currenj; is
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expressed in term of microscopic quantities that can bettjrinked to the phenomeno-
logical parameters;, k., k1 and k, used in the deterministic description. A detailed
analysis of the currenf, is carried out in section 4.2.2. The noise tergpé&-,¢) and
£4.(r, t) take into account internal fluctuations of attachment, aeteent, and transport
processes, and have the form

fd(l’, t) = 91/2\/WDCD(1 — Cq — Cde)OéD(fL', t)—|—

+0Y2\/wa Creqap(z, t)+ (4.2.11)

+Ql/281(\/2DdCd(1 — Cq — Cde)ﬁ('rv t)) )

a2, t) = Q2 <\/wdecdeade(x7 t) =/ wECECdaE(l"»t)) ; (4.2.12)

whereap (z,t), ap(z,t), aq (2, t), associated with attachment and detachment processes,
and 3(z,t), associated with transport processes, are independete whises of unit
intensity:

(aj(z, t)ay (2, 1)) = 6(x —2")o(t —t') , i=D,E,de

(B(x,t)Bg(x', 1)) = 6(x — 2")o(t — ')
(4.2.13)
(ai(z,t)ay(2', 1) =0, for i#j

(B(z,t)ay(2",t)) =0

The prefactor of the noise variable%s and 3, reflect that the noise strength depends
on the number of free binding sites and possible binding oudés. Their can be derived
from the N sites lattice model introduced before. Letbe the length of the system.
Then the parameté2 = L/N, which goes to zero in the deterministic limiVf{ — oo,
N — o0), specifies the number of lattice sites per unit length. Taieenterms associated
with the cytosolic distributions i€, = L/N., whereN, is the number of available
sites in the cytosol (see appendix G). AssumMg;, > N, the relative fluctuations of
the cytosolic protein concentrations can be neglected withey are compared with the
relative fluctuations of the membrane-bound protein commagons. The internal noise
of reactions and diffusion is multiplicative. It is propiomnal to the square root of the
local protein concentrations in such a way that the noisegere directly linked to the
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deterministic part. It was pointed out a long time ago by vamigen that noise in a
jumpMarkov process “is inherent in the very mechanism by whiehstate of the system
evolves and cannot be divorced from its equations of motfon”

The LEs allow for estimating the relative contribution offeient physical processes
to the noise, namely attachment and detachment procesddsaasport processes, as
well as their role for the behavior of the dynamics.

The integration of LEs with multiplicative noise as in eqaas (4.2.9) and (4.2.10)
has to be performed carefully. In fact, standard schemesrgge to unphysical negative
values for the protein concentratiot(s;, t) [156—158].

4.2.1 Reaction processes

In this section, we consider the simple case of(itdtmensional system. Thus, only the
reaction processes have to be taken into account. We wdelddigive an impression of

the derivation of the LEs (4.2.9) and (4.2.10), and show taitlsome of the hypotheses
behind this derivation. The next section, where the spatitdnsion of the system will be

taken into account, was written from a similar motivationmathematical derivation of

the LEs (4.2.9) and (4.2.10) is given in appendix F.

Let us consider the following reactiois

D — d (wp)
E+d — de (wg) (4.2.14)
de — E+D (Wae)

where D and E represent cytosolic MinD and MinE moleculesydlemembrane-bound
MinD and MinE molecules, respectively, ang,, wr andw,. are the associated rates.
Each one of these reactions takes place only in one dire¢tios breaking the detailed
balance.

For the sake of simplicity, here, we consider only the meméxiaound proteins as
variables. In appendix G we show that the LEs associated twébe variables do not
change when the cytosolic protein concentrations are alssidered as variables.

We can write the total number of MinDVp, and MinE, N of the stationary uniform
state in the cytosol in terms of the stationary uniform stataes of MinD,nJ and MinDE,

1See the 1981 edition of reference [126], p. 247.
21n wild-type cells, MinE is likely to be active as a dimer [J0fherefore the second reaction2& +
d — de, and the third isle — 2E + D. Here, the symbols E and e refer to these dimers.
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nd., on the membrane

N = Ntot _ 0 _ .0
P T T e (4.2.15)
NE = N%Ot — nge s
where Nit, and Nt are the total MinD and MInE proteins, respectively. Let us
consider the first reaction in (4.2.14). It can be interpgtete the generation of a single
membrane-bound MinD molecule at an average rate of

Na T ”de) , (4.2.16)

WDND<1— N

proteins per unit time. In this case, the number of sitfesorresponds to the maximum
number of Min proteins allowed to be membrane-bound, tloeeethe last term is the
fraction of cytosolic proteins MinD that can be convertedntembrane-bound MinDup,

is the attachment rate of a single MinD protein. Assuming &tleof the other reactions
are quenched, the probabilityn,, t) of finding n, MinD proteins at a time satisfies the
following master equation [126, 152, 159]:

dp Ng + Nde
R
7 wpNp N p(ng,t) +
(4.2.17)
1 .
+wpNp <1 — W) p(ng—1,t) |

where}_ p(ngt) = 1 atany timet, withng = 0,..., N andp(ng — 1,¢) = 0 when
nqg = 0. In order to consider the probability densjifc,) = +p(nq), we introduced the
quantitiesc; = ng/N andcy. = ng./N. Taking into account that these quantities change
only a little as a result of an attachment event, we can write

dp 0*p

1 1
p(ca — 1/N) =~ p(eq) — N1 2y N2 2 + O(

5, T2V 5 ) (4.2.18)

Remark

We want to stress that this is not the usual procedure adaptanhilar situations. In
fact, we would say ‘as a rule’, the previous expansion isdgiy carried out in respect
to the number of actual particles (the so called van Kanmpesxpansion) and not in
respect to the number of ‘possible’ particles. This wouldl i@ possible in our case, in
fact, a priori, the number of proteing; can also be zero at some moment in time, even
when the total number of MinD proteins is extremely high. sTbause the fluctuations
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to be so large that th@-expansion breaks down. This point will be become clearer in
the next section, where the case of the spatially extendsesywill be considered.
This approach has as a consequence that one of the key parsroebur model, the
parameterc,,.. = nmax/N (here dimensionless) goes into the noise prefattorlt
turns out that the amplitude of the noise is in part fixed byuhlkeie of this parameter.

In particular, the noise terms vanish whep., — oo. When this limit is applied to
the deterministic equations, the oscillations are loste ®dther standard features of the
LE, like the noise amplitude equal the square root of therdetestic term, are preserved.

Let us continue with our derivation of the LE. For smooth mlttions p(c,) the
terms with higher derivatives in expansion (4.2.18) can geied. Substituting the
approximation (4.2.18) into (4.2.17) and retaining themtemup to the ordet /N, we
obtain the following Fokker-Planck equation [160, 161]

0w =~ (Fop) + N1 (o) (4.2.19)
tPD = 0cd Dp B 003 Dp ) L.
where
N
Jp=wp (WD) (1—ca—ca) (4.2.20)

As follows from the theory of random processes [126,152],16% Fokker-Planck equa-
tion is equivalent to the stochastic differential equation

Gea = I+ <=l Foen(t)] @221)

whereap(t), is an independent white noise of unity intensity
{ap(t)ap(t)) =6t —1t") . (4.2.22)

Now, we will consider the second reaction in (4.2.14). Relfgg the above derivation,
we write the stochastic differential equations as

Gea=—fo+ = [VFsos ()]
(4.2.23)
d

%Cde:fE_\/%[ fEaE(t)] )
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where

Ng

JE=wE (W) Ca - (4.2.24)

The noise terms in this equation have to be identical in albsaalue and with opposite
signs, because each reaction event simultaneously chéregesmber of proteins of both
species. The same procedure can be followed for the lagtaragielding

icd = fp+ L [ fDOéD(t)] ;

dt VN
(4.2.25)
d 1
Ecde = _fde + \/—N[ fdeade(t>:| 5
where
Jde = WdeCde - (4.2.26)

In principle, taking into account that our actual systemaésite spatial extension, like
we did with the maximum protein numbéf of membrane-bound proteins, a maximum
protein numbetV,, for the cytosolic proteins has to be introduced. Thus, tle¥ipus
expression would take the form

oo = wieear (1 - "2 (4.2.27)
Ncyt
However, a reasonable assumption is tNgt > Ni*, Nit, thus
np +nNg
1=~ 4.2.28
O (4.2.28)

Such an assumption was implicit in the deterministic equstiwhere only the parameter
cmax fOr the membrane-bound protein concentrations was presehits corresponding
parameter for the cytosolic protein concentrations was not

Now, assuming the different noise processes as compleépendent,

(a;(t)a;(t)) =0 when  i#j (4.2.29)

i.e. each reaction make an independent contribution to ¢reerierms, the total LEs are
given by the sum of each term on the right side of the previaustons. However,
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this assumption is only an approximation. In fact, if we adas for instance, the MinE
attachment and hydrolysis processes, some correlatiorebatthe two processes would
have built up after some temporal intervsd.

In the deterministic limit  — oo) the noise terms vanish, and the deterministic
equations (3.2.3) and (3.2.4) are recovered without d@rees of freedom.

4.2.2 Transport processes

Here, the spatial degrees of freedom and the coarse grgimaugdure are introduced.
Then, the space scales involved are analyzed. Finally,ufrertt termj, introduced in
the deterministic equations (3.2.3) and (3.2.4) is comsillérom a microscopic point of
view, starting from the expression (F.0.28).

A 1-dimensional lattice, with lattice length, N total number of sites and total length
L = [y N is considered. The lattice spacing is assuiiped [, wherel,, is the protein size,
assumed to be equal for all species. The state of the systammjsletely defined when the
occupation numbers of all protein species on each site aemgiThe occupancy of site
j isn;;, with i = d, de representing membrane-bound MinD and the complex MinDE,
respectively. The occupation numbers can onlyll 0. Coarse graining consists of
dividing the lattice intan boxes of lengtli,, each containing a number of siteg., > 1.
At the same time, the lengthhas to be smaller in comparison to the minimal characteris-
tic length scale of the spatial pattern. The fraction of qied sites in boy is introduced
as

¢; = (number of proteins);/(number of sites); . (4.2.30)

With the above definition, the values of this variables cleamigly a little as a result of an
attachment, detachment event or a single diffusion jums ddm be used to transform the
associated master equation to a FPE by performing a Tayp@anson up to the second

orderin [1/(sites number)] . Similar to theD-dimensional case we want to point out that
J

an expansion in term Oﬁl/(particle number)| would not be possible for our specific
system, in fact the occupation numbejgsandnjd6 in each box can also be zero at some
moment in time during the oscillations.

Furthermore, complete diffusional mixing is assumed t@ fallace inside every box.
This means that, for a fixed box lengh) our mesoscopic model is valid only on time
scales bigger than = 2/ D whereD is the smallest diffusion constant in the system. In
our caser; = I/ D,. Therefore, becaudgis smaller than the characteristic scale of the
spatial pattern, the variablescan be regarded as values of a smooth densitytaken at
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l
N | N =4
MinD i-1 j j+1 MinDE

Figure 4.11: In the lower line a possible protein distribaton the membrane is shown. The sites
of the lattice are labeled with the indgxl is the lattice sizel, the box size of the coarse graining
procedure, and. represent all other lengths related to the spatial digtdhuwof the proteins, with

lo < Iy < ..

the discrete coordinates point, and continuum variables can be introduced. Figure 4.11
shows all of the important length scales of the model. Thellsstas the lattice length

Iy, the microscopic length scales of our system. As concertetingth box/,, we have

the freedom to choose the size that allows for a better casgrawith the experimental
data. Using a metaphoric picture, we can think of the model escroscope, where the
maximum resolution i,. The value ofl, must be chosen in such a way as to bring into
focus the characteristics of the system which we are inietlés. Characteristics of the
system with length scales smaller thaimannot be brought out, they appear out of focus
and only some qualitative aspects can be seen. All othetHentike the typical length

A of the pattern or lengths related to quantities that deteerttie spatial distribution of
the proteins, which we want to observe in detail, are repitedsg/.. Because inside the
space interval, and the time intervat, = 12/ D,, the system appears homogeneous, all
these lengths have to be bigger thiaand their changes have to be observed over a time
scale bigger thamn,. In conclusion/, andr, are the space and time scales of our model.

Now, we will explicitly consider the transport term. In appkx F the following
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general expression for the current is derived:

A(V/ksT)]  Ocq

5 % (4.2.31)

Jd = [Cd(l — €4 — Cde)

here, written in dimensionless form (see appendix D). Ia tmy, we can introduce the
parametet, = \/D,/wg, in regard to which we want to specify the limits of validityf
the approximation in the expansion of the currgnto be considered. For simplicity we
consider only MinD-MinD interaction that correspond inmeof macroscopic parameter
to fix k; = 0 andk, = 0. V is a binary attraction potential (with the dimensions of an

energy)
V(€)= —/U(é—f’)cd(é’)dﬁ’ (4.2.32)

between two proteins separated by a distanee&l, on the membrane andé — &') is
significantly different from zero only in a range [gf— ¢'| = r4/14.

If the membrane concentratiep(¢) does not vary significantly within the interaction
range, i.e£,; = r4/14, the following Taylor expansion can be considered

dcq ey

/ /! 1 ! !
[ue-oa@+ -G+ 5e-epTE e e . @23
where the spatial derivatives are taken at pgiahd where we assume
(E=&)=ry/la< 1, ie g <y . (4.2.34)

Therefore, we have
! / / 826d
u(§ —&)ca(€)dE" ~ ugcq + Xoe (4.2.35)
where the coefficients are

Up = fu({)df )
(4.2.36)

x = 3 Ju(6)&de

and we have taken into account that, by symmetry, the se@ndih the expansion is
[ €u(§)d¢ = 0. The coefficients in (4.2.36) can be estimated by an orderagfnitude as

Uy =~ Ud , X~ Ud Tc2l s (4237)
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wherer, is the interaction length and; ~ w,.,7q, With 1. the maximal intensity of
u(z). Therefore, we can write the local (dependent on a finite rerrobspatial deriva-
tives) expression for the current:

) U, deg
= Dyl1 — =L (1 — g — )| =2 —
Ja d[ k:BTCd( ca = Cae)| 5
(4.2.38)
Ud 7’62[ 03Cd
~-D 1—cq — cge)—bt
T ca(l —cq— cqe) 53

Comparing this expression with the current term in the deit@istic equation (3.2.3) and
taking into account that the proteins densities in (4.2V88)e rescaled by,,.., we can
link the parametergs to microscopic quantities by

1 Dy

kl - C?na ]{jB—TUd y (4239)
1 Dy

kQ = crznaka—TUd'f’d y (4240)

and analogously fok; andk,. We can define an effective diffusion constant

U,
Deff(Cd, Cde) = Dd [1 — —dcd(l — Cq — Cde) s (4241)
kgT
and
Ud ’f‘czl
F(Cd, Cde) = Dd Cq (1 — Cq — Cde) y (4242)
kT
thus write the current as
, oc P
ja = Degi(Cas cac) 7o — F(Ca, Cae) (4.2.43)

a3

ox

The MinD proteins can move diffusively over the membranéwhie effective diffusion
constantD.s. Moreover, potential gradients induce a flow of proteins escdbed by
the termF'(cq, cq.). The coefficientD,/kgT represents the mobility of Mind proteins on
the membrane determined by the diffusion constaptand temperaturé’. The factor
(1 — ¢q — cqe) takes into account that the flow can pass only through vad#sten the
membrane.

We noticed that a new length scale had been introducedhednteraction range,.
Coherently with the meaning of our mesoscopic model we assyn+ [,, and the same
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relation must be satisfied by the interaction range The mesoscopic theory is justified
in our specific model only if

lo < lb < Ty Tde < ld, A, (4244)

where A was assumed to be larger or of the same ordéy.ofWe also noticed that the
validity of the mesoscopic description does not dependinfstance, on the number of
proteins involved, they can also be zero for all species ofgims, i.e. zero value of
smooth densitieg(z).

Finally, we can relate the noise prefactoy absent in the deterministic limit, with
different parameters. The lattice spaciggthe box length, and the box site number
Nmax, the system lengtlh and the total site numbey, and with the maximum protein
densityc,,ax,

Q=1ly=1lp/Nmax = L/N = 1/cpax - (4.2.45)
Then, we can imagine different ways for obtaining the deteistic limit, as

N, - 00 Iy —0 m— oo lym =L fixed, (4.2.46)
or

N, —o00, ly—0, N—oo, IgN=L fixed (4.2.47)

In principle, these limits have to be applied to the micrggcaimulations considered in
the previous paragraph in order to obtain the continuuntlirkdwever, from a practical
point of view, verify numerically these limits require adgaramount of CPU time. For
this reason we chose the less expensive procedure showations#.1.2, where the value
of [, is kept fixed anch,,.. goes tooo.

4.3 Discussion

In this chapter we studied the effect of the internal noisetdia finite number of proteins.
To this end we performed stochastic simulations based aylesarticle description.
Deriving the LEs for the protein concentrations, we linkéés tstochastic description
with the deterministic one presented in chapter three. @uofk allows us to relate the
phenomenological parametérs k», k; andk, used in the deterministic description of
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the aggregation currerit with the microscopic parameters, 4., U; andUy, introduced
here.

These relationships are shown in the microscopic equati$2s39) and (4.2.40).
Assuming that a simple process leads to aggregation bassbartirange pair interac-
tion potentials, they are valid wheneverandr,, are much smaller than the diffusion
lengthl, = \/D4/wg. Taking a diffusion constant of 0.pén%/s for membrane-bound
MinD, which falls well into the regime we measured (see tahlE), the values of the
phenomenological coefficients imply values of 3657 for the interaction strength be-
tween membrane-bound MinD andi2{l" between MinD and MinDE complexes. The
range for MinD-MinD interactions is then 350nm, and for MHMMDNDE interactions it
is 10nm. While all other values are acceptable, the rang®MioD-MinD interactions is
too large for purely electrostatic interaction. This psitd more involved microscopic
dynamics of membrane-bound MinD than discussed here.

The effects of the noise in the Min-system will be discussether in the next con-
clusive chapter.
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Conclusions and Perspectives

The subject of this research was a quantitative analystseofkin-protein dynamics ii.
coli. From a theoretical point of view, we considered a phenotogieal deterministic
description, where lateral interactions between protemthe cell membrane play a key
role, and in addition we studied the effects of fluctuatiosm@ stochastic simulations.
Experimentally, we investigated the predictions of theotkeéical model and measured
some of the model parameters. In particular, we measuretethporal period of the
oscillations as a function of the cell length that we foundot compatible with the
theoretical prediction. Also, we measured the Min-protaiobilities in the cytoplasm
and on the membrane.

What are the implications of our experimental study for understanding the
Min-oscillations?

So far, theoretical analysis of the Min-oscillations hasrbessentially qualitative as
no values for the dynamic parameters of the Min-proteingve®rilable. Our FCS mea-
surements of the protein mobility partially filled this gapet us recall the distinctive
features of the two classes of mechanisms in which we divadledodels proposed so far
(see also figure 2.3):

e MinD proteins attach cooperatively to the membrane, i.efguentially at points
where MinD is already bound. We denoted this class of model€@operative
Attachment Models (CAM).

e Proteins attach to the membrane unbiased, and MinD-aggiegee formed after
the proteins have bound to the membrane as a consequenctedhgorotein inter-
action. We denoted this class of models as Aggregation Guktedels (ACM).

Our measurements enable us to propose precise experirnentadions in order to com-
pare the two mechanisms. For the diffusion constants oksojitoMin-proteins, the val-
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ues suggested by FRAP measurements of GFP [88] were coedinteall of the math-
ematical models proposed. In these measurements, theidiifaonstant of GFP fused
to a cytoplasmic maltose binding protein was determinectadm?/s. The values for
the cytosolic MinD diffusion constant that we found is apprd6u.m?/s, i.e. a factor
of 6 higher, and for the cytosolic MinE is abolium?/s. Therefore, a cytosolic MinD
molecule explores the volume of arh long cell within roughly a second. A cytosolic
MinE molecule needs about k.5With a residence time of about 300ms of cytosolic
MinD, the value of the diffusion constam? implies a diffusion lengti = (D7)'/? of
2.3um. For MiInE, this value is about 1.81. At least for small bacteria of abouf:&

in length, these values suggest a rather homogeneou$digin of cytosolic MinD and
MinE. Min-oscillations were reported also in short cellstjafter division [61). CA
models do not show oscillations under the condition of hoemogis cytosolic protein
densities. Thus, a detailed experimental and theoretiayais of short bacteria might
provide a way to put the CA models to a crucial test. Particatention should be paid
to the MinE-ring in these cells. In fact, the analysis of the@odel by Huang et al. [71]
suggests the disappearance of the MinE-ring if the diffusémgth is increased in com-
parison to the cell length. The presence of the MinE-ringharscells might therefore
provide information on the mechanism of its formation. Feg8.7 shows a possible can-
didate, in fact, the MinE-ring in the low-side indicated thetred arrow belongs to a
coming mini-cell (it can be see in the next frames of the @poading movie) and its
length can be estimated as being somewhat larger than(2ee scale bar).

The values for the cytosolic diffusion constants also suppar assumption of a ho-
mogenous cytosolic protein distribution, which allowed &theoretical description in
terms of the concentrations of membrane-bound MinD and MicDmplexes.

Moreover, in order to generate “striped” patterns in longteaa, the CA model in-
troduced in [71] requires that the exchange of ATP for ADP ytiosolic MinD be not too
fast. For the parameters used there [71], the authors fowunitical rate of1/s. On the
other hand, our measured residence time provides a lowdrtbnthe exchange rate of
approx.3.3s~! (only after rebinding of ATP, MinD can attach again to the nbeame).

The values for the diffusion constants of membrane-bouteprs are about two
orders of magnitude smaller than the cytosolic constamsntembrane-bound MinD, it
is of the same order as the value we used in our theoreticadhiod. This shows that the
mobility of membrane-bound MinD is sufficiently large toadl for an AC mechanism
causing the oscillations. It is also compatible with the C&amanism as shown by Fange
and EIf [122].

The measurement of the oscillation period as a function efcill length (see fig-

IFigure 2.7 is one single frame of one of our videos showindy iehavior.
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ure 2.14), carried out on a population of cells, was motodtg calculations using the
stochastic and the deterministic model. In the theoretitady, the average total protein
densities were fixed and a characteristic dependence okti@dpon the cell length was
found, see figure 3.4 and 4.9.

Experimentally, we did not find a simple relation betweeniqukrand length.
However, the variation of the period in a single-cell measwnt at approximately
constant length, seen for example in figure 2.5, cannot atdou the large variation
of values found in cell population measurements, see figuré. ZThis is probably due
to cell to cell variations in the protein density. This is@lsonsistent with the small
variation of the period found in stochastic simulations a¢di length and average total
protein density. Thus, we believe that a measurement in glesicell is able to test
the discontinuous dependence of the oscillation periodhensystem length predicted
by our calculations. To this end, we developed the necedsahnique for a future
experiment. Using an LSCM and keeping the cell87C, we recorded the oscillations
of the fluorescence intensity for more than 30 minutes. Atsdi@e time, we observed
the cell size increasing by micrometers. Up to now, we havéopaed only one single
measurement of such kind, whose results are shown in figlife @nd we are confident
that successive measurements will give a more definitetresul

A “secondary” result

As a control for the measurement of the Min-protein mohilie also measured
the mobility of the Enhanced Green Fluorescent Protein (BEGHhd found significant
deviations from previous measurements. In fact, in [88hag&ERAP, it was found that
Dgrp ~ 7.5um?/s. There, it was also found that the diffusion constant canHaaged
significantly by modifying small parts of the protein, e.g.dulding a His-tag. In contrast,
using FCS, we foundgrp ~ 18um?/s, which was compatible with the values we
measured for MinD and MinE. Furthermore, compared with tRAF measurements,
our results indicated that a His-tag has a much weaker effettie diffusion constant of
GFP.

What more do we need from the experiments?

A complete experimental verification of our theoreticalgpcions or, in other words,
a complete characterization of the Min system allowing faheoretical quantitative
study, would at least require the knowledge of: (i) the glaoad local concentration
of molecules in individual cells; (ii) the variation of thdofpal concentration among
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individual, genetically identical members of the cell pgtion; (iii) whether, and how
these quantities vary with time, with the cell length or ethaantities of interest; (iv)
and, finally, the rates of the individual reactions causingt tvariation. For instance,
during the measurement of the period in a growing cell, it hhige interesting to
investigate whether the total average protein densitysstaypstant. We experienced the
difficulty of such a measurement with LSCM, in which only theasurement of local
relative concentrations was possible. Generating mettmdshieve this information is
one of the greatest challenges for biology in the twenty-fiemtury [162]. Examples of
new methods to quantify the protein number inside the celgaren in [163, 164].

A suggested experiment from the theoretical analysis

In the AC model, non-linear terms appear in the current teescdbing the protein
interaction on the membrane; in the CA models they appe#eingaction term, describ-
ing the attachment-detachment processes. One possfbilidyscriminating between the
two mechanisms would be to study the dynamics of Min-prateihich are not confined
to a cell. In fact, our analysis of the deterministic modedwh that the approximation
of homogenous cytosolic distribution of MinD and MInE is appriate and that this
approximation might have an important implication regagdexperiments. One might
expect that oscillations are observable in a purified systemaining essentially only
MinD, MinE, and phospholipid vesicles. Our analysis suggelat oscillations will
show up in the presence of a homogenous distribution of olitoproteins. Therefore,
the closed geometry of the bacterium might not be esseatidlan open geometry could
be used instead.

How do the Min-oscillations regulate the position of the Z-ing?

Our numerical calculations of the deterministic and thelséstic case give a MinD-
distribution which has a minimum in time average at the cefiter. An obvious mech-
anism for Z-ring positioning may be based on the existenceugh a minimum [63].
Starting from an almost homogeneous average distributi@depth of the minimum
increases with the system length (figure 3.5). This featorddcalso be used to cou-
ple the constriction of the Z-ring to the cell length and, ¢erto control the cell cycle.
Qualitatively, this behavior was confirmed experimentéilyure 2.12).

However, in our view, the mechanism based on the mid-celirmim may have been
overemphasized in the recent literature and not analyzifidisatly. This is still an un-
solved problem and we would like give two arguments: oneregjand one in favour of
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this mechanism.

(i) What do we know about the MinC proteins in connection tis thsue? They de-
polymerize the Z-ring filaments ivitro, andminc mutants allow for division near the
cell poles. In principle, the mechanism based on the minirofithe time-averaged pro-
tein concentration in the middle is not necessary. In fatti$ consider a two-thresholds
based mechanism: (i) one threshold for the local proteirsiterC,;,, below which the
growth of the Z-ring is permitted, (ii) a threshold for thent, 7};,, during which the
thresholdC}, is not to be exceeded in order for the Z-ring to grow. It is etasshow that
a time-averaged protein concentration with a maximum at#flecenter can be obtained
also with(cy + c4e) < Cyy, at the mid-cell for a time much longer thdi,, i.e. thus allow-
ing for the growth of the Z-ring. Indeed, some of our measunets show a time-average
MinD concentration which is approximately flat, see figurg22.

(ii) On the other hand, we would like to make the followingpoiThe MinC protein
concentrations does not entirely correspond to the MinRgimaconcentration. In fact,
MinE and MinC cannot bind MinD simultaneously [22]. This meahat in order to
obtain the MinC protein concentration on the membrane, tiveEMnembrane-bound
protein concentration has to be subtracted from the totaDMhembrane-bound protein
concentration. Now, the MinE ring is oscillating near thedroell and its time-averaged
concentration shows a maximum at the mid-cell (see figur8)2therefore the MinC
protein concentration at the cell center is much lower thaMinD one.

Also, one should be aware of the possibility that, in additio the Min system and
“nucleoid occlusion”, other yet to be identified factors nexyplain the high spatial preci-
sion of division-site placement.

The selection of different oscillatory patterns of the Miretein distributions as a
function of the cell length provides the bacterium with imf@tion about its own length
and could thus be used to regulate cell division. Given aoevialue of the average total
protein density, there is a threshdlg,;, corresponding to the minimal length supporting
oscillations. It fixes the minimal value at which the cell cdimide. When the cell
grows, oscillations start with the characteristic “onep&tt spatial pattern. Before the
doubling of the spatial period of this pattern, the Z-ringpigated in a MinC poor domain
that allows the ring to grow. After period-doubling, i.e. etlacquisition of a second
“stripe”, the Z-ring is located in MinC rich domain. We canesplate that the same
protein, MinC, that inhibits the growth of the Z-ring once growth has started might
induce a conformational change in FtsZ protein that lead&-timg contraction. Thus,
the cell cycle would be controlled by the period-doublingtioé spatial pattern of the
Min-protein concentrations,e. by the cell length. Recent theoretical and experimental
studies suggest also that chromosome segregation mightdalyl related to the cell
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length [55, 56] due to entropic effects.

Are there helices?

In order to keep abreast of the experiments, the formatiddioD helices must be
included. To this end, it is necessary to considex-R system and include, starting
from a microscopic level, a mechanism capable of generéitangents. The mechanism
introduced in [72] based on nucleation sites at the cellgislen our opinion not adequate.
In fact, the existence of stripes in long cells, where thésttw is blocked, suggests that
the polar location in normal cells is not the result of a mesmnler property unique to
the poles of the cell. In this way, on the one hand such a maodielduces an ad hoc
hypothesis, and on the other hand it is not capable of repiodihe characteristic striped
patterns of the Min oscillations. A key point is the dynanotshese helices, i.e. do they
originate from a fixed spiral scaffold, or are they movingrgdhe cell following the
oscillations? Future experiments will clarify this point.

The model introduced by Pavet al.[73] also used an ad hoc hypothesis in order to
generate filaments. In particular, they considered fodesht rates for the detachment
process of MINDE:ATP complexes, depending on how many b@d&nD:ATP has
formed with its MinD:ATP neighbors.

The effect of noise

In order to study the possible effects of noise due to the lowlmer of involved
proteins, we performed computer simulations of a partieeed description. The prob-
ability for each event was calculated according to the spwading probability in the
master equation. Stochastic simulations were compardd deiterministic simulations
and experimental data from LSCM. Together with our expentalemeasurements, this
study points to the importance of investigating the Mintpno dynamics through single
cell measurements. In fact, the concentration of a certaitejm in a population of genet-
ically identical cells varies from cell to cell due to stoshia processes [83, 84]. Experi-
mental observations [63] indicate that the period increagéh the MinD concentration
and decreases with the MIinE concentration. The last obenvis consistent with our
numerical simulations, see figure 3.6. The cell-cell vaoiet in protein concentrations are
often on the order of ten percent of the mean [144-147]. We\eethat this is the most
important contribution to explaining the spread of the dditawn in figure 2.14. On the
other hand, we found that the fluctuations in the period imglsicell at fixed length and
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average total protein density either numerically, due terimal noise, or experimentatly
are small enough to allow, in principle, for a measuremeat shhows the characteristic
behavior predicted by our theoretical model, see figure Bdt49. Figure 2.15 shows
a first attempt of such a measurement. Although it is not afghis measurement can
differentiate between the different proposed models, iildde an important test for our
model.

Furthermore, as can be seen in figure 4.4, we found that sticityadestroys oscil-
lations at high protein number corresponding to values efttital protein concentration
where the deterministic case still shows oscillation. Thpasite happened at low pro-
tein number where fluctuations are necessary in order targtnescillations. Moreover,
figure 4.8 shows that in our model fluctuations allowed théesydo exploit low protein
numbers to generate more precise time-averaged distitsutiith a more pronounced
minimum at mid-cell. We noticed that all simulations werefpaned at the constant ra-
tioof D/FE ~ 2.6, it would be interesting to study these behaviors for défevalues of
this ratio.

Finally, to bridge the gap between the microscopic and therdenistic descriptions,
a Langevin equation for the fluctuating protein densities warived through coarse
graining of the microscopic master equation. In this way, amalytically showed the
relationship between the master equation, used to cadctiiatprobability of each event
in the microscopic simulations, and the deterministic ¢igna (3.2.3) and (3.2.4).
Therefore, the stochastic simulations justify the detarstic model, showing that
oscillations are resistant to the perturbations inducethbystochastic reactions and by
diffusion. Writing the LE, we also developed an analyticascdription that keeps separate
the noise terms associated with the different processksyiaf) for an estimation of
their relative contributions. We analytically showed (sggendix G) that the relative
fluctuations of the cytosolic protein concentrations aralgnwhen they are compared
with the relative fluctuations of the membrane-bound prowoncentrations. In the
limit when the noise prefactdr vanishes, the LEs allow for a direct comparison with
the deterministic case. For these reasons we believe tbatitmerical integration of
these equations can give rise to interesting developmerteeistudy of the noise in the
Min-system, and, speaking more generally, this approaciddoe applied to the study
of noise in other biological spatially extended systemsaHy, we notice that once the
LEs are numerically integrated, our stochastic simulatioan then be used to validate
the description of the system that the LEs result in.

2In this case the protein density was not under experimeatsral.
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Similar systems

The Min system is a prime example of a mechanism that corgpalal relationships
within the cell. It will be of interest to see if other mechamis of topological identi-
fication and spatial regulation work in a similar manner ihestsystems. A possible
candidate could be the bacteriud subtilis where MIinCD proteins prevent septation
near the poles, making a stationary pattern with a minimunthef concentration at
mid-cell. In a different context respect to the cell divisiprocess, it will be interesting
to see if there are any similarities between the Min-ogadfes and the FrzS-oscillations
found in Myxobacteria[31]. FrzS is a protein that regulates mobility Myxobacteria
which is mediated by typ#V pili®. Oscillations of FrzS suggest that for each reversal
some components at the leading cell pole are inactivatetddw éor a function of the
pili at the opposite pole.

Closing remarks

While the mechanism of a dynamic instability inducing Mirefein oscillations has
been conclusively established as fundamental by all @egstiodels, including the model
studied here, a fully quantitative model of the Min-protdymamics is still missing. Test-
ing the basic assumptions of our model, probing its preslisti measuring some of the
model parameters, and studying the effects of noise, wetoapet going in that direction.

With this we end our story for now in confidence that underditagy the physics of
cell division will have important applications in the neatdre. For example, one might
envision therapeutic strategies that suppress the réplicaf bacterial cells which cause
infections. At a level of greater abstraction, this knovgednight prove useful to building
an artificial cell [165], thereby being instrumental in reating life.

3Pili are used to adhere to surfaces and to facilitate the genetimage between bacteria.
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Materials and Methods

Flourescence video-rate microscopy

Bacteria of theE. coli K12 strain JS964 were generously donated by J. Lutken-
haus, University of Kansas. Bacteria taken from the freezse grown overnight in 3ml
Luria-Bertani (LB) medium at 3T together with &l spectinomycin. The overnight
culture of 50Ql was added to 5@ spectinomycin and0m! LB medium and then
grown at 37C for two hours. The expression of MinD-GFP was induced byl 3BTG
and growing the bacteria at 31 for at least one hour. The bacteria were immobilized
for fluorescence imagery by using silane-coated cover.slifjgorescent images were
taken at room temperature with an inverted microscope (etin200M, Zeiss) using

a 100< NA 1.4 oil immersion objective and a CCD camera from Spot Dasiic
Instruments, Inc. driven by Metavue (Universal ImagingheTrame rate for measuring
the time-average in figure 2.10 was 1Hz and varied betwe&Hz. and 1Hz for the data
in figure 3.4b. Data were analyzed using Metamorph (Univénsaging).

FCS

Sample Preparation

Bacteria of theE. coli K12 WM1079 and WM1255 strains and of tke coli K12 strains
JS964 were kindly donated by W. Margolin, Houston Medicahdt at University
of Texas, and J. Lutkenhaus, University of Kansas, respsygti Bacteria of the
E. coli BL21 strains BL21(DE3)pLysS were obtained from Novagen (@ibisciences).
GFPmut2(S65A,V68L,S65T) [23, 166] were expressed in bactaf the E. coli K12

JS964, WM1079 and WM1255 strains. EGFP and His6-EGFP, wihsame kind
of mutant, EGFP(F64L/S65T) were expressed in bacteria @Ethcoli BL21 strains
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BL21(DE3)pLysS using the vector pBAT4 and pET9d, respetyivl he strains WM1079
and WM1255 were also used in [167, 168], where it was possibfend general infor-
mation about the plasmids. For information about the sti&964 see [23, 169E. coli
strains were grown overnight in 3ml LB medium at’@7together with a concentration
of 25ug/ml Spectinomycin, 2hg/ml Kanamycin, 2@.g/ml Chloramphenicol and
50ug/ml Ampicillin, respectively for JS964, BL21, WM1079 and WMIRStrains. The
LB medium consists of 10g of tryptone, 5g of yeast extract@amof NaCl per liter. The
overnight culture of 500/ together with the same concentration of antibiotics as @pov
was added to 5@/ of fresh LB medium and grown at 3C until the optical density
(OD) at 600vm reached~0.2. The expression of GFP-MIinD in JS964 and EGFP in
BL21(DE3)pLysS was induced by adding2W isopropyl{3-D-thiogalactopyranoside
(IPTG). The expression of MinE-GFP in WM1079 was induced lbigiag 0.005%
L-arabinose. No inducer was used for GFP-MinD expressioWiM1255 and for
His6-EGFP expression in BL21(DE3)pLysS. Then the bactesg@e grown at 30C
for 1-2 hours usually sufficient to produce visible fluoresmeand to see Min proteins
oscillations. Different induction levels were tested talfthe best signal to noise ratio in
the measurements of the correlation function and to mirenpierturbations to cellular
physiology. In fact,G(0) is inversely proportional to the number of fluorophores,
and with a high level of induction the signal will be very lown addition, to avoid
fluorescent impurity, samples of the LB medium were prepavigd a lower level of
yeast extract of 1g per liter. For microscopic examinatiosphd slab of1% agarose
(Invitrogene, 15510-027) in LB medium had previously besgppred. A molten (geling
temperature 37-4Z for 2% agarose concentrationyil (wt/vol) agarose/LB medium,
was sandwiched between a 25mitbmm glass slide and a 18nmxtt8mm cover slide
and allowed to cool to room temperature. Before measuresnéme cover slide was
removed and @l of cell culture were spread on to this pad (18 mx.8 mm x ~ 0.5
mm) of solid agarose. This method allows for the immobil@atof the cells and for
keeping the sample near the objective as is necessary fonfeg@Surements. At the same
time, this does not allow the cells to settle into multiplar@s of view as, would happen
if the cells were mixed with the liquid agarose and then cdol@he cells also grow
and divide more easily on the slides. Data collection lastethore than 2h on each slide.

Optical setup

Fluorescence Correlations Spectroscopy (FCS) measutemesre performed on a
LSM Meta 510 system (Carl Zeiss, Jena, Germany) using>a MA 1.2 UV-VIS-IR
C-Apochromat water immersion objective and a home-buitecteon unit at the fiber
output channel: A bandpass filter (AHF Analyse Technik,ifiggbn, Germany) was used
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behind a collimating achromat to reject the residual laserk@ackground light. Another
achromat (LINOS Photonics, Gottingen, Germany) with arndocal length was used
to image the internal pinhole onto the aperture of the fibeéhefavalanche photo diode
(APD, PerkinElmer, Boston, MA, USA). The correlation cusweere obtained with a
hardware correlator Flex 02-01D (correlator.com, Bridgx NJ, USA). The position
for FCS measurements could be selected accurately in aspomding LSM image. The
waistw, of the detection volume was determined in calibration meamsents with free
Alexa 488 in water to be), = 1574+ 12nm assuming a diffusion constantf= 280“71“2.

Theoretical autocorrelation curves. The experimental autocorrelation curves were
analyzed by fitting the expected autocorrelation curvesdftierent processes. Since
the actual height of the detection volume is larger than thendter of the bacterium,
the cytosolic diffusion can be approximated to occur in tvilmehsions. Fitting with

a more refined model, taking into account the geometry of @teation volume in
the bacterium [170], did not significantly change the valabtined by assuming the
simplified geometry. For two independent species, diffysiith respective diffusion
constantd); and D, the correlation curve is [89, 171]

1 1 1
Gag(T) = NI, {Fl 7 +(1— F)m} : (A.0.1)
Here, the number fraction of particles of one species isghwe F' = N; /(N7 + Ny),
where N; and N,, respectively, are the average numbers of particles of itfereht
species in the detection volume. The characteristic rétaxéimesr, andr, are linked
to the respective diffusion constants and the widthof the detection volume through
, = wi/(4D;), i = 1,2. For a single species diffusing anomalously in two dimemsio
the autocorrelation function is given by [93-95] as

Gy =~ (A.0.2)

Nit (Tia)a
Here, 7, = 4T'/w?, where the anomalous exponentgoverns the spreading of an
initially localized distribution,(z?) ~ t* andT is the anomalous transport coefficient.
For particles changing between a mobile state (diffusionstamt D) and an immo-
bile state we assume the following reaction kinetics foctitm £ of the mobile state
dF/dt = —F/m + (1 —F)/m, wherer, andr, are the cytosolic and membrane residence
times, respectively. The autocorrelation of the fluctuaibas the form [89,171]
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wherel; , = —(Dk2+7; " +75 1) /24 {(DE2 + 1/ + 1/73)2 — ADK2 /7, } '/ /2, Ay 5 =
{)\2,1 + Dk‘le/(Tg —+ 7'1)}/()\271 — )\172).

Since the cytoplasmic pH @&. coliis about 7.7 [172], pH-dependent blinking can be
neglected [173].

Data analysis

The correlation curves were fitted in the time intervak [5us, 1s] with a weighted
nonlinear least-squares fitting algorithm. Curves wereciet automatically based on
the convergence of the fit algorithm and the quality of the)ftt & 1.3 for EGFP and
x? < 1.5 for Min proteins). For the Min proteins, curves were at firand-selected
for low and high intensity phases and then automaticallytf@r quasi-steady states.
The latter were checked by requiring a constant fluorescememsity during the
measurement.

Period measurement in single cells

We used bacteria of th&. coli K12 JS964 strain expressing GFP-MinD, and we
prepared the sample in the same way as for the FCS measuseniennake measure-
ments of growing cells possible we used a heater and a chdmbkve cell imaging
(Bachhoffer Chamber). Measurements were performed on\amté@d Laser scanning
Confocal Microscope (LSCM), Zeiss Axiovert 200, manuagst@Jena, Germany) using
a 100x NA 1.4 oil immersion objective. The position for measuretsarould be selected
accurately in a corresponding LSM image.
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FRAP & FCS

Basic concepts

Fluorescenceis a part of the luminescence class processes in which mekeemit
light from electronically excited states. The formationwhinescence through excitation
of a molecule by ultraviolet or visible light photons is texdhphotoluminescence, which
is formally divided into two categories, fluorescence andgminorescence, depending on
the nature of the excited state. Fluorescence is the emiss$igght from singlet excited
states. In excited single states, the electron in the ekaibital is paired (to opposite
spin) to the second electron in the ground-state orbitans€quently, the return to the
ground state is spin allowed and occurs rapidly by the eomssf a photon.Phospho-
rescenceis the emission of light from triplet excited states. An &len in the excited
orbital has the same spin orientation as the ground-stat&reh, and according to Pauli’s
principle, transitions to the ground state are forbiddemgctv results in rate constants for
the triplet emission that are several orders of magnitugdeldhan those for fluorescence.

Photobleaching (also termed fading) occurs when a fluorophore permanently
loses the ability to fluoresce due to photon-induced chdndeanage and covalent
modification. The probability for a transition from an exdltsinglet state to an excited
triplet state increases with the intensity of the excitatight. Because the triplet state is
relatively long-lived with respect to the singlet statepfiophores have enough time to
undergo chemical reactions with components in the enviesmirand produce irreversible
modifications. Each fluorophore has different photobleagtharacteristics, depending
on the molecular structure and the local environment.
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Figure B.1: Fluorescence Recovery After Photobleachind:lwsorescence recovering as a func-
tion of time during a FRAP experiment. (1) A baseline of flemence is collected before photo-
bleaching occurs (image bl); (2) Photobleaching (bluevaand image b2); (3) The amount of
fluorescence in the photobleached area increases as umdemolecules migrate into this area (3
and image b3). b) Images (taken from [174]) of viral glycdpio ts045 VSVG tagged with green
fluorescence protein (VSVG-GFP) and photobleached in tttamgular area shown in image (2).
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FRAP

Fluorescence Recovery After Photobleaching (FRAP) ctssfsmeasuring the flu-
orescence recovery after optically bleaching the molecirea certain region by high
excitation laser power. The analysis of this process reve&rmation about the under-
lying protein dynamics.

The principles of FRAP are illustrated in figure B.1. In a stdd area the fluores-
cence intensity is collected before and after photoblewmcbiccurs. Immediately after
photobleaching the intensity decreases. Over time, thauatrad fluorescence increases
as unbleached molecules move into the bleached area. Hates, is a stabilization of
the amount of fluorescence recoveryXifis the fluorescence before photobleaching and
Y is the amount of fluorescence that returned to the bleachead thre ratioX /Y almost
never reaches. The mobility is determined by the slope of the curve of thtemsity in
function of the time during the recovering phase. The stedpecurve, the faster the
recovery and, therefore, the more mobile the molecules.

For FRAP experiments it is important to choose a dye whichdiles minimally at
low illumination power to prevent photobleaching duringaige acquisition but bleaches
quickly and irreversibly at high illumination power.

In addition, a high protein number is needed [175]. In baatex region of half of
the cell size is bleached and fluorescence recovery is dueoteips coming from the
opposite half. An example is given in [88], where the FRAPhtegue was used to
measure GFP mobility it. coli. In the case of the Min proteins, FRAP is clearly not
appropriate. In fact, as is shown in section 2.2.1, the dmgetime, during which half of
the cell is almost empty and half is almost full of proteirssan order of magnitude larger
then the diffusion time. So, bleaching half of the cell, nopmr fluorescence recovery
would be observed.

FCS

Distinct from other fluorescence techniques, Fluorescé&uareelation Spectroscopy
(FCS) does not exploit the emission intensity itself buteaintensity fluctuations. Inten-
sity fluctuations in the fluorescence signal collected froemall volume are caused by
the motion of fluorescent particles or chemical processahrg to changes in the fluores-
cence intensity of individual particles. Among the many §ibgl parameters in principle
accessible by FCS are local concentrations, mobility ateffts and rate constants of
reactions. In the following we will give a short introduatido FCS. For the interested
reader the are many reviews and books that introduce thaiteehn[89,171,176-179].
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Figure B.2: FCS measurement. a) Fluorescent light frami& volume in the cell is collected
by means of a dichroic mirror through a tube lens, a pinhotkanemission filter to APD which
amplifies the signal. b) GFP-MinD fluorescence signal in fiamcof the time for a single run of
5s. ¢) Fit (red curve) with & — D diffusion formula B.0.5 of the correlated signal in b).

The number of molecules within a given volume is at any timeegoed by the Pois-
son distribution. Then, the root mean square fluctuatioh@fparticle numben is

ON 1

<N>:\/N

(B.0.1)

Therefore, fluctuations are bigger for small numbers. Tdgoer FCS measurements
properly, it is important to have concentrations and deactolumes so that only few
molecules are detected simultaneously. However, the #igeree signal must be higher
than the residual background signal. Typical values aremahar or sub-nanomolar con-
centrations and detection volumes in the femtolitér(°/) range. FCS was introduced
in 1972 by Madgeet al[180], but efficient detection characteristics were achikonly in
1993 with the implementation of confocal microscopy FCS [181igufe B.2a shows a
typical schematic confocal FCS setup. The actual setup e imsour measurements is
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shown in figure 2.16. With this setup, the incoming lasertlighrough a dichroic mirror,
is focused by a high numerical aperture objective to a diffoa limited volume. The flu-
orescent light from the sample is collected by the same tibgeand passed through the
dichroic and the emission filter. In addition, a pinhole ie tmage plane blocks all light
not coming from the focal region. For molecule concentragim then M range or below,
the detection of signal fluctuations resulting from indivadi particles is possible. Subse-
quently, the light is focused onto an avalanche photodieteator. The resulting signal is
shown in figure B.2b. Improvements could be made using stamaigstable sources like
lasers and very sensitive detectors as avalanche phoesd{@dPD) with single-photon
sensitivity. The characteristics of the fluorophore are atgortant, namely fluorescence
lifetime and quantum yield. The quantum yield is the numbemitted photons relative
to the number of absorbed photons. Substances with fluoresgdoton yields per sin-
gle molecule approaching unity display the brightest elminssThe lifetime determines
the time available for the fluorophore to be recorded dunmeractions with or diffusion
in its environment. The fluorescence lifetime is abbut 10ns. The phosphorescence
lifetimes typically go from milliseconds to seconds. Thelgt-state population induces
correlations in the recorded fluorescence signal and is t# conspicuous fast dynamics
that can be observed in FCS measurements.

The mathematical quantity used to quantify fluctuationslked the correlation func-
tion. In the case of the temporal fluctuations of the fluoreseesignalF'(t) this quantity
is:

g(r) = (FOF(t+7)) = (FONF({E+7) (B.0.2)

where(-) denotes an ensemble average aaddr are two different instant time. Now,
it is clear that if the signal is completely uncorrelatedr) = 0 for everyr. Assum-
ing that the system under investigation is in the equilibrstate the fluorescence signal
F(t) is a stationary random process, which means that it can lregsgd as zero-mean
fluctuations) F'(t) around a constant mean val(#&(t)):

Ft)=(F(t) +F(t) ; (F(t)=0 |, (B.0.3)
wherej F' denotes the fluctuations around a constant valug)). In other words the

system is invariant in respect to the temporal translatib(t)) = (F'(t + 7)), and the
correlation function can be written as

g(r) = (F)F(t+71)) — (F(t)* . (B.0.4)
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In experimental situations, the ergodic theorem is apied the ensemble averaging is
replaced by time-averaging:) = (1/n) 3.1'; 7 = mAt, nAt is the total duration of
the experiment and\¢ is the sampling interval with andm integer. The mean fluores-
cence intensity is strictly positivé#'(¢)) > 0 and thenormalizedcorrelation function is

defined as

G =9 ; . (B.0.5)

The correlation amplitudé&'(0) > 0 is the normalized variance of the fluctuating fluores-
cence signab F'(¢). In the experimental setup displayed in figure B.2b, the 8soence
signal is evaluated by a hardware correlator PC card for @Tirto obtain the autocorre-
lation functionG(7). A typical experimentad>(7) curve is shown in figure B.2c. If there
IS some memory in the signale. some correlation between fluctuations at titrend
fluctuations at a later time+ 7, thenG(7) # 0 at some range for the values of the lag
time 7 around zero. When becomes large when compared to the characteristic memory
time of the system, the signal values separated bgcome statistically independent and
G(7) decays to zero. The characteristic time decay of the cdiwaldunction is then
associated with the characteristic time of the physicat@se generating the observed
fluctuations, as, for example, thermal diffusion. The slothe decay of the correlation
function, the longer is the memory of the associated phiyprcaess.

Making an appropriate hypothesis on the physical originhef fluctuations and on
the efficiency of the setup, it is often possible to write aalgiical expression fo€/(7)
in terms of the physical parameters to be measured and, tlEmd@ormula, to fit the
experimental curve as is shown in figure B.2c. Assuming théluatuations come from
the variation in the local concentratiad’ within the focal volumel/, it is possible to
write 6 F'(t) in terms oféC'(¢)

dﬂ@:n[}wwcmwm/, (B.0.6)

wheren is a parameter that includes the physical characteristittsedfluorophore, like
fluctuations in the quantum yield and in the molecular akbsampcross-section, the de-
tection efficiency and the maximum value of the excitatiorrgy and determines the
photon count rate per detected molecule per second. Thasyeder can be a measure for
the signal to noise ratiol () describes the spatial distribution of the emitted light and
in the usual confocal illumination/detection optical FG3up can be approximated by a
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Gaussian intensity illumination profile

2(x? + %) B 22’2) | (B.0.7)

2 2
wz, w?

1(7) = eap( -

wherew, andw,, are the sizes of the beam waist in the direction of the prapama

of light and in the perpendicular direction, respectivetitroducing equation (B.0.7) in

equation (B.0.6) and equation (B.0.6) in equation (B.0.B)aoktain the general expres-
sion:

_ Jo Sy IR (SC 7, 0)6C) (7, T)dVdV”

o (@) I, V)

(B.0.8)

Now, solving the equation for the relaxationdf', we can obtain a formula for the spe-
cific case we are considering. Giverchemical components with concentratidiigr’, ¢)
participating in diffusion and chemical reactions nearefailibrium, the nonlinear equa-
tion can be linearized and the equation d6f; is

%ﬁ“” = D;V25C;(7,t) + ;Tijacj(ﬁ t (B.0.9)

=1
where the first term accounts for diffusion aiids a matrix of kinetic coefficients. For
example, in the case of two diffusing non-interacting spgcequation (B.0.9), consist of
the diffusion equation for each species, respectivelyctvican be solved easily. In our
experimental condition, we can assume>> wiy and approximate th&D diffusion with
a two-dimension diffusion in they plane. From equation (B.0.8) we obtain the following
expression for the correlation function

— N, 1 N, 1
G(r) = (N, + Na)* <1+r/m1> + (1 M)’ <1+T/TD2> ,  (B.0.10)

wherel; is the average number of the molecules in the sampling voltigme: Wy W,
N; = Vg (C;), and

2

_ Do (B.0.11)
TDi—4Di U,

is the lateral diffusion time during which a molecule renzain the focal volume. The
expression of7(7) in equation (B.0.10) can be used to fit experimental autetation
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curves with four parameters: the relative fraction of the specied” = N, /(N + Ny),
one of the two average numba¥, and the two diffusion times.

To summarize, both FCS and FRAP are methods for investmatia mobility of
fluorescent proteins. However, due to the different charetics of these methods, the
fields of application are different. FCS is capable of maimikgpthe volume of less thah
femtoliter inside the living cell and registering the fluscence fluctuations resulting from
diffusion of individual molecules. It is sensitive in thé/ to M range and allows for the
calculation of the actual diffusion coefficient and preds=l concentration. It is applied
to the study of very fast to slow processgs {o s). FRAP is applied generally to higher
concentrations M) and slower processes. It allows the calculation of theudifin
coefficient and percentage of mobile and immobile fractidniserently being an imaging
technique, FRAP also helps to visualize the connectivityadiular compartments.



Appendix C

Reduction from three dimensions to one
dimension

Here, we show how the dynamics of the Min protein distribosian three spatial dimen-
sions can be reduced to a description in one spatial dimen3iee bacterium is conve-
niently approximated by a cylinder with radidg and lengthL. The volume densities
of cytosolic MinD and MinE at a given point arg (r, 9, x) andcg(r, ¥, x), respectively.
Here,r and denote the radial and azimuthal coordinate, respectivdiyle = is the
coordinate along the long axis. Their time evolution is goee by

Oep(r,9,2) = —wp(Cmax — ca(9, ) — cae(9,2))ep(r, 9, 2)0(r — Ry)
+WaeCae (9, 2)0(r — Ry) + DpQAsgcp(r, 9, x) | (C.0.1)
Oep(r,0,2) = —wgea(9, x)ep(r, 9, 2)0(r — Ry) + waecae (9, 2)0(r — Ry)
+DgAsggcp(r,d,z) . (C.0.2)

Here, ¢; and ¢;. are the surface densities of membrane-bound MinD and MIinDE-
complexesAg, is the three-dimensional Laplace-operator, and the faabé(r — Ry)
restrict attachment to and detachment from the cytoplasmeimbrane to a region adja-
cent to the cell wall.

Since the diffusion constant of cytosolic MinD and MiInE istbé order of15“Tm2,
and the diffusion length of the order @f.m, whereas the period of the oscillations is
about 1min, we consider the density of cytosolic MinD and Elito be homogenous
perpendicular to the bacterial long axis. The volume dassibf cytosolic MinD and
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MinE can then be replaced by surface densitigandcz with

o dx) = wen(dx) (C.0.3)
0

cp(r,d,z) = %éE(ﬁ,x) : (C.0.4)
0

Then, the equations governing the evolution of the proteimsdies are read as

Wp

atéD - _?(Cmax — Cq — Cde)éD + WdeCde + DDAZdED P (COS)
0
Op = _%CdEE + WaeCige + DplogCr (C.0.6)
0
Oicqg = w—D(cmaX — Cq — C4e)Cp — u)—EcdéE -V (C.0.7)
RO RO
Ocae = “Leglp — waclae (C.0.8)
Ry

wherej is the aggregation current of MinD on the inner cell membrané A, is the
two-dimensional Laplace operator on the cylinder surface.

It has been shown that MinD forms a filamentous structure enirther cell mem-
brane [68]. The projection onto this structure yields ldensities, e.g.cy(z) =
fOQ” ca(V, )Ry di. They are connected to the surface densities via

. 1
ép(¥,x) = ST cp(z) (C.0.9)

. 1
cp(d,z) ~ 27TROCE(x) : (C.0.10)
ca(V,x) = ¢q(x)6(9 — I (x)) (C.0.11)
Cae(V, ) & Cae(x)0 (VP — V() (C.0.12)

whered(x) parameterizes the MinD-helix on the inner cell membranee djnamic
equations for the line densities, ¢z, ¢4, andc,. are then given by equations. (3.1.1)-
(3.1.4). The currenf, appearing there is obtained by the projection of the sudacent

ja onto thez-direction. Note that a description of the formation of Mhfiglices would
also require a specification of the perpendicular compooiethte curreng,.



Appendix D

Linear stability analysis of the
homogenous distribution

In this appendix, we carry out the linear stability study fioe case of homogenous cy-
tosolic distributions, non-homogenous cytosolic disttibns, and a finite ATP exchange
rate.

The stability analysis is performed in terms of microscqgacameters, the interaction
strengthsl; and U,,, and the interaction rangeg andr,. between membrane-bound
MinD proteins and membrane-bound MinD and MinDE complexespectively. They
are linked to the phenomenological parameters equations (3.2.3) and (3.2.4) through

1 Dy
]{31 - 02 ]{jB—TUd y (DOl)
]{32 = C?naxk‘B—TUdrd . (DOZ)

Similar expressions hold far;, andk,. We introduce the dimensionless fieldls. (z, t)
defined a4 = caq4e/cmax @nd a similar expression for the quantiti€s andCz. We
define the ratesp p = wp gemax, Wherewp g are the parameters introduced in equations
(3.2.3) and (3.2.4). To simplify the notation in the followgithe “tilde” will be dropped.
We introduce the dimensionless parameters wp/wg, 8 = wee/wE, g4 = Ua/kpsT,

gae = Uqe/kpT and scale time and space like= wgt, & = z/l;, wherel; = \/Dy/wp

is the diffusion length of MinD proteins on the membrane. W aefinen, = (r,/14)
andng. = (r4/ls). The dimensionless version of equations (3.2.3) and (Btalké the
following shape

Orcg = a(l —cqg— cqe)Cp — caCp — Ocja
(D.0.3)
0rCqge = —Cqe + cgCr
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with

Ja = Jdd+ Jade - (D.0.4)
where

jaa = —0O¢ca+ ca(l — ¢4 — cqe) [ga(Oeca + nﬁﬁg’cd)] , (D.0.5)
and

Jae = ca(1 — ca — Cae) [9ae(OeCae + M30icac)] (D.0.6)

correspond to the current terms, respectively associatdd the interaction between
MinD-MinD proteins and MinD-MinDE complexes proteins oretmembrane.

The stationary uniform values;, = ¢9, cqe = ¢, are the solution of the following
equations

0= —Oé(l — Cq — Cde)CD + CdCE s
(D.0.7)
0= —fcge +caCr

cd—l/[ +—+E} )
(D.0.8)

cde—l/[1+—+@]

We notice that folC’; = 0 we haver) = 1 andc), = 0, while for Cp = 0, ¢ = I, = 0.

The stability of the uniform stationary states is studiedabplying a small perturbation
and then linearizing the dynamic equations. Taking pecibdundary conditions, we sub-
stitutec; andc,. with the expression) + dcgexp( A7 +ik€) andc, + dcge exp( M\ T +ik€)

into the equations. D.0.3, whehg andk are the dimensionless frequency and wavenum-
ber respectively. After linearization, we obtain the fallag eigenvalues equation

5Cd
(A(F) = M) =0
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that determines the dimensionless linear growth rates a function of the dimensionless
wavenumbek. The elements of the dimensionless 2 linearization matrixA are given

by

Ay (k) =—-aCp —Cg — k? [1 — gacy(1 = —5,) (1 — 173]{:2)} ,

Asa(k) = —aCp — K| gaec(1 — e — b, ) (1= 3 k%)

(D.0.9)
Ao (k) =Cg
Axp(k) = —p
The correspondent characteristic equation is
A2 — Tr(A)A +det(A) =0 | (D.0.10)
with the solution
M = Tr(A) £ (Tr(A)? — 4det(A))'/? (0.0.11)

2

The uniform stationary state becomes unstable with redpespatially periodic per-
turbations with a dimensionless wavenumbgmwhen the conditiong?(\;) = 0 and
dR(\t)/dk?* = 0 are satisfied at = k.*.

If Ay is complex at the instability point, this is a Hopf bifureatiwith broken trans-
lational symmetry. Because we haké\;) = Tr[A(k)]/2, the conditions for such bifur-
cation are

dTr[A (k)]

=0 (D.0.12)

From this conditions we derive the dimensionless wavenurhheat the first unstable
mode, corresponding to the Hopf bifurcation:

k2 = \/ f+aCp+Cp (D.0.13)

gangca(l — cq = cg)

We notice that in principle not all values of k are accessilbiidact, strictly speaking, the perturbations
added to the densitieg andc,. are expanded in the basisp(ik,,£), wherek,, ~ 7(l4/L)n with n integer.
Therefore, forL finite the critical valué:. will be given by the closest number to the expressi6iy / L)n.
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<Cd>

Figure D.1: The MinD distribution averaged over one temppeaiod (c,), for different values
of the intensity strength,. Increasing the interaction strengjl, the spatial average distribution
period decrease. Solid, dotted, dash-dotted and dastelieetog, = 10.5, g4 = 12.5, g4 = 13.5
andg, = 16 respectively.

Therefore the wavelength of the first unstable mode in notated units is

0

2gach(1 — G — 9, )71/4
Ay =2 & l; . D.0.14
=2 | T e | (D.0.14)

Whit the parameters, 5 andC fixed, this corresponds to the following behavior
Ay ~ g/ Vrda (D.0.15)

The wavelength of the spatial pattern, obtained directynfrintegration of the equa-
tions D.0.3, doesn't follow this rule. Infact, as it is shownfigure D.1, it decreases
wheng, increase. The critical frequency correspondent to Hopfrbétion given by the
imaginary part of\; in unrescaled units is

QH :wE\/det(A(kH)) :CUE\/(ICECD —ﬁ2 . (D016)
If 2 is different from zero, oscillating solutions appear. Tisithe case when
ﬁ2 < OéCECD, i.e. wge < wawgCpCgr . (D017)

We can estimate the value for the peribaf the oscillations fromim(qy ) = 27 /Ty, ob-
taining the valud” ~ 80s. The numerical study of linear stability has given the fadilng
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Figure D.2: Linear stability of the homogenous state. RBal, (black line) and imaginary part
(Im, red line) of the eigenvalues of the linear operator dbsw the dynamics of small pertur-
bations around the homogenous state as a function of the muamberq = k/l,. In (c) modes
with wave numbers betweenin—! and 2.22m™! are oscillatory and unstable. The values of the
parameters are = 0.13, 8 = 0.13, g = 0.78, 4. = 0.05. The interaction strength, take
the values (a)l5, (b) 18, and (c)25. Notice that the wavelength calculated from the valug of
corresponding to the maximum for Re weakly dependsgcand in all three cases takes the value
A ~4pm.

behavior:k. increases witly; andl, (i.e. decreases wheby increases and increases with
D,) and decreases whepincreases. When all other parameters are fixed the p&god
is especially sensitive to variation 6f i.e. wg., Ty decreases when,, increases.

In absence of the currerj, it is easy to show that < 0. In fact, in this case

A==| = (aCp+Cr+8) +/(aCp + Cx + B)? —4CE6] <

N —

(D.0.18)

< —(aCp+Cp+pB)++/(aCp +Cr+3)2 =0

This continues to be valid for small enough values of theradton strengthy,. In
figure D.2(a) this is shown by, = 15. Figure D.2(c) shows the case when the real and
imaginary parts of\ are different from zerog, = 25, implying the existence of stable
oscillatory solutions. Figure D.2(b); = 18 shows the instability pointg(\) = 0,

k = ky) at the Hopf bifurcatiorky = 0.88 (g = 1.6um™") corresponding to the value
Ay = (27 /kg)ly ~ 4um for the wavelength of the pattern. If we increase further the
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Re(s™), Im(s )

0 1 2 3 q(um'1)

Figure D.3: Graphs of the eigenvalue with the largest regl gfethe linearized time evolution
operator versus the wave numhetr k/l;. The solid black line refers to homogenous cytosolic
distributions with parameter values as in figure D.2. Theamd green lines refer to a finite ATP
exchange rate. Parameter values as in figure D.2 @jth= Dr = 15um?s™!, warp = 0.557 "

are depicted as red dashed lines and » = 0.02s~! with green dash-dot lines.

value ofg,, Im(\) — 0 in the range of values df, for whichdRe(\)/dk* = 0, which
corresponds to stationary patterns.

In regard to the interaction between Min proteins on the nramdy, we consider only
the two cases (iJq,q # 0, (ii) jiq # 0 andjqq # 0, with all other current terms equalling
to zero. In particular, the case (i), corresponds to thempsion that when MinD
attaches to the membrane and/or when MinE attaches to thédraeaibound MinD, its
conformational changes neutralize the interaction betvi@D and MinDE complexes.
For the case (ii), the conformational changes of MinD males ititeraction between
complexes MinDE and MinD proteins on the membrane repulsigy,. < 0. The term
Ja.qc appears in the non-diagonal term of the linearized ma\rir a such way that it does
not change the value of the critical wave number, the wavelength of the pattern, but
only the imaginary part of the eigenvaluesffi.e. the temporal period of the oscillation.
Other possible combinations, including for instance tesush asj,. 4., and/or dif-
ferent values for the sign of the interaction strengghilo not give rise to Hopf bifurcation.

Finally, we consider the general case of non-homogenedosaljc distribution and
a finite ratew 41 p for the rebinding of ATP to MinD after detachment from the nieeme.
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As figure D.3 shows, we find that far,p > 0.5s57! the effect of a finite ATP exchange
when compared with the homogeneous cytosolic distributese, can be neglected, at
least at the level of a stability study.
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Appendix E

Numerical integration of PDE

Here, we recover the necessary condition for the numertahilgy of our algorithnt
used to integrate equations (3.2.3) and (3.2.4). Usudll'®are integrated according
to one of two general schemes: finite difference methods ectsgd methods. The first
is usually preferred for its accuracy and stability and theosd for the locality property.
A combination of both was also considered [182]. The finiféedénce method is typi-
cally less efficient from the point of view of CPU time. Thisipbbecomes patrticularly
important when noise terms are also considered. We chodmiteedifference scheme.

The basis of finite difference methods is the discretizatiaihe physical domain into
a lattice or array of points at which the solution of the egurais computed for each time
step. For the sake of simplicity we will consider only theremt term associated with
MinD-MinD interaction on the membranee. k; = ky = 0.

The discretization scheme introduces a time stgpand a mesh sizéd\x. Some
care has to be given to these parameters to avoid numergtabilities. We refer to
equations (D.0.3) which can be written in the general form

Oca(x,t) = (T + V., )ca(x, t)
(E.0.1)
atcde(gjy t) = Vcdecde(xv t) s

where7 is one (non-linear) operator containing all the spatiaivd¢ives and, wher&’,,
andV,,, are strictly (linear) local operators. The part associatitd the operatord’s can
be reduced to a simple ODEs and only the operdtdras to be considered for studying
numerical stabilityj.e.

Bica = Ouja - (E.0.2)

1The programs used to this end have been written in Fortraartjulage.



116 Appendix E. Numerical integration of PDE

The discrete version of this equation, used in our numesicalilations, is

alm) = cln =1+ (AA;V 05 = 1/2) = 2j4(n — 1/2) + i +
* (Alx)z (ji2(n—1/2) — 455 (n — 1/2) + 655 (n — 1/2)— (E.0.3)

~455 (= 1/2) + 2 - 1/2))]

wheren is the temporal index; the box lattice index ang, is calculated at the mid-
point A¢/2 with a Runge-Kutta algorithm. The expression jgrdepends on the value
of Ac, = (¢t — ). If Aci, > 0, proteins go from sité + 1 to sitei, the product
cq(1—cq—cqe) inthe expression 3.1.5 for the current has to be writtenérdilcrete case
asc;™ (1 — ¢, — ¢4,). In the opposite caség. Acl, < 0, proteins go from sité to site
i+1, the expressiot};(1 — ;™ — ¢t1) has to be considered. Finally, fictitious grid points
were placed around the actual boundary of the system. Thewalf the concentratioth

in these points were taken to be equal to the valuesiafthe respective mirror-reflected
grid points inside the lattice. Writing the equation (E)dd@ the Fourier transform of the
MinD concentration on the membrane in a lattice of Size

1 ikx
Ch =5 ;cxe , (E.0.4)

where the sum goes over the lattice sites, and lineariziograt the steady state’, <0, ),
we obtain, for thel —dimensional case, the following stability condition

1+ AH{Dgs T'(k) - GI*(k)} < -1 (E.0.5)
where
['(k) = L [cos(kAz) — 1] (E.0.6)

is the Fourier transform of the discrete Laplacian in-adimensional latticek =
2mn/NAz withn € [1, N] and

Deg = Dg[1 — gaci(1 — c§—c5.)]

(E.0.7)

G = Dagacy(1 — ¢ — . )ra
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The linearized version of the equation (E.0.3) is stablafiot modes when the following
inequality is hold

(Az)*
2DCH(AJI>2 + 2G

At < (E.0.8)

This is the criterion for the numerical stability of equatig.0.2. In the limit, where the
interaction between MinD proteins on the membrane goestg@e— 0 andD.g — Dy,

the criterion for the numerical stability of the reactioiffsion equations is recovered.
From a practical point of view, it is important to take intocaant that the numerical
stability, given the diffusion coefficiend, and the mesh sizAx as fixed, still depends
on the interaction strengtly, on the interaction range; between the MinD proteins
on the membrane, and on the steady state valdgs!,). Of course, this criterion is
valid near the steady staté), ¢J,), thus is a condition necessary for numerical stability,
nevertheless, it is not sufficient.
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Appendix F

LE for homogenous cytosolic
distributions

In this appendix we derive, through coarse graining of therosicopic master equation,
the LEs (4.2.9) and (4.2.10) which describe the dynamicke@Min proteins for the case
of large cytosolic diffusion. For the sake of the simplicttfynotation the derivation is
carried out in a one-dimensional system, but it can, in actlinay, be generalized in the
three-dimensional case. The outline of the derivatiorofed [132, 159, 183] pointing out
the physical meaning of the used approximations and thénasfghe different terms.

The starting point is d-D microscopic lattice model with lattice length, N total
number of sites, and sites per unit length. Each site can either be empty or oedupi
by a single protein MinD or a complex MinDEg. the multiple occupation of a site is
not permitted. The probability(x — 2) in unit time At, that a protein MinD on the
membrane jumps from a siteto a sitez’, is influenced by the interaction with other
proteins. We assume the potentiglx) experienced by the protein MinD at the sit¢o
be composed of a superposition of pairwise interactionis thié proteins nearby

V(z) == [vaa(x — 2 )na(a’) + vaae (¥ — 2" )nae(a)] (F.0.1)

x/

wheren,(z") andng.(2') are the occupation numbersiawhich can take the valuésand

1. The functionsy,(x) andvge. (z) are binary potentials of the attractive interactions be-
tween MinD-MinD and MinD-MiInDE, respectively. We assumattkhis potentials van-
ish over distances exceeding the characteristic resjgeictigraction radius. We assume
that it is determined according to the Metropolis dynamwipse hopping probability
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per unit timeAt depends on the differene®E = V(2') — V(z), i.e.

Iy if AE <0
E) if AE >0,

I(x — ') =

wherel, = (D;At/I2) is the hopping probability of a protein MinD on the membrane
in absence of interactions. We define the ratgs; = wp pcmax, Wherewp g are the
parameters introduced in equations (3.2.3) and (3.2.4)tasimplify the notations, in the
following the “tilde” will be dropped. For the protein Minhe probability of attachment
in a unit time at the site is given by

Amm(%g)u—ndm—n@@» | (F0.2)
for MinDE by
Atwg <%) ng(xr) (F.0.3)

and for the detachment process of MinDE

Atwgenge(x) . (F.0.4)

The parameterd/, and N are the total numbers of cytosolic MinD and MinE proteins,
respectively. All statistical processes are assumed todr&dwian processes [184]. Using
the above assumptions, we write the following microscopéstar equation for the joint
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probability distributionP ({ng(z)}, {ne(z)},t)

dP Np+1
= Sl ()2 o) = el Pns) = 1. o)) -

3 nf N2~ (o) — a1~ ma()] P} +

+ ZwE{(NEN+ 1)(1 + ng(x))nge(x) P(ng(z) + 1,ng.(z) — 1) — Exng(x)[1 — ng.(z)| P} +

+ Y waed (14 nae(@)[L = nae(2)] P(ng(x), nge +1) = nae(z) P} +

+) 1@’ — 2){(na(z') + 1)(2 = na(x) = nae(@))na(x) P(na(e) — 1ng(2’) + 1, {nge(2)})} -

z,x’

= > L@ = a){(2 = na(2) = nae(a')[1 = na(2)] P}

(F.0.5)

The summation over’ in the last term includes only sites that represent neaegghhors

of sitex. The notations’(n,(z) — 1, {na}), P({na4}, nse(x) + 1), mean that the set of
occupation numbefn,(z)}, {nq(x)} differs from that in the distributio®, whereP =
P({naq},{na¢},t), only at locationz, wheren, is andn,,, are respectively, decreased and
increased by oneP(n,(z) + 1, nq(x) — 1, t) denotes the probability distribution for the
case in whichhy(z) andng.(x) are increased respectively decreased by ét{@y(z) —
1,nq(2") + 1, {nq(z)}) is the probability distribution identical to P except for and-
protein shifted frome to «'.

Now, we introduce the coarse-grained description. Theegyss divided intom
boxes, each containing a large number of siigs,, and with lengthl, chosen to be
smaller than the characteristic length of the spatial pagtevhich appear. This length
characterizes the resolution of our system, complete sidghal mixing is assumed to
take place in each box.

Because of the complete mixing, the size of the box shouldl lzéssmaller than the
interaction range, i.e. thatr must be relatively large. Nevertheless, it was shown [185]
that the mesoscopic theory describes the concentratidibgsron the steady state quan-
titatively well, also for potentials with relatively shartteraction range. Therefore, al-
though the mesoscopic theory is not fully justified in theecaifew lattice length for the
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interaction range, like was considered for the interactanger,., it can still be used in
this case for qualitative insights.
For each box the probabilityP of attachment in a time stefyt is given by

N : :
Pp g = At wp (—D) (1 . M) , (F.0.6)
m nmax
N .
Pr_ge = At wp <—E) S (F.0.7)
m nmax

for MinD and MinE respectively, and

Pde—>E+D = At WdeNde,j (F08)

for the detachment process of MinDE. The variablgs andn,. ;, are, respectively the
number of MinD and MIinDE proteins in each bgx

The probabilitiesP(j; — j £+ 1) at each time step, for a transition between the neigh-
boring boxes for the MinD proteins are proportional to thentern, ; of proteins in the
jth box and to the fractioth — (1411 + 74e j+1)/7max Of €MPty Sites in the neighboring
box. Furthermore, it depends on the interaction betweenbreme-bound proteins, and
we write:

Ngj+1 T Nde,j
Piji1 = na; (1 - dﬂﬂn d Jﬂ) o, (F.0.9)
where
X I if AE; <0
I = —AFE;\ . F.0.10
J I exp( /{:BT]) if AE; >0 ( )

wherely, = Dy At/IZ, AE; = V;1; — V;, and we assume that the potentiglr) does
not change inside the bgx and therefore can be specified by a certain value

The master equation for the multidimensional distributidva1, . .., nam},
{nagea,...,ngem},t), which gives the probability of findingng,...,n.» and
Nde1s - - - Nde.m Proteins MinD or MIinDE, respectively in the boxes positidnat
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x1,..., %, atthe timef, takes the following shape:

d Np+1 -
d—zz = ZWD |:( D ) (nmax = Ndj — Nde,j + 1)pd7j:| -
J

m

m

[/ N
_ ZwD <_D) (Mmax — Nngj — nde,j)p} +
j L

[(Ng+1 N,
+D_wr < Em ) (na;+1)p; — <WE) ”d,jp} +
j L

+ Y e (e + 1) P, j — naep] +
J

D T A— nd,—i_nde,_l
+Z (71 (a1 + 1) D5 + Iy (nagen + 1) i (1 - — : ) _

Nmax
J

B Z [I;r (1 _ Mgt nde,j+1) e (1 _ Ndgj—1+ nde,j—l):| e
j nmax nmax
(F.0.11)
Where the sum overgoes froml to m, and the following short notations were used:

Pa; =p(na; —1,{nat.t) ,

p; =p(na;+1ne —1,t)

Pae; = PUnas}, nae +1,1) (F.0.12)
S

pj = pna;+1,naj — 1L, {ne},t)

To simplify the recognition of the last terms in equatiorO(E2), we schematically repre-
sent the probability fluxes for thgh box as follows

-1 —tm ] 8 [+, (F.0.13)
j—1 0 [j] S [j+1] . (F.0.14)
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Now, we introduce the symmetric and antisymmetric proligidiLixes

Ir+1I;
sj = -2 5 I (F.0.15)
and
_ I;r _Ij_
a; = 5 , (F.0.16)

associated with the hopping rates. After shifting the sutionandex in the fifth sum, the



125

master equation (F.0.11) takes the form

dp Np+1 -
= S | (P O ey s 00

[ (N
— ZWD <—D) (nmax - nd,j - nd@,j)p:|

m

[(Np+1 N
+ZwE ( & )(nd,j+1)pj[— (EE) nd,jp}

m

+ Z Wde [(nde,j + 1) p(—}_e,j - nd@yjp}

J

Ngit1 + Nage.iv1 — L\ .
F syl +1) [ (1 - Pt 21
j L

nmax

(F.0.17)

nmax

[ (a1 +Ngej—1— 1Y ._
+Y s(na; + 1) ( ’ ’ )pj}
j L

Ndj+1 T Nde,j+1 T Ndj—1 T Nde,j—1
— E Si1d, 5 <2 - p
J

nmax

N j+1 + Ndej+1 — 1) ..
+3 a(ng; +1) [(1 — gl T degt] ) pj}
J

nmax

Ngi—1+ Nge.i—1— L\ ._
J

nmax

N j+1 + Ndej+1 + Ndj—1 + Nde,j—1
-+ E a;ng,; ( P

Nmax
J

We assume that the number of lattice siteg, in each box is much larger than one.
Introducing the local quantities; ; = n4;/Mmax, @NAcge j = Nge j/Tmax aNd taking into
account that their value changes only a little as a resultgihgle attachment, detach-
ment, or hopping event, we can consider the following Taglgransion in the parameter
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1 /nmax

1 0P 1 P

2
Nmax OCaj — 2n3., OCg

n 1 oP oP 1 0?P 0?P
p; = P+ + + +

- 2 2
Nmax \OCdj  OCej 2n2 dcg;  Ocg

1 0*P
+ 2 ,
2712 8Cd7j aCdeJ'

max

Py~ P —

)

1 0P 1 9*P

2
Nmax aCde,j 2”121’1ax aCde,j

. 1 (0P oP 1 (&P 0%P
p; =P+ + + +

- 2 2
Tmax acd,j 8Cd7j +1 2n; aCdJ 8Cd7j +1

1 0?P
+ 2 ;
2n2 8Cd7jaCd,j+1

max

o 1 oP oP 1 0*P o?P
p; = P+ + + +

Nmax \OCaj  OCaj—1 2n2 a2 . Ok,
7.7 7-7

1 0?P
+ 2 ;
2n2 8cd7j_180d,j

max

p:l_e,j ~ P +

Y

(F.0.18)

where P is the distribution functionP(c, ;, ¢4 j, t). Substituting these approximations
into equation F.0.17 and keeping the terms up to the drger..., we get a multidimen-
sional Fokker-Planck equation for the joint probabilitgtdibution P.

Since, the length of the ba is much smaller than the minimal characteristic scale
of the spatial pattern, we can assume that the quantifiesand cq.; do not signifi-
cantly change between the neighboring boxes and can be dier@ntinuous functions
of the space:c,(z,t) andcq(x,t). Consequently, a continuous version of the multi-
variate Fokker-Planck equation can be introduced, anddiné probability distribution
P(cq, cae,j, t) converts to the functionaP([c.(z)], [cae(2)], t) that gives the probability
density of different random realizations of the protein camtrations.

After the transformation to continuous coordinates, weagproximate the symmet-
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ric and antisymmetric probability fluxes anda; as functions of the spatial coordinate

which are given by the following expression

s(z) = % {1 + exp (—k;—bT|0V/8x|)} ,

o) = 1 o (-l o) siam (22)

In the limit whenv = [,|0V/0x| — 0, we obtain
lim,_o (s(z)l;) =Dy

whereD,; is defined by
Dy = limy,_o (lol})

and

2
hm,/_)o(a,(x)lb) — lim,,_)0< IOlb aV) 1 Dy, 1%

T o%kgT 0r )

(F.0.19)

(F.0.20)

(F.0.21)

(F.0.22)

Taking the evolution equation for the functionl[c,(z)], [cse(x)],t) N the limit v =
l,|0V/0x| — 0 and performing certain transformations of the transpams(cfr. refer-
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ences [132,159]), we obtain the functional Fokker-Plargika¢ion

88—]; - _/d 0 {lwpCh (1 = c4(x) — cae(x)) — wpCrecq(z) +

xécd(x)

Dd 8 8‘/ 8zcd(x)
+ ToT 0% (1 —cq() — cde(x)%) + 92 P+

— /dx%m {lwpCh (1 = c4(z) — cge(x)) — waeCae(x)] P} +

+ % //dxdx'ﬁs%(x/) { [ (wpCp (1 — cy(x) — cge()) + (F.0.23)

2

+ wpCOgeq(x)) d0(x — ') + EC

(2Dg4(1 — cq(x) — cqe(x))) 6 (2 — x')} P} +

Q , 52 /
+5 //da:da: S el {(wgeCae(x) + wpCreq) 6(x — )P} +

Q , 52 52 ,
B E//dxdx [5cd(9:)5cde(x’) * dcq(x")ocqe(x) (weCread(z —)P)

whereQ = I, /nmax = L/N = 1/Cpax-

As follows from the theory of random processes (cfr. refeesn[152, 159]) this
Fokker-Planck equation is equivalent to the SPDEs

Orcg = wpChp(l — ¢4 — c4e) — wpCrcq — 0yja
(F.0.24)
-+ £d(x, t) ,

OiCige = —WaeCde + wpCECq + fde(ZL’, t) , (F.0.25)

The noise termg,(r, t) and&.(r, t) take into account internal fluctuations of attach-
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ment, detachment, and transport processes, and have e for

oz, t) = 91/2\/wDCD(1 —¢q — Cge)ap(x,t) +

+ 91/2\/ wdeCECdOéE(JI, t) +
+ Ql/an(\/2DdCd(1 —Cd — Cde)ﬁ(x7 t)) ) (F026)

Laelz,t) = QY <\/Wdecdeade(xvt) Y WECECdaE($>t)> ,  (FR0.27)

whereap(z,t), ap(x,t), aq(z, t), associated with attachment and detachment processes,
andg(z, t) associated with transport processes, are independemtmdiges of unit inten-

sity, and the Itd interpretation of the SPDE was chosen. clineentj, has the following

form

. D ov oc
Jda = —dcd(l — Cq — Cde>— D —d

ko o + Op (F.0.28)

In the approximations considered in section 4.2.2 thisenrtake the form (4.2.38) and
the equations (F.0.24) and (F.0.25) correspond to the LRS9¥and (4.2.10).
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Appendix G

LE for the O-dimensional system

In this appendix, we will derive the LEs for the four protemncentrations,, c4., cp and

cg in the case of th@-dimensional system and for the same attachment and de¢smthm
processes described by the probabilities (F.0.6), (F&nhd)(F.0.8) given in appendix F,
with the difference that nown = 1, i.e. there is only one box and no spatial degrees
of freedom are taken into account and thus, = N. These LEs will then be used in
order to compare the relative fluctuations of the cytosalatgin concentrations with the
relative fluctuations of the membrane-bound protein cotmagans.

The microscopic master equation for the joint probabilty= P(ng, nge, np,ng,t)
that gives the probability for findingy, n4., np andng proteins at time, in this case is

dP

ar Ng + Nge
dt

- [“D"D@ TN

) +wEnE% —l—wdende]P
ng — 1+ nge

+wD(nD—|—1)<1— N

) P(’fld — 1,nde,nD + 1,nE,t) +
(G.0.1)
Ng +1

N

+WE(”E+1)< )P(nd+1vnde_17nD7nE+1vt)+

+ Wye (nde + 1>P(nd,nde +1,np—1,ng — 1,t)

The notationP(ny; — 1,n4,np + 1,n,t) means that the set numbeisg, n,, differ
from those in the distribution P, because they are increaseddecreased by one, re-
spectively. P(ng + 1,n4e — 1,np,ng + 1,t) denotes the probability distribution for
the case whem; andny are increased by one and. is decreased by one. Finally,
P(ng,nq.+1,np—1,np —1,t) denotes the probability distribution for the case in which
np andng are decreased by one ang is increased by one. The following short nota-
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tions are introduced

PP =P(np +1,ng,n4 — 1,nge, t)

PP = P(np,ng + Lng + 1ng — 1,) (G.0.2)
Pge,E:P(nD_17nE_17ndande+]-7t)

Similar to the two variables model, the following variabkee introduceds, = ny/N,
Cde = Nae/N,¢p = np/Neyy = np/Nandég = ng /Ny, = ng/N6, where we assumed
that the number of available sites in the cytosel,., is the same for MinD and MinE
proteins, and is a geometrical factor of proportionality between the nemdf sites on
the membrane and in the cytosol. In this way, the values ofdheconcentrations go
from 0 to 1, allowing for a comparison between their relative fluctoas.

Taking into account that the value of these variables chengly a little as a result of
an attachment evehtwe can write the following expansion in the parameteis

_1{18P 8P}+1N_2{182P o*rP 2 82P}

2 02 92, * a3 0 dcqdep

PE’d~P+N_1{18P oP 8P} 1N_2{182P 0?P
de A =

00cn  0ex 0t 20 B0z o2

2 2 2 2
2 O0°P 2 0°P 0°P aP} (G.0.3)

T 0 9cader 0 0cplcq | deadeq | O,

9P 10P 10P\ 1 (18P 1P
Py~ P+ N b svd

dow 00cp d00p) T2V 2oz Taa

2 o?P 2 o?P 2 0?P +82P}
92 80D80E 0 8CEaCde 0 80D80de 8036

Substituting these approximations into (G.0.1) and retgitthere the terms up to the
order1/N, we obtain the following Fokker-Planck equation

OP(E1) = ~O,F"(EOP(E) + 50,0, D" (G OP(ED) (6.0

LIn the coarse graining procedure this hypotesis is appliettie length scale of the box lengihand is
still valid because we consider,.. > 1 in each box.
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where we introduced = (cy, cqe, Cp, cg) to simplify the notationy = d, de, D, E and
w=d,de, D, E, F”is av—component of a vector

0(fp — fr)

0f — fae
_fD + fde/e 7
_fE + fde/e

F) =

andD is a matrix4 x 4

D= —0fE Ofe + fae —fae /0 fe— fa/0
—fp —fae )0  fp/O+ fac)0? fae/)6? '

—IE fe — fa/0 fae/0? fe/0+ fac/0?
with

fp=wpép(l —cqg—cq)
fe=wrcily (G.0.5)

f de = WdeCde

Where for the sake of simplicity we did not wrife, and f we have just to remember
that they scale liké /N . Now, let us consider the following LEs

Oica = 0(fp — fu) + \/% ( foap(t) + fEaE<t>) : (G.0.6)
Oucae = 0f — fuo + %N Faecrae(t) - \/% Traw() (6.0.7)
e = 1o+ 1 — o Foanlt) = = Taoa®) (.08
O = —fi+ 29— = Fronlt) = 5= Taoat) (.0.9)

First we observe that the first two of these equations coora$po the LEs derived in
section 4.2.1 once we take into account that tiigse~ (1/N) and here:p ~ (1/Ney).
Second we will now show that they correspond to the FPE (¢.Qet us write the four
LEs (G.0.6), (G.0.7), (G.0.8) and (G.0.9) in the followirmngpact form

dc” Y 1,
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where(v = d,de, D, E), and(i = D, F,de), i.e. four equations with three independent
sources of white Gaussian noise. The notaéien (c4, cqe, ¢p, cg) IS introduced,f” is a
v—component of the vector

0(fp — fr)

0fe — fae
—fp + fae/0 ’
_fE + fde/e

) =

andb; are the following vectors

0 0 0

/b O e | -0 Ve | 0
- I IR S Sy B IR R T
0 —1 -1

If we interpret the equation (G.0.10) in the Itd sense, &@ss described by the equation
(G.0.10) can be equivalentely described by the FPE for tbealility density of?

OP(E 1) = ~0,F (€1 PE 1) + 5 -0,0,D(EDPEr) (6.0.11)

a priori different from (G.0.4). The diffusion matrild is related to the noise coefficients
by by

D = |b;)(bi| (G.0.12)
and the drift component&” are related to the deterministic terrfisby
FY = f" . (G.0.13)

Therefore F” = f” = |F) = |F), and it is easy to control thdD correspond exactly to
D.

Remark

In the previous derivation, we used the hypothesis that theerhas a Gaussian dis-
tribution, which is a good approximation when a high numteproteins is considered.
In our specific case, especially when the spatial extensidheosystem is taken into
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account, a more suitable description of the noise assadciaith the attachment and
detachment process is achieved through a Poisson digbribut

Let us go back to the equations (G.0.6), (G.0.7), (G.0.8) Ad.9). We just
showed that they are the LEs for the cytosolic and membraned protein concentra-
tions in the0-dimensional case. They show that the cytosolic relativetdlations are
suppressed when the parameiep 1, i.e. whenN,,, > N. In other words, the bigger
‘volume’ available to the cytosolic protein when compardthwhe ‘one’ available to the
membrane-bound proteins lower the cytosolic relative @lattons when compared with
the membrane-bound relative fluctuations. Here, the woladnve means the maximum
possible number of proteins in the two possible states, hathe cytosolic and the
membrane-bound one. When space is taken into account, thid assumes its own
actual meaning. Concerning the absolute values of the #tiots they are exactly the
same, in the cytosol and on the membrane, for each one of thehatent-detachment
process by formulation.

Finally, we notice that, if all four protein concentratiossale in the same way, for
example likel /N, the LEs take the following simple form

ath = fD - fE + %( fDOéD(t) + fEOéE(t)> s (6014)
Occige = fr — fae + \/LN faeuae(t) — \/LN frag(t) (G.0.15)
Oicp = —fp + fae — \/LN fpap(t) — \/LN Jaeue(t) (G.0.16)
Oce = —fe + fae — \/LN\/EOZE@) - \/LN faeue(t) . (G.0.17)

From these equations, the equations (4.2.9) and (4.2.hd)aasuming that each one
of the reaction and diffusion processes make an indeperadgritibution to the noise

terms, the LEs for the one-dimensional non-homogenousolitodistributions case can
be obtained directly.
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Appendix H

Estimation of parameter values

Here, we give an estimation of some of the parameters usée iéoretical description,
and which values are not available experimentally. In paldir, we consider the max-
imum densityc,,., and the interaction strengtliss and range's. Even if Ny and Ng
were approximately evaluated experimentally [110], umbiv there are no experimental
values for/N. Depending on the actual scenario, such a measurement samtxifficult
or very simple. If the Min-proteins can attach everywherd¢lmmembrane, theN can
be estimated straightforward from the area of the membnanfi@ce. If the MinD-proteins
really make helices and these helices are a fixed framewothkeomembraney can be
estimated from an evaluation of the lenght of such helicasinstance from the pictures
in [68]. This was our choice. Other situations are possibléa example, the possibility
that MinD can attach only to some specific receptor on the mangand they can have,
as we know so far, different distributions. Making the asptiom that only one protein
can attach on each site of the spiral structure, we can dstiimaparameteN

N = L/ly = [2ma x (winding rounds number) + L¢|/ly (H.0.1)

whereq is the cell radius L the cell length], the proteins size and is the effective
length of our system. From the experimental values [66, 186]

Lc~2um |
a~0.5um |
lo~1l,~(3.5—=57T)nm

winding rounds number &~ 5 — 6

(H.0.2)

we can estimaté&/ = (1500 — 15000). The bigger value comes from the hypothesis that
there are two helices and the proteins can attach to the na@mlone next to other. The
smaller value results from considering only one helical anly the half length available
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to the attachment procésdn our simulations, we always usé = 2000 for a cell long
2,m, which corresponds t@,., = L/N = 1000um~!. The order of magnitude for the
value of the interaction strenghtis (see for example [190]).

U~ 10kgT . (H.0.3)
For the interaction ranges, assuming electrostatic iaterawe can consider

r~10nm . (H.0.4)

As was discussed in section 4.3, the value used in our sironlédr the MinD-MinD
interaction range was much larger than this.

LAnother point to be taken into account is that adsorbed jmr®iean be in several different states of
different surface sizes. This is supported by experimeialence that adsorbed proteins undergo surface-
induced conformational changes [187-189] characterized bubstantial growth of the surface contact
area.
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