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Abstract
During embryonic development, precursor germ cells contain aggregates of protein
and RNA known as germ granules. These germ granules are important in the specifi-
cation of a functioning germ line, i.e. functioning sex cells within mature organisms.
In the single cell fertilized embryo of the nematode worm C.elegans, germ granules
(referred to as P granules) localize to the posterior side of the cell. After cell division
occurs, they are found only in the posterior daughter cell. The localization behav-
ior of P granules has been a topic of much interest, and considered an important
aspect of symmetry breaking during development. We learn the fundamental prop-
erties of P granule localization, and determine possible parameters and features of
this biological system by developing theory in close collaboration with experimental
evidence.

In this study, experimental evidence is presented which shows that P granules are
liquid droplets, and that their localization occurs through preferential nucleation and
growth behavior on one side of the cell and simultaneous preferential dissolution on
the opposite side. It is also shown that this behavior is linked to the concentration
gradient of the protein Mex-5 along the anterio-posterior axis of the cell, which is
necessary to induce the preferential growth of P granules.

From this experimental data, a theoretical model for the preferential growth of P
granules is developed, where the localization of P granules occurs by phase separa-
tion. That is, P granules separate from the bulk cytoplasm by a process described
by a first order liquid-liquid phase transitition, where a liquid droplet granule phase
nucleates and then grows out of the bulk liquid cytoplasmic phase. In this model, a
spatial gradient is imposed on the saturation point, the boundary point between the
single phase state consisting only of the cytoplasm, and a metastable state which
includes both a P granule and cytoplasm phase. This gradient mimics the properties
of the Mex-5 gradient and is sufficient in explaining P granule localization.

Using numerical simulations, the theoretical model is studied. It is found suffi-
cient to both successfully describe P granule localizaion, and to describe interesting
behavior in a system with assymetric growth due to a spatial gradient. From a
purely theoretical standpoint, we observe cyclical non-equilibrium steady states,
where material is cycled back and forth along the gradient. From the biological
side, experimental properties of the system, such as the diffusion coefficient of P
granules and P granule growth rates are determined through both simulation and
image analysis of data. In addition, the possiblility of different types of growth
behavior at later cell stages, and a method of long range intracellular signalling are
suggested from the theoretical model.
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1. Introduction

“Man is foolish: he cannot make a worm, yet he will
make gods by the dozen.”

– M.M.

An essential process for the existence of a biological organism is the coming together
of different components. A particularly interesting region for this pattern formation
occurs in a region that is far from extremes, 10−9 to 10−7 meters, we have a panoply
biological molecules. Where mysteriously, almost magically, we journey from the
world of physics, with descriptions of forces on particles, to complex living biological
organisms, which at least seemingly to our naive eyes, appear to be much more than
the sum of their parts. This biological regime, except for a few cases, has only been
open to biologists, where its sheer complexity has kept it rather intractable to a
physical approach and understanding. Significant technological advances in the last
50 years has slowly changed this; with the innovation of computers and a significant
improvement in analytical tools, biology has become a realm that physicists can also
explore.

The goal of this work is to take a physical approach to biological pattern formation.
Specifically, to the question of how a molecular gradient can effect patterns on the
intracellular level. In this thesis, we investigate in detail the segregation of P granules
within the C. elegans embryo. Non only do these granules present an excellent
system to study using basic physical principles, but they also provide an interesting
and novel non-equilibrium system.

1.1. Cellular Organization

The cell is a highly complex object. In simple terms, it can be described as a semi-
permeable membrane (plasma membrane), the enclosed fluid medium (cytoplasm),
and a nucleus. Within the cytoplasm are macromolecules, such as proteins, nucleic
acids, lipids, and larger structures, such as polymers made of these components.
There are also many highly organized compartments, organelles, often specialized
to do certain tasks.
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(A) High Resolution STED microscopy image of a P granule 
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 C. elegans:

adult worm
1 mm long

1 cell embryo
50 µm long

P granule
.1-4 µm diameter

Mex-5
10 nm (468aa)

Pgl-1
20 nm? (778aa)

Figure 1.1.: The length scales of life, and how C. elegans compares to them. No conclusive
data exists for the size of the protein Pgl-1, the size is guessed from the length of its amino acid
sequence.Original image edited from Tyndall National Institute. C. elegans worm image from Dr.
M.C. Leaver (MPI-CBG), Single cell and P granule image by Dr. C.P. Brangwynne (MPI-CBG),
and Mex-5 image from Pagano et al.(2007).

Figure 1.2.: Drawing of a typical animal cell, with many labeled organelles. Michael W. Davidson,
Florida State University
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Figure 1.2 is a drawing of a representative animal cell, where the most common
organelles are labeled. Although they do not exist in every cell, the major organelles
of a typical eukaryotic animal cell are considered to be a Nucleus, which contains
the DNA of the cell, and is the location for DNA replication and RNA transcription;
Ribosomes, the location for protein translation; Endoplasmic Reticulum (ER), loca-
tion for protein folding, protein modification, and lipid creation; Golgi Apparatus,
location for additional protein modifications and protein sorting; Mitochondria, the
energy production organelle of the cell; and Vacuoles, the cells garbage bin, which
break down highly ordered structures into small pieces for possible reuse or removal
[2]. These distinct organelles can, and often are spatially connected when they per-
form similar or complimentary tasks, e.g. the ribosomes, that translate membrane
bound proteins, sit directly on the ER and feed proteins they are translating directly
into the ER to be modified [2].

All organelles so far mentioned, except the ribosomes, are surrounded by lipid
membranes, which separate them from the cytoplasm. In addition to giving or-
ganelles clear boundaries, lipid membranes are necessary for other tasks, where
their roles can depend on their lipid composition, and on proteins embedded inside
or attached on the surface of these membranes. These processes can be highly var-
ied. The membrane of the nucleus creates a clear separation between the interior
and exterior of the nucleus, strongly regulating which molecules can pass through,
the membrane of the endoplasmic reticulum is the location for protein folding, and
the membrane of the mitochondria is the location of energy production, where the
proteins in the membrane of the mitochondria act in a fashion not so dissimilar to
connecting the two ends of a battery, which would be the two sides of the membrane
in this case. One last benefit of the membrane which is worth mentioning, is that
they give nice and tidy closed objects, making it oftentimes easier from a practical
standpoint to identify and define individual organelles. Without a membrane, it is
not always obvious where the boundary of an organelle actually is, and one must
make use of some new metric to define and distinguish the organelles surface.

Non-membrane organelles are, as per the original definition of the word, not in
fact organelles. But as science has progressed, and more and more membraneless
structures in the cell have been discovered which encompass the criteria of organelle
(excluding this one fact), the term has gained some popularity. These membraneless
organelles can be highly varied in properties. Centrosomes, for example, are complex
protein structures made mostly of microtubule structures. The greater part of this
structure “appears” rather disorganized. Also, no clear boundary exists between it
and the cytoplasm, as microtubules jut out in all directions from the centrosome into
the cytoplasm [27]. Germ granules (which are the focus of this work), and nucleoli
do in fact have clear boundary with the cytoplasm. Both these organelles display
liquid properties, with constant fluid like rearrangement of proteins in their interior.
As fluids, they both form droplets with a measurable surface tension within the
cytoplasm [7]. Ribosomes, which are large complex protein structures, have both a
very organized interior, and a distinct boundary with the cytoplasm. As this work
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is primarily concerned with germ granules, two organelles without a membrane,
the boundaries of membrane-less organelles will be discussed in more detail in later
sections.

1.1.1. The Nematode Caenorhabditis elegans

Figure 1.3.: DIC image of a mature hermaphroditic C. elegans worm and a schematic drawing
of its anatomical structures. DIC image courtesy of Dr. M.C.Leaver from the Max Planck In-
stitute for Cellular Biology and Genetics (MPI-CBG), and schematic drawing from worm atlas
(www.wormatlas.org).

Considering that all experimental results presented in this text were performed on
the embryo of the model organism Caenorhabditis elegans (C. elegans), a bit should
be said about this tiny creature. Measuring about a millimeter, this small nematode
can be found throughout the world [15]. Research upon this organism was mainly
started by Sidney Brenner in the 1970’s, due to its rather fast life cycle [9] and
translucence, such that one could observe C. elegans ’ inner-workings even in the
living worm (figure 1.3). Since that time, it has been a popular model organism
and at the forefront of many biological advances. It was the first multicellular
organism to have its entire genome mapped out [4], all 959 cells of the worm during
development have been determined [60], and RNA interference (RNAi) was first
discovered in the C. elegans [17].

C. elegans has two sexes, hermaphroditic and male. The hermaphroditic is the
more common type and can reproduce by self-fertilization or by becoming impreg-
nated by a male [15]. A large volume of the worm is devoted to reproduction. Due to
the C. elegans ’ translucence, developing oocytes (eggs), the many round structures
on the bottom half of the worm, can be observed (in figure 1.3). These oocytes are
pushed through the germline of the worm by contractions of muscles around the
germline. During the passage of the oocyte through the spermatheca, they are are
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injected by sperm and start developing within the parent worm. The worm can at
this point be dissected, and these developing embryos can be studied.

1.1.2. Germ Granules

An important theme of this thesis is to understand germ granule segregation. In
a nutshell, germ granules are “large, non-membrane-bound, ribonucleoprotein or-
ganelles found in the germline cytoplasm of most, if not all, animals.” (Updike,
Strome 2009 [78]). In mammals, these germ granules are typically referred to as
perinuclear material, and in the nematode C. elegans, they are referred to as P
granules. There have been many studies on germ granules in the last quarter cen-
tury in many different organisms, and there is much understanding with regards to
individual proteins within the granules, but to this day these as a whole, structures
are not fully understood [70, 25]. Most of this knowledge comes from research done
on invertebrate model organisms, particularly C. elegans. Since this work is based
on experiments performed on the C. elegans worm, the term P granule and germ
granules will be used synonymously throughout this text.

Composition and Function

Even though there is much known about many of their individual components, P
granule function is still essentially a mystery. What is known, is that they are
highly varied in their number and size. Both number and size distributions change
dramatically during the development of the embryo [33, 6]. It is also known that
during the cell divisions of a C. elegans embryo, the granules consistently localize
to the P-lineage cells, which are the precursor cells to the germline of the fully
developed worm.1 Preventing the formation of P granules, or inhibiting one of their
main components, typically leads to a dysfunctional germline, e.g. a sterile worm
[3, 36, 66, 67]. It can thus be said that P granules are necessary for the formation of
a functioning germline, and the formation of totipotent cells within said germline:
cells which have all the genetic material of the organism, and can differentiate into
all cell types.

P granules are mainly comprised of proteins and mRNAs (messenger RNA). There
have been, so far, 41 proteins discovered within the P granule [78]. A majority of
them are involved in RNA modification. Several of the proteins, which belong to
the multi-gene family GLH (germline helicase), have regions rich in the amino acid
glycine (G) [29, 40]. More specifically they have so called FGG repeats, where
F refers to the amino acid phenylalanine. Generally these repeats are known to
localize the protein to the nuclear pore complex [71, 21, 1]. This phenomenon has
also been observed in the C. elegans, where from the 4 cell stage of embryogenesis
and on, P granules localize to the nuclear membrane. In the mature worm, 75%

1In fact, the reason germ granules are referred to as P granules in the C. elegans is due to the
observation that they localize to the P-lineage cells.
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of the nuclear pores in the germline are associated with P granules [54]. Another
protein family, PGL (P GranuLe abnormality), also has glycine rich repeats, RGG
repeats (R refers to Arginine) [37, 36]. These repeats are known to function as RNA
binding domains [39]. The PGL proteins are a constitutive component of P granules
which are localized within the granules throughout all cell stages [36, 37], and thus
a common marker to observe granules.

Figure 1.4.: P granule Segregation
during C. elegans development. P gran-
ules (red) localize to one side of the
cell, which becomes the P-lineage cell
after cell division. At the P4 cell stage,
the P-lineage cell undergoes symmet-
ric cell divisions to eventually form the
germline of the developed worm. See
text for more details.

In addition to proteins, mRNAs make up the
other major component of P granules. In the
developing embryo these mRNA are maternally
inherited, while in the adult germline, as ob-
served by Schisa et al.(2001), they are made lo-
cally and are concentrated within the P granules
[61]. Some of the maternally inherited mRNA
strands in the P granules do in fact initially exist
throughout the cell, but they are quickly broken
down in the cytoplasm and in P granule deficient
cells [63]. Comparing concentrations of six mR-
NAs required for gonadogenesis with actin and
tubulin mRNAs, Schisa noted that the gonado-
genesis mRNAs were concentrated in the P gran-
ules, while the actin and tubulin mRNAs showed
no significant levels of enrichment.

Early in embryogenesis, transcription is signif-
icantly inhibited throughout the embryo. Later
in development, when transcription begins to
take place in the somatic cells, it continues to
be inhibited throughout all development in the
primordial germline cells [38, 59]. Thus this ma-
ternal mRNA contained within the P granules
could be a significant source of RNA, until tran-
scription starts up in the hatched larvae.

Since most known activities of the P granules
components are related to RNA metabolism, and
it is likely that the granules provide RNA, it is
believed the P granule’s main function is post-
transcriptional regulation.

Localization

In C. elegans, primordial germ granules are
inherited maternally, as opposed to mammals
where they are formed by epiblast cells through
inductive signals [32]. Figure 1.4 shows a simple
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overview of the P granule localization behavior. Initially, prior to symmetry break-
ing these granules (red) are evenly distributed throughout the ovum (fig.1.4a). Once
the egg is fertilized, the symmetry of the cell is broken along the anterio-posterior
(AP) axis: the polarity proteins (PAR) appear on the cortex, cortical and cytoplas-
mic flows develop, and the P granules localize to the posterior side of the cell as
the two parental pro-nuclei (black) join (fig. 1.4b) [62]. Once cell division occurs,
only the single precursor to the primordial germ cells, i.e. P-lineage cells: P1, P2,
P3, P4, contains the granular material (fig. 1.4c and 1.4d). [70, 69] Thus after the
first cell division, all granules are in the P1 cell, leaving its sister somatic cell P
granule deficient. As cell divisions progress, the granules fuse and become larger
and progressively more concentrated, primarily due to the smaller size of the new
daughter cell, since there is no new P granule material being made at the time. At
the P2 cell stage, granules start associating more with the nucleus of the cell, and
can be easily observed within proximity of the nucleus. At the 16 cell stage, where
the P granules are contained in the P4 cell, they localize completely to the nucleus
of the cell, and the general behavior of the P granules change (fig. 1.4d); The P4 cell
divides symmetrically into the two primordial germ cells, Z2 and Z3 (not shown),
which both contain germ granules. These two primordial germ cells eventually un-
dergo many symmetric cell divisions until they form approximately 1000 germ cells
in the adult gonad of the C. elegans worm (fig. 1.4e).

The major reason why the P granules have been so extensively studied, and a
primary interest of this work, is due to this segregation behavior. Their consistent
segregation to P-lineage cells have been a helpful factor in investigating cell polar-
ity and asymmetry, and P granule components are commonly marked to monitor
and determine the effectiveness of these asymmetric cell divisions under different
experimental conditions [70].

1.2. Pattern Formation by Phase Separation

A typical characteristic of non-equilibrium systems is the spontaneous growth of
spatial and temporal non-uniformities under homogeneous external conditions, i.e.
pattern formation. The study of pattern formation has been a major focus of physi-
cists for the last half century, where its study emerged as an outgrowth of material
scientists’ interest in phase transitions [24]. In fact, many well known examples
of pattern formations occur when a system changes from one phase to another,
e.g. a liquid converts to a geometrically patterned solid, or a uniform mixture of
constituents phase separates into a pattern of precipitates.

A central concept to the understanding of pattern formations is instability. Where
a relatively uniform system, near equilibrium, is driven to an unstable state. That
is, it is driven to a state that demonstrates large deformations in response to in-
finitesimal perturbations. Some intrinsically nonlinear mechanism is then required
to move the system to a new state that may, or may not, resemble the unstable
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deformation of the original state [23]. The mechanism of the instability depends on
the details of the system, where a detailed understanding of these mechanisms can
only be achieved if the system is well characterized by its microscopic equations.
Although instabilities of the system may not be exactly known, their properties can
be estimated and often related to the system. Instabilities are typically classified
into three simple types [13]: 1) Spatially periodic temporally stationary instabili-
ties often lead to spatially regular patterns, such as squares and hexagons, where
typically only a single structure type is stable. 2) Spatially uniform temporally os-
cillatory instabilities typically lead to uniform states with uniform oscillations. 3)
Spatially periodic and temporally oscillatory instabilities can lead to traveling wave
trains; where more complex patterns, or standing waves, can also emerge due to the
superposition of multiple waves.

Pattern forming systems are generally described by nonlinear partial differen-
tial equations, such as the Navier-Stokes equations for fluids, and diffusion-reaction
equations for the chemical systems [24]. Due to Alan Turing’s seminal paper on
morphogenesis in 1952 [77], these diffusion-reaction systems are often referred to
as Turing mechanisms. In his description of morphogens, Turing suggested that
chemicals reacting and diffusing could form spatially heterogeneous patterns. Tur-
ing mechanisms have many types of steady state solutions, including periodic and
traveling waves [23]. As one would expect, these type of systems can start from
near uniform initial conditions and lead to spatially distinct structures, a character-
istic often seen in differentiating cells in e.g. developmental biology. These type of
systems can describe a rather broad range of phenomena, with many examples in
biology, e.g. formation of spots on a leopard [52], and growth control of tissues, such
as the wings of a fruit fly [81]. To study P granule localization, in this work, we will
be concerned with pattern formation due to spatial instabilities in the boundary of
a phase transition.

1.2.1. First Order Phase Transition in a Binary Fluid

In the study of phase transitions, binary mixtures have been one of the most re-
searched systems, both experimentally and theoretically, e.g. [5, 18, 26, 31, 43, 53].
In addition to the actual study of phase transitions, phase transitions in binary fluids
have been used to model many physical systems, such as droplet collection within
clouds and warm rain formation [48]. To completely understand phase transitions
properly, one would ideally develop a full microscopic theory of their kinetics. Since
this effort would be quite frankly futile, we focus on a coarse-grained description of
the system; a small set of semi-macroscopic variables are identified, whose dynamics
are slow with respect to the remaining microscopic degrees of freedom of the system.
We then use phenomenological arguments to write dynamic equations for our new
slow variables, where the fast variables enter the description as random forces.

In the case of a binary fluid, one component, the solute (component “b” or the
granule component as presented later), is considered to diffuse within the other com-



Chapter 1. Introduction 9

ponent, the solvent (component “a” or cytoplasmic component). As the amount of
solute is significantly less than the solvent, when the system is in a single mixed state,
it is considered to express the characteristics of the solvent. The semi-macroscopic
variables of interest would be the concentrations of the two components. Since the
biological system which will be studied in forthcoming chapters is a closed system,
and what we assume to be an incompressible system, the local volume fraction of the
solute is sufficient to describe the system (since the fraction of the volume not taken
up by the solute is taken up by the solvent). We thus define the volume fraction
within some volume V , as the volume fraction of the solute,

φ ≡ N bvb

V
, (1.1)

where the N b is the number of solute molecules and vb is the molecular volume of
the solute. The volume fraction also plays a dual role. It is the order parameter
for the phase transition from the single mixed state, to a bistable de-mixed state2.
Thus, for a set of fixed control parameters, the volume fraction of the system tells
whether the system would be in a single or 2-phase state at equilibrium.

Quenching experiments are a typical method used to study 1st order phase tran-
sitions. The system is initially started at a sufficient temperature to be in a sin-
gle mixed state. It is then cooled (quenched) to below the critical temperature,
such that the system becomes either metastable or unstable, and phase transitions
are observed. The arrows shown on the phase diagram, figure 1.5, illustrate these
quenching experiments. The saturation volume fractions, φs0, φ

s
1, are the two points

on the coexistence curve for some given temperature T , i.e. the minimum (or max-
imum) volume fraction required to have two phases. Although the phase diagram
for a generic binary fluid is symmetric, as per the definition of solute and solvent,
we are only interested in a small concentration of solute within a mostly solvent
mixture. Thus, only the left half of figure 1.5 is relevant, and the saturation point
will always refer to φs0, the minimum solute volume fraction required for two-phase
coexistence at a fixed temperature. The supersaturation, δ, how far the system is
from the single-phase region, is then unambiguously,

δ ≡ φ− φs0, (1.2)

where the system exists in a two-phase state only for δ > 0.
Of particular interest to this work, are the dynamics involved with moving from

the single state phase, to the metastable binodal region. That is, the formation
of a (droplet) minority phase by quenching a single mixed phase system to the
binodal region (see left arrow in fig.1.5). Initially, many droplets of a critical size
form through localized fluctuations of the granule component. This critical size

2The order parameter of a 2-phase binary fluid is typically presented as the difference of volume
fractions between the two components, but for a closed incompressible system, the volume
fraction of a single component is again sufficient.
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φ

T

Tc

φs
0 φs

1

δφ

Figure 1.5.: Phase diagram of a binary fluid with order parameter φ. The coexistence curve
(purple) separates the mixed single phase and the binodal region, while the spinodal curve (black)
separates the binodal and spinodal regions. The arrows show quenches, where a system is moved
from a single phase state, to below the critical temperature Tc, such that it is in a metastable
region (left arrow), or an unstable region (right arrow), with a supersaturation δφ ≡ φ− φs0.

is set by competition between a stabilizing bulk term, and a destabilizing surface
term and thus a property of the free energy of the system. Once these critically sized
droplets are formed, the system then coarsens through droplet growth and eventually
Ostwald Ripening to its final equilibrium state; which for a finite system, would be
a single droplet of a specific size set by the free energy and initial supersaturation
of the system. This nucleation of critically sized droplets, and growth behavior is
in distinct contrast to the kinetics of the spinodal region (see right arrow in fig.
1.5), where fluctuations of all orders of magnitude occur in the formation of the new
phase, and no critical size is observed [64].

Equilibrium Description of a Binary Fluid

To give a continuous description of a binary fluid, we follow the Cahn-Hilliard for-
malism [10]. We assume a “nonuniform” system with a small composition gradient
as compared to the inverse of the intermolecular distance, such that φ and its gradi-
ents can be considered independent variables. To a first order approximation about
f(φ), the free energy of the system is given by the Ginzburg-Landau free energy
functional,

F [φ] =

∫
d3r

(
1

2
K (∇φ)2 + f (φ)

)
, (1.3)

where f(φ) is the free energy density for a spatially uniform state (which will be
discussed shortly). The gradient term is the 1st order correction from the uniform
state, which accounts for short range molecular interactions, and higher order terms
have been ignored.
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This is a coarse-grained free energy which can be derived in multiple ways with
respect to the microscopic variables of the system [35]. We consider a system with
microscopic states, {φα}, such that the probability to be in the state, {φα} is given
by the Boltzmann distribution,

P{φα} = e−H{φα}/kBTZ−1, (1.4)

where H{φα} is the Hamiltonian as a function of the microscopic variables, and Z is
the partition function. A common method to define the course-grained free energy,
suggested by VanKampen (1964) [35], is to divide the system into semi-macroscopic
cells, where φi is the average volume fraction of cell i,

φi = L−1
∑
α∈ i

φα (1.5)

and is defined as the volume fraction at the center of the cell, where the continuous
volume fraction, φ(ri) ≡ φi at the center of the cell. Then choosing a proper cell
edge size L, such that φ(r) varies slowly over the cell length, allows us to write a
coarse grained free energy, such that this new probability distribution for some state
φi is,

e−F [φi]/kBT ≡
∑

e−H{φα}/kBT , (1.6)

where the summation is over all constrained microscopic configurations {φα} con-
sistent with the state φi.

Since these microscopic variables are still for practical purposes intractable, they
are ignored [44]. The coarse grained free energy is assumed ad-hoc to have the Cahn
Hilliard form as initially stated, equation 1.3, with an additional requirement on the
free energy density, f(φ); that for a two phase system, below the critical point, the
free energy density is required to have two minima. This is commonly presented as
[31],

f(φ) = −1

2
aφ2 +

1

4
bφ4 + . . . , (1.7)

where f(φ) is usually cut off at the 4th order term, and the parameters of the free
energy are phenomenologically fit to experiment. It is also possible to choose some
energy density that satisfy our requirements, such as the regular solution, which was
the initial free energy density analyzed by Cahn and Hilliard [10], or as in our case,
the Flory-Huggins energy (see Appendix B).

To understand the dynamics of binodal growth, we start first by examining the
equilibrium state of a two phase system. In a system near or at equilibrium, con-
centration gradients within the bulk of the system become negligible. In addition,
we assume that the size of each phase is significantly larger than the width of the
interface between them. The thickness of the interface is thus neglected, and the
gradient across the interface replaced by a surface tension parameter, γ. The free
energy of this system can then be written as a piecewise addition of the free energy
of each phase and interface. Thus, the free energy for a system with a single droplet
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0 1φ

f

Figure 1.6.: Sample free energy density below the critical point, symmetric with two minima.

would be the energy of a droplet phase of volume fraction φ1 and radius R, and a
solution phase of volume fraction, φ0, and volume V0 is,

F (φ1, R) = V0f(φ0) + 4/3πR3f(φ1)− 4πR2γ, (1.8)

where the first two terms on the right hand side refer to the bulk free energies of the
solution and droplet phase respectively, and the final term is the interfacial energy
between two phases. For a closed system with total volume V , and initial volume
fraction φ̄, the solution volume V0, and solution volume fraction φ0, are dependent
variables due to conservations of volume and molecule number,

V0 = V − 4/3πR3 (1.9)

φ0 =
(
φ̄ V − φ14/3πR3

)
/V0. (1.10)

The global parameters, V and φ̄, with the free energy, are then sufficient to determine
all the equilibrium properties of the system. By allowing the system to relax with
respect to droplet size and volume fraction, that is,

∂F

∂φ1

= 0 (1.11)

∂F

∂R
= 0 (1.12)

the critical size and equilibrium properties of the system can be determined from
the conditions3,

µ1 = µ0 (1.13)
2γ

R
= f(φ1)− f(φ0)− µ1(φ1 − φ0), (1.14)

3Although it appears that one could determine R from basic algebra, depending on the form of
f(φ), equation (1.14) is quite often an implicit equation for R with no analytical solution.
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where the chemical potential, µ, is defined as,

µ0 =
∂f

∂φ

∣∣∣
φ=φ0

; µ1 =
∂f

∂φ

∣∣∣
φ=φ1

. (1.15)

A graphical representation of the minimization conditions, eqns. (1.13) and (1.14),
are shown in figure 1.7. The equilibrium volume fraction along a flat interface
(droplet of infinite size) defines the saturation volume fraction, φs ≡ φ0(R → ∞),
shown in the left plot, and corresponds to φs0 on the phase diagram in figure 1.5. For

0.4 0.6 0.8 1.00.2
φ

φ̄

φ1

2γ

R

f(φ)

0.2 0.4 0.6 0.8 1.0

φ̄

φs φs
1φ

(a) (b)

= φ0(R→∞)
φ0

Figure 1.7.: Graphic representation of the equilibrium conditions, equations (3.11) and (3.12),
along a sample free energy density double well f(φ). For some starting volume fraction φ̄, the
system relaxes to a minimum free energy state, which is a linear combination of the 2 phases,
solution and droplet, corresponding respectively to the left and right wells. a) In the case of an
infinite size droplet (R → ∞), this figure is the well known Maxwell Diagram. The solution is
represented by a single line close to the minima of each well, which defines the saturation volume
fraction of the system, φs (shown as green squares). For a finite size drop, b) the minimum volume
fractions, φ0 and φ1, are shifted by a factor dependent on the surface tension and the equilibrium
droplet size, the lines through both points are still parallel.

finite size droplets, both φ0 and φ1 are shifted due to the Laplace pressure (2γ/R)
generated by the surface of the droplet, figure 1.7b. Comparison of φs, and φ0 for a
finite size droplet at equilibrium, demonstrates the competing effects between bulk
and surface. Although the system may be supersaturated, δ > 0, and thus the lowest
energy configuration is a two phase system, formation of a stable droplet phase can
only occur by overcoming the destabilizing surface effects, i.e. forming a droplet of
at least critical size, where initially δ must be greater than the equilibrium φ0.

This critical size is a local maximum in the free energy, which can seen by plotting
the free energy for some fixed φ1 (fig.1.8a). Thus equation (1.12) can be solved for
the critical size,

Rc =
2γ

f(φ1)− f(φ0)− µ(φ1 − φ0)
;

(
where

∂2F

∂R2
< 0

)
, (1.16)

where µ (without indices) is chemical potential of the system at equilibrium. Using
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F
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R1

F
(a) (b) R2

Figure 1.8.: Free energy with respect to drop size, for fixed volume fraction. The red and yellow
points(lines) refer to the droplet size(s) at the energy extrema; the critical size and the equilibrium
size, respectively. (a): Free energy for a single droplet. The critical size corresponds to the energy
barrier that must be crossed to form a stable droplet. (b): Free energy landscape for 2 droplets

with sizes R1, R2. The equilibrium size, where the size of both droplets are equal, i.e. dF (R,R)
dR = 0,

is a saddle point, with ∇F pointing radially, and the global minimum is at F (Req, 0) and F (0, Req).
There is also a saddle point at F (Rcrit, 0), where ∇F is in the θ direction. This point corresponds
to the red point on plot (a), and is lowest energy barrier that must be crossed be to form a stable
droplet. Black lines correspond to fixed R and θ in polar coordinates to assist in reading the plot.

the same formulation as equation (1.8), one can write the free energy for a two
droplet (or multi-droplet) system, F (φ1, φ2, R1, R2) close to equilibrium. Fixing
both volume fractions, and plotting the free energy as a function of the two droplet
sizes, figure 1.8(b), insight can be gained into the multi-droplet problem. Although
there is still a valid equilibrium size, it can be observed that there is a saddle point
at the equilibrium size where R1 = R2. Thus, one can see that a two-droplet system
is in fact never stable, and the absolute minimum of the free energy lies at the point
where one of the radial coordinates goes to 0. This saddle point is due to the surface
tension γ, and for the (hypothetical) case of no surface tension, the minimum of the
free energy would in fact be the entire yellow curve in figure 1.8(b). Although this
is not as easily shown graphically for the more general multi-droplet case, the fact
still holds; due to surface tension, a single droplet is the absolute minimum of the
free energy, and thus the lowest energy state of the system.

Kinetics of a Binary Fluid

There is to this to this day no single model that can accurately describe all aspects
of first order phase transitions in binary fluids, particularly far away from the critical
point. Thus, many phenomenological models exist to describe different aspects of
phase transitions away from the critical point, e.g. for spinodal decomposition [31].
In the binodal region, a mean-field approach has been rather successful in describing
the kinetics of a binary fluid. As mentioned before, the dynamics of the phase
separation of a new “minority” phase can be described by the processes of nucleation
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and growth. Nucleation is the formation of a solute droplet of critical size through
thermal fluctuations of molecules, and growth is the diffusion limited growth of each
droplet by the influx of solute molecules. Using a mean-field approach, the rates for
nucleation and growth can be determined with respect to observable thermodynamic
parameters and bulk transport coefficients [44].

This system can be described by a general dynamic model with a continuity
equation for the probability distribution functional [41],

∂

∂t
ρ(φ; t) = −

∫
d3r

δJ

δφ(r)
(1.17)

J(r) = −∇ ·D∇
(

δF

δφ(r)
ρ+ kBT

δρ

δφ(r)

)
, (1.18)

where J(r) is the probability current, D is the diffusion, which can be dependent
on φ, and δF is the functional derivative of the coarse grained free energy, which
is the aforementioned Landau-Ginzburg free energy, eqn.(1.3). We approximate the
probability current to be the first moment of eqn.(1.17) [42] . The density fluctua-
tions in φ, which is replaced by a Gaussian noise term in the Langevin formulation,
disappears, such that the probability current is

J(r) = −D∇2 δF

δφ
, (1.19)

making the first moment to be,

∂

∂t
〈φ(r)〉 =

∫
δφ φ(r)

∂ρ

∂t
=

∫
δφJ(r) = ∇ ·

〈
D∇δF

δφ

〉
. (1.20)

If the distribution in the above equation is infinitely sharp, this equation becomes,

∂φ

∂t
= −∇ · j (r) (1.21a)

j (r) = −D∇δF
δφ
, (1.21b)

which is referred to as the Cahn-Hilliard equation. The local chemical potential is
then defined as,

µ(r) =
δF

δφ(r)
. (1.22)

With the addition of Gaussian white noise, due to thermal fluctuations, equa-
tion (1.21) is the Langevin equation equivalent to the previously stated mean-field
Fokker-Planck formulation, equation (1.17). Without a thermal noise term, the
magnitude of the equilibrium order parameter is reduced. Since thermal fluctua-
tions are negligible on the large scale, we can use a renormalized potential which
takes into account this reduced magnitude, and continue to works with the “noise-
free” Cahn-Hilliard equation [8].
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Droplet Nucleation in a Binary Fluid

Nucleation is the formation of a stable new phase, due to concentration fluctuations
within the medium. Droplet nucleation in a fluid can be either homogeneous or het-
erogeneous. In homogeneous nucleation, formation occurs purely through random
fluctuations, which bring a sufficient amount of material together such that a sta-
ble droplet of critical size is formed. Heterogeneous nucleation, on the other hand,
occurs through this localization around some impurity (seed) within the system.
Although in real world scenarios heterogeneous nucleation is the more commonly
observed phenomenon, with rates orders of magnitude larger than those observed
for comparable homogeneous nucleation events [5], only homogeneous nucleation ex-
ists in a binary fluid. The theory of nucleation as presented here, is a field theoretic
approach, for small supersaturation within a binary fluid. This section is a simpli-
fied synopsis of the work of Langer [42], presented in a similar manner as Gunton
[31], with recent corrections [30, 57, 72].

To study nucleation, we again consider a quenching experiment: A single phase
system at equilibrium which is then quenched into the binodal region, such that the
free energy density becomes a double well, and the free energy landscape is similar
to the one presented in figure 1.8. Now in a metastable state, the system, without
any external forces or internal thermal fluctuations, will stay at its local minimum.
The formation of a second state requires that an energetic barrier to be crossed.
What is shown in figure 1.8(b), for the two droplet free energy (and implied for
multidimensional R−space), is that the point (Rc, 0), is a saddle point in R−space.
That is, it is the lowest energy barrier needed to be crossed for the formation of a
new droplet. This saddle point does not literally have to be in R−space as shown
here, but more generally, in the configuration space of the free energy. The gist of a
nucleation field theory is thus, the probability current to cross this saddle point is
relative to the probability of nucleation.

The stationary equilibrium solution to the previously stated Fokker-Planck equa-
tion, eqn. (1.17), has the form,

ρ[φ] ∝ e−F [φ]/kbT . (1.23)

To create a stable droplet, the probability current must flow through the aforemen-
tioned saddle point, φ∗. An artificial steady state current is created at φ∗ by keeping
the distribution function at equilibrium on the metastable side of the barrier, and
at ”0” on the stable side of the barrier. This is done by imposing certain boundary
conditions: all drops of larger than Rc are removed as they are created, and the
metastable side is continuously replenished. The steady state distribution at the
saddle point is then,

ρ[φ] = E[φ]e−F
∗[φ]/kBT . (1.24)

The free energy can then be expanded about the saddle point, and the steady state
flux from equation (1.17) is used to determine ρ in proximity of the saddle point
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[42]. This distribution is then used in the full, non-stationary flux equation (1.17),
to determine the nucleation rate [58],

J =
1

τ
Ω0e

−∆F ∗/kBT . (1.25)

The term τ , is the time scale for the macroscopic fluctuations, Ω0 is the volume of
phase space accessible for fluctuations, and e−∆F ∗/kBT is the Boltzmann probability
factor for the nucleation of a droplet of size Rc.

We can write these quantities in dimensionless variables by using the capillary
length lc, and the characteristic time tc [58],

lc ≡ (d− 1) vbγ/kBT (1.26)

tc ≡ l2c/(Dφ
svb), (1.27)

where d is the number of dimensions, andD is the monomer diffusion coefficient. The
nucleation energy can be written in dimensionless parameters using the time depen-
dent supersaturation, and the dimensionless parameter, (δ0)d−1 = vγld−1

c (φ1 − φs)/kBT ,

where v = πd/2j

Γ(d/2+1))
,

∆F ∗

kBT
=

(
δ0

δ

)d−1

(1.28)

In three dimensions, δ0 is typically of order one (see Gunton for exact value [31]). The
total nucleation rate, per unit time, per unit volume can be written in dimensionless
coordinates in three dimensions as [58],

J = A

(
δ

δ0

)2/3

β exp

[
−
(
δ0

δ

)2
]
, (1.29)

where the constants are, β = (1 + δ/δ0)3.55, and A = 3(δ0)6/(4π).

Growth

After the formation of droplets through nucleation, the minority phase grows in size
until the system reaches equilibrium through a process called coarsening. This can
occur in two different ways, by coagulation, the fusion of droplets to form larger
drops; and droplet growth, the flow of monomer components into droplets. We
neglect coagulation and focus on growth.

As mentioned in the prior section, only droplets larger than a critical size grow
where the stabilizing bulk phase of a droplet dominates over the destabilizing sur-
face tension. In effect, droplet growth is driven by the curvature of the droplet.
Monomers flow into droplets of low curvature, R > Rc, and flow out of droplets
with a large curvature R < Rc. For short times after nucleation, when the level of
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supersaturation is high, most droplets tend to be larger than the critical size and
grow 4.

As the system coarsens, it eventually reaches levels of low supersaturation, where
the average drop size, 〈R〉, continues to increase, while the number of drops, N(t),
decreases, through a process called Ostwald ripening. In this regime, larger drops
grow at the expense of smaller drops, leaving the systems supersaturation effectively
constant. The theory to describe this process, Late Stage Growth (LS growth) was
initially developed by Lifshitz and Slyozov [46], and Wagner [80] in the early 1960s.
Ostwald ripening has been a heavily studied phenomenon, both experimentally [47]
and theoretically [44, 82].

LS theory is one of the few well established theories within first-order phase tran-
sitions [31, 43, 82, 45]. It describes the limiting case of small supersaturation, in
which the minority phase (droplet) is purely 1 component, and the component of
the minority phase tends to zero in the cytoplasm, i.e. δ � 1, φ1 = 1, φ0 → 0.
The last condition implies that the droplet density is low enough such that direct
droplet-droplet interactions can be neglected. The theory is based on three cou-
pled equations which describe the droplet growth rate dR

dt
, the time evolution of the

distribution function, f(R, t) and the conservation of solute molecules.
LS growth occurs after the formation of the droplet phase, φ is close to equilibrium,

and thus diffusion gradients are negligible. The diffusion equation, which can be
obtained from equation (1.21),

∂φ

∂t
= D∇2φ (1.30)

approaches the steady state limit,

∇2φ = 0. (1.31)

At the timescales of interest, the droplet is considered to be spherical due to in-
terfacial tension, and surface fluctuations are negligible. Also, the interior and the
exterior of the droplet are considered to be in a local thermodynamic equilibrium,
equivalent to the statement that equations (1.11),(1.12) are valid on the interior and
exterior boundary of the droplet with some radius R. This local equilibrium fixes
the exterior volume fraction, with respect to the equilibrium energy of the system,
and the droplet curvature,

φR ≡ lim
r→R+

φ(r) = φs +
2γ

Rf ′′∆
, (1.32)

where ∆ ≡ φ1 − φs, and f ′′ is the curvature of the free energy density at φs.
This is referred to as the Gibbs-Thomson boundary condition. It should be noted
that the Gibbs-Thomson boundary condition and the diffusion equation are the

4This is statement is somewhat of an over generalization, the regime where all drops grow, is heav-
ily dependent on the nucleation rate, and can be nonexistent in the case where the nucleation
sufficiently depletes the supersaturation, see e.g. Sagui et al.[58]
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sufficient conditions that induce droplet growth. The curvature, 1
R

, is the driving
thermodynamic force, conjugate to the free energy of the surface. This force moves
to minimize the surface area, but since drops are already spherical during Ostwald
Ripening, material cannot just reorganize on the droplet, but must move through
the system to other droplets by diffusion. At steady state, diffusion propagation
gives an additional 1/R factor. Thus for an overdamped system, where force is
proportional to velocity, using phenomenological arguments, one would expect,

dR

dt
∝ 1

R2

and thus the droplet scaling during LS growth would be,

R ∝ t1/3.

To carry out this calculation, we require one additional boundary condition, far
from the droplet, φ converges to the average cytoplasmic volume fraction,

lim
r→∞

φ(r) = φ0. (1.33)

The radially symmetric steady state solution to the diffusion equation, eqn.(1.31)
is,

φ(r) = φ0 −
R

r

(
φ0 − φR

)
. (1.34)

Balancing the flux on both sides of the droplet surface, by setting the steady state
diffusion j(R) = −D∂Rφ to the droplet growth, gives the deterministic droplet
growth rate (see Appendix C),

dR

dt
=
D

R

1

φ1 − φR
(
δ − 2γvb

Rf ′′∆

)
. (1.35)

Setting this equation to zero, one can calculate the time dependent critical radius,

Rc(t) =
2γvb

f ′′∆δ(t)
(1.36)

The growth rate is then,

dR

dt
=
D

R

2γvb

f ′′∆(φ1 − φR)

(
1

Rc(t)
− 1

R

)
, (1.37)

with respect to the time dependent critical size, consistent with the previously given
phenomenological 1/R2 behavior. In dimensionless variables, the critical radius,
Rc/lc, is,

Rc(t) =
1

δ(t)
, (1.38)
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which shows that the critical size increases and eventually diverges as the supersat-
uration tends to 0. We define a droplet distribution function, f(R, t), such that for
some quantity A, the expectation is,

〈A〉 =

∫
dR f(R, t)A∫
dR f(R, t)

, (1.39)

with the normalization that, ∫
dR f(R, t) = N(t), (1.40)

where N(t) is the total number of drops. From the distribution, we determine
the other two equations for LS theory, the continuity equation for the distribution
function [46],

∂f(r, t)

∂t
+

∂

∂R

(
dR

dt
f(R, t)

)
= 0 (1.41)

and the conservation of particles,

δ +

∫
dR

4π

3
R3f(R, t) = φ̄V (1.42)

From the asymptotic limit of coarsening, the average droplet scales as,

〈R(t)〉3 =
4

9
Dαt (1.43)

where α = 2γ/µ. This is the same scaling determined through only phenomenologi-
cal argument. With new work on this scaling behavior [76, 74, 75], the general form
of R is determined to be,

〈R(t)〉3 = 〈R(0)〉3 +K(φ)t (1.44)

where K(φ) is a monotonically increasing function of φ, called the coarsening coef-
ficient. Related to the average size, through the conservation equation (1.42), the
scaling for the number of droplets follows,

N(t) ∝ t−1. (1.45)

Using the continuity equation, eqn. (1.41), Lifshitz and Slyozov were also capable
to calculate an analytical asymptotic distribution function [46],

f(R, t) = g(z)/ 〈R〉4 (1.46)

where the scaled quantity z = R/ 〈R〉 converges as t→∞, to the scaled normalized
distribution function,

g(z) =

 34e
25/3

z2 exp

( −1

1− 2
3 z

(z+3)7/3( 3
2
−z)

1/3

)
; z < 3

2

0; z > 3
2

Quite impressively, this distribution g(z) (figure 1.9) and scalings were calculated
prior to the advent of computers, and have been reliably measured in both numerical
and experimental settings.
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Figure 1.9.: Normalized Scaled distribution function, g(z), from LS theory, where z ≡ R/ 〈R〉 is
scaled droplet size.

1.3. Overview of This Work

This work is a theoretical study of how compartmentalization of cellular components
occurs within the cytoplasm of a developing embryo with the influence of a protein
gradient. A theoretical approach is combined with biological experiments to study
a system within the C. elegans embryo which use gradients to organize.

In the single cell embryo, a gradient of the protein Mex-5 along the anterio-
posterior axis of the cell is required to localize germ granules (referred to as P
granules within the C. elegans) to one side of the cell. This gradient adds a spatial
dependence to the saturation point of a 1st order liquid-liquid phase transition.
This spatially changing saturation point, in turn, causes P granules to preferentially
condense and grow in the posterior of the cell, while simultaneously shrinking and
dissolving in the anterior of the cell.

In chapter 2, we analyze experimental data of P granule behavior in order to
identify the driving forces of the segregation process. The data shows the primary
factors that lead to P granule localization, liquid properties of the granules, and the
spatial effects of the Mex-5 gradient and how it effects P granule growth dynamics.

Based on the experimental data from the prior chapter, a theoretical model
for granule segregation is developed in chapter 3. The system is described as a
metastable binary fluid which undergoes a 1st order liquid-liquid phase transition.
In accordance with prior studies in this field, dynamic equations for granules are
given, which include nucleation, diffusion, fusion, and individual granule growth
dynamics. An additional level of complexity is added to the system by allowing
each term to have either an intrinsic or extrinsic spatial dependence, due to the
Mex-5 protein gradient. A mean-field approach is used to analyze the now inho-
mogeneous background field. This theoretical model is based on previously studied
droplet growth models, with the addition of a spatial growth dependence due to the
gradient, and the inhomogeneous background field.
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To study the properties of the theoretical model, Langevin dynamic simulations
were performed. Two new types of behavior are observed due to the spatial gradient:
an initial slow growth regime, and a cyclical steady state where nucleation can occur
at late times. The analyses of these two behaviors are presented in chapter 4.

In chapter 5, the theoretical model is used to analyze the P granule system.
Simulations are performed which emulate P granules at the first and second cell
divisions. Through these simulations, the growth behavior of P granules are studied,
and better estimations of P granule properties are determined.

The work presented here has been accomplished in close collaboration with exper-
imentalists, whose data and results have heavily influenced and guided the direction
of this thesis. Thus, a significant amount of this experimental work has also been
included here. All experiments on the P granule system have been performed by
Doctor Clifford T. Brangwynne, from the lab of Anthony Hyman, at the Max Planck
Institute for Cellular biology and Genetics (MPI-CBG).



2. Germ Granule Segregation in the
C. elegans Embryo

The segregation of germ granules has been a topic of much interest for scientists
since their discovery. In the C. elegans worm, germ granules are referred to as P
granules. As mentioned in the introduction, the strongest impetus so far to learn
more about P granules, has been their localization behavior.

A general overview of the process to be studied is presented in figure 2, which
shows an image of the segregation of the P granules (in green) during the 1 cell stage
of the C. elegans embryo. The times shown are with respect to pro-nuclear meeting
(pnm). Initially the maternally derived P granules are evenly distributed throughout
the cell. Once the symmetry of the cell is broken, the P granules start localizing
to the posterior (right) side of the cell as the maternal and paternal pro-nuclei (red
circles) approach each other. A short time after the pro-nuclei have joined, the P
granules are completely localized to the posterior side.

In prior works, two processes, which can be complementary, have been proposed
to segregate P granules to the posterior side of the cell:
1) After symmetry is broken in the single cell embryo, PAR polarity proteins organize
on the cortex of the cell, these PAR proteins induce contractions along the acto-
myosin cortex which then generate cytoplasmic flow to the posterior of the cell.
This flow is then thought to move the germ granules to the posterior side of the
cell [34, 33, 11] and 2) The remaining P granules in the anterior of the cell are then
degraded or disassembled [33, 11, 14, 68, 83].

Although some evidence for these processes have been observed, they have not
been conclusively studied. In this chapter, experimental results are presented giving
details of the properties P granules and dynamics of their segregation. This material
will then be further utilized in the next chapter to develop a theoretical model of
germ granules.

This chapter is heavily based on the paper by Brangwynne et al., 2009 [6]. All
experiments were performed by Dr. Clifford T. Brangwynne.

To observe the size and position of P granules, experiments were performed which
entailed the observation of the protein PGL-1, tagged with green fluorescent protein
(GFP::PGL-1). As PGL-1 is a constitutive component of P granules [36, 37], it is
reasonable to assume that the granules follows similar dynamics as PGL-1. Typically
one should perform correlation experiments to demonstrate that the GFP intensity is
in fact proportional to the protein concentration. These experiments, in vivo, can be
disproportionately demanding, and so are often not, or cannot be, done. To vindicate
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the assumption that GFP correlates with PGL-1, and that PGL-1 correlates with
P granule size, similar experiments were performed using other essential P granule
proteins, e.g. GFP::GLH-1 [6].

2.1. Mechanism of Localization

-8.3 min.

-6.2 min.

-4.2 min.

-2.1 min.

pnm = 0 min.

+2.1 min.

Figure 2.1.: P granule segregation
in the 1 cell stage of the C. elegans
embryo. GFP labeled PGL-1 (green),
a P granule protein, overlaid on a DIC
image (red). Time is with respect to
pnm. Brangwynne et al.(2009)

The bulk cytoplasm can be considered an incom-
pressible fluid. This entails that the divergence of
the velocity field must vanish: ∇ · ~v = 0, where
~v is the velocity field of the bulk cytoplasm. As
a consequence of this incompressibility, cytoplas-
mic material that flow into the posterior of the cell
must also be accompanied by an equal amount of
flow out of the posterior, to ensure conservation
of volume. This means that any flow of material
which segregates due to the bulk flow, must ex-
hibit deviations from the cytoplasmic flow field,
i.e. if P granules localize to the posterior by flow,
they must exhibit different flow behavior as com-
pared to the bulk cytoplasm, possibly due their
binding of local posterior structures.

Movies of the cell cytoplasmic flows were made
using differential interference contrast (DIC) mi-
croscopy (see fig.2.2 left), the bulk flow fields
were measured using particle imaging velocime-
try (PIV). Comparison of bulk field flow and P
granule flow (fig.2.2 right) show similar behav-
ior. Measurements were also made using 3D par-
ticle tracking of fluorescently labeled P granules
(GFP::PGL-1), shown in figure 2.3. Again, in a
similar fashion to the cytoplasmic bulk flow, gran-
ules flow to the posterior in the interior of the cell
and flow back to the anterior in the region close to
the cortex (fig.2.3b), exhibiting no net movement
of P granules (fig.2.3c). Even though granules are
affected by advection, there appears to be no net
flux of P granules due to cytoplasmic flow, thus
making it and unlikely cause for P granule segre-
gation.

In addition to experiencing advective motion, P granules undergo dynamic changes
of size. Figure 2.4 shows the growth dynamics P granules. Each trajectory represents
the size of an individual P granule, where the color denotes its spatial position. The
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Figure 2.2.: Flow fields: (left) DIC image with bulk cytoplasmic flow, the 2-D vector field is
generated using PIV tracking, as compared to (right) P granule flow: Maximum intensity projection
of confocal stacks of GFP::PGL-1, P granules, in the one cell embryo during symmetry breaking;
first frame -8.12 minutes pnm, last frame -3.5 minutes pnm. P granules in center move towards the
posterior (red arrow), and P granules near the cortex move towards the anterior (green arrows).
GFP::PGL-1. Brangwynne et al.(2009)

A B C

Figure 2.3.: 3D particle tracking of P granules. A) Overlay of P granule trajectories (white) from
five GFP::PGL-1 embryos. Trajectories that cross the midplane (yellow line) into the posterior
are marked in red, while into the anterior are marked in green. B) Probability distribution of the
location perpendicular to the AP axis of P granules crossing the midplane into the anterior (green)
vs. the posterior (red). P granules tend to move from the anterior to the posterior in the center
of the cell, while they move in the opposite direction closer to the boundary of the cell. C) The
average flux per embryo. N = 5, error bar shows the standard error of the mean. Brangwynne et
al.(2009)
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Figure 2.4.: Tracking the sizes of individual P granules. Trajectories correspond to the integrated
particle intensity (GFP::PGL-1) of distinct P granules over time. Colors refer to the location of
the P granule within the embryo; blue are ones in the anterior, black is from the center (omitted
for clarity), and red are P granules in the posterior. Brangwynne et al.(2009)

total integrated intensity of GFP::PGL-1 within the granule is plotted as a function
of time. Assuming that the total integrated intensity GFP::PGL-1 is proportional
to the size of the P granule, the plot shows the relative size of individual P gran-
ules. Prior to the symmetry breaking of the cell, all granules decrease in size. At
approximately 6.5 minutes prior to pnm the dynamics change; as the granules in the
anterior of the cell continue to shrink, the ones in the posterior start to grow, i.e.
P granules initially exhibit uniform diminution, but then convert to a state where
they exhibit asymmetric growth.

By measuring the average P granule material in each region (figure 2.5), one
sees that P granule material throughout the cell (in cytoplasm and P granules) is
initially homogeneous, and continues to be so throughout the period that P granules
exhibit uniform diminution. Once P granules exhibit asymmetric growth, P granule
material becomes localized to the posterior and depleted in the anterior. Binning
granules with respect to their position along the AP-axis, one sees (see red curve,
fig. 2.6) a net growth of P granules in the posterior and a net decay in the anterior of
the cell. This data suggests that localization of P granule material to the posterior
is associated with asymmetric growth.

Disruption of gene activity through RNA interference (RNAi) is a useful tool to
perturb biological processes. The relationship between growth and flow are fur-
ther examined by RNAi. Both PAR-1 and SPD-5 are essential proteins involved
in symmetry breaking of the cell. Generation of cytoplasmic flows and the transi-



Chapter 2. Germ Granule Segregation in the C. elegans Embryo 27

Figure 2.5.: Average fluorescence intensity of GFP::PGL-1 in the anterior and posterior of the cell
over time, with respect to the onset of asymmetric growth (shown in figure 2.4), Data is normalized
by the initial values of each region. Brangwynne et al.(2009)

Figure 2.6.: Intensity change of GFP::PGL-1 (growth rate) as a function of position. The cell
is binned into 5 equal bins along the AP axis. Data is shown for the wild type (red), and several
RNAi conditions noted on the figure. Brangwynne et al. (2009)
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tion of P granules from uniform diminution to asymmetric growth, are events that
require symmetry breaking, and are thus prevented by RNAi of either protein. Fig-
ure 2.6 shows the growth rate of P granules for different RNAi conditions. Both
par-1(RNAi) (green) and spd-5(RNAi) (black) show that P granules continue to
decrease in size across the entire cell, as compared to the wild type (red) for the
same time, which undergoes asymmetric growth. Interestingly, there is a delightful
nuance to spd-5(RNAi) which provides an additional detail to the P granule local-
ization problem. As opposed to par-1(RNAi), which completely abolishes symmetry
breaking, Spd-5(RNAi) only delays it. This delay allows for all granules to shrink
until they completely disappear. Once symmetry breaking does occur, a delayed
growth phase is observed in which there is de novo formation and growth of P gran-
ules the posterior of the cell. spd-5(RNAi) exhibits a much sharper initial growth
rate (fig. 2.7), which then slows down and exhibits behavior similar to the wild type.
Delayed symmetry breaking by spd-5(RNAi) suggests that flow is not necessary for
P granule localization, and that preferential formation and growth is sufficient to
accomplish the task. This reinforces the prior experiments; P granules and P granule
material localizes to the posterior of the cell through spatially preferential growth
of P granules, where advection has a negligible effect on the process.

Figure 2.7.: % Intensity change (growth rate) of GFP::PGL-1 in the posterior of the cell after
symmetry is broken, wild type (red), and spd-5(RNAi) (black). Brangwynne et al.(2009)
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2.2. Properties of Germ Granules

With a reasonable understanding of the dynamics of the P-granules, one must now
dive into the physical properties of these membrane-less organelles to gain further
insight in to how localization of P granule material can occur through growth, and
to determine physical parameters which will be of interest to the theory presented
in the next chapter.

P granules exhibit liquid droplet like properties in a system with shear induced
flow (see supplemental material of [6] for movies): Individual P granules appear
round, when two of them fuse (which is commonly observable), the new, larger P
granule rounds out to a spherical shape. In later cell stages, when P granules localize
to the surface of the nucleus, they exhibit wetting behavior. In the induced flow
system, they can be seen “de-wetting” from the nucleus and even the fission of two
smaller spherical P granules can be observed.

As this thesis is more focused on the theoretical study of P granules and their
dynamics, details of additional experiments demonstrating the liquid droplet like
properties of P granules will not be presented here, only the basic elements have
been presented to be incorporated into the theory. The reader is encouraged to
reference Brangwynne et al. [6] for a more comprehensive analysis of the subject.
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Figure 2.8.: Photo Bleaching of a P granule which is attached to the nucleus of the cell at the 8
cell stage, and kymograph of its recovery. Brangwynne et al. (2009)

2.2.1. Diffusion of Granule Components

Using FRAP (Fluorescence Recovery After Photo-bleaching) of GFP::PGL-1 within
the P granule, the fluorescence recovery time, τ , the elapsed time required for the
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photo intensity of the area to recover half of its original intensity, was measured
(see figure 2.8). With the relation, D = A/τ where A is the area which was photo-
bleached , the diffusion coefficient of GFP::PGL-1 was determined, D ≈ 2µm2/s.

Using tracking data, the mean squared displacement of P granules of different
intensities were measured (figure 2.9), as per the method described in appendix A.
Using a linear fit, the diffusion coefficient of each set of intensities was determined.
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Figure 2.9.: Diffusion of P granules. Measurement of the mean squared displacement of P granules
of different intensities. P granules were binned with respect to their effective intensity (see appendix
A.2). Only the three smallest (of 10) bins are shown, since there were not a sufficient number
of P granules in the larger bins to quantify. The standard deviation for each point is between
200%− 400% of the mean value, error bars were left out for the purpose of clarity.

Due to the lack of sufficient experimental data, this comparison of diffusion coeffi-
cients is more a qualitative comparison. Considering this, and the assumption that
the intensity is proportional to P granule volume, the data still supports the obser-
vation that P granules are in fact spherical, where their diffusion appear to obey the
Stokes-Einstein relation, i.e. D ∝ 1

R
; or more specifically, (〈I〉1/3 ·D) ≈ constant.

Applying the Stokes-Einstein relation in the same manner to see what size a P
granule with the diffusion coefficient of Pgl-1 (2µm/s) would have, we see that it
would be roughly 100th the size of the smallest observed P granules. The smallest
observed granules are within the order of .1−1µm, this places Pgl-1 at the 1−10nm
scale. For a 700 amino acid long protein, this is reasonable.
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2.3. Effects of the Mex-5 Protein Gradient on Growth

What causes P granules to initially shrink, and what then causes them to later
grow asymmetrically? Mex-5 is an RNA associated protein that is known to co-
localize with P granules [22]. Concurrent with the change of growth behavior and
localization of P granules, Mex-5 undergoes a transition where it is initially ho-
mogeneous throughout the cell, to forming a gradient across the embryo (fig.2.10).
The formation of this gradient is particularly interesting, considering that there is

Intensity [a.u]0 1

Pre-Symmetry Breaking Post-Symmetry Breaking

Figure 2.10.: Mex-5::GFP intensity profile. Prior to symmetry breaking, (left) Mex-5 is homoge-
neous throughout the cell. After symmetry breaking (right), Mex-5 has a concentration gradient,
with high concentration in the anterior of the cell. C.P.Brangwynne

no source (protein translation) or sink (protein degradation) at work so early on
in embryogenesis. It has been shown that this gradient can form with a diffusion
reaction mechanism, where there exist two forms of Mex-5 with different diffusion
coefficients [28]. There is a slowly diffusing Mex-5, which once phosphorylated con-
verts into a fast diffusing protein. It has been suggested that this could be due to
the unphosphorylated form interacting with the cytoskeletal structure of the cell, or
other large molecular complexes to effectively lower the diffusion of Mex-5 [73].

Allowing the embryo to undergo symmetry breaking, but preventing the formation
of the Mex-5 gradient by RNAi (blue curve fig.2.6), also prevents P granules to
transition to asymmetric growth. Uniform diminution continues in a similar manner
as if symmetry breaking never occurred. Thus the Mex-5 gradient is necessary for
P granule asymmetric growth. We postulate that the Mex-5 directly effects the
stability of P granules, and that higher concentrations Mex-5 allows P granules
to break down within the cytoplasm, while at lower concentrations, where Mex-5
localization to P granules is still observed, the concentration is not sufficiently to
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induce their breakdown.

2.4. Chapter Summary

In conclusion, P granules are liquid like droplet structures which travel through the
cytoplasm by advection and diffusion. P granules that touch, can fuse into a single
larger droplet (rounded) body. Through induced shear, they can also fission into
smaller droplets.

Although affected by convection, P granules localization occurs through their
asymmetric growth. Initially they are found in uniform concentrations throughout
the cell and decreasing in size, but certain mechanisms cause the P granules to
preferentially form and grow in the posterior while simultaneously diminishing in
size in the anterior. This asymmetric growth leads to the localization of both P
granules and the P granule material into the posterior of the cell.

As one would expect, P granules diffuse slower with size. This appears consistent
with the Stokes-Einstein relation, although this has not been clearly proven and
needs to be further explored.

It is believed that this preferential growth is induced by the Mex-5 gradient.
Mex-5 is a protein that co-localizes with P granules, while also forming a gradient
across the long axis of the embryo. The gradient formation is concurrent with the
asymmetric growth of P granules. Prevention of the formation of this gradient also
prevents the transition of P granules into their asymmetric growth phase, which
thus prevents their localization. Mex-5 is a likely candidate as the protein which
directly induces this asymmetric growth, by possibly stabilizing interactions with
the cytoplasm at higher concentrations, allowing P granules to dissolve.



3. Droplet Kinetics in Presence of a
Gradient

In this chapter, a theoretical model that can describe the aggregation of germ gran-
ules in the single-cell embryo is developed, the gradient droplet growth model. In a
similar manner as presented in the introduction, section 1.2.1, a binary fluid droplet
growth model will be developed in a stepwise manner that can describe the dynam-
ics of interest within germ granules. Although this theory is presented in a similar
fashion as the introduction, two key assumptions are avoided here that make this
theory distinct: the droplet volume fraction is not fixed, allowing for fluctuations
in droplet densities, and the external volume fraction is not uniform, allowing for
spatial inhomogeneities that can affect growth.

The basis of the theory is a binary fluid model, which allows for the general
properties experimentally observed for P granules from the prior chapter: this binary
fluid undergoes a first-order phase transition, from a single mixed cytoplasmic state,
to a metastable 2 phase state; consisting of the cytoplasm and droplet like germ
granules.

New also to this model, is a spatially dependent saturation point. The saturation
point, which defines the phase boundaries and effects both growth and nucleation,
is allowed to change to emulate the effects of the Mex-5 cellular gradient (see section
2.3), i.e. spatially control phase transition and growth. This addition to previously
studied droplet growth models allows for inhomogeneous growth and localization of
the granule droplets, which in turn create a non-homogeneous diffusive monomeric
background field, in contrast to a homogeneous field. In addition, spatial dependence
of the saturation point prevents the system from relaxing to equilibrium, leading to
a final oscillatory non-equilibrium steady state (see next chapter).

3.1. The Cytosol as a Binary Fluid

As mentioned in the introduction, the single cell C. elegans embryo is surrounded by
a rigid shell. Although there are some fluctuations in the size of the single cell within
the shell, these are relatively small as compared to the cell size; the fluctuations are
thus considered negligible, and the system volume, V , is constant. The system is
considered to be a made up of two components: component a is the solution (or cy-
toplasmic component), and component b is the solute (or germ granule component).
Since no protein synthesis or degradation occurs in early embryogenesis[78], the
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number of molecules of each component, Na, N b, is conserved. Making the common
approximation that the system is an incompressible Newtonian fluid 1, the volume
fraction of component b,

φ ≡ N b
i v

b

Vi
, (3.1)

in some volume Vi, is sufficient to describe the concentrations of both a and b, where
vb is the molecular volume of component b. The volume fraction of the system, φ̄, is
then a fixed constant, which can be used in place of the total number of molecules
of each component, Na, N b, and with the system volume, V , defines the global
parameters of the system.

From this point on, the P granule system lends itself quite naturally to a droplet
growth model. Monomer components of a and b both diffuse and are carried by
cytoplasmic flows within the cell. Although these flows do definitely carry monomer
components, cytoplasmic flow is considered negligible because there is no net flow
of material (see section 2.1). Prior to symmetry breaking, P granules are observed
throughout the cell, the system is undersaturated, and thus P granules dissolve
throughout the system. After symmetry is broken, nucleation events and granule
growth are observed in the posterior, while simultaneous dissolution is observed in
the anterior. The system is observed to fluctuate between undersaturated and su-
persaturated, but it does not give the appearance of undergoing any type of spinodal
decomposition. That is, when φ is below the saturation point φs, droplets dissolve,
and when above φs, droplets condense (grow) and nucleation of new droplets occurs.
The cytoplasmic volume fraction is never so large as to cause it to undergo spinodal
decomposition, and thus the system is always either in the single phase or binodal
region. Figure 3.1 shows an illustration of where the cell is hypothesized to lay on
the phase diagram. Since we are only interested in de-mixing of the cytosol, which
is “φ poor” (see next section), the value of φs is uniquely defined by the left side of
purple coexistence curve for a fixed position along the cell.

3.2. Single Droplet Growth Dynamics

Considering convection negligible, we start with the Cahn-Hilliard equation (1.21),

∂φ

∂t
= ∇ · (D∇δF

δφ
), (3.2)

which describes the dynamics of the system, where D is the monomer diffusion
coefficient of the granule component. The Ginzburg-Landau free energy,

F [φ] =

∫
d3x

(
1

2
(∇φ)2 + f(φ)

)
, (3.3)

describes our two phase system consisting of droplet and solution.

1Incompressibility is defined here such that the molecular volumes, va, vb, are constant.
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Figure 3.1.: Phase diagram for a binary fluid, with the volume fraction φ as the order parameter.
An illustration of where the germ granule system lies in the phase diagram is also shown. The
region between the purple and black line represents the binodal region, and the interior of the black
line is the spinodal region. The cell lies along the black arrow. Due to the spatial protein gradient
within the cell, there is a position dependent “quench” along the long axis of the cell, causing the
anterior of the cell to be in a single state, while the posterior is in a mixed, metastable, state. The
green point refers to the critical point, which is assumed to be far from the germ granule system.

For a bistable system, the free energy density, f(φ), is required to be a double
well potential. In this case, the left and right well describe the energy of the cy-
toplasm and droplet respectively (see section 1.2.1). The specific form of f(φ) will
be discussed later (section 3.4.1), where spatial dependence will also be introduced.
This free energy describes a two-phase system with the volume fraction as the order
parameter for a first order transition between a droplet phase, considered φ “rich”,
and a cytoplasmic phase, considered φ “poor”.

As presented in the introduction, for small supersaturation, gradient terms are
considered negligible in the bulk of the free energy, and the droplet interface is
replaced by the surface tension parameter γ, in the free energy,

F [φ] =

∫
d3rf(φ)− γ

∫
Interface

dA. (3.4)

For a single spherical droplet with radius R and volume fraction φ1, where φ for
each phase is relatively homogeneous, the free energy can be written,

F (φ1, R) = V0f(φ0) + 4/3πR3f(φ1)− 4πR2γ. (3.5)

The system is closed, with volume, V , and initial volume fraction φ̄. Conservation
of the number of particles and conservation of volume, requires that the cytoplasmic
size and volume fraction be dependent variables,

V0 = V − 4/3πR3, (3.6)

φ0 =
(
φ̄ V − φ14/3πR3

)
/V0. (3.7)
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For the dynamics, the concentration field can be described by the diffusion equation,

∂φ

∂t
= D∇2φ. (3.8)

Although the system is not at equilibrium, as per the Gibbs-Thomson condition,
the interior of the droplet, and directly outside of the droplet are assumed to be at
a local equilibrium at all times. The volume fraction of the interior, φ1 and directly
exterior φR ≡ φ0(r → R+), are governed by the equilibrium conditions,

∂F

∂φ1

= 0 (3.9)

∂F

∂R
= 0 (3.10)

which imply,

0 =
∂f

∂φ

∣∣∣
φ=φ1

− ∂f

∂φ

∣∣∣
φ=φR

(3.11)

2γ

R
= f(φ1)− f(φR)− (φ1 − φR)

∂f

∂φ

∣∣∣
φ=φ1

. (3.12)

The saturation volume fraction of the cytoplasm, φs (saturation point), is defined in
a similar manner as φR for the case R→∞, in equation 3.12. Figure 1.7 illustrates
graphically how φs(left figure) and how φR, φ1 (right figure) are determined. The
saturation point is a property of the system, while φR, φ1 are set by the curvature
of the droplet, ∝ 1/R.

Droplets larger than some critical size R > Rc(t) grow, while droplets smaller
than Rc undergo diminution. We assume the that droplet growth is a relatively
slow motion of interest, as compared to the relaxation of φ. We thus make the
quasi-stationary approximation, that in addition to the local equilibrium between
the interior and exterior of the droplet, the background field outside of the droplet
relaxes to a steady state, and the interior of the droplet has a homogeneous. The
background field is then,

φ(r) =

{
φ1; r < R (drop)

φ0 − R
r

(
φ0 − φR

)
; r > R (cytoplasm),

(3.13)

where cytoplasmic volume fraction is the radially symmetric steady state solution
of eqn.(3.8), with Dirichlet boundary conditions,

lim
r→R+

φ(r) = φR (3.14a)

lim
r→∞

φ(r) = φ0. (3.14b)

The interior boundary condition is the aforementioned Gibb-Thomson local equi-
librium, and φ0 is the time dependent average volume fraction of the solution phase.
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In addition to the diffusion of the monomer background field, the finite size droplet
is also considered to diffuse as a single body. Using the Stokes-Einstein relation,

D(R) =
kBT

6πηR
, (3.15)

where η is the viscosity of the medium, we see that droplet diffuse proportionately
to size, as the droplet diffusion coefficient decreases with drop radius. Thus the
droplet’s diffusion coefficient is,

D(R) =

(
3vb

4π

)1/3
D

R
. (3.16)

where D(R) ∝ 1/R, as compared to the monomer diffusion coefficient D. Droplet
diffusion is thus considered negligible with respect to droplet growth, since growth
occurs on the order of monomer diffusion.

Balancing the interior and exterior of the droplet by setting the change of droplet
size, (∆φ)dR/dt, equal to the outside diffusion flux, J(R) = −D∇φ|r=R, determined
from eqn.(3.13), a dynamic equation for growth is determined,

dR

dt
=
D

R

φ0 − φR
φ1 − φR

. (3.17)

The droplet growth is proportional to monomer diffusion, and dependent on the local
volume fractions, φ1, φR, and the background volume fraction, φ0. Figure 3.2 shows
these volume fractions in the neighborhood of a single droplet in a supersaturated
medium.

In most studies of droplet growth, as per LS theory (see section 1.2.1, the droplet
phase is considered to be constant and just pure granule component. This simplifies
analytical calculations, since the prior energy minimization with respect to volume
fraction becomes only an energy minimization of the cytoplasmic phase. For this
work, the volume fraction of the droplet phase is allowed to vary; for simulation
purposes a full minimization is carried out, and eqn.(3.17) is used for droplet growth.
But a good deal of insight into the workings of the droplet model can be gained by
fixing the droplet volume fraction. To simplify analytical calculations, and to gain
a simpler physical understanding of the system, for the rest of this section the free
energy density of the droplet phase is considered sharply peaked about φ1, such that
as a first order approximation, φ1, and thus f(φ1) are fixed for all minimizations.

For fixed φ1, eqn.(3.12), the surface volume fraction can then be written with
respect to the saturation volume fraction,

φR = φs +
2γ

µR
. (3.18)

Substituting in the supersaturation of the solution phase, δ ≡ φ0 − φs, a time
dependent critical radius is determined by setting eqn.(3.17) to zero,

Rc =
2γ

δ
. (3.19)



38 3.2. Single Droplet Growth Dynamics

As expected, the critical radius diverges as the supersaturation goes to zero. The
droplet growth can then be written with respect to the critical size as,

dR

dt
=
D

R

2γ

∆φµ′

(
1

Rc

− 1

R

)
, (3.20)

where f ′′ = ∂2f
∂φ2

is the curvature of the energy at the saturation point. It can thus be

R

φ1

φ

r

J

Ṙ

φs

φ0

φR

Figure 3.2.: Illustration of volume fraction distribution, going radially outward from the center of
a growing droplet of radius R. The droplet interior has a uniform volume fraction, φ1. The volume
fraction directly outside of the droplet, φR, is in equilibrium with the interior of the droplet. φ
then quickly plateaus to the average volume fraction φ0. The growth of the droplet is driven by
the diffusion flux from the outside of the droplet, Ṙ ∝ D(φ0 − φR).

seen that droplets below a critical size, R < Rc, shrink, while droplets larger than
Rc grow, due to the volume fraction flux outside of the droplet (figure 3.2).

For a supersaturated medium, δ > 0, there is a probability, due to density fluctu-
ations, that monomer components collude to one local region to spontaneously form
a droplet. One can calculate the energy required for this event to occur, and thus
form a new drop of size V ∗,

∆F (V ∗) ≡ Fnew − F (3.21)

= V ∗0 f(φ∗0) + V ∗f(φ∗) + γS∗ − V0f(φ0), (3.22)
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where all starred quantities refer to quantities after the new drop has formed. The
new dependent variables are,

V ∗0 = V0 − V ∗ (3.23)

φ∗0 = (V0φ0 − V ∗φ∗) /V ∗0 . (3.24)

The free energy has a maximum at R = Rc, the critical size. Thus, ∆F has a
maximum at R∗ = R∗c which is the critical size after the formation of a new droplet
(see section 1.2.1), The probability per unit volume per unit time of creating a stable
droplet (R∗ > Rc∗) is given by equation (1.29). Since this rate is valid only for small
supersaturation, the coefficients for the rate are allowed to be free parameters, and
the nucleation rate per unit volume is approximated by a Kramer’s rate,

J0 = αe−∆F (R∗)/kBT , (3.25)

where α and kBT are parameter that are chosen to reflect observations from experi-
mental results, and ∆F (R∗) is the change in free energy to form a droplet of critical
size.

3.3. Dynamics of the Model for Multiple Droplets

φ1, R1

φ̄, V

φm, Rm

φ0, V0

r1

rm

φR
m

φR
1

Figure 3.3.: Binary fluid model for m droplets. The droplet position, volume fraction, and size,
are the model’s independent variables, i.e. ri, φi, and Ri respectively. The global parameters
are the system’s average volume fraction, φ̄, and the system size, V . The background (cytosolic)
volume fraction, φ0, and cytosolic volume, V0, are dependent variables, determined by conservation
equations, 3.26 and 3.27.

The current model presented can be generalized for multiple droplets. For LS
theory and nucleation we also require that the average the average distance between
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each droplet is much larger than the average drop size and that nucleation events
cannot occur within proximity of other droplets to prevent zones of depletion.

For a system with m(t) droplets, the variables of the system are then,

φ1 → φi

φR → φRi
R1 → Ri

r → ri

and the global constraints of the system become,

V0 = V −
m(t)∑
i=1

4/3πR3
i (3.26)

φ0 =
V φ̄−∑m(t)

i=1 4/3πR3
iφi

V −∑m(t)
i=1 4/3πR3

i

. (3.27)

An illustration of the model for multiple droplets is shown in figure 3.3. The total
free energy is then a function of the volume fraction and size of all the droplets,

Fm ({φi}mi , {Ri}mi ) = V0f(φ0) +
m∑
i=1

(
4/3πR3

i f(φi)− 4πR2
i γ
)

(3.28)

3.4. Droplet Dynamics in a Saturation Gradient

To implement spatially asymmetric growth, a gradient is induced into the saturation
point of the system. This is done by explicitly introducing a spatial dependence into
the free energy density. While having no “direct” effect on the background volume
fraction, this allows for the supersaturation δ, to vary throughout the system,

δ = φ0 − φs(r). (3.29)

In prior studies of droplet growth, the background monomeric field in the cytoplasm
is assumed to relax to a steady state at a faster timescale than the growth of the
droplet. This approximation has already been used in equation (3.13) to derive
the equation for droplet growth (eqn.(3.17)). In a homogeneous growth field, or
in the case of a single droplet, this is a fairly reasonable assumption which has
been examined by others quite extensively, both theoretically and experimentally
(e.g. See [46, 8, 57, 12, 51]). With asymmetric growth, the approximation of a
homogeneous background field also comes comes under scrutiny. A more general
approach which takes into account the monomeric background field, is utilized to
make the quasi-static growth theory still valid, and to simultaneously allow us to
test the validity of a homogeneous background field approximation in the case of
inhomogeneous growth.
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3.4.1. Spatially Dependent Free Energy Density

Since the molecular details of the P granule system are not known, a good deal of
assumptions are made to determine the free energy density, f(φ). The only require-
ment, that has so far been stated, is that below the critical point, the free energy
density must have two minima such that the system has two metastable states. In
addition, we now require that f(φ) have a free parameter which can change the
energy difference between these two minima, in a manner such that the saturation
volume fraction, φs, changes monotonically with respect to this parameter. For sim-
plicity, this free parameter is given an explicit linear spatial dependence along the
x-axis of the system. For this work, two different free energies have been utilized.
A generic double parabola, to simplify analytical calculations, and a Flory-Huggins
free energy, that is grounded in a molecular derivation, which could in fact contain
parameters that may be determined experimentally in the future. An example of
each type is shown in figure 3.4.

Parabolic Free Energy Density

Two parabolas are utilized as Taylor approximations of the double well potential.
The parabolic free energy density is defined as,

f(φ) =

{
K0

2
(φ− ψ0)2 φ cytoplasm

K1

2
(φ− ψ1)2 +B φ droplet

(3.30)

where the cytoplasmic volume fraction and droplet volume fractions are respectively
proximal to ψ0 and ψ1, the base of the wells, where 0 ≤ ψ0 < ψ1 ≤ 1. This
energy corresponds to two Taylor expansions, where the derivative is not always
continuous. Although figure 3.4 shows the parabolic free energy as a piecewise
continuous function for φ ∈ [0, 1], it is only a reasonable approximation for φ close
to the base of the wells, e.g. small levels of supersaturation. The region far from
the base of the wells is not of interest, and so should not introduce any foreseeable
problems in the lack of a clearer definition for equation 3.30. The droplet phase
should have a more stable (constant) volume fraction as compared to the solution
phase, thus the droplet curvatures should be greater than the cytoplasmic curvature,
i.e. 0 < K0 < K1. The parameter B, which sets the difference in height between the
wells, is considered to be spatially dependent. As the phenomenological parameter
to describe the gradient of the system, B is a monotonically increasing function of
position, B(x) ≥ 0; dB(x)/dx ≥ 0.

Flory-Huggins Energy Density

For a better physical representation of the system, the Flory-Huggins free energy
has been implemented for all simulations,

f(φ) = ηa(1− φ)2 + ηbφ2 + χ(1− φ)φ+ (1− φ) ln(1− φ) + νφ lnφ. (3.31)
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This free energy density is derived, from an entropic and an enthalpic term, from
molecular interactions (see appendix B for details). The molecular volume of the so-
lution (water/cytoplasmic component) is typically smaller than molecular volume of
the solute (P granule protein component) molecular volume, thus the ratio between
molecular volumes of different species, ν, is constrained to, 0 < ν ≤ 1. The bond
energies between the monomers of the same type are, ηa and ηb. We hypothesize
that what the Mex-5 protein gradient does to influence P granule formulation, is
to stabilize the interaction between the two species, thus droplets dissolve in the
region of high concentration, and condense in the region of low concentration. This
is implemented in the interaction energy between the two species, χ, which is now
the monotonically increasing, spatially dependent variable.

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

f

φ

f

φψ0 ψ1

Figure 3.4.: Free energy density. In both plots the left well (φ poor) corresponds to the free
energy of the cytoplasmic phase, and the right well (φ rich) corresponds to the droplet phase.
(Left)Parabolic free energy density with parameters: K0 = 50,K1 = 10000, ψ0 = 0.25, ψ1 =
0.75, B = 0.20. (Right)Flory-Huggins free energy density with parameters: ηa = 1.0, ηb = 1.1, χ =
2.6, ν = 0.75.

3.4.2. Monomeric Background Field

In the case of multiple droplets undergoing asymmetric spatially mediated growth,
the veracity of a homogeneous background field approximation is put into question.
To test this, a more general assumption needs to be made: that the diffusion steady
state (eqn. 3.13) is not necessarily valid globally, but is still valid within the neigh-
borhood of each individual droplet. In other words, there is still a steady state φR

about each droplet, but φ0 is not necessarily isotropic throughout the system, and
can be locally changed due to droplet growth, nucleation, and dissolution. These
droplet dynamics are then treated, in an approximation, as point sources and sinks
fixed in space at positions ri, for each droplet i. We first state the homogeneous case
in this section, prior to developing the inhomogeneous case in the next section. In
the case of infinite diffusion, and thus a homogeneous background field, φ0 changes
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only due to droplet growth. Treating the source/sink for each droplet as a point
source, the equation for the background field with m(t) droplets is,

∂

∂t
φ0(r, t) = −

m(t)∑
i

(φi − φ0)Qi (3.32)

where Qi is the strength of the source/sink term due to the growth of droplet i, with
radius Ri .

φ0(Ri) = φR(Ri) (3.33)

The strength of the source/sink term is given then by the diffusive flux of droplet
growth (see appendix D for derivation),

Qi =
4πR2

i

V − 4
3
πR3

i

dRi

dt
. (3.34)

3.5. The Droplet Growth Model Within a Gradient

In this section we develop the gradient droplet growth model. That is, we derive
the dynamic equations for the background field and droplet growth in the spatially
dependent free energy landscape described in the previous section. Due to this
gradient, spatial dependence of all fluxes and volume fractions must be taken into
account. We first create a continuous description of the gradient droplet growth
model, and then develop a discrete model which is used in computer simulations
presented in later chapters.

3.5.1. Continuum Description of Growth

Using mass balance, the total volume growth rate, Vi, of a droplet i is dependent on
the volume fraction flux into the droplet (see appendix C for derivation),

dVi
dt

=

∫
∂Vi

Ji
φi − φRi

· dA, (3.35)

Ignoring time scales where surface fluctuations occur, and assuming thus, that the
droplet is at all times spherical with a fixed center of mass during growth, the droplet
growth rate is,

dRi

dt
=

1

4πR2
i

∫
∂Vi

Ji
φi − φRi

· dA. (3.36)

The flux on the boundary, Ji, the background field, φ0, and the surface volume
fraction, φRi , are all now spatially dependent terms, due to the spatial gradient of
the free energy.

The φ field on the interior and exterior surface of droplets, is set by a local
equilibrium, the Gibbs-Thomson boundary condition, and the interior of the droplet
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is assumed to be homogeneous (see section 3.2). Since the surface volume fraction
φRi , is set by a local equilibrium, it is not explicitly dependent on time, in contrast
to the average background field, φ0 (whose explicit time dependence we will derive
shortly using mass conservation). The effect of time on φRi is slightly more subtle. As
a droplet increases in size, its curvature decreases. Since, limR→∞ φ

R
i (r) = φ(s)(r),

this φR also effectively decreases with droplet growth.
We now determine the background field starting from the local conservation equa-

tion,
∂φ0

∂t
+∇ · J = 0 (3.37)

which can be written as an integral over some volume, V as,∫
V
d3r

∂φ0

∂t
= −

∫
∂V

J · dA, (3.38)

where J is the volume fraction flux through the surface of the volume. For an m
droplet system, we distinguish between two types of fluxes: the droplet flux, which
is the flux of material out of V into droplets, and the bulk flux, which is the flux of
material out of V but still staying in the cytoplasm (or bulk),∫

∂V
J · dA =

∫
∂V0

J · dA +
m∑
i=1

∫
∂Vi

J · dA. (3.39)

This equation points out the two types of fluxes that we are in fact interested in
examining but at two different length scales. As we let the volume V go to infinity,
V0 scales proportionately, while each droplet volume, Vi, goes to 0. In this fashion we
can study the bulk flux on longer length scales while neglecting the droplet surface.

We now consider the situation where droplet size is vanishingly small as com-
pared to the system size. We thus define a new arbitrary volume element which
is comparable to the system size, Ṽ ∼ V , and write down a new equation for the
background, ∫

Ṽ
d3r

∂φ̃0

∂t
= −

∫
∂Ṽ

J̃ · dA−
∫
Ṽ
d3r

m∑
i=1

Q̃iδ (r− ri) . (3.40)

This equation is equivalent to equation (3.38) in the limit where the system size
goes to infinity, while the droplet size is kept fixed. Each droplet is treated as a
point source/sink term, where Qi is the strength of the source/sink due to droplet
growth. On this “long” length scale, we have only a bulk flux, where we impose
no flux boundary conditions on the system boundary, V . As before, the bulk flux
is written as a volume integral, and then converted it into a local equation. Using
Fick’s law, J̃ = −D∇φ̃0, the differential equation equivalent to (3.40) is,

∂φ̃0

∂t
= D∇2φ̃0 −

m∑
i=1

Q̃i, δ (r− ri) . (3.41)
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Thus we have a diffusion equation with point source/sinks, to study the long range
diffusive behavior of the system. Simultaneously, to maintain mass conservation, Qi

must still be determined from the short range droplet flux. Since we have collapsed
the entire droplet into a single point, the rate of the source sink term becomes the
total flux into the droplet,

Q̃i =

∫
∂Vi

J · dA, (3.42)

where J is the droplet flux from equation (3.39), which is responsible for droplet
growth, equation (3.36).

To arrive at the LS droplet growth flux,

J(ri) ≈
D

R

(
φ0 − φRi

)
, (3.43)

for each droplet, we need to make several additional assumptions. As per LS theory,
we assume that the average droplet size is much less than the average distance
between droplets, and thus on average, droplet-droplet interactions are ignored. In
line with our previous assumption, we make the additional assumption that the size
of the droplet is sufficiently small such that the change in flux around the droplet
does not change significantly from one point on the surface of the droplet, to another
point on the same droplet. We have already implemented this with respect to system
size, but this is now also important with respect to the implemented gradient, which
effects the free energy landscape, and thus sets the volume fraction over each droplet
surface. That is, we assume the effect of the free energy gradient is small enough
such that the relation,

∇φ(ri −Rix̂)−∇φ(ri +Rix̂) ≈ 0, (3.44)

holds. This last condition would mean that we have a spherically symmetric flux
into each droplet. The system is now simplified such that there is inhomogeneous
growth across the entire system, but the flux into each droplet is isotropic, and so,
the droplet growth is directly proportional to the flux.

Although the background field is clearly not at equilibrium, the spherically sym-
metric flux into each droplet suggests that at least within some neighborhood of each
droplet, the field has relaxed to some local spherically symmetric steady state field,
which has boundaries set by the quasi-static droplet growth on one side, and an
average volume fraction background diffusion field on the other. We thus return to
the growth flux of the homogeneous LS-theory, which now has spatial dependence,
equation (3.44). That is, each droplet i, has a local steady state φ field which can
be used to determine the flux into the droplet. This droplet flux still has spatial
dependence, in that distinct drops have a distinct flux, but the flux into each droplet
is isotropic. This flux used in the equation for droplet growth (3.36), gives now the
previously discussed LS growth, equation (3.17), which is now spatially dependent.

We have so far discussed spatially dependent droplet growth and the background
field of the m-droplet system with a gradient, our new contributions to the droplet
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growth model. To study this system, we also require droplets to move throughout
the system. We thus add noise to the system to allow for the diffusion of droplets.
Overdamped Langevin dynamics (Brownian Motion) are used to describe the motion
of each droplet,

dri
dt

=
√

6D(Ri)ξi(t), (3.45)

where ξ is Gaussian white noise with the properties,

〈 ξi(t) 〉 = 0

〈ξi(t), ξj(t′)〉 = δ(t− t′)δi,j . (3.46)

As stated before, equation 3.16, the droplet diffusion coefficient is determined with
respect to the droplet component’s monomeric diffusion coefficient, D, and molecular
volume, vb, using the Stokes-Einstein relation for a sphere,

D(Ri) =

(
3vb

4π

)1/3
D

Ri

. (3.47)

We now summarize the continuous gradient droplet growth model. For a system
of m droplets, we have a set of 2(m+1) self consistent dynamic equations. The local
diffusion of droplets occurs with a stochastic Langevin equation (3.45), where the
diffusion coefficient of the droplet is set by Stokes-Einstein relation, as compared to
its monomeric components. Spatially dependent droplet growth, equation (3.36),
is determined by the short range volume fraction flux into the droplet, where the
droplet boundary is set by a local equilibrium conditions of the Gibbs-Thomson
relation, and thus dependent on the free energy landscape. The background field,
equation (3.41), describes the long range diffusive behavior of the system, while
treating droplets as point source/sinks. With this model we have a spatial growth
gradient due to the imposed saturation gradient, but allow each droplet to grow
isotropically and have negligible size. To derive these equations, we have made the
assumption that there is a local equilibrium about each droplet as per LS theory,
and that the size of each droplet negligible as compared to the system size, such
that we can separate the system into two length scales, where we observe the long
range bulk diffusion in the background, but describe the droplet growth with the
short range diffusion through the droplet surface.

With an additional assumption, we can simplify the growth to the same (but
spatially dependent) form as previously derived for homogeneous LS theory, equation
(3.44). With the additional assumption that the droplet size is also negligible as
compared to the effect of the newly induced gradient in the free energy. In practice,
this final assumption will be unnecessary in this thesis, where in the discrete model
presented in the next section, we allow for finite size droplets with anisotropic surface
fluxes into each droplet.
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Figure 3.5.: Illustration of system discretization and the growth of droplets i − 1, and i. The
system is discretized into grid volumes, where droplet growth occurs per grid. For small drops
in only a single grid volume (drop i − 1), the droplet grows uniformly. For larger droplets (i),
although the droplet still grows uniformly, the material flux into the droplet is not the same from
each grid space, and is in fact proportional to droplet surface area Aµi within that grid space.

3.5.2. 1-D Discrete Model

We now describe the spatially discretized droplet growth model, where the back-
ground field is discretized. Since we implement a saturation gradient in only 1
direction, any new inhomogeneities should only appear in that direction. Thus,
during droplet growth and nucleation within a gradient, as per LS growth, we con-
tinue to consider the inhomogeneities in the y and z direction as negligible, and
only discretize the background in the x direction, as seen on figure 3.5. Each grid
space µ, has two dynamic properties: a grid space volume V µ

0 , which corresponds
to the total volume of the grid space not occupied by a droplet; and a grid space
volume fraction φµ0 , the average volume fraction of volume V µ

0 (see figure 3.5). In
addition to the system volume fraction φ̄ and system volume V , each grid space has
an additional parameter, its saturation volume fraction φ(s),µ, which is determined
by the free energy as discussed before.

Droplets on the other hand, are considered continuous spherical objects, which
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can be contained in a single grid space, or be partially in several grid spaces. Droplet
growth is calculated per grid space for each droplet. As per LS growth, the φ flux
into a droplet i, from a grid space µ is,

Jµi =
D

Ri

(
φµ0 − φR,µ

)
. (3.48)

This flux leads to an uneven volume growth rate Gµ
i , stemming from each grid space,

where this rate is proportional to the surface area of the droplet within the space,
Aµi , (

φi − φR,µi

)
Gµ
i = Jµi A

µ
i , (3.49)

where the total change in size of the droplet is the sum of this growth rate,

dVi
dt

=
∑
µ

Gµ
i , (3.50)

leading to the total change in volume for a droplet i,

dVi
dt

=
∑
µ

Jµi A
µ
i

φi − φR,µi

. (3.51)

Although a real droplet could grow anisotropically due to this spatially dependent
flux (Gµ

i ), we assume that the droplet relaxes to a spherical shape for the timescale
of interest, and ignore all fluctuations of the droplet surface boundary. We thus
take into account the volume change due to the uneven flux, but calculate a uniform
growth rate for a spherical droplet,

dRi

dt
=

1

4πR2
i

∑
µ

Jµi A
µ
i

φi − φR,µ
, (3.52)

To reiterate, although we take into account the anisotropic flux into the droplet from
each grid space, the droplet is considered to grow uniformly outwards (dRµ/dt =
dR/dt) from its center of mass. The actual change in volume of the droplet within
each grid space, dV µ

i /dt, is then proportional to the droplet surface area within that
space,

dV µ
i

dt
= Aµi

dR

dt
, (3.53)

where again we note, although

dVi
dt

=
∑
µ

dV µ
i

dt
, (3.54)

Gµ
i does not have to equal V µ

i , where these two terms correspond to the anisotropic
flux and symmetric growth discussed in the continuous case. As in the homogeneous
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case in the previous section, we can write a source/sink term for the background
field, due to the growth of a droplet i as (see appendix for derivation D),

∂

∂t
φµ0(drop) =

φi − φµ0
V µ

0

dV µ
i

dt
. (3.55)

In addition to a source/sink on the surface of each droplet, we allow diffusion to
occur between neighboring grid spaces,

∂

∂t
φµ0(diff) = D

φµ+1
0 − 2φµ0 + φµ−1

0

∆x2
, (3.56)

where a second order central difference scheme is used for the diffusion. Thus for an
m droplet system, the corresponding monomer background field is,

∂φµ0
∂t

= D
φµ+1

0 − 2φµ0 + φµ−1
0

∆x2
−

m∑
i=1

(φi − φµ0)Qµ
i , (3.57)

where Qµ
i is,

Qµ
i =

Aµi
V µ

0

dR

dt
, (3.58)

and Aµi = 0 for bins that droplet i is not in. In contrast to the homogeneous back-
ground field, equation (3.32), diffusion in the x-direction has now been incorporated
to deal with the inhomogeneities in φ, due to the saturation gradient. Equations
(3.48) (3.52), (3.57), and (3.58), are now the equations to describe the 1−D discrete
droplet growth model. We will add nucleation and diffusion to the model in the next
section.

3.5.3. Model Implementation

To analyze the discrete m-droplet problem with a gradient, we thus require a set of
(2m+ 1) dynamic equations. In addition to the monomeric background field of the
system, there is a stochastic equation of motion and a deterministic growth equation
for each droplet.

These equations are now spatially dependent due to the imposed spatial depen-
dence on the free energy density, f = f(φ, r); which effects volume fractions and the
critical size, since φi(r) and φRi (r) are determined by the local minimization of the
free energy. That is, for a drop i of size Ri, the volume fractions are now determined
from the two implicit equations with respect to the spatially dependent free energy
density,

0 = f ′(φi, ri)− f ′(φRi , ri) (3.59a)
2γ

Ri

= f(φi, ri)− f(φRi , ri)−
(
φi − φRi

)
f ′(φi, ri), (3.59b)
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Figure 3.6.: Spatially dependent saturation point (φs).The interaction energy parameter, χ, of
the free energy density is changed linearly along the long axis of the system. This effectively
changes the φs, such that for a system with a uniform volume fraction φ̄ (green dashed line), only
the part of the system where, φ̄−φs > 0, is supersaturated. The plots on top show the free energy
density f(φ) for the anterior, center, and posterior of the system respectively.

where f ′(φi, ri) ≡ ∂f/∂φ|(φ=φi,r=ri). The free energy is chosen to induce a growth
preference along the long axis of the system, such that the droplets are most likely
to nucleate and grow on one side (see figure 3.1), while in turn, the other side of
the system is in a single phase state, and droplets, in or diffusing to this side, dis-
solve. As discussed previously, this growth preference is implemented into the free
energy of the system through the spatially dependent component, as prescribed in
section 3.4.1. By linearly changing this spatially dependent parameter along the
long axis of the system, φs(x) decreases, which allows the system to be simultane-
ously oversaturated and undersaturated for the same background volume fraction,
φ0 (See figure 3.6). Using this continuous saturation point, each grid space is as-
signed the saturation point that corresponds to the midpoint of that grid space, i.e.
grid space µ, which spans from xµ−1 to xµ, has the saturation volume fraction of
φ(s),µ ≡ φs(xµ−xµ−1

2
). φ(s),µ is then a fixed parameter of grid space µ. Thus, a droplet

that spans several grid spaces, has a different surface volume fraction per grid space,
φRi (r) = {φRi (xµ), φRi (xµ+1) . . .}, which is dependent on φ(s) of the grid space, and
the size of the droplet.

Although it has been implicitly stated, it should be noted that the number of
droplets m is not fixed. If two drops touch, they are considered to instantly fuse



Chapter 3. Droplet Kinetics in Presence of a Gradient 51

in a manner such that the total number of particles in each droplet and the total
droplet volume is conserved. Surface fluctuations are completely neglected, and this
new drop is assumed to be a sphere with center at the center of mass of the two
original colliding droplets. The number of drops can thus decrease through fusion
events, or if the droplet becomes unstable due to its size and/or position, such that it
dissolves by droplet growth. The number of drops can also increase due to nucleation
which will be implemented after time discretization.

For the discretization of time, we use an Euler discretization scheme, with vary-
ing time steps. That is, for some general time dependent function, h(t), its time
evolution over a single time step can be determined using,

h(tn + ∆t) = h(tn) + ∆t h′(tn), (3.60)

where time is discretized in the manner, tn = n∆t. There are many, more sophisti-
cated time schemes that one may choose. Due to the complex nature of this system,
with the time evolution of several equations, both deterministic and stochastic; al-
though not efficient, the Euler time scheme is a reasonable and reliable choice, which
is quite stable for sufficiently small ∆t. In this system, a constant ∆t is also quite
impractical. In time intervals with large supersaturation, where there are many
droplets and nucleation occurs, fine time steps are required. In contrast, the inter-
esting dynamics of coarsening regimes typically occur on time intervals which are
several orders of magnitude larger. The time step, ∆t, is chosen as the smaller of
five time intervals. The minimum of: time required for a nucleation event, time
required for the two closest drops to fuse, time required for a droplet to change size
on the order of Rc/10, the time for a droplet to move into a new grid space, or a
threshold minimum time interval.

The corresponding time evolution for the discretized droplet diffusion and droplet
growth are,

ri(tn+1)− ri(tn) =
√

6D(Ri)∆t ξi(tn) (3.61)

Ri(tn+1)−Ri(tn) =
1

4πR2
i

∑
µ

Jµi A
µ
i

φi − φR,µi

∆t, (3.62)

where the right hand side of both equations are evaluated at t = tn, and ξ is a
normally distributed random number with the properties,

〈ξi(tn)〉 = 0 (3.63)

〈ξi(tn ), ξj(tn′)〉 = δt
n
,tn′
δi,j. (3.64)

As mentioned before, the number of drops increases due to successful nucleation
events. With the addition of noise to allow for nucleation events, the time discretized
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evolution for the background monomer field becomes,

φµ0(tn+1)− φµ0(tn) =

(
D
φµ+1

0 − 2φµ + φµ−1

∆x2
−

m∑
i=1

(φi − φµ0)Qµ
i

)
∆t−

(V ∗)µ

V µ
0 − (V ∗)µ

(
φ∗ − φµ0

)
Θ(η − P µ∆t) (3.65)

where the right hand side is evaluated at t = tn, Qµ
i is the source/sink rate as per

equation (3.58), and P µ is the probability per unit time of a nucleation event to
occur in a volume V µ

0 , to create a droplet of critical size, i.e. to create a droplet
with volume V ∗, and internal volume fraction φ∗. The random number η, is in the
interval [0, 1], with properties,

〈η(tn)〉 =
1

2
(3.66a)

〈η(tn), η(tn′)〉 =

√
1

12
δn,n′ , (3.66b)

and Θ is the Heaviside step function. The probability of nucleation has the same
form as the nucleation flux (equation 3.25),

P µ = αV µ
0 exp

(
−∆F

[
(R∗)µ

]
/kBT

)
, (3.67)

where nucleation events are calculated per grid space as stochastic events. After a
successful nucleation event, the center of the newly created droplet is placed ran-
domly within the unoccupied volume of the grid space. Although this newly created
droplet could potentially protrude over into several spaces, only the properties of the
grid space where the successful nucleation event occurred are used, and only that
grid space is depleted of material due to nucleation. After the successful creation
of a new droplet, adjacent grid spaces that contain parts of the droplet are then
subsequently adjusted.

Thus the set of 2(m + 1) equations, which describes the time evolution of the
background field, equation (3.65), and the diffusion and growth of each droplet,
equations (3.61) and (3.62) respectively, are the fully self consistent equations that
describe our simulation model which will be studied in subsequent chapters. In
this description, droplets are treated as continuous objects, which are only time
discretized, where an equation of motion and a growth equation are used to simulate
each droplet. Droplets diffuse continuously in a system with reflective boundary
conditions, where their diffusion coefficient is updated after every time step (due to
change in droplet size). When two droplets contact each other, they are considered to
instantly fuse. This new droplet conserves the total volume of the original droplets,
and is placed at the weighted (by mass) midpoint of the original droplets. As droplets
diffuse, they move into and out of adjacent grid spaces. The volumes and volume
fractions of grid spaces are adjusted accordingly. In our incompressible system, we
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assume that the solute, a, moves freely between grid spaces, while b, the granule
component, stays within the grid space during the droplet diffusion step. Thus,
a droplet diffusing into a grid space µ, causes a decrease in V µ

0 , and an increase
in φµ0 . Droplet growth is calculated per grid space for each droplet, where the
fractional surface area of the droplet within each grid space is used to determine the
proportionality of growth. As previously discussed, the background field is spatially
discretized, see section 3.5. The volume and volume fraction of each grid space is
simultaneously updated with the corresponding droplet which caused a change in
the given grid space. The discrete diffusion equation is then solved using a finite
difference Crank-Nicholson scheme with no flux boundary conditions [55].





4. Effects of a Spatial Gradient

Incorporation of spatially mediated growth within the droplet model allows for the
observation of two interesting phenomena. Computer simulations will now presented
and discussed which demonstrate these two novel behaviors of the system: a long
time non-equilibrium steady state behavior, and an early stage slow growth regime.

4.1. Long Times, Non-Equilibrium Steady State

In a finite system with uniform growth, it is well known that the system moves
to a single droplet state where the final equilibrium size is set by the free energy
and the global parameters of the system (see introduction, section 1.2.1). Due to
the gradient across the system, this is not necessarily the case here. Over long
times, drops can diffuse to the anterior, where they will dissolve. Thus the anterior
functions as an absorbing boundary for droplets. This allows for nucleation of new
drop(s) in the posterior. Although it is unlikely that germ granules exhibit this type
of long time behavior, the physics is nonetheless quite interesting, and some insight
into germ granule dynamics can still be shed. With an induced external gradient,
the system can be potentially maintained at a non-equilibrium steady state. The
goal of this section is to study this long term behavior and observe the properties
of the steady state, if it in fact does exist.

Initial Conditions

Since the interest is in the long term behavior, the initial conditions should not play
a significant role in these simulations. The two parameters of significance in this case
would be for nucleation, to form new droplets, and the diffusion coefficient, since
droplets only dissolve when they have diffused sufficiently towards to the anterior.
Biologically unrealistic, but practical, parameters are thus chosen for the diffusion
coefficient and for nucleation. Extreme values are also chosen for the free energy
gradient, which effectively decreases the size of the system where stable droplets
of a finite size can exist. This causes droplets to be quite large with respect to
the “available” system size. Large droplets with respect to system size add two
problems: Boundary effects become more significant, and the rate of droplet fusion
increases dramatically. Boundary effects are not of interest in this study, so they are
duly ignored. To avoid a droplet growth regime due to fusion, drops are only allowed
to interact with each other through the background monomer field, i.e. drops can
inhabit the same volume without fusing or repelling each other. Thus even though
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Parameter Description

Global
φ̄ 0.22 System volume fraction
V 31250

(50× 25× 25)
System volume [µm3]

Molecular Properties
D 20.0 Monomer diffusion coefficient [µm2/s]
va, vb 0.001, 0.0013 Monomer volumes [µm3]
Free Energy
γ̄ 0.01 (†) Surface tension coefficient [µm]
ηa, ηb 0.1, 0.1 Bond energies, a-a and b-b
χ(0), χ(1) 2.0, 2.5 Interaction energy, a-b, at x(0) and x(1)
Nucleation
α 0.001 (†) Nucleation prefactor [s−1µm−3]
kBT 10−4 (†) Nucleation Exponential Coefficient
Special: No Droplet Fusion

†: This parameter will change later in this section

Table 4.1.: Simulation parameters for non-equilibrium steady state simulation

multiple drops can and do inhabit the same volume, drops can be considered to
move in their own separate system. Parameters for the simulation are listed in table
4.1.

Results

As hypothesized, the system goes initially to a single droplet state, where the droplet
is approximately at its equilibrium size for whatever position it currently occupies.
Over long times, this drop eventually diffuses to the anterior of the system, causing
the drop to decrease in size as the equilibrium size also decreases. Once the drop
moves far enough, such that it dissolves completely, or at least becomes small enough
such that a sufficient amount of granule material is released back into the monomeric
background field, nucleation events occur again in the posterior. This process repeats
itself ad infinitum. Figure 4.1 shows a sample simulation of this process.

This long time behavior can be described as a single droplet state with an ab-
sorbing boundary in the anterior and a source in the posterior, figure 4.2 Without
imposing any conditions for a single droplet system, one sees that the system natu-
rally evolves to this state at long times. This can be attributed to the fact that the
probability of nucleation decreases exponentially with droplet growth, in the same
fashion as a system with no gradient, and surface tension still works to minimize
the interface between the two phases.

As can be seen in figure 4.3, a clear distribution does emerge over long times.
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Figure 4.1.: Long time steady state simulation, sample movie. Regardless of the initial conditions,
the simulation ends up spending most of its time in the single droplet state (3rd frame). Eventually
over long periods, the droplet diffuses far enough to the left such that it shrinks and disappears
(4th frame), but as the background is replenished with the dissolution of the droplet, new drops
are nucleated (frame 5) and the droplet returns to the single droplet state. As seen in frame 5,
multiple nucleation events can even occur. The probability of multiple nucleation events to occur
are highly dependent on the nucleation parameters, but the probability of each successive event
decreases exponentially.
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Figure 4.2.: Number of drops vs. time. Averaged over 100 simulations, error bars show the
standard error.
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Figure 4.3.: The time evolution of the spatial distribution of granule component and the granule
dense droplet phase, for long time the steady state simulations. (left) Mass distribution of granule
component: in the monomeric background field (red), within droplets (green), and the sum of both
(blue). (right) Droplet distribution. Averaged over 5197 simulations, error bars show the standard
error.
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Ignoring boundary effects, the distribution of of granule material in the posterior
is higher than the anterior. The background field shows a complementary distribu-
tion, where there is a greater depletion in the posterior. The localization of granule
material to the posterior corresponds with the depletion of material from the back-
ground, which is compartmentalized into droplets. This localization is affected by
the changing diffusion coefficient of the droplet. Since larger drops diffuse slower,
using the Stokes-Einstein relation, and have a larger equilibrium size in the poste-
rior, they are “held” within the posterior of the system. As they diffuse more and
more into the anterior, they move more rapidly due to their decrease in size.

The droplet spatial distribution at steady state (figure 4.4) shows corroborating
information. Droplets are localized to the same x-position as granule material while
the background is depleted. In addition, the size distribution of droplets at a given
position, figure 4.4 (bottom) is sharp in the posterior, and broadens moving into
the anterior. For the slow moving droplets in the posterior, the smaller spatial
fluctuations due to diffusion allows the size of the droplet to relax to its steady
state size for its current spatial position, while the larger fluctuations in the anterior
increase the likelihood that the size of the droplet is further from steady state for
that given position. As seen in figure 4.5, the mean size of the droplet is larger in
the posterior, and decreases going into the anterior. Conversely, due to the greater
diffusion rate of smaller droplets, the standard deviation about the mean increases
as the droplet gets smaller. From a physical standpoint, one would expect that the
Brownian motion of each droplet would lead to a normal distribution in its size. Due
to finite size Euler time steps in the computer simulations, and a larger diffusion
coefficient approaching some position x from the anterior side, as compared to the
posterior side, the distribution is biased to the anterior.

4.1.1. Multi-Droplet Steady State

As previously mentioned, the single droplet state is due to an exponentially de-
creasing nucleation rate with respect to the background monomeric concentrations
of the granule component, and surface tension. By decreasing the surface tension
(10−4), and changing the nucleation such that the prefactor dominates over the ex-
ponential term (here we set kBT = 1), it is possible to create a steady state with
multiple droplets. Figure 4.6 is a sample configuration of this steady state. With
the prefactor of the nucleation dominating in this regime, the nucleation rate does
not decrease significantly with each nucleation event, such that multiple nucleation
events can occur. It is also necessary that that droplet growth is slow as compared
to the diffusion of the droplet, such that the size of each droplet is set by position
and the free energy landscape. This means that Ostwald ripening, due to larger
droplets, is a negligible effect, since these larger droplets diffuse sufficiently quickly
(as compared to their growth) to a region of the system where they themselves also
become unstable. From this description and figure 4.6, one can see that this so called
“steady state” is highly dynamic. This steady state is an ensemble average where
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Figure 4.6.: Sample image of a multi-droplet steady state. As droplets diffuse to the anterior and
dissolve, new droplets nucleate in the posterior.

the number of droplets and the total droplet volume converges (figure 4.7). Looking
at the size distributions, figure 4.8, we observe again that the size distributions at a
single point, and across the system appear to be normally distributed about a mean
size for that point. Again the distributions appear slightly skewed, which would be
due to boundary effects.

Although this multiple droplet steady state appears significantly different as com-
pared to the single droplet steady state, it is in fact quite similar. The mass distri-
butions are indistinguishable, and in fact, the cyclical nature of the system is better
elucidated in the multi-droplet case, by looking at the average droplet growth rate,
figure 4.9. Due to the strong gradient across the system, droplet nucleation (not
shown) and growth is heavily preferred in the posterior. A net growth is thus ob-
served in this region, which depletes the background monomer concentration, as
noted in the single droplet case. As the droplets diffuse towards the anterior, this
preferential growth decreases, until eventually the droplets completely dissolve and
replenish the background. With this gradient in the background concentration,
granule components diffuse back to the posterior allowing for growth to continue. Is
is also interesting to note, with respect to this average growth rate, that although
this is a steady state distribution, it looks remarkably similar to the average growth
in P granules, figure 2.6.

As this multi-droplet steady state appears to be effectively the same as the sin-
gle droplet case, it is important to examine the effect of the nucleation prefactor.
Particularly, how does the nucleation prefactor α affect the number of droplets at
steady state, and how does it affect the time required to reach steady state. Keeping
all others parameters fixed, we see that by increasing the nucleation prefactor, the
average number of droplets at steady state increases, and the system approaches
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Figure 4.7.: Time evolution of the number of drops (left) and total droplet volume (right) for the
multiple droplet steady state. Simulations began with 0 droplets, with the nucleation prefactor,
α = 1. Data was averaged over 5000 simulations. Error bars show the standard error, and the
total droplet volume is normalized using the system volume.
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steady state at a quicker rate. Both these values plateau for large α. This is in fact
due to the local super saturation, and droplet diffusion. For large α, the system is
locally depleted such that the local supersaturation goes to 0.

For new droplets to form, the ones that have been created must diffuse to the
unstable region of the system, dissolve, and have the background components return.
Thus the creation of new droplets can only occur by the destruction of existing
droplets. This demonstrates that the number of droplets increases with α, but the
free energy sets an absolute maximum number of droplets with the critical size,
which diverges with the supersaturation going to 0, equation (3.19). This absolute
maximum describes the maximum number of droplets that can be created, and exist
at one time. If droplet diffuse sufficiently fast, they will move to an unfavorable
region and dissolve, allowing for a new nucleation event; which gives the cyclical
nature that is the focus of this section. For low diffusion, droplets will deplete each
other through Ostwald Ripening, which would return the system back to the single
droplet limit.

Typically nucleation has little to do with a system’s relaxation time. Nucleation
is a process one observes at very early times, where the majority of the system
lifetime is spent with the growth of already nucleated droplets. In this spatially
dependent system, this is not necessarily the case. First, the number of droplets
at steady state affects the steady state volume. As the average number droplets
increase, due to surface effects, the total droplet volume at steady state decreases.
In fact, for an ideal choice of free energy parameters, and a large enough droplet
diffusion coefficient, it is possible to create a system which arrives at steady state
almost entirely through nucleation. New droplets would form and quickly diffuse to
an unstable region and dissolve, allowing little time for droplet growth. By again,
as decreasing the droplet diffusion, a greater proportion of the system lifetime is
spent in a droplet growth regime, which also consequently causes the total droplet
steady-state volume to increase.

4.2. Slow, Droplet Growth Regime

The goal of this section is to describe an early growth regime that exists due to the
spatial gradient. Most simulation parameters are chosen to emulate the C. elegans
embryo, but have not as of this section, been seriously compared to experiment to
optimize these parameters. The parameter choices here are in fact the starting point
for the optimization and comparison to the experiment which will be presented in
the next chapter.

Initial Conditions

Initial conditions are chosen such that the growth dominates over nucleation and
fusion of droplets. The total number of particles and total volume are set by the
parameters, φ̄ = 0.3, and V = 31250µm3. It should be noted that the chosen
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Parameter Description

Global
φ̄ 0.3 System volume fraction
V 31250

(50× 25× 25)
System volume [µm3]

Molecular Properties
D 2.0 Monomer diffusion coefficient [µm2/s]
va, vb 0.001, 0.0013 Monomer volumes [µm3]
Free Energy
γ̄ 0.01 Surface tension coefficient [µm]
ηa, ηb 0.1, 0.15 Bond energies, a-a and b-b
χ(0), χ(1) 2.15, 2.6 Interaction energy, a-b, at x(0) and x(1)
Nucleation
α 0.01 Nucleation Prefactor [s−1µm−3]
kBT 10−5 Nucleation Exponential Coefficient

Table 4.2.: Simulation parameters for slow growth simulation.
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Figure 4.11.: Starting frame of Simulation. Two dimensional projection of a 3-D simulation.
Droplets are randomly distributed throughout the system, with a Gaussian distribution about
Rc(φ̄, L/2) for the size of the droplet. Bright green droplets are growing while aqua droplets are
dissolving.
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volume is a reasonable estimate of the cell volume, but φ̄ is large, considering that
the cell cytoplasm is ≈ 70% water. This extreme value was chosen for two purposes.
First, without having any knowledge of the molecular properties of P granules, this
value allows for simple choices for the free energy parameters to allow for a phase
transition. Second, since all P granule material is simplified into component b, it is
not altogether clear how to define the volume fraction, as each individual component
does not necessarily appear in the cytoplasm and the droplet in the same ratio.
Although the concentration is most likely at least an orders of magnitude smaller,
the value 0.3 serves as a clear absolute maximum which can be later reduced with
more information pertaining to the system.

Droplets are randomly distributed throughout the entire system, where the droplet
radius is a normal distribution (σ = 5%Rc) centered around the critical radius at the
midpoint of the system, Rc(φ̄, 1/2). The background is subsequently depleted from
the value φ̄, to take into account all the formed droplets, such that there is initially
a uniform monomeric field. Figure 4.11 shows a sample 2D graphic representation
of the system with the prescribed initial conditions. With an initial homogeneous
background monomeric field, φ0(t = 0), approximately 2/3 of the system is still
supersaturated such that droplets grow (bright green droplets), which is consistent
with how the interaction parameter for the free energy was chosen (fig.3.6). The
main goal of this work is to use this model to analyze germ granule compartmen-
talization in the posterior, thus with the chosen initial conditions, nucleation has a
negligible effect and observed only for very early times (t ∼ 10s); the system is in
the regime dominated by growth. Even though choice of the spatially dependent
interaction parameter for the free energy is somewhat arbitrary, it is chosen in a
manner such that the left side of the system, x = 0, is always undersaturated for
the starting volume fraction φ̄, and that by the middle of the system, x = 1/2, the
system is supersaturated for the same volume fraction (figure 3.6).

Results

Figure 4.12(left frame) shows a typical sample simulation from the prescribed initial
conditions. One can see that implementing a gradient in the free energy along
the long axis of the system can be a successful method of organizing the system,
localizing droplets to one side. Starting from a state with both a uniform background
distribution and a uniform droplet distribution, the system evolves to a state where
drops exist and grow only in posterior, with an uneven depletion of the background
field. This localization, which occurs through the preferred asymmetric growth
of posterior droplets, not only depletes the background field, but also creates a φ
gradient in the background (fig. 4.12 middle frame); which is opposite to the induced
φs gradient. As the droplets do become localized to the posterior (t > 1000s), the
background gradient is still existent, but has decreased substantially in magnitude.
Concurrent with the depletion of the background and formation of a background
gradient, the data shows that not only do the droplets localize to the posterior,
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Figure 4.12.: Left: Sample 2-D graphic projection of 3-D simulation. As drops grow (green
droplets) and shrink (light blue droplets), they unevenly deplete the monomeric background (red).
Middle: The distribution of granule the component, P (N b), in the background (red), droplet
(green), and the sum of both (blue). There is a clear gradient of the background field, which starts
to disappear as the system approaches a single droplet. Right: Droplet distribution. As droplets
get larger and localized, a few drops take in most of the granule components. Model parameters
given in table 4.2. Averaged over 1018 simulations, error bars show the standard deviation.
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but via the droplets, the granule components also localize to the posterior. With
the chosen parameters, this localization results in ≈ 25% of the granule material
remaining in the anterior, while the rest of the material is localized in the posterior,
in droplet form. Similar experimental results have been recently presented by Griffin
et al.[28].

Although the system is initially in a droplet growth regime, it can be noted that
this is not LS growth per se, as the system does not follow LS scaling. Observing
the average number of drops over time, only for late times, t > 1000s, does one see
the expected scaling for the average number of droplets, N ∝ t−1, that is known for
the case of isotropic LS growth (figure 4.13). From LS theory, this power law is the
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Figure 4.13.: Number drops as a function of time, averaged over 1018 simulations. The error
bars show the standard error. The black line is a 2 parameter fit, which shows the power law
dependence for the average number of drops at late times.

direct consequence of the average droplet size scaling with time. Examining droplet
volumes (figure 4.14), one sees that the total droplet volume plateaus relatively
quickly, which indicates that the droplet mean size, 〈R〉 grows with larger droplets
growing through the depletion of smaller droplets. The scaling for the size, 〈R〉 t1/3,
is observed again only at later times. Thus, there is a “slow growth” regime, prior
to LS growth.

This slow growth regime does in fact make intuitive sense. With asymmetric
growth, the background monomeric field is consequently asymmetrically depleted.
Although the saturation point, φs, is lower in the posterior, the supersaturation,
φ0 − φs, is also less as compared to the isotropic case. This observation can be
seen in the sample simulation, figure 4.12(left frame). The local depletion of φ0

(background red field) in the posterior is greater in the posterior, which is due to the
preferred growth in the same region. Only when the system approaches homogeneous
growth, i.e. where the droplets are growing/dissolving at the same supersaturation,
at t ∼ 1000s, does the system show LS growth behavior. This point is reinforced by
comparing this growth with similar simulation with no inhomogeneous background
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field. In the case where there is no gradient whatsoever (figure 4.14b), one sees
the expected growth behavior. Interestingly though, with a gradient, but where the
background field is homogeneously depleted, i.e. monomers are assumed to diffuse
infinitely fast (figure 4.14c), there is also no slow growth phase. Similar to the case
with no gradient, the system shows LS growth behavior approximately 2 orders of
magnitude in time prior than the inhomogeneous case. The slower growth behavior
can be observed even within the average drop size for each half of the system. In
the case of infinite diffusion, the posterior side shows the same scaling behavior as
the system average, while with finite monomer diffusion, the growth of the posterior
is slowed.

Looking finally at the size distribution of the droplets, figure 4.15. The theoretical
scaling from LS theory [46] (see also introduction 1.2.1), for the distribution function,

g(z), where z ≡ R/ 〈R〉, and the mean radius, 〈R〉 = (4/9t)1/3, is compared to the
normalized size distribution from simulations. As an initial condition imposed on
the system, the simulations were started with droplets’ sizes close to the critical size.
This means that the system starts as a narrow distribution about R/ 〈R〉. During
slow growth, the distribution is below the theoretical distribution and eventually
converges to it. Due to finite size effects of the system, a perfect fit is not expected.

4.3. Chapter Summary

In conclusion, a gradient in the saturation point of a binary phase transition is
sufficient to induce spatial organization. It has already been well established that a
phase transition can compartmentalize a single component to one phase [53]. With
spatially asymmetric growth, the preferential growth of some droplets induces the
dissolution of droplets in the non-preferred region, and thus spatially localize both
droplets, and their granule components. Although this is not altogether surprising
per se, there are several interesting properties and effects that are a matter of note:
Due to the gradient, the system does not go to a single droplet equilibrium state,
but instead to a non-equilibrium steady state. The gradient can thus be thought of
as external field which does not allow the system to relax to equilibrium. Spatially
induced phase transition is an effective method of organization. Without the need for
motors or convection, one side of the system can be nearly completely depleted of a
single component, which is thereby concentrated in a different state on the opposing
side. The asymmetric growth of droplets occurs at a slower rate than normal LS
growth. Due to local background depletion, asymmetric growth demonstrates a
slower growth behavior, i.e. slower than expected 〈R〉 ∝ t1/3 for LS growth. The
final state of the system is a single droplet, but due to slower growth/competition of
droplets in the posterior, there are more droplets in the posterior for an equal level
of background depletion in the anterior. The dissolution/growth of droplets creates
a gradient in the background field. Although this gradient decreases in magnitude
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Figure 4.14.: Average droplet size as a function of time. The red triangles show the mean droplet
size (radius), 〈R〉, where all values are normalized by the system size, V 1/3. The mean drop size in
the posterior half (light blue), and in the anterior half (purple) are also displayed in the situations
with a gradient. Time scales are different for each plot. (a) In the case of a monomeric diffusion
field with a gradient, there is a period of slow growth, and only at late times does 〈R〉 scale with
t1/3. This is indeed the slow growth of the posterior, while the average size in the anterior half
stays fairly constant. (b) In the case of no gradient, the system shows the well studied behavior
of LS growth almost immediately, with no slow growth regime. (c) With a gradient in φs, but
allowing for a homogeneous background field (monomer components diffuse infinitely fast), the
system also shows no slow growth regime, and enters directly into LS growth, in a like manner to
the no gradient case.
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Figure 4.15.: Scaled droplet size distribution function g(z), compared to normalized, scaled
droplet radius, z = R/ 〈R〉 (see intro.1.2.1). The black line is the theoretical scaled droplet size
distribution function from Lifshitz-Slyozov growth[46]. Different plots correspond to the normal-
ized, scaled droplet distributions from 1018 averaged simulations. For late times, the droplet dis-
tribution converges to the LS distribution curve. Since the system is of finite size, this convergence
does not coincide for infinite times.

over time, it is continuously maintained throughout the entire process.

This droplet growth model appears to be a reasonable model to describe germ
granule segregation. Germ granules preserve proteins and RNAs that would oth-
erwise be broken down within the cell, specifically macromolecules required for the
development of the germ layer. Localization by phase transition allows the cell to
compartmentalize RNAs and proteins into germ granules, while simultaneously lo-
calizing them to the proper region, such that they are in only one cell after cell
division occurs. Without this type of compartmentalization a significant amount of
cellular resources would be required to actively transport these macromolecules into
the proper region.

The non-equilibrium steady state of the system can be described as a single droplet
with a source in the posterior and a sink in the anterior. A gradient emerges due
to the differential diffusion of the droplet as it changes in size. The properties of
the droplet, which causes a system with no gradient to evolve to a single droplet
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state, appear to be the same in the case of the gradient. Hypothetically, allowing
the droplet surface tension to approach zero, would allow the system to contain
multiple droplets, similar to the no gradient case.

Considering the mechanical simplicity of this system, it is likely that localization
by phase transition is a process that is not just unique to germ granules. This
gradient growth model can give some additional insight into the P granule system,
and other systems that undergo the same type of process. As cell division progresses,
there are key moments which indicate to the cell that a major global transition
should occur, e.g. fertilization of the egg by the sperm, indicates that the cell should
undergo symmetry breaking; which sets into motion the proteins required for this
to occur. For cell division, what signal(s) are required for the cell to continue and
complete the process? In the P cells, the background monomer field, of a specific
granule protein, could be a likely possibility. Since this is a global quantity, receptors
anywhere in the cell could “know” whether localization of the proper materials have
occurred by measuring the local protein concentration, or protein gradient. This
type of global signalling, with a minimal number of necessary components, could
also be generic to any cell of fixed volume and number of molecules for the activation
of other global events within the cell.

In addition to allow for P granule localization, we observe that with a spatial
gradient, with a “sufficiently“ high nucleation, the system can be maintained at a
cyclical non-equilibrium steady with the flux multi-mer droplets in one direction,
and monomeric droplet components in the opposite direction. This behavior is not
altogether different than the oscillatory behavior of nucleation and growth observed
in continuous stirred tank aerosol reactor (CSTR) experiments [50]. Although the
dynamics of P granules do not appear to fall into this cyclical regime, it would be
interesting to see if such behavior can be found within a cell.





5. Comparison of Theory and
Experiment

So far, we have identified the important processes occurring within the C. elegans
embryo which are necessary for P granule localization, but comparison of experi-
ments with our theory is by far, not trivial. With respect to computer simulations,
there are few parameters that can be ascertained directly from experiment, and the
kinetics of our theory are only well understood close to the steady state. P granules
are clearly not at steady state, and the window of knowledge divulged from experi-
ments is temporally small, making scaling arguments inconclusive. This chapter will
focus on a comparison of simulations to the point after symmetry breaking in the
C. elegans, i.e. t > −7.5min. PNM in figure 2.4. To simplify comparisons, this time
will now be redefined as t = 0 and referred to as the point of symmetry breaking.
All biological experiments were performed by C. P. Brangwynne.

5.1. Determining Simulation Parameters

Few simulation parameters are known directly from experiment. This section states
these known parameters, and discusses how all other simulation parameters have
been chosen through experimental observations and trends, simulations, and rough
calculations with occasional guesswork. All simulation parameters are summarized
in table 5.1. This section is organized in a somewhat chronological manner; pa-
rameter descriptions and how they were chosen, are stated in the order that they
are fixed. It should be noted that how a certain parameter is determined, in this
section, can often necessitate prior knowledge of a previously fixed parameter.

System Size

A single cell is roughly ellipsoidal. We take the system volume as a rectangular solid
with dimensions equal to the length of the principal axes of the ellipsoid. Although
we are interested in what occurs on different sides of the cell, boundary effects are
neglected. Within a few micrometers, the single cell C. elegans ’ dimensions are,
≈ 50µm × 25µm × 25µm, where the long axis is the anterio-posterior axis (or x
axis).
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Parameter Description

Global
φ̄ 0.163 System volume fraction
V 31250

(50× 25× 25)
System volume [µm3]

Molecular Properties
D 0.2 Monomer diffusion coefficient [µm2/s]
va 3 · 10−11 Cytoplasm monomeric volume [µm3]
vb 1 · 10−10 Granule monomeric volumes [µm3]
Free Energy
γ̄ 2 · 10−3 Surface tension coefficient [µm]
ηa, ηb 0.001, 0.001 Bond energies, a-a and b-b
χ(0), χ(1) 1.6, 1.8 Interaction energy, a-b, at x(0) and x(1)
Nucleation
α 0.001 Nucleation prefactor [s−1µm−3]
kBT 0.001 Nucleation Exponential Coefficient
Initial Conditions
M(0) 150 Initial Number Drops
ξ(0) 0.3± 0.1 (†) Initial droplet size distribution [µm]

Table 5.1.: List of all simulation parameters used to replicate P granule in the single cell C.
elegans embryo. Droplets are randomly distributed throughout the entire system, where (†) their
initial size is a normal distribution defined by ξ(0). See section 5.1 for full details each parameter,
and how it is chosen.

Monomeric Volumes

We assume for our binary fluid, that the cytoplasmic component has the properties
of water. Using the known molar mass of H2O, ≈ 18.02 g/mol, and density, = 1000
kg/m3, the molecular volume of water is then ≈ 3 · 10−11µm3.

It should be noted, that although each H2O molecule has a bond length of
ångstroms, giving a volume of order 10−10µm3, empirical evidence shows that molecules
pack more tightly than what one would expect from just the molecular length. The
structure of the granule component is not known, in fact, considering the array of
proteins and RNA’s that do make up P granules, the granule component per se,
does not truly exist. We initially define our “effective” granule component based on
the knowledge we have of the protein Pgl-1, which as of yet, has an undetermined
3D structure. Considering Pgl-1 to be of nanometer length, and assuming that, just
like water, it packs an order of magnitude closer than this length, it’s molecular
volume would then be of order ≈ 10−10µm3.
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5.1.1. Free Energy Parameters from Experiment

Bond Energy of the Free Energy Density

The bond strength of the cytoplasmic component is assumed to also to have the
properties of water. Using the strength of a hydrogen bond in water, ≈ 10 kJ/mol
[79], Avogadro’s number, and its molecular volume, we calculate its bond energy to
be of order ηa ≈ 0.001 (see appendix B for definition of bond energies). Nothing
is known about the bond energy of the granule component. For simplicity, it is
assumed to have the same bond energy as water. It should be noted that with the
limited information about the P granule system, ηa and ηb have been chosen such
that they are negligible parameters in the model. The key point being that, for some
values, ηa and ηb, one must choose the interaction energy, χ, and surface tension
parameter, γ̄, to give a proper equilibrium description of the system for some initial
conditions. Since the entropic term of the free energy density is of order ν ≈ 0.3,
these enthalpic bond energy terms have no significance. Thus, any choice of ηa and
ηb of order less than ν, has negligible impact on the system.

Droplet Size as a Constraint

After symmetry breaking, we see that the number of observable P granules in the
posterior is relatively constant, while their number decreases in the anterior (figure
5.1 A1). This supports the hypothesis that droplet size dynamics within this time
span are growth dominated, and that nucleation and coalescence of P granules have
negligible effects in comparison; in either a nucleation or coagulation regime, one
would expect to see the number of P granules in the posterior to increase due
to nucleation, or decrease due to fusion of P granules. One does in fact observe
small fluctuations in the number of drops even in the posterior, and both P granule
nucleation and coalescence have been previously observed in the C. elegans embryo
[6].

Reexamining now the P granule growth rate from chapter 2 (figure 2.6) we see
that the growth rate approaches zero at late times. We thus assume that even
though the system is far from equilibrium, the total P granule volume is close to its
final size. That is, this volume should be close to the equilibrium size of the system,
which is set by the total free energy.

The largest P granules can be up to a few micrometers [78]. To set an upper limit
for the equilibrium size, we first assume that that all 80-100 P granules at t = 300s
(figure 5.1 ) have a radius ≈ 1µm. We measure the integrated intensity of the entire
cell and see that this quantity is 20× larger than the total intensity of all tracked
P granules. Using the assumption that the total GFP intensity is proportional
to the total P granule volume, we set an upper bound for the equilibrium size,
Req ≤ 0.1V 1/3. Of course, the system equilibrium size is a spatially dependent
quantity changing across the cell due to the saturation gradient. Since this is an
upper limit, and as shown in the previous chapter, the granules will collect onto one
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side of the embryo due to the gradient, the posterior equilibrium size is set to this
value, which becomes a constraint on the free energy parameters.

Thus so far, we have imposed a single constraint (the equilibrium size at the
posterior end) onto the three remaining free parameters of the total free energy:
the system volume fraction φ̄, the surface tension coefficient γ̄, and the spatially
dependent interaction energy χ(x). It is known that P granules can be highly varied
in size (see introduction 1.1.2), and likely to have a critical size below the resolution
of the microscope throughout the posterior. Simultaneously, the critical size must
be sufficiently large in the anterior such that all P granules are unstable. We thus
require the critical size to be initially, Rcrit ≤ 1.0µm throughout the posterior, where
in particular, it is ≤ 0.01µm at the posterior end.

Interaction Energy

With the bond energy parameters and molecular volumes already fixed, only the
interaction parameter gradient χ (see Appendix B) of the free energy density must
be set. Consistent with our choice of the critical radius in the previous subsection,
we impose the constraint that phase separation can only occur on the posterior side
of the system. That is, the free energy density has two minima in the posterior,
and a single minimum in the anterior. This places a rather limited range for the
χ, which is roughly 5 − 6 times the magnitude of ν. We choose χ to vary linearly
across the system,

χ(x) = χ(0) + (χ (1)− χ (0))x (5.1)

and choose χ(0), χ(1) according to our phase separation constraint. The actual range
of χ is later adjusted with respect to the other free energy parameters to satisfy the
spatial constraints of the critical size, i.e. Rcrit diverges at the anterior end, and is
≤ 0.01µm at the posterior end.

Surface Tension and Initial Volume Fraction

The constraints on the equilibrium size at the posterior end, Req(1), and the crit-
ical size at the midpoint of the system, Rcrit(1/2), are now sufficient to uniquely
determine the remaining parameters of the free energy. We thus calculate the final
two parameters of the free energy, φ̄ ≈ 0.15, and γ̄ ≈ 2 ∗ 10−3, which state the
P granule volume fraction of the entire system, and the P granule droplet surface
tension within the cytoplasm.

5.1.2. Parameters Determined From Numerical Simulations

To this point, all stated parameters have come from direct experimental measure-
ments and observations, or assumptions made upon said observations. The follow-
ing parameters were initially chosen or guessed in the same manner, but subsequent
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numerical simulations demonstrated that these values were incorrect. These param-
eters were thus determined by repeated simulation iterations.

Monomeric Diffusion Coefficient

Initially, the monomeric diffusion coefficient of P granules was set to the measured
diffusion coefficient of Pgl-1 from photobleaching experiments (section 2.2.1). Simu-
lations using this coefficient, for a system of appropriate size and number of droplets,
show that the system would be clearly in a coagulation regime, where the number
of drops decrease due to fusion events on throughout the system, irrespective of
the system’s free energy. Since all other parameters can be more precisely mea-
sured, the data strongly suggests that the initial diffusion coefficient was overesti-
mated. Assuming that P granules follow the Stokes-Einstein relation for spheres,
the monomeric diffusion coefficient must then be consistent with the measured dif-
fusion of observable P granules (Rmax ≈ 1µm). This sets an absolute lower limit
on the diffusion coefficient by physical constraints, since P granules monomers must
be larger than single atoms. By simulation iterations, the order of magnitude of
the diffusion was determined, D = 0.2± 0.5µm2/s, which is an order of magnitude
smaller than the diffusion coefficient of Pgl-1.

Nucleation

With this new diffusion coefficient, fusion events do still occur, but the system is
not dominated by fusion dynamics. The goal is then to determine the nucleation
parameters such that, at least for the experimental time span, the nucleation rate
is of the same order as that of the fusion rate. The energy to create a droplet of
critical size, ∆F ∗, changes across the system, and particularly close to the saturation
point, can change dramatically. First, kBT was chosen in a manner such that at
least initially, the probability of nucleation is not greater than an order of magnitude
from the posterior end of the system to the center, kBT ≈ 10−3. Simulations were
then run to determine the nucleation prefactor, α ≈ 10−3.

Initial Conditions

Experiments shows that there are approximately 150 P granules observed within the
cytoplasm at symmetry breaking (figure 5.1), and literature suggests, this number
can in fact be somewhere between 100-200, and highly varying in size (see Updike,
Strome (2009) [78]). Considering that we begin our comparison at the time point
where granules start growing in the posterior and shrinking in the anterior, we
assume that they are fairly close to the critical size (although this does not have to be
the case). Initially, the initial number of droplets is set to N = 150, where their sizes
were set by a normal distribution about the critical size. As expected, the system
did evolve to the proper final state, but the dynamics were clearly different than
what is observed experimentally; droplets immediately disappeared in the anterior.
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The droplet mean size and distribution width were gradually incremented to find
this proper behavior.

5.1.3. Discussion of Parameter Choices

It should be noted, that much of the section discussed initial values of the system,
in particular with respect to the Rcrit. This critical size was discussed in a manner
such that there were no droplets existing in the system at t = 0. For a fixed φ̄,
varying the number and size of the initial number of drops, would clearly change
the critical size also. This would mean that for each set of droplets of a certain size,
both φ̄, and χ(x) were adjusted, and then after subsequent simulation runs, α for
the nucleation would also then be adjusted.

From the assumptions made, the system volume fraction was determined to be,
φ̄ ≈ 0.15. This would mean that approximately 15% of the cellular volume is
P granule material. One may immediately think that this quantity is too large,
but with some consideration, the subject becomes more ambiguous. P granules
can envelope other organelles, which would indicate that their volume does not
necessarily exclude other cellular structures. Reproduction is also quite possibly
the most important function of any living organism function. In a fully mature C.
elegans, the germline takes up nearly half of the worms volume, thus, I would argue,
it is not unrealistic that P granules take up such a large volume of the embryonic
cell. This of course is somewhat of a hand waving argument, but considering the
difficulty of the necessary experimental measurements, not much more can be done
at the present.

5.2. Comparison of Data

From the chosen simulation parameters, one can get a reasonable qualitative com-
parison between simulation and experiment (figures 5.1, and 5.2), where some insight
with regards to the biological system can be gained. It should be first noted that,
although possible, at the current time it is superfluous to perform simulations that
match the experimental trends more precisely for several reasons: At early times,
prior to symmetry breaking, there is a larger number of P granules in the anterior of
the cell, and both symmetry breaking and the formation of the Mex-5 gradient are
not instantaneous events within the cytoplasm. Replicating the gradual gradient
formation or the “initial distribution” at this point without more knowledge of how
these processes occur would be artificial or ad hoc at best.

Examining the similarity between both the number of P granules and the granule
size to simulations, figure 5.1, the data suggests that both experiment and simulation
demonstrate the same type of growth behavior, which reaffirms the hypothesis that
P granules grow through spatially mediated phase separation. As mainly P granules
dissolve in the anterior, while the total granule size increases, it is likely that the
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Figure 5.1.: Time evolution of the of P granules compared to simulation. (A1) The time evolution
of the number of P granules, and (A2) the average P granule intensity (average size) from a C.
elegans embryo, as compared to simulations showing (B1) the time evolution of the number of
droplets, and (B2) their average size. Experiment performed by C.P. Brangwynne, and intensities
plotted are effective intensities (see appendix A.2). Simulation data averaged over 100 simulations.
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system is undergoing the slow growth discussed in the prior chapter (section 4.2).
That is, one sees a slower growth rate as compared to a t1/3 scaling one would
expect in a simple, non-spatially mediated growth regime. This hypothesis is further
supported by P granule behavior in the last 50 seconds of the experimental data. If
the system was in a slow growth regime, one would expect the system to transition to
normal growth once nearly all the P granules in the anterior have been depleted. The
sudden fall in number of P granules in the posterior and simultaneous increase in P
granule volume would suggest exactly this. Of course, the length of the experiment
is too short to confirm any scaling behavior, and the sudden increase in P granule
size could be due to some other transition occurring within the cell as it begins to
divide which is well beyond the scope and understanding of this study.

5.2.1. P granule Distribution

Looking now at the distribution of P granule material (figure 5.2 left), we see that
initially P granule material is fairly evenly distributed throughout the system, with a
slightly larger concentration at the center of the cell. Eventually a gradient in Pgl-1
forms, as material concentrates within the P granules on the posterior side of the
cell, consistent with simulation. It should be noted that at t = 300s, the pronuclei
from the oocyte is located at x ≈ 0.5 and the sperm are pronuclei at x ≈ 0.7.
Although we would expect the intensities to continue rising in the posterior, as
there are clearly more P granules in the posterior, due to position of the pronuclei,
this behavior can not be properly observed.

To get a better understanding of this distribution, we create a simple diffusion
reaction model to describe the P granule dynamics, which was done in collaboration
with Chiu Fan Lee at the MPIPKS. For simplicity, we assume that all droplets
have a typical size vd. Since we are interested in the steady state solution of this
model, the high variance of P granule sizes initially observed, does not undermine
this model. The droplet distribution can then be written as,

∂tnd = Dd∇2nd − k−(x, φ0)nd + k+(x, φ0), (5.2)

where Dd is the droplet diffusion coefficient, k+ is the rate at which a droplet of size
vd is formed, and k− is rate at which the droplet is disassembled, assumed to be
proportional to nd. Both the assembly and disassembly rates are dependent on the
local level of supersaturation (δφ = φ0−φs), which has a spatial dependence due to
the Mex gradient (φs = φs(x)). This distribution can be written as a global droplet
volume fraction,

∂tφd = Dd∇2φd − k−(x, φ0)φd + vdk
+(x, φ0), (5.3)

with a complementary equation to describe the background monomeric field,

∂tφ0 = D0∇2φ0 − h−(x, φd)φ0 + v0h
+(x, φd). (5.4)
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Figure 5.2.: Comparison of concentration distributions. (left) P granule material (GFP::PGL)
intensity distribution within a C. elegans embryo, and (right) mass distribution of granule com-
ponents from simulation. The total amount of granule component is shown in blue, the amount
within P granules (or droplets) is shown in green, and the amount of material within the cyto-
plasm (or background) is shown in red. The dashed line in the experimental data is the total
integrated intensity across the cell from the boxed region in figure 5.3. This data is then binned
(blue dots) and compared to the total P granule intensity across the cell from P granule tracking
(green triangles). The difference between these two values (red triangles) should then correspond
to the amount of material within the cytoplasm. This cytoplasmic concentration is a rough ap-
proximation at best. This is due to the difficulty of subtracting the background intensity, and the
fact that both pronuclei are in the center/center right of the cell, which causes a lowered intensity
measurement as compared to the actual concentration of P granule material. The background
intensities for each image has been subtracted independently of the other, thus the total intensities
for both time points are not comparable, although ∆I is still comparable. In simulation, the system
is also spatially binned. The mass distribution corresponds to the amount of granule component
within the bin, normalized by the total amount in the system, N b. Error bars show the standard
deviation. Experiments performed by C. P. Brangwynne and simulation data averaged over 1000
simulations.
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Figure 5.3.: C. elegans embryo tagged with GFP::PGL-1, at t = 0s (left) and t = 300s (right).
The images are total intensity of all z-stacks. The yellow boxes correspond to the region which is
further analyzed (see figure 5.2). The oocyte and sperm pronuclei are the two dark circular regions
in the right image. Experiment performed by Dr. C.P. Brangwynne

Here, D0 is the diffusion coefficient and v0 is the cytoplasmic monomer volume of
the cytoplasmic P granule constituents. The rates h+ and h− are respectively, the
rates of accumulation and depletion of cytoplasmic P granule constituents due to
droplet formation and dissolution. With the assumption that the system is incom-
pressible, volume fraction distributions are equivalent to mass distributions. Thus
by conservation of mass, the rates of the last two equation must be equal,

vdk
+(x, φ0) = h−(x, φd)φ0 (5.5)

k−(x, φ0)φ0 = v0h
+(x, φd). (5.6)

To make this problem analytically accessible, we look at a simplified case: a one
dimensional system, where growth occurs only in the posterior, and dissolution only
in the anterior, both at constant rates,

vdk
+(x, φ0) = αΘ(x)φ0

k−(x, φ0) = βΘ(−x).

Thus, α and β are constants that represent the effective rates of conversion of be-
tween φd and φ0, and Θ(x) is the Heaviside step function. In this manner, the rates
k±, mimic the saturation gradient dependent growth, such that in the anterior,
x < 0, the system is in a single phase state and all droplets disappear at a rate βφd,
while the system is in the two phase state in the posterior, x > 0, and the cytoplasm
is converted into droplets at a rate of αφ0. With these simplifications, the steady
state solution for equations (5.3), (5.4) can now be obtained. Incorporating no flux
boundary conditions at both ends of the system (x = ±L/2),

φd(x) =

{
K cosh(βd(L/2+x))

cosh(βdL/2)
, x < 0

K
(

1 + 2 tanh(βdL/2) sinh(α0x/2) sinh(α0(L/2−x/2))
(α0/βd) sinh(α0L/2)

)
, x ≥ 0

(5.7)
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φ0(x) = (K − φd)D0/Dd. (5.8)

Here, (α0)2 = α/D0, (βd)
2 = β/Dd, L is the system length (from −L/2 to L/2), and

K is a constant proportional to the total volume of P granule constituents within
the cell.

Using the diffusion coefficients determined from simulation (see prior section),
this model is now fit to the previous distribution, figure 5.4. Again, due to the
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Figure 5.4.: Comparison of analytical model at steady state model with P granule distribution.
The P granule constituents within P granules φd is shown in green, the background material φ0 in
red, and the total P granule material φtot = φd + φ0 is shown in blue. The data points shown are
corresponding experimental data from GFP::PGL in the C. elegans embryo. Both sets of data have
been normalized using the anterior most point. For the model, the system length was determined
by measurement of the C. elegans embryo, L = 50µm, the diffusion parameters were taken from
those determined by experiment Dd = 0.08µm2/s (see Chapter 2), and simulation D0 = 0.2µm2/s
(prior section). All other parameter values were chosen to fit the experimental data, K = 20
α = 2.0 · 10−4s−1 and β = 5 · 10−4s−1.

position of nucleus and boundary effects, there are some discrepancies between the
model and the experimental results. In this, so called steady state distribution,
we observe that the concentration of P granule constituents within the posterior is
roughly 1.5 times that of the anterior (which is likely to be an underestimate to the
pronuclei). From this model, we observe that a stronger localization of P granule
material can occur by varying the growth or dissolution parameter, α, β. Since the
actual P granule growth rate is set by the Mex-5 gradient through the free energy,
it is possible to induce a much stronger localization of P granule material with a
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smaller Mex-5 gradient. This might be in fact necessary for later cell divisions, as
the amount of Mex-5 in P lineage cells decreases.

5.3. Later Cell Divisions

Simulation data can give some insight into the dynamics of subsequent cell divisions.
Since the embryo is contained within an egg shell, we know that the size of daughter
cells are roughly half the size of the parent cell, and in the case of the progenitor
germ cells, they are in fact less than half the parent’s size (see figure 1.4 for a basic
overview of this process). The amount of granular material that is localized to the
posterior, as of yet, has not been unequivocally quantified. Prior works suggest
that this concentration is doubled after the first cell division [22]. What happens to
the system if the system volume is halved and the initial concentration of granular
material is doubled, while all other parameters are kept fixed? Due to the increase
in the droplet density, the system switches into a coagulation growth regime; the
droplet number and size are dictated by droplet coalescence (figure 5.5). We of
course would only expect this to occur in the embryo if the total droplet volume
were the same in both the P0 and P1 cells, which although not properly measured,
does not have to be the case. On the other hand, it should be mentioned that this
coalescence behavior dominates, independent of droplet growth and nucleation rates,
which have also significantly increased due to the greater level of supersaturation.
Although it is not clear that the P1 cell has entered the regime of fusion mediated
growth, we would expect this transition to eventually occur with subsequent cell
divisions, quite possibly by the 3rd or 4th cell division, where they become more
and more localized to the cell nucleus.

The decrease in cell volume and increase in concentration of P granule material
leads to an increase in the supersaturation of the entire system. Little is known about
Mex-5 at this stage. If the concentration of Mex-5 is kept fixed at the two endpoints
of the cell (as we have done), the Mex-5 gradient would double in magnitude and
lead to a significant increase in growth and nucleation rates of P granules, leading
to a more efficient localization of P granules. It is also possible that Mex-5 has
become significantly depleted by the second cell stage, since no protein translation
occurs this early in embryogenesis (see intro 1.1.2 and the majority of Mex-5 was in
anterior of the cell prior to cell division (figure 2.10). Due to the decrease in Mex-
5 concentrations, a greater volume fraction of P granule material does not mean a
greater supersaturation as compared to the one cell stage. This greater concentration
may be necessary to “compensate” for the decrease in the Mex-5 gradient, which
would lead to an increase in φs throughout the system.
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Figure 5.5.: Droplet Fusion rate versus time, from (left) simulations of the single cell stage and
(right) simulations of the two cell stage. Nearly all parameters come from table 5.1, except the
system length is halved and the system granule concentration is doubled, i.e. V2cell = 1

2V, φ̄2cell =
2φ̄, for the two cell stage. The time evolution of the number of drops for each system is placed in
boxes for easy comparison.





6. Summary and Conclusions

In this study, we have determined the mechanism for germ granule localization
within the C.elegans embryo. From this data, we have developed a theoretical
framework to describe how spatial localization can occur due to a background gra-
dient.

6.1. General Summary

Experimental Analysis

From experimental data of the single cell C. elegans embryo, we have determined
that P granule localization can not occur due to cytoplasmic flows, and likely to
occur through spatially mediated growth. This spatially mediated growth changes
throughout the lifetime of the cell, but is in particular, controlled by the protein
Mex-5. The formation of a Mex-5 gradient is necessary for P granule localization.

P granules have been also observed to have droplet properties, and thus, can
be described as liquid droplets within a liquid cytoplasm. Some liquid properties
of granules have been determined: Within these liquid P granules, the diffusion
coefficient of the protein constituent Pgl-1 was measured. Using tracking data, the
diffusion coefficient of different size (intensity) P granules has also determined.

Theoretical Model

Using experimental observations as a starting point, a theoretical model of P gran-
ules has been developed: a binary two phase fluid that can undergo liquid-liquid
phase transitions. This model is based on droplet nucleation growth models. In ad-
dition, to allow for droplet localization, i.e.inhomogeneous growth, a spatial gradient
was added to the saturation point by utilizing the free energy of the system. This
addition of a spatially dependent saturation point builds upon the dynamics within
the field of 1st order phase transitions, allowing both inhomogeneous concentrations
and fluctuations throughout the system.

Simulation Study of the Gradient

Simulations were performed to study the effects of the spatially dependent gradi-
ent within the droplet growth model. It was determined that with inhomogeneous
growth, the background concentration field takes on a new importance. It is no
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longer globally homogeneous, and theories that use this approximation become in-
valid. In fact, it forms a gradient in the opposite direction as the droplet growth
gradient due to depletion from droplet growth. Because of this background deple-
tion, droplet growth occurs at a slower rate than in the comparable homogeneous
growth cases at early times. At later times, when all droplets have spatially localized,
the system behaves again like the homogeneous system.

For large diffusion coefficients (or for very long times), the gradient allows for
a cyclical, ensemble steady state. Droplets nucleate and grow in one region, but
eventually diffuse to another unstable region where they dissolve. The dissolved
material in the background then diffuses back to the metastable region allowing for
new droplets to nucleate and grow. In sum, a steady state is created with a net
flux of droplets in one direction, and a net flux of droplet constituents within the
background in the opposite direction.

The gradient in effect prevents the system from relaxing to a final equilibrium,
and creates a cyclical non-equilibrium steady state. This type of behavior is similar
to what has been observed in open systems that undergo nucleation and growth,
where one observes temporal oscillations in phase transitions, e.g. [16, 56, 65].
Models of open systems showing this type behavior have also been developed in the
study of aerosol clouds, in particular with respect to weather forecasting and climate
prediction [49].

Experimental Comparison

Simulations were performed to duplicate experimental observations. From these
simulations, it appears likely that P granules exist in a slow growth regime. Upper
and lower bounds for their diffusion coefficients have also been determined. It has
also been determined that this type of nucleation and growth behavior observed in
the single cell stage are unlikely to dominate P granule dynamics in later cell stages.

6.2. Future Outlook

Given the generic nature of our model, we believe this approach can be used to
study other membraneless assemblies within the cell, such as Cajal bodies, and
stress granules. In addition, the ramifications of a gradient dependent free energy
has not been completely understood. Probably the most important work that is
required is a better understanding of the slow growth regime. Although we have
identified a slow growth regime due local depletions, the properties of this regime
have not as of yet been properly studied. How much slower is it as compared to the
homogeneous case? Since this is a diffusion limited growth case, we would expect
this rate to scale with system size (for evenly distributed particles), but proper
analysis is still required.

From theory and experimental observations, many things can be said with respect
to possible directions for future endeavours in the study of granules. Although
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from this study we have concluded that cytoplasmic flow fields have a negligible
effect on P granule localization, it does have some effect. A majority of P granules
appear unaffected by the flow field, but a few are observed to “flow” with either the
cytoplasmic field, or due to some other unknown cause. Hypothetically, this could
be due to granules enveloping certain molecules that are themselves transported,
which inadvertently drags along the granule. A more conclusive understanding of
the effects of flow and its “arbitrariness” on P granules could shed light on the
stability of structures within the cytoplasm that are not fixed in place, e.g. by the
cytoskeleton.

From theory, it is believed that germ granules are in a slow growth regime. Due
to the short time span of experiment, this can not be verified. By delaying the next
stage of cell division, this behavior could be observed, in particular with transition
to normal growth once most granules have localized to the posterior.

We also predict a significant change in granule dynamics in later cell divisions.
Similar measurements, as have been presented here, for subsequent cell divisions of
the P lineage cells could show when P granules shift from a nucleation and growth
regime into a coagulation regime. In general, precise measurements of the concen-
tration of P granules throughout the cell is difficult due to many factors (see e.g.
figure 5.3). An accurate assessment of how much P granule material is localized
to the posterior is difficult to make due to the position of the nucleus, background
noise, and other less significant effects. Observation of P granule behavior in later
cell stages could possibly place an upper limit on how much material is localized in
the previous cell stage. To be more specific, if the second cell stage does not fall into
the coagulation regime, ignoring other possibly new factors, an absolute limit can
be placed on the amount of P granule material that has been localized prior to cell
division. This of course depends on how the saturation point of the system changes
after cell division; how much granule component still resides within P granules and
not freely in the cytoplasm.

Probably the most interesting bit of knowledge obtained from theory pertains
to the background field within the cell. With asymmetric growth of P granules,
an opposite gradient is created in the cytoplasm. Although granules are discrete
organelles that localize to “one” region, the gradient in the background field is better
described as a continuous global quantity. How does a part of the cell “know” when
something has occurred in a distal region of the same cell? We propose that this
gradient, and similar ones, could play a role in cell signalling. In this specific case,
local measurement of a key P granule constituent in the cytoplasm, or its gradient,
would allow distant points in the cell to determine if P granules have sufficiently
localized to the posterior such that a new cellular event can occur.

In sum, we have developed a theory to account for spatial organization through
phase separation with the utilization of a gradient. Although this theory has been
specifically applied to germ granules, it is generic, and can be applied to other
biological and non-biological cases. I must admit, that the P granule system is an
ideal system to observe and study localization due to phase separation, which I can
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not take any credit for choosing. That said, localization by gradient is not a unique
feature to this system, and with the discovery of this property within P granules,
it is likely that many other systems will be observed with similar properties. From
a biological perspective, this type of localization demonstrates a more fundamental
type of pattern formation, as compared to e.g. the use of molecular motors. With
the ability to describe a biological system using the formalism within statistical
mechanics, instead of a purely phenomenological approach, we take a step closer
to describing and understanding biology from basic physical principles. . . albeit a
minute step.
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A. Determining the Diffusion
Coefficient of P granules

For some body, one can calculate its diffusion coefficient by measuring the mean
squared displacement of the object with respect to the elapsed time; where, for
a purely diffusive object, the actual mean displacement will be ≈ 0. As objects
increase with size, the diffusion of the object decreases due to the increase of drag
within the medium. For spherical objects with radius R, at low Reynold’s number,
this decrease in diffusion is given by the Stokes-Einstein relation,

D =
kBT

6πηR
, (A.1)

where η is the viscosity of the medium. Thus for spherical objects, diffusion should
decrease as ∝ 1/R.

To determine the diffusion coefficient of P granules, two factors need to be ac-
counted for: P granule advection due to cytoplasmic flow and the size of P granules.

A.1. Advection

Using tracking data from wild type P granule embryos, the average velocities were
measured, and the velocity distributions within the embryo were observed, see figure
A.1. A non-zero mean velocity of P granules is measured on the posterior side of
the embryo, fig.A.1B. Comparison of this data with the distribution of velocities,
fig.A.1C, shows that the mean velocity is not necessarily indicative of P granule
behavior, and that the median velocity is a better description of the average velocity.
Although there are a few granules that are moving with “high” velocities due to
cytoplasmic flow, the majority appear unaffected by flow. That is, the advection of
P granules could in fact be a red herring, and it is quite possible that P granules per
se, are not effected by intracellular flow. It is possible that occasionally a granule
binds or envelops other objects, which then proceed to carry them; quite often, but
not necessarily with the cytoplasmic flow. This conjecture is supported by the fact
that there are almost as many posterior flowing granules as anterior flowing, and
it is commonly observed that P granules can occasionally envelope large structures
such as centrosomes [78]. This would mean that P granules do not advect on their
own, but are occasionally carried by objects which are affected by cytoplasmic, or
other flows. For the calculation of P granule diffusion, it is thus sufficient to measure
the mean square displacement of the “0-velocity” granules and ignore advection.



96 A.2. Size and Intensity

A.2. Size and Intensity

With GFP labeling of proteins, the optimistic expectation is that fluorescence in-
tensity increases proportionately with the number of existing labeled proteins. Hy-
pothetically one could then determine the size of a polymeric protein by measuring
the total GFP intensity of this single protein, knowing the intensity a GFP molecule
attached to its monomeric component. This of course is not necessarily the case,
and many factors, such as deconstructive interference of densely packed particles,
can significantly alter this proportionality. GFP labeling has been tested in-vitro
with GFP::PGL-1 where this proportionality has been shown to hold [36]. For the
purposes presented here, it will be assumed that this proportionality is also valid
for GFP::PGL-1 within the C. elegans embryo.

It is though necessary to take into account the loss of intensity with respect to
different z-planes of the same embryo. As one images through an embryo, moving
further away from the surface plane, there is a loss of intensity. Thus for any given
z-plane, we can measure the GFP intensity of Pgl-1 and discuss the comparative
sizes of P granules within that z-plane, but to compare granule data from multiple
planes, the GFP intensity must be normalized to take into account the incurred
change of intensity for each z-plane.

Since the particles in question are small, we assume that gravity is negligible in our
system, and thus assume that there should exist no significant systematic differences
in the general make up of any z-plane, i.e. P granule size distributions should be the
same for all z-planes. Examining the intensity distributions for separate z-planes,
we see that this is not an unreasonable assumption, as each distribution appears had
a similar shape, a half binomial distribution, figure A.2A. Each z-plane distribution
was thus fit to a 2 parameter normal distribution, f(x) = Ae−(x/

√
2σ)2 . Defining a

wellness of fit,

Q =

∑
(f (xi)− yi)2∑

y2
i

, (A.2)

we see that for all fits, Q < 0.05 . Excluding the top and bottom z-stacks due
to an insufficient number of particles (and possibly other not so well understood
problems related to surface boundaries), the fit parameters, A and σ, show a strong
linear dependence on z (figure A.2B & A.2C). Using this linear dependence, all the
original data was collapsed into a single distribution with a new, effective intensity
(figure A.2D). This effective intensity was then used to analyze P granule data from
multiple stacks.
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Figure A.1.: Measurement of mean and median P granule velocities from (A) Particle tracking
data from a single C. elegans embryo. B) The mean velocities in the x-direction, 〈vx〉, and the

magnitude of the radial velocity, 〈vr〉 ≡
√
〈vy〉2 + 〈vz〉2 are shown at different times with respect

to pro-nuclear meeting (pnm). Symmetry breaking occurs at t ≈ −400s, which is right in the
middle of the data shown. There is a clear mean velocity close to this time towards the posterior,
although this velocity is always comparative in size to the radial velocities in the same region.
The velocity distributions in the x-direction (C) and the radial direction (D), are shown for the
same time points. Although there is a mean velocity towards the posterior, the median and mode
velocities are ≈ 0, prior to, and after symmetry breaking.
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Figure A.2.: Intensity Distribution of P granules. (A) Intensity distribution of P granules of
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The linear z dependence of the fit parameters, A and σ. This data is then used to collapse all
z-stacks into a (D) single “effective” intensity distribution.



B. Flory-Huggins Free Energy

The Flory-Huggins free energy is a generalization of the regular solution. It was
initially developed to describe the correction to the free energy of polymers, due to
the different size of components, in solution [19, 20]. The key difference lies in that
Flory-Huggins takes into account the different monomeric volumes between solute
and solvent where the regular solution assumes that they have equal volumes. This
is in fact commonly the case in biology, where the solvent is mainly water, and the
solute can be large protein polymers, either chain like or globular.

The energy can be written in the general form F = U − TS, where U and S
are respectively the enthalpic and entropic term. For a two component fluid (com-
ponents “a”, and “b”), in a closed system with total volume V , described by the
volume fraction φ,

U = V

(
zwaa

2
(1− φ)2 +

zwbb

2
φ2 + z

(
wab − waa + wbb

2

)
(1− φ)φ

)
S = −V kb

(
1− φ
va

ln (1− φ) +
φ

vb
lnφ

)
.

The coordination number, z is the number of bonds that each “a” molecule makes,
waa, wbb, wab are the bond energies per unit volume between the corresponding
molecules, and va, vb are the molecular volumes of each component.

We redefine the free energy to make the energy densities dimensionless, and thus
for a system with “m” homogeneous minority phases, in a single solution, the rede-
fined energy is,

F ({φ}mi=1, {V }mi=1) ≡ F
va

kBT
(B.1)

= V0f(φ0) +
m∑
i=1

(Vif(φi) + γ̄Si) , (B.2)

(B.3)

with energy density,

f(φ) = ηa (1− φ)2 + ηbφ2 + χ (1− φ)φ+ (1− φ) ln (1− φ) + νφ lnφ. (B.4)

The majority phase, defined by φ0, V0, is dependent on the minority phase as per,
equations (3.26), (3.27). The surface tension parameter, γ̄ (referred to only as γ
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in the main text), and Si is the area of the interface between the minority droplet
phase, and majority phase. The new parameters are then,

ηa =
zva

2kBT
waa (B.5a)

ηb =
zva

2kBT
wbb (B.5b)

χ =
zva

2kBT

(
wab − waa + wbb

2

)
(B.5c)

ν =
va

vb
(B.5d)

γ̄ =
va

kBT
γ (B.5e)

Here, ηa, ηb are referred to as the unitless bond energies, and χ is the unitless in-
teraction energy. The disadvantage of using the Flory-Huggins free energy is the
actual form. The logarithm terms, make it a rather unruly energy to work with for
analytical calculations as compared to simple polynomials. On the other hand, the
advantage lies in that fact that this energy is based on a physical description of the
system. It can be derived from a lattice model, which describes the molecular inter-
actions between each molecule. Thus system parameters can be possibly attained
with an increased understanding of the biological system. As mentioned initially,
this energy describes the interaction between enthalpic and entropic terms. It has
the required property of two minima below the critical point, where the enthalpic
term allows for two phases. As entropy dominates, the system enters a single mixed
state, and thus satisfies the conditions set by Cahn-Hilliard.



C. Balance of Droplet Growth with
Exterior Particle Flux

Using conservation of mass, a droplet growth term is derived from its exterior parti-
cle flux within a incompressible binary fluid. Superscripts ”a”, and ”b” refer to their
corresponding components and the superscript ”α” refers to a generic component,
while subscripts ”0”, ”1” refer respectively to the cytoplasmic and droplet regions.
Components without a superscript refer to the sum of both components. Separate
to what has been presented in the main text, this derivation is done using parti-
cle densities and fluxes (not volume fraction), to explicitly show the conservation
properties used in this derivation. Variables that represent properties of the volume
fraction, e.g. the volume fraction flux, will be explicitly labeled by a φ superscript.

For an incompressible binary fluid within a closed system, the relationship between
particle densities and volume fraction is,

φ = ρbvb (C.1)

1− φ = ρava, (C.2)

where va, vb are the molecular volumes of each component. Thus, e.g. J0 the total
particle flux of both components within the cytoplasm, J0 ≡ Ja0 + J b0 , in relation to
the volume fraction flux, Jφ0 , would be,

J0 = Jφ0

(
1

vb
− 1

va

)
. (C.3)

We start with the local continuity equation for each component,

∂ρα

∂t
= −D∇2ρα, (C.4)

where using Fick’s law, Jα = −D∇ρa, we write the conservation of both components
for an arbitray volume V , as,∫

V

∂

∂t
(ρa + ρb)dV = −

∫
∂V

(
Ja + Jb

)
· dA. (C.5)

Since we will be considering moving boundaries, the Leibniz Rule is used to differ-
entiate within the integral, such that the full time evolution of our volume is also
taken into account,

d

dt

∫
V
ρ dV =

∫
∂V

(
ρ
dq

dt
− J

)
· dA, (C.6)
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where dq/dt is the velocity of the moving boundary.
We consider now a system with a closed system with total fixed volume V , and

total number particles Na, N b. More specifically, a 2-phase system consisting of
a spherical droplet of volume V1 within a cytoplasm of volume V0 = V − V1. As
defined by equation (C.5), the positive flux is defined as leaving some volume, thus
the positive mass flux of each region moves particles out of that region, while a
positive velocity of the boundary region increases the volume of that region. For
our closed system with fixed volume V , and fixed total number of particles, the left
side of equation (C.6) for the entire system goes to zero,

d

dt

∫
V

ρdV = 0, (C.7)

leaving only the boundary term between cytoplasm and droplet,∫
∂V0

(
ρ
dq

dt
− J

)
· dA+

∫
∂V1

(
ρ
dq

dt
− J

)
· dA = 0. (C.8)

In the simple case where we have spherical symmetry of the mass densities (which
implies spherical symmetry of the flux, assuming Fick’s Law holds), for a spherically
symmetric droplet with radius R, the above equation simplifies to,

dR

dt
(ρ1 (R)− ρ0 (R))− J0(R) + J1(R) = 0. (C.9)

We assume that the relaxation time for ρ within the droplet is much faster than
the relaxation time for ρ outside of the droplet. The droplet growth occurs on this
slower, diffusion dependent, timescale; i.e. J1 � J0, such that,

dR

dt
=

J0(R)

ρ1(R)− ρ0(R)
. (C.10)

For a binary fluid, this equation can be expressed in terms of the volume fraction,
and volume fraction flux,

dR

dt
=

Jφ0
φ1(R)− φ0(R)

. (C.11)

Note that equation (C.11) is only true for isotropic (spherically symmetric) flux.
For anisotropic fluxes, as in the “gradient, droplet growth model” presented in chap-
ter 3, the integral in equation (C.8) cannot be trivially integrated.

We again allow the flux and the exterior mass density ρ0 to be spatially dependent,
but maintain the assumptions that ρ1 is fixed, and thus, the flux J1 is negligible.
Equation (C.8) becomes then,∫

∂V1

(
(ρ1 − ρ0)

dq

dt
− J0

)
· dA = 0. (C.12)
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We define dG/dt as the surface velocity in the situation where the flux of material
into the drop at each point directly matches the surface flux at that point, such that
the interior of the integral in equation (C.12) is 0 at all points along the droplet
surface. The integral of dG/dt over the entire surface of the droplet would then give
the total change in volume of the droplet,

dV

dt
=

∫
∂V1

dG

dt
· dA. (C.13)

Assuming irrespective of dG/dt, droplet growth is spherically symmetric, but the
change in volume is conserved, the droplet growth rate is then,

dR

dt
=

1

4πR2

∫
∂V1

J0

ρ1 − ρ0

· dA, (C.14)

which simplifies to equation (C.10) in the spherically symmetric case. The droplet
growth rate in terms of volume fractions is then simply,

dR

dt
=

1

4πR2

∫
∂V1

Jφ0
φ1 − φ0

· dA. (C.15)





D. Derivation of Background
Monomer Field for Droplet
Growth

We now derive the equation for the monomeric background φ field, where it is
referred to φi within a droplet, and φ0 (r) outside. This is a derivation of how
droplet growth effects the background field of an incompressible binary fluid. The
volume fraction is generally defined with respect to the “b” component as,

φ ≡ N bvb

V
, (D.1)

giving the derivative of φ as,

dφ

dt
=
vb

V

(
dN b

dt
− nb

V

dV

dt

)
. (D.2)

These equations are general, where N b is the number of “b” particles in some volume
V , and the only assumption is that the system is incompressible such that the
molecular volume of “b”, vb, is constant.

We assume that droplet growth occurs at a quasi-static limit, where the volume
fraction directly interior and the exterior of the droplet are allowed to relax to a
local equilibrium, and that the interior of the droplet becomes uniform,

φi(r ≤ R−) = φi

lim
r→R+

φ0(r) = φRi . (D.3)

These φ are set by a local energetic relaxation, the Gibbs-Thomson relation, and
independent of the general dynamics of the system. Thus their evolution depends
only on the droplet curvature and change in the free energy landscape as droplets
diffuse. Although we are interested in both growing and shrinking droplets, we are
mainly interested in relatively stable droplets. That is droplets are assumed to be
at least of the same order as the critical size. For the time scale we are interested in,
the change of φ due to the change of droplet curvature is thus negligible, dφi/dt ≈ 0.
Using eqn. (D.2), we have in the droplet interior,

dN b
i

dt
=
N b
i

Vi

dVi
dt
. (D.4)
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We define a subvolume V0, which contains a droplet, Vi, where the total volume of
both is constant, and are only interested in changes in this subvolume with respect
to the droplet, i.e.

dN b
0

dt
= −dN

b
1

dt
dV0

dt
= −dV1

dt
. (D.5)

Now substituting the relations equations, (D.4) and (D.5) into equation (D.2), gives
the local evolution of the background φ field due to the growth of droplet i,

dφ0

dt
=

1

V0

dVi
dt

(φ0 − φi) . (D.6)



Glossary of Terms

A significant amount biology and biological experiments are presented in this thesis.
Although most of the biology discussed here is learned in the canon of biological
studies, some of it might be unfamiliar to the theoretical physicist. To simplify the
understanding of the following work, a listing of biological and physical terms used
in this text, and a concise definition of the term is provided here:

Biological Terms

• Caenorhabditis elegans (C. elegans): 1 mm long transparent nematode (round
worm) living in soil.

• embryo: A multicellular eukaryotic organism in the stages of development.
This can be from the first cell stage of an organism, all the way to birth. In
humans, the term embryo is used only for the first 8 weeks after fertilization.
(wikipedia)

• embryogenesis: Development of the embryo.

• epiblast: A tissue type derived from the inner cell mass during mammal em-
bryogenesis, which goes on to form the primary germ layers of the embryo in
gastrulation. Also referred to as the primary ectoderm. (wikipedia)

• eukaryotic cell: Cells of “higher level” organisms as compared to prokaryotes.
The key defining feature of the cell, is a membrane bound nucleus which con-
tains the cell’s DNA. These cells are typically much larger than prokaryotes.
(wikipedia)

• germline: The line of cells that have genetic material that may be passed on
to offspring. This includes cells that directly contain the genetic material, e.g.
sperm and egg, as well as the cells that produce them (wikipedia).

• green fluorescent protein (GFP): protein composed of 238 amino acid residues,
that exhibits bright green fluorescence when exposed to blue light. The gene is
attached to protein sequence genes as a marker, see GFP tagging (wikipedia).

• nuclear pore complex (NPC): Complex protein structures that span the nuclear
envelope allowing small water soluble molecules ( < 40 K DA) to freely diffuse
across the membrane, and mediating the transport of larger molecules through
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specific signal sequences. Thousands of NPC’s can cover a single nucleus.
(wikipedia)

• oocyte: Female germ cell involved in reproduction, i.e. unfertilized egg. (wikipedia)

• ovum: Egg after fertilization. (wikipedia)

• pro-nuclear meeting (pnm): The time point when the sperm-derived pronu-
cleus and oocyte pronucleus meet.

• RNA interference (RNAi): Is a system in living cells that takes part in con-
trolling which genes are active and how active they are. This is done by small
RNA molecules binding other RNAs and either increasing or decreasing their
activity, e.g. preventing a messenger RNA from producing a protein. This
is used experimentally to drastically reduce the expression of a certain gene.
(wikipedia)

• somatic cell: In a multicellular organism, this is any cell forming the body of
an organism, that is any cell that is not a germ cell, or an undifferentiated
stem cell. (wikipedia)

• spermatheca: An organ in the female reproductive system that stores sperm.
In the C. elegans worm, oocytes are fertilized by passing through the sper-
matheca.

Physical Concepts

• advection: Fluid motion by bulk motion (Note: This definition overlaps with
the definition of convection as used in fluid mechanics, and VERY OFTEN
convection is used to mean only advection, see wikipedia)

• convection: Movement of molecules with fluids, i.e. fluid motion. In fluid
mechanics convection refers to the motion of fluid regardless of cause. In
thermodynamics this refers to heat transfer by convection. Can be divided
into 2 parts, advection and diffusion.(wikipedia)

• diffusion: motion of individual particles

Protein Acronyms

• GLH (GermLine Helicase): Constitutive P granule component. Required for
the production of functional sperm. (Worm Base)

• H2B-histone: Histone protein.
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• MEX-5 (Muscle EXcess): Essential for transducing polarity cues and estab-
lishing soma/germline asymmetry in the early embryo.

• PAR-1 (abnormal embryonic PARtitioning of cytoplasm): one of a series of
cortex associated proteins that are required for proper asymmetric cell division
of C.elegans during development. PAR-1 in particular, localizes to the same
cell as P granules. (Worm Base)

• PGL-1 (P-GranuLe abnormality): RNA-binding protein that contains RGG
motif. Localized in germ granules (P granules). Abnormalities lead to infer-
tility. (Worm Base) maturation and duplication, and hence mitotic spindle
assembly. Localizes to the centriole and pericentriolar material of centrosome.
(Worm Base)

• SPD-5 (SPindle Defective): Required for centrosome maturation, symmetry
breaking, pronuclear migration, mitotic spindle assembly, and cell division.
Localizes to the pericentriolar material of centrosome. (Worm Base)

Experimental Techniques

• DAPI (4’,6-diamidino-2-phenylindole): A fluorescent stain marker that strongly
binds A-T rich regions of DNA. It can pass through the cell membrane and is
used to stain both living and fixed cells. (wikipedia)

• Differential interest (DIC) microscopy: Optical microscopy illumination tech-
nique used to enhance contrast in unstained, transparent samples. Works by
separating (shearing) orthogonally polarized light into two separate paths and
recombining before observation. The interference pattern is sensitive to the
optical path difference, providing a contrast proportional to the path length
gradient along the shear direction, giving the appearance of a 3D physical re-
lief corresponding to the variation of the optical density of the sample. This
method emphasises lines and edges though not providing a topographically
accurate image. (wikipedia)

• Fluorescence recovery after photobleaching (FRAP): Optical technique used
to measure the diffusion of fluorescent labeled probes within a thin medium
or cell. A light source is focused onto a small patch of the medium. The
fluorophores in this region are overexposed to high intensity light of the proper
frequency such that their fluorescence lifetime is quickly elapsed. The recovery
time, time for fluorescent molecules from outside this region to diffuse into this
region is then measured. Assuming a Gaussian profile of the light beam, the
diffusion coefficient would be approximately the area of the patch over the
time for half the initial intensity to recover, D = A/4T1/2 (wikipedia).
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• GFP Tagging (Nomenclature: GFP::[Target Protein], where protein acronyms
are all upper case): In a cell that produces the target protein, the gene for
GFP is spliced into the gene for the target protein, and is thus produced with
the target protein. This protein can then be observed since GFP fluoresces
under blue light.

• Particle imaging velocimetry (PIV): Optical method of flow visualization. A
fluid is seeded with tracer particles that are assumed to follow the flow dy-
namics. Motion of these tracer particles are tracked and a 2D vector field can
be created. (wikipedia)

• RNAi knockdown (Nomenclature: [Target Gene](RNAi), where gene acronyms
are lower case in the C. elegans): Refers to a target gene being knocked down
using RNAi, reducing the protein production of said gene.
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	Introduction
	Cellular Organization
	The Nematode Caenorhabditis elegans
	Germ Granules

	Pattern Formation by Phase Separation
	First Order Phase Transition in a Binary Fluid

	Overview of This Work

	Germ Granule Segregation in the C. elegans Embryo
	Mechanism of Localization
	Properties of Germ Granules
	Diffusion of Granule Components

	Effects of the Mex-5 Protein Gradient on Growth
	Chapter Summary

	Droplet Kinetics in Presence of a Gradient
	The Cytosol as a Binary Fluid
	Single Droplet Growth Dynamics
	Dynamics of the Model for Multiple Droplets
	Droplet Dynamics in a Saturation Gradient
	Spatially Dependent Free Energy Density
	Monomeric Background Field

	The Droplet Growth Model Within a Gradient
	Continuum Description of Growth
	1-D Discrete Model
	Model Implementation


	Effects of a Spatial Gradient
	Long Times, Non-Equilibrium Steady State
	Multi-Droplet Steady State

	Slow, Droplet Growth Regime
	Chapter Summary

	Comparison of Theory and Experiment
	Determining Simulation Parameters
	Free Energy Parameters from Experiment
	Parameters Determined From Numerical Simulations
	Discussion of Parameter Choices

	Comparison of Data
	P granule Distribution

	Later Cell Divisions

	Summary and Conclusions
	General Summary
	Future Outlook

	Determining the Diffusion Coefficient of P granules
	Advection
	Size and Intensity

	Flory-Huggins Free Energy
	Balance of Droplet Growth with Exterior Particle Flux
	Derivation of Background Monomer Field for Droplet Growth
	Glossary of Terms
	Bibliography

