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Abstract

During development of tissues, cells collectively organize to form complex patterns and
morphologies. A general feature of many developing epithelia is their distinct organiza-
tion into cellular compartments of different cell lineages. The interfaces between these
compartments, called compartment boundaries, maintain straight and sharp morpholo-
gies. The interfaces play key roles in tissue development and pattern formation. An
important model system to study the morphology of compartment boundaries during
development is the wing disc of the fruit fly. Two compartment boundaries exist in the
fly wing disc, the anteroposterior (AP) boundary and the dorsoventral (DV) boundary.
A crucial question is how compartment boundaries are shaped and remain stable during
growth.

In this work, we discuss the dynamics and mechanisms of compartment boundaries in
developing epithelia. We analyze the general features of interfacial phenomena in coarse-
grained models of passive and active fluids. We introduce a continuum description of
tissues with two cell types. This model allows us to study the propagation of interfaces
due to the interplay of cell dynamics and tissue mechanics. We also use a vertex model
to describe cellular compartments in growing epithelia. The vertex model accounts for
cell mechanics and describes a 2D picture of tissues where the network of adherens
junctions characterizes cell shapes. We use this model to study the general physical
mechanisms by which compartment boundaries are shaped. We quantify the stresses
in the cellular network and discuss how cell mechanics and growth influence the stress
profile. With the help of the anisotropic stress profile near the interfaces we calculate the
interfacial tension. We show that cell area pressure, cell proliferation rate, orientation
of cell division, cell elongation created by external stress, and cell bond tension all have
distinct effects on the morphology of interfaces during tissue growth. Furthermore, we
investigate how much different mechanisms contribute to the effective interfacial tension.

We study the mechanisms shaping the DV boundary in wing imaginal disc at different
stages during the development. We analyze the images of wing discs to quantify the
roughness of the DV boundary and average cell elongation in its vicinity. We quantify
increased cell bond tension along the boundary and analyze the role of localized reduction
in cell proliferation on the morphology of the DV boundary. We use experimentally
determined values for cell bond tension, cell elongation and bias in orientation of cell
division in simulations of tissue growth in order to reproduce the main features of the
time-evolution of the DV boundary shape.
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Chapter 1

Introduction

1.1 Development of two-dimensional tissues

Multi-cellular organisms represent complex patterns of individual cells organized in dif-
ferent and specified structures. During development, one single cell undergoes several
rounds of cell division to form well-ordered structures, such as eyes, hearts, legs, or lungs.
This is done through different developmental processes, such as pattern formation, cell
differentiation, and growth [1]. It has always been interesting to analyze the mechanisms
which control the complex characteristics of developing organisms. These issues have
been addressed in different model systems at particular developmental stages [1]. It is
well-known that these processes are regulated by complicated signaling systems as well
as cell mechanics.

Many developmental features can be studied in a simpler system, an epithelium,
where cells are packed together with very little intercellular space. Cavities, surfaces of
many structures in the body, such as insides of the lungs and hearths, and many glands
are covered by epithelia [3]. A simple epithelium is composed of one layer of cells with
similar heights (figure 1.1A). Cells are connected by adhesion connections which consist
of transmembrane adhesion molecules. Adhesion junctions are more pronounced near
the apical surface of cells, where they form a network. Of course the full description
of the system needs the three dimensional information. However we can consider a
simpler two dimensional picture where the network of adherens junctions characterizes
cell shapes (figure 1.1B). This junctional network forms a stable configuration although
it actively remodels during tissue growth.

During development of an epithelium, cells collectively organize to form complex
patterns and morphologies. Collective organization of cells is based on the interplay of
chemical signals between cells and mechanical events such as division, adhesion, apop-
tosis, and force generation. The signaling network controlling developmental processes
involves the interaction between many different chemical molecules and signals. These
signaling molecules modify tissue development through limited processes such as cell
division, cell death and cell shape changes. Therefore many developmental issues can be
studied from the mechanical point of view.

13



14 1.2. Compartment boundaries in developing epithelia

Figure 1.1: Schematic view of an epithelium. (A) The 3D structure of a simple epithelium
as a single-layer sheet of cells. Cells are connected to each other via cell-cell adhesion.
The adhesion molecules are enriched near the apical surface (shown in green). (B) The
adherens junctions of cells characterize a network, which defines the packing properties
of cells [2].

1.2 Compartment boundaries in developing epithelia

A general feature of many developing tissues is their distinct organization into cellu-
lar compartments of different cell lineages. The interfaces between these compartments,
called compartment boundaries, maintain straight and sharp morphologies in tissues un-
dergoing cell division and cell rearrangements. Figure 1.2 shows an example of cellular
compartments in the wing of the fruit fly. In this figure, cells in the posterior compart-
ments express GFP allowing to see the AP compartment boundaries between anterior
and posterior cells. We can see that the AP boundary is straight and sharp in the wings
of the fly. Compartment boundaries play an important role as organizers in patterning
processes [5—13]. They are important examples of the interplay of chemical signals and
mechanical events in the formation of patterns and morphologies.

Compartments boundaries can be visualized by lineage markers. They were first
observed in the fruit fly Drosophila and Oncopeltus with the help of lineage tracking
experiments [14, 15]. In these experiments a single cell which is genetically marked
divides and grows to a clone of cells which are inherently marked. The border of the
clone becomes irregular with many fluctuations everywhere except where it meets the
compartment boundary. The clone does not pass the compartment boundary and its
border is straight when the marked cells and the neighboring cells belong to different
compartments (figure 1.3).

Compartmentalization has been observed in many different tissues. For instance dur-
ing segmentation, Drosophila embryo is divided into alternating segments [1]. Within
each segment there are respective anterior and posterior compartments which are sepa-
rated by lineage boundaries [16]. There is also a compartment boundary in the mouse
brain between midbrain and hindbrain [17]. The developing wing of the fruit fly Drosophila
is an important model system to study the morphology of compartment boundaries. We
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Figure 1.2: The anteroposterior boundary in the wing of the fruit fly. (A) The adult
fruit fly expressing GFP under control of the engrailed enhancer in all cells of the pos-
terior compartments. In particular we can see the anteroposterior (AP) compartment
boundary in the wing as a sharp interface. The figure is kindly provided by Christian
Dahmann. (B) The AP boundary in the wing imaginal disc at 120h AEL. The scale bar
represents bum. The figure is adopted from [4].

Figure 1.3: A cellular clone near the AP compartment boundary in the wing imaginal
disc. The posterior compartment is visualized by green fluorescence (Engrailed-lacZ) and
the clone is visualized by red fluorescence. The clone shows a relatively straight border
along the compartment boundary, but its border is irregular everywhere else. The figure
is kindly provided by Christian Dahmann.
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will discuss in detail the development of the fly wing in the next section.

Cells within one compartment express specific selector genes which identify their
fate, for example it controls which signals cells can send and respond to. The signaling
between cells of two compartments generates a reaction-diffusion network in the vicinity
of the interface specifying some cells near the boundary as organizers. Organizer cells
secrete a patterning morphogen [7,9,18]. Morphogens are long range signaling molecules
which diffuse in the tissues and their local concentration provides cells with their posi-
tional information. The morphogen concentration may also influence cell characteristics
in order to control the size and complicated patterns of tissues. Therefore the profile
of morphogen concentration is vital in tissue development. This profile is controlled by
the position of organizers, which are located by compartment boundaries. The shape
of the boundaries influences the profile of signaling molecules and therefore compart-
ment boundaries play a critical role in patterning of tissues. An important question is
which mechanisms form and straighten the compartment boundaries in developing tis-
sues where stochastic processes like cell division tend to make the boundaries irregular.

In 1963 Steinberg suggested that the maintenance of compartment boundaries is
based on differential cell adhesion [19]. In this model, cells within two compartment have
different adhesion properties. He showed that for certain values of relative adhesions,
cells within different compartments minimize their interface and sort out into separate
populations. Some evidence has been observed indicating that differential adhesion may
play a role in maintaining boundaries in different tissues [20,21].

More recently, it has been proposed that cell segregation can be governed by differ-
ential bond tension of cells [22]. Cell bond tension is generated by contractility of cell
cortex originated from actin-myosin filaments. Further observations provide evidence
of F-actin and Myosin II accumulation along the compartment boundaries in different
tissues, which can be considered as indications of increased bond tension [4,23-25]. More-
over, tissue relaxation in response to laser ablation of cell bonds provides an estimate
of cell bond tension [26]. The mechanisms that shape compartment boundaries are best
understood in the fruit fly. In the next section, we describe compartment boundaries in
the developing fly wing.

1.3 Development of the fly wing

The fruit fly Drosophila melanogaster is an important model system to address many
developmental questions. Investigating some mechanisms and principles in Drosophila
embryo helps to understand the development processes of many other systems [3]. The
Drosophila development, like other animals, starts with the fertilized egg, a single spec-
ified cell. The fertilized egg develops into a larva which hatches in 24 hours after fer-
tilization. The larval stage takes about 5.5-6 days, while most growth occurs. Larval
development takes place within three stages, called instar, during which the larva grows,
and molts at the end of each stage. Larval development is followed by the pupal stage,
when adult structures are formed. The entire growth of Drosophila usually takes 10-12
days. The timings described here correspond to T' = 25°C.
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Figure 1.4: A cartoon of imaginal discs in the larva which develop and form different
organs of the adult fruit fly. There are separate imaginal discs of wings, antennae, legs,
eyes, genitalia, mouth parts, and halteres. The figure is adopted from [1] with permission
from Oxford University Press.

Many organs of the adult Drosophila develop from flat epithelia in the larva, called
imaginal discs. For instance, there are separate imaginal discs of wings, antennae, legs,
and eyes (figure 1.4). Each imaginal disc starts out in the embryo as a group of tens
of cells, and grows and differentiates into a more complex structure. Here we discuss
the development of the wing imaginal disc, which starts with approximately 50 cells. It
grows during larval development in approximately 10 rounds of cell division to about
50,000 cells (figure 1.5D-I).

The wing disc is a 2-side sac-like epithelium in which the apical surface of cells face
inward [28] (figure 1.5B). One side includes elongated columnar cells, whereas cells on
the other side are flattened, known as peripodial membrane [29]. An oval-shaped region
of the columnar epithelium, called the pouch, will form the blade of the adult wing
(figure 1.5A-B). The network of adherens junctions of the columnar tissue is an irregular
network of different polygons which show a specific distribution of different classes of
polygons [2,30].

There are two compartment boundaries in the wing imaginal disc: the anteroposterior
(AP) boundary and the dorsoventral (DV) boundary. The AP and the DV boundaries
are perpendicular to each other in the wing imaginal disc (Figure 1.6A). The wing
disc bends over the DV boundary during the pupal stage and the dorsal and ventral
compartments become the dorsal and ventral surfaces of the adult wing (figure 1.6B).
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Figure 1.5: Development of the wing imaginal disc. (A) A scheme of the apical surface
(xy view) of the columnar epithelium of the wing disc, the pouch is shaded in gray.
(B) A scheme of the cross section (xz view) of the wing disc in the third larval istar.
The wing disc is 2-side sac-like epithelium. One side includes elongated columnar cells.
The pouch, which forms the blade of adult wing, is shaded in gray. On the other side,
peripodial membrane, cells are more flat [27]. (C) The time line of larval development.
The larval instars and approximate time point of the establishment of the DV boundary
are indicated as hours AEL. (D-H) Low magnification views of wing discs (D) 72h, (E)
84h, (F) 96 h, (G) 108h, and (H) 120h AEL stained for F-actin (D) or DAPI (E-H).
Scale bars represent 100um. (I) Wing disc area as a function of time after egg laying for
the indicated time points. Mean and SEM are shown (n = 5 (72h), 6 (84h), 5 (96 h), 5
(108h), and 6 (120h) wing discs).

1.3.1 Anteroposterior boundary in the wing imaginal disc

The wing imaginal disc is initially subdivided into anterior and posterior compart-
ments [14]. This AP compartmentation corresponds to the parasegmental compartment
boundary within each segment of the embryo at the early stages [31]. The activity
of selector genes and chemical signals is essential for maintenance of the AP compart-
ment boundary [31-36]. Cells on the posterior side express the selector genes engrailed
and invected which activate the expression of Hedgehog (Hh) and repress the expres-
sion of the transcription factor cubitus interruptus (Ci) [14,37,38]. Hh is a short range
signaling molecule which diffuses to the anterior compartment. C% which is required
for responding to the Hh signal, is therefore expressed only in the anterior compart-
ment. Accordingly anterior cells produce Decapentaplegic (DPP) in a narrow stripe at
the boundary where the Hh concentration is sufficient [31,39] (figure 1.7A). DPP is
a patterning morphogen which defuses inside the wing disc and produces a decaying
morphogen gradient [40]. DPP concentration profile provides cells with a positional
information and has a strong influence on the growth of wing discs [41,42].
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Figure 1.6: A scheme of the location of compartment boundaries in the wing of the
fruit fly. The anteroposterior (AP) boundary and the dorsoventral (DV) boundary are
respectively shown in violet and green, (A) in the wing imaginal disc during the larval
development, and (B) in the adult wing, which is made of two layers of epithelia separated
by the DV boundary.

The AP compartment boundary keeps a straight shape during wing development [4]
(figure 1.2B). The shape of the AP boundary influences the profile of the DPP morphogen
concentration. Cells near the AP boundary have a distinct morphology compared to cells
elsewhere. It was previously shown that at the AP compartment boundary, cell bond
tension is increased compared to the tissue. Based on experimental observations, Myosin
IT and F-actin are enriched along the AP compartment boundary [25]. Moreover, laser
ablation experiments revealed approximately a 2.5 fold increase of cell bond tension at
the AP boundary relative to the bonds elsewhere [4]. This increased cell bond tension
is sufficient to prevent mixing of cells during cell proliferation and controls the shape of
the boundary. It has been suggested that this locally increased cell bond tension results
from cell-cell communication across the boundary [4,43].

1.3.2 Dorsoventral boundary in the wing imaginal disc

The second compartment boundary subdivides the wing imaginal disc into dorsal and
ventral compartments. The dorsoventral (DV) compartment boundary was discovered
by Garcia-Bellido in 1971 with the help of clonal lineage tracing [44]. In contrast to
the AP boundary it does not exist in the initial wing disc, but arises during mid-second
larval instar (60h after egg laying AEL) [14,45,46]. It maintains a sharp and straight
morphology until the end of wing development.

Similar to the AP compartment boundary, maintenance of the DV boundary requires
the activity of selector genes and signaling pathways [47,48]. Dorsal cells are identified
by the expression of the selector gene apterous [49]. apterous drives dorsal synthesis of
the proteins Serrate and Fringe. Fringe modifies Notch, which is expressed throughout
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Figure 1.7: A scheme describing the signaling pathways in association with the compart-
ment boundaries in the wing imaginal disc. (A) Signaling between compartments near
the AP boundary (violet line). Cells in the posterior compartment, colored in green, ex-
press engrailed and invected which activate the expression of Hedgehog (Hh) and blocks
the expression of (. Anterior cells express (% which allows them to respond to Hh by
producing DPP in a narrow region (indicated by the blue stripe) where the Hh concen-
tration is sufficient. (B) Signaling between compartments near the DV boundary (green
line). Dorsal cells, colored in light yellow, express apterous which leads to the synthesis
of Serrate and Fringe. Fringe modifies Notch (Notch*®), so that it responds to Delta and
not to Serrate. apterous represses the activation of Delta, so that Delta only exists in
the ventral compartment. Wingless is expressed in a narrow stripe (indicated by a pink
stripe) where dorsal Serrate activates ventral Notch, and ventral Delta activates dorsal
Notch* [31].

the wing disc, blocking its response to Serrate but increasing it for Delta. On the other
hand, apterous blocks the activation of Delta, so that Delta is only present in the ventral
compartment. Notch can interact with Serrate and Delta, leading to a narrow region of
Notch activity on both sides of the DV boundary, where dorsal Serrate meets ventral
Notch and ventral Delta meets dorsal modified Notch. Wingless (Wy) is then expressed
in response to intense activity of Notch [31,47,49,50] (figure 1.7B). Wg behaves as an
important signaling molecule which distributes in the wing imaginal disc, produces a
concentration gradient, and affects the patterning of the wing disc [51-54].

It was shown that at late larval development the cell proliferation rate was reduced
in a strip of cells, approximately 10 — 20um wide [55]. It has been discussed in literature
whether or not this reduced proliferation is important for shaping the boundary [24,
25,49,56]. Moreover, it has been observed that Myosin Il and F-actin are enriched at
the DV compartment boundary, which has been interpreted as a signature of increased
tension [23,24]. Furthermore, the orientation of cell division is biased in the vicinity
of the DV boundary such that the division plane is frequently perpendicular to the
DV boundary [24,57]. It has been proposed that oriented cell division might influence
the boundary shape [24,58]. In chapters 5 and 6, we use a combination of theory and
quantitative experiments to study the role of different physical mechanisms for shaping
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the DV boundary during wing development.

1.4 Biophysics of tissues

Tissue development can be studied at different time and length scales. For example, it is
well known that many tissues respond as elastic materials in short time scales, however,
behave as viscous fluids in long time scales [59-62]. Furthermore, the models may take
into account the details of cell components into account [63], or simplify these details to
describe the system on a larger scale. Several models have been developed to describe
different aspects of tissues. Here we briefly review two different approaches, a continuum
coarse-grained description of tissues and a vertex model to analyze dynamics of tissues
in the cellular scale.

1.4.1 Continuum description

Tissues can be described in a continuum limit, where tissue properties are averaged in a
volume larger than the typical size of cells. Continuum descriptions are practical tools to
study different properties of tissue development, for example cell flows or deformation of
tissues or cell competition [64—66]. In particular continuum models are widely studied to
describe cancer growth [67-69]. These models are based on the balance of cell numbers
and forces. It is essential to consider the activity of living organisms, since cells can
undergo division or death [70,71]. Therefore active terms, proportional to the division
and apoptosis rates, should be included in the balance of cell number

n + 0n(nvy) = (kg — ka)n . (1.1)

Here n describes the density of cell number and v is the local velocity of cells. It should
be noted that throughout the thesis we use Einstein summation notation, i.e., repeated
indices is summed. The division and apoptosis rates are respectively represented by
kq and k.. These rates are in general dependent on local pressure, characterized by
the homeostatic pressure of cells, at which cell division and apoptosis balance [67,72].
Furthermore, the stress tensor is given by a constitutive material relation which includes
terms accounting for cell apoptosis and cell division. One can study the flow profiles
that result from cell divisions [73].

Tissues effectively behave like viscoelastic materials. It is valid even if cells are
considered as elastic solids at time scales smaller than cell division cycle [74]. In this
system, stresses relax like a viscous fluid at time scales longer than cell division cycle.
This viscous behavior is driven by the coupling of cell division and cell death to the
local stresses. Cell division provides an active anisotropic stress whose direction is set by
division axis. On the other hand, cell elongation, which is proportional to the anisotropic
stress, biases the axis of cell division. This is based on the observation that in many
tissues, the cleavage plane frequently bisects dividing cells perpendicular to their long
axis [75,76].
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Figure 1.8: 2D morphology of epithelia. (A) The network of adherens junction of a wing
imaginal disc as an epithelium. (B) Cell bonds are replaced by straight lines in the same
epithelium. This approximation is used in the vertex model. Cell bonds meet at cell
vertices which are shown by black dots. Each cell is represented by a polygon which is
colored by the number of its neighbors, 4: green, 5: yellow, 6: gray, 7: blue, 8: red.

1.4.2 Vertex models

Vertex models describe epithelia at the scale of individual cells [2,72,77]. Due to the flat
nature of the epithelium as stated in section 1.1, a simple epithelium can be described by
the network of adherens junctions. The junctional network defines cell packing properties
which have various structures in different tissues [78,79]. It is interesting to study
epithelia packing properties, like the distribution of different classes of polygons, cell
area and cell shape [80-82].

In the vertex models, cells are represented by polygons that are adhered together
along cell bond (figure 1.8). A cellular network consists of a particular number of cells
where each cell is described by the position of cell vertices and their connections. Cell
division and cell rearrangements are introduced in the cellular network, and the network
configuration is determined by minimizing an energy function which accounts for the
mechanical properties of cells. In this thesis, we use the vertex model introduced in [2]
to simulate tissue growth. We discuss the bases of this model in chapter 3. Simulations
of this vertex model showed very good agreement with the wing imaginal disc of the
fruit fly with respect to the cell packing properties [2,83,84].

1.5 The Physics of interfaces

It has always been fascinating to study interfaces between different phases, such as the
interface between a liquid and its vapor in a closed bottle, the interface between two
immiscible fluids, or the interface of a liquid drop and surrounding air. Interfaces have
also been investigated in living systems. An interesting example is the interface between
a population of cancer cells and the host tissue [85]. The border of bacterial colonies is
another example which have striking features [86]. Despite the diversity of interfaces,
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some general characteristics of them have been studied.

Mechanics of interfaces in a binary system. One can analyze the properties of
interfaces in a two-component system. The Hamiltonian of such a system depends on the
interaction between molecules of different types. This helps to calculate the partition
function and the free energy of the system. Based on the strength of the interaction
between molecules relative to the thermal energy, the free energy may have one or two
minima. This defines a two-phase region of the phase diagram, where two distinct phases
can coexist [87]. For the other choices of characteristic parameters, the single minimum
of the free energy describes a mixed configuration.

In a two component system, both the energy and the entropy of molecules are dif-
ferent at the interfaces compared to the bulk. Interfacial tension is known as the extra
free energy per unit area needed to move molecules from the bulk to the interface [88].
It has respectively the dimension of energy per unit area, or per unit length for a 2D
surface, or a 1D line. We will discuss the basic concepts of a standard model to study
interfaces in passive fluids in section 2.1.

Morphology of interfaces. = The shape of interfaces changes dynamically in time.
In particular interfaces get rough in the presence of noise. The morphology of interfaces
depends on the scale by which they are observed. For example, a surface can be straight
to eye, but looks rough under a microscope [89]. There are different standard methods
to quantify the shape of surfaces and interfaces. Here we briefly describe two methods
to analyze the shape of 1D interfaces, however, the methods can be generalized to 2D
surfaces. The shape of an interface is identified by a function h(y) describing the or-
thogonal distance of the interface from the reference line (figure E.1). For any distance
L along the interface, interface roughness w is determined by the average variance of
excursions of the boundary away from the average straight line

w? = ((h—R)3) . (1.2)

Here h represents the mean value of h(y) within the distance L and the averages are
done within the distance L and along the interface (see appendix E for details). Interface
roughness is a function of distance L and can change during time, w = w(L,t). The
Fourier transform of an interface ﬁ(q) is also used to describe its shape as a decomposition
into periodic functions with different wavelengths

[e o]

o) = [ " hg)dy. (13)
—00
In Chapter 4 we use these methods to analyze the shape of interfaces in our growth
model.
One of the basic concepts in various roughening processes is scaling [90,91]. The
scaling behavior of interfaces does not depend on many details of the system. Roughness
quantities show simple scaling properties, although there are many differences in the
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characteristics of the material and their dynamics. In a large number of systems, starting
from a straight interface, roughness increases as a power of time w(L,t) oc t®. This is
valid for short times, and in many cases, roughness is then saturated. b is the growth
exponent, and the growth and saturation regimes are separated by the crossover time
tz. The crossover time depends on the length scale with a power law ¢, o L?, where
z is called the dynamic exponent. Moreover, the saturation value of roughness scales
with the length L by the roughness exponent a. Roughness scaling properties can be
summarized in this relation

w(L,t) = L° f(ti) , (1.4)

xT

where f(u) shows two different scaling properties in two limits

b .
u ifu<1
flu) = { const ifu>1" (1.5)
The three exponents are related by z = a/b.
In addition, the Fourier transform of interfaces h(q) scales with the wavelength

h(q)” o ¢ (1.6)

The Fourier exponent f is related to the growth and roughness exponents a, b. Concern-
ing the interface dynamics and the correlation of noises, one can calculate the relation
between these exponents [89].

Effective description of the dynamics of interfaces. Different models have been
developed to analyze the dynamics of interfaces in different systems. For example the
KPZ equation describes the stochastic growth of interfaces with interfacial tension and
bending rigidity [92]. Of utmost interest for active systems is the Fisher wave equation,
which was originally suggested to describe the spread of genes in a population [93,94]. It
was later used to study the growth of populations and many reaction-diffusion systems.
The Fisher equation is a nonlinear reaction diffusion equation describing the dynamics of
the quantity ¢, which can be the concentration of a specific gene or the volume fraction
of one population [93]

o ="ko(l—yp)+Ddp, (1.7)

where k is the reaction coefficient and D is the diffusion coefficient. This equation
has two homogenous steady states, ¢ = 0 and ¢ = 1 which are unstable and stable
respectively. It suggests that this equation can have traveling wave solutions, where ¢
reaches steady state values ¢ = 0 and ¢ = 1, at each side far from the interface. The
traveling wave solutions of the Fisher equation have been widely studied. In section 2.2,
we discuss a generalized version of the Fisher equation which describes the dynamics of
an interface between two cell populations influenced by cell mechanics.
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1.6 Overview of this work

In this thesis, we analyze how interfaces evolve during tissue growth. In the next chapter
we discuss the general properties of interfaces in continuum models. A two-component
passive fluid can be described by the Ginzburg-Landau free energy. We analyze the
system near the equilibrium state and study how the interface influences the stress
profile. Stress anisotropy allows us to calculate the interfacial tension. This model
can be extended to study interfaces in active systems. A coarse grained model will
be introduced based on the balance of cell numbers and conservation of momentum.
We study the case where two cell populations with different homeostatic pressures are
separated by an interface and analyze the propagation of the interface.

In Chapter 3, we describe a vertex model to study the tissue growth at the level
of cellular junctions. Cell growth is in general influenced by cell mechanics, like cell
pressure or cell anisotropy. This will be considered in the growth model of the vertex
model. We also quantify the stress tensor in this model as a function of elasticity of cells
and line tension along the bonds. Local changes in mechanical properties as well as cell
division modify the stress profile locally. The vertex model can be used to analyze the
cellular compartments in developing tissues. In Chapter 4, we discuss general physical
mechanisms by which compartment boundaries are shaped during the growth phase. We
quantify stress profile near the interfaces, and study how different mechanisms contribute
the interface stress anisotropy and interfacial tension. We analyze interface morphology,
and show that these mechanisms have distinct effects on the morphology of compartment
boundaries during tissue growth.

In Chapter 5 and 6, we briefly review our experimental results using the developing
Drosophila wing as a model system. We analyze the morphology of the dorsoventral
compartment boundary at different time steps during wing growth. We also quantify
anisotropic shape of cells in the vicinity of the the DV boundary. By measuring tissue
relaxation in response to laser ablation of cell bonds at different developmental times,
we estimate the increased cell bond tension along the compartment boundary. We also
quantify proliferation pattern in the wing imaginal discs and analyze whether reduction
of proliferation near the DV boundary is important for shaping the boundary. Finally,
using the parameters experimentally determined, we compare our theoretical model with
the time evolution of the shape and mechanics of the DV boundary.
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Chapter 2

Coarse-grained models for
interfaces in passive and active
systems

In this chapter we discuss the basic concepts of continuum coarse-grained models to study
the compartments in tissues. We start from a passive fluid with two compartments. This
system can be described by the Ginzburg-Landau free energy. We analyze the interfacial
tension in the system and derive it from stress anisotropy. We later generalize this model
to study an active system considering active sources of mass and stresses.

2.1 Interfaces in passive fluids

There are different physical models describing multi-component fluids. Here we briefly
describe a well-known model to study interfaces in passive fluids. We are interested in a
binary fluid, which is composed of 2 different species A and B. ¢(r) describes the volume
fraction of A molecules, and in the case that there is no free space the volume fraction
of B molecules equals to 1 — ¢d(r). The free energy of the system can be calculated
considering the interaction of the molecules and their entropy. In the continuum limit
with a mean field approach, the free energy density can be written as [87]

F(d) = ai%u@BT[cb log -+ (1 - ) log(1 — )] + 3j6(1 — 0)) + 2 [VoP. (2.
Here kpT is the thermal energy and j describes the interaction of A and B molecules.
The lattice size is given by ag which is, for simplicity, considered to be the same for both
species. Furthermore, the fluid is considered as an incompressible fluid. The total free
energy is calculated by integrating f over volume F = [ f(¢)d3r. In the limit close to
the critical composition, the free energy density can be expanded around ) = ¢ — 1/2.
This expansion leads to the Ginzburg-Landau free energy

F) =~ S0+ Sue) + 2 Vel (22

27
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where B = j/(2ag), e = (j — 4 kgT) /a3, and ¢ = 16 kgT/(3a}).

In a homogenous fluid, the gradient of volume fraction vanishes and the remaining
part of the free energy is a polynomial function of ¢. It has two symmetric minima
P = =Yy, where Yf* = (e/c)'/2, if € is positive. For e < 0, it has just one minimum at
1 =0 (figure 2.1A) [95].

A

.

Yor

Figure 2.1: (A) The profile of the Ginzburg-Landau free energy described in equation 2.2
as a function of volume fraction ¢ in a homogenous fluid. It has two symmetric local
minima at ¢ = ¢’ and one local maximum at ¢y = 0. (B) Volume fraction as a
function of the position x in a two component fluid at thermodynamic equilibrium. x is
normalized by the interface width &.

2.1.1 Interfaces at thermodynamic equilibrium

The Ginzburg-Landau free energy has two distinct minima with the same energy, for
positive values of €. It implies that two phases can coexist in a system at thermodynamic
equilibrium. In such a system, we need to take into account the gradient term in the free
energy (equation 2.2). To find the equilibrium state, we minimize the total free energy
with respect to the function ¢(r) which reads

of  Of o of

50 =00 o)~ 23)

For the Ginzburg-Landau free energy it requires

—ep(r) + cp(r)® — BV*)(r) =0 . (2.4)

We consider a simple picture where the two phases are separated with an interface
perpendicular to z-axis. The system is symmetric along the interface (y direction) and
therefore 1 is only x dependent in a 2D picture. Far from the interface two distinct
phases ¢ = £" exist on both sides. In this geometry the analytical solution of the
equation 2.4 is given by

P(x) = \/Etanh(g) , (2.5)
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Figure 2.2: (A) The profile of stresses o,, and o,, as a function of the distance from
the interface x in a two component fluid at thermodynamic equilibrium, (equation 2.8).
(B) The free energy deviation from the bulk value as a function of x in the same system.
famr = e/ B/(2¢) and z is normalized by the interface width &.

where ¢ = (2B/€)'/? describes the width of the interface. There is a mixed configuration
in the vicinity of the interface, however, when x — +o00 the volume fraction reaches two
uniform steady states. Figure 2.1B shows the profile of volume fraction 1 as a function
of distance from the interface.

2.1.2 Stress anisotropy and interfacial tension

In this section we analyze the stress profile in the two component fluid. We calculate the
stress components for a system described by a free energy which is a function of volume
fraction 1 and its gradients 0,1 (see appendix A for details)

of
= (f —9)0asg — g . 2.6
Oap (f—9) af O(0at)) Y (2.6)
Where f is the free energy density and g is the chemical potential. For the Ginzburg-

Landau free energy (equation 2.2) g vanishes in the equilibrium state and the stress
tensor is given by

Oap = [Oap — BOut) Op1 . (2.7)

The non-diagonal stress components vanish and the diagonal components are

B
0o = —5b(a) + JE) - Fov@)
o =~ + @)+ o) (23

Considering the profile of the volume fraction ¢ (equation 2.5), 0., is a constant equals
to —e2/(4c). Interestingly, oyy has a gradient as far as 0,9 is nonzero and is equal to
oz far from the interface. The stress profile is plotted in figure 2.2A as a function of
the distance from the interface.
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Figure 2.3: (A) The profile of the Ginzburg-Landau free energy for a non-zero external
field described in equation 2.12 as a function of volume fraction v in a homogenous fluid.
It has two local minima at {* and 5" and one local maximum. (B) A scheme of the
free energy deviation from the bulk value as a function of the distance from the interface
u in a two component fluid. u is normalized by the interface width &.

The anisotropic part of the stress tensor is & = (oyy — 04,)/2. If the two component
system is large enough we expect that the anisotropic stress reaches a constant value
far from the interface (bulk). The anisotropic stress deviates from the bulk value in the
vicinity of the interface. We calculate the interfacial tension by integrating the deviation
of anisotropic stress from its bulk value

+oo
v = / (6 —a9) dz . (2.9)

—00

The bulk anisotropic stress ¢y does not vanish in general, however, it vanishes in the
binary fluid described by the Ginzburg-Landau free energy (equation 2.8). For such a
two component fluid the interfacial tension is

+00 4B
v= B/ (0a)*dz = = C—g : (2.10)

—00

This is in consistence with the interfacial tension calculated by the free energy profile [87].
Figure 2.2B shows the profile of the free energy density as a function of the distance
from the interface. The interfacial tension is calculated by integrating the deviation of
the free energy from the bulk free energy

+oo +oo
y = / (f - fo)dz = B / (Op)?dr | (2.11)

—00 —00

where fy is the free energy density inside bulks and far from the interface.
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Figure 2.4: Numerical analysis of propagating interfaces in the Ginzburg-Landau free
energy in the presence of an external field (h = 0.01y/€3/c). The profile of the volume
fraction as a function of distance is shown for different times in different colors (from
blue to red). The initial configuration is shown by the bold blue curves, for them
1 = Y everywhere except in a small region near the left edge where ¢ = Ay, (A)
The disturbance amplitude At is relatively small and the system rapidly returns to the
homogenous state 1) = ¥"™. The time interval between two consequent frames is 1 (ne) L.
(B) The initial disturbance amplitude A is relatively large. The time interval between

two consequent frames is 10 (ne) .

2.1.3 Driven interfaces

Now we consider an out of equilibrium limit of the Ginzburg-Landau free energy. An
external field A breaks the degeneracy of the equilibrium free energy

€

f=-3

c B
¥(r)* + ()" + S Ve(m)* = hp(r) . (2.12)
Here we consider a small external field, h? < €3/c, therefore, we expect near-equilibrium
solutions. In a homogenous situation, where V21 (r) has no contribution, the derivative
of the free energy with respect to 1 is

of
5 = —evlE) + evle)’ . (2.13)

As far as h? < 4€3/(27¢), two independent distinct phases minimize this free energy.
The volume fractions minimizing the free energy modify to 17" ~ —(e/c)'/2 4 h/(2¢) and

7~ (e/¢)Y/? + h/(2€) up to the first order changes in h. Figure 2.3A shows the free
energy as a function of the volume fraction 1. Since the free energy of the two minima
are different, it is not possible to have a two-phase equilibrium configuration.

We consider a simple case like the equilibrium condition, while far from the interface
two distinct phases exist, but close to the interface these two phases are mixed. The
interface is normal to the z-axis and there is no anisotropy along the interface. In
the non-equilibrium state the interface moves with a velocity in z direction. Since the
system is considered to be very large, the interface velocity v is constant and we expect
traveling wave solutions v (x,t) = ¢ (z — vt). Different possible mechanisms may govern
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the dynamics of the system. We can consider the diffusive dynamics as

M o adf
———VJ—CV(W,

ot
where J is the relative flux and is proportional to —Vg—f by a coefficient . This equation
is known as the Cahn-Hilliard equation or model B which describes purely dissipative
dynamics for a conserved variable [96]. However, there is no relevant traveling wave
solution ¢ (x,t) = ¢ (xz — vt) for this type of dynamics [97]. The conservation of ¢ with
zero flux boundary conditions requires

(2.14)

O /00 Y(z, t)de = —v /OO OpY(x — vt)dx =0, (2.15)

which can not be satisfied since v has different values at two infinities.
One other possible dynamic model, referred as model A or Glauber model, describes
the time-dependent Ginzburg-Landau energy [96]

o _ _ of _

g = gy =1 (@) — (@)’ + BVR(@) +h) (2.16)

where 7 is a constant which is related to the friction coefficients. Despite the model B,
model A does not describe a conserved field and equation 2.15 does not need to be valid.
This can especially be relevant for active systems.

We expect a traveling wave solution ¢ (z,t) = ¢ (u) , where u = z—wvt and two distinct
phases exist at two infinities on both sides of the interface. The Taylor expansion of the
volume fraction as a function of the external field can be written as

D) = o) + 3 (). (217)

Here 9)g(u) is what describes the equilibrium case, o(u) = (¢/c)'/? tanh(u/€). The
other coefficients 1), (u) describe the higher order terms. For small values of the external
field h, we use the first order expansion 1 (u) ~ 1g(u) + hi1(u). Replacing vo(u), we
can solve equation 2.16 to calculate ¢ (u). Taken together the volume fraction is

b, t) ~ \/gtanh(%) + % (2.18)

and the interface velocity is given by
v= ?)Qh—n\/QBC . (2.19)
€

Furthermore, we can analyze numerically whether this solution is relevant. We consider
a homogenous initial condition ¢(x) = ¥}", where ¥" corresponds to the local minimum
with higher free energy. We perturb it by imposing ¢ = A in a small localized region
near the left edge (figure 2.4A). We solve equation 2.16 numerically to calculate the
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Figure 2.5: The normalized velocity of the traveling wave as a function of the normalized
external filed for a non-equilibrium Ginzburg-Landau energy. The black line represents
the analytical approximation up to first order in the external field and the points show
the velocities calculated numerically.

evolution of ¢ profile. If the disturbance amplitude is small Ay < vy, the system
will rapidly return to the homogenous state where 1) = 9" everywhere (figure 2.4A).
For relatively higher values of the disturbance amplitude Ay > s, the other phase
1 = 4", the local minimum with lower energy, emerges on the left side (figure 2.4B).
Here s is the crossover volume fraction and its value is set by the position of the
energy barrier, which is close to 1¥p; ~ 0. After the rapid response, the interface keeps an
unchanged profile and moves with a constant velocity. The interface profile is very similar
to the analytical solution (equation 2.18). We compare the interface velocity between the
analytical and numerical solutions for different strengths of the external filed in figure 2.5.
For small values of the external field h < 0.1€/2 / c!/? the analytical approximation fits
very well with the numerical result. However, the first order approximation fails for
larger values of h, when higher order terms in equation 2.17 become important.

We study the profile of energy and anisotropic stress for the analytical solutions
to determine the interfacial tension. Figure 2.3B shows that the free energy reaches
two different values at both sides far from the interface. This makes it complicated to
calculate the interfacial tension from the free energy profile since there is no unique value
for the bulk free energy fy (equation 2.11). Interestingly, we can calculate it from the
profile of the anisotropic stress. Using the Erikson stress tensor described in appendix A,
the anisotropic stress is & = B(0,1)?/2. The anisotropic stress vanishes far from the
interface and therefore the interfacial tension is

v =2 /_+OO & (z)dz = % f—g . (2.20)

This is the same as the interfacial tension in equilibrium condition, implying that the
external field does not change the interfacial tension in the first order approximation.



34 2.2. Continuum description of cellular compartments in growing tissues

2.2 Continuum description of cellular compartments in grow-
ing tissues

In this section we develop a coarse-grained description of cellular compartments in grow-
ing tissues. This model is based on the balance of cell numbers and forces. We first
explain how to derive dynamic equations by taking into account the active terms. We
then study the propagation of the interface between two cell populations due to the
difference between the homeostatic pressure of cells.

2.2.1 Cell number balance and momentum conservation

We consider a tissue composed of two types of cells represented by A and B. Cell number
density of these populations are described by ng = na(r,t) and ng = ng(r,t). For each
component cell number is balanced by cell division and apoptosis

ona + 0a(ving) = (kI —kMna
omp + 0a(vPnp) = (k2 — kP)np . (2.21)

A and vB are the local velocities of the corresponding cells and k;’B and k:{f B
are division and apoptosis rates of A or B cells.

For such a two component system n4Q4 + npQlp = 1, where Q4 and Qp are the
volume of cells of type A and B. We can introduce the volume fraction of A cells as

@ =n44. The average velocity v and the relative flux J are defined as

Here v

va = vy + (1=,

Jo = (@l —vP)e(l—0). (2.22)

Considering these relations, we can rewrite the balance equations of cell numbers. The
divergence of the average velocity is given by

Oaa = kYo +EkP(1 =)+ Ju0,(InQ4 — InQp)
+0(0f + 1000) N Q4 + (1 — ) (0 + v00a) N Qp (2.23)

where k4 and kP are the effective production rates of A and B cells, k458 = k;’B — kB,

The other equation describes the dynamics of the volume fraction

D10 4 V600 + 0ada = (1 —@)(k? —kB) + ©(1 — ©)(0; + 1a0a)(IN Q4 — In Qp)
+Jo(@ OaInQp + (1 — @) 0y InQy) . (2.24)

Equations 2.23 and 2.24 represent the comprehensive form of balance of cell numbers in

a two component tissue. In general, cell volumes 24 and g are not constant and may

depend on local pressure. However, for simplicity, we consider an incompressible limit
where the volume of cells are constant. In this limit equation 2.23 can be simplified as

Oave = kAo +EB(1 — o) . (2.25)
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In this respect the dynamics of the volume fraction is given by
D0 + V00 + Oada = 0(1 — @) (k* — kB) . (2.26)

To satisfy the conservation of momentum, the divergence of the stress tensor should
be balanced by external forces V-0 = £f*t. For instance, if the tissue lies on a substrate
the force balance reads

V.o=ypuv, (2.27)

where g is the friction coefficient. The total stress tensor ¢ includes different terms
describing elasticity and viscosity of cells, and the activity of tissue, as well as the
interfacial interaction between different types of cells. According to tissue properties,
the stress tensor can be simplified [73,74]. We consider a simplified version of stress
tensor, describing the tissue as a viscous fluid

1 1
0ap = —Pbag + 1(0avs + 0gv4 — E&,vw) — B(0ap0sp — E(%go(%go) . (2.28)

The first term describes total pressure which can be considered as a Lagrange multi-
plier to satisfy the incompressibility condition. The second term describes dissipative
viscosity stress, where 7 is the shear viscosity coefficient. The last term accounts for
the anisotropic stress originating from the interfacial interaction between A and B cells,
which is based on equation 2.7.

In general the effective cell division rates k4 and kP depend on local pressure.
Their relation can be expanded to the first order near the homeostatic pressure k48 =
/<;(PhA B _ P) [67]. Here k is a constant which, for simplicity, is considered to be equal
for cells of type A and B. With this assumption we can rewrite equation 2.25 and derive
pressure as a function of the volume fraction and velocity field

B Oy vy

P=Plo+PP(1-y) (2.29)

R

2.2.2 Propagating interfaces between two cell populations

We are interested in the propagation of an interface between two cell populations. We
consider a thin tissue and average cell densities and stresses in the z direction to have
an effective two-dimensional tissue. The tissue lies on a substrate and a friction force is
applied to the tissue by the substrate. In a 2D picture, the tissue is symmetric along the
interface (y direction) and its properties change only in the perpendicular direction (x
direction). Cell populations are at their respective homeostatic states and at rest far from
the interface, ¢ =1 at * = —oc0 and ¢ = 0 at x = co. Near the interface two cell types
are mixed, 0 < ¢ < 1. When the homeostatic pressure of A and B cells are different, the
interface moves due to the different division rates of two cell populations in the vicinity
of the interface. Here we analyze the dynamics of such a two-component tissue. For a
thin film in one dimension, the dynamics of the volume fraction is determined by

815‘10 + UJCaJ:(P - Daitp = ﬂAPh(P(l - 90) : (2'30)
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Here AP, = P}f‘ — P/LB . We also assumed that the relative flux is driven by diffusion
J = —DV, where D is the diffusion constant. We then use the force balance equation
to calculate the velocity field

1 B
(= + M0 — APyOup — S 02p0p = 10 - (2.31)

Equations 2.30 and 2.31 characterize tissue dynamics. Equation 2.30 is a generalized
version of the Fisher wave equation with an additional convection term which accounts
for mechanical feedback in cell number balance. We discuss later some special cases
where this equation can be described by the Fisher wave.

We can write the dimensionless form of the characteristic equations. We use the
characteristic interface width £y = (D/(AP,k))"/? and the time scale 7 = 1/(AP, k) for
normalizing length and time in the dynamics equations. Using normalized time T = ¢/7
and length X = x /¢y equation 2.30 can be written as

Orp +Vaxe — % = ol — ) . (2.32)
In this framework, the dimensionless form of equation 2.31 is
AOZV — adx (14 BO%p) =V . (2.33)

The dimensionless parameters A? = (1+x1)AP,/(Dp), « = AP, /(Dp), and 8 = Bk/D
characterize the tissue dynamics. Equation 2.33 can be integrated in order to calculate
V', using a Green’s function approach,
* X=X
V(X,T) = —VO/ dX'em " x " Oxp(X',T)[1 + B 0% (X', T))] . (2.34)
o

Here Vj) = «/(2A) is a characteristic velocity. For Vj = 0, equation 2.30 is the classi-
cal Fisher wave without advection. For long times the system reaches traveling wave
solutions of the form ¢(X,T) = p(U), where U = X — CT and C is the wave speed.
Starting from a localized initial condition, the classical Fisher wave moves with the wave
speed Cyp = 2. This solution is a so-called pulled front solution for which the wave
speed is determined by the linearized dynamics in the tail of the profile. Pulled front
solutions can not have larger wave speeds than Cj [98]. Interestingly, in the limit that
A > 1, as far as [ is not large, we can neglect the spacial variation of V' compared to
¢ and consider VOxp = VyOx¢. Therefore, equation 2.32 is the Fisher equation in a
moving frame. This equation has traveling wave solutions with the interface velocity
C = Cy+ V. These solutions must be pushed fronts for which wave speed is determined
by nonlinearities [98]. For large values of interfacial tension § >> A/« this argument is
not valid any more and wave velocity increases compared to the approximation Cy+ Vjp.

Numerical results. We can solve equations 2.34 and 2.32 numerically in order to
calculate the profiles of the volume fraction and the velocity field. We replace the velocity
field V in equation 2.32 in order to determine the time evolution of the volume fraction
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Figure 2.6: The profiles of the volume fraction (red) and the normalized velocity (blue)
for the traveling wave between two cell populations. The characteristic parameters are
A =10, Vy =2, for two choices of the interfacial tension (A) 8 =0, and (B) 8 = 1000.
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Figure 2.7: The velocity of the traveling waves as a function of the dimensionless pa-
rameter V. Different colors depict different values of A, for two choices of the interfacial
tension 5 = 0 (circles) and 8 = 1000 (triangles). The dashed black line represent the
approximation C' = Cy + Vj.

. Starting from a localized initial configuration, the interface evolves to a stationary
profile ¢(U) for long times which travels with the wave speed C. Figure 2.6 shows
two examples of the profile of the volume fraction and velocity field for two choices of
the characteristic dimensionless parameters. The dimensionless wave speed C' is shown
in figure 2.7 for different choices of the characteristic parameters A, «, and 5. Our
numerical results confirm the simple Fisher wave limit where the advective velocity Vj
adds up to the minimum wave speed Cj.

Linear analysis. Moving front solutions with wave speed C' can also be obtained as
profiles of p(U) and V(U) that solve equations 2.34 and 2.32. We analyze the behavior
of such solutions in the front region where the linear theory is valid. For simplicity
we assume that 8 = 0, but this analysis can be generalized when g > 0. To describe
the phase plane we need four parameters ¢, ¢’ = Oy, V, V! = 9yV. The dynamics
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equations are given by

e = ¢,

e = [(V—0C) —kAP"p(1— )],

oV = V',

oV = AUV +ay]. (2.35)

The fixed points are (p =0, ¢’ =0, v=0,v =0) and (¢ =1, ¢’ =0, v =0, v =0).
We linearize equations 2.35 near the first fixed point which represents the unstable front

dup 0 -1 0 0 ©
vy | 1 C 0 0 74
owv |~ |0 0 0o -1 1% (2.36)
oV’ 0 —a/A2 —1/A%2 0 %4

The eigenvalues of this matrix are

M =C/2—/(C/2)?-1; Az =1/A;
Ao =C/2+/(C/2)2 —1; M= —1/A. (2.37)

In order to have real eigenvalues, the wave velocity should be larger than a critical value
C > 2. The corresponding eigenvectors are

[ da(1+A2(1—CN)) T [0
_ —1+ (MA)? . ] 0
Zz) = o ) z3 = _A )
L —Oé)\l | L 1
[ A (1+A2(1—CNy)) | [0
—1+ (A2A)? 0
Zo = é 2A) ; 2=\ (2.38)
L —Oé)\g i L 1
Therefore, the system phase near the front tail can be expanded as
Z =) dazexp(-\U), (2.39)

where d; are constant coefficients. This allows us to write the profiles of the volume
fraction and velocity as following

e(U) = prexp(=MU)+ @rexp (=AU),
V(U) = Viexp(=AU) + Vaexp (=AU) + Vzexp (=AsU) . (2.40)

Here we took into account that the fourth eigenvalue does not describe a decaying
function and is irrelevant. We used constant coefficients ¢; and V; which are given by
0; = d;izin, Vi = d;izi 3.
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Figure 2.8: The state diagram of front propagation as a function of the dimensionless
parameters A and Vj, when § = 0. The red dots are the measured transition points
between the pushed and pulled fronts. The black curve is an interpolation of these data
points. The unphysical sets of parameters is below the dashed line V) < A/2.

For localized initial conditions, the system either reaches a pulled front solution with
C = Cy and Ay = Ao = 1 or a pushed front solution with C' > Cy and ¢; = 0 such that
the tail is given by ¢(U) ~ @oe™*2V. The requirement ¢; = 0 selects the wave speed C
in the pushed front solutions. This analysis allows us to distinguish pulled front solutions
from pushed fronts in our numerical study. We observe that for a particular range of
parameter (A and Vp), the wave velocity equals to the linear velocity C' = Cy. In this
pulled fronts regime, propagation is dominated by diffusion as the Fisher wave without
advection, independent of V. In the other regime, the interface propagation is influenced
by tissue mechanics. The advective fluxes caused by increased cell proliferation behind
and apoptosis in front of the leading edge propel the interface with a larger speed C > Cj.
In this pushed front regime, the decay length of the ¢ tail is set by Ao. Figure 2.8 shows
regions where pulled and pushed fronts occur for 5 = 0 as a function of Vy and A.
For a given value of A, interface propagation is described by a pulled front if V = 0.
Increasing V{y the velocity remains unchanged until a critical value, beyond that the front
is pushed by nonlinearities and moves at an increased speed C' that depends on Vj in this
advection dominated regime. This critical value describes the transition between pulled
and pushed fronts which is calculated numerically for different values of A (figure 2.8).

2.3 Summary

In this chapter we analyzed the dynamics of interfaces in passive and active tissues. In
the first section we studied the interfacial phenomena in a passive fluid. In a mean field
approach, a binary fluid can be described with the Ginzburg-Landau free energy. Two
distinct volume fractions minimize this free energy. At thermal equilibrium two energy
minima have equal energies and can coexist. We analyzed the phase separation problem
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in a 2D system which is infinitely large and symmetric along the interface. The volume
fraction reaches two distinct equilibrium values far from the interface and the interface
between them is identified by a special mixed profile of the volume fraction. When an
external field breaks the symmetry of the system, such an equilibrium two-component
phase does not exist anymore. In this situation one of the minima has less free energy
and is more stable. In a two component fluid a traveling wave solution exists where the
interface propagates with a velocity proportional to the external field. We investigated
the dynamics of this system numerically, and analytically up to first order approximation.
We analyzed the stress profile in the two-component fluid in both equilibrium and out of
equilibrium situations. The anisotropic stress shows a specific profile near the interface.
We calculated the effective interfacial tension integrating anisotropic stress along a line
perpendicular to the interface. This will be used later to calculate interfacial tension for
interfaces in the vertex model.

We discussed the basic concepts of a continuum model to describe cellular compart-
ments in active tissues. The balance of cell numbers is modified by source terms, which
originate from cell division and apoptosis. The equation of cell number balance is cou-
pled to the stress profile. We studied the interesting case where two cell populations
with different homeostatic pressure meet. As a result, the interface propagates due to
the difference in the homeostatic pressures of two cell types. This front propagation is
described by a generalized version of the Fisher wave, which includes the effects of tissue
mechanics. We solved the equations numerically to calculate the front shape and the
wave velocity as a function of the characteristic parameters. We discussed the analytical
solutions by linearizing the equations near the unstable front. We showed that both
pulled and pushed front solutions occur depending on parameter values. In the pulled
front solutions the interface propagation is dominated by diffusion, however, convection
drives interface dynamics in the pushed fronts.



Chapter 3

Mechanics of growing tissues in a
vertex model

In this chapter we use a vertex model to describe the mechanics of cellular networks. In
section 1.4.2 we introduced vertex models to study epithelia in the cellular scale. These
models describe the network of adherens junctions which characterizes the shape of cells
in epithelia (figure 1.1). In these models each cell is represented by a polygon and cell
bonds are shared between neighboring cells (see section 1.4.2 and figure 1.8). Here we
describe the vertex model developed in [2]. This model describes the elasticity of cells
and tension and adhesion along cell bonds. We first analyze the mechanics of cellular
networks and then describe tissue dynamics in the vertex model.

3.1 Work function for polygonal cell packing

Tissue development is influenced by different processes which operate on distinct time
scales. In particular a cell network relaxes in response to perturbations on time scales of
several seconds to minutes, whereas cell division takes place within several hours. There-
fore on the time scales of cell division, the adherens junctional network can be described
as a stable network. Balanced network configurations are determined as minima of a
work function with respect to the position of all vertices

K Qe r X
E=" (Aa—ADY + ) Nijlij + 5 Y Lo~ foLa = fyLy - (3.1)
a=1 (u) a=1

)

cell . We choose A&O) = AO) for all cells which are not undergoing cell division. The
summation is over all the cells where N, is the total number of cells. The mechanical
tension on cell bonds (ij), where ¢ and j are two adjacent vertices, is illustrated by A;;.
¢;; is the length of the corresponding bond. A;; can be considered as the combination of
cell bond tension and the adhesive interaction between the neighboring cells sharing the

Here K describes the cell area elasticity, A((lo is the preferred area and A, is the area of
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Figure 3.1: Cellular geometry in the vertex model. Shape of cells is described by a two-
dimensional network of polygons. A, and L, are respectively the area and perimeter of
cells indexed by . #;; is the cell bond of length connecting the vertices ¢ and j.

bond. The perimeter of cell « is L, and I" denotes the perimeter elasticity. This term
originates from the contractile actin-myosin ring accumulated around the cell perimeter.
fz and f, are the external forces applied to the whole tissue in  and y directions. To
describe the system, we use a rectangular box with periodic boundary conditions. L,
and L, represent the system size in x and y directions, respectively.

The network is characterized by two dimensionless parameters A = A /(K (A©))3/2)
and T' = I'/(KA©) which define the phase diagram of the system. Depending on the
value of these parameters, tissues may respond as solids or as soft materials. We apply
an external shear stress % by considering the external forces to be proportional to the
tissue size f, = —iLy and f, = YL,. In our study we use the normalized shear stress

5 = £/(KAO).

3.2 Time evolution of cellular networks

The dynamics of cellular networks is generated by topological changes including cell
division and junctional remodelings. For dividing a cell we double its preferred area
in a quasi-static way. We next introduce a new bond passing the geometric center
of the cell (figure 3.2). The direction of the new bond determines the orientation of
cell division. Moreover, we consider two categories of tissue remodeling, named T1
and T2 transitions. In a T1 transition a short cell bond shrinks and expands in the
opposite direction. The number of cell neighbors are changed for the four involved cells
(figure 3.3A). Furthermore, a small triangle shrinks and is replaced by a vertex, called
a T2 transition (figure 3.3B). After any topological change the network is relaxed to a
new minimized energy configuration.
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A B C D

Figure 3.2: Cell division in the vertex model. (A) One cell is chosen randomly to divide
(shaded in gray). (B) The preferred area of the cell is doubled. (C) A new bond (colored
in red) is introduced in a random direction passing the geometric center of the cell. (D)
The cellular network is relaxed to a new minimum of the work function.

A B
T1 T2
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Figure 3.3: Junctional remodeling in the vertex model. (A) T1 transition describes the
shrinkage of a cell bond and its expansion in the opposite direction. (B) T2 transition
represents the contraction of a small triangle to a vertex.

3.3 Models for cell division

We model the growth of tissues by introducing stochastic cell divisions. During each
step one cell division occurs. Cell « is chosen with the probability p, to divide, where
Zg;l po = 1. Each cell divides with the same probability p, = 1/N. if cell division
rate is equal for all the cells. However, in general the probability of cell division may be
influenced by cell properties.

We explained in the previous section that the direction of the new bond ¢ sets the
division axis. A function p(yp) denotes the probability distribution of the direction of
the new bond ¢. For unbiased cell division, the direction of the new bond is chosen
randomly p(p) = 1/m. Later, we discuss the cases where the probability of cell division
depends on cell pressure and where the direction of the new bond is biased by anisotropy
in cell shape.

3.3.1 Division rate depending on cell pressure

The division rate of cells can be controlled by different factors, like the concentration of
different signaling molecules or mechanical properties of cells [99]. We are interested in
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Figure 3.4: A scheme representing the probability distribution of the orientation of cell
division. (A) Cell division is unbiased. (B) The division orientation is biased by cell
elongation. The orientation probabilities are shown by bars for different angle intervals.
The yellow line shows the axis of cell elongation.

the possible mechanical feedbacks that affect growth patterns. It is well known that cell
growth is inhibited by cell compression [72,100]. Here we analyze the general case that
cell proliferation is influenced by cell pressure.

In case of no external pressure the average cell pressure is zero. However cells have
different shapes and this leads to fluctuations in cell pressure. This effect would control
cell proliferation so that cells with higher pressure divide with lower probability and
conversely cells with lower pressure divide with higher probability. The fluctuations in
cell pressure change the probability of cell division locally, but the division rate will
be homogenous in average throughout the tissue. We consider the situation where the
probability of cell division p, depends on the cell pressure P, as

Po

1
Pa = Ee KAO) (3.2)

Where € describes the strength of this effect and Z is the partition function

Pqy

Ne
Z=> e kO (3.3)
a=1

Here KA© is used for normalizing the cell pressure P,. We will introduce the stress
tensor of cells in the vertex model in section 3.4.2. Cell pressure can be obtained from
the trace of stress tensor.

3.3.2 Oriented cell division

It is observed that in many developing tissues the orientation of the mitotic cleavage
plane is not completely random and is influenced by the cell geometry [75,76]. The
cleavage plane bisects dividing cells perpendicular to their long axis (figure 3.4B). In
particular this correlation between cell elongation and orientation of cell cleavage plane
is observed and quantified for the Drosophila wing disc [76].
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In our division model we choose the new bond direction ¢ with the probability

L 8 Tr(ra-ay)

7 , (3.4)

plp) =
where 7, is a symmetric traceless tensor representing the elongation of cell « (see ap-
pendix C). The effect of cell elongation on the division axis is described by a coefficient
d. Division orientation is unbiased when § = 0 (figure 3.4A). The normalization factor
is given by Z = [ 17T Me)dp The tensor M, describes the orientation of the new

bond
[ cos2p  sin2p
M, = < sin2p — cos2p > ' (3.5)

3.4 Stresses in cellular networks

In this section, we introduce stresses in two dimensional networks of cells. Here we
calculate stress components in a phenomenological way based on the model concepts
and force balance. In the absence of external forces, the divergence of stress tensor
should vanish to satisfy force balance

ajO'ij =0. (3.6)

The stress tensor defined here, o;;, is not unique and can be transformed in such a
general form

O'Z!}[ =045 + akxijk , (37)

where x;1; is an arbitrary tensor which is antisyemmetric in the last two suffixes x;;x =
—Xikj- The new stress tensor o and the old one o0;; satisfy the same force balance

ij
equation [101].

3.4.1 Stress tensor in the vertex model

Here we present our method to quantify stress tensor in cellular networks described by
the vertex model. In a two dimensional picture the stress components have the dimension
of energy per area. Inside each cell the stress tensor is a diagonal tensor

Jij = —PO‘{A 5@']’ s (38)

where P2 is called the area pressure of cell a. In the vertex model the area pressure is
the stress associated with the changes of cell area due to the area elasticity of cells

PA=_K (A, — A (3.9)

The stress tensor at cell bonds is more complicated. We consider a bond perpen-
dicular to the xj-axis, and along the zs-axis (figure 3.5). This bond is shared between
the cells o and 8. We should consider the line tension and the contractility of cells
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cell o ; cell s
AL, [ X, A, L,

Figure 3.5: A scheme of two cells sharing a bond. The bond, represented by a black
line with length [, is shared between cell «, with area A, and perimeter L, and cell 3,
with area Ag and perimeter Lg. x1 and zo axes represent the local coordinate system,
perpendicular and parallel to the bond direction.

which leads to an anisotropic stress at the cell bonds. Such a term T} 6(x1) should be
added to o99. Here §(z1) is the Dirac Delta function and T} is the effective tension of
the bond which includes both the line tension and the cell perimeter contractility of the
neighboring cells

= Ay + F(La -+ Lﬁ) . (3.10)

Therefore we can summarize the stress tensor in the vicinity of the cell bond

oty = —P0(—z1) — P§0(z1)
oty = —PAO(—21)— PAOG) + To(a1),
0'1172 = 0'21 0. (311)

Here P2 and P4 are the area pressures of cell @ and 3 introduced in equation 3.9. 6(z)
is the Heaviside function

0 z1 <0
0(z1) :{ . mi o0 (3.12)

The divergence of the stress tensor does not vanish as far as the pressures of two adjacent
cells are different

610'11)1 + 620'11)2 = —(PBA — Pf)&(xl) . (313)

This is related to our assumption that cell bonds are straight lines. In the vertex model
the bending rigidity of cell bonds is infinite, otherwise the bonds would bend due to the
pressure difference at both sides (Laplace’s law). Therefore other terms should be added
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to the stress components on the cell bond to satisfy this constraint. Apart from that,
we should take into account that the stress tensor has to be symmetric with respect to
the middle of the cell bond. Requiring force balance and symmetry properties of the
system, we calculate the stress tensor around the bond

oh = —Pa0(=w1) = Byo(w),
l 3
0%y = —Pl0(—w1) = Pf0(w1) + To(w1) + (P — P (G2 — 5 +e)d (1)
ly
oly = 03 =—(P5 = P)(5 — 22)d(w1) - (3.14)

Where [, is the bond length and ¢'(x;) is the derivative of the Dirac delta function.
This is a symmetric stress tensor which satisfies torque balance since there is no external
torque applying on the tissue. One can show that the force balance equations are also
satisfied

0103, + daoly = —(P§ — PHi(z1) + (P§ — PiHé(z1) =0,
I I
Oroly +010h = —(Pf = PG —22)d'(21) + (P = PO)(5 — 22)d'(21) = 0.

(3.15)

To complete this discussion, we need to study the validity of force balance at cell vertices
as well. At the vertices the stress is a combination of stresses along cell bonds coinciding
at the vertex. It has a complicated form and therefore more calculations are needed to
analyze force balance at cell vertices (see appendix B for detailed calculations).

3.4.2 Cell average stress tensor

To avoid the singularities of delta functions we average the stress tensor for individual
cells. The average stress of cell « is given by

(@) = Ai /A orandA (3.16)

We calculate the stress tensor in the global coordinate system (z,y) and use the indices
m and n to distinguish it from the local coordinate system of cell bonds (z1, z2) repre-
sented by indices ¢ and j. Cell average stress includes cell area pressure as well as the
contribution of all the bonds of the cell

(@) = —PA Sy + Ai 3 ste (3.17)
@y

We call S%% the bond stress integral, which describes the contribution of bond b to the
total stress of cell &. The summation is over all the bonds of cell a.

For simplicity, we calculate the stress integral for each bond S’ ?]’.a in its local coor-
dinate system explained in figure 3.5. At the end, it will be transformed rotationally in
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order to get Szﬁb in the global coordinate system. The stress integral is the integral of
stress components over area in the vicinity of the cell bond

Iy
S = | duy | dui ol (3.18)
0 Axq

The area integral is written as the multiples of integrals over xs which goes along the
bond from 0 to [ and the integral in the perpendicular direction from the center of the
bond to a small distance Ax; inside the cell . The bond contribution to the cell stress
O'fj’»a is given by

0117’10‘ = 0,
ba A pAy 3 /
o = Thad(e1) = (Py — F)(Ga2 — 5 +e1)d(21)
l
oty = o5 = (Bf — PO (5 — m2)d(a) . (3.19)

Here Ty, is the effective tension along the bond corresponding to contractility of cell o
and half of the line tension of the bond

1
Tb,a = §Ab +TL,. (320)

Replacing af]’»a in equation 3.18, all the components of the bond stress integral vanish

except S’ g,; = T}« lp. The bond stress tensor in the global coordinate system Shia i
found by a rotational transformation R

. b cosp —sin gy
, _ . . S, = * .21
Smn le an S ij R |: Sin ("2 COS ¥y (3 )

Here ¢y, is the angle of the local x1-axis with the global x-axis. In conclusion the average
stress tensor of cell o can be written as

1 .
Oae() = —Pat o > Thalysin® gy
167
b
1
oyla) = —Py+ T Z Th.o Iy cos® @y
167
b
1 .
oryla) = oy(a) = e Z Tp.o lpsin gy cos gy . (3.22)
(6%
b

The trace of the stress tensor is the isotropic stress and represents total cell pressure
1
tot __ _
P = Po— o ™ Zb:Tb,alb . (3.23)
The remaining anisotropic part is a symmetric shear tensor

Oq = =

1 — Zb Tb@lb COS 2g0b Zb Tb@lb sin 2g0b :| (3 24)
2 | DopThalpsin2gy, >y Tp ol cos 2¢p
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Figure 3.6: Examples of the stress profile in 2D cellular networks. The average cell stress
is shown for individual cells. The color shows the average pressure for individual cells
and the bars represent the direction and magnitude of the anisotropic stress T. Stress
values are normalized by KA©). For all cases we use A = 0.12 and T = 0.04. (A) A
hexagonal network where all cells are identical. (B) A hexagonal network where all cells
are identical and an external stress is applied to elongate tissue, ¥ = 0.03. (C) Cell bond
tension is doubled at some bonds, shown in black, in a hexagonal network.

The shear tensor defines a magnitude of cell shear stress YT, and a shear axis with an
orientation angel ®

cos2®  sin2d

0a =T sin2® —cos2® |’

(3.25)

Stress profile and tissue properties. We can analyze the distribution of cell stresses
in cellular networks for some simple examples. This helps us to understand the basic
characteristics of cell stresses. To visualize the stress tensor, cell pressure is displayed
with a color code and the shear stress is replaced with a bar describing shear magnitude
T and shear axis orientation ®. At first we look at a hexagonal network with identical
cells. As we expect, cell pressure and cell shear stress vanish for all cells in the absence of
external stresses (figure 3.6A). However, when an external stress is applied to the cellular
network, the average cell stress will be nonzero and proportional to the magnitude of
the external stress. In figure 3.6B an external shear stress ¥ = 0.03 stretches the tissue
in y direction. Cells get elongated and cell average stress equals to the external stress.

Local changes in cell properties break the symmetries and produce local changes in
the stress profile. For instance, if cell bond tension is increased locally at some cell
bonds, cells are deformed near the bonds with increased tension and the stress is not
homogeneous (figure 3.6C). However, the average stress of the whole cellular network
vanishes since no external stress exists.

Cell division is an active process which disturbs the stress profile locally. Figure 3.7A
shows an example when one cell division occurs in a network of hexagonal cells. Cell
pressure and anisotropic shear stress of surrounding cells are modified by a cell division.
The local anisotropic stress is governed by the orientation of cell division. However,
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Figure 3.7: Stress profile changes during growth. Average cell stress is shown for indi-
vidual cells. The color shows average pressure for individual cells and the bars represent
the direction and magnitude of the anisotropic stress Y. Stress values are normalized
by KA©. (A) One cell division occurs in the hexagonal network and disturbs the stress
profile anisotropicly. (B) A hexagonal network modifies to a network of random polygons
of different classes after sequential cell divisions. Stresses are distributed randomly in
such a network.

the average stress of the cellular network is zero since there is no external stress. We
discussed in section 3.3 that growth is modeled by sequential stochastic cell divisions.
Figure 3.7B shows the stress distribution in a cellular network after tens of cell division.
In such a network the average stress is homogenous in the length scales bigger than the
average bond length of cells.

3.5 Summary

In this chapter, we reviewed the basic concepts of a vertex model as an effective tool
to study growth of epithelia. This model describes a 2D picture of epithelia where the
shape of cells is determined by their apical junctional network. This model accounts for
the area and perimeter elasticity of cells, adhesion and tension at cell bonds and external
stresses. Tissue growth is introduced by stochastic cell divisions. We analyzed how to
consider mechanical feedback in cell division algorithm. In particular we described the
cases where the probability of cell division depends on cell pressure or the axis of cell
division is influenced by the elongation of the cell.

Furthermore, we quantified the stress tensor in a two dimensional network of cells
described by the vertex model. Stress components consist of different terms accounting
for cell area pressure and contractility and tension along cell bonds, as well as the
constraint that cell bonds are straight. The stress tensor satisfies force balance and
includes singularities along cell bonds. We averaged the stresses for each cell in order to
visualize the stress distribution in a cellular network. With some examples we showed
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how the mechanical properties of the tissue, like cell bond tension and external stresses,
change the stress profile. Furthermore the activity of cells influences the local distribution
of stress. Cell division produces local active stresses whose anisotropy is set by division

axis.
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Chapter 4

Vertex model study of interface
dynamics

Many developing tissues are organized into cellular compartments separated by bound-
aries, as highlighted in the introduction (section 1.2). Compartment boundaries keep
sharp and straight morphologies during tissue growth. They play a crucial role in tissue
development and it is important to investigate which mechanisms control their morphol-
ogy. In this chapter, we introduce compartments in the cellular networks described by
the vertex model. We analyze the general mechanisms by which compartment bound-
aries are shaped during growth phase. For example, we study the influence of cell bond
tension, cell proliferation rate, cell elongation, and orientation of cell division on time-
evolution behavior of compartment boundaries during tissue growth. In particular, we
study how each mechanism affects stress distribution in the tissue and contributes to
the effective interfacial tension. Furthermore, we quantify how the shape of interfaces
evolves during tissue growth for each mechanism.

4.1 Cellular compartments in the vertex model

We first demonstrate how we study cellular lineage compartments in the vertex model.
Two compartments of A and B cells are introduced in a cellular network. Each cell
belongs to one compartment and divides into two daughter cells belonging to the same
compartment. The daughter cells have the same characteristics as the mother cell does.
The interface between two compartments consists of all cell bonds which are shared
between two compartments.

In general, the properties of cells may be different within each compartment. This
may be originated from the differences in the signaling molecules cells of each compart-
ment express or respond to. On the other hand cells near the compartment boundaries
may have specific characteristics. This is based on the intensive activity of genes and
signals near the compartment boundaries. In the vertex model, mechanical properties of
cells are described by cell area and perimeter elasticity, line tension along cell bonds, and
external stresses (equation 3.1). In addition, cell division probability and orientation of

o3
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Figure 4.1: A scheme of local properties of cells near the interface between two com-
partments (blue and red). (A) Cell bond tension is increased along the interface with a
factor A (shown in green). (B) Cell division probability is reduced by a factor 8 within
n cell rows on both sides of the interface (colored in light blue and light red).

cell division indicate division properties of cells.

Here we consider the cases where cells within two compartments have identical prop-
erties. This assumption is based on the experimental evidences that cell mechanics
and morphology are indistinguishable within two compartment far from the bound-
aries [4,102]. However, cells near the compartment boundaries show distinct character-
istics. In particular, we consider the situation where the bond tension is constant for
all cell bonds, A;; = Ag, except for the bonds along the interface, where it equals to A;
(figure 4.1A). We introduce A as the relative bond tension along the interface compared
to the other bonds

Ar
A=—. 4.1
@ (41)
Furthermore, we consider another situation where cells within a number of cell rows,
n, close to the interface divide with the probability p7, while all the other cells divide
with the same probability pg (figure 4.1B). The parameter 3 is introduced as the relative

division rate of cells in the vicinity of the interface

br
B8==—. (4.2)
Po
In this framework the overall properties of cells are determined by bulk bond tension
A, contractility of cells T', external shear stress @, bias in cell division orientation §, and
bias in cell division probability e.

4.2 Physical mechanisms shaping interfaces during growth

In this section we propose some general mechanisms to shape interfaces during growth
phase. Starting with a reference case, we analyze how tissue growth influences the
interfaces. We then introduce five different cases based on the physical mechanisms
which may play a role in shaping interfaces. They take into account the local properties
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A'B

Figure 4.2: Growth of a cellu-
lar network including two lineage
compartments (red and blue) of
identical cells.  (A) The ini-
tial configuration, two compart-
ments are introduced in a small
hexagonal network. (B) An ex-
ample of the network configura-
tion at generation G = 6 when
thousands of cell divisions have
occured.

of cells near the interfaces and the overall cell characteristics. We will discuss in the
next sections how each mechanism modifies the stress distribution in cellular networks
and affects the morphology of interfaces.

Compartments of identical cells. As the reference case, we consider that all the
cells in two compartments are identical. There is no external stress applying to the
network and cell division is unbiased. We start from a hexagonal network, where half
of the cells are marked as A compartment (red) and the other half are marked as B
cells (blue) (figure 4.2A). The interface between two compartments is initially sharp and
straight. During the growth phase, the interface becomes rough and some islands of
one type of cells are observed surrounded by the cells of the other type (figure 4.2B).
This roughening process originates from cell rearrangements and the randomness in cell
divisions.

Increased cell bond tension along interfaces. In case I, we consider the situations
where the bond tension is increased along the interface by a factor A compared to the
other bonds. Here A = 1 implies that cell bond tension along the interface is the same
as the other cell bonds. When the relative bond tension is increased at the interface
A > 1, cells of different compartments tend to shrink their shared interface. It suggests
that this mechanism can play a role in shaping interfaces. This mechanism is considered
as a basic mechanism to keep compartment boundaries straight [12]. There are some
evidences for the increased bond tension at the compartment boundaries in biological
tissues [4,23-25,102].

Reduced cell proliferation near interfaces. Case I describes the situations where
cells within a number of rows, n, on both sides of the interface divide with the relative
division rate 8 compared to the other cells. Here § = 1 describes the homogenous cell
division all over the cellular network. With the help of this mechanism the strength of
noise is reduced in the vicinity of the interface when 5 < 1. Experimental observations
show that the cell proliferation is reduced near the DV boundary in the wing imaginal
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disc [55] and at rhombomere boundaries in the chick embryo hindbrain [103]. This raises
the question whether or not this mechanism has any influence on the shape of interfaces.

External shear. In case Ill, we analyze how global anisotropies of cells may influence
the shape of interfaces. We consider that external shear stresses are applied to the tissue
to produce global elongation of cells along the interface. Here 3 denotes the relative
strength of external shear, while & = 0 corresponds to no external shear stress. This
mechanism is motivated by the evidences of overall cell elongation near the DV boundary
in the wing imaginal disc [102].

Oriented cell division. In case IV, the axis of cell division is biased by the elongation
of the dividing cell. There are some evidences of such a bias in different tissues [75,76],
and we wonder whether this mechanism has any influence on interface dynamics. The
strength of this effect is described by the coefficient d, where § = 0 corresponds to an
unbiased division axis. Interestingly, for 6 > 0 the axis of cell division will be randomly
distributed where there is no correlation between elongation of cells. However, we expect
that near an interface the local patterns of cell elongation appear depending on the
interface curvature.

Pressure dependent proliferation rate. In case V, we consider that the probability
of dividing each cell depends on its pressure (equation 3.2). Here € describes the strength
of this effect and for an unbiased division probability ¢ = 0. The total pressure of each
cell is determined by the isotropic part of the stress tensor (equation 3.23). It consists
of cell area pressure and another term originating from the tension along cell bonds.
Here we choose that the probability of cell division is influenced by cell area pressure.
We also study other choices and the final conclusion is independent of this choice. The
motivation for this mechanism is that interfaces can become straight due to the local
changes in cell division probability, driven by special patterns of cell pressure near a
curved interface suggested by Laplace’s law.

4.3 Stress anisotropy and effective interfacial tension asso-
ciated with interfaces

Here we analyze how cell stresses are modified in the vicinity of an interface during
growth. In sections 3.4.1 and 3.4.2 we quantified stresses in two dimensional networks
and averaged it for individual cells. Now we study how different mechanisms influence
stress profile near the interfaces. We use the profile of anisotropic stress to quantify
effective interfacial tension associated with different mechanisms.

4.3.1 Stress anisotropy associated with interfaces

In this section we analyze the stress profile for different cases introduced in the previous
section. We investigate how the average stresses change moving from the interface to
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Figure 4.3: Stress profile near the interface (shown in dark gray) between compartments
of identical cells in the reference case. (A) An example of average stress displayed
for individual cells at generation G = 8. Isotropic stress & is shown by a continuum
color code. Anisotropic stress is represented by bars which describe the direction and
strength of anisotropic stress, T. (B) The isotropic stress ¢ and the anisotropic stress
g, are averaged for different cell rows near the interface. Stress values are normalized by
K Aj. Mean and SEM are shown (n=20 realizations).

the compartments. To avoid fluctuations we average stress components for different cell
rows near the interface, since everything is symmetric along the interface. The first cell
rows of each compartment R; includes all the cells involving bonds at the interface. The
next cell rows are defined in a similar way: (n + 1)’th row, R, 1, is composed of all the
cells which are not within the first n rows and share a bond with cells of n’th row. The
average stress of cell row n is then defined as

n 1 ZaeRn Oij (Q)Aa
(o) = [ ey da = SR (43)

where A" is the area of cell row n, A" = >  _p A,. We average both the isotropic
stress 0 = (0yy + 042)/2, as well as the anisotropic stress of cells & = (oyy — 022)/2 to
calculate (") and (6™). We next discuss how the distribution of stresses near interfaces
is influenced by tissue mechanics.

Compartments of identical cells. In the reference case where all the cells are iden-
tical the stress will be homogenous in average. Figure 4.3 shows the stress distribution in
this case. We observe that the average anisotropic stress vanishes for different cell rows
near the interface. However, the average isotropic stress has a non-zero average value in
the first cell row. We discuss in appendix F that although the mechanical properties of
all cells are identical, cells in the first rows have a larger area in average compared to
the other cells. This explains that the average isotropic stress has a positive value in the
first cell row.

Increased bond tension at the interface. In case I, increased cell bond tension at
the interface leads to some anisotropies in the cellular network. Shape of cells is changed
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Figure 4.4: Stress profile near interfaces (shown in dark gray) in case I. Cell bond tension
is increased along the interface with a factor (A, B) A =2, (C, D) A = 3, and (E, F)
A=4. (A, C, E) Average cell stress is displayed for individual cells at generation G = 8.
The cell color shows average isotropic stress and the black bars represent the direction
and magnitude of the anisotropic stress (with the same scales as figure 4.3). (B, D, F)
The isotropic stress & and the anisotropic stress , are averaged for different cell rows
near the interface. Stress values are normalized by K Ag. Mean and SEM are shown
(n=20 realizations).
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in response to the increased cell bond tension at the interface. For instance, cell bonds
are in average shorter along the interface than cell bonds within the compartments, and
cells are a bit elongated perpendicular to the interface. Importantly, the stress profile is
no longer uniform. Figure 4.4 shows the stress profile in cellular networks with different
values of relative bond tension at the interface, A. The average isotropic stress of cells
is increased for the cells sharing bonds at the interfaces. Apart from that, the shear
stress does not vanish near the interfaces. The nematics representing cell shear stress
become parallel to the interface for the cells within the first rows (figure 4.4A, C, and
E). Figure 4.4B, D, and F shows the average isotropic and shear stress (6") for different
cell rows. The anisotropic stress in the vicinity of the interfaces grows in magnitude
with increasing the relative interface bond tension A. The average stresses of the cellular
networks vanish when there is no external stress applying on the network. Therefore,
the average stresses of the cells inside compartments change to satisfy this constraint.
The stress anisotropy will be used later to quantify interfacial tension.

Reduced cell proliferation near the interface. Here we discuss how stress profile
modifies if cell proliferation is reduced locally in the vicinity of the interface (case II).
We analyze the stress profile in the cellular network for different choices of the relative
division rate 5 in 2 cell rows at both sides of the interface (figure 4.5). Cells become
elongated along the interface in the zone of reduced proliferation. Similar to case I,
we observe patterns of anisotropic stress in the vicinity of interfaces. In this case, the
shear stress is originated from the elongation of cells near the interfaces. However, in
case I cells within the first rows are elongated in perpendicular direction to the interface
and increased bond tension generates anisotropic stress. Besides, isotropic stress is not
homogenous, and grows in the region of reduced proliferation. Figure 4.5 shows the
average values of isotropic and anisotropic stresses in different cell rows. Reducing the
relative proliferation rate (§, the anisotropies become more pronounced. We analyze
that the interfacial anisotropic stress increases when this mechanism is combined with
increased cell bond tension at the interface (figure 4.5E, F).

External shear stress. Overall cell elongation can be obtained by applying external
shear stresses. The external shear stress will change the shape of cells and their aver-
age stress throughout the cellular network. Figure 4.6 shows some examples of stress
distribution in such cellular networks. Average anisotropic stress of the cellular network
is set by the value of external shear, while the total average of cell pressure vanishes.
The stress profile is quite homogeneous, however anisotropic, as far as all the cells are
identical. Whereas, by increasing relative bond tension along the interface stress profile
changes locally near the interface. This mechanism, in combination with increased bond
tension at the interface, has a considerable effect on the distribution of anisotropic stress
near the interface (compare figure 4.6C-D and figure 4.4A-B).
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Figure 4.5: Stress profile near the interfaces (shown in dark gray) in case II when the
rate of cell division is reduced by a factor S in two rows of cells on both sides of the
interface. (A, B) 5 =04, (C,D) 8=0.2, (E,F) =04 and A =2. (A, C, E) Average
cell stress is displayed for individual cells at generation G = 8. The cell color shows
average isotropic stress and the black bars represent the direction and magnitude of the
anisotropic stress (with the same scales as figure 4.3). (B, D, F) The isotropic stress
o and the anisotropic stress &, are averaged for different cell rows near the interface.
Stress values are normalized by K Ag. Mean and SEM are shown (n=20 realizations).
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Figure 4.6: Stress profile in case IIl when anisotropic stress ¥ = 0.04 is applied to stretch
the network parallel to the interface (shown in dark grey). (A, B) A = 1, and (C, D)
A =2. (A, C) Average cell stress is displayed for individual cells at generation G = 8.
The cell color shows average isotropic stress and the black bars represent the direction
and magnitude of the anisotropic stress (with the same scales as figure 4.3). (B, D) The
isotropic stress ¢ and the anisotropic stress &, are averaged for different cell rows near
the interface. Stress values are normalized by K Ag. Mean and SEM are shown (n=20
realizations).

4.3.2 Effective interfacial tension

In the previous section we studied the stress profile in the vicinity of an interface between
two cellular compartments. Especially, we analyzed anisotropic stress for different cases.
We observed that increasing cell bond tension along the interface as well as reducing cell
proliferation near the interface locally change anisotropic stress. In this section, we use
the profile of anisotropic stress to calculate interfacial tension and analyze how much
different mechanical properties of the cellular network contribute to interfacial tension.

We quantified the effective interfacial tension integrating anisotropic stress in a two-
component fluid (equation 2.9). With the same approach, we can calculate the effective
interfacial tension in the cellular networks by integrating the anisotropic stress over area

Y= Liy /A(& _ Go)dA (4.4)

where A is the total area of the cellular network. g is the average anisotropic stress in
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Figure 4.7: Effective interfacial tension as a function of generation. (A) Cell bond tension
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the bulk and far from the interface, where (") reaches a constant value. We can replace
this integral by a summation over all cells

==Y (5(a) — 50)Aq - (4.5)

Time dependency of interfacial tension. We first study how interfacial tension
evolves during tissue growth. Figure 4.7 shows interfacial tension as a function of gen-
eration for case I and case II. In case I, when cell bond tension is increased along the
interface, effective interfacial tension decreases slightly from the initial hexagonal con-
figuration and remains approximately constant during growth. In case II, where cell
division probability is reduced near the interface, effective interfacial tension vanishes
initially. However, while tissue grows cells with less proliferation elongate and the effec-
tive interfacial tension increases rapidly and plateaus later. We conclude that beyond the
initial configuration, the effective interfacial tension does not depend on the generation
or the size of the network.

Interfacial tension and tissue mechanics. We calculate the effective interfacial
tension when it plateaus and analyze how mechanical properties of cells influence the
effective interfacial tension. Figure 4.8 compares the effective interfacial tension between
different cases for several choices of increased cell bond tension along the interface. In
the reference case with identical cells, the anisotropic stress is uniformly distributed
all over the network and the effective interfacial tension vanishes. Increasing cell bond
tension along the interface as well as reducing proliferation in the vicinity of the interface
increase interfacial tension. More interfacial tension is gained by combining these two
mechanisms. Applying an external shear stress generates no effective interfacial tension
as far as all the cells are identical. However, when cell bond tension is increased along
the interface, the interfacial tension is increased compared to case I. Effective interfacial
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Figure 4.8: Effective interfacial tension and cell mechanics. Interfacial tension as a
function of relative cell bond tension along the interface A. Each color represents one
case describing different mechanisms, increased bond tension along the interface (case
I), reduced proliferation near the interface (case II), external shear (case III), orientated
cell division (case IV), and pressure-dependent division rate (case V).

tension remains unchanged in comparison to case I when cell division probability depends
on cell area pressure or cell division orientation is biased by cell elongation likewise.

4.4 Roughness of interfaces during tissue growth

In this section we study the morphology of interfaces and discuss how tissue mechanics
influences the interface shape. Morphology of interfaces modifies during growth of cel-
lular networks. Figure 4.9 shows an example of interface shape at different generations.
The interface is initially chosen to be straight (G = 0). In this example, one can dis-
tinguish the increase of the interface length driven by tissue growth, from the interface
roughening, which is read as the increase in the width of excursions in the perpendicular
direction. In section 4.1, we explained that the roughening process happens because of
the randomness of cell divisions and cell rearrangements. On the other hand, interface
morphology is definitely affected by tissue mechanics. Here we analyze the morphology
of interfaces during tissue growth for different cases introduced in section 4.2.

The shape of interfaces is described by a sequence of the position of the vertices
along the interface. We use two different methods to quantify the shape of interfaces by
measuring the roughness or analyzing the Fourier transform. The interface roughness is
determined by the average variance of excursions of the interface away from a straight
line as a function of the length traveled along this line. This roughness measure is
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Figure 4.9: The shape of an interface between two cellular compartments during six
generations of simulated tissue growth. The cell vertices along the interface are shown
by circles and different colors depict different generations.

therefore given as a function of time and length w = w(L,t) (equation 1.2 and E.1).
Furthermore, the Fourier coefficients of the interface shape C'(q) represent the amplitude
of periodic functions with different wavelengths. In appendix E we explain in detail how
to implement these definitions to analyze the shape of interfaces in cellular networks.
Here we use these methods to quantify the shape of interfaces and compare different
cases.

Compartments of identical cells. We first quantify the interface shape in the ref-
erence case, where all the cells are identical. The interfaces are initially chosen to be
globally straight, however it is slightly rough in the cellular scale due to the hexagonal
packing of the cellular network. A straight interface starts to become rough as tissue
grows, governed by the randomness of cell divisions. Figure 4.10B-C shows the interface
roughness averaged over different realizations. The roughness of interfaces increases as
a function of time (generation number) and with increasing distance along the interface.
Furthermore, we look at the Fourier coefficients of these interfaces which decrease with
the wave number ¢ (figure 4.10D). For any wave number the Fourier coefficient decreases
slightly as tissue grows. Whereas, due to the tissue growth and increase of the interface
length L,, the plots include more wave numbers.

Increased bond tension at the interface. In case I, when cell bond tension is
increased along the interface by a factor A, interfaces are more straight compared to
the reference case (figure 4.11A, E, and I). Figure 4.11 shows the interface roughness
for different choices of the interface bond tension A. Compared to the reference case,
interface roughness is significantly reduced both over time and with increasing distance.
Increasing cell bond tension along the interface correlates with the reduction of interface
roughness for different choices of A. Similar to the reference case, the Fourier coefficients
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Figure 4.10: Time-evolution of the interface morphology between compartments of iden-
tical cells in the reference case. (A) An example of the final configuration of the network
of cell bonds of the two adjacent cell populations (red and blue) at generation G=8. (B)
The roughness w of the interface as a function of generation G for the indicated distances
L along the interface. (C) The roughness w of the interface as a function of distance
L for the generations G indicated. Distance and roughness values are normalized by
mean bond length /. (D) Fourier coefficient C/(q), normalized by ¢, as a function of the
wave number ¢, normalized by 1/¢, for the generations G indicated. Mean and SEM are
shown (n=20 realizations).

of interfaces decrease with increasing A.

Reduced cell proliferation near the interface. In case II, interfaces are more
straight compared to the reference case. Figure 4.12 shows two examples when cell pro-
liferation is reduced by a factor S within two cell rows on both sides of the interface.
The interface is maintained with locally decreasing proliferation rate, even if there is no
increased cell bond tension at the interface. This mechanism has similar effects as in-
creasing interface bond tension in decreasing interface roughness. Decreasing the relative
cell proliferation rate near the interface leads to more straight interfaces. In figure 4.13
we compare roughness of interfaces for different choices of 8 changing between 1 and 0.
Furthermore, interface roughness decreases even further combining this mechanism with
increased cell bond tension at the interface.

Anisotropic shear stress. Here we quantify the effects of external shear forces, de-
scribed by X, on the morphology of interfaces (case III). Two examples, where ¥ = 0.03
and ¥ = 0.04, are shown in figure 4.14. The shear stress results in both elongation
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Figure 4.11: Time-evolution of the interface morphology in case I. Cell bond tension is
increased along the interface with a factor (A-D) A =2, (E-H) A = 3, and (I-L) A = 4.
The top row (A, E, I) represents examples of the final configuration of the network of
cell bonds of the two adjacent cell populations (red and blue) at generation G = 8. The
second row (B, F, J) depicts the roughness w of the interface as a function of generation
G for the indicated distances L along the interface. The third row (C, G, K) shows the
roughness w of the interface as a function of distance L for the generations G indicated.
In the second and third rows, distance and roughness values are normalized by mean
bond length £. The fourth row (D, H, L) shows the Fourier coefficient C(q), normalized
by ¢, as a function of the wave number ¢, normalized by 1/¢, for the generations G
indicated. Mean and SEM are shown (n=20 realizations).
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Figure 4.12: Time-evolution of the interface morphology in case II, when the rate of cell
division is reduced by a factor 5 in two rows of cells on both sides of the interface. (A-C)
g =04, (D-F) 8 =0.2, 5 =04 and (G-I) A = 2. The top row (A, D, G) represents
examples of the final configuration of the network of cell bonds of the two adjacent cell
populations (red and blue) at generation G = 8. The second row (B, E, H) depicts the
roughness w of the interface as a function of generation G for the indicated distances L
along the interface. The third row (C, F, I) shows the roughness w of the interface as
a function of the distance L for the generations G indicated. In the second and third
rows, distance and roughness values are normalized by mean bond length ¢. Mean and
SEM are shown (n=20 realizations).
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of individual cells and overall elongation of the cellular network. In this case cell mix-
ing is not prevented, some islands of one cell type exist within the other compartment.
However, the interface roughness is reduced significantly compared to the reference case
(figure 4.14). Figure 4.15 describes how interface roughness decreases with increasing
the strength of external shear stress. Interfaces are maintained if this mechanism acts
with increased cell bond tension at the interface. In this case interface roughness is
mainly decreased compared to case I (compare figure 4.141-L and figure 4.11A-D).

Oriented cell division. We analyze the shape of interfaces during tissue development
when orientation of cell division is biased by cell elongation (case IV). In this case the
roughness of the interface increases with generation number for different lengths similar
to the reference case (compare figure 4.10B and figure 4.16B). Figure 4.16 represents an
example where § = 5, however, this result is independent of the value of §. It can be
explained that in a cellular network of identical cells there is no correlation between cell
elongation near the interface (figure 4.17A,B). Therefore this mechanism has no effect on
the interface morphology. Interestingly when both cell bond tension along the interface
is increased and the orientation of cell division is biased by cell elongation, the interface
roughness is significantly reduced both over time and increasing distance as compared to
case [ (figure 4.16; figure 4.11). This happens because increased cell bond tension results
in local patterns of cell elongation that depend on interface curvature (figure 4.17C,D).
The resulting bias of the cell division orientation is such that local interface roughness
is reduced.

Pressure dependent proliferation rate. Now we analyze the morphology of in-
terfaces in case V, where cell pressure influences the probability of cell division. Fig-
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Figure 4.14: Time-evolution of the interface morphology in case IIl when anisotropic
stress of the relative strength o is applied to stretch the network parallel to the interface.

(A-C) ©

= 0.03, (D-F) ¥ = 0.04, (G-1)

¥ = 0.04 and A = 2. The top row (A, D, G)

represents examples of the final configuration of the network of cell bonds of the two
adjacent cell populations (red and blue) at generation G = 8. The second row (B, E, H)
depicts the roughness w of the interface as a function of generation G for the indicated
distances L along the interface. The third row (C, F, I) shows the roughness w of the
interface as a function of the distance L for the generations G indicated. In the second
and third rows, distance and roughness values are normalized by mean bond length /.
Mean and SEM are shown (n=20 realizations).
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by cell elongation with a coefficient §. (A, B) Interface roughness w of the interface as
a function of generation G for the indicated distances L along the interface when § = 5.
Relative cell bond tension along the interface is (A) A =1, (B) A = 3. (C) The interface
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the interface at generation G = 7.5. Cell bond tension is increased along the boundary
by a factor A = 3. Distance and roughness values are normalized by mean bond length
. Mean and SEM are shown (n=10 realizations).
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Figure 4.17: Local pattern of cell elongation around a curved boundary. The boundary
is introduced as a sine function in a cell network after growth. The elongation of cells in
two compartments (blue and red) near the boundary is indicated by black bars. (A, C)
Examples of individual cell elongation around such a boundary. (B, D) Cell elongation
averaged over 10 realizations in a few cell rows on both sides of the boundaries, indicated
by a yellow line. Gray regions show the distribution of angels of average cell elongation in
different realizations. (A, B) Cell bond tension is not increased at the interface (A = 1)
and cell elongation is isotropically distributed. (C, D) Interface cell bond tension is
increased (A = 3) and cell elongation is biased by the boundary curvature.
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Figure 4.18: Interface morphology in case V when the probability of cell division depends
on cell pressure by €. (A, B) Interface roughness w as a function of generation G for the
indicated distances L along the interface. The probability of cell division depends on
cell pressure by € = 2. Relative cell bond tension along the interface is (A) A =1, (B)
A = 3. (C) The interface roughness w as a function of the coefficient ¢ for the indicated
distances L along the interface at generation G = 7.5. Cell bond tension is increased
along the boundary by a factor A = 3. Distance and roughness values are normalized by
mean bond length £. Mean and SEM are shown (n=10 realizations).
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ure 4.18A shows the average roughness of interfaces between two compartments of iden-
tical cells where the probability of cell division depends on cell area pressure by ¢ = 2.
In this case boundary roughness increases as in the reference case and cell mixing occurs
(compare figure 4.18A and figure 4.10B). This result is independent of the value of the
coefficient e.

We next analyze whether cell proliferation depending on cell area pressure influences
interface morphology if it acts together with increased cell bond tension along the in-
terface. The motivation for this effect is that increased bond tension may give rise to
increased pressure on the side of the interface towards which it is curved. The reduc-
tion of cell division probability on this side reduces the interface curvature and thus the
interface becomes less rough. In appendix D we quantify the difference of inside and
outside cell area pressure near a curved interface in a hexagonal network.

Figure 4.18B shows that this mechanism, even in combination with local increases
in interface bond tension, has no considerable effect on boundary morphology (compare
to figure 4.11F). Figure 4.18C shows how roughness changes with the strength of this
effect €. It should be mentioned that cells in the first rows have in average larger area
pressure when interface bond tension is increased. Therefore, for large values of ¢, all
the cells within the first row divide with a significantly reduced probability and this
mechanism acts as case II (e = 10 in figure 4.18C). For applicable values of e the effects
of this mechanism on interface morphology are negligible. This could originate from the
fact that fluctuations in cell area are bigger than systematic differences in the vicinity
of a curved interface. This result is independent of the choice of cell area pressure in
equation 3.2. The shape of interfaces remains in average unchanged when the probability
of cell division depends on the total pressure or the tension pressure.

Scaling properties of interfaces. We analyze the scaling properties of the interfaces
between cellular compartments. In the introduction we discussed the scaling relations for
self-affine interfaces (equations 1.4, 1.5, and 4.7). In many cases studied in this chapter,
the roughness saturates at late generations (see appendix E for detailed discussion). We
show that the saturation roughness scales with distance (figure 4.19A)

w(L) o< LY. (4.6)

The roughness exponent a does not show a meaningful dependence on the tissue param-
eters and fluctuates between 0.65 and 0.75. Figure E.4 shows how roughness exponent
varies for different mechanisms. Furthermore, analyzing the Fourier transform of in-
terfaces indicates that the Fourier coefficients of interfaces scale with the wave number
(equation 4.7)

C?%(q) o q. (4.7)

Similar to the roughness exponent, the Fourier exponent f does not change significantly
between different mechanisms and varies in the range of 2.2 — 2.7 (see figure E.5).
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Figure 4.19: Examples of scaling properties of interfaces (A = 3). (A) Roughness of the
interface as a function of distance in a logarithmic scale (blue dots). A linear fit of the
data is shown (black line). The slope of the line defines the roughness exponent a. (B)
Fourier transform of interface shape as a function of the wave number in a logarithmic
scale (blue dots). A linear fit of the data is shown (black line). The slope of the line
defines the Fourier exponent f.

4.5 Summary

In this chapter we introduced the cellular compartments in the vertex model. We ana-
lyzed how compartment boundaries evolve during simulated tissue growth. We studied
the stress distribution inside the cellular networks and calculated effective interfacial
tension by integrating the anisotropic stress. Moreover, we quantified the morphology of
interfaces by measuring its roughness and analyzing its Fourier transform. An initially
straight interface becomes rough due to stochastic behavior of cell divisions. On the other
hand the interface roughness increases with increasing distance along the interface.
With the help of this model we studied how different physical mechanisms affect
the stress distribution and shape of interfaces in developing tissues. In a cellular net-
work including two compartments of identical cells, the interface becomes very rough
during tissue growth. In this reference case the stress is distributed randomly all over
the cellular network and there is no effective interfacial tension. However, increased
cell bond tension at the interface and reduced cell proliferation near the interface pro-
duce effective interfacial tension. In both cases we observe overall reduction of values of
roughness compared to the reference case. In addition, overall cell elongation in the tis-
sue parallel to the interface induced by external shear produces no considerable effective
interfacial tension. However, it leads to a significant reduction of roughness. Further-
more, a bias in orientation of cell division by cell elongation, or the dependence of cell
division probability on cell area pressure do not contribute in the interfacial tension.
The preferential cell division orientation has no influence on boundary roughness. But
the boundary roughness is further reduced when it is combined with local increases in
cell bond tension. However, the pressure-dependent division rate mechanism has, even
in combination with local increases in interface bond tension, no considerable effect on
boundary morphology. We also analyzed the scaling behavior of interfaces for different
mechanisms. We showed that the saturation value of roughness scales with the distance
along the interface and the Fourier transform of interfaces scales with the wave number.
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Chapter 5

Experimental study of the
dorsoventral compartment
boundary in the developing fly
wing

The wing imaginal disc of the fruit fly Drosophila is an important model system to
study compartmentalization (see section 1.3). There are two compartment boundaries
in the wing imaginal disc, the anteroposterior (AP) boundary and the dorsoventral
(DV) boundary. In this work we quantitatively analyze which mechanisms play a role in
shaping the dorsoventral boundary in the developing fly wing. In this chapter we review
our experimental results on the mechanics and morphology of dorsoventral compartment
boundary. The experiments are subdivided into three categories. At first we analyze the
images of the wing imaginal discs in the vicinity of the DV compartment boundary at
different stages during wing development. In particular we quantify elongation of cells
near the DV boundary and quantify the roughness of the boundary. In the second part
we discuss the laser ablation experiments. We analyze the response of tissues to the
ablation of cell bonds in order to estimate cell bond tension at different developmental
stages. Moreover, we analyze the pattern of cell division near the DV boundary and study
whether this mechanism has any influence on the boundary shape. The experimental
results will be used in the next chapter in order to propose a scenario characterizing the
time evolution of the DV boundary.

5.1 Morphology of wing imaginal discs near the dorsoven-
tral boundary

We analyze the images of the adherens network of cells in order to quantify the morphol-
ogy of the wing discs near the DV boundary at different developmental times (72h, 84h,
96h, 108h, and 120h AEL). Wing discs are stained for E-cadherin, a marker for adherens
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junctions, and a membrane-associated GFP, CD8-GFP, expressed under control of the
dorsal-specific ap-GAL/ line [104] (figure 5.1A-E). We use automated image analysis to
distinguish cell bonds and quantify tissue properties (see appendix G.1). For instance,
we quantify the morphology of cells in the vicinity of this boundary and the roughness
of the DV boundary at different developmental times.

5.1.1 Cell shape analysis

The shape of cells reflects their mechanical properties and the local stresses. In the
network of adherens junctions, the shape of each cell is described by the cell bonds and
cell vertices. We quantitatively analyze the shape of cells all over the wing imaginal disc.
Cell shape in two dimensional tissues can be described by cell area and cell elongation
(See appendix C). We quantify cell elongation with a symmetric traceless tensor (equa-
tion C.1). This tensor can be displayed by a bar at angle £ and length p, which can be
mapped to the ratio of long to short axis of the cell. Figure 5.1F-J shows shape of indi-
vidual cells quantified in some examples of wing disc images at different developmental
stages.

We average cell properties to compare morphology of cells at different stages and in
different regions of the tissue. Interestingly, cells in the vicinity of the DV boundary are
clearly elongated with an average ratio of long to short axis of 1.1-1.3 parallel to the DV
boundary at all time points analyzed (figure 5.1N). We also observe that the average
apical cross section area of cells at the level of adherens junctions decreases between 84h
and 120h AEL and is similar for cells along the DV boundary and cells in the analyzed
area of the tissue (figure 5.1K). Furthermore, the average cell bond length decreases
between 84h and 120h AEL. We observe the same behavior for the average cell bond
length at the DV boundary, which is always shorter than the tissue average bond length
(figure 5.1L). Besides, the angles between cell bonds are typically larger along the DV
boundary compared to the bond angles of the rest of the tissue (figure 5.1M). These two
observations can be signitures of increased bond tension at the DV boundary.

5.1.2 Roughness of the DV boundary

We next quantify the roughness of the DV boundary at different developmental times.
The shape of the boundary is shown by a sequence of the position of the vertices along
the boundary and we calculate the roughness of the boundary as the deviation from a
straight line as described in equation E.1.

The roughness of the DV boundary increases with increasing distances along the
boundary. Surprisingly, the roughness starts with comparably high values at 72h and
84h AEL, but is reduced at 96h and remains almost constant after that, at 108h and
120h AEL (figure 5.2A-B). Note that in figure 5.2A,B the roughness is normalized to
the average cell bond length of each time, which is not constant. However the choice of
this normalization has no effect on our conclusions. We observe similar behavior when
roughness is presented in micrometer and is not normalized.
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Figure 5.1: (A-E) Wing imaginal discs at (A) 72h, (B) 84h, (C) 96h, (D) 108h, and (E)
120h AEL stained for E-cadherin (E-cad, red). The dorsal compartments are visualized
by expression of CD8-GFP (green). Scale bars represent 20um. (F-J) Analysis of the
areas boxed in (A-E). Apical cross sectional area is color coded as indicated on the left.
Bold blue lines demarcate the DV boundary. The lengths of the black bars represent the
ratio of long to short axis of cells. (K) Average apical area for D1 cells, V1 cells, and the
total wing imaginal disc region analyzed (tissue) for the indicated time points. Mean
and SEM are shown. (L) Average cell bond length along the DV boundary, and within
the total wing imaginal disc region analyzed (tissue) for the indicated time points. Mean
and SEM are shown. (M) Average angle between cell bonds along the DV boundary,
and within the total wing imaginal disc region analyzed (tissue) for the indicated time
points. Mean and SEM are shown. (N) Average cell elongation of different cell rows
near the DV boundary (D1..D5, V1...V5) of the analyzed region for the indicated time
points. Green line demarcates the DV boundary. The length of the bars represents the
ratio of long to short axis of a cell parallel to the DV boundary (see inset).
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Figure 5.2: (A) Roughness w of the interface as a function of time after egg laying for
the indicated distances L. (B) roughness w of the interface as a function of distance L
for the indicated times after egg laying. (C) Circle roughness w of the interface as a
function of distance L for the indicated times after egg laying. Distance and roughness
values are normalized to the average cell bond length ¢ for the indicated times after egg
laying. Mean and SEM are shown.

The DV boundary is significantly curved during mid-larval development, but its
curvature is reduced towards late larval development (figure 5.1A-E). We test whether
the overall boundary morphology is responsible for the observed roughness reduction.
We calculate the deviation of the DV boundary from a specified curve in order to exclude
the roughness associated with the global curvature. Here we fit a circle to the shape of
the boundary and quantify the circle roughness as the deviation of the boundary from
the fit circle. Figure 5.2C shows the circle roughness of the DV boundary at different
time stages. Similar to linear roughness, we observe a reduction in the circle roughness
of the DV boundary between 84h and 96h AEL. We conclude that the reduction of DV
roughness is not governed by the decrease in the boundary global curvature.

5.2 Response of wing discs to ablation of cell bonds

In this section we quantify the mechanical tension on cell bonds along the DV boundary
relative to the tension along the other cell bonds in the wing disc. Tissue relaxation
in response to ablating single cell bonds provides a quantitative indicator of mechanical
tension on cell bonds [26]. We ablate individual cell bonds using a UV-laser beam
at 84h, 96h, 108h and 120h AEL. The ablation of cell bonds generates an anisotropic
displacement around the cut bond. We observe the movement of the network over
several minutes after ablation. We cut the bond along the DV boundary or inside dorsal
and ventral compartments and compare the maximum distance increase of the vertex
separation, and the displacement field near the cut bond.

Figure 5.3A-D shows the distance increase between the vertices of ablated bond over
time d(¢). The maximal increase of distance between vertices upon cell bond ablation
within the dorsal or ventral compartments are similar to each other for all time points
(figure 5.3A-D, I). At 84h AEL, the vertex distance increase after ablating cell bonds
along the DV boundary is slightly larger compared to ablation in the dorsal and ventral
compartments (figure 5.3A). For 96h, 108h, and 120h AEL the vertex distance increase
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Figure 5.3: Tissue response to ablation of cell bonds. (A-D) Change in distance d
between vertices at the ends of cell bonds before and after ablation as a function of time
relative to ablation for wing discs at (A) 84h, (B) 96h, (C) 108h, and (D) 120h AEL.
The types of ablated cell bonds are indicated. Mean and SEM are shown. (E-H) Radial
displacement D, of all the vertices located at a distance of up to two average bond
lengths from the point of ablation shown as a function of the angle between the ablated
bond and the line between the vertex and the point of ablation. The types of ablated
cell bonds are indicated on the left and the developmental time of ablation is shown on
the top. Mean values are shown for bins of 7/6 (black dots). A fit of the mean values to
a cosine function is shown (black line). (I) Total displacement d; of vertices at the ends
of ablated cell bonds for the indicated types of cell bonds and developmental times. The
mean and SEM of fits are shown. (J) Maximum radial displacement determined by the
fits shown in (E-H”). The average values and the standard error of the fits are shown.
Distance and displacement values are normalized to the average bond length ¢ of each
time point.
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is significantly larger for DV bonds as compared to bonds in the dorsal and ventral
compartments (figure 5.3B-D).

We then quantify the experimentally observed radial displacements of vertices as a
function of angle relative to the orientation of the ablated bond (figure 5.3E-H”, J). We
determine the radial displacement of vertices D,(9) as a function of the angle relative to
the ablated bond . The function a cos® + b is fit to the radial displacement D, () and
the maximum radial displacement is D;"*** = a+b. At 84h AEL, the radial displacements
resulting from ablating bonds along the DV boundary and within the dorsal and ventral
compartments are similar (figure 5.3E-E”, J). For 96h, 108h, and 120h AEL, the radial
displacements of DV bonds are increased as compared to the radial displacements of D/D
or V/V bonds (figure 5.3F-H”, J). These results demonstrate that cell bond tension along
the DV boundary varies over developmental time. In the next chapter we will compare
the displacement field of experimental cuts and simulation of laser ablation to estimate
the relative bond tension along DV.

5.3 Cell division pattern in the wing imaginal disc

We next determine the relative proliferation rate of cells in the vicinity of the DV bound-
ary compared to the cells elsewhere in the wing disc for different developmental times.
Cells replicating DNA are labeled by BrdU incorporation and the ratio of labeled to
unlabeled cells are determined. At 84h and 96h AEL, the distribution of BrdU labeled
cells is homogeneous, and therefore, the rate of cell proliferation is similar for the cells
located in the vicinity of the DV boundary and further away from this boundary (fig-
ure 5.4F,G). At 108h AEL, cell proliferation rate is reduced to approximately 0.6 — 0.7
fold in a strip of 5-10 cells centering on the DV boundary as compared to the rate of
proliferation of cells located elsewhere (figure 5.4H) [55]. At 120h AEL, cell proliferation
rate is reduced to approximately 0.4 — 0.5 fold within a strip of 10 — 20 cells centering
on the DV boundary (figure 5.41) [55].

To test whether this local decrease in cell proliferation is important for the morphol-
ogy of the DV boundary, we increase the rate of cell proliferation by co-expressing the
cell cycle regulators string and Cyclin E in the vicinity of the DV boundary [105]. As a
consequence, the rate of cell proliferation in the vicinity of the DV boundary iss indis-
tinguishable from the rate of cell proliferation elsewhere in the tissue at 108h AEL [106].
The shape of the DV boundary is indistinguishable between control wing imaginal discs
and imaginal discs co-expressing string and CycE (figure 5.5). We conclude that a
decreased rate of cell proliferation during late larval development is not important to
maintain a straight and sharp DV boundary.

5.4 Summary

In this chapter, we summarized our experimental results on the mechanics and mor-
phology of the dorsoventral boundary in the developing fly wing. We analyzed images
of the wing discs to quantify the morphology of the DV boundary and the cells in the
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Figure 5.4: Proliferation profile near the DV boundary. (A-D) Wing imaginal discs at
(A) 84h, (B) 96h, (C) 108h, and (D) 120h AEL stained for BrdU incorporation (red)
and DAPI (white). The dorsal compartments are visualized by expression of CD8-GFP
(green). Scale bars represent 20um. (E, E’) Subdivision of images of stained wing
discs into consecutive 10um broad strips of cells symmetric to the DV boundary. (F-I)
Percentage of BrdU positive cells of wing imaginal discs at (F) 84h, (G) 96h, (H) 108h,
and (I) 120h AEL. Ip to Vp and Iy to IVy refer to consecutive 10um broad strips of
cells adjacent to the DV boundary. Mean and SEM are shown (n = 6 (84h), 5 (96h), 5
(108h), and 6 (120h) wing imaginal discs).
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Figure 5.5: Roughness w of DV boundary as a function of distance L in the wild-type
and mutant (co-expressing string and CycE) wing imaginal discs. Lengths and roughness
values are normalized by average bond length ¢. Mean and SEM are shown, n = 6.
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vicinity of this boundary at different developmental stages (72h, 84h, 96h, 108h, and
120h AEL). In particular, we quantified elongation of cells and showed that cells are in
average elongated along the DV boundary. We also studied the roughness of the bound-
ary, and observed a significant reduction in the roughness of the DV boundary between
84h and 96h AEL.

By measuring tissue relaxation in response to ablation of cell bonds, we compared the
mechanical tension of the bonds along the DV boundary and the bonds within dorsal and
ventral compartments. We analyzed the increase in the vertex distance of the ablated
bonds in time and the displacement field of the neighboring vertices. The response of
the tissue to ablation of cell bonds changes during developmental time. At 84h AEL, no
difference is observed between the tissue response to the ablation of bonds at different
positions in the wing discs. However, at later time steps, the tissue response is more
distinct when a cut bond lays along the DV boundary compared to the bonds inside
the compartments. In the next chapter we compare the experiments and simulations of
bond ablation to estimate the mechanical tension along cell bonds.

Furthermore, we determined the cell proliferation pattern in the wing imaginal disc
for different developmental times. Our observations demonstrated that cell proliferation
is reduced in the vicinity of the DV boundary compared to elsewhere in the wing disc
at late larval development. However, further experiments showed that local reduction in
cell proliferation rate is not required to maintain a straight and sharp DV compartment
boundary.



Chapter 6

Comparison of theory and
experiment

We would like to investigate the different mechanisms that play a role in shaping the
dorsoventral compartment boundary during the development of the wing of the fruit fly.
We reviewed our experimental results analyzing the morphology and mechanics of the
DV boundary in chapter 5. We quantified the roughness of the DV boundary, elonga-
tion of cells, the proliferation rate, and cell bond tension in the wing discs at different
developmental stages. On the other hand, in the chapter 4, we studied theoretically how
general mechanisms influence the morphology of interfaces between two compartments
during simulated tissue growth. We showed that the interfaces evolve in a dynamic pro-
cess during tissue growth, and their morphology changes as a function of time. Moreover,
cell bond tension, cell proliferation rate, a bias in the orientation of cell division, cell
elongation, and dependence of cell proliferation rate on cell pressure have distinct effects
on the shape of compartment boundaries.

In this chapter we compare our theory with the experiments to analyze the mecha-
nisms shaping the DV boundary. We first estimate the parameters used in the vertex
model based on the experimental observations discussed in the previous chapter and
literature. We discuss how we estimate the relative cell bond tension along the DV
boundary with simulating the ablation of cell bonds. We also describe our methods to
estimate the anisotropic stress in the vertex model and the bias in cell division axis.
We then analyze whether our model, using the determined parameters, can describe the
time-dependent behavior of the DV boundary.

6.1 Estimate of cell bond tension

We estimate cell bond tension by analyzing the response of the tissue to the ablation of
cell bonds. In section 5.2, we reviewed the experimental results denoting the response
of the wing imaginal discs to the ablation of cell bonds at different time stages. We
analyzed the anisotropic displacement of vertices around the cut bond and showed that
the response of the wing disc varies over time. Besides, the displacements are more
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pronounced when the cut bonds lie at the DV boundary compared to the bonds inside the
compartments, which is an indication of increased cell bond tension along the boundary.
We can estimate the relative cell bond tension along the DV boundary by comparing
laser ablation results between experiments and simulations. We first introduce how
to simulate the ablation of cell bonds in a vertex model and study how mechanical
properties of the network influence its response to the bond ablation.

6.1.1 Simulation of bond ablation in the Vertex model

We simulate the ablation of cell bonds in the vertex model to quantify cell bond tension
[83]. In a stable cell network, one bond is selected to be cut and the line tension of the
bond A;; is set to zero spontaneously. Furthermore, the perimeter elasticity of the two
cells o and 3 sharing the cut bond I', and I'g is set to zero. The network is then relaxed
to a new stable configuration. We analyze the displacement of the vertices around the
cut bond as described in the previous chapter (section 5.2). We determine the radial
displacement of vertices, D, (¥), as a function of the angle relative to the ablated bond,
1. We use the maxima of radial displacement to compare different cuts.

At first, we would like to address this question whether the response of tissue to
laser ablation depends on generation or system size. Figure 6.1A B shows two examples
of the displacement fields in response to the ablation of cell bonds within a cellular
network for two different generations 3 and 6. The displacement fields and the cosine
function fits look very similar. We repeat the simulation of laser ablation for different
generations and average the fit values over different examples. Figure 6.1C shows the
average value of maximal displacement for different generations, ranging between 0 and
7. The maximal radial displacement is constant for different generations except for the
initial configuration G = 0, which corresponds to a hexagonal network.

The response of cellular networks to the ablation of cell bonds depends on the tissue
mechanics. We discussed that mechanical properties of cellular networks are described by
different parameters denoting cell bond tension, perimeter elasticity, anisotropic shear
stress and division rates. We study how individual parameters affect the response of
cellular networks to the ablation of cell bonds. Displacement fields upon bond ablation
are mainly influenced by bulk bond tension Ay and perimeter elasticity I, as well as the
relative bond tension at the interface A for the cuts at the interface. However increasing
external shear stress 3, or reducing division rate 3 have minor effects on the ablation
results, at least within the range consistent with the observed quantities in the wing
imaginal disc.

6.1.2 Estimate of the relative bond tension along DV

In this section we discuss how to estimate the relative cell bond tension along the DV
boundary compared to the bonds within the compartments. The most robust estimate
is obtained by comparing the radial displacements fields in the vicinity of the ablation
between experiments and simulations. In the previous chapter, we quantified the ex-
perimentally observed displacement fields of vertices in the vicinity of bonds within the
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Figure 6.1: Response of cellular networks to bond ablation at different generations. (A-

B) Radial displacement D, (9) of all vertices located at a distance of up to two average

bond lengths from the point of ablation shown as a function of the angle 9 between the

ablated bond and the line between the vertex and the point of ablation, (A) G = 3, (B)

G = 6. (C) Maxima of radial displacements obtained from simulations with constant

mechanical properties at different stages. Displacements are normalized by the average
bond length I. For all simulations A = 0.12, ' = 0.04, and \ = 1.

dorsal and ventral compartments and along the DV boundary (figure 5.3). To esti-
mate the relative bond tension along the boundary, we first need to quantify the bulk
properties.

To estimate Ag and I', we compare the maximum radial displacement, D™, obtained
in simulations for different choices of Ag, and I', when A = 1 to the value of D™ obtained
experimentally by the ablation of bonds within the dorsal and ventral compartments.
This procedure is repeated for different time steps, 84, 96, 108, and 120h AEL, to find
the bulk parameters for which the maxima radial displacement fits the best with the
experimental value. Interestingly, the maximum radial displacements resulting from
ablating cell bonds within the dorsal or ventral compartments are increased at 120h
AEL compared to earlier time points, indicating that the average cell bond tension in
the tissue increases during late larval development (figure 6.2).

For each developmental stage, we use estimated bulk parameters Ag and T' and
repeat the ablation simulation for different choices of the relative bond tension along
the interface A. In figure 6.2, the maxima radial displacement is shown as a function
of A for different sets of bulk parameters corresponding to the developmental stages.
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Figure 6.2: Maxima of radial displacements obtained from simulations of cell bond
ablations with different values of A are shown as blue bars. The values of A and I' used
in the simulations are indicated. Maxima of radial displacements for ablated DV bonds
(black line) and average of D/D and V/V bonds (dashed black line) for laser ablations
at (A) 84h, (B) 96h, (C) 108h, and (D) 120hAEL are shown. For experimental data the
average values and the standard error of the fits are shown. For simulations, mean and
SEM are shown (n = 10 realizations).

We estimate the relative bond tension along DV, A\, by comparing these plots with the
maximum radial displacement of cell bonds along the DV boundary.

Our observations demonstrate that at 84h AEL, the maximal radial displacements
resulting from ablating bonds along the DV boundary and within the dorsal and ventral
compartments are similar (figure 6.2A). It indicates that there is no increased cell bond
tension along the DV boundary compared to the other bonds. However, for 96h, 108h,
and 120h AEL, the maximal radial displacements of DV bonds are increased as com-
pared to the maximal radial displacements of D/D or V/V bonds. The maximum radial
displacements in response to laser ablations at 96h, 108h, or 120h AEL corresponds to
values of A between 2.5 and 3.0 (figure 6.2B-D). Further experiments show that cell bond
tension at the bonds between the first and second row of dorsal cells (D1/D2) or between
the first and second row of ventral cells (V1/V2) is almost the same as the bonds inside
the compartments.

We can conclude that cell bond tension along the DV boundary varies over develop-
mental time. Relative cell bond tension along the DV boundary increases between 84h
and 96h AEL. Interestingly, the increase in cell bond tension along the DV boundary
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Figure 6.3: The comparison between the
probability distribution of the cleavage
plane orientation from the cell elongation
axis in the wing discs [76] and the func-
tion for the probability of division orien-
tation equation 3.4 for § = 5. The yel-
low line shows the axis of cell elongation
that is used as the reference angle for each
cell. The orientation probabilities, shown
in percent, are averaged within /12 angle

intervals. The angles range [0,7/2] and
=§)r(§§28?ﬁ§tgli§ﬁfunon for 625 are shown in the three other quadrants

cell elongation axis symmetrically.

coincides with the observed reduction of roughness (figure 5.2). Later in this chapter
we address the question whether the reduction of the DV roughness is generated by the
increase in the relative bond tension at the DV boundary.

6.2 Estimation of the bias in the division axis

There are experimental evidences showing that the orientation of cell division is biased in
the vicinity of the DV boundary such that the division plane is frequently perpendicular
to the DV boundary [24,57]. It has been proposed that oriented cell division might
influence boundary shape [24, 58]. Experimental observation in different tissues and
particularly in the wing imaginal discs show that cell elongation affects the orientation
of cell division axis [76]. This effect, in combination with the observed cell elongation
along the DV boundary, can lead to oriented cell division along the DV boundary.

In our model cell division axis can be influenced by cell elongation, where ¢ describes
the strength of this effect (introduced in section 3.3.2). We estimate the value of § based
on the observed distribution of the orientation of the cleavage plane with respect to cell
elongation axis in the wing disc [76]. We use a typical value of elongation of individual
cells, p = 0.3, in the wing discs and calculate the probability distribution of the new bond
direction with respect to cell elongation axis for different values of §. Our results show
that § = 5 presents the best agreement with the observed distribution of cell division
orientation in the wing imaginal discs (see figure 6.3).

It should be noted that this estimate is based on a mean field approximation, whereas
the experimental data describe the mean distribution of the cleavage plane orientation,
independent of the strength of cell elongation. For a better estimate, one needs to
quantify