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Abstract

An essential prerequisite for the existence of multi-cellular life is the organization of
cells into tissues. In this thesis, we theoretically study how large-scale tissue properties
can emerge from the collective behavior of individual cells. To this end, we focus on
the properties of epithelial tissue, which is one of the major tissue types in animals.
We study how rheological properties of epithelia emerge from cellular processes, and
we develop a physical description for the dynamics of an epithelial cell polarity. We
apply our theoretical studies to observations in the developing wing of the fruit fly,
Drosophila melanogaster.

In order to study epithelial mechanics, we first develop a geometrical framework that
rigorously describes the deformation of two-dimensional cellular networks. Our frame-
work decomposes large-scale deformation into cellular contributions. For instance, we
show how large-scale tissue shear decomposes into contributions by cell shape changes
and into contributions by different kinds of topological transitions. We apply this
framework in order to quantify the time-dependent deformation of the fruit fly wing,
and to decompose it into cellular contributions.

We also use this framework as a basis to study large-scale rheological properties
of epithelia and their dependence on cellular fluctuations. To this end, we represent
epithelial tissues by a vertex model, which describes cells as elastic polygons. We
extend the vertex model by introducing fluctuations on the cellular scale, and we
develop a method to perform perpetual simple shear simulations. Analyzing the steady
state of such simple shear simulations, we find that the rheological behavior of vertex
model tissue depends on the fluctuation amplitude. For small fluctuation amplitude,
it behaves like a plastic material, and for high fluctuation amplitude, it behaves like a
visco-elastic fluid.

In addition to analyzing mechanical properties, we study the reorientation of an
epithelial cell polarity. To this end, we develop a simple hydrodynamic description for
polarity reorientation. In particular, we account for polarity reorientation by tissue
shear, by another polarity field, and by local polarity alignment. Furthermore, we
develop methods to quantify polarity patterns based on microscopical images of the
fly wing. We find that our hydrodynamic description does not only account for polarity
reorientation in wild type fly wings. Moreover, it is for the first time possible to also
account for the observed polarity patterns in a number of genetically altered flies.





Kurzzusammenfassung

Eine wesentliche Voraussetzung für die Existenz mehrzelligen Lebens ist, dass sich
einzelne Zellen sinnvoll zu Geweben ergänzen können. In dieser Dissertation unter-
suchen wir, wie großskalige Eigenschaften von Geweben aus dem kollektiven Verhal-
ten einzelner Zellen hervorgehen. Dazu konzentrieren wir uns auf Epitheliengewebe,
welches eine der Grundgewebearten in Tieren darstellt. Wir stellen theoretische Un-
tersuchungen zu rheologischen Eigenschaften und zu zellulärer Polarität von Epithe-
lien an. Diese theoretischen Untersuchungen vergleichen wir mit experimentellen
Beobachtungen am sich entwickelnden Flügel der schwarzbäuchigen Taufliege (Dro-
sophila melanogaster).

Um die Mechanik von Epithelien zu untersuchen, entwickeln wir zunächst eine ge-
ometrische Beschreibung für die Verformung von zweidimensionalen zellulären Netzw-
erken. Unsere Beschreibung zerlegt die mittlere Verformung des gesamten Netzwerks
in zelluläre Beitrage. Zum Beispiel wird eine Scherverformung des gesamten Netzwerks
auf der zellulären Ebene exakt repräsentiert: einerseits durch die Verformung einzelner
Zellen und andererseits durch topologische Veränderungen des zellulären Netzwerks.
Mit Hilfe dieser Beschreibung quantifizieren wir die Verformung des Fliegenflügels
während des Puppenstadiums. Des Weiteren führen wir die Verformung des Flügels
auf ihre zellulären Beiträge zurück.

Wir nutzen diese Beschreibung auch als Ausgangspunkt, um effektive rheologische
Eigenschaften von Epithelien in Abhängigkeit von zellulären Fluktuationen zu un-
tersuchen. Dazu simulieren wir Epithelgewebe mittels eines Vertex Modells, welches
einzelne Zellen als elastische Polygone abstrahiert. Wir erweitern dieses Vertex Mod-
ell um zelluläre Fluktuationen und um die Möglichkeit, Schersimulationen beliebiger
Dauer durchzuführen. Die Analyse des stationären Zustands dieser Simulationen
ergibt plastisches Verhalten bei kleiner Fluktuationsamplitude und visko-elastisches
Verhalten bei großer Fluktuationsamplitude.

Neben mechanischen Eigenschaften untersuchen wir auch die Umorientierung einer
Zellpolarität in Epithelien. Dazu entwickeln wir eine einfache hydrodynamische Be-
schreibung für die Umorientierung eines Polaritätsfeldes. Wir berücksichtigen dabei
insbesondere Effekte durch Scherung, durch ein anderes Polaritätsfeld und durch
einen lokalen Gleichrichtungseffekt. Um unsere theoretische Beschreibung mit ex-
perimentellen Daten zu vergleichen, entwickeln wir Methoden um Polaritätsmuster im
Fliegenflügel zu quantifizieren. Schließlich stellen wir fest, dass unsere hydrodynamis-
che Beschreibung in der Tat beobachtete Polaritätsmuster reproduziert. Das gilt nicht
nur im Wildtypen, sondern auch in genetisch veränderten Tieren.
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Chapter 1

Introduction

1.1 The development of multi-cellular organisms

The development from a fertilized egg cell to a complex, multi-cellular organism is
a fascinating process. Besides environmental factors, it is mainly controlled by the
genetic material, the DNA [1, 2]. The huge amount of information encoded in the
DNA allows for the broad diversity of living beings that we see in nature (Fig. 1.1).
There are about 10 . . . 100 million different species on earth today. What mechanisms
transform the linear information stored in the DNA into this huge variety of complex
organisms?

Genetic studies alone are by far not sufficient to answer this question [3–8]. This
becomes clear when considering how the DNA influences development. In the first
place, the DNA merely controls the behavior of the individual cells by defining the rules
for cellular protein expression [1, 2]. From this perspective, development is even more
fascinating: it is a self-organized process, which arises from the collective behavior of
up to ∼ 1013 single cells. This immediately leads to the following question: How can
the development of an organism arise from the collective behavior of individual cells?

Any answer to this question needs to link processes occurring at the cellular scale
(∼ 1 . . . 30µm) to processes at the scale of an organism (∼ 1 mm . . . 1m). A common

Figure 1.1: The diversity of multi-cellular life forms on earth. (A) An apple tree
(genus: malus). (B) Jellyfishes (phylum: cnidaria). (C) A fruit fly (species:
Drosophila melanogaster). (D) A red squirrel (genus: Sciurus). (Image sources:
(A,D) Uschi Dreiucker/pixelio.de, (B) Caroline Lang/pixelio.de, (C) André
Karwath/commons.wikimedia.org.)

pixelio.de
pixelio.de
commons.wikimedia.org
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Figure 1.2: Layered organization of cells
within epithelial tissue. All epithelia show
an apical-basal polarity. They are sup-
ported by a basal lamina. The individual
cells adhere via adherens junctions.

approach introduces intermediate length scales: The development of an organism can
be understood by the behavior of the different organs and tissues it is made of; and
the behavior of tissues can be understood in terms of cellular processes.

Interestingly, developmental processes on the tissue scale are fairly reproducible
among different organisms of a given species [1, 2]. However, this is mostly not true
on the single cell scale [9].1 Thus, in order to create an understanding for the develop-
ment of an entire organism, one strives to describe tissue behavior by simple effective
properties, leaving out fluctuations on the cellular scale.

In this work, we develop and apply physical tools to study how cells organize into
tissues. To this end, we focus on two-dimensional tissues, called epithelia. We study
mechanical properties of epithelia and the reorientation of a cellular polarity within ep-
ithelia, which is called Planar Cell Polarity (PCP). Our research compares theoretical
results to observations in the developing wing of the fruit fly, Drosophila melanogaster
(Fig. 1.1C).

In the remaining parts of this chapter, we first introduce fundamental biological con-
cepts (Sections 1.2, 1.3, and 1.4). Then, in Section 1.5, we discuss physical descriptions
of biological tissues. Finally, in Section 1.6, we outline how this thesis contributes to
the physical understanding of epithelial tissues.

1.2 Biology of epithelial tissues

Besides connective tissue, muscle tissue, and nerve tissue, epithelial tissue is among
the major tissue types in animals [2, 10, 11]. Epithelial tissues are organized into
layers of densely adhering cells (Fig. 1.2) [2, 12]. An epithelium is supported by a thin
layer of extracellular material called the basal lamina. Epithelia surround all cavities
within the body like the gut lumen, the airway lumen, or blood vessels. Also the skin
is an epithelium.

Epithelia are classified with respect to the number of cell layers they are made
of [10]. They range from unilayered or simple epithelia to multilayered or stratified

1However surprisingly, in more primitive organisms like the nematode Caenorhabditis elegans, de-
velopment is reproducible even down to the single cell level [2].
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epithelia. In this work, we focus on simple epithelia.

Epithelia fulfill many different functions [2, 13]. For instance, they provide mechan-
ical protection, and they act as barriers for fluids of different chemical composition.
Also, they allow for active directed transport of molecules across themselves.

These functions are mainly provided by two properties of epithelia. First, the in-
dividual cells of an epithelium are mechanically linked to each other by so-called
adherens junctions (Fig. 1.2) [2, 12, 14]. Intracellularly, adherens junctions are linked
to cytoskeletal actin filaments.2 Besides adherens junctions, there are junctions that
are responsible for sealing the intercellular space in order to prevent molecules from
passing across the epithelium.

Second, all epithelia are characterized by a transverse polarity, which is called apical-
basal polarity (Fig. 1.2). The basal lamina is always on the basal side of an epithelium
and is typically in contact to connective tissue. In contrast to that, the apical side is
a free surface that is in contact with a cavity or the outside of the body.

Another kind of epithelial polarity is called Planar Cell Polarity (PCP). It is pre-
sented in Section 1.4.

1.3 The model system Drosophila melanogaster

In this work, we apply physical methods to experimental data obtained from the fruit
fly, Drosophila melanogaster. The fruit fly has been studied as a biological model
system for over 100 years now. Back then, Thomas Hunt Morgan carried out first
inheritance experiments on it [15]. With these experiments, he and his students sub-
sequently laid foundations for today’s genetics.

Today, the fruit fly is one of the best understood developmental systems [1]. In
between, its entire genome with ∼ 13600 genes has been sequenced [16]. After all,
there is a wealth of genetic and experimental tools available, which makes the fruit fly
an attractive model system to study developmental processes.

1.3.1 Development of the fruit fly

Another reason for the popularity of the fruit fly as a model system is its comparably
short development time. It develops from a fertilized egg into an adult fly within only
about 10 days (Fig. 1.3A) [1, 2, 17]. About three hours after fertilization, the animal
is made up of a single spherical epithelium [1]. All later tissues of the fly are derived
from this epithelium. It subsequently develops into an embryo, passes three larval
stages, and becomes a pupa. Before it becomes a pupa, it forms a pupal case called
the puparium. Finally, after the pupal stage, the adult fly emerges from the puparium.

2In addition to adherens junctions, epithelial cells are mechanically linked to each other by so-called
desmosomes, which are intracellularly linked to intermediate filaments.
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Figure 1.3: (A) Developmental phases of the fruit fly. The fly develops from an
egg via an embryo through three larval stages. Afterwards, it becomes a pupa by
forming a pupal case around it, which is called puparium. During pupal stages, we
denote developmental times in hours after puparium formation (hAPF). Finally,
the adult fly emerges from the pupal case. (B) Development of the fly wing during
the pupal stage, starting from the larval precursor structure, which is called wing
disc . Note that during the pupal stage, the wing folds along the DV boundary
(blue solid line, see panel Cii), such that dorsal and ventral layers lie on top of
each other. In the wings, the yellow region is the wing hinge and orange region
is the wing blade. In the wing disc, the orange region is called wing pouch. (C)
Compartment boundaries and organ axes in the wing disc and in the adult wing.
(i) The boundary between anterior and posterior compartments is indicated by
a green solid line, respectively. (ii) The boundary between dorsal and ventral
compartments (DV boundary) is indicated by a blue solid line, respectively. (iii)
In the wing disc, the proximo-distal axis runs radially from the margin of the wing
disc into the middle of the wing pouch. In the wing, the proximo-distal axis runs
laterally away from the fly body. (Image sources: (A) adapted from ref. [17], (B,C)
adapted from ref. [18].)
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Figure 1.4: The stereotypical vein pattern of a fruit
fly wing. There are five so-called longitudinal veins
(blue solid lines), denoted by L1, . . . , L5, and two
so-called cross veins (red solid lines). These are the
anterior cross vein (ACV) and the posterior cross vein
(PCV). The approximate position of the AP bound-
ary is indicated by the green solid line.

In this work, we focus on the fly development during the pupal stage. Times during
the pupal stage are measured in hours after puparium formation (hAPF). For instance,
the pupal stage starts at 0 hAPF. For technical reasons, all developmental times given
in hAPF in this thesis have a precision of ∼ ±0.5 h.

Note that the developmental speed of the fly is temperature-dependent [17, 19]. The
development at high temperatures is faster than at low temperatures. Throughout this
work, we refer to the fly development at a temperature of 25◦C.

1.3.2 Development of the fruit fly wing

In this thesis, we focus on the development of the fruit fly wing during the pupal
stage. During this time, it develops from a larval precursor structure, which is called
the wing disc, through a series of complex deformations into the adult wing (Fig. 1.3B)
[1, 20]. The wing disc consists of a single epithelial layer. During pupal stages, it folds
along the blue solid line (the DV boundary, see below) such that the wing ultimately
consists of two epithelial layers. When the fly finally emerges from the pupal case,
nearly all wing cells die. Thus, the adult wing is mainly made of stiff, dead cuticle
material, which had been secreted from the wing cells during pupal stages [20]. The
wing divides into the hinge region (yellow region) and the blade region (orange region).
During late pupal stages, each of the two epithelial layers of the blade region is made
up of ∼ 104 cells.

Directions and positions within the wing can be characterized by three organ axes
(Fig. 1.3C). First, there are two subpopulations of wing cells, which are clearly sepa-
rated by a nearly straight line. These subpopulations are the anterior and posterior
wing compartments with a compartment boundary between them (the AP boundary,
Fig. 1.3Ci) [18]. Cells of each compartment always keep their compartmental identity
and inherit it to their daughter cells. The AP boundary gives rise to a direction which
points from the posterior compartment to the anterior compartment (green arrow).
Second, the wing consists of a dorsal layer, which is oriented towards the top of the
fly, and a ventral layer, which is oriented towards the bottom of the fly (Fig. 1.3Cii).
Similar to the AP boundary, the dorso-ventral boundary (DV boundary) is also a
compartment boundary. Third, the so-called proximo-distal direction points from the
hinge towards the tip of the wing (Fig. 1.3Ciii, red arrow). In the following, if not
stated differently, we will always show wings or parts of wings such that distal is to
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the right and anterior is up.
The adult fruit fly wing is characterized by a stereotypical pattern of wing veins

(Fig. 1.4) [20]. There are five so-called longitudinal veins, denoted by L1, . . . , L5,
and two cross veins. The first longitudinal vein, L1, corresponds to the anterior wing
margin. Interestingly, among different animals with the same genotype, the variability
of wing vein positions is on the order of a single cell diameter [21].

1.4 Planar cell polarity

One fascinating aspect about biological tissues is that the individual cells typically
behave in a coordinated manner. Such coordination is not trivial. This is because
typically, each individual cell within a tissue only behaves according to locally available
cues [1]. Such locally available cues could for instance be local stresses, local protein
concentrations, or interactions with neighboring cells. Thus, in order to coordinate
cells within a tissue, global information has to be made available locally.

One kind of global information that plays a role during development is directional
information, such as body or organ axes. That global axes of an organism are reflected
locally can be observed in everyday life: For instance, the fur of mammals usually
shows a clear directional order with respect to body or organ axes (Fig. 1.5A) [22].
Similarly, hairs on the surface of the fruit fly wing are ordered with respect to the
long axis of the wing (Fig. 1.5B). How should a single cell “know” the axis of the
entire organ or even the entire organism? Nature has invented several mechanisms to
provide global directional information at the level of individual cells. Here, we study
one such mechanism, which is called Planar Cell Polarity (PCP).

PCP typically appears in epithelia and in contrast to apical-basal polarity, PCP is
defined in the plane of the epithelium. Thus, it is oriented perpendicular to the apial-
basal polarity. PCP is defined by an anisotropic intracellular distribution of so-called
PCP proteins [23, 24]. These proteins typically localize to the lateral membrane of
epithelial cells, close to the adherens junctions. On the tissue scale, PCP often shows
large-scale directional order reflecting organ or body axes.

Different sets of PCP proteins give rise to different PCP systems. In this work, we
discuss two prominent PCP systems: the Core PCP system and the Fat PCP system.
In the following, both PCP systems are presented in detail. Afterwards, we discuss
PCP patterns in the fruit fly wing.

1.4.1 The Core polarity system

The Core PCP system is a genetic pathway that is highly conserved during evolution
[25]. It is involved in many developmental processes in invertebrates and in vertebrates
(Fig. 1.6). For instance, it controls the direction of hairs and bristles on the body
surface of insects, in particular on the wing of the fruit fly (Figs. 1.5B, 1.6A,D, and
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Figure 1.5: Hairs on the body surface often show directional order that corre-
sponds to body or organ axes. (A) Fur of the North American beaver (Castor
canadensis). (B) Wing of the fruit fly Drosophila melanogaster. The arrows in-
dicate the local direction of hairs on the wing surface (see also Fig. 1.6A; local
hair direction was quantified as described in Appendix E.1.1). (Image source: (A)
Laszlo Ilyes/flickr.com)

Figure 1.6: Mutations of Core PCP proteins perturb polar order in invertebrate
and in vertebrate tissues. (A,B,C) Wild type tissues. (D,E,F) Core PCP mutant
tissues. (A,D) Hairs on the fruit fly wing. (B,E) Skin hair on the dorsal mouse
neck. (C,F) Sensory hair cells in the mouse inner ear. (Image source: (B,C,E,F)
adopted from ref. [25].)

flickr.com
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Figure 1.7: Organization of Core PCP proteins into polarized clusters. (A) Part
of a developing fruit fly wing at 32 hAPF. The Core PCP protein Fmi is shown in
magenta and wing hair precursors, which are rich in actin, are marked in green.
(B) Schematic illustration of the spatial organization of the Core PCP proteins.
The two protein classes are shown in blue and red, respectively. A cellular Core
PCP vector is defined by the angular distribution of PCP proteins within a given
cell (blue-red arrow).

1.7A) [26, 27]. In vertebrates, Core PCP controls the direction of mammalian skin
hairs (Fig. 1.6B,E) [28] and of hair cells in the inner ear (Fig. 1.6C,F) [29, 30]. Also,
Core PCP is believed to be involved in anisotropic tissue deformation during the
early developmental stages of gastrulation and neurulation [22, 31], it controls the
orientation of ridges on the fly wing [32], it influences cell packing in the fly wing [33],
it controls cell differentiation in the compound eye of insects [34], and it may direct
the orientation of cell divisions [35]. Furthermore, it is suspected to play a role in
many other processes as for instance the development of the central nervous system
and cardiovascular development in vertebrates [22, 25].

The molecular details of Core PCP have been studied for more than 30 years, now
[26]. Although the precise interactions between the Core PCP proteins are not yet
fully understood, much has already been learned. Here, we focus on the Core PCP
proteins as they appear in invertebrates.

The Core PCP proteins organize into polarized clusters, where each cluster spans
the membranes of two abutting cells (Fig. 1.7A,B) [36, 37]. The polarization of a given
cluster is reflected in the anisotropic distribution of two classes of Core PCP proteins
within the cluster (Fig. 1.7B) [25, 38]. One class, which is shown in red in Fig. 1.7B,
comprises the transmembrabne protein Frizzled (Fz) and the cytoplasmic proteins
Dishevelled (Dsh) and Diego (Dgo). The other class, shown in blue, comprises the
transmembrane protein Strabismus (Stbm) and the cytoplasmic proteins Prickle (Pk)
and Spiny legs (Sple).3 The proteins Pk and Sple are different isoforms of the same

3Note that the intracellular localization of the Sple protein is still subject of an ongoing debate [39].
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Figure 1.8: PCP proteins of the Fat polarity system. Also
indicated are large-scale gradients of Ds and Fj, which are
believed to locally induce large-scale order of Fat PCP. A
cellular Fat PCP vector is defined by the angular distribution
of Fat PCP proteins within a given cell (green-yellow arrow).

gene [40].4 In addition, the transmembrane protein Flamingo (Fmi) is considered
to mediate intercellular interactions between Fz and Stbm, which is essential for the
formation of the polarized clusters [37].

Besides intercellular interactions between the Core PCP proteins, it is believed that
there are also intracellular interactions [37, 38]. In particular, the cytoplasmic proteins
(Pk, Sple, Dsh, and Dgo) are supposed to mediate an intracellular repulsion of the two
protein classes. Also, the cytoplasmic proteins are supposed to promote the clustered
organization of the PCP proteins. In this work, we define a cellular Core PCP vector
such that it points towards high concentrations of Fz within a given cell (blue-red
arrow in Fig. 1.7B).

1.4.2 The Fat polarity system

Like for the Core PCP system, the most important molecular details of the Fat PCP
system have already been clarified in the past [41–43]. The two Fat PCP proteins
Fat (Ft) and Dachsous (Ds) can bind to each other across cell membranes (Fig. 1.8).
Their binding affinity is believed to be modulated by the protein Four jointed (Fj)
[41]. In addition, the Ft-Ds dimers lead to the intracellular polarization of the myosin
Dachs (D) towards the Ds side. Moreover, it has been shown that large-scale order of
Fat PCP can be induced by gradients of Ds and Fj (Fig. 1.8) [44, 45]. In this thesis,
we define a cellular Fat PCP vector such that it points towards high concentrations of
Ds and D within a given cell (green-yellow arrow in Fig. 1.8).

Fat PCP influences tissue morphogenesis in different ways. First, the Fat PCP
proteins have been shown to be involved in growth control [46–48]. Also, it guides
anisotropies in cellular stresses, in cell shape, in cell rearrangements, and in cell divi-
sions [49–51]. In addition, it has been shown that Fat PCP couples to Core PCP in
some tissues [25, 38, 52]. However, the precise interactions between both PCP sys-
tems are subject of an ongoing debate [39, 42, 43, 53–57]. In this thesis, we study the
interactions between Fat PCP and Core PCP using physical tools.

4This means that there are different ways to express the so-called pk-sple gene resulting in different
proteins, Pk and Sple, that have some parts of their amino acid sequence in common.
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Figure 1.9: Reorientation of Core PCP in
the fruit fly wing between 15 hAPF (A)
and 30 hAPF (B). The yellow bars indi-
cate the local axis of Core PCP. The red
dots indicate the direction of Core PCP
(corresponding to the arrowheads of the
blue-red arrows in Figs. 1.5B and 1.7B).
(Image source: adopted from ref. [54].)

1.4.3 Planar cell polarity in the fruit fly wing

The fruit fly wing is the classical model system for studying PCP. It is the first system
where Core PCP was discussed and much is known about PCP in the fly wing [23–27,
38]. Also, the comparably flat geometry makes it an attractive system for the study
of PCP.

Another advantage of the fly wing as a PCP model is the following. There is a
simple read-out of the local Core PCP vector: Each cell of the wing epithelium gives
rise to a single hair, the direction of which is determined by the local direction of Core
PCP (Figs. 1.5B and 1.6A). In particular, the direction of the hair corresponds to the
direction where the intracellular Fz intensity is highest. Put differently, the blue-red
arrows in Figs. 1.5B and 1.7B correspond to each other. The hairs start to grow during
pupal stages, around 32 hAPF (green structures in Fig. 1.7A). Ultimately, the hairs
become part of the cuticle that remains after the wing cells die. Note that both wing
layers, dorsal and ventral, give rise to wing hairs. Correspondingly, one sees pairs of
hairs rather than single hairs in Figs. 1.5B and 1.6A.

It has recently been shown that in the fruit fly wing, Core PCP reorients during
pupal stages (Fig. 1.9) [54, 58]. In wild type wings around 15 hAPF, the Core PCP
vector field is oriented towards the margin of the wing with angles of ca. π/4 with
respect to the proximo-distal wing axis (Fig. 1.9A). This polarity pattern reorients
continuously to point distally at 30 hAPF, reflecting the wild type wing hair pattern
(Fig. 1.9B; compare Figs. 1.5B, 1.6A, and 1.7A). Another recent study has shown that
both, Core PCP and Fat PCP, already show large-scale order in the wing disc during
larval stages [55]. To our knowledge, Fat PCP has not been systematically quantified
in the pupal wing before our work.

1.5 Physical description of biological tissues

From the physical point of view, biological tissues are complex materials. They are
highly heterogeneous, being composed of cells, which are in turn composed of various
cell organelles of different chemical composition [2]. Moreover, biological tissues are
living matter.
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Living matter is fundamentally different from most dead matter in one central prop-
erty: it continuously transforms chemically stored free energy into systematic motion.
It is thus called active matter [59–64]. On the scale of an organism, chemical free
energy is typically taken up in the form of food or sunlight. Within the individual
cells of an organism, this free energy is stored by phosphorylation of molecules like
adenosine diphosphate into adenosine triphosphate. Because of the continuous trans-
formation of this free energy into mechanical energy, for instance by molecular motors
[65], living matter is permanently out of thermodynamic equilibrium [66]. This is dif-
ferent from most dead matter, which eventually reaches thermodynamic equilibrium
in the absence of external driving.5

In the following, we discuss physical descriptions for different aspects of biological
tissues. First, we present continuum descriptions of the large-scale rheological behavior
of tissues. Then, we list models that describe mechanical behavior of epithelial tissues
at the cellular scale. Finally, we present theoretical models describing PCP.

1.5.1 Continuum descriptions for biological tissues

The precise rheological properties of biological tissues typically depend on the type
of tissue studied [11, 67]. For instance, blood is mainly liquid and bones are mainly
solid. However, practically all tissues show a combination of viscous, elastic, and
plastic behavior [3, 68]. In particular, even blood shows a yield stress like plastic
materials [11, 68, 69] and bones have a finite viscosity [67].

Systematic studies of mechanical tissue properties started in the first half of the
20th century. Around 1940, Johannes Holtfreter observed the sorting of dissociated
embryonic cells into distinctly layered aggregates [70, 71]. A similar kind of sorting
occurs for instance during the early developmental stage of gastrulation, which nearly
all multi-cellular animals undergo. In 1963, Malcom Steinberg put forward his dif-
ferential adhesion hypothesis, which explains these cell sorting experiments by the
unmixing of liquids with different surface tensions [72–75]. His work resulted in an
ongoing discussion about the roles of cellular adhesion and interfacial tension in creat-
ing an effective tissue surface tension [76–79]. Nowadays, similar ideas are applied to
study for instance the comparmentalization of the fruit fly wing [18, 80–82]. In these
latter works, the morphology of compartment boundaries is explained by an increased
tension at the interface between different cell populations.

Besides interfacial properties, there is an ongoing discussion about the bulk proper-
ties of biological tissues. A classical physical model for cellular materials is foam, which
typically shows elastic and plastic behavior [83–85]. In contrast to that, Steinberg and
co-workers usually described cell aggregates as viscous fluids [86] or visco-elastic fluids

5From a different point of view, one could also consider the take up of food as an external driving for
living organisms – like a car is driven by fuel. However, in living tissues, the externally supplied
free energy is stored and consumed throughout the whole material, which is in contrast to most
man-made materials.
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[87–89]. Other work describes the same data using models for visco-elastic solids [90]
or using combined elastic-plastic-viscous models [91, 92]. More recently, descriptions
of complex active visco-elastic fluids have emerged [59, 60, 62–64]. Such descriptions
have also been applied to biological tissues [93–97].

Clearly, the rheological properties of tissues result from the rheological properties
of single cells. However, cellular interactions like topological changes of the cellular
network also play a role. For instance, cell divisions have been shown to fluidify
otherwise purely elastic biological tissues [95, 96]. In this thesis, we contribute to
this discussion by studying how the stress relaxation behavior of tissues depends on
cell-scale fluctuations.

The physical description of biological tissues has to deal with fundamental difficul-
ties, which also appear when describing plastic deformations of solids [98–101]. We
will shortly outline these difficulties. For elastic materials, deformation or strain can
be described with respect to a fixed reference state, which is typically stress-free. In
the absence of external forces the system always returns to this stress-free reference
state. However in plastic materials, deformations may change the microscopic topolog-
ical structure of the material, for instance by rewiring links between the microscopic
elements. Typically, whenever the topological structure of the material is changed,
the stress-free state changes. Thus, plastic deformations can not be described with
respect to a single reference state. Often, the total deformation of the material is then
decomposed into an elastic strain and a plastic strain [85, 92, 98, 102]. The elastic
strain describes the deformation with respect to a varying reference state, and the
plastic strain describes the change of the reference state.

Taking such reference changes into account is also necessary for the description of
biological tissues [68, 90, 91, 103]. In biological tissues, the topology of the cellular net-
work changes continuously, for instance due to cell divisions and cell rearrangements.
In this thesis, we develop a theoretical framework that decomposes the deformation
of two-dimensional biological tissues into several contributions. More precisely, we
decompose tissue deformation into contributions by cellular shape changes, which are
related to elastic strain, and into contributions by topological changes, which are re-
lated to plastic strain.

1.5.2 Cell-based models for epithelial mechanics

There is a large variety of different cell-based models used to describe biological tissues.
Here, we merely present a selection. For a more complete overview, see refs. [104, 105].

One class of models describes individual cells by point-like particles, where each cell
is represented by either a single particle [93, 94, 106–110] or by a particle pair [95,
111]. Interactions between the individual cells are described by mechanical potentials
depending on the particle distances. To simulate time-dependent tissue behavior, the
Metropolis algorithm [106, 107, 109], simple friction dynamics [93, 94, 110], Langevin
dynamics [108], or Dissipative Particle Dynamics [95, 111] have been used. Such
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Figure 1.10: In a vertex model, each cell is represented by a polygon. (A) Mem-
brane staining of a fruit fly wing epithelium at 25 hAPF. (B) Force-equilibrated
state of the vertex model from ref. [118]. The cells are colored according to their
neighbor number (see Table 3.1 on page 55).

methods have been applied to study tissue growth, cell sorting, tissue surface tension,
tissue rheology, wound healing, and tumor growth [93–95, 106–111].

Another class of models are the Cellular Potts Models (CPMs), which also take cell
shapes into account [104, 112–115]. Like many physical models for biological tissue,
they start from an effective tissue energy to describe mechanical cell properties and cell
interactions. In particular, these models mostly include effective cell-cell interfacial
tensions and a cell area elasticity. The CPMs are based on the so-called Potts model,
which generalizes the Ising model to more than two possible values for the spin [116,
117]. In the CPMs, each cell corresponds to a single spin value. CPMs are lattice-
based, where each lattice site is characterized by a spin, i.e. may belong to one of the
cells. To simulate dynamics, the Metropolis algorithm is used. Such models have been
applied in a broad range of contexts [104, 105], for instance to study cell sorting [112,
113], growth, division, apoptosis, differentiation [114], and tissue rheology [92].

Finally, there is the class of so-called vertex models, which describe epithelia as
networks of polygons, where each cell is represented by a single polygon (Fig. 1.10)
[50, 58, 78, 80–82, 118–127]. Like CPMs, most vertex models also start from an effec-
tive energy describing elastic properties of single cells. Practically all vertex models
assume a cell-cell interfacial tension, and most vertex models assume some kind of
area elasticity. The time-evolution of the cellular network is simulated using a quasi-
static description of subsequent energy minima [80–82, 118, 120–126, 128] or actual
friction dynamics [50, 58, 119, 125]. The vertex model has been applied to study local
epithelial topology [118, 121, 122], growth control [120, 123, 124], morphology of inter-
faces [80–82], anisotropic tissue growth [50], the emergence of ordered cellular patterns
[125], and PCP [50, 54, 121, 125]. Currently, the first complex three-dimensional ver-
tex models are being established [126]. In this thesis, we use the vertex model from
ref. [118] to study epithelial rheology.
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1.5.3 Models for planar cell polarity

In many tissues, the Core PCP pattern shows large-scale polar order that typically
correlates with organ or body axes (see for instance Fig. 1.6A-C). It is a long-standing
puzzle in the field, how such large-scale order could be created [24, 38, 52, 129]. One
class of approaches assumes for instance a large-scale gradient of an unknown protein
called “factor X” [130–133]. According to these models, such a gradient would be
locally read out by the Core PCP system. However, despite intense research, the
protein corresponding to the postulated “factor X” could not be identified.

Another, more recent work suggests that Core PCP is reoriented by shear deforma-
tions of tissue [54]. There, it was shown that a coupling to shear could explain the
observed reorientation of Core PCP in the pupal fruit fly wing (see Section 1.4.3). To
this end, a simple hydrodynamic description from liquid crystal theory was used [134].
From this point of view, large-scale order of Core PCP could be led back to global
tissue deformations.

Such a reorientation of Core PCP by tissue shear could be based on different micro-
scopic mechanisms. One such mechanism could be mediated by cell elongation: Shear
could guide cell elongation, which in turn affects microtuble orientation [135–137],
which finally reorients Core PCP. Indeed, it has been shown that in the fruit fly wing,
the shear axis coincides with the cell elongation axis [54], which coincides with the axis
of microtubles [138]. Furthermore, it was shown that Core PCP proteins are actively
transported along microtubles [139]. In this thesis, we provide further evidence for
a coupling of Core PCP reorientation to an effective shear field, which encompasses
tissue shear and cell elongation. Interestingly, it has recently been suggested that also
the Fat polarity system may affect the orientation of microtubles depending on the
balance of the proteins Prickle and Sple [57, 140, 141].

During the past ten years, a number of models describing Core PCP on the cellular
and sub-cellular level have emerged [54, 58, 121, 125, 131, 132, 142–147]. In this and
the following paragraph, we present a few of them. Two prominent models success-
fully described the wing hair phenotypes in many genetic experiments [131, 132, 142].
However, the used reaction-diffusion type models are very involved, and include for
instance ten coupled non-linear partial differential equations. This clearly hinders a
true physical understanding. In ref. [143], the authors propose a much simpler model.
Using an analogy to ferromagnetism, they conclude that some external directional
bulk cue is needed to create long-range Core PCP order.

Two other cellular Core PCP models have been created by building them on top
of vertex models [54, 58, 121, 125]. In these models, scalar variables describe the net
amount of PCP proteins on each side of a cell-cell interface. Then, cellular Core PCP
vectors or nematics are defined from anisotropies in the distribution of these proteins.
Interactions across cell-cell interfaces and within cells are described using an effective
energy function. Such models have been used to explain the emergence of large scale
directional Core PCP order [54, 121] and large-scale positional order of cells [125]. In
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this thesis, we use the Core PCP model defined in [54, 121].

1.6 Overview over this thesis

In this thesis, we theoretically study the behavior of epithelial tissues. To this end,
we aim at an effective description of tissue properties at large scales. Also, we are
interested in understanding how these properties result from cellular processes. We
compare our theoretical concepts to experimental data from the developing fruit fly
wing. These experimental data were provided through a close collaboration with the
group of Suzanne Eaton at the Max Planck Institute of Molecular Cell Biology and
Genetics in Dresden.

The remaining parts of this thesis are organized as follows. In the next two chapters,
we study the mechanical properties of two-dimensional tissues. As a prerequisite for
that, in Chapter 2, we study how tissue deformation arises from cellular processes.
More precisely, we develop an exact theoretical framework that decomposes tissue
deformation into cellular contributions, which comprise cellular shape changes and
contributions by topological transitions. Then, in Chapter 3, we study large-scale
rheological properties of two-dimensional tissues using a vertex model. We show that
small-scale fluctuations may turn plastic tissue behavior into visco-elastic behavior.

In Chapter 4, we study the dynamics of PCP in the pupal fly wing. To this end, we
create a hydrodynamic description for the reorientation of Core PCP. This description
includes couplings to an effective tissue shear and to Fat PCP. We find that our the-
oretical description successfully reproduces not only the wild type wing hair pattern,
but also the wing hair patterns of genetically modified flies. In Chapter 5, we conclude
this thesis with a summary and an outlook.





Chapter 2

Tissue shear in cellular networks

During development of an organism, epithelia may undergo large-scale deformations.
For example, the wing epithelium of a fruit fly deforms significantly during pupal
stages (Fig. 2.1A). On the cellular scale, such deformations are reflected by cell shape
changes, T1 transitions (cell rearrangements), T2 transitions (cell extrusion events),
and cell divisions (Fig. 2.1B). In this chapter, we propose a formalism to quantify
large-scale tissue deformations and to decompose them into cellular contributions.

To this end, we first discuss deformations on the cellular scale (Section 2.1). We use
rigorous geometric arguments to relate local deformations to cellular shape changes.
Also, we discuss the local effect of individual topological transitions of the cellular net-
work. Then, we derive the central relations that exactly decompose large-scale tissue
deformations into contributions by cell shape changes and by topological transitions
(Section 2.2). Afterwards, we use this theoretical framework in order to quantitatively
describe the large-scale deformation of the pupal fruit fly wing (Section 2.3, Fig. 2.1A).
Finally, we summarize our results and compare to the existing literature (Section 2.4).

In this chapter, we have to introduce an appreciable number of quantities. On
pages 225f., we list the most important among them.

2.1 Geometry of tissue deformation on the cellular
scale

2.1.1 Cellular networks and their triangle-based description

Tissue as a cellular network

In this thesis, we describe epithelia as planar networks of cells (Fig. 2.2A). For sim-
plicity, we describe cells as polygons (green solid outline).1 The shape of each cell is
defined by the positions of its corners, which we call vertices (red dot). A vertex that
lies on the network margin is called margin vertex. All other vertices are called inner
vertices. Two vertices may be connected by a bond (blue solid line), which corresponds
to the side of a polygon. The connections between cells, vertices, and bonds define the

1However, note that this chapter applies as well to cells with curved boundaries.
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Figure 2.1: Large-scale deformations of epithelia correspond to cellular events.
(A) Deformation of the wing blade (blue region) of a wild type fruit fly between
the developmental times of 16 hAPF and 32 hAPF. (B) Cellular events considered
in this chapter.

Figure 2.2: Planar cellular network and tiling into triangles. (A) Planar cellular
network, where black lines mark cell-cell interfaces (bonds). A cell α is marked
with its center position Rα (green solid outline and green dot). Also marked is
a vertex m (red dot) and a bond a (blue solid line). (B) Definition of a single
triangle. Bonds are marked by black lines. For each vertex m (red dot), we define
a single triangle (red solid lines). The corners of this triangle are defined by the
centers Rα, Rβ, and Rγ (green dots) of the three cells touching vertex m. (C)
The so-defined triangles tile the whole cellular network.
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topology of the cellular network. Throughout this thesis, cells are labeled by lowercase
Greek letters starting with α, vertices are labeled by lowercase Latin letters starting
with m, and bonds are labeled by lowercase Latin letters starting with a.

A vertex that is connected to N bonds is called N -fold. For simplicity, in this and
the following section, we restrict to the case where all inner vertices are threefold.2 In
Section 2.3, we generalize our ideas allowing for the existence of N -fold inner vertices
with N ≥ 3. In all following chapters, we also allow for N ≥ 3.

In order to describe the geometry of the network, we introduce a two-dimensional
Cartesian coordinate system and denote the axes by x and y. Then, the whole ge-
ometric information of the network is given by the set of all vertex positions Pm.
Throughout this work, boldface symbols denote vectors. For a given vertex m, the
components of its position vector Pm are given by

Pm =

(
Pm
x

Pm
y

)
. (2.1)

From the vertex positions, we can define cellular properties. For a given M -sided
cell α, the area is given by:

Aα =
1

2

M∑
m=1

(
Pm
x P

m+1
y − Pm+1

x Pm
y

)
. (2.2)

For the summation on the right hand side, the vertex indices m are sorted in counter-
clockwise order and the vertex M + 1 corresponds to the vertex 1. Furthermore, we
define the center of area Rα of cell α by:3

Rα
i =

1

6Aα

M∑
m=1

(
Pm
x P

m+1
y − Pm+1

x Pm
y

)(
Pm
i + Pm+1

i

)
. (2.4)

Like above, vertex indices m are sorted in counter-clockwise order. Our description of
tissue deformation will be based on the displacements of the cell centers Rα.

Triangle-based description of cellular networks

In order to describe deformations of the cellular network, we tile the network into
triangles. We choose a tiling into triangles because it allows for an exact description
of network deformation. In particular, for each triangle, we can define a 2× 2 tensor

2We do not restrict N for margin vertices. Note that in general, margin vertices may also be twofold.
3Eq. (2.4) is equivalent to the following integral over the polygon area:

Rα =
1

Aα

∫
Aα
r d2r. (2.3)



20 Chapter 2: Tissue shear in cellular networks

Figure 2.3: A cellular network (black lines are bonds) with its
margin (blue lines). The triangulation is shown by red trian-
gles. The triangulation does not cover the margin of the cellular
network.

that uniquely describes its deformation (see Section 2.1.3). This is not possible for
polygons with more than three sides.

We propose the following procedure to triangulate the network (Fig. 2.2B). Each
inner vertex m gives rise to a single triangle, which we also label by m. Since the
vertex m is threefold, it touches three cells, which we denote by α, β, and γ. Then,
the corners of the triangle m are defined by the respective cell centersRα, Rβ, andRγ.
These rules uniquely define a tiling of the cellular network into triangles, without gaps
or overlaps between the triangles (Fig. 2.2C).4 However, because only inner vertices
give rise to triangles, the margin region of the network is not covered by triangles
(Fig. 2.3).

In the following, we first discuss the deformation of single triangles. To this end, we
define triangle state properties (Section 2.1.2) and relate them to components of trian-
gle deformation (Section 2.1.3). Then, we coarse grain the obtained relations in order
to study the deformation of triangle groups in the absence of topological transitions
(Section 2.1.4). Afterwards, we discuss the effect of individual topological transitions
(Section 2.1.5). Finally, we provide a decomposition of large-scale deformations into
contributions by cellular shape changes and topological transitions (Section 2.2).

2.1.2 Characterization of triangle shapes

Triangle state tensor Sij

Here, we introduce a tensor Smij describing the shape of a given triangle m. Note that
in this and the next section, we introduce a number of triangle-related quantities. To
this end, we will focus on a single triangle, and thus, we omit the superscript m on all
triangle-related quantities in this and the next section.

The state tensor Sij of the triangle m is defined by a linear transformation, which
maps a reference triangle to the triangle m (Fig. 2.4A). The corner positions of the
triangle m are given by the respective centers of the three abutting cells R1, R2, and
R3.

4Note that one could also choose another method to triangulate the cellular network and much
of our formalism to quantify deformation does not depend on the triangulation method. In
Appendix B.7, we shortly discuss one alternative triangulation method.
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Figure 2.4: Definition of triangle state properties. (A) Definition of the state
tensor Sij for a triangle m. The tensor Sij is defined by a linear transformation
mapping the sides of an equilateral reference triangle to the sides of triangle m
(Eq. (2.5)). (B) The state tensor Sij is decomposed into a rotation by the orien-
tation angle Θ, followed by a deformation characterized by the shape tensor Qij
(Eq. (2.7)). The scalars A0 and A denote the respective areas of the reference
triangle and of the triangle m.

As reference triangle, we choose an equilateral triangle with area A0. Furthermore,
the reference triangle is rotated such that one side is parallel to the x axis of the
coordinate system. The corner positions of the reference triangle are denoted by C1,
C2, and C3.5

We define the state tensor Sij such that it maps the sides of the reference triangle
to the corresponding sides of triangle m. Thus, for any choice of α, β ∈ {1, 2, 3}:

∆Rβα
i = Sij∆C

βα
j . (2.5)

Here, we defined the vector ∆Cβα = Cβ−Cα describing a side of the reference triangle
and the vector ∆Rβα = Rβ − Rα describing the corresponding side of triangle m.
Because of Eq. (2.5), the tensor Sij contains the same geometrical information as all
difference vectors ∆Rβα describing the sides of triangle m.

5There is a freedom of choice in how the corners of triangle m are associated to the corners of the
reference triangle. We choose the convention the corners of both triangles should be sorted in
counter-clockwise order. However, there is still a discrete gauge freedom in choosing which corner
of the reference triangle should correspond to the center of cell 1.
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There is a unique tensor Sij that fulfills Eq. (2.5) for any choice of α, β ∈ {1, 2, 3}.
It is given by the following matrix product:

S =
(
∆R21 ∆R31

)
·
(
∆C21 ∆C31

)−1

. (2.6)

Here, the vectors ∆Rβα and ∆Cβα denote column vectors and the dot denotes the
matrix product. 6

Decomposition of the triangle state tensor

We parametrize the state tensor Sij by an orientation angle Θ and a symmetric tensor
Qij describing the shape of triangle m. More precisely, we decompose the linear
transformation defined by Sij into a rotation by the angle Θ, followed by a deformation
characterized by Qij (Fig. 2.4B):

S = exp (Q) ·R (Θ) . (2.7)

In Appendix A.5, we show that Θ and Qij are uniquely defined by this relation. Here,
the dot denotes the matrix product and the exponential of a matrix is defined by the
Taylor series of the exponential function (Appendix A.4). The rotation matrix Rij (Θ)
is defined by

R (Θ) = exp (Θε) (2.8)

with the generator of rotations

ε =

(
0 −1
1 0

)
. (2.9)

Note that Eq. (2.7) corresponds to a polar decomposition of the tensor Sij [148]. Also
note that the shape tensor Qij corresponds most closely to what is often called elastic
strain.

We further decompose the shape tensor Qij into a contribution by the trace Qkk

and into a symmetric, traceless part Q̃ij:

Qij =
1

2
Qkkδij + Q̃ij. (2.10)

The trace Qkk characterizes the triangle area A in the following way (Eq. (A.23) in
Appendix A.4.2):

A = A0 exp (Qkk). (2.11)

Thus, the trace Qkk characterizes an isotropic area scaling factor.

6Note that one may permute the cell indices (1, 2, 3) in Eq. (2.6) without changing Sij .
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Figure 2.5: Definition of the tensors Mij and Uij describing triangle deformation.
The tensor Mij defines a linear transformation mapping the initial state of the tri-
angle to its final state. The tensor Uij is defined by the corresponding displacement
gradient (compare Eq. (2.17)).

The symmetric, traceless part Q̃ij characterizes triangle elongation. We use it as
a measure for local cell shape anisotropy. According to Eq. (2.7), the pure shear
deformation defined by the tensor exp (Q̃) corresponds to the nematic anisotropy of
the triangle shape (Appendices A.4.4 and A.4.5). In the following, we call symmetric,
traceless tensors nematic tensors or just nematics (Appendix A.2). The norm of the
nematic Q̃ij is defined by

|Q̃| =
(
Q̃2
xx + Q̃2

xy

)1/2
. (2.12)

Furthermore, the angle of Q̃ij, which we denote by Φ, is defined by the two equations
Q̃xx = |Q̃| cos (2Φ) and Q̃xy = |Q̃| sin (2Φ).

2.1.3 Characterization of triangle deformation

Linear transformation tensor Mij

In the last section, we described state properties of triangles. Here, we describe the
deformation of a triangle m from an initial to a final state (Fig. 2.5). The corners of
triangle m are defined by the centers of the cells 1, 2, and 3. The initial positions of
the cell centers are denoted by Rα and the final positions are denoted by R′α with
α ∈ {1, 2, 3}.

To describe the deformation of triangle m, we introduce a tensor Mij that defines
a linear transformation mapping the initial triangle to final triangle. Similarly to
Eq. (2.5), we require for any choice of α, β ∈ {1, 2, 3} that:

∆R′
βα
i = Mij∆R

βα
j . (2.13)

Here, the vectors ∆Rβα = Rβ −Rα and ∆R′βα = R′β −R′α describe the sides of
the triangle m in the initial and in the final state, respectively. Eq. (2.13) is uniquely
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fulfilled by the following definition for Mij:

M =
(
∆R′21

∆R′31
)
·
(
∆R21 ∆R31

)−1

. (2.14)

Here, the vectors ∆R′βα and ∆Rβα denote column vectors and the dot denotes the
matrix product.

Discrete displacement gradient Uij

Now, based on the transformation tensor Mij, we introduce a discretely defined dis-
placement gradient tensor Uij. To this end, we first extend the linear transformation
defined by Mij to all points within the triangle. A linear transformation that maps
all points r of the initial triangle to points r′ of the final triangle reads

r′i = R′1i +Mij

(
rj −R1

j

)
. (2.15)

Note that indeed, this transformation maps the initial triangle corners Rα to the
respective final triangle corners R′α, where α ∈ {1, 2, 3}.

The linear transformation in Eq. (2.15) defines the displacement field u(r):

u(r) = r′(r)− r. (2.16)

Then, the displacement gradient tensor Uij reads:

Uij =
∂uj
∂ri

. (2.17)

With Eqs. (2.15) and (2.16), we obtain

Uij = Mji − δij. (2.18)

Here, δij denotes the Kronecker symbol. We use this equation as the discrete def-
inition of the triangle displacement gradient Uij. It contains the same information
as the linear transformation tensor Mij. However, for infinitesimal deformations, Uij
becomes infinitesimally small, whereas Mij converges to the identity tensor. Note that
Eq. (2.18) involves the transposition of matrix Mij.

Decomposition of the triangle transformation tensor

We parametrize the linear transformation tensor Mij by a rotation angle ∆Ψ and a
symmetric deformation tensor ∆Nij. Therefore, similarly to the state tensor Sij, we
write (compare Eq. (2.7) and Fig. 2.4B):

M = exp (∆N ) ·R(∆Ψ). (2.19)
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Figure 2.6: Transformation parameters ∆Ψ and ∆Nij in terms of changes of
triangle state properties for finite deformations. (A) Isotropic expansion. (B)
Pure shear deformation without rotation and with a shear nematic ∆Ñij that is
proportional to the elongation nematic Q̃ij . (C) Rotation without shear. Note
that isotropic expansion may be combined with either pure shear or rotation and
the equations given in the respective panels still hold. However, the combination
of pure shear deformations with rotations yields additional terms (see Eqs. (2.27)
and (2.28) below).

In Appendix A.5, we show that this relation uniquely defines ∆Nij and ∆Ψ.

Similarly, the discrete displacement gradient tensor Uij is parametrized as follows
(using Eq. (2.18)):

U = R(−∆Ψ) · exp (∆N )− I. (2.20)

Here, I denotes the identity tensor with Iij = δij.

Like the shape tensor Qij, the deformation tensor ∆Nij divides into a trace ∆Nkk

and a symmetric, traceless part ∆Ñij:

∆Nij =
1

2
∆Nkkδij + ∆Ñij. (2.21)

Taken together, we decomposed the tensors Mij and Uij into three parts. The scalar
∆Nkk describes an isotropic area scaling factor (Fig. 2.6A), the nematic tensor ∆Ñij

describes a pure shear deformation along its axis (Fig. 2.6B, see also Appendix A.4.5),
and the angle ∆Ψ describes tissue rotation (Fig. 2.6C).
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Figure 2.7: Connection between triangle transformation and triangle state. The
tensors Sij and S′ij describe the initial and final triangle state, respectively.

They are parametrized by the respective triangle state properties A,Θ, Q̃ij and
A′,Θ′, Q̃′ij . Both state tensors, Sij and S′ij , are defined by linear transformations
with respect to the same reference triangle. Therefore, they can be linked to the
linear transformation tensor Mij via Eq. (2.22).

Triangle transformation corresponds to the change of triangle state

Now, we relate the triangle transformation tensor Mij to the change of the triangle
state tensor Sij (Fig. 2.7). We denote the initial triangle state tensor by Sij and the
final state tensor by S ′ij. Then, from Eqs. (2.5) and (2.13) follows:

S ′ik = MijSjk. (2.22)

Thus, the linear transformation matrix Mij also maps the initial state tensor Sij to
the final state tensor S ′ij.

Now, we relate the components of the transformation tensor Mij to changes of
components of the state tensor Sij. We denote the initial and final components of the
state tensor by A, Θ, Q̃ij, and A′, Θ′, Q̃′ij, respectively. We obtain (Appendix B.2.1):

∆Nkk = ln

(
A′

A

)
(2.23)

exp
(
∆Ñ

)
·R(∆Ψ) = exp

(
Q̃′) ·R(∆Θ) · exp

(
− Q̃

)
, (2.24)

where ∆Θ = Θ′ −Θ.
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We shortly discuss both equations, which are valid for arbitrary finite transforma-
tions. First, according to Eq. (2.23), the isotropic part of the deformation tensor ∆Nij

corresponds to area changes (Fig. 2.6A).

Second, in Eq. (2.24), the pure shear part and the rotation part are still entangled.
In Appendix B.2.1, we disentangle both and present explicit analytical expressions for
∆Ñij and ∆Ψ. Here, we just discuss two special cases. First, without rotation ∆Ψ = 0
and for a shear nematic ∆Ñij that is proportional to the elongation nematic Q̃ij,

7 we
obtain ∆Ñij = ∆Q̃ij with ∆Q̃ij = Q̃′ij − Q̃ij (Fig. 2.6B). Thus, in this case, the shear
nematic corresponds exactly to the change of the elongation nematic. Second, without
shear ∆Ñij = 0, we obtain ∆Ψ = ∆Θ (Fig. 2.6C).8 Thus, in this case, the rotation
angle corresponds to the change in triangle orientation.

In the following, we discuss the general case where shear and rotation occur at the
same time. To this end, we consider the limit of infinitesimal transformations.

Infinitesimal transformations

Here, we relate the components of the displacement gradient Uij to changes of the
state properties A, Q̃ij, and Θ for the limit of infinitesimal transformations. To this
end, we first simplify Eq. (2.20) relating Uij to the deformation parameters ∆Nij and
∆Ψ. In a second step, we simplify Eqs. (2.23) and (2.24).

Introducing the infinitesimal quantities δUij = Uij, δNij = ∆Nij, and δΨ = ∆Ψ, we
obtain from Eq. (2.20) to linear order:

δUij = δNij − δΨεij. (2.25)

This equation helps us to interpret the components of the displacement gradient δUij
for infinitesimal transformations. First, the trace δUkk = δNkk describes isotropic
expansion of the triangle. Second, the symmetric, traceless part δŨij = δÑij describes
pure shear deformations. Finally, the antisymmetric part of δUij, which is given by
δΨ, describes rotations.

Now, we simplify Eqs. (2.23) and (2.24) in order to express the components of δUij
by changes of the triangle state properties A, Q̃ij, and Θ. For the trace δUkk we obtain
from Eq. (2.23):

δUkk =
1

A
δA (isotropic expansion). (2.26)

Here, δA = A′ − A denotes the triangle area change. Thus, the trace of the discrete
displacement gradient δUkk corresponds to the relative area change.

For the other components of δUij, we obtain from Eq. (2.24) to linear order (Ap-

7Put differently, the respective axes of the shear nematic and the elongation nematic are parallel or
perpendicular to each other.

8Note that in this case, also the elongation nematic Q̃ij is being rotated.
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pendix B.2.2):

δŨij = δQ̃ij + δJ̃ij (pure shear deformation) (2.27)

δΨ = δΘ− δΞ (rotation). (2.28)

Here, we defined δQ̃ij = Q̃′ij − Q̃ij and δΘ = Θ′ −Θ. Also, in Eq. (2.27), we defined:

δJ̃ij = −2
[
cδΨ + (1− c)δΦ

]
εikQ̃kj, (2.29)

with c = tanh (2|Q̃|)/2|Q̃| and δΦ = Φ′ − Φ. Norm |Q̃| and angle Φ of the elongation
nematic Q̃ij are defined in Eq. (2.12) and below. The tensor εij is defined in Eq. (2.9).
In Eq. (2.28), we defined:

δΞ = δŨijεjkQ̃ki
cosh (2|Q̃|)− 1

2|Q̃| sinh (2|Q̃|)
. (2.30)

In the following, we discuss Eqs. (2.27)-(2.30) in more detail.

Pure shear deformations Eq. (2.27) states that the shear δŨij does not only corre-
spond to the change of the elongation nematic Q̃ij, but also includes a corotational con-
tribution δJ̃ij. In particular, the corotational contribution δJ̃ij represents the amount
of shear that is necessary to maintain the elongation nematic Q̃ij constant in the
presence of local tissue rotation.

In order to discuss the corotational contribution to shear, we decompose the elon-
gation change δQ̃ij and the shear δŨij into components proportional to Q̃ij and into
components proportional to εikQ̃kj (Appendix A.2.3). Nematic tensors proportional
to the elongation Q̃ij have an axis parallel or perpendicular to the elongation axis,
whereas nematic tensors proportional to εikQ̃kj have an axis at an angle of π/4 with
respect to the elongation axis.

We first decompose the elongation change δQ̃ij (Appendix A.2.4):

δQ̃ij = δ|Q̃| 1

|Q̃|
Q̃ij + 2δΦεikQ̃kj. (2.31)

Here, δ|Q̃| denotes the change of the elongation norm |Q̃|. Thus, the component of
δQ̃ij that is proportional to Q̃ij changes the elongation norm, whereas the component
that is proportional to εikQ̃kj changes the angle of the elongation axis Φ (Fig. 2.8A,B).

To obtain the shear δŨij from δQ̃ij, we add the corotational contribution δJ̃ij (using
Eqs. (2.27) and (2.29)):

δŨij = δ|Q̃| 1

|Q̃|
Q̃ij + 2c(δΦ− δΨ)εikQ̃kj. (2.32)
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Figure 2.8: Changes of the elongation nematic Q̃ij correspond to pure shear de-
formations δŨij . (A) A change of the elongation norm δ|Q̃| 6= 0, where the
elongation angle is constant δΦ = 0. Then, the change of the elongation nematic
δQ̃ij is proportional to Q̃ij . Furthermore, the shear equals the change in elonga-
tion. (B) A change of the elongation angle δΦ 6= 0, where the elongation norm
is constant δ|Q̃| = 0. Then, the change of the elongation nematic δQ̃ij is pro-
portional to εikQ̃kj . Put differently, there is an angle of π/4 between the axes of
δQ̃ij and of Q̃ij . Furthermore, the shear corresponds to the change in elongation
attenuated by the factor c = tanh (2|Q̃|)/2|Q̃|. In both panels, we set δΨ = 0.

In order to discuss the additional contributions by δJ̃ij, we compare δŨij to a corota-
tional elongation change δQ̃cr

ij that is observed in a reference frame rotating with δΨ
with respect to the coordinate system. Thus, we modify Eq. (2.31) by substituting
the rotation of the elongation axis δΦ by its relative rotation δΦ− δΨ:

δQ̃cr
ij = δ|Q̃| 1

|Q̃|
Q̃ij + 2(δΦ− δΨ)εikQ̃kj. (2.33)

We find that the equation for the shear δŨij is similar to the equation for the corota-
tional elongation change δQ̃cr

ij . The only difference is that the angular part in δŨij is
attenuated by the factor c defined below Eq. (2.29). Thus, there are two contributions
combined in δJ̃ij: one accounts for local rotations, i.e. the difference between δQ̃cr

ij and

δQ̃ij; and the other one tells us that the angular part of the elongation change does
not fully contribute to shear, but is attenuated by the factor c (Fig. 2.8B).

Rotations Eq. (2.28) states that triangle rotation δΨ corresponds to the change
in the triangle orientation angle Θ. However strikingly, an additional shear-induced
contribution to triangle rotation δΞ arises. It is discussed in detail in Appendix B.2.3.

2.1.4 Coarse-graining: deformation of triangle groups

Eqs. (2.26) and (2.27) relate the deformation of a single triangle to the change of
its shape. Here, we coarse-grain these relations in order to study the deformation of
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Figure 2.9: A triangle group G consisting of the triangles m, n,
p, and q. The discrete displacement gradient of the group UGij
is defined by the average of the triangle displacement gradients
(Eq. (2.35)). However, the same quantity can be obtained from
the displacements of the margin corners alone (green dots) using
Eq. (2.36).

groups of connected triangles (Fig. 2.9).

Average of triangle-related quantities

In order to define deformation and state quantities for a group of triangles G, we
introduce an area-weighted average over all triangles in G. For any triangle-related
quantity qm, we define: 〈

qm
〉

=
1

AG

∑
m∈G

Amqm. (2.34)

Here, we defined the total area of the group by AG =
∑

m∈GA
m. Both sums run over

all triangles m of group G.

Coarse-grained displacement gradient

Now, we can define the discrete displacement gradient UG
ij for the triangle group G.

In the absence of topological transitions, it is defined as follows:

UG
ij =

〈
Um
ij

〉
. (2.35)

In this equation, the average 〈Um
ij

〉
is not yet uniquely defined, because during a finite

deformation, the individual triangle areas may change. We define that the triangle
areas in the initial state should be used as weights for the average.

In order to allow for topological transitions within the group G, we generalize the
definition of UG

ij . A definition of UG
ij that is only based on the deformation of the group

margin reads:

UG
ij =

εik
2AG

n∑
α=1

(
Rα
k −Rα+1

k

)([
R′

α
j +R′

α+1
j

]
−
[
Rα
j +Rα+1

j

])
. (2.36)

Here, the summation runs over all n cell centers Rα that correspond to the margin
corners of the group G in counter-clockwise order (green dots in Fig. 2.9). The vectors
Rα denote initial positions and the vectors R′α denote final positions. The tensor εij
is defined in Eq. (2.9) and AG denotes the total area of the group in the initial state.
In Appendix B.1, we show that the definitions in Eqs. (2.35) and (2.36) are equivalent
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in the absence of topological transitions.

Deformations are related to changes of average shape properties

Now, we relate the coarse-grained displacement gradient UG
ij to changes of average state

properties. In this section, we discuss the case where no topological transition occurs.
In the next section, the effects of individual topological transitions are discussed.

Like before, we focus on infinitesimal deformations. To this end, we decompose the
infinitesimal displacement gradient δUG

ij = UG
ij into trace, symmetric, traceless part,

and antisymmetric part:

δUG
ij =

1

2
δUG

kkδij + δŨG
ij − δΨGεij. (2.37)

In the following, we discuss the trace δUG
kk, corresponding to isotropic expansion, and

the traceless, symmetric part δŨG
ij , corresponding to pure shear deformations. The

antisymmetric part δΨG is discussed in Appendix B.3.2.

Isotropic expansion The area-weighted average of Eq. (2.26) yields:

δUG
kk =

1

AG
δAG (2.38)

where δAG denotes the change of the total group area AG. Thus, also for groups of
triangles, the isotropic part of the displacement gradient corresponds to the relative
area change.

Pure shear deformations To discuss the pure shear part, we first introduce the
average triangle elongation Q̃G

ij:

Q̃G
ij =

〈
Q̃m
ij

〉
. (2.39)

We use this nematic tensor as a measure for cell shape anisotropy.
We obtain the pure shear part of δUG

ij by coarse-graining Eq. (2.27) (Appendix B.3.1):

δŨG
ij = δQ̃G

ij + δJ̃Gij + δD̃G
ij . (2.40)

Here, δQ̃G
ij denotes the change of Q̃G

ij, and the corotational contribution to shear δJ̃Gij
corresponds to the mean field version of the triangle quantity δJ̃ij (compare Eq. (2.29)):

δJ̃Gij = −2
[
cGδΨG + (1− cG)δΦG

]
εikQ̃

G
kj. (2.41)

Analogously to above, the factor cG is given by cG = tanh (2|Q̃G|)/2|Q̃G|, and the
symbol δΦG denotes the change of ΦG. We defined the scalars |Q̃G| and ΦG to be
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the norm and the angle of the nematic Q̃G
ij, respectively.9 The angle δΨG denotes the

antisymmetric part of δUG
ij defined analogously to Eq. (2.25). In Eq. (2.40), we also

defined δD̃G
ij by:

δD̃G
ij = −

(〈
δUm

kkQ̃
m
ij

〉
− δUG

kkQ̃
G
ij

)
+
(〈
δJ̃mij

〉
− δJ̃Gij

)
. (2.42)

The term δD̃G
ij thus represents correlation effects contributing to shear. These corre-

lations are created by the averaging over triangles. Correspondingly, they vanish for
a single triangle. Taken together, Eq. (2.40) states that local tissue shear is created
by changes of local cell shape anisotropy, by a corotational term, and by correlations.

Now, we separately discuss the two contributions to δD̃G
ij . The first term (first

parenthesis in Eq. (2.42)), which we call growth correlation, is created by spatial
fluctuations in the isotropic expansion δUkk. Fig. 2.10A illustrates this term for a
deformation without pure shear component δŨG

ij = 0.10 We show two triangles with
different triangle elongations. One triangle contracts isotropically while the other
triangle expands isotropically. Thus, the individual elongations are constant. However,
the triangle areas change with respect to each other. Thus, the average elongation
Q̃G
ij changes because of the area weighting in Eq. (2.39). Hence, although δŨG

ij = 0

and δJ̃Gij = 0 in Eq. (2.40), we have δQ̃G
ij 6= 0. This is compensated for by the growth

correlation part of δD̃G
ij .

The second part, 〈δJ̃ij〉−δJ̃Gij , which we call rotational correlation, represents spatial
fluctuations of angular changes. For instance, it may arise from fluctuations of local
tissue rotation δΨ. Fig. 2.10B shows an example where two elongated triangles with
the same area rotate in opposing directions. Thus, the average tissue rotation δΨG and
the rotation of the average elongation axis δΦG are zero: δΨG = δΦG = 0. Therefore,
there is no corotational contribution to shear δJ̃Gij = 0. However, although there is

no pure shear δŨG
ij = 0, the average elongation changes δQ̃G

ij 6= 0. In Eq. (2.40),

the change in elongation δQ̃G
ij is compensated for by the rotational correlation part of

δD̃G
ij .

9Norm and angle of a nematic are defined in Eq. (2.12) and below. See also Appendix A.2.2.
10Both panels of Fig. 2.10 show examples of unconnected groups of triangles. This seems to contradict

the definition of G to be a connected group of triangles (see beginning of this section). In this
footnote, we shortly explain why this is not a problem. Any group of unconnected triangles can
be transformed into a group of connected triangles by adding a number of connecting triangles.
One can always define the connecting triangles such that their areas go to zero. Then, because of
the area weighting, the existence of the connecting triangles does not play a role for the discussed
effects.
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Figure 2.10: Illustration of the two parts of the correlation contribution to shear
δD̃G

ij . (A) The growth correlation part is generated by inhomogeneous isotropic
expansion. As an example, we show a deformation without pure shear component.
Nevertheless, the average elongation Q̃Gij changes because of the area weighting in

Eq. (2.39). This change in Q̃Gij does not generate shear but is compensated by the

growth correlation part of δD̃G
ij in Eq. (2.40). (B) The rotational correlation part

is generated by inhomogeneous rotation. As an example, we show two elongated
triangles with the same area rotating in opposing directions. During this process
there is no pure shear occurring. Also, the whole group does not rotate on average.
However, there is a change in average elongation Q̃Gij . This change in Q̃Gij is

compensated by the rotational correlation part of δD̃G
ij in Eq. (2.40).

2.1.5 Characterization of shear induced by topological transitions

In the previous section, we have shown that in the absence of topological transitions,
infinitesimal deformations δUG

ij of triangle groups can be exactly related to changes of
average shape properties (Eqs. (2.38) and (2.40)). Here, we discuss the effect of topo-
logical transitions on this relationship. Put differently, in the absence of topological
transitions, we have exactly related the average displacement gradient to an elastic
strain. In this section, we study how topological transitions create plastic strain.

To this end, we discuss the effect of topological transitions on the level of mul-
tiple triangles. This is because all three considered types of topological transitions
(T1 transitions, cell division, and T2 transitions) have in common that they induce
triangulation changes: During a topological transition, individual triangles appear or
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Figure 2.11: Any topological transition (red arrow) switches between two dis-
cretely separated topological states of the network. Here, we separate topological
transitions from geometrical changes (blue arrows), which are reflected the move-
ment of cell centers (green dots). Geometrical changes in the absence of topo-
logical transitions are discussed in Section 2.1.4. Topological transitions in the
absence of geometrical changes are discussed in Section 2.1.5. Both are brought
together in Section 2.2.

disappear (Figs. 2.12A, Appendix B.5). Therefore, we do not choose a description on
the single triangle level, here. Rather, we consider a group G of connected triangles
within which a given topological transition occurs.

In the following, we first separate topological transitions from geometrical changes
of the network. Then, we discuss how topological transitions affect the isotropic part
of the discrete displacement gradient. Finally, we discuss the shear created by a single
T1 transition. The shear created by a single cell division and by a single T2 transition
are discussed in Appendix B.5.

Separation of topological transitions from geometrical changes

Note that any topological transition occurs instantaneously (Fig. 2.11): it switches
between two discretely separated topological states of the system. Therefore, we can
separate a given topological transition from any geometrical changes occurring be-
fore or after the transition. Thus, cell centers Rα do not move during a topological
transition, and the margin of group G does not change its shape. As a consequence,
we obtain for the discrete displacement gradient δUG

ij for the triangle group G (using
Eq. (2.36)):

δUG
ij = 0. (2.43)

Put differently, there is no local network deformation during a topological transition.
However in the following subsections and in Appendix B.5, we explain how topological
transitions can nevertheless contribute to tissue shear.

Area changes induced by topological transitions

Before turning to the shear part, we discuss the isotropic part of the displacement
gradient for any kind of topological transition. Because the cell centers do not move
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during the topological transition, the total area of the group AG does not change:

δAG = 0. (2.44)

Thus, Eq. (2.38) relating δUG
kk to the relative area change remains fulfilled during

topological transitions.

Characterization of the shear induced by a single T1 transition

Here, we study the contribution of a single T1 transition to local shear. First, we
discuss the triangulation change induced by a T1 transition (Fig. 2.12A). During the
T1 transition, two triangles (m and n) disappear and two other triangles (p and q)
appear. Thus, in order to define the shear contribution by the T1 transition, we
consider the quadrilateral �, which is defined by the centers of the cells α, β, γ, and
δ. Before the T1 transition, this quadrilateral corresponds to the union of the triangles
m and n:

� = {m,n}. (2.45)

After the T1 transition, it corresponds to the union of the triangles p and q: � = {p, q}.
Now, we the discuss the contribution of a single T1 transition to pure shear δŨ�

ij .
As explained above, we assume no deformations of the quadrilateral � during the T1
transition. Thus, there is no shear during the T1 transition:

δŨ�
ij = 0. (2.46)

Nevertheless, the average triangle elongation changes by a finite value (Fig. 2.12B):

∆Q̃�ij = Q̃�
ij − Q̃�

ij. (2.47)

Here, we defined Q�
ij = (AmQm

ij + AnQn
ij)/A

� and Q�
ij = (ApQp

ij + AqQq
ij)/A

�, where
A� denotes the area of the quadrilateral. Thus, although there is no tissue shear,
the average triangle elongation changes by a finite amount ∆Q̃�ij, which reflects the
change in topology from � to �. This seems to contradict Eq. (2.40) relating shear
to the change in average elongation. To resolve this, we introduce the nematic tensor
∆T̃�ij = −∆Q̃�ij, which we interpret as a contribution to shear created by the T1
transition, corresponding to a plastic strain. We modify Eq. (2.40) accordingly:

δŨ�
ij = ∆Q̃�ij + δJ̃�ij + δD̃�ij + ∆T̃�ij . (2.48)

Here, we define the contributions δJ̃�ij and δD̃�ij to be zero during the T1 transition.

Note that the shear created by a single T1 transition ∆T̃�ij depends on the shape of

the quadrilateral � at the moment of the T1 transition. Typically, the axis of ∆T̃�ij
is close to the axis of the bond newly created by the T1 transition (compare magenta
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Figure 2.12: (A) Change of the triangulation due to a single T1 transition. Two
triangles (m and n) disappear and two other triangles (p and q) appear. We
denote the quadrilateral with corners Rα, Rβ, Rγ , and Rδ before the transition
by � = {m,n} and after the transition by � = {p, q}. (B) Although there is
no pure shear during the T1 transition, the average elongation nematic of the
quadrilateral changes discontinuously by ∆Q̃�ij . (C) The axis of the nematic ∆T̃�ij
(magenta double arrow) is typically close to the axis of the bond that is newly
created by the T1 transition (red double arrow pointing outwards). However, the
axis of ∆T̃�ij is close to perpendicular to the bond that disappears during the T1

transition (red double arrow pointing inwards).
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and red double arrows in Fig. 2.12C). For the special case that the quadrilateral � is
a square, the axis of ∆T̃�ij is oriented along one of the diagonals of �, and the norm

of ∆T̃�ij turns out to be |∆T̃�| = (ln 3)/2.

Analogously to the shear contribution by a single T1 transition ∆T̃�ij , we define

the shear contribution by a single cell division ∆C̃div
ij and the shear contribution by a

single T2 transition ∆ẼT2
ij in Appendix B.5.

2.2 Decomposition of the large-scale flow field into
cellular contributions

In this section, we consider an infinitesimal deformation of a cellular network from an
initial state to a final state. To discuss cellular contributions to large-scale deformation,
we use our results from the previous sections.

2.2.1 The velocity gradient describes large-scale deformations

We characterize the deformation of the whole cellular network during the infinitesimal
time interval δt by a large-scale velocity gradient vij. To define this velocity gradient,
we first triangulate the network as described in Section 2.1.1, which results in a group
G containing all triangles. Then, we define the large-scale velocity gradient by:

vij =
δUG

ij

δt
. (2.49)

Here, the large-scale displacement gradient δUG
ij is defined by Eq. (2.36).

According to Appendix B.1, this definition is equivalent to the following contour
integral along the triangulation margin:

vij =
1

AG

∮
nivj d`. (2.50)

Here, the symbol AG corresponds to the area of the triangulation and the vector n
denotes the unit vector that is locally perpendicular to the triangulation margin and
points outside. The vector v(r) denotes the local velocity along the triangulation
margin. It is defined as follows. For a cell center that is being displaced from its
position in the initial state Rα to its position in the final state R′α, we define v(Rα) =
(R′α−Rα)/δt. In points r of the triangulation margin that lie on the line in between
two consecutive cell centers Rα and Rα+1, we define the velocity v(r) by the linear
interpolation between v(Rα) and v(Rα+1).

Note that here, we focus on the case where no topological transitions occur at the
network margin. More precisely, we focus on the case where the sequences of cell
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centers Rα along the triangulation margin are the same in the initial and in the final
state. This is necessary for the proper definition of δUG

ij and vij. In Appendix B.6, we
discuss the effect of topological transitions at the network margin.

Components of the velocity gradient

Analogously to Eq. (2.37), we decompose the velocity gradient vij into:

vij =
1

2
vkkδij + ṽij − ωεij. (2.51)

The first component vkk = δUG
kk/δt represents the average divergence of the flow field

describing relative area changes. The second component ṽij = δŨG
ij /δt represents

the average pure shear component of the flow field. Finally, the third component
ω = δΨG/δt represents the average rotation rate of the flow field. In the following, we
separately discuss the divergence vkk and the pure shear component ṽij. The rotation
rate ω is discussed in Appendix B.3.2.

2.2.2 Large-scale divergence of the flow field

For cellular networks with a large number N of cells N � 1, we obtain for the average
divergence vkk:

vkk ≈
1

a

da

dt
+ kd − ka. (2.52)

Here, d/dt denotes the time derivative, a denotes the average cell area, kd denotes the
average cell division rate, and ka denotes the average rate of T2 transitions. Thus, the
average divergence of the flow field decomposes into the relative growth rate of the
average cell area, the division rate, and the negative T2 transition rate.

Eq. (2.52) follows from Eq. (2.38), where the total area of the network is given by
A = aN . The limit of a large number of cells N � 1 is necessary, because the area of
the triangulation AG is in general smaller than the total area of the cellular network A.
This is because the triangulation does not cover a stripe at the network margin, which
is ca. half a cell diameter broad (Fig. 2.3). As a consequence, the velocity gradient vij
describes only the deformation of the triangulated part of the network. However, for
networks with a large number of cells N � 1, we can neglect this effect. Throughout
this chapter, equations that assume N � 1 are denoted by a ≈ sign. For instance,
AG/A ≈ 1. All other equations are exact for infinitesimal deformations.

2.2.3 Large-scale shear of the flow field

In Section 2.1.4, we related the shear to changes of the average triangle elongation.
Here, we additionally account for effects by topological transitions. As result, we
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obtain for the large-scale pure shear rate ṽij:

ṽij =
DQ̃ij

Dt
+ T̃ij + C̃ij + Ẽij + D̃ij. (2.53)

In the following, we explain all terms on the right hand side of this equation.

The nematic tensor Q̃ij denotes the average triangle elongation Qij = QG
ij defined

by Eq. (2.39). Its corotational derivative is defined by

DQ̃ij

Dt
=

dQ̃ij

dt
+ J̃ij, (2.54)

where dQ̃ij/dt denotes the time derivative for each tensor component of Q̃ij. The
nematic tensor J̃ij is defined analogously to Eq. (2.41):

J̃ij = −2

[
cω + (1− c)dΦ

dt

]
εikQ̃kj. (2.55)

In this equation, we defined c = tanh (2|Q̃|)/2|Q̃|, and the scalars |Q̃| and Φ are norm
and angle of the average elongation Q̃ij, respectively.11 We also defined dΦ/dt =
δΦ/δt, where δΦ denotes the change of Φ.

The nematic D̃ij, summarizes the shear rate contributions by correlation effects:

D̃ij = −
(〈
vmkkQ̃

m
ij

〉
− vkkQ̃ij

)
+

(〈
δJ̃mij

〉
δt

− J̃ij

)
. (2.56)

Here, the averaging brackets are defined as in Eq. (2.34).12 For a discussion of the
correlation effects, see Section 2.1.4.

The terms T̃ij, C̃ij, and Ẽij in Eq. (2.53) denote contributions of T1 transitions,
cell divisions, and T2 transitions to the large-scale shear rate, respectively. They are
defined by:

T̃ =
1

AG

∑
T1 tr. k

δ(t− tk)A�
k ∆T̃

�

k (T1 transitions) (2.57)

C̃ =
1

AG

∑
cell div. k

δ(t− tk)Adiv
k ∆C̃

div

k (cell divisions) (2.58)

Ẽ =
1

AG

∑
T2 tr. k

δ(t− tk)AT2
k ∆Ẽ

T2

k (T2 transitions). (2.59)

11Norm and angle of a nematic are defined in Eq. (2.12) and below.
12Note that the angle Φ of the elongation nematic Q̃ij may be changed by topological transitions.

Such changes would be included in J̃ij but not in
〈
δJ̃mij

〉
/δt.
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In each of these equations, the sum runs over all topological events k of the respective
kind. The symbol tk denotes the time at which the topological transition k occurs,

and δ denotes the Dirac distribution. The nematics ∆T̃
�

k , ∆C̃
div

k , and ∆Ẽ
T2

k denote
the respective contribution of a single transition to local shear as defined in Sec-
tion 2.1.5 and Appendix B.5. Furthermore, the scalars A�

k , Adiv
k , and AT2

k denote the
respective areas of the triangle groups directly involved in the topological transition
(Section 2.1.5, Appendix B.5).

The shear contributions by topological transitions follow from our discussion in
Section 2.1.5. Each topological transition creates an instantaneous change in Q̃ij.
This creates a delta peak in DQ̃ij/Dt, which is compensated for by a corresponding
delta peak in T̃ij, C̃ij, or Ẽij with an opposite sign.

Note the area weighting in Eqs. (2.57)-(2.59): The contribution of a single topo-
logical transition to network shear is inversely proportional to the total area of the
triangulation AG. Moreover, it is directly proportional to the area of the triangle
group involved in the topological transition.

2.3 Cellular contributions to the flow field in the fruit
fly wing

In this section, we study an experimentally observed deformation of the developing
fruit fly wing (Fig. 2.13). To this end, we quantified the time-dependent large-scale
flow field between the developmental times of 16 hAPF and 32 hAPF. Furthermore,
we show how the average divergence of the flow field and the average shear rate de-
composed into cellular contributions according to Eqs. (2.52) and (2.53), respectively.

In the following, we first describe how we extracted the large-scale flow field and
its components from experimental movies of the fly wing (Section 2.3.1). Then, we
discuss the time-dependent components of the flow field for a single wild type wing
(Section 2.3.2). Finally, we test how reproducible our results are by comparing different
wild type wings (Section 2.3.3).

2.3.1 Extraction of the large-scale flow field and its components
from experimental movies

In order to experimentally quantify the observables appearing in Eqs. (2.52) and (2.53),
we recorded in vivo movies of fruit fly wings, where the adherens junctions were
stained. The individual images of each movie were registered at discrete time points
ti separated by time intervals of ca. 5 min. For each movie, we ran a segmentation
algorithm to extract the time-dependent topology and geometry of the cellular net-
work. For the data shown here, we selected only the cells of the wing blade. Then, in
order to characterize a set of cells that represented the same piece of tissue throughout
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Figure 2.13: Deformation of a fruit fly wing over time. Shown in blue is a network
of cells that is tracked over time. Thus, the blue region represents the same piece
of tissue throughout the whole movie. In Section 2.3.2, we discuss the time-
dependent flow field of this cellular network.

the movie, we removed any cells that disappeared or newly appeared at the network
margin. This led to a reduced network of tracked cells, which is shown in Fig. 2.13
(each tracked cell is represented by a blue dot).

Here, we discuss the components of the time-dependent velocity gradient vij. To
this end, we apply Eqs. (2.52) and (2.53) separately to each observed time interval
ti . . . ti+1. As opposed to the assumptions made in the previous sections, these time
intervals are finite. Therefore, we refine the correlation contribution to shear D̃ij by
introducing higher order terms (Appendix B.8).

In the previous sections, we restricted to the case were all inner vertices are threefold.
However, our experimental data also contained N -fold vertices with N > 3. Thus, the
triangulation defined in Section 2.1.1 could not be implemented in a straightforward
way. On page 142 in Appendix B.8.3 , we show how N -fold vertices with N > 3 were
taken into account.

2.3.2 Components of the flow field in a wild type wing

Here, we study the components of the flow field in a wild type wing and discuss their
cellular contributions. To this end, we focus on the average deformation of the region
shown in blue in Fig. 2.13. In the following, we discuss the average divergence and
the average pure shear part of the flow field separately.
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Figure 2.14: (A) Average divergence of the flow field (blue solid line) in the wild
type wing blade shown in Fig. 2.13. Also shown is the decomposition into cellular
contributions according to Eqs. (2.52) and (2.52). These cellular contributions
comprise cell area change (green solid line), cell division rate (cyan solid line), and
T2 transition rate (yellow solid line). The orange dashed line corresponds to the
sum of these three terms, i.e. they correspond to the right hand side of Eq. (2.52).
The deviations between the blue solid line and the orange dashed line are due to the
approximation for large networks and to the finite time intervals. (B) Integrated
versions of the quantities shown in panel A. In both panels, all curves shown are
smoothed by convolving with a Gaussian with standard deviation σ ≈ 30 min.

Divergence of the flow field

In Fig. 2.14A, the blue solid line shows the time-dependent average divergence of the
flow field vkk. According to Eqs. (2.52) and (2.52), it decomposes into the relative cell
area growth rate (green solid line), the cell division rate (cyan solid line), and the T2
transition rate (yellow solid line). The orange dashed line corresponds to the sum of
these three curves. The fact that it coincides with the vkk curve (blue solid line) shows
that Eq. (2.52) holds.

In Fig. 2.14B, we plot the time integrals of each of the curves shown in panel A. For
instance, the blue solid line corresponds to the time integral of vkk. Using Eq. (2.38),
we obtain for this time integral:∫ t

t0

vkk(t
′) dt′ = ln

(
AG(t)

AG(t0)

)
. (2.60)

Here, the time t0 is set to 16 hAPF and the upper integration limit t is varied. The
function AG(t) denotes the time-dependent area of the triangulation, which coarsely
corresponds to the blue region in Fig. 2.13. Thus, the integrated blue curve corresponds



2.3 Cellular contributions to the flow field in the fruit fly wing 43

Figure 2.15: Coordinate system based on wing vein posi-
tions at 32 hAPF. The origin is the intersection of longitu-
dinal vein 4 and the anterior cross vein. The x axis also
passes through the distal end of the longitudinal vein 4.
The y axis is perpendicular to the x axis as indicated. For
other time points than 32 hAPF, the coordinate system is
kept the same with respect to the movie images. The same
coordinate system is used in Chapter 4 (compare Fig. 4.9A).

to the absolute change of the logarithm of the total area.

We draw three conclusions from Fig. 2.14. First, the total area of the piece of
tissue considered changed only little (blue solid lines). Second, cell divisions alone
contributed significantly to an area increase of the piece of tissue (cyan solid lines),
whereas the T2 transitions contributed only little (yellow solid lines). Third, the
increase in cell number was balanced by a reduction of the average cell area (green
solid lines) such that the total area stayed approximately constant.

Pure shear component of the flow field

Here, we discuss the pure shear part of the large-scale flow field and its components
according to Eq. (2.53). In order to properly define the components of the correspond-
ing nematic tensors, we introduce the coordinate system explained in Fig. 2.15, which
is based on wing vein positions.

For any nematic tensor q̃ij, we plot the first component qxx = −qyy and the second
component q̃xy = q̃yx separately. As explained in Appendix A.2.2, positive values of
the xx component correspond to components parallel to the x axis, which corresponds
to the proximo-distal wing axis. Negative values correspond to components parallel to
the y axis, which corresponds to the anterior-posterior wing axis. The xy component
correspond to components along the two axes that are inclined by π/4 with respect
to the x axis.

Now, we discuss the large-scale shear rate tensor ṽij. In Fig. 2.16, we plot the
time-dependent shear rate ṽij (blue solid lines) and its decomposition into cellular
contributions. We find that large-scale shear occurred predominantly along the x axis
(Fig. 2.16A). Although the wing blade was permanently sheared, the shear rate at-
tained its maximum between 18 hAPF and 19 hAPF and slowly decreased afterwards.
The magnitude of the shear rate was on the same order of magnitude as the divergence
of the flow field (Fig. 2.14A).

In order to better interpret the cellular contributions to the shear rate, we first
discuss the time course of the cell elongation tensor, which is plotted in Fig. 2.17.
Initially, at 16 hAPF, cells were on average only little elongated. Then, cell elongation
increased mainly along the x axis until ca. 23 hAPF. We call this time interval phase
I . After that, during phase II , cell elongation decreased and leveled off at ca. 0.15.
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Figure 2.16: Decomposition of the shear rate tensor ṽij for the wild type wing
blade (Fig. 2.13) according to Eq. (2.53). The shear rate (blue solid lines) is
decomposed into the corotational elongation derivative (green solid lines) and
contributions by T1 transitions (red solid lines), cell divisions (cyan solid lines), T2
transitions (yellow solid lines), and correlations (magenta solid lines). The orange
dashed lines are used to demonstrate the validity of Eq. (2.53). They correspond
to the respective sums of all other curves except for the shear rate curve. All
curves shown are smoothed by convolving with a Gaussian with standard deviation
σ ≈ 30 min. (A) xx components of the respective nematic tensors. (B) xy
components of the respective nematic tensors.
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Figure 2.17: Average cell elongation depending on time for the wild type wing
blade shown in Fig. 2.13. All curves shown are smoothed by convolving with a
Gaussian with standard deviation σ ≈ 30 min.

These two phases were also reflected in the cell elongation derivative shown in
Fig. 2.16 (green solid lines in Fig. 2.16). It turns out that the derivative of cell elon-
gation (green solid lines) and T1 transitions (red solid lines) were the most important
contributions to tissue shear. During phase I, the shear was mainly created by the
increase of cell elongation along the x axis. At the same time, T1 transitions occurred
along the y axis counteracting the shear by cell shape change. During phase II, cell
rearrangements along the x axis allowed for a decrease of cell elongation.

These observations inspire the discussion about the mechanical processes in the wing
epithelium. From earlier work [54], we know that the wing blade must be at least
partly stretched by external forces from the wing hinge. This stretching of the wing
blade would elongate cells during phase I. For elastic cells, this would build up stresses
along the x axis. During phase II, such stresses could be relieved by T1 transitions
along the x axis allowing the cell elongation to decrease. However, according to our
quantifications, during phase I, T1 transitions create shear along the y axis. This is
surprising, because in a passive system with elastic cells, the stress would be mostly
oriented along the x axis and therefore, T1 transitions should occur along the x axis
at all times. This suggests that the T1 transitions occurring along the y axis during
phase I could be generated by active anisotropic processes.

Apart from cell shape change and T1 transitions, also cell divisions (cyan solid lines
in Fig. 2.16) and correlations (magenta solid lines) contributed to large-scale tissue
shear, whereas T2 transitions did not contribute essentially (yellow solid lines). We
find that the contribution by cell divisions was mostly oriented along the x axis. How-
ever, this contribution was clearly smaller than the shear by cell elongation changes
and T1 transitions. The correlations contributing to shear (magenta solid lines) were
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Figure 2.18: Average divergence of the flow field in three different
wild type wing blades. Movie 1 (panel A) corresponds to the data
presented before (Fig. 2.14A). The caption of Fig. 2.14A applies to
all three panels.

on the same order of magnitude as the contribution by cell divisions. However, their
contribution was mainly oriented along the y axis reducing the large-scale shear along
the x axis.

2.3.3 Comparison of different wild type wings

Here, we study how reproducible the results presented in the previous section are. To
this end, we compare three movies of different wild type wings, where the first movie
corresponds to the data presented above (Figs. 2.13, 2.14, 2.16, and 2.17). For each
movie, we plot the time course of the average divergence of the flow field, the average
shear rate, and the average elongation (Figs. 2.18, 2.19, and 2.20, respectively).

We found that the main features discussed above were very reproducible. Differences
among the movies were small and occurred on time scales of less than two hours.
The main difference between the three movies was that in Movie 1, the development
appeared to be delayed by ca. one hour as compared to the other movies. This can
be seen most clearly in the direct comparison of the average elongation (Fig. 2.20),
but also in the other plots. However, such a delay is on the order of the measurement
uncertainty in the developmental times of the flies.

2.4 Discussion

In this chapter, we used rigorous geometric arguments to precisely decompose large-
scale deformations of two-dimensional cellular networks into contributions by cellular
events. These cellular events comprise cell shape changes, T1 transitions, cell divisions,
and T2 transitions. In order to define the respective contributions of these events to
deformation, we tiled the network into triangles. Then, cell shape changes correspond
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Figure 2.19: Decomposition of the shear rate tensor ṽij for three different wild
type wing blades. Movie 1 (panels A and B) corresponds to the data presented
before (Fig. 2.16). The caption of Fig. 2.16 applies to all six panels.
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Figure 2.20: Average elongation depending on time for three different wild type
wing blades. Movie 1 (blue solid lines) corresponds to the data presented before
(Fig. 2.17). All curves shown are smoothed by convolving with a Gaussian with
standard deviation σ ≈ 30 min.

to triangle shape changes, and topological transitions correspond to the disappearance
and appearance of triangles.

We separately discussed the isotropic and anisotropic components of large-scale
network deformation. The isotropic component corresponds to an isotropic expansion
of the network. It decomposes into relative cell area change, cell division rate, and
negative T2 transition rate.

The anisotropic component of network deformation corresponds to pure shear de-
formations. We showed that large-scale pure shear deformations decompose into con-
tributions by cell shape changes and topological transitions. Furthermore, it turned
out that there are correlations that also contribute to pure shear deformations. Such
correlations appear whenever the network deforms inhomogeneously.

We applied our theoretical framework in order to study deformations of the fly
wing during development. Earlier work [54] qualitatively identified two phases of this
deformation process. During the first phase, tissue shear was accompanied by an
increase of cell shape anisotropy along the shear axis. Afterwards, during the second
phase, cell shape became more isotropic again due to oriented T1 transitions. Here,
using our newly developed method, we could quantitatively confirm these observations.
Moreover, we newly found that during the first phase, cell rearrangements counteracted
the effect of cell shape change, which suggests the existence of active anisotropic terms
in the mechanics of the fruit fly wing.

Note that there is a clear distinction between the deformation usually defined in
classical elasticity theory and the deformation defined here. In classical elasticity
theory, deformation characterizes the state of a solid with respect to a single, clearly
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defined reference state [101, 149]. In contrast to that, here, we considered infinitesimal
deformations relative to some initial state, which corresponds to the reference state.
Therefore, for subsequent infinitesimal deformations, the reference state will vary in
time. As a consequence, the integrated large-scale shear for a deformation between
two given states depends on the precise deformation protocol chosen. This is even
true in the absence of topological transitions. In Appendix B.4, we show this in detail
and in a more general context.

A crucial ingredient for our theoretical framework to be exact was the triangulation
of the cellular network. The deeper reason for this is that for any two triangles in
the plane, one always finds a unique linear transformation that maps one triangle to
the other. However, note that in principle, other triangulations than that defined
in Section 2.1.1 could be chosen. In Appendix B.7, we discussed one example for
an alternative triangulation and we found that in particular the contribution of T1
transitions to large-scale shear depends on the method of triangulation.

Other work also derived and applied relations that decompose large-scale deforma-
tions of cellular networks into contributions on the cell scale. In a series of papers by
the Graner group, deformations of cellular patterns are characterized based on links
between cell centers [85, 150–153]. They define a texture tensor, which characterizes
local shape anisotropies, a local velocity gradient, and a tensor that quantifies creation
and removal of links. These tensors are related by an equation similar to Eq. (2.53).
They apply this equation in order to study the rheology of two-dimensional foams.
However, the authors introduced approximations. One approximation assumes small
local shape anisotropies and another one assumes local affinity of deformations. In our
work, such assumptions are not necessary because we triangulate the cellular network.
Therefore, Eq. (2.53) is exact for infinitesimal deformations.

In ref. [154], the authors describe the deformation of epithelial tissue by introducing
a local velocity gradient tensor and a local cell elongation tensor. Then, they define
a cell intercalation strain rate tensor to be the difference between the local velocity
gradient and the local change rate of cell elongation. This cell intercalation strain rate
comprises contributions by T1 transitions, but also by sliding of cells past each other.
As compared to that work, our approach is more fine-grained revealing fundamental
relations between cellular shape changes and large-scale deformations. Moreover, we
also describe the deformation by other topological transitions like cell divisions and
T2 transitions.





Chapter 3

Rheological behavior of vertex model
tissue under external shear

In this chapter, we use a vertex model to study mechanical properties of epithelia. In
particular, we discuss the stress relaxation behavior of vertex model tissue depending
on cellular fluctuations. To this end, we focus on the steady state of simple shear
simulations.

This chapter is organized as follows. In Section 3.1, we present the vertex model
that we use, and we introduce model extensions. In Section 3.2, we analyze the stress
relaxation behavior of vertex model tissue in simple shear simulations using our results
from Chapter 2. We find plastic behavior for small fluctuation amplitude and visco-
elastic behavior for large fluctuation amplitude. Finally, in Section 3.3, we discuss our
results and compare to previous work. Important symbols appearing in this chapter
are listed on pages 226f.

3.1 A vertex model to describe epithelial mechanics

In order to probe the shear stress relaxation behavior of epithelia, we used a vertex
model that was developed earlier [118]. In this section, we present this vertex model
and we describe how we extended it for our purpose.

The vertex model describes epithelia as planar cellular networks, where each cell
is represented by a polygon (as in Section 2.1.1). In the following subsections, we
explain different aspects of this model. In Section 3.1.1, we explain how force-balanced
states of the cellular network are defined and how they are obtained numerically.
In Section 3.1.2, we extend the vertex model by fluctuations of a mechanical tissue
property. In Section 3.1.3, we test the effect of these fluctuations on growth. Therefore,
we discuss their effect on cell neighbor number distributions during growth. Finally, in
Section 3.1.4, we explain the implementation of particular boundary conditions, which
allow for continuous simple shear deformations of vertex model tissue. In Section 3.2,
these simple shear deformations will be used to probe shear stress relaxation behavior.
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Figure 3.1: Force-balanced state of a cellular network.
Force-balanced states are described by minima of the work
function W , which depends on the areas Aα and perimeters
Lα of all cells α and on the lengths lb of all bonds b.

3.1.1 Force-balanced states

Here, we first show how force-balanced states of the cellular network are defined in
the vertex model. Then, we explain how they were obtained numerically.

Work function

Force-balanced states of the cellular network are described by minima of the following
work function [118, 121]:

W =
K

2

∑
α

(
Aα − A0

)2
+

Γ

2

∑
α

(
Lα
)2

+
∑
b

Λblb. (3.1)

Here, the first two sums run over all cells α of the network and the third sum runs
over all bonds b of the network (Fig. 3.1). The first term describes an elasticity of
the area Aα of each cell α, where the parameters A0 and K denote preferred area
and area elasticity, respectively. The second term describes an elasticity of the cell
perimeter Lα, where the parameter Γ denotes the perimeter elasticity. In this work,
we assume the parameters A0, K, and Γ to be constant and homogeneous among all
cells. The last term describes contributions of bond lengths lb to the work function,
where the coefficients Λb denote line tensions. Here, the line tensions may vary in time
and among different bonds. Without fluctuations, which are introduced below, we set
all line tensions to a baseline value of Λb = Λ0.

Numerical minimization

The work function W depends on the network topology and on vertex positions. In
order to numerically obtain a force-balanced state, the work function is minimized
with respect to the vertex positions (Appendix C.1.2). For this multidimensional
minimization, we use the conjugate gradient method [155].

During minimization, the network topology may change according to the rules de-
fined in Appendix C.1.3. Note that in contrast to earlier vertex model implementations
[58, 82, 121, 123], we allow for N -fold vertices with N > 3. This considerably simplifies
the treatment of topological transitions.
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3.1.2 Line tension fluctuations

In the previous subsection, we defined force-balanced states of the cellular network by
minima of the work function W . However, the work function alone may only define
elasticities, but no time scale and therefore no finite viscosity. In order to introduce
a time scale into the tissue mechanics, we extend the vertex model by fluctuations of
the line tensions Λb.

Definition

We introduce fluctuations into the line tension Λb of each bond b by adding colored
noise ηb(t):

Λb(t) = Λ0 + ΛFη
b(t). (3.2)

Here, the constant parameter ΛF denotes the line tension fluctuation amplitude. The
colored noise ηb(t) is given by a separate Ornstein-Uhlenbeck process for each bond b:

dηb(t)

dt
= −kΛη

b(t) +
√

2kΛ ξ
b(t). (3.3)

Here, ξb(t) denotes Gaussian white noise with zero average 〈ξb〉 = 0 and 〈ξb(t1)ξc(t2)〉 =
δbcδ(t2 − t1) for any two bonds b and c. The parameter kΛ is a rate that corresponds
to the characteristic frequency of the Ornstein-Uhlenbeck noise ηb(t).

Upon creation of a bond b at time t0, the initial value of ηb(t0) is drawn from a
normal distribution with average zero and variance one. The prefactors in Eq. (3.3) are
chosen such that 〈ηb(t)ηc(t)〉 = δbc remains true for all times t ≥ t0. As a consequence,
ΛF corresponds to the standard deviation of the line tension. Also, the line tension
fluctuations of different bonds are uncorrelated.

Introduction of dimensionless units

In order to reduce the number of parameters, we introduce dimensionless units choos-
ing k−1

Λ as typical time scale, A
1/2
0 as typical length scale, and KA2

0 as typical energy
scale [compare 118, 122]. Then, we define dimensionless versions of all quantities,
which we denote by a bar, here. For instance:

dimensionless quantity W̄ Λ̄0 Λ̄F Γ̄ t̄

definition W/(KA2
0) Λ0/(KA

3/2
0 ) ΛF/(KA

3/2
0 ) Γ/(KA0) tkΛ

For simplicity of notation, we will omit the bar in the following. Thus, in the following
and in Appendix C, all quantities are given in these dimensionless units.

For our study, we choose the parameter values Λ0 = 0.12 and Γ = 0.04. These
values have been found to reproduce three independent morphological features of the
fruit fly wing disc epithelium [118].



54 Chapter 3: Rheological behavior of vertex model tissue under external shear

Implementation

Epithelial dynamics including fluctuations were simulated using time steps of length
∆t = 0.01. During each time step, the noise variables ηb(t) of all bonds were updated.
Therefore, the line tensions Λb(t) and the work function W changed. Thus, at the end
of the time step, the network was relaxed to a new minimum of W .

3.1.3 Influence of line tension fluctuations on tissue growth

In the last subsection, we showed how we introduced line tension fluctuations into
the vertex model. Here, we test our implementation by studying their influence on
epithelial growth and comparing to earlier work [118].

In ref. [118], the authors showed that growth simulations in the vertex model produce
characteristic distributions of cell neighbor numbers. Moreover, in ref. [121], it was
shown that line tension fluctuations could increase the fraction of hexagons in the
cellular network. This corresponds to an annealing effect, because for the chosen
parameter values of Λ0 and Γ, a packing of regular hexagons corresponds to the ground
state of the work function [122].

Here, we study the influence of line tension fluctuations on the cell neighbor number
distribution (Fig. 3.2). To this end, we simulated line tension fluctuations together
with growth, where the average cell cycle length was given by τdiv (Fig. 3.2A, Ap-
pendix C.2). Starting from a 6 by 6 hexagonal network, the simulation ran for a time
corresponding to τdiv such that in the final state, the network consisted of ca. 100 cells.

We found that the neighbor number distribution was strongly biased by line tension
fluctuations. In particular, with increasing cell cycle time τdiv as compared to the
fluctuation time scale, the fraction of hexagons in the final state of the simulations
increased significantly (Fig. 3.2B). Furthermore, for fast cell divisions (τdiv = 1), the
fraction of hexagons in the final state increased with the line tension fluctuation ampli-
tude ΛF (Fig. 3.2C). In contrast to that, without line tension fluctuations, we obtained
the distribution reported in ref. [118] (blue solid lines in Figs. 3.2B-D). Taken together,
this suggests that cell divisions alone drive the neighbor number towards the distri-
butions reported in ref. [118]; whereas line tension fluctuations tend to increase the
fraction of hexagons. However surprisingly, for very slow cell divisions and large line
tension fluctuation amplitude, the fraction of hexagons decreased again (Fig. 3.2D).

3.1.4 Simple shear simulations using skewed periodic boundary
conditions

In order to probe the stress relaxation behavior of vertex model tissue, we carried
out simple shear simulations. As compared to pure shear simulations, simple shear
simulations bear the advantage that the steady state can be simulated as long as
necessary to provide enough statistics. Here, we first show what boundary conditions
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Figure 3.2: Effect of line tension fluctuations on the cell neighbor number distri-
bution in growth simulations. (A) The simulations started from a 6×6 hexagonal
network and lasted for the average cell cycle time of τdiv. Growth and line ten-
sion fluctuations were simulated simultaneously. The cells are colored according
to their neighbor number (Table 3.1). (B,C,D) Cell neighbor number distribu-
tion in the final state. Shown are values averaged over 100 individual simulations.
Uncertainties were computed as the standard deviation of the respective Bernoulli
distribution. They were smaller than the symbol size. (B) The fraction of hexagons
increased with increasing cell cycle time for the fluctuation amplitude ΛF = 0.06.
(C) The fraction of hexagons increased with increasing fluctuation amplitude ΛF
for τdiv = 1. (D) For τdiv = 100, the fraction of hexagons first increased with the
fluctuation amplitude until ΛF = 0.06 and then decreased again.

Table 3.1: Cell colors encode neighbor numbers (Figs. 3.2A, 3.3, and 3.5).

neighbor number 4 5 6 7 8
color green yellow gray blue red
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Figure 3.3: Illustration of the boundary conditions used. (A) Periodic boundary
conditions as used in earlier studies. The size of the simulation box is Lx×Ly. (B)
In this work, continuous simple shear simulations are implemented using periodic
boundary conditions with a skew of γLy. The variable γ denotes the integrated
simple shear. The pure periodic boundary conditions (panel A) are recovered for
γ = 0. In order to more clearly illustrate the periodicity in the cellular patterns,
the cells in both panels are colored according to Table 3.1.

we used in order to allow for continuous simple shear. Then, we explain how we carried
out the simple shear simulations.

Boundary conditions

In order to implement simple shear in the vertex model, we extend the boundary
conditions used in earlier studies (Fig. 3.3). In earlier studies, periodic boundary
conditions were used, where the simulation box was a rectangle with side lengths
Lx×Ly (Fig. 3.3A) [58, 82, 121, 123]. Here, we define the simple shear variable γ, which
introduces an additional skew γLy in the periodic boundary conditions (Fig. 3.3B,
Appendix C.1.1). Such boundary conditions are similar to the so-called Lees-Edwards
boundary conditions [156]. Note that the simulation box defines a coordinate system
(magenta arrows in Fig. 3.3B), which we use in the following.

Simple shear simulations

For all simple shear simulations in this chapter, we fixed the dimensions of the sim-
ulation box (Lx, Ly) and we increased simple shear variable γ with a constant rate,
which we denote by γ̇.

Under these conditions and without fluctuations, we observed the formation of shear
bands in our simulations (Fig. 3.4) [121].1 Here, we prevent shear bands using line
tension fluctuations with amplitudes ΛF ≥ 0.02 (Appendix C.3.2).

1The term shear bands refers to the localization of strain upon deformation of a solid. Put differently,
the solid is not sheared homogeneously. Most parts of it may even be deformed only little. Rather,
the shear is localized within so-called shear bands (red solid line in Fig. 3.4).
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Figure 3.4: A shear band (red solid
line) appeared in simple shear simu-
lations without fluctuations. Along
this line, cells slid past each other.
Two time snapshots are shown, where
each cell has the same color in both
snapshots.

Figure 3.5: Two snapshots at different
time points of a simple shear simulation
with γ̇ = 0.5 and ΛF = 0.06. Cells are
colored according to Table 3.1. Pairs of
magenta dots within each snapshot indi-
cate the same vertex, respectively. At time
t = 0, the cellular network is not regular
because of the line tension fluctuations.

For large fluctuation amplitudes, cells were occasionally extruded by T2 transitions.2

To ensure the existence of a steady state with a finite number of cells, we fixed the
cell number by forcing a cell division upon each T2 transition (Appendix C.3.1).

3.2 Fluctuation-induced fluidization of tissue

In this section, we study the shear stress relaxation behavior of vertex model tissue
and the role of fluctuations. To this end, we use the following set of simple shear
simulations. We started from a 10× 10 pattern of hexagonal cells (Fig. 3.5A). During
the simulation, the simulation box was sheared by the boundary conditions with a
constant simple shear rate of γ̇. Also, line tension fluctuations with amplitude ΛF

were included. We varied the line tension fluctuation amplitude ΛF within the interval
0.02 ≤ ΛF ≤ 0.10 and the shear rate γ̇ within the interval 0 ≤ γ̇ ≤ 1. For each
combination of both parameter values, we performed 100 simulation runs for a total
time of T = 1000 (for ΛF ≤ 0.04) or T = 100 (for ΛF > 0.04). Two snapshots from
one of the simulations are shown in Fig. 3.5. For details, see Appendix C.3.1.

In the following, we characterize the shear stress relaxation behavior in the simple
shear simulations. We also show how it depended on the fluctuation amplitude ΛF .
To this end, we focus on a mean field description of steady state properties. In Sec-
tion 3.2.1, we show that cells were characterized by a mainly constant shear modulus.
Thus, shear stress was proportional to cell elongation. Then, in Section 3.2.2, we
study the relaxation of cell elongation. To this end, we use the theoretical framework

2The observed rates of T2 transitions per cell ranged up to 0.016 in dimensionless units (Section 3.1.2,
page 53).
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developed in Chapter 2.

3.2.1 Cellular shear elasticity

Here, we are interested in the cellular shear modulus, which connects the shear stress
nematic σ̃ij to the cell elongation nematic Q̃ij.

3 We define the nematic σ̃ij as the
dimensionless shear stress exerted by the simulation box on the vertex model tissue
(Appendix C.4.1).4 The average cell elongation Q̃ij is defined as in the preceding
chapter (Section 2.2.3).

Focusing on a description of the steady state, we first exclude initial transients. To
this end, we study the time-dependence of σ̃ij and Q̃ij. For the fluctuation amplitude
ΛF = 0.06 and the shear rate γ̇ = 0.2, both quantities are plotted in Fig. 3.6A,B. We
find that both nematics were clearly correlated. After initial transients that lasted for
a time of ca. 5 in dimensionless units, both nematics appeared to reach steady state
values.

We computed the steady state values of the nematics σ̃ij and Q̃ij for all parameter
pairs (ΛF , γ̇). To this end, for a given parameter pair (ΛF , γ̇) and a given simulation
run, we averaged the respective values for all time points t ≥ t0 starting from a
manually determined cut off time t0 > 0. For the example shown in Fig. 3.6A,B, we
chose t0 = 10. Afterwards, we averaged the steady state values of all 100 simulation
runs of the given parameter pair (ΛF , γ̇).

The so-obtained steady state values of σ̃ij and Q̃ij are presented in Fig. 3.6C,D
for varying parameter values ΛF and γ̇. We find that first, σ̃ij and Q̃ij were largely
parallel up to ∼ 0.01π (Fig. 3.6D). Thus, the shear modulus can be represented by a
scalar E with:

σ̃ij = EQ̃ij. (3.4)

Second, the cellular shear modulus was largely independent on Q̃ij and on the fluc-
tuation amplitude ΛF (Fig. 3.6C). We find E ≈ 0.5 (black dashed line in Fig. 3.6C).
Interestingly, for the chosen parameter values Λ0 = 0.12 and Γ = 0.04, this corresponds
to the theoretical elasticity of a hexagonal cell without line tension fluctuations [122].

3.2.2 Fluctuation-dependent elongation relaxation

Here, we study the relaxation of the cell elongation nematic Q̃ij using the simple shear
simulations introduced above. As we have seen in the last section, the shear stress σ̃ij
was mainly proportional to the cell elongation Q̃ij. Thus, studying the relaxation of
cell elongation corresponds to studying the relaxation of shear stress.

3Throughout this work, nematic or nematic tensor denote a symmetric, traceless tensor. For details,
see Appendix A.2.

4The dimensionless shear stress σ̃ij is given in units of KA0.
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Figure 3.6: The cellular shear modulus is largely independent on the fluctuation
amplitude ΛF and on the shear rate γ̇. (A,B) Comparison of the norms (A)
and the angles (B) of the cell elongation Q̃ij (blue solid lines) and of the shear
stress σ̃ij (red solid lines). Angles are defined with respect to the x axis of the
coordinate system defined in Fig. 3.3B. Shown are average values corresponding
to 100 independent simulation runs. The hatched regions show the respective
uncertainties. Parameter values used: ΛF = 0.06 and γ̇ = 0.2. (C,D) Comparison
of steady state norms and angles of Q̃ij and of σ̃ij for varying parameter values ΛF
and γ̇. Each dot represents a parameter pair (ΛF , γ̇). The yellow dots marks the
parameter pair used in panels A and B. (C) Norm of the shear stress |σ̃| depending
on the norm of the cell elongation |Q̃|. The black dashed line represents a slope
of 0.5. (D) Angle between the axes of σ̃ij and Q̃ij . The uncertainties in panels
A-D were computed as explained in Appendix C.4.3. In panel C, the error bars are
not shown, because the uncertainties are smaller than the symbol size.
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Figure 3.7: Decomposition of the cell elongation derivative
DQ̃ij/Dt (green solid lines) according to Eq. (3.5) for simple shear
simulations. Essentially, only the shaer rate ṽij (blue solid lines),
the T1 transitions −T̃ij (red solid lines), and the correlations −D̃ij

(magenta solid lines) contributed. The contributions by cell divi-
sions −C̃ij (cyan dashed lines) and T2 transitions −Ẽij (yellow
dotted lines) could be neglected. All curves are smoothened by
colvolving with a Gaussian with a standard deviation of 0.5 in di-
mensionless units. The hatched regions reflect the standard error
of the mean resulting from averaging the respective quantity over
100 individual simulation runs. Parameter values: ΛF = 0.04 and
γ̇ = 0.5.

Dynamics of cell elongation

In order to characterize the relaxation behavior of cell elongation Q̃ij, we use our
results from Chapter 2. According to Eq. (2.53), the dynamics of Q̃ij can be described
by the following equation:

DQ̃ij

Dt
= ṽij − T̃ij − C̃ij − Ẽij − D̃ij. (3.5)

Here, DQ̃ij/Dt denotes the corotational derivative of Q̃ij. The nematic ṽij denotes the
shear rate and the nematics T̃ij, C̃ij, Ẽij, and D̃ij denote shear contributions by T1
transitions, cell divisions, T2 transitions, and correlations, respectively. All of these
quantities are defined in Section 2.2.3. In Appendix C.4.2, we show how they were
computed in the vertex model simulations.

In order to illustrate Eq. (3.5), we plot these quantities depending on time for the
parameter values ΛF = 0.04 and γ̇ = 0.5 in Fig. 3.7. In the following, we discuss the
individual terms separately. The corotational derivative DQ̃ij/Dt (green solid line)
describes the relaxation of cell elongation. After a time of ca. 7 in dimensionless
units, the system appears to have reached a steady state. Note that in the steady
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state, where Q̃ij is constant, the corotational derivative is still nonzero. According to
Eq. (2.54), the steady state value of DQ̃ij/Dt reads:

DQ̃ij

Dt
= −ω 1

|Q̃|
tanh

(
2|Q̃|

)
εikQ̃kj. (3.6)

Here, ω denotes the average vorticity of the flow field. For the simple shear simulations,
its value is prescribed by the boundary conditions: ω = −γ̇/2 (Appendix C.3.3).
The steady state value of DQ̃ij/Dt corresponds to the shear rate that is necessary to
maintain a constant Q̃ij in the presence of the vorticity ω.

The average shear rate ṽij (blue solid lines) is constant, because it is prescribed by
the boundary conditions (Appendix C.3.3). For a given parameter value γ̇, the shear
rate components are given by ṽxx = 0 and ṽxy = γ̇/2.

The quantities T̃ij, C̃ij, Ẽij, and D̃ij depend on the mechanical properties of the tis-
sue. In order to characterize cell elongation relaxation for vertex model tissue, we need
to understand their behavior. We found that the contributions by cell divisions −C̃ij
(cyan dashed lines) and T2 transitions −Ẽij (yellow dotted lines) could be neglected.
Indeed, this was true for all parameter pairs (ΛF , γ̇): we always found |C̃| . 10−3 and
|Ẽ| . 10−4. In contrast to that, T1 transitions −T̃ij (red solid lines) and correlations
−D̃ij (magenta solid lines) contributed significantly to DQ̃ij/Dt.

A nematic characterizing the relaxation of cell elongation

In order to characterize the relaxation of cell elongation, we need to study the behavior
of T̃ij and D̃ij. For simplicity, we subsume both terms into a single nematic F̃ij:

F̃ij = T̃ij + D̃ij. (3.7)

Thus, the nematic F̃ij effectively describes the relaxation of cell elongation.
In the following, we study the behavior of F̃ij. For simplicity, we choose a description

where F̃ij only depends on the cell elongation nematic:

F̃ij = F̃ij
(
Q̃
)
. (3.8)

We use this as the constitutive equation for F̃ij. Consequently, F̃ij should be parallel
or perpendicular to Q̃ij. This is because except for the axis of Q̃ij, there are no other
directions in Eq. (3.8) that could determine the axis of F̃ij. Moreover, according to
Eq. (3.5), if F̃ij is parallel to Q̃ij, it basically describes a reduction of Q̃ij. Conversely,
if it is perpendicular, it describes an amplification of Q̃ij.

Now, we discuss angle and norm of the relaxation nematic F̃ij separately. First, we
test if F̃ij and Q̃ij were indeed parallel or perpendicular in the simple shear simulations
(Fig. 3.8A). We find that the angles of both nematics deviated by at most 0.03π from
each other. These slight deviations might be due to a more complex constitutive
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Figure 3.8: Characterization of the nematic F̃ij describing the relaxation of cell
elongation and its dependence on cell elongation Q̃ij . (A) Angles of F̃ij (circles)
and Q̃ij (stars) depending on the norm of cell elongation. Each pair of angles
corresponds to a parameter pair (ΛF , γ̇) and is computed from the average of
100 individual simulation runs. The black solid line indicates a theoretical curve
for the case that F̃ij and Q̃ij are exactly parallel or perpendicular to each other
(Eq. (3.9)). Angles are defined with respect to the x axis of the coordinate system
defined in Fig. 3.3B. (B) Norm of F̃ij depending on the norm of Q̃ij . We observe a
smooth transition from plastic behavior for small fluctuation amplitude (blue solid
line) to visco-elastic behavior for large fluctuation amplitude (magenta solid line).
Each circle corresponds to a parameter pair (ΛF , γ̇) and is computed from the
average of 100 individual simulation runs. The uncertainties in both panels were
computed as explained in Appendix C.4.3. They were smaller than the symbol
size.

Table 3.2: Observed time scales of linear visco-elasticity according to Eq. (3.11)
for small shear rates γ̇ � 1 and varying line tension fluctuation amplitude ΛF .
The time scales listed here were obtained from linear fits of the |F̃ |(|Q̃|) data for
small |Q̃| (Fig. 3.8B). Dimensionless units are used (see Section 3.1.2, page 53).

Fluctuation amplitude ΛF Visco-elastic time scale τ
0.06 3.093± 0.076
0.08 0.898± 0.015
0.10 0.332± 0.009
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relation for F̃ij or to the influence of the finite-sized simulation box.

If F̃ij and Q̃ij are parallel to each other, one can derive a theoretical expression
for the angle Φ of cell elongation Q̃ij. Using Eqs. (3.5), (3.6), and (3.7), we obtain
(Appendix C.3.4, Eq. (C.34)):

cos (2Φ) = tanh (2|Q̃|). (3.9)

Note that this relation is independent of the norm of F̃ij. This prediction matched the
observed angles of F̃ij in the simulations (black solid lines and circles in Fig. 3.8A).

Because in the simulations, F̃ij and Q̃ij were mainly parallel to each other, the
relaxation behavior of cell elongation is essentially captured by the norm of F̃ij:

|F̃ | = |F̃ |
(
|Q̃|
)
. (3.10)

In the simulations, the behavior of cell elongation relaxation |F̃ |(|Q̃|) depended on the
fluctuation amplitude ΛF (Fig. 3.8B). For small fluctuation amplitude ΛF = 0.02, cell
elongation relaxation |F̃ | was practically negligible for |Q̃| . 0.4. Thus, cell elongation
and shear stress were not relaxed in this regime and the vertex model tissue showed
elastic behavior. For |Q̃| ≈ 0.45, there was a sudden and steep onset of cell elongation
relaxation |F̃ |. Such a behavior corresponds to a plastic behavior with a yield stress
corresponding to |σ̃| ≈ 0.22, where the cell elasticity E measured above was used.

For large fluctuation amplitude ΛF = 0.10, cell elongation relaxation |F̃ | was largely
proportional to cell elongation |Q̃|. This corresponds to a linear visco-elastic behavior,
where the factor of proportionality defines a time scale τ :

F̃ij =
1

τ
Q̃ij. (3.11)

Such a behavior results in a Maxwell model for shear stress relaxation [157, 158]. This
becomes apparent, when substituting Eqs. (3.5), (3.7), and (3.11) into Eq. (3.4):(

1 + τ
D

Dt

)
σ̃ij = 2ηṽij. (3.12)

Here, we defined the viscosity η = τE/2 and we neglected the shear rate contributions
by cell divisions C̃ij and by T2 transitions Ẽij. Note that the corotational derivative
is defined analogously to Eq. (2.54), here. For small shear rates, we also observe linear
visco-elastic behavior for ΛF = 0.06 and ΛF = 0.08. The corresponding time scales τ
are summarized in Table 3.2.
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3.3 Discussion

In this chapter, we used simple shear simulations of a vertex model to study rheological
properties of epithelia. In particular, we discussed how the shear stress relaxation
behavior depended on fluctuations. To this end, we used our results from Chapter 2.
We found that for a small fluctuation amplitude, the vertex model tissue was in a
plastic regime. Thus, below a yield stress, it deformed mainly elastically, and at the
yield stress, tensions were relaxed. In contrast to that, for large fluctuation amplitude,
stresses relaxed with a rate proportional to the stress itself. This corresponds to a
visco-elastic behavior according to the Maxwell model.

In our simulations, we also implemented fluctuations in order to allow for a finite
viscosity. This is because without fluctuations, the vertex model we used describes
elastic tissue properties, but no time scale. Therefore, fluctuations were included
by adding independent Ornstein-Uhlenbeck noise sources to the line tensions. Since
Ornstein-Uhlenbeck noise possesses a characteristic time scale, a finite viscosity of the
vertex model tissue became possible. Also, in our simulations, line tension fluctuations
prevented the formation of persistent shear bands (Appendix C.3.2).

In this chapter, we used the quasi-static limit, which assumes that the time scale of
mechanical relaxation is much smaller than the time scale of the line tension fluctua-
tions. Alternatively, one could explicitly simulate the mechanical relaxation process.
To this end, one could include cellular friction into the vertex model [58]. We suppose
that the incorporation of such a friction would affect our results by mainly adding a
viscous regime at short time scales.

In ref. [92], the authors also discuss the rheological behavior of biological tissues.
To this end, they experimentally deform a cell aggregate and study the response.
Then, they compare their results to Potts model simulations. Like us, they find a
low fluctuation regime with plastic behavior and a high fluctuation regime with visco-
elastic behavior. Here, we showed that also vertex model tissue can be characterized
by such a behavior.



Chapter 4

Quantitative study of polarity
reorientation in the fruit fly wing

In this chapter, we quantitatively study the experimentally observed reorientation of
Planar Cell Polarity (PCP) in the developing wing of the fruit fly between 16 hAPF and
32 hAPF. To this end, we develop an effective hydrodynamic description for polarity
reorientation, which is based on non-equilibrium descriptions of polar gels [63] and of
liquid crystals [134].

In earlier work [54, 58], a hydrodynamic description for polarity reorientation was
developed, which includes a coupling to tissue shear. This description could account
for the observed reorientation of Core PCP in wild type wings. Furthermore, since
Core PCP is known to guide the direction of wing hairs, the wing hair pattern of wild
type flies could be explained as well. Here, we extend this hydrodynamic description
by a coupling to a second polarity system, which represents the Fat PCP system.
Using this hydrodynamic description, we are able to understand with a single set of
parameters not only the wild type wing hair pattern, but also six other wing hair
patterns created by genetic modifications of the Core PCP system.

In Section 4.1, we present experimental findings that motivate our study. In Sec-
tion 4.2, we develop an effective hydrodynamic description for the reorientation of Core
PCP and present analytical solutions of it. In Section 4.3, we compare analytical and
numerical solutions of our hydrodynamic description to quantified wing hair patterns.
Finally, in Section 4.4, we summarize and discuss our results. Note that most of the
material presented here is also being published elsewhere [159]. Important symbols
appearing in this chapter are listed on page 227.

4.1 Experimentally quantified polarity patterns

In this section, we present experimental data that motivate our theoretical study. It is
organized as follows. In Section 4.1.1, we present the genetic modifications discussed in
this chapter and the altered wing hair patterns they induce. Then, in Section 4.1.2, we
qualitatively discuss the effect of the genetic modifications on Core PCP reorientation.

In order to quantify the wing hair patterns discussed here, we developed an algo-
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rithm, which makes use of a local nematic1 auto-correlation of pixel intensities (Ap-
pendix E.1). Furthermore, we developed algorithms to quantify local PCP vectors
from images with a clonal staining for a PCP protein, where clonal staining refers to
a staining applied only to a random subset of cells within a tissue (Appendix E.2).
We also apply known methods for the quantification of nematics characterizing PCP
and cell shape anisotropy, which we rephrase in Appendix E.3. For details on the
biological procedures, please refer to Appendix E.4 and ref. [159].

4.1.1 Genetic conditions

Whenever the Core PCP system is genetically modified in a particular way, the adult
wing hair pattern is often altered as compared to the wild type pattern. Mostly,
these altered wing hair patterns are largely reproducible. Here, we focus on a genetic
modification that causes an over-production of the Core PCP protein Spiny legs (Sple)
as compared to wild type production rates. We denote such an over-production by
the term over-expression. We are interested in the influence of Sple over-expression
on the dynamics of the Core PCP system and on the adult wing hair pattern.

By virtue of the large genetic toolbox available for the fruit fly, we can manipulate
the over-expression of Sple in a spatio-temporal manner. To study the influence of
Sple over-expression on the Core PCP system, we focus on the following conditions of
space- and time-dependent Sple over-expression:

1. wild type,

2. early, ubiquitous Sple over-expression,

3. late, ubiquitous Sple over-expression,

4. permanent, ubiquitous Sple over-expression,

5. early, posterior Sple over-expression,

6. late, posterior Sple over-expression, and

7. permanent, posterior Sple over-expression.

Here, posterior denotes an over-expression in the posterior compartment only (com-
pare Fig. 1.3Ci) and ubiquitous denotes an over-expression in the entire wing.

The terms early , late, and permanent are meant as follows. Throughout the entire
chapter, we focus on the reorientation of Core PCP during the developmental time
interval between 16 hAPF and 32 hAPF, where 32 hAPF corresponds approximately
to the time of wing hair outgrowth. We denote Sple over-expression permanent, if it

1By a nematic or a nematic tensor, we denote a traceless, symmetric tensor. For details, see
Appendix A.2.
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Figure 4.1: Quantified wing hair patterns for all conditions discussed in this chap-
ter. The arrows indicate the locally averaged direction of wing hairs. (A) Wild
type (condition 1). (B) Early, ubiquitous Sple over-expression (2). (C) Early,
posterior Sple over-expression (5). (D) Late, ubiquitous Sple over-expression (3).
(E) Late, posterior Sple over-expression (6). (F) Permanent, ubiquitous Sple over-
expression (4). (G) Permanent, posterior Sple over-expression (7). The scale bar
in panel A applies to all other panels as well.
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occurs throughout the entire development of the fly. An over-expression is denoted
early , if it coarsely ends with the beginning of the time interval considered. The
notion late over-expression refers to an over-expression that coarsely starts with the
time interval considered. The precise genotypes and experimental protocols for all
conditions are explained in Appendix E.4 (Table E.1) and in ref. [159].

Quantified wing hair patterns for all conditions are shown in Fig. 4.1. The wing hair
patterns for perturbed conditions (conditions 2-7; Fig. 4.1B-G) were clearly distinct
from each other and from the wild type wing hair pattern (condition 1; Fig. 4.1A).

4.1.2 Effects of Sple over-expression

Here, we discuss possible effects of Sple over-expression on the dynamics of Core PCP.
To this end, we first compare polarity patterns in wild type wings to polarity patterns
in wings permanently and ubiquitously over-expressing Sple (conditions 1 and 4).
The wing hair pattern for the over-expression was clearly different from wild type
(Fig. 4.2A,B). To test whether this difference is due to an altered Core PCP pattern,
we quantified the Core PCP patterns at the time of wing hair outgrowth. However, for
technical reasons, we could only quantify the local Core PCP nematic, not the vector
(Appendix E.3.2). We found that for both conditions, the Core PCP patterns were
well reflected by the respective wing hair patterns (Fig. 4.2A-D). These observations
are consistent with the paradigm that Core PCP controls the direction of wing hair
outgrowth.

But why was the Core PCP pattern altered by an over-expression of Sple? In order to
address this question, we compared the quantified Core PCP patterns to the quantified
patterns of cell elongation and Fat PCP nematics at the time of wing hair outgrowth
(Fig. 4.2). We found, that in wild type wings, the nematic Core PCP pattern resembled
the cell elongation pattern, but not the Fat PCP pattern (Fig. 4.2C,E,G). In contrast
to that, in wings over-expressing Sple, the nematic Core PCP pattern resembled the
nematic Fat PCP pattern, but not the cell elongation pattern (Fig. 4.2D,F,H).

To further examine these similarities on a single cell level, we plotted histograms of
angle differences between the cellular nematics of Core PCP, cell elongation, and Fat
PCP (Fig. 4.3). In Fig. 4.3A,B, the cellular angle differences between the nematics of
Core PCP and cell elongation are plotted as histograms, where each curve represents
the histogram for a different range of the norm of the cell elongation nematic. In wild
type wings, there was a clear tendency of Core PCP to be aligned with cell elongation
and this alignment was more pronounced for more elongated cells (Fig. 4.3A). How-
ever, in wings over-expressing Sple, Core PCP showed no clear correlation with cell
elongation (Fig. 4.3B).

In Fig. 4.3C,D, the cellular angle difference between the nematics of Core PCP and
Fat PCP are plotted as histograms, where each curve represents the histogram for a
different range of the norm of the Fat PCP nematic. In wild type wings, Core PCP
showed no clear correlation with Fat PCP (Fig. 4.3C). In contrast to that, in wings



4.1 Experimentally quantified polarity patterns 69

Figure 4.2: Wing hair patterns of adult flies as well as patterns of PCP and cell
shape anisotropy at 32 hAPF. (A,B) Wing hair patterns of (A) wild type wings
and (B) wings permanently and ubiquitously over-expressing Sple. (C,D) Core
PCP pattern (C) in an in vivo wild type wing, quantified from a Stbm staining, and
(D) in a dissected wing ubiquitously over-expressing Sple, quantified from a Fmi
staining. (E,F) Quantified cell elongation pattern in the same wings as in panels
C and D, respectively. (G,H) Fat PCP patterns quantified from a Ds staining (G)
in an in vivo wild type wing and (H) in the same wing as in panels D and F.
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Figure 4.3: Histograms of angle differences between Core PCP, Fat PCP, and cell
elongation nematics on the single cell level in wings at 32 hAPF. (A,B) Histograms
of the angular differences between Core PCP, quantified by Fmi nematics, and
cell elongation nematics. Different curves show different ranges of the norm of
the cell elongation nematics (legend shown in panel B is also valid for panel A).
(C,D) Histograms of the angular differences between Core PCP and Fat PCP,
quantified by Fmi nematics and Ds nematics, respectively. Different curves show
different ranges for the norm of the Ds nematics (legend shown in panel C is
also valid for panel D). (A,C) Histograms for the data of three wild type wings.
(B,D) Histograms for the data of three wings permanently and ubiquitously over-
expressing Sple. Error bars in panels A-D indicate the standard deviation assuming
a Poisson distribution for each bin.
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Figure 4.4: Over-expression of the Core PCP protein Sple made the fruit fly wing
hair pattern dependent on perturbations of the Fat PCP system, whereas the wild
type wing hair pattern remained mainly unchanged. Shown are the wing hair pat-
terns for (A) wild type (condition 1), (B) permanently, posterior over-expression
of Sple (condition 7), (C) flies with a permanently perturbed Fat PCP system by
knockdown of Fat in the posterior compartment, and (D) both, permanent Sple
over-expression and knockdown of Fat in the posterior compartment.

over-expressing Sple, there was a tendency of Core PCP to be aligned with Fat PCP
and this alignment was more pronounced for a stronger intracellular anisotropy of Fat
PCP proteins (Fig. 4.3D).

A possible reason for the data shown in Figs. 4.2 and 4.3 is that in wild type tissue,
Core PCP is coupled to cell elongation more strongly than to Fat PCP; whereas in
tissue over-expressing Sple, Core PCP is coupled more strongly to Fat PCP. To further
test this hypothesis, we modified the Fat PCP system by inducing a knockdown of
Fat in the posterior compartment (Fig. 4.4). This modification alone did not alter the
wild type wing hair pattern much (compare Fig. 4.4A,C). However, in a genetic back-
ground of permanent Sple over-expression in the posterior compartment (condition 7),
knockdown of Fat significantly affected the wing hair pattern (compare Fig. 4.4B,D).
These observations suggest that indeed, Sple over-expression makes the Core PCP
system more dependent on the Fat PCP system.

To investigate which sign a coupling between Core PCP and Fat PCP would have in
tissue over-expressing Sple, we quantified the vector pattern of Fat PCP in a 32 hAPF
wild type wing (Fig. 4.5). The observed pattern was similar to the opposite wing hair
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Figure 4.5: Fat PCP pattern in an in
vivo wild type wing at 32 hAPF, quan-
tified from a clonal Dachs staining. On
the original image, also longitudinal and
cross veins are visible because Dachs-
containing cells moved inside of these
veins. The method used for quantifica-
tion is explained in Appendix E.2.2.

Figure 4.6: Quantified Core PCP pattern at 16 hAPF,
in wings that permanently over-expressed Sple in the
posterior compartment. The pattern shown was quan-
tified from clones with Stbm staining. The polarity of
clones from 5 wings were binned into boxes and aver-
aged. The dashed line indicates the estimated position
of the boundary between anterior and posterior compart-
ments. Quantification of clone polarity and alignment of
wings are explained in Appendix E.2.1.

pattern of a wing ubiquitously over-expressing Sple (Fig. 4.2B). These observations
indicate that Core PCP (pointing towards Fz) and Fat PCP (pointing towards Ds)
tend to be antiparallel in tissue over-expressing Sple.

In order to test whether Sple over-expression also influences the Core PCP pattern
at earlier developmental times, we quantified the Core PCP pattern at 16 hAPF for
the case of permanent, posterior Sple over-expression (Fig. 4.6). In the anterior com-
partment, Core PCP mainly pointed towards the wing margin. This is consistent with
the known early Core PCP pattern in wild type wings (Fig. 1.9A) [54]. However, in
the posterior compartment, Core PCP pointed away from the margin, which is the
opposite direction as compared to the wild type Core PCP pattern at 16 hAPF. Thus,
Sple over-expression significantly affects also the Core PCP patterns at the beginning
of the time interval considered.

4.2 Effective hydrodynamic theory for polarity
reorientation

In this section, we develop a hydrodynamic theory for Core PCP reorientation in the
fruit fly wing. Our theory is motivated on the one hand by an earlier theory for
Core PCP reorientation in the fruit fly wing [54, 58] and on the other hand by our
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experimental findings presented in the preceding section. Although the wing consists
of material that is highly out of thermodynamic equilibrium, we describe it as if it was
close to equilibrium on large length and time scales. In this sense, our hydrodynamic
theory is an effective theory.

We describe Core PCP by a continuous vector field, which we denote by p. Similar
to earlier work [54, 58], p is coupled to a symmetric, traceless tensor field s̃ij, which
reflects an effective tissue shear. Here, in order to also account for possible effects of
Sple over-expression on Core PCP, we extended this approach by a coupling to another
continuous vector field q, which represents Fat PCP. Focusing on the angle dynamics
of the polarity field p, we assume for simplicity that all three fields are normalized to
one: |p| = |s̃| = |q| = 1.2 In the following, we focus on the relations that are relevant
for describing the angle dynamics of the vector field p, assuming that the fields s̃ij
and q are known.

As starting point, in Section 4.2.1, we present an expression for an effective free
energy for the polarity field p. Subsequently, in Section 4.2.2, we develop a generic
equation for the angle dynamics of p. Finally, in Section 4.2.3, we present analytical
expressions for stationary solutions to our theory.

4.2.1 Effective free energy

We start with an expression for an effective free energy for the polarity field p, which
reads

Ftotal =

∫ [
K

2
(∂ipj)(∂ipj) +

M

2
piQ̃ijpj − Zpiqi +

Λ‖
2
pipi

]
d2x+ Fboundary. (4.1)

Here, the symbol K denotes the elastic coefficient describing the tendency of the
polarity field p to align locally. Put differently, the first term corresponds to the Frank
free energy for bend and splay deformation, where both elastic moduli are equal to
K [134, 149]. Since the free energy is minimal for a homogeneous polarity field, the
elasticity K has to be positive.

The second term in Eq. (4.1) describes a coupling between the polarity field p and
the cell elongation nematic Q̃ij (as defined in Chapter 2). The corresponding elastic
coupling coefficient is denoted by M . For negative M , the polarity p tends to align
parallel to the cell elongation Q̃ij; whereas for positive M , polarity tends to align
perpendicular to the cell elongation.

The third term in Eq. (4.1) describes a coupling between the polarity fields p and q
with elastic coefficient Z. For negative Z, both polarity fields tend to align antiparallel;
whereas for positive Z, both polarity fields tend to point in the same direction.

The forth term ensures the normalization of the vector field p, where the coefficient
Λ‖ takes the role of a Lagrange multiplier. We discuss the contributions from the

2The norm of symmetric, traceless tensors is defined in Appendix A.2.2.
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boundary denoted by Fboundary in Appendix G.2.

4.2.2 Generic dynamics of the polarity field

We describe the time evolution of the polarity field p following a non-equilibrium
approach used for polar gels and liquid crystals [63, 134]. In these theories, the
dynamics of the polarity field includes a relaxation of the free energy Ftotal and a
coupling to material shear. In addition, we explicitly allow for possible couplings to
the T1 transitions nematic T̃ij and to the cell division nematic C̃ij, which are defined
in Chapter 2. Taken together, we propose the following polarity dynamics:

Dpi
Dt

= − 1

γ1

δFtotal

δpi
− νṽijpj − νT1T̃ijpj − νCDC̃ijpj. (4.2)

Here, Dpi/Dt denotes the corotational derivative of the polarity field p. It is defined
by

Dpi
Dt

=
∂pi
∂t

+ vj(∂jpi)− ωεijpj. (4.3)

Here, v denotes the velocity field and ωεij = (∂jvi − ∂ivj)/2, which is consistent with
our definitions in Section 2.2.

In Eq. (4.2), the coefficient γ1 describes dissipative relaxation of the polarity field
towards an effective equilibrium. The coefficients ν, νT1, and νCD describe reactive
couplings to the shear rate ṽij, to the T1 transition nematic T̃ij, and to the cell division
nematic C̃ij, respectively.

Effective nematic coupling

Inserting Eq. (4.1) into Eq. (4.2) yields the following bulk dynamics of the polarity
field p:

Dpi
Dt

= −ks̃ijpj +
Z

γ1

qi +
1

γ1

∂j

(
K∂jpi

)
−

Λ‖
γ1

pi. (4.4)

Here, we introduced the scalar k and the nematic s̃ij with norm one |s̃| = 1. They are
defined such that:

ks̃ij =
M

γ1

Q̃ij + νṽij + νT1T̃ij + νCDC̃ij. (4.5)

Thus, ks̃ij represents a coupling to an effective shear field, where the normalized
nematic s̃ij represents the shear axis and k is a combination of coupling strength
and shear rate. This effective shear field encompasses cell elongation, tissue shear,
T1 transitions, and cell divisions. Such an effective shear field is motivated by our
observation that in the fruit fly wing, all four nematic tensors on the right hand side of
Eq. (4.5) are mostly parallel or perpendicular to each other (Section 2.3.2). Therefore,
we could not clearly separate their individual contributions to polarity reorientation.
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Simplified polarity angle dynamics

Since p, s̃ij, and q are normalized quantities, Eq. (4.4) can be rephrased in terms of
their respective angles ψ, θ, and φ. For a given coordinate system, they are defined
by:

p =

(
cosψ
sinψ

)
, q =

(
cosφ
sinφ

)
, and s̃ =

(
cos (2θ) sin (2θ)
sin (2θ) − cos (2θ)

)
. (4.6)

Then, Eq. (4.4) can be transformed into the following polarity angle dynamics:

∂ψ

∂t
= k sin

(
2[ψ − θ]

)
− ζ sin

(
ψ − φ

)
+ κ∂i∂iψ, (4.7)

Here, we call k the nematic coupling coefficient and ζ = Z/γ1 the polar coupling
coefficient. The coefficient κ = K/γ1 quantifies the tendency of the polarity field p
to align locally.3 Note that here, convection is neglected because the velocity field is
mainly perpendicular to gradients in the polarity angle. We also neglect the corota-
tional term, which is discussed in Appendix F.6.1. Furthermore, the elasticity K is
assumed to be homogeneous. Corrections emerging from inhomogeneities in K are
discussed in Appendix F.6.3.

Invariances

In order to simplify the later discussion of stationary solutions, we shortly discuss
some invariances of the polarity angle dynamics, Eq. (4.7). By construction, the angle
dynamics shows a continuous rotation-invariance. In addition, it shows three discrete
invariances. These are invariances with respect to the following transformations:

φ 7→ φ+ π, ζ 7→ −ζ; (4.8)

φ 7→ φ+ π, ψ 7→ ψ + π; (4.9)

θ 7→ θ + π/2, k 7→ −k. (4.10)

Here, each line corresponds to a separate invariance of Eq. (4.7). The first two in-
variances state that a sign flip of q corresponds to either a sign flip of ζ or a sign flip
of p. The third invariance states that a rotation of the effective shear axis by π/2
corresponds to a sign flip of k.

4.2.3 Stationary solutions

Here, we discuss stationary solutions of the polarity angle dynamics Eq. (4.7). In par-
ticular, we present analytical expressions for the homogeneous solutions. Furthermore,
we analytically solve the one-dimensional case, which assumes homogeneity of ψ in

3In Appendix D, we derive values for κ by coarse-graining a cellular Core PCP model.
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Figure 4.7: Homogeneous stationary solutions of the polarity dynamics Eq. (4.7)
and their stability with respect to homogeneous perturbations. For each value of
ζ/|k|, the stationary angle ψ is shown with respect to the angle of the nematic
coupling θ. Here, the angle of q is given by φ − θ = −π/2. The green solid
lines represent linearly stable solutions and the red dashed lines represent linearly
unstable solutions. (A) Negative nematic coupling coefficient k < 0. (B) Positive
nematic coupling coefficient k < 0.

one direction. For both cases we assume time-independent and homogeneous angles φ
and θ with particular relative orientations of φ− θ = zπ/2, where z is an integer. In
Section 4.3, we compare the stationary solutions discussed here with experimentally
quantified wing hair patterns.

Homogeneous stationary solutions

We look for stationary solutions of the equation

dψ

dt
= k sin

(
2[ψ − θ]

)
− ζ sin

(
ψ − φ

)
, (4.11)

where φ− θ = zπ/2 for integer z. Here, we discuss the case z = −1. For other values
of z, the stationary states can be constructed using the invariances in Eqs. (4.8)-(4.10)
(see also Table F.1 on page 194).

For z = −1, i.e. for φ − θ = −π/2, the stationary solutions in terms of ψ − θ are
depicted in Fig. 4.7 (see also Table F.1). Interestingly, for |ζ/k| ≥ 2, the polar coupling
completely shadows the nematic coupling in the sense that the stationary states and
their stability are the same as in the absence of a nematic coupling (|ζ/k| → ∞). Only
for weak polar coupling |ζ/k| < 2, the nematic coupling influences the stationary states
and their stability.
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Figure 4.8: One-dimensional stationary solu-
tions of the angle dynamics Eq. (4.7), where
polar coupling is neglected (ζ = 0) and the
nematic coupling coefficient is negative k < 0.
The general analytical expression of the station-
ary solutions are given by Eq. (4.13). Shown are
the curves for θ = 0, n = 1, and three different
values for the parameter m.

Inhomogeneous one-dimensional stationary solutions

One-dimensional stationary solutions of Eq. (4.7) correspond to solutions of the ordi-
nary differential equation

∂2ψ

∂y2
= −k

κ
sin
(
2[ψ − θ]

)
+
ζ

κ
sin
(
ψ − φ

)
, (4.12)

where homogeneity of ψ in x direction is assumed. The general solution consists
of many cases and is systematically presented in Appendix F.1.1. Here, we merely
discuss the solutions for the two special cases of nematic coupling only (ζ = 0) and
polar coupling only (k = 0).

Nematic coupling only For nematic coupling only, i.e. for ζ = 0 and k 6= 0, all
solutions to Eq. (4.12) can be expressed as

ψ(y) = θ +
nπ

2
+ am

(
y − y0

mλ

∣∣∣∣m). (4.13)

Here, the integer n is even for k > 0 and odd for k < 0. The function am denotes
the inverse of the incomplete elliptic integral of the first kind [160]. It depends on
(y−y0)/mλ and on the so-called modulus m, where y0 and m are integration constants.
The stationary solution contains a characteristic length scale λ, which is defined by

λ =

(
κ

2|k|

)1/2

. (4.14)

It compares the relative tendency of the polarity field p to align locally to the strength
of nematic coupling. We call λ the characteristic nematic length scale. For a strong
nematic coupling k, the nematic length scale is small; while for a strong local polarity
alignment κ, the length scale is big.

The shape of the general solution in Eq. (4.13) depends on the value of m. In



78 Chapter 4: Quantitative study of polarity reorientation in the fruit fly wing

Fig. 4.8, the stationary solution for k < 0 is shown for three different values of m. For
|m| < 1, the solution is in general quasi-periodic (green dashed line); for |m| > 1, the
solution is in general periodic (blue dotted line); and for |m| = 1, the solution is in
general monotonic and asymptotically approaches multiples of π (red solid line). For
|m| 6= 1, the period is given by multiples of the first complete elliptic integral, which
diverges for |m| → 1 [160]. As illustrated by Fig. 4.8, stationary solutions may have
plateaus, where ψ − θ takes values close to multiples of π (for k < 0); or multiples
of π plus π/2 (for k > 0). Note that these angles correspond to the stable stationary
states for the homogeneous case with ζ = 0, respectively (Fig. 4.7).

Polar coupling only Similarly, for polar coupling only, i.e. for k = 0 and ζ 6= 0, the
general form of the stationary solution is given by

ψ(y) = φ+ nπ + 2am

(
y − y0

mµ

∣∣∣∣m). (4.15)

Here, the integer n is even for ζ < 0 and odd for ζ > 0. The scalars y0 and m are
integration constants, which may take any real value. Again, the stationary solution
contains a characteristic length scale µ, which is defined by

µ =

(
κ

|ζ|

)1/2

. (4.16)

It compares the tendency of the polarity field p to align locally to the strength of polar
coupling. We call µ the characteristic polar length scale. For a strong polar coupling
ζ, the polar length scale is small; while for a strong local polarity alignment κ, it is
big. Note that the stationary solution for polar coupling only, Eq. (4.15), shares main
features with the stationary solution for the case of nematic coupling only, Eq. (4.13).

General solution The general solution presented in Appendix F.1.1 contains both
length scales, λ and µ, as parameters. Also, it depends on the sign of the coefficients
of nematic coupling k and polar coupling ζ. In Section 4.3, we compare the station-
ary solutions presented here to observed wing hair patterns in order to obtain the
characteristic length scales λ and µ, and the signs of the coupling coefficients k and ζ.

4.3 Comparison of theory and experiment

Here, we compare the experimentally obtained wing hair patterns to solutions of our
hydrodynamic theory for polarity reorientation. To this end, we first define a coordi-
nate system for fruit fly wings, which is based on wing vein positions (Fig. 4.9A). Note
that recent work shows that for a given genotype and a given temperature, the posi-
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Figure 4.9: Wing coordinate system and assumed couplings of the polarity field
ψ. (A) In each fruit fly wing, we define a coordinate system with respect to wing
veins. The origin is located at the intersection of vein L4 with the ACV (compare
Fig. 1.4). The x axis also passes the distal end of L4. The y axis is defined to
be perpendicular to the x axis. We define the length unit λ0 by the distance of
the distal end of vein L5 from the x axis. Also indicated is a line (red solid line)
along which we later plot the polarity angle ψ. The angles ψ, θ, and φ are zero if
they point in positive x direction, and they increase in counter-clockwise direction.
(B) The assumed angle field θ, which reorients ψ via a nematic coupling (compare
Eq. (4.7)). (C) The assumed angle field φ, which reorients ψ via a polar coupling
(compare Eq. (4.7)). The field φ flips at the vein L3 (red solid line).

tions of fruit fly wing veins vary on the order of a single cell diameter [21]. To account
for variations in wing size, we also define a reference length λ0 from vein positions.

In our hydrodynamic description for the reorientation of the polarity angle ψ, we
define all angles with respect to the coordinate system in Fig. 4.9A. To extract key
features, we assume that the angle of the effective nematic coupling θ is zero every-
where, which means that it is oriented along the proximo-distal axis (Fig. 4.9B). This
is based on the experimentally quantified cell elongation pattern (Fig. 4.2E) and on
our quantifications in Section 2.3.2. Also, we use a simplified angle field φ for the polar
coupling, which is parallel to the y axis everywhere and flips at vein L3 (Fig. 4.9C).
This pattern is based on the observed Fat PCP pattern at 32 hAPF (Fig. 4.5).

In our theoretical description, we assume that the values of the dynamic coefficients
k, ζ, and κ depend on the genetic conditions, which may vary in space and time.
In particular, we are interested in how Sple over-expression affects these dynamic
coefficients. For wild type tissue, we denote these coefficients by kwt, ζwt, and κwt; and
for tissues over-expressing Sple, we denote them by kso, ζso, and κso.

In order to obtain values for these coefficients, we first compared experimentally
quantified wing hair patterns to one-dimensional stationary solutions of our theory
(Section 4.3.1). Afterwards, in Section 4.3.2, we numerically solve the polarity angle
dynamics in two dimensions and for a time that corresponds to the pupal stage be-
tween 16 hAPF and 32 hAPF. Then, we compare the final polarity patterns from our
numerical solutions to the corresponding quantified wing hair patterns.
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4.3.1 Fits of wing hair profiles to stationary solutions

As a first step for comparing our theory with experimental data, we fitted quantified
wing hair angles to stationary solutions of the polarity angle dynamics. Because
we noticed that the observed wing hair patterns varied mainly along the y axis (see
Fig. 4.1), we plotted the wing hair angles along the line shown in red in Fig. 4.9A.
Consistent with that, we fit these wing hair angle profiles to stationary solutions of
our theory, where we assume homogeneity in x direction (see Section 4.2.3). The fits
are shown in Fig. 4.10 and discussed in the following. Technical details on the fitting
procedure are presented in Appendix F.2.

Characteristic length scales

Our fits allowed us to measure the characteristic nematic and polar length scales λ
and µ, which appear as parameters in the stationary solutions. With respect to the
observed wing hair patterns, these length scales represent characteristic distances over
which the wing hair direction varies smoothly. In terms of our hydrodynamic theory,
these length scales reflect quotients of the dynamic coefficients k, ζ, and κ (as stated
by Eqs. (4.14) and (4.16)). Since the dynamic coefficients depend on the genetic
conditions, the characteristic length scales do so as well. We denote these length
scales in wild type-like tissue by λwt and µwt, and in tissue over-expressing Sple by λso

and µso.
Note that we also studied genetic conditions with time-dependent Sple over-expression.

In order to fit the wing hair profile of such genetic conditions, we chose those length
scale parameters for the fit (either λwt and µwt or λso and µso) that reflected the spatial
distribution of Sple over-expression at 32 hAPF. This corresponds to the time when
the wing hairs emerge. Which set of coefficients and length scales was used in each
compartment of a given genetic condition is listed in Table 4.2.

Wild type-like conditions

First, we discuss the wild type length scales λwt and µwt as well as the signs of the
coefficients kwt and ζwt. Observed wild type wing hair patterns were largely homoge-
neous (Fig. 4.1A) with a wing hair angle corresponding to ψ ≈ 0. We compare this to
homogeneous stationary states of our hydrodynamic theory. In the region posterior to
vein L3, we have φ−θ = −π/2 (Fig. 4.9B,C). We find that in order for a homogeneous
stationary state close to ψ = 0 to be stable with respect to homogeneous perturba-
tions, the polar coupling has to be weak (|ζwt/kwt| � 1) and the nematic coupling
coefficient kwt has to be negative (Fig. 4.7).4 This is consistent with our experimental
observation that a perturbation of the Fat PCP system did not alter the wild type
wing hair pattern much (Fig. 4.4A,C). Thus, we chose kwt < 0 and, for simplicity,

4A similar argument applies for the region anterior to vein L3.
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Figure 4.10: Wing hair angles (blue solid lines) plotted along the line shown in red
in Fig. 4.9A; and fits (red solid lines and green dashed lines) to stationary solutions
of the ψ dynamics Eq. (4.7). In panels C-F, two different fits are shown. One
fit assumes nematic coupling only for Sple over-expression (kso > 0 and ζso = 0;
green dashed lines) and the other fit assumes a dominating polar coupling for Sple
over-expression (kso < 0 and ζso = 4kso; red solid lines). For each plot, the data
of at least eight wings were taken into account. The blue hatched region indicates
the standard deviation of quantified wing hair angles. The y coordinate is given
in terms of λ0, which is defined in Fig. 4.9A. Details on the wing hair angle plots
and on the fitting are presented in Appendices E.1.2 and F.2, respectively.
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Table 4.1: Characteristic length scales obtained from the fits shown in Fig. 4.10.
Listed are all conditions of ubiquitous (“ubi.”) and of posterior (“post.”) Sple
over-expression. The length scales are given for two cases depending on the Sple
over-expression parameter values. For the case of nematic coupling only (kso > 0,
ζso = 0; green dashed lines in Fig. 4.10) and for the case of dominating polar
coupling (kso > 0, ζso = 4kso; red solid lines in Fig. 4.10). For early over-
expression conditions, both fits are identical, since the stationary solutions do not
depend on ζso and kso. All length scales are given in terms of λ0, which is defined
in Fig. 4.9A.

Condition Fit
nematic coupling

only
kso > 0, ζso = 0

dominating
polar coupling

kso < 0, ζso = 4kso

λwt/λ0 λso/λ0 λwt/λ0 µso/λ0

early ubi. (2) Fig. 4.10A 0.061 – 0.061 –
early post. (5) Fig. 4.10B 0.071 – 0.071 –
late ubi. (3) Fig. 4.10C – 0.170 – 0.179

permanent ubi. (4) Fig. 4.10E – 177.4 – 0.388
late post. (6) Fig. 4.10D 0.061 0.118 0.072 0.141

permanent post. (7) Fig. 4.10F 0.065 0.152 0.070 0.158

ζwt = 0. Thus, we assume no polar coupling in wild type tissue, corresponding to
µwt →∞.

In order to determine the nematic length scale under wild type conditions λwt, we
fitted the wing hair angles for both early Sple over-expression conditions (conditions
2 and 5) to the stationary solution of the ψ dynamics (Fig. 4.10A,B; fit function in
Eq. (4.13)). For both conditions, the wing hair patterns were largely well described
by the fit functions. Also, we found similar values for the nematic length scale λwt ≈
0.07λ0 (Table 4.1).

Sple over-expression conditions

Now, we discuss how Sple over-expression changes the length scale parameters and
the signs of k and ζ. We found that different values for the length scales λso and µso

and different signs of ζso and kso were consistent with the quantified wing hair data
(for details, see Appendix F.2.3). Here, we focus on two example cases:

1. We found that all wing hair profiles could be fitted by considering nematic
coupling only (ζso = 0), where the nematic coupling coefficient for Sple over-
expression kso was positive (Fig. 4.10C-F, green dashed lines). In this case, Sple
over-expression would change the sign of the nematic coupling coefficient k. The
parameter values for the nematic length scale λso that resulted from these fits
are listed in Table 4.1.
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2. All wing hair profiles could also be fitted assuming a dominating polar coupling
for Sple over-expression with negative coupling coefficients ζso < 0 and kso < 0.
For the fits shown in Fig. 4.10C-F (red solid lines), we set ζso = 4kso. With
Eqs. (4.14) and (4.16) follows that λso =

√
2µso, which we used as a restriction

for these fits. The resulting parameter values for the polar length scale µso are
listed in Table 4.1.

For each of these two cases, most wing hair patterns were largely well described by the
fit curves and all length scales were mainly similar among different genetic conditions
(Table 4.1).

The main exception to this was the case of permanent, ubiquitous over-expression
(condition 4). In this case, we first had to restrict the fit to positions y > −0.6λ0,
because close to the distal end of vein L5, the condition of homogeneity in x direc-
tion was not fulfilled in the quantified wing hair patterns.5 Moreover, the fit curves
(Fig. 4.10E) captured main features of the quantified wing hair angles only badly, in
particular around the position y = 0. These deviations could be due to a possible
additional effect of wing veins on Core PCP reorientation (Appendix F.6.2). Because
of all this, we ignore the length scales from the corresponding fits in the following.

Summary

To summarize, our comparison of wing hair patterns to stationary states of the po-
larity angle dynamics suggested that in wild type tissue, Core PCP is mainly re-
oriented by a nematic coupling with kwt < 0 and a characteristic length scale of
λwt/λ0 = 0.06 . . . 0.07. For tissue over-expressing Sple, several parameter values were
consistent with our observations. One possibility is that, Sple over-expression induces
a dominating nematic coupling with a positive coefficient (kwt > 0 and for instance
ζso = 0). Then, our fits yielded a nematic length scale of λso/λ0 = 0.12 . . . 0.17. Oth-
erwise, if Sple over-expression does not change the sign of the nematic coupling, our
fits suggest that polar coupling dominates with ζso < 0. Then, we found a polar length
scale of µso/λ0 = 0.14 . . . 0.18 (for ζso = 4kso).

4.3.2 Numerical solution of the polarity reorientation dynamics

In this section, we compare quantified wing hair patterns to two-dimensional solutions
of our hydrodynamic theory. To this end, we numerically solved the dynamic equation
Eq. (4.7) for the polarity angle ψ on a domain that was defined by a wild type wing
blade at 32 hAPF (for details, see Appendix F.3). We focused on a time interval that
corresponds to the developmental times between 16 hAPF and 32 hAPF. Note that
the end of this time interval corresponds to the start of Core PCP-controlled wing

5Close to the end of vein L5, the quantified wing hair direction fields showed a topological point
defect for this genetic condition.
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Figure 4.11: Initial conditions used for the numerical solution of Eq. (4.7) for three
different genetic conditions. Shown are coarse-grained versions of the initial ψ field
used. The precise functional form of all three patterns is given in Appendix F.3.1.

hair outgrowth. Therefore, we compare the final states of our numerical solutions
to quantified wing hair patterns. However before that, we discuss initial conditions
and determine coefficients that appear in the polarity angle dynamics. The boundary
conditions are discussed separately (Appendix G, Eq. (G.10)).

Initial conditions

As initial angle field ψ for our numerical solutions, we used the patterns depicted in
Fig. 4.11. They are based on quantified Core PCP patterns at 16 hAPF. Here, we
shortly discuss these patterns (for details, see Appendix F.3.1).

The wild type Core PCP pattern at 16 hAPF points towards the wing margin ev-
erywhere (Fig. 1.9A) [54]. Therefore, we chose a simplified initial condition with
ψIC
A = π/4 in the anterior compartment and ψIC

P = −π/4 in the posterior compart-
ment (Fig. 4.11A). In between both compartments, the polarity angle bends over.

For permanent, posterior over-expression of Sple, we used the initial condition shown
in Fig. 4.11C. This pattern is based on the observed Core PCP pattern at 16 hAPF
(Fig. 4.6). In the anterior compartment, this pattern corresponded to the wild type
Core PCP pattern. However, in the posterior compartment, Core PCP was mainly
flipped as compared to the wild type pattern. Therefore, we chose ψIC

A = π/4 and
ψIC
P = −5π/4 for this case. Consistent with that, for ubiquitous Sple over-expression,

we also flipped the initial polarity in the anterior compartment to ψIC
A = −3π/4

(Fig. 4.11B).

For all numerical solutions presented here, we used one of the patterns in Fig. 4.11
as initial state. More precisely, for a given genetic condition (1-7), we chose the initial
state that reflects the corresponding space-dependent Sple over-expression at early
times (Table 4.2).
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Figure 4.12: Deviation χ2 between numerical
solutions to Eq. (4.7) and quantified time-
dependent Core PCP data in wild type wings.
The deviation χ2 is defined in Eq. (4.17) and is
computed for 200 different values of kwt. The
inset shows a magnification of the red box. For
the inset, the deviation χ2 is computed for 200
different values of kwt.

Determination of the nematic coupling coefficient in wild type tissue

In Section 4.3.1, we set ζwt = 0 and we determined the length scale λwt. Here, we show
how we determined the nematic coupling coefficient kwt. This is the missing coefficient
necessary to describe polarity reorientation in wild type tissue.

In order to determine kwt, we observed the reorientation of the Core PCP pattern
in a developing wild type wing. Therefore, for the time interval between 16 hAPF and
32 hAPF, we quantified the nematic Core PCP pattern in the whole wing blade once
per hour. The so-obtained Core PCP patterns were fitted to numerical solutions of
Eq. (4.7). For the numerical solutions, we varied kwt and assumed ζwt = 0 and λwt =
0.07λ0, where for a given value of kwt, we computed κwt according to Eq. (4.14). The
initial condition was given by the quantified nematic Core PCP pattern at 16 hAPF,
where the vector direction of the polarity was fixed by hand. In order to quantify the
deviation from the experimental data, we define

χ2 =
1

NtNi

∑
t,i

[
1− cos

(
2[ψi(t)− ψiexp(t)]

)]
, (4.17)

where the sum runs over all Nt = 16 time points between 17 hAPF and 32 hAPF
and all Ni of boxes used for the numerical solution. The angles ψi(t) and ψiexp(t)
denote the polarity angles of the numerical solution and of the quantified nematic
pattern, respectively, in box i and at time t. χ2 varies between zero and two. For
χ2 = 0, theoretical and experimental polarity are always parallel to each other; whereas
for χ2 = 2 theoretical and experimental polarity are always perpendicular to each
other. Varying kwt, we found that χ2 was minimal for approximately kwt = −0.1 h−1

(Fig. 4.12).

In Appendices F.6.1 and F.6.1, we use this method to study the influence of addi-
tional assumptions on the polarity angle dynamics.
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Table 4.2: Initial conditions and dynamic coefficients (either kwt, ζwt, and κwt; or
kso, ζso, and κso) used for the numerical solution of Eq. (4.7). Listed are the wild
type condition and all conditions of ubiquitous (“ubi.”) and posterior (“post.”)
Sple over-expression. The possible initial conditions are “wild type” (Fig. 4.11A),
“ubi. over-expression” (Fig. 4.11B), and “post. over-expression” (Fig. 4.11C).
The dynamic parameters are listed separately for the region corresponding to the
posterior compartment (y < 0) and for the region corresponding to the anterior
compartment (y > 0).

Condition Initial condition
posterior

region
anterior
region

wild type (1) wild type wild type wild type
early ubi. (2) ubi. over-expression wild type wild type
late ubi. (3) wild type over-expression over-expression

permanent ubi. (4) ubi. over-expression over-expression over-expression
early post. (5) post. over-expression wild type wild type
late post. (6) wild type over-expression wild type

permanent post. (7) post. over-expression over-expression wild type

Comparison to quantified wing hair patterns

Here, we show comparisons of final states of our numerical solutions to the observed
wing hair patterns. For the numerical solution corresponding a given genetic condition,
we chose the coefficients k, ζ, and κ according to the space- and time-dependent
pattern of Sple over-expression (Table 4.2).

Wild type-like conditions First, we discuss the genetic conditions that can be de-
scribed by wild type coefficients only. These comprise the wild type case (condition 1)
and the early over-expression cases (conditions 2 and 5). We used the parameter values
kwt = −0.1 h−1, ζwt = 0, and λwt = 0.07λ0, where κwt is computed using Eq. (4.14).
The comparison of the numerical solutions with the observed wing hair patterns is
shown in Fig. 4.13. We found that in all three cases, the numerical solutions largely
matched the observed wing hair patterns.

However, we found minor deviations in both cases of early over-expression. In distal
regions in the quantified wing hair patterns for the early, posterior over-expression case
(Fig. 4.13G), polarity bended over larger length scales than it did in the corresponding
numerical solution. This could be due to effective inhomogeneities in k or κ.

In the quantified wing hair patterns for the early, ubiquitous over-expression case
(Fig. 4.13D), there was a topological defect distally, whereas in the corresponding
numerical solution, this defect was effectively shifted onto the margin. Furthermore,
proximally in these wings, polarity was not everywhere oriented along the proximo-
distal axis. This could be due to an incomplete decay of Sple molecules in this region,
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Figure 4.13: Comparison of (A,D,G) observed wing hair patterns to (B,E,H)
final states of the numerical solution of Eq. (4.7). Shown are those conditions
that could be completely described by wild type coefficients in our theory (see
also Table 4.2). The parameter values used are listed in Table 4.3. (C,F,I) For
a more quantitative comparison, we plot quantified wing hair angles (blue solid
line) and final polarity angles ψ of our numerical solutions (red solid line) along
the line shown in red in Fig. 4.9A. For the wing hair angles, we used the data of
at least eight wings for each genetic condition. The blue hatched regions indicate
the standard deviation of the wing hair angles as defined in Appendix E.1.2.
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which would then still have an influence on Core PCP reorientation.

Moreover, in both cases of early over-expression (Fig. 4.13D,G), there was very
proximally and posteriorly a region where wing hair polarity pointed distally and
posteriorly and was thus different from the hair polarity observed more distally. We
speculate that this could be due to some additional influence by hinge tissue, which is
not taken into account in our theoretical description.

Sple over-expression conditions Now, we discuss the conditions where during the
time interval considered, Sple over-expression occurs. Using numerical solutions, we
found that many combinations for the values of kso and ζso reproduced the observed
wing hair patterns. However, we asked for the simplest scenario and considered two
cases that were similar to those discussed for the fits of wing hair angles (see preceding
section). The first case considers nematic coupling only (ζso = 0), where Sple over-
expression flips the sign of the nematic coupling coefficient to kso > 0. In contrast
to that, the second case assumes no influence of Sple over-expression on the nematic
coupling coefficient, such that kso = kwt. Instead, Sple over-expression is assumed to
induce a dominant polar coupling with ζso < 0.

First, we discuss the case of nematic coupling only (ζso = 0). Consistent with the
length scales found from the fits (Table 4.1), we chose λso = 0.15λ0. Furthermore,
we chose the particular value kso = 0.1 h−1 and compared the results of the numerical
solutions to the wing hair patterns (Fig. 4.14). We found that in particular in the cases
of late over-expression (conditions 3 and 5; Fig. 4.14A-C,G-I), the numerical solutions
clearly disagreed with the observed wing hair patterns. This was also true for other
values of kso. Therefore, a nematic coupling alone could not explain the experimental
data.

For the case where Sple over-expression induces a dominant polar coupling without
affecting the nematic coupling, many values of ζso < 0 largely reproduced the observed
wing hair patterns. As an example, we choose ζso = −0.4 h−1, here. From Eqs. (4.14)
and (4.16) follows that λso/µso =

√
2. For this ratio, the fits dicussed above yielded an

average polar length scale of µso = 0.16λ0. Table 4.3B lists the resulting parameter
values and Fig. 4.15 compares the numerical solutions to the observed wing hair pat-
terns. For all four genetic conditions, our theory could largely reproduce the observed
wing hair patterns.

We found minor deviations for the case of permanent, ubiquitous over-expression,
where very distally, the final state of the numerical solution pointed posteriorly while
the wing hair directions were oriented anteriorly, there (Fig. 4.15D,E). This could be
due to the initial condition, which could not be determined via quantification but
by analogy to other quantified patterns (see above). Also, close to vein L4 (y ≈ 0),
the wing hair pattern pointed more proximally than the final state of the numerical
solution did (Fig. 4.15F). This could be due to an additional effect of wing veins, which
we did not take into account in our description (see also Appendix F.6.2).
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Figure 4.14: Comparison of (A,D,G,J) observed wing hair patterns to
(B,E,H,K) final states of the numerical solution of Eq. (4.7) assuming a ne-
matic coupling only for Sple over-expression (ζso = 0). The parameter values
used are listed in Table 4.3A. (C,F,I,L) For a more quantitative comparison, we
plot quantified wing hair angles (blue solid line) and final polarity angles ψ of our
numerical solution (green dashed line) along the line shown in red in Fig. 4.9A.
For the wing hair angles, we used the data of at least eight wings for each genetic
condition. The blue hatched regions indicate the standard deviation of the wing
hair angles as defined in Appendix E.1.2.
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Figure 4.15: Comparison of (A,D,G,J) observed wing hair patterns to
(B,E,H,K) final states of the numerical solution of Eq. (4.7) assuming a domi-
nating polar coupling for Sple over-expression with ζso < 0. The parameter values
used are listed in Table 4.3B. (C,F,I,L) For a more quantitative comparison, we
plot quantified wing hair angles (blue solid line) and final polarity angles ψ of our
numerical solution (red solid line) along the line shown in red in Fig. 4.9A. For
the wing hair angles, we used the data of at least eight wings for each genetic
condition. The blue hatched regions indicate the standard deviation of the wing
hair angles as defined in Appendix E.1.2.
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Table 4.3: Parameter values for the dynamic coefficients used for the numerical
solution of Eq. (4.7). The length scales are given for the case of nematic coupling
only (Fig. 4.14) and for the case of a dominating polar coupling in Sple over-
expressing tissue (Fig. 4.15). For wild type and early over-expression conditions
(Fig. 4.13), both cases are identical. All lengths are given in terms of λ0, which is
defined in Fig. 4.9A.

(A) nematic coupling only, Sple over-expression flips the sign of k
kwt ζwt κwt kso ζso κso

−0.1 h−1 0 0.98× 10−3 λ2
0 h−1 0.1 h−1 0 4.5× 10−3 λ2

0 h−1

(B) dominating polar coupling in Sple over-expressing tissue
kwt ζwt κwt kso ζso κso

−0.1 h−1 0 0.98× 10−3 λ2
0 h−1 −0.1 h−1 −0.4 h−1 10.24× 10−3 λ2

0 h−1

Some topological defects in the observed wing hair patterns could not be captured
by our numerical solutions. For late, posterior over-expression, there was a defect pair
in the middle of the wing (Fig. 4.15G), whereas in the cases of permanent, posterior
and permanent, ubiquitous over-expression (Fig. 4.15D,J), there were defects distally
between veins L5 and L4. Such defects could be created by inhomogeneities in the
polarity dynamics, which we do not assume here.

Note that for these numerical solutions, the value of κso was ten-fold increased as
compared to the wild type value κwt. However, an increase of κ due to Sple over-
expression is consistent with our observation of a significantly increased intensity of
the Core PCP protein Strabismus at cell membranes in tissue over-expressing Sple
[159]. Since Strabismus is a trans-membrane protein, this could indeed indicate an
increased effective tendency of Core PCP to align locally.

4.4 Discussion

In this chapter, we developed an effective hydrodynamic theory that describes the
reorientation of Core PCP in the developing fruit fly wing. Since the Core PCP
system is known to control the direction of wing hair outgrowth, we tested our theory
by comparison to observed wing hair patterns of adult flies. To this end, we newly
developed an algorithm to quantify the pattern of local wing hair direction in fly wing
images. We showed that our theory could not only reproduce the quantified wing hair
patterns of wild type flies. Moreover, it was for the first time possible to theoretically
reproduce the wing hair patterns of genetically modified flies.

We showed that in wild type tissue, Core PCP reorientation could be accounted for
by a coupling to an effective shear field. This effective shear field encompasses possible
couplings to the actual tissue shear, cell elongation, T1 transitions, and cell divisions.
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Here, we used a simplified effective shear field that is homogeneously oriented along
the long axis of the wing. We showed that a coupling strength of k = −0.1 h−1

described best the observed reorientation of Core PCP in a wild type wing. Although
we could not differentiate between the individual effects possibly contributing to the
effective shear field, hints indicated that cell elongation could play a dominant role
(Appendix F.6.1). We also compared our description to earlier work, where Core
PCP was coupled to a measured shear field with a coupling coefficient of ν = −3
(Appendix F.6.1) [54, 58].

In our hydrodynamic description, we described the tendency of Core PCP to align
locally in wild type tissue by the parameter κwt. We obtained a value for this pa-
rameter by comparing wing hair patterns to our hydrodynamic theory. As an inde-
pendent check, we obtained that the order of magnitude of κwt is consistent with the
turnover time scale of sub-cellular Core PCP clusters, which was measured elsewhere
(Appendix F.5) [36, 37, 54].

The genetic modification considered here was the over-expression of the Core PCP
protein Sple, where we varied the location and time interval of over-expression. We
discussed possible effects of Sple over-expression on the dynamics of Core PCP reori-
entation. We found that in contrast to wild type tissue, in tissue over-expressing Sple,
a coupling to the effective shear field alone could not account for the observed wing
hair patterns. However, all observations were consistent with the hypothesis that Sple
over-expression enhances a coupling of Core PCP to the Fat PCP system. This hy-
pothesis is also supported by the experimental finding that Sple over-expression made
wing hair patterns more dependent on perturbations of the Fat PCP system.

In tissue over-expressing Sple, a coupling strength of Core PCP to Fat PCP of
ζso = −0.4 h−1 was consistent with all oberved wing hair patterns. As an independent
check, in Appendix F.4, we obtain a value of ζlate = −0.2 h−1 in wild type tissue
that lacks the Core PCP protein Pk. This is consistent with an assumed antagonistic
relationship between the Core PCP proteins Pk and Sple [40, 159]. Put differently,
over-expression of Sple couples Core PCP to Fat PCP in a similar manner as the lack
of Pk does.

In order to allow for the numerical solution of our hydrodynamic theory, we formu-
lated boundary conditions based on a physical theory (Appendix G). This physical
theory describes a coupling of Core PCP at the wing margin to the directions of bristles
growing out of the margin. Furthermore, it describes the preferred directions of the
margin bristles by an effective potential. As a result, we did not only obtain boundary
conditions for our hydrodynamic theory describing Core PCP. We also could largely
reproduce observed directions of wing margin bristles (Appendix G.4).



Chapter 5

Conclusions and outlook

With this work, we contributed to the theoretical understanding of biological tis-
sues. In particular, we focused on epithelial tissues, which can be represented as two-
dimensional cellular networks. We applied our theoretical concepts to experiments on
the developing wing of the fruit fly, Drosophila melanogaster.

Throughout this thesis, we focused on different aspects of the following general ques-
tion: How do cells organize into two-dimensional tissues? In Chapter 2, we discuss
how the deformation of a cellular network is reflected on the cellular level. In Chap-
ter 3, we studied the rheological behavior of two-dimensional cellular networks using
vertex model simulations. In Chapter 4, we developed a hydrodynamic description for
polarity reorientation and applied it to the fruit fly wing. In the following, we describe
the reults and the further implications of each part in more detail.

The large-scale deformation of a cellular network is reflected by cellular events

In Chapter 2, we developed a theoretical framework that decomposes large-scale defor-
mations of cellular networks into cellular contributions. These cellular contributions
comprise cell shape changes and topological transitions. We used rigorous geometric
arguments to show that our decomposition is exact for smooth deformations.

We separately discussed isotropic and anisotropic parts of the deformation, corre-
sponding to the trace and to the traceless, symmetric part of the displacement gradi-
ent, respectively. The isotropic part describes the relative area change of the cellular
network. It is straight-forward to show that it can be decomposed into a relative
change of the average cell area, the average division rate, and the negative average
cell extrusion rate.

However, the major novelty of Chapter 2 is the exact decomposition of the anisotropic
part of large-scale deformation, which corresponds to large-scale shear. Other decom-
positions of large-scale shear were proposed before, but they needed approximations
[85, 150–153] or they were very coarse [128, 154, 161]. In Chapter 2, we showed that
large-scale shear of a cellular network can be exactly decomposed into the change of
cell shape anisotropy and into contributions by the different kinds of topological tran-
sitions. Moreover, our rigorous geometric arguments revealed that subtle correlation
effects do additionally contribute to large-scale shear. These effects are created by
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inhomogeneous deformations of the network combined with an inhomogeneous dis-
tribution of cell elongation. Such correlation effects have been overseen by previous
attempts to study deformations of cellular networks [85, 128, 150–154, 161].

As a key idea, our theoretical framework is based on a tiling of the cellular network
into triangles. Such a triangulation allows for the appropriate description of inhomo-
geneous deformations within the cellular network, where each triangle is characterized
by a single deformation tensor. In this sense, the triangles are the smallest unit of
our discrete description. As a result of the triangulation, cell shape changes are asso-
ciated to triangle shape changes, and topological transitions are associated with the
disappearance and appearance of triangles.

We applied our theoretical framework to deformations observed in the fruit fly wing
during the pupal stage. Our analysis quantitatively confirmed earlier observations,
where two phases were identified [54]. During the first phase, cells in the wing elon-
gated along the axis of the wing, and during the second phase, this elongation was
partially relieved by oriented T1 transitions. However, in addition to the earlier work,
our quantitative analysis revealed that during the first phase, T1 transitions were
oriented perpendicular to the cell elongation. This inspires the discussion about the
mechanical properties of the wing epithelium. In particular, the oriented T1 transi-
tions during the first phase suggest the existence of active anisotropic stresses.

Clearly, the application of our theoretical framework is not only restricted to the fruit
fly wing. It can as well be applied to any other piece of biological tissue – as long as it is
approximately planar. During the recent years, dissection and microscopy techniques
for biological tissues have been considerably improved. This allows experimentalists
to image, segment, and track an increasing number of cells in vivo or in vitro [51,
54, 154, 161]. This goes along with a growing need to transform this huge amount
of data into a true understanding of how the tissue behavior results from cellular
processes. In this context, our theoretical framework answers the question of how
tissue deformation results from cellular events. At the same time, it can be used as a
basis for an understanding of tissue mechanics. Note that besides biological tissues,
our ideas can also be applied to other two-dimensional cellular networks, for instance
to two-dimensional foams.

Our theoretical framework represents a triangulation-based approach to describe
the deformation of flat two-dimensional cellular networks. In principle, this approach
could be generalized in different ways. First, one could imagine a three-dimensional
generalization. This generalization would then be based on tetrahedrons instead of
triangles. In three dimensions, tetrahedrons (three-simplices) are the natural unit to
define a displacement gradient just like triangles (two-simplices) are in two dimensions.
Then, shape measures would be defined for tetrahedrons with respect to a regular ref-
erence tetrahedron, and topological transitions would correspond to the disappearance
and appearance of tetrahedrons.

Second, one could consider a generalization to curved two-dimensional cellular net-
works. The triangulation of such a curved network would correspond to a so-called
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piecewise-flat manifold. Such a generalization would bear an additional advantage:
Given a network state with arbitrary topology, it becomes possible to define a refer-
ence state for the whole tissue – not only for single triangles. Such a reference state
would be made up of equilateral triangles, but it had the same topology as the given
state. In flat geometries, this is only possible if all cells are hexagonal. In contrast
to that, allowing for curved triangulations, equilateral triangles can be put together
arbitrarily. However, one major problem for such an approach is that it is unclear how
to define tissue-wide averages of directional quantities like shear in a curved network.
This relates to the problem of defining a global direction in a manifold with nonzero
Gaussian curvature.

Large-scale rheological tissue properties depend on cellular fluctuations

In Chapter 3, we studied the large-scale rheological behavior of two-dimensional tis-
sues. To this end, we used a vertex model, which represents cells as polygons. The
vertex model describes the elastic properties of the cells with an effective work func-
tion. These elastic properties comprise cell area elasticity, cell perimeter elasticity,
and a cell-cell interfacial tension, called line tension.

We studied how the large-scale rheological behavior of vertex model tissue depended
on the amplitude of line tension fluctuations. To this end, we performed simple shear
simulations and focused on a mean field description of the steady state. We found
that first, the cellular shear modulus was largely independent on the shear rate and
on the fluctuation amplitude. Thus, the shear stress was largely proportional to the
cell elongation. Then, we analyzed cell elongation relaxation using the theoretical
framework from Chapter 2. We found that vertex model tissue behaved like a plastic
solid for low fluctuation amplitude and like a visco-elastic fluid for high fluctuation
amplitude. We observed crossover behavior for intermediate fluctuation amplitudes.

To obtain these results, we extended the vertex model in three aspects. First, we
introduced skewed boundary conditions into the vertex model, which are similar to
so-called Lees-Edwards boundary conditions [156]. This allows for perpetual simple
shear simulations. The advantage of such simulations is that they can be run long
enough to ensure that the steady state is reached. Moreover, the duration of such
simulatuions can be freely adjusted in order to provide enough statistics.

Second, we introduced cell-scale fluctuations into the vertex model. To this end, we
added mutually independent Ornstein-Uhlenbeck noise sources to the line tensions of
all cell-cell interfaces. Note that the original vertex model only describes elastic cell
properties and no viscosities. Now, the introduced fluctuations add a characteristic
time scale into the vertex model. Therefore, they allow for the finite viscosity that we
observed in the simulations.

Third, in contrast to earlier vertex model studies [58, 81, 118, 121–123], we allowed
for N -fold vertices with N > 3. This greatly simplified the treatment of T1 and T2
transitions. Furthermore, although three-fold vertices appear to be always preferred
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for homogeneous line tensions [58, 122], the fluctuations introduced a generally inho-
mogeneous distribution of line tensions. This resulted in N -fold vertices with N > 3
to be occasionally preferred over three-fold vertices.

Of note, we observed that in simple shear simulations without line tension fluc-
tuations, the applied strain typically localized into shear bands. We introduced a
statistical measure to quantify the persistence of shear bands. Using this measure, we
showed that shear bands could be abolished by line tension fluctuations.

In addition to studying the passive rheological properties of epithelial tissues, the
developed vertex model extensions could also be used to study active tissue proper-
ties. Developing animals provide many examples for autonomously shearing tissues
[31, 128, 162]. To understand such actively shearing tissues, one may ask for the min-
imal requirements for persistent and autonomous shear of vertex model tissue. Pre-
liminary results indicated that persistently and autonomously shearing vertex model
tissue could be created by line tension fluctuations with anisotropic amplitude.1 Al-
ternatively, it could be created by isotropic line tension fluctuations combined with an
anisotropic line tension offset. Future work could probe the behavior of such active
anisotropic vertex model tissue using simple shear simulations. We would expect that
for small shear rates, the tissue behaves like a linear active visco-elastic material [59,
61, 63].

A simple hydrodynamic description accounts for the reorientation of Core PCP
in the fruit fly wing

In Chapter 4, motivated by the observed reorientation of Core PCP in the fruit fly
wing, we developed a hydrodynamic description for the reorientation of a polarity field
in a two-dimensional material. Our description is an extension of earlier work [54, 58],
which considered a coupling of a polarity field to material shear, analogously to liquid
crystal theory [134]. In addition to that, we introduced a coupling to a second polarity
field, and we considered a local polarity alignment effect.

We systematically obtained analytical expressions for stationary states of our hy-
drodynamic description. To this end, we assumed homogeneity in one dimension and
we focused on the cases where the effective nematic shear field and the second polarity
field were either parallel or perpendicular to each other. The stationary solutions typ-
ically contain domains within which the polarity angle assumes characteristic values.
These characteristic values depend on the ratio between nematic and polar coupling
strengths. Furthermore, the domains are separated by boundary regions within which
the polarity angle bends smoothly. The width of these boundaries is defined by the ra-
tio of the local polarity alignment strength to the nematic and polar coupling strengths.
In principle, these results may as well be useful to other fields of physics, for instance
for describing polar liquid crystals being simultaneously subject to a shear field and a

1These preliminary results are not presented in this thesis.



97

coupling to an external vector field [134, 163].

We applied our hydrodynamic description for polarity reorientation to the Core
PCP field in the fruit fly wing, where the second polarity field corresponds to Fat
PCP. Our description could not only account for the typical wild type wing hair
pattern. Moreover, it also accounted for reproducible wing hair patterns of flies that
were genetically perturbed following six different protocols. This is the first time that
the wing hair pattern of a genetically altered fly could be reproduced by a quantitative
theory.

In our description, we proposed a coupling of the polarity field to an effective shear
field, which is oriented along the long axis of the fly wing. Note that in principle, our
effective shear field summarizes possible couplings to several nematic fields like actual
tissue shear, oriented T1 transitions, oriented cell divisions, and cell elongation.2 In
this work, we determined the coefficient describing the reorientation by the effective
shear field in wild type tissue. To this end, we fitted our description to the quantified
time-dependent Core PCP data of a developing wild type wing. However, we could
not clarify the contributions of the individual nematic fields to the effective shear field.
This is because all of the nematic fields listed above were largely aligned with each other
in the fly wings studied. To disentangle the contributions by the individual nematic
fields, future work could study Core PCP reorientation under perturbed mechanical
conditions.

Our work has a number of biological implications. First, our work contributes to
the discussion about how the polar order in the wild type wing hair pattern is created.
In particular, we provide evidence demonstrating that a coupling to the effective shear
field is sufficient to explain Core PCP reorientation in wild type tissue. This suggests
that the polar order of wing hairs is created by the nematic order of the effective shear
field.

Moreover, independently of our theoretical description, our experimental data di-
rectly suggest that the coupling to a nematic field dominates Core PCP reorientation
in wild type tissue. In particular, in the wild type and the early Sple over-expression
wing hair patterns, nearly all wing hairs point either distally or proximally. This is
reminiscent of stationary states of a vector field being coupled to a nematic field. How-
ever, such a coupling to a nematic field contradicts “factor X” models, which assume
that Core PCP order is created by the polar coupling to a protein gradient.

Second, our work contributes to the discussion about possible couplings between
Core PCP and Fat PCP. In particular, our results suggest that Sple enhances a cou-
pling of Core PCP to Fat PCP. This is consistent with the findings of a number of
recent publications [39, 57, 140, 141]. Future work could verify this idea and deter-
mine the effective coupling strength of Core PCP to Fat PCP in tissue over-expressing
Sple. To this end, one could quantify the time-dependent Core PCP pattern in Sple

2Furthermore, preliminary theoretical results indicate that an effective shear coupling could also be
of a purely geometrical origin, created by the change of cell elongation.
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over-expression wings and compare to our theoretical description.
Third, from comparing our theoretical description to experimental data, we obtained

a value for the coefficient describing local polarity alignment in wild type tissue. By
coarse-graining of a cell-scale Core PCP model, we showed that this coefficient cor-
responds to a cellular PCP time scale of ∼ 1 min. This is consistent with measured
turnover time scales of Core PCP clusters [36, 37, 54].

Finally, in order to numerically solve our theoretical description for polarity reorien-
tation, we proposed particular boundary conditions, which were motivated by observed
polarity patterns in the fly wing. In particular, we chose boundary conditions where
the polarity field was coupled to the local direction of bristles growing out of the wing
margin. Furthermore, the preferred directions of wing margin bristles were described
by an effective potential. As a result, our theory did not only reproduce observed
wing hair patterns, but also the directions of wing margin bristles. This suggests that
first, the direction of margin bristles is coupled to the Core PCP field at the wing
margin; and second, this coupling and the preferred directions of wing margin bristles
are largely independent of Sple over-expression.

To compare our theoretical results to biological polarity patterns, we developed an
algorithm to quantify wing hair polarity patterns of fruit fly wings. The main idea
is to compute a local nematic auto-correlation. In particular, the algorithm does not
rely on any object recognition and is therefore very robust and runs very fast. Thus,
the idea can be applied to any image processing problem where some local axis needs
to be quantified reliably and fast. Moreover, with a slight modification, one could
quantify a local vector direction instead of a local axis. This could for instance be
achieved by a cross-correlation between two different color channels.
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Appendix A

Algebra of real 2× 2 matrices

Here, we present fundamental algebraic relations for 2 × 2 matrices with real-valued
entries. These relations are mainly applied in Chapter 2 and in Appendix B.

A.1 Sum decomposition into scaling rotations and
nematics

A.1.1 Sum decomposition

Any 2× 2 matrix Sij with real elements can be uniquely decomposed into two parts:

Sij = Aij + B̃ij. (A.1)

The matrix Aij comprises the trace and the antisymmetric part of Sij, and the matrix
B̃ij corresponds to the traceless, symmetric part of Sij.

A.1.2 Scaling rotations

We call the matrix Aij a scaling rotation, because it can be expressed as the product
of a scalar c with a rotation:

Aij = cRij(ϑ). (A.2)

Here, the matrix Rij(ϑ) denotes a rotation by the angle ϑ:

R(ϑ) =

(
cosϑ − sinϑ
sinϑ cosϑ

)
. (A.3)

For given matrix Aij, the scalar c is given by c = (A2
xx +A2

yx)
1/2. Then, the angle ϑ is

given by the two relations cosϑ = Axx/c and sinϑ = Ayx/c.
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A.1.3 Determinant

Writing out everything in components, one can show that the determinant of the
matrix Sij reads:

det (S) = c2 − |B̃|2. (A.4)

Here, |B̃| is the norm of the traceless, symmetric matrix B̃ij as defined in Section A.2.2.
In the next section, we discuss properties of traceless, symmetric matrices in detail.

A.2 Properties of nematics

In Eq. (A.1), the matrix B̃ij is a symmetric, traceless matrix. For a given coordinate
system, it describes a symmetric, traceless tensor. In this work, we call symmetric,
traceless tensors nematic tensors or just nematics. We denote them with a tilde above
the tensor symbol: B̃ij. Here, we focus on the two-dimensional case.

A.2.1 Components of a nematic

Given a Cartesian coordinate system with x and y axes. Then, a nematic B̃ij is
described by the following matrix:

B̃ =

(
B̃xx B̃xy

B̃xy −B̃xx

)
. (A.5)

Thus, it possesses two independent scalar degrees of freedom, B̃xx and B̃xy.

A.2.2 Norm and angle of a nematic

Similar to a vector, a nematic B̃ij can be characterized by a norm |B̃| and an angle φ
with

B̃ = |B̃|
(

cos (2φ) sin (2φ)
sin (2φ) − cos (2φ)

)
. (A.6)

For given components B̃xx and B̃xy, the norm is defined by |B̃| = (B̃2
xx + B̃2

xy)
1/2.

Then, the angle φ is defined by cos (2φ) = B̃xx/|B̃| and sin (2φ) = B̃xy/|B̃|.
In contrast to a vector, a nematic possesses a π rotational symmetry. Therefore,

the angle φ characterizes an axis instead of a direction. Table A.1 summarizes how
the orientation of this axis depends on the signs of the components B̃xx and B̃xy.
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Table A.1: Orientation of the axis of a nematic tensor B̃ij depending on the signs
of the components B̃xx and B̃xy.

B̃xx B̃xy axis of the nematic tensor
> 0 = 0 parallel to the x axis
< 0 = 0 parallel to the y axis
= 0 > 0 diagonal with an angle of +π/4 with respect to the x axis
= 0 < 0 diagonal with an angle of −π/4 with respect to the x axis

A.2.3 Orthonormal basis in the formal vector space of nematics

According to Section A.2.1, any nematic tensor B̃ij can be expressed as a linear com-
bination of two particular nematics:

B̃ = B̃xxC̃1 + B̃xyC̃2. (A.7)

Here, we defined:

C̃1 =

(
1 0
0 −1

)
and C̃2 =

(
0 1
1 0

)
. (A.8)

In that sense, the pair of the nematics C̃1 and C̃2 constitute a basis in the formal vector
space of nematics. The coefficient B̃xx characterizes the component of B̃ij parallel or
perpendicular to the x axis and B̃xy characterizes the component of B̃ij diagonal to the
x axis, i.e. at an angle of π/4 or −π/4 with respect to the x axis (compare Table A.1).

Now, we generalize this idea. For a given nematic Q̃ij with |Q̃| 6= 0, we want to
decompose any nematic B̃ij into a contribution parallel or perpendicular to Q̃ij and
into a contribution diagonal to Q̃ij. To this end, we first define the following two
nematics:

D̃1 =
1

|Q̃|
Q̃ and D̃2 =

1

|Q̃|
ε · Q̃. (A.9)

Here, the dot denotes the matrix product and the matrix εij denotes the generator of
rotations:

ε =

(
0 −1
1 0

)
. (A.10)

Now, we show that the pair of nematics D̃1 and D̃2 constitutes an orthonormal basis
in the formal vector space of nematics. To this end, we introduce the following scalar
product between two nematics X̃ij and Ỹij:

〈X̃|Ỹ 〉 =
1

2
X̃ijỸij. (A.11)
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Because 〈Q̃|Q̃〉 = |Q̃|2 and 〈Q̃|ε · Q̃〉 = 0, we obtain:

〈D̃a|D̃b〉 = δab (for a, b ∈ {1, 2}). (A.12)

Here, δab denotes the Kronecker symbol. Thus, the pair of nematics D̃1 and D̃2

constitutes indeed an orthonormal basis. It is complete, because the formal vector
space of nematics is two-dimensional.

As a consequence, any nematic B̃ij can be expressed as a linear combination of D̃1

and D̃2:
B̃ = 〈D̃1|B̃〉 D̃1 + 〈D̃2|B̃〉 D̃2. (A.13)

The coefficient 〈D̃1|B̃〉 characterizes the component of B̃ij parallel or perpendicular to
Q̃ij. Furthermore, because the tensor εikQ̃kj corresponds to the nematic Q̃ij rotated

by π/4 (Section A.3.2), the coefficient 〈D̃2|B̃〉 characterizes the component of B̃ij

diagonal to Q̃ij. Eq. (A.7) corresponds to the special case where the nematic Q̃ij is
parallel to the x axis.

A.2.4 Infinitesimal changes of norm and angle

Infinitesimal changes in norm and angle of a nematic B̃ij induce changes in the nematic
itself. From Eq. (A.6) follows:

δB̃ij = δ|B̃|B̃ij

|B̃|
+ 2δφεikB̃kj. (A.14)

Here, δB̃ij denotes the infinitesimal change of the nematic B̃ij and the scalars δ|B̃|
and δφ denote the infinitesimal changes of its norm and angle, respectively. Eq. (A.14)
expresses δB̃ij in terms of the basis constructed from B̃ij. With:

D̃1 =
1

|B̃|
B̃ and D̃2 =

1

|B̃|
ε · B̃, (A.15)

we obtain:
δB̃ij = δ|B̃| D̃1 + 2δφ|B̃| D̃2. (A.16)

Thus, the change of B̃ij decomposes into two components. One component is parallel
or perpendicular to B̃ij and characterizes the change of its norm. The other component
is diagonal to B̃ij and characterizes the change of its angle.

A.3 Products between scaling rotations and nematics

Here, we present relations for products between scaling rotations and nematics. These
relations were derived using Eqs. (A.3) and (A.6) and writing out the matrix compo-
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nents explicitly.

A.3.1 Two scaling rotations

The matrix product of two scaling rotations c1Rij(ϑ1) and c2Rij(ϑ2) is:

c1R(ϑ1) · c2R(ϑ2) = c1c2 R(ϑ1 + ϑ2). (A.17)

Thus, it is again a scaling rotation with scalar c1c2 and angle ϑ1 + ϑ2.

A.3.2 A scaling rotation and a nematic

The matrix product of a scaling rotation cRij(ϑ) and a nematic B̃ij with norm |B̃|
and angle φ reads:

cR(ϑ) · B̃ = c|B̃|
(

cos (2φ+ ϑ) sin (2φ+ ϑ)
sin (2φ+ ϑ) − cos (2φ+ ϑ)

)
. (A.18)

Thus, the product of scaling rotation and a nematic is again a nematic. Furthermore,
the application of the scaling rotation cRij(ϑ) on the nematic B̃ij scales the norm of
B̃ij by the scalar c and rotates the axis of B̃ij by the angle ϑ/2.

We ask what happens if the order of the factors in the product is reversed. We
obtain:

B̃ · cR(ϑ) = cR(−ϑ) · B̃. (A.19)

Here, we used that B̃ · cR(ϑ) = (cRT(ϑ) · B̃T)T, where the superscript T denotes the
matrix transpose. Also, we used that RT(ϑ) = R(−ϑ) and that the transpose of a
nematic is the nematic itself. Hence, when reversing the order of a scaling rotation
and a nematic, the rotation angle flips its sign.

As a consequence, the nematic B̃ij rotated by an angle ϑ can be expressed as

R(2ϑ) · B̃ = R(ϑ) · B̃ ·R(−ϑ). (A.20)

In particular, the matrix εij corresponds to a rotation by the angle π/2: εij = Rij(π/2).
Thus, εikB̃kj corresponds to the nematic B̃ij rotated by π/4.

A.3.3 Two nematics

The matrix product of two nematics B̃1 and B̃2 with norms |B̃1| and |B̃2| and angles
φ1 and φ2 reads:

B̃1 · B̃2 = |B̃1||B̃2|R
(
2[φ1 − φ2]

)
. (A.21)

Thus, it is a scaling rotation. The scaling factor is the product of the norms |B̃1||B̃2|
and the rotation angle is twice the difference between the nematic angles 2[φ1 − φ2].
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A.4 Exponentials of real 2× 2 matrices

A.4.1 Definition

We define the exponential of a matrix Gij by the Taylor series of the exponential
function:

exp (G) =
∞∑
n=0

1

n!
Gn. (A.22)

This series converges for any matrix G. In the following, we separately discuss the
exponentials of antisymmetric, of symmetric, and of symmetric, traceless matrices.
Before that, we shortly discuss a few general properties of matrix exponentials.

A.4.2 General properties

Determinant of matrix exponentials

In the following sections, we will make use of the well-known equation:

det
[

exp (G)
]

= exp (Gkk). (A.23)

It relates the determinant of exp (G) to the trace of Gij.

Exponential of a rotated matrix

Here, we ask for the exponential of the matrix Gij rotated by the angle ϑ:

G′ = R(ϑ) ·G ·R(−ϑ). (A.24)

From Eq. (A.22) follows:

exp (G′) = R(ϑ) · exp (G) ·R(−ϑ). (A.25)

Thus, the exponential of a rotated matrix corresponds to the rotated matrix exponen-
tial.

Product of matrix exponentials

Beware that in general, for two matrices G1 and G2:

exp (G1) · exp (G2) 6= exp (G1 +G2). (A.26)

However, equality holds if G1 and G2 commute: G1 ·G2 = G2 ·G1.
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A.4.3 Exponentials of antisymmetric matrices

Any real antisymmetric 2 × 2 matrix can be written as θεij, where θ is a scalar. Its
exponential can be interpreted as a rotation by θ:

exp (θε) = R(θ). (A.27)

This can be derived from the definition of Rij(θ) (Eq. (A.3)), from Eq. (A.22), and
from the Taylor series of the sine and cosine functions.

A.4.4 Exponentials of symmetric matrices

The exponential of any symmetric 2× 2 matrix Qij can be decomposed into:

exp (Q) = exp (Qkk/2) exp (Q̃). (A.28)

Here, Q̃ij denotes the traceless part of Qij: Q̃ij = Qij − Qkkδij/2. Eq. (A.28) fol-
lows because the tensors Qkkδij/2 and Q̃ij commute. Furthermore, we used that
exp (QkkI/2) = exp (Qkk/2)I, where I denotes the identity matrix with Iij = δij.

Hence, the exponential of Qij can be interpreted as a scaling by exp (Qkk/2) followed

by the transformation exp (Q̃). As explained in the next subsection, exp (Q̃) can be
interpreted as a pure shear deformation. Note that the scaling by exp (Qkk/2) changes
the area by a factor of exp (Qkk) whereas exp (Q̃) leaves the area unchanged. This is
consistent with Eq. (A.23).

A.4.5 Exponentials of nematics

Interpretation

Here, we discuss the effect of the exponential exp (Q̃) of a nematic Q̃ij. To this end,
we first note that:

Q̃ = R(Φ) ·
(
|Q̃| 0

0 −|Q̃|

)
·R(−Φ). (A.29)

Here, the scalars |Q̃| and Φ denote norm and angle of the nematic Q̃ij, respectively.
Eq. (A.29) follows from Eqs. (A.18) and (A.20). Then, we use Eqs. (A.22) and (A.25),
to obtain

exp (Q̃) = R(Φ) ·
(

exp (|Q̃|) 0

0 exp (−|Q̃|)

)
·R(−Φ) (A.30)

Thus, the effect of exp (Q̃) can be interpreted as follows. Along an axis with angle
Φ, there is a stretching by the factor exp (|Q̃|) and perpendicular to it, there is a
shortening by the factor exp (−|Q̃|). This corresponds to a pure shear deformation.
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For instance, the transformation exp (Q̃) applied to a circle yields an ellipse with
aspect ratio exp (2|Q̃|) where the orientation of the long axis is given by the angle Φ.

Sum representation

Similar to Section A.1.1, we decompose exp (Q̃) into a trace part and a traceless,
symmetric part. To this end, we first note that Q̃ijQ̃jk = |Q̃|2δik and as a consequence,

Q̃n =

{
|Q̃|nI for even n and

|Q̃|n−1Q̃ for odd n.
(A.31)

Here, I denotes the identity matrix with Iij = δij. Then, from Eq. (A.22) follows:

exp (Q̃) = cosh (|Q̃|)I +
sinh (|Q̃|)
|Q̃|

Q̃ (A.32)

for |Q̃| 6= 0 and exp (Q̃) = I for |Q̃| = 0.

A.5 Product decomposition of real 2× 2 matrices

Here, we show that for any real 2 × 2 matrix Sij, there exists a unique symmetric
matrix Qij and an angle Θ such that:

S = exp (Q) ·R(Θ). (A.33)

To this end, we prove existence and uniqueness of such a decomposition separately.

A.5.1 Existence of the decomposition

Here, for a given matrix Sij, we first provide values for the symmetric matrix Qij and
the angle Θ. Then, we show that Eq. (A.33) is indeed fulfilled for these values.

Values for Qij and Θ

In order to provide the symmetric matrix Qij, we separately define its trace Qkk and
its traceless, symmetric part Q̃ij. The trace Qkk is defined by:

Qkk = ln
[

det (S)
]
. (A.34)

In order to provide the values for Q̃ij and Θ, we split Sij into a scaling rotation Aij
and a nematic B̃ij (as in Section A.1.1):

Sij = Aij + B̃ij. (A.35)
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The angle Θ is defined to be the angle of the scaling rotation Aij:

Aij = cRij(Θ). (A.36)

Finally, the nematic Q̃ij is defined by the following expression:

Q̃ij =
arcsinh

[
|B̃| exp (−Qkk/2)

]
|B̃|

B̃ikRkj(−Θ). (A.37)

Proof that Eq. (A.33) holds

Now, we show that Eq. (A.33) holds with the above definitions for Qij and Θ. To this

end, we first compute exp (Q̃) using Eq. (A.32):

exp (Q̃) = cosh (|Q̃|)I +
sinh (|Q̃|)
|Q̃|

Q̃. (A.38)

Therefore, we need the values for the hyperbolic sine and cosine of |Q̃|. Using
Eq. (A.37), the hyperbolic sine of |Q̃| turns out to be

sinh (|Q̃|) = |B̃| exp (−Qkk/2). (A.39)

Then, the hyperbolic cosine of |Q̃| can be computed using the relation

1 = cosh2 (|Q̃|)− sinh2 (|Q̃|) (A.40)

and Eqs. (A.4) and (A.34). We obtain

cosh (|Q̃|) = c exp (−Qkk/2). (A.41)

Insertion of hyperbolic sine and cosine into Eq. (A.38) yields:

exp (Q̃) = c exp (−Qkk/2) I + exp (−Qkk/2) B̃ ·R(−Θ). (A.42)

Here, we also used Eq. (A.37). The following relation follows

exp (Qkk/2) exp (Q̃) ·R(Θ) = A+ B̃. (A.43)

Finally, Eq. (A.33) follows using Eqs. (A.28) and (A.35).
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A.5.2 Uniqueness of the decomposition

Here, we show that the decomposition in Eq. (A.33) is unique. Put differently, we
show that from

exp (Q) ·R(Θ) = exp (Q′) ·R(Θ′) (A.44)

with scalars Θ, Θ′ and with symmetric matrices Qij, Q
′
ij follows that Θ = Θ′ and

Qij = Q′ij. The symmetric matrices Qij and Q′ij divide into traces Qkk and Q′kk and

symmetric, traceless parts Q̃ij and Q̃′ij, respectively.
First, we take the determinant on both sides of Eq. (A.44) and obtain:

Qkk = Q′kk. (A.45)

Then, Eq. (A.44) becomes

cosh (|Q̃|) R(Θ) +
sinh (|Q̃|)
|Q̃|

Q̃ ·R(Θ)

= cosh (|Q̃′|) R(Θ′) +
sinh (|Q̃′|)
|Q̃′|

Q̃′ ·R(Θ′),

(A.46)

where we used Eq. (A.32).
Only the scaling rotation part on each side of Eq. (A.46) reads

cosh (|Q̃|) R(Θ) = cosh (|Q̃′|) R(Θ′). (A.47)

Separating scaling and rotations on both sides, we obtain

|Q̃| = |Q̃′| (A.48)

Θ = Θ′. (A.49)

Finally, from the traceless, symmetric part of Eq. (A.46), we obtain

Q̃ij = Q̃′ij. (A.50)

Thus, for a given matrix Sij, the symmetric matrix Qij and the angle Θ are uniquely
defined from Eq. (A.33).



Appendix B

Deformation of triangle networks

B.1 Equivalence of two definitions for the
displacement gradient

Consider the deformation of a group G of triangles from an initial state to a final
state without topological transitions. Here, we show the equivalence of two different
definitions of the displacement gradient UG

ij of group G. More precisely, we show that
the triangle-based definition of the displacement gradient in Eq. (2.35)

UG
ij =

〈
Um
ij

〉
(B.1)

is equivalent to the definition in Eq. (2.36), which is only based on the margin defor-
mation of group G. To this end, we transform the right hand side of Eq. (B.1) into
an expression that only depends on cell center positions on the margin of group G.

First, we introduce a continuous displacement field u(r), which is defined on the
whole area of group G. It is based on the initial and final positions of the cell centers,
denoted by Rα and R′α, respectively. The displacement of cell centers Rα is given by

u(Rα) = R′α −Rα. (B.2)

Then, within each triangle of G, the displacement field u(r) is linearly interpolated
using Eqs. (2.14), (2.15), and (2.16). Consequently, the discrete displacement gradient
Um
ij of any triangle m of G is given by the derivative (compare Eq. (2.17)):

Um
ij =

(
∂uj
∂ri

)
m

. (B.3)

Here, the derivative on the right hand side is constant within the triangle m. It can
thus be evaluated anywhere within triangle m.

Now, we can express UG
ij in terms of u(r). Insertion of Eq. (B.3) into Eq. (B.1)

yields:

UG
ij =

1

AG

∑
m∈G

Am
(
∂uj
∂ri

)
m

. (B.4)
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Here, the sum runs over all triangles m of group G. The areas AG and Am denote the
initial areas of group G and triangle m, respectively. The sum in Eq. (B.4) can be
transformed into the following integral over the initial area of the group:

UG
ij =

1

AG

∫
AG

∂uj
∂ri

d2r. (B.5)

Using Stoke’s theorem, the area integral can be expressed as a closed line integral over
the initial margin of the group:1

UG
ij =

1

AG

∮
niuj d`. (B.7)

Here, the vector n denotes the local unit normal vector of the margin pointing outside
of the group.2

Finally, in order to explicitly express UG
ij in terms of individual cell center positions,

we separately integrate over each triangle side being part of the margin of G:

UG
ij =

1

AG

n∑
α=1

∫ |Rα+1−Rα|

0

niuj d`. (B.8)

Here, the sum runs over all cell centers Rα on the margin of G in counter-clockwise
order. The scalar |Rα+1 −Rα| denotes the norm of the vector Rα+1 −Rα and corre-
sponds to the length of the triangle side connecting the centers of cells α and α + 1.
The integral in Eq. (B.8) can be expressed in terms of cell center positions:∫ |Rα+1−Rα|

0

niuj d` =
1

2
εik

(
Rα
k −Rα+1

k

)([
R′

α
j +R′

α+1
j

]
−
[
Rα
j +Rα+1

j

])
. (B.9)

Here, we used the relation ni|Rα+1 −Rα| = −εik(Rα+1
k − Rα

k ). Also, u(r) in the cell
centers Rα and Rα+1 is given by Eq. (B.2). Between the cell centers, u(r) is obtained

1To more clearly see the equivalence between Eqs. (B.5) and (B.7), consider Gauss’ theorem, which
is a special case of Stoke’s theorem:∫

AG

∂fk
∂rk

d2r =

∮
nkfk d`. (B.6)

Here, f(r) is a vector field. For fixed i, j ∈ {x, y}, the equivalence between Eqs. (B.5) and (B.7)
follows with fk = δikuj .

2Between two cell centers Rα, the normal vector n is properly defined, because the triangulation
margin is a straight line, there. However in general, the direction of n changes discontinuously in
cell centers Rα. Correspondingly, n is not properly defined in cell centers. After all, this is not a
problem, because the cell centers themselves have zero weight in the integral in Eq. (B.7).
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by linear interpolation. Finally, from Eqs. (B.8) and (B.9), we obtain Eq. (2.36):

UG
ij =

εik
2AG

n∑
α=1

(
Rα
k −Rα+1

k

)([
R′

α
j +R′

α+1
j

]
−
[
Rα
j +Rα+1

j

])
. (B.10)

B.2 Triangle transformation parameters in terms of
triangle state change

B.2.1 Finite transformations

Like in Section 2.1.3, we consider a triangle that is deformed from an initial state to
a final state. The initial state is characterized by the tensor Sij and the final state
is characterized by the tensor S ′ij. The transformation is characterized by the tensor
Mij. Here, we relate the transformation parameters ∆Nij and ∆Ψ to changes of the
state parameters Qij and Θ.

In the main text, we show that Eq. (2.22) holds, which relates the transformation
tensor to the state tensors:

S′ = M ·S. (B.11)

Inserting the parametrizations of transformation and state tensors (Eqs. (2.7) and
(2.19)), we obtain:

exp (Q′) ·R (Θ′) = exp (∆N ) ·R(∆Ψ) · exp (Q) ·R (Θ) . (B.12)

Now, we multiply both sides from right by R(−Θ) · exp (−Q):

exp (∆N ) ·R(∆Ψ) = exp (Q′) ·R (∆Θ) · exp (−Q). (B.13)

Here, we defined ∆Θ = Θ′ − Θ and swapped both sides of the equation. By taking
the determinant on both sides, we can separate the isotropic part from the anisotropic
part:

∆Nkk = ∆Qkk (B.14)

exp
(
∆Ñ

)
·R(∆Ψ) = exp

(
Q̃′) ·R(∆Θ) · exp

(
− Q̃

)
. (B.15)

Here, we defined ∆Qkk = Q′kk − Qkk and we used Eqs. (A.23) and (A.28). From
the isotropic part, Eq. (B.14), follows Eq. (2.23) in the main text using Eq. (2.11).
Furthermore, the anisotropic part, Eq. (B.15), corresponds to Eq. (2.24) in the main
text.

In order to obtain separate equations for ∆Ñij and ∆Ψ, we express the three expo-
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nentials in Eq. (B.15) using Eq. (A.32):[
cosh (|∆Ñ |)I +

sinh (|∆Ñ |)
|∆Ñ |

∆Ñ

]
·R(∆Ψ)

=

[
cosh (|Q̃′|)I +

sinh (|Q̃′|)
|Q̃′|

Q̃′

]
·R(∆Θ) ·

[
cosh (|Q̃|)I − sinh (|Q̃|)

|Q̃|
Q̃

]
.

(B.16)
Expansion of the products on both sides yields

cosh (|∆Ñ |) R(∆Ψ) +
sinh (|∆Ñ |)
|∆Ñ |

∆Ñ ·R(∆Ψ)

= cosh (|Q̃′|) cosh (|Q̃|) R(∆Θ)− sinh (|Q̃′|)
|Q̃′|

sinh (|Q̃|)
|Q̃|

Q̃′ ·R(∆Θ) · Q̃

+ cosh (|Q̃|)sinh (|Q̃′|)
|Q̃′|

Q̃′ ·R(∆Θ)− cosh (|Q̃′|)sinh (|Q̃|)
|Q̃|

R(∆Θ) · Q̃.

(B.17)

Now, we separate scaling rotation part and nematic part on both sides of Eq. (B.17)
(Section A.1). For the scaling rotation part, we obtain:

cosh (|∆Ñ |) R(∆Ψ)

= cosh (|Q̃′|) cosh (|Q̃|) R(∆Θ)− sinh (|Q̃′|)
|Q̃′|

sinh (|Q̃|)
|Q̃|

Q̃′ ·R(∆Θ) · Q̃.
(B.18)

Using Eqs. (A.19) and (A.21), we obtain for the matrix product: Q̃′ ·R(∆Θ) · Q̃ =
|Q̃′||Q̃|R(2∆Φ−∆Θ). Here, ∆Φ = Φ′ −Φ and Φ, Φ′ are the respective angles of the
nematics Q̃, Q̃′. Then, we obtain from Eq. (B.18):

cosh (|∆Ñ |) R(∆Ψ)

= cosh (|Q̃′|) cosh (|Q̃|) R(∆Θ)− sinh (|Q̃′|) sinh (|Q̃|) R
(
2∆Φ−∆Θ

)
.

(B.19)

Now, we explicitly write down the xx and the yx components of Eq. (B.19):

cosh (|∆Ñ |) cos (∆Ψ) = cosh
(
|Q̃′|+ |Q̃|

)
sin (∆Φ) sin (∆Φ−∆Θ)

+ cosh
(
|Q̃′| − |Q̃|

)
cos (∆Φ) cos (∆Φ−∆Θ)

cosh (|∆Ñ |) sin (∆Ψ) = − cosh
(
|Q̃′|+ |Q̃|

)
cos (∆Φ) sin (∆Φ−∆Θ)

+ cosh
(
|Q̃′| − |Q̃|

)
sin (∆Φ) cos (∆Φ−∆Θ).

(B.20)

Here, we used addition theorems for the trigonometric and the hyperbolic functions.
The rotation angle ∆Ψ results from Eq. (B.20) for known cosh (|∆Ñ |). The latter can
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be obtained by squaring and adding both equations (B.20):

cosh (|∆Ñ |) =
[

cosh2
(
|Q̃′|+ |Q̃|

)
sin2 (∆Φ−∆Θ)

+ cosh2
(
|Q̃′| − |Q̃|

)
cos2 (∆Φ−∆Θ)

]1/2

.
(B.21)

Finally, in order to obtain the shear nematic ∆Ñij, we consider the symmetric,
traceless part of Eq. (B.17), which reads:

sinh (|∆Ñ |)
|∆Ñ |

∆Ñ ·R(∆Ψ)

= cosh (|Q̃|)sinh (|Q̃′|)
|Q̃′|

Q̃′ ·R(∆Θ)− cosh (|Q̃′|)sinh (|Q̃|)
|Q̃|

R(∆Θ) · Q̃.

(B.22)
Multiplication by the transpose of Eq. (B.19) on both sides and simplification yields:

sinh (|∆Ñ |) cosh (|∆Ñ |)
|∆Ñ |

∆Ñ

=
1

2
sinh

[
2
(
|Q̃′| − |Q̃|

)] Q̃′

|Q̃′|

+
1

2
sinh

(
2|Q̃|

) Q̃′

|Q̃′|
·
(

sinh2 (|Q̃′|)
[
I −R

(
− 2[∆Φ−∆Θ]

)]
+ cosh2 (|Q̃′|)

[
I −R

(
2[∆Φ−∆Θ]

)])
.

(B.23)

Here, we used addition theorems for the hyperbolic functions and Eqs. (A.18) and
(A.19). With

Rij

(
2[∆Φ−∆Θ]

)
= cos

(
2[∆Φ−∆Θ]

)
Iij + sin

(
2[∆Φ−∆Θ]

)
εij, (B.24)

we finally obtain:

sinh (|∆Ñ |) cosh (|∆Ñ |)
|∆Ñ |

∆Ñ =
1

2
sinh

[
2
(
|Q̃′| − |Q̃|

)] Q̃′

|Q̃′|

+ sinh
(
2|Q̃|

)
cosh

(
2|Q̃′|

)
sin2

(
∆Φ−∆Θ

) Q̃′

|Q̃′|

+
1

2
sinh

(
2|Q̃|

)
sin
(
2[∆Φ−∆Θ]

)ε · Q̃′

|Q̃′|
.

(B.25)
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Now, the shear nematic ∆Ñij can be obtained in two steps. First, the norm |∆Ñ | is
computed from Eq. (B.21). Then, the norm |∆Ñ | is inserted into Eq. (B.25) in order
to obtain the nematic ∆Ñij.

B.2.2 Infinitesimal transformations

Here, we approximate Eqs. (B.20) and (B.25) to first order in the changes of the trian-
gle properties ∆Q̃ij and ∆Θ. To this end, we first introduce the following infinitesimal
quantities: δÑij = ∆Ñij, δΨ = ∆Ψ, δQ̃ij = ∆Q̃ij, δ|Q̃| = |Q̃′| − |Q̃|, δΦ = ∆Φ, and
δΘ = ∆Θ.

Now, from Eq. (B.25) follows to first order:

δÑ = δ|Q̃| Q̃
|Q̃|

+ (δΦ− δΘ) sinh
(
2|Q̃|

)ε · Q̃
|Q̃|

. (B.26)

From Eq. (B.20), we obtain to first order:

δΨ = δΦ− (δΦ− δΘ) cosh (2|Q̃|). (B.27)

In order to show that Eqs. (B.26) and (B.27) correspond indeed to Eqs. (2.27) and
(2.28) in the main text, we first note that δŨij = δÑij. Then, we transform Eq. (B.26)
into:

δŨij = δQ̃ij − 2δΦεikQ̃kj + (δΦ− δΘ)
sinh

(
2|Q̃|

)
|Q̃|

εikQ̃kj. (B.28)

Here, we applied Eq. (A.14). Now, we use Eq. (B.27), from which follows δΦ− δΘ =
(δΦ− δΨ)/ cosh (2|Q̃|). Insertion into Eq. (B.28) yields:

δŨij = δQ̃ij + δJ̃ij, (B.29)

where we defined
δJ̃ij = −2

[
cδΨ + (1− c)δΦ

]
εikQ̃kj. (B.30)

Here, we also defined c = tanh
(
2|Q̃|

)
/2|Q̃|.

Finally, in order to obtain Eq. (2.28), we transform Eq. (B.27) into:

δΨ = δΘ− (δΦ− δΘ)
[

cosh (2|Q̃|)− 1
]
. (B.31)

In order to transform this equation further, we first multiply Eq. (B.26) from right
with ε · Q̃ and then take the trace. Using δŨij = δÑij, we obtain:

δŨijεjkQ̃ki = 2(δΦ− δΘ)|Q̃| sinh
(
2|Q̃|

)
. (B.32)
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Now, we use this equation to substitute the term δΦ − δΘ in Eq. (B.31). Then, we
finally obtain:

δΨ = δΘ− δΞ, (B.33)

where we defined

δΞ = δŨijεjkQ̃ki
cosh (2|Q̃|)− 1

2|Q̃| sinh (2|Q̃|)
. (B.34)

B.2.3 Shear-induced rotation of a single triangle

Here, we discuss Eq. (B.33) in detail. According to this equation, triangle rotation
δΨ corresponds to the change in the triangle orientation angle Θ with an additional
shear-induced contribution to triangle rotation δΞ.

In this section, we illusterate the meaning of the shear-induced contribution to object
rotation δΞ (Fig. B.1). We first consider a reference object, which is the Minerva head
depicted in Fig. B.1A(i). Analogously to Section 2.1.2, we parametrize an arbitrarily
rotated and deformed state of this head by the orientation angle Θ and by the shape
tensor Qij (Fig. B.1A). The orientation angle Θ represents the direction in which the
Minerva head looks in Fig. B.1A(ii). The symmetric, traceless part of the shape tensor
Qij is the elongation nematic Q̃ij, which is represented by the ellipse surrounding the
Minerva head in Fig. B.1A(iii). The norm of the elongation nematic |Q̃| determines
the aspect ratio of the ellipse, which is exp (2|Q̃|) (Section A.4.5). The angle Φ of the
elongation nematic Q̃ij determines the orientation of the long axis of the ellipse.

Now, we consider a particular sequence of infinitesimal pure shear deformations
applied to the Minerva head (Fig. B.1B). For pure shear deformations, the components
of the discrete displacement gradient read:

δUkk = 0 (B.35)

δŨij 6= 0 (B.36)

δΨ = 0. (B.37)

Surprisingly, although the rotational part of the displacement gradient is zero δΨ = 0,
the orientation of the Minerva head changes: δΘ 6= 0 (see Fig. B.1B). According to
Eq. (2.28), this orientation change is entirely shear-induced: δΘ = δΞ.

Let us discuss this effect in more detail. We apply the following shear to the triangle
(blue double bars in Fig. B.1B):

δŨij = |δŨ |εikQ̃kj

|Q̃|
. (B.38)

Here, |δŨ | denotes the norm of δŨij. Thus, the shear axis is always tilted by an angle
of π/4 with respect to the elongation axis (Section A.3.2).
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Figure B.1: Illustration for the shear-induced contribution δΞ to the rotation of
an object. (A) We define a deformed state of the Minerva head (i) by two pa-
rameters, the orientation angle Θ and the symmetric shape tensor Qij (compare
Fig. 2.4B). The orientation angle Θ corresponds to the direction in which the
Minerva head looks (red arrow in (ii)). For the shape tensor Qij , we focus on its
symmetric, traceless part, which is the elongation nematic Q̃ij . The elongation
nematic describes the shape of the ellipse surrounding the Minerva head (iii). (B)
The elongated Minerva head is subject to subsequent pure shear deformations.
Here, we show snapshots from such a sequence of infinitesimal deformations. The
deformations are defined such that the shear axis (blue double arrows) is always
tilted by an angle of π/4 with respect to the axis of elongation. As a consequence,
the norm of the elongation |Q̃| stays constant, but the axis of elongation Φ rotates
(compare Fig. 2.8B). The deformations do not contain a rotational component:
δΨ = 0. However surprisingly, comparing the first, the middle, and the last snap-
shot illustrates that Θ increases. Here, we chose |Q̃| = (ln 2)/2. With Eq. (B.41)
follows that δΘ = δΞ = 0.2 δΦ.

The shear δŨij can be separated into components proportional and diagonal to Q̃ij.
Multiplying Eq. (2.27) with Q̃jl and taking the trace, we obtain:

δ|Q̃| = 0. (B.39)

Furthermore, multiplying Eq. (2.27) with εjkQ̃kl and taking the trace, we obtain:

δΦ =
|δŨ |
2c|Q̃|

. (B.40)

Thus, the applied shear deformations keep the aspect ratio exp (2|Q̃|) of the ellipse
constant, but rotate its long axis δΦ 6= 0 (compare Fig. 2.8B and Fig. B.1B).
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Now, we discuss the shear-induced contribution to rotation δΞ. We obtain from
Eq. (2.30):

δΞ = δΦ

[
1− 1

cosh (2|Q̃|)

]
. (B.41)

Here, we also used Eq. (B.40) and the relation δŨijεjkQ̃ki = 2|δŨ ||Q̃|, which follows
from Eq. (B.38). Thus, for the discussed example, there is a constant ratio between
the rotation of the Minerva head δΘ = δΞ and the rotation of the long axis of the
ellipse δΦ.

B.3 Components of the displacement gradient for
groups of triangles

B.3.1 Shear of a group of triangles in the absence of topological
transitions

Here, we derive Eq. (2.40) in the main text, which describes the shear δŨG
ij of a group

G of triangles during an infinitesimal transformation. To this end, we coarse grain the
shear on the single-triangle level δŨm

ij . From Eq. (2.35) follows:

δŨG
ij =

〈
δŨm

ij

〉
i
. (B.42)

Here, the “i” at the averaging brackets indicates that for the area-weighted average,
we use the respective areas in the initial state. We insert the single triangle shear from
Eq. (2.27) into the above equation and obtain:

δŨG
ij =

〈
δQ̃m

ij + δJ̃mij

〉
i
. (B.43)

Now, we express 〈δQ̃m
ij 〉i in terms of the change of Q̃G

ij. To this end, we first rewrite

〈δQ̃m
ij 〉i into:

〈δQ̃m
ij 〉i = 〈Q̃′mij 〉i − 〈Q̃m

ij 〉i. (B.44)

Here, Q̃m
ij and Q̃′

m

ij denote the elongation of triangle m in the initial and final states,

respectively. The change of Q̃G
ij can be written as:

δQ̃G
ij = 〈Q̃′mij 〉f − 〈Q̃m

ij 〉i. (B.45)

Here, the “f” at the averaging bracket indicates that for the area-weighted average,
we use the respective areas in the final state. Thus, from Eqs. (B.44) and (B.45), we
obtain:

〈δQ̃m
ij 〉i = δQ̃G

ij + 〈Q̃′mij 〉i − 〈Q̃′
m

ij 〉f . (B.46)
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Now, we simplify 〈Q̃′mij 〉i − 〈Q̃′
m

ij 〉f . By definition of the averaging bracket, it reads:

〈Q̃′mij 〉i − 〈Q̃′
m

ij 〉f =
1

AG

∑
m∈G

AmQ̃m
ij −

1

A′G

∑
m∈G

A′mQ̃′
m

ij . (B.47)

Here, the scalars Am and AG denote the respective areas in the initial state. The
scalars A′m and A′G denote the areas in the final state. Because of Eq. (2.23), the
following relation holds to linear order:

A′m = (1 + δUm
kk)A

m. (B.48)

Using δUG
kk = 〈δUm

kk〉i, it follows that

A′G = (1 + δUG
kk)A

G. (B.49)

Insertion of Eqs. (B.48) and (B.49) into Eq. (B.47) yields to linear order:

〈Q̃′mij 〉i − 〈Q̃′
m

ij 〉f = δUG
kk

1

AG

∑
m∈G

AmQ̃′
m

ij −
1

AG

∑
m∈G

AmδUm
kkQ̃

′m
ij . (B.50)

To linear order, Q̃′
m

ij can be replaced by Q̃m
ij on the right hand side:

〈Q̃′mij 〉i − 〈Q̃′
m

ij 〉f = δUG
kkQ̃

G
ij −

〈
δUm

kkQ̃
m
ij

〉
i
. (B.51)

Substituting this equation together with Eq. (B.46) into Eq. (B.43), we obtain:

δŨG
ij = δQ̃G

ij + δUG
kkQ̃

G
ij −

〈
δUm

kkQ̃
m
ij

〉
i
+ 〈δJ̃mij 〉i. (B.52)

Now, we introduce the correlation term

δD̃G
ij = −

(〈
δUm

kkQ̃
m
ij

〉
i
− δUG

kkQ̃
G
ij

)
+
(〈
δJ̃mij

〉
i
− δJ̃Gij

)
, (B.53)

where δJ̃Gij is defined by Eq. (2.41). Inserted into Eq. (B.52), we finally obtain:

δŨG
ij = δQ̃G

ij + δJ̃Gij + δD̃G
ij . (B.54)

B.3.2 Rotation of a group of triangles

For the sake of completeness, we discuss in this section the rotational part of an
infinitesimal transformation of a group G of triangles from an initial state to a final
state. To this end, we first discuss transformations in the absence of topological
transitions. Then, we discuss possibilities to take topological transitions into account.
Finally, we summarize and discuss the large-scale vorticity of a cellular network.
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Absence of topological transitions

Here, we discuss the rotational part δΨG of the displacement gradient UG
ij of the group

G. To this end, we proceed similar as in the previous section (Section B.3.1).

We define δΨG to be the antisymmetric part of UG
ij analogously to Eq. (2.25). Then,

from Eq. (2.35) follows:
δΨG =

〈
δΨm

〉
i
. (B.55)

As in the previous section, the “i” at the averaging brackets indicates usage of the
areas in the initial state. Inserting the relation for the single triangle rotation δΨm,
Eq. (2.28), yields:

δΨG =
〈
δΘm − δΞm

〉
i
. (B.56)

Analogously to the previous section, we obtain for 〈δΘm〉i:

〈δΘm〉i = δΘG + δUG
kkΘ

G −
〈
δUm

kkΘ
m
〉

i
. (B.57)

Here, δΘG denotes the change of the absolute orientation angle ΘG of the whole group.
For the initial state, we defined ΘG by: ΘG = 〈Θm〉i.

Hence, we can rewrite Eq. (B.56) into:

δΨG = δΘG − δΞG − δΓG. (B.58)

Here, we defined:

δΞG = δŨG
ij εjkQ̃

G
ki

cosh (2|Q̃G|)− 1

2|Q̃G| sinh (2|Q̃G|)
. (B.59)

This is a mean field version of the shear-induced rotation term. Furthermore, we
defined

δΓG =
(〈
δUm

kkΘ
m
〉

i
− δUG

kkΘ
G
)

+
(〈
δΞm

〉
i
− δΞG

)
. (B.60)

This is a correlation term. It is nonzero for inhomogeneous isotropic expansion and
for inhomogeneous shear.

Topological transitions

Here, we propose a possibility to treat the rotational part during topological transi-
tions. To this end, we make use of a continuous gauge freedom in the definition of Θm

for a single triangle m. Then, we clarify that there exists always a particular gauge
where the effect of any topological transition on average triangle rotation is zero.

First, we discuss the continuous gauge freedom in the definition of Θm. The orien-
tation angle Θm of a given triangle m depends on the state of the equilateral reference
triangle. More precisely, when rotating the reference triangle by an angle ∆ϑm, the
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orientation angle Θm of triangle m changes by:

Θm 7→ Θm −∆ϑm. (B.61)

This follows directly from the way Θm is defined (Eq. (2.7) and Fig. 2.4B). Thus,
there is a continuous gauge freedom, which is manifest in the choice of the angle ∆ϑm.
Moreover, the gauge freedom is in principle local, because one has the freedom to
choose for each individual triangle m of the triangulation a distinct reference triangle
with a distinct ∆ϑm. However, for a given triangle m, the orientation of the reference
triangle ∆ϑm has to be constant in time. Then, the change of the angle Θm between
initial and final states is a gauge invariant. Furthermore, triangle area, elongation
and all triangle transformation properties including the rotation angle ∆Ψm are gauge
invariants. Hence, relations derived so far that connect triangle state properties and
triangle transformation properties are gauge invariant as well.

Now, we show that there is always a gauge where there is no effect of topological
transitions on the average triangle rotation. Put differently, for a cellular network that
is being constantly deformed, we define the ∆ϑm for each triangle m such that the
change in the average orientation angle Θ during each topological transition is zero.
To this end, we first pick an arbitrary gauge for all triangles that are present in the
initial state. Then, we subsequently define appropriate gauges for the triangles that
are created during each occurring topological transition.

As an example, we discuss the case of a single T1 transition. Like in Section 2.1.5
on page 35, we consider the quadrilateral � that is made up of the two disappearing
triangles m,n before the transition. The same quadrilateral is made up the two ap-
pearing triangles p, q after the transition. We define the orientation of the reference
triangle ∆ϑ for each the two appearing triangles p, q such that during the transition:

∆Θ� = 0. (B.62)

Here, we defined ∆Θ� = Θ�−Θ� with Θ� = (ApΘp+AqΘq)/A� and Θ� = (AmΘm+
AnΘn)/A�. In order to fulfill Eq. (B.62), one could for instance define the angle ∆ϑp

for the triangle p such that
Θp = Θ�. (B.63)

If one similarly defines ∆ϑq for the triangle q such that Θq = Θ�, then Eq. (B.62)
holds.

Similarly, one could define gauges for the triangles appearing during a cell division
or during a T2 transition such that the average Θ does not change. This is always
possible, because during each topological transition, at least one triangle appears and
with it, one scalar degree of gauge freedom (∆ϑ). This degree of freedom can always
be fixed such that the change in average Θ is zero.
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Large-scale vorticity

With a particular gauge as defined in the previous subsection, Eq. (B.58) remains
true even in the presence of topological transitions. Here, we discuss the rotation
rate instead of the absolute rotation. To this end, we introduce an infinitesimal time
interval δt during which an infinitesimal transformation occurs. As in Section 2.2, we
consider the whole triangulation as group G. Correspondingly, we omit the superscript
G at all quantities.

We define the vorticity for the whole triangulation by:

ω =
δΨ

δt
. (B.64)

Then, from Eq. (B.58) follows:

ω =
dΘ

dt
− Ξ− Γ. (B.65)

Here, d/dt denope the time derivative and the angle Θ denotes the average triangle
orientation angle Θ = 〈Θm〉. We also defined

Ξ = ṽijεjkQ̃ki
cosh (2|Q̃|)− 1

2|Q̃| sinh (2|Q̃|)
(B.66)

Γ =
(〈
vmkkΘ

m
〉
− vkkΘ

)
+

(〈
δΞm

〉
δt

− Ξ

)
. (B.67)

Here, the nematics ṽij and Q̃ij denote average shear and triangle elongation as defined
in Section 2.2. Furthermore, vmkk denotes the isotropic expansion rate for a single
triangle m and vkk denotes the average for the whole triangulation.

Hence, according to Eq. (B.65), large-scale vorticity corresponds to the change of
the average triangle orientation angle. Furthermore, there may be a shear-induced
rotation effect Ξ (Fig. B.1) and correlations contributing to large-scale vorticity Γ.

B.4 Integrated shear depends on the deformation
protocol

Here, we show that the integrated network shear is path-dependent – also in the
absence of topological transitions. More precisely, for a finite transformation of a
cellular network from an initial state B to a final state C, the integrated shear depends
not only on the states B and C, but also on the states passed in between.

We express this claim in the form of an equation. To this end, we consider a
trajectory γ through the space of network states with initial state B and final state C.
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More precisely, we define γ to be a continuously differentiable function mapping the
closed interval [0, 1] to the space of network states with γ(0) = B and γ(1) = C. Here,
we do not consider topological transitions. Thus, a network state can be described by
the set of all vertex positions Pm.

Path independence of network shear means that there is a tensor-valued function
H̃ij(B,C) that corresponds to the integrated network shear and that depends only on
the states B and C: ∫

γ

δŨij = H̃ij(B,C). (B.68)

In particular, H̃ij(B,C) should be independent on the trajectory γ chosen between B
and C. The integral on the left hand side of Eq. (B.68) is defined as follows. Consider
a network state γ(s) on the trajectory γ for some parameter value s ∈ [0, 1]. The
network shear for the infinitesimal transformation from the network state γ(s) to the
network state γ(s + ds) is defined by Eq. (2.36). We denote this network shear by
dŨij. Then, the left hand side of Eq. (B.68) is defined by∫

γ

δŨij =

∫ 1

0

dŨij
ds

ds. (B.69)

In this sense, the integral on the left hand side of Eq. (B.68) is a line integral through
the space of network states.

Before proving the path dependence of integrated shear, we discuss two aspects of it.
First, the path dependence of integrated shear has the following direct consequence.
Consider a network transformation along a cyclic trajectory γ, where the initial and
final network states are the same. Then, in general, the following equation holds:∮

γ

δŨij 6= 0. (B.70)

Thus, although after a transformation of the network along the path γ, the final state
of the network is the same as the initial state, the integrated shear is in general nonzero.

Second, note that in contrast to the integrated shear, the integral of the isotropic
expansion δUkk is path-independent:∫

γ

δUkk = ln

(
AG(C)

AG(B)

)
. (B.71)

Here, the integral on the left hand side is defined analogously to Eq. (B.69). The
scalar AG(B) denotes the area of the triangulation in any state B. Eq. (B.71) can be
obtained by integration of Eq. (2.38).

In Section B.4.1, we demonstrate that already for a single triangle, network shear
is path-dependent. In Section B.4.2 we generalize the claim and show that there is no
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Figure B.2: Illustration of two different finite transformations of a triangle with
the same initial and final states. (A) The triangle elongation norm is continuously
changed by shear along the y axis, which is perpendicular and parallel to the elon-
gation axis (Figs. 2.6B and 2.8A). (B) The elongation axis is continuously rotated,
because the shear axis is always at an angle of π/4 with respect to the elongation
axis (Fig. 2.8B). For this transformation, there is a rotational component δΨ in the
displacement gradient. It compensates for shear-induced rotation (Fig. B.1) such
that δΘ = 0.

integrating factor that would allow for a path-independent integration of shear – even
if we combine it with possible rotations or area changes.

B.4.1 Single triangle

Here, we show that the integrated shear for a single triangle is path-dependent. To
this end, we consider two different transformation trajectories that share the same
initial and final states (Fig. B.2). In the initial state, the triangle is elongated along
the x axis with the norm Q̃0 and in the final state, it is elongated along the y axis
with the same norm Q̃0.

Now, we show that the integrated shear along both trajectories differ. First, we
compute the integrated shear along the trajectory γA shown in Fig. B.2A. The trian-
gle state at any point of the trajectory γA can be parametrized by Q̃xx. The other
component of the elongation nematic is always Q̃xy = 0. Furthermore, the triangle
area A is constant during the whole time and the orientation angle Θ is zero always.
Then, the integrated shear is given by:∫

γA

δŨij =

∫
γA

δQ̃ij. (B.72)
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Here, we used Eq. (2.27). Integration yields:∫
γA

δŨxx = −2Q̃0 and

∫
γA

δŨxy = 0. (B.73)

Now, we compute the integrated shear along the trajectory γB shown in Fig. B.2B.
The triangle state at any point of the trajectory γB can be parametrized by the angle
Φ of the elongation nematic Q̃ij. Then, the elongation nematic at any time is given
by

Q̃ = Q̃0

(
cos (2Φ) sin (2Φ)
sin (2Φ) − cos (2Φ)

)
. (B.74)

Like above, the triangle area A is constant during the whole time and the orientation
angle Θ is zero always. Then, the integrated shear is given by:∫

γB

δŨij =
sinh (2Q̃0)

Q̃0

εik

∫ π/2

0

Q̃kjdΦ. (B.75)

Here, we used Eq. (B.26) and δŨij = δÑij with δΘ = 0. In components, this equation
reads: ∫

γB

δŨ = sinh (2Q̃0)

∫ π/2

0

(
− sin (2Φ) cos (2Φ)
cos (2Φ) sin (2Φ)

)
dΦ. (B.76)

Thus, we find: ∫
γB

δŨxx = − sinh (2Q̃0) and

∫
γB

δŨxy = 0. (B.77)

This is different from the integrated shear along γA (Eq. (B.73)). In words, there is
more shear needed to rotate the elongation nematic (trajectory B) than to change one
component of the elongation nematic (trajectory A). Hence, the integrated shear is
path-dependent already for a single triangle.

B.4.2 General proof

Here, we generalize the claim that there is no solution to Eq. (B.68). More precisely,
we show that there is no integrating factor that would allow for a path-independent
integration of shear. In addition, we also take rotation and isotropic expansion into
account.

We first rephrase the question in mathematical terms. Be γ a trajectory through
the space of network states with initial state B and final state C. Then, we ask if
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there is a tensor-valued function Fij and a scalar-valued function G such that:∫
γ

Fij δUij = G(C)−G(B). (B.78)

Here, the integral on the left hand side is defined analogously to Eq. (B.69). The
function Fij should only depend on the current state of the network. Similarly, for
any network state B, the function G(B) should only depend on B. Clearly, there is
always the trivial solution Fij = 0 and G = 0. Here, we look for non-trivial solutions.3

To further clarify the meaning of Eq. (B.78), we split Fij into its components:

Fij =
A4
2

(
fTrδij + f̃ij − εijfA

)
. (B.80)

Here, A4 denotes the area of the triangulation. The scalars fTr and fA correspond
to trace and antisymmetric part of Fij, respectively. The nematic f̃ij corresponds
to the symmetric, traceless part of Fij. The factor A4/2 was introduced to simplify
transformations that follow later.4 Because Fij should only depend on the network
state, also fTr, fA, and f̃ij should only depend on the network state. Insertion of
Eq. (B.80) into Eq. (B.78) yields:∫

γ

A4

[
1

2
fTrδUkk +

1

2
f̃ijδŨij + fAδΨ

]
= G(C)−G(B). (B.81)

Thus, we ask, whether there is a linear combination of integrated shear, integrated
rotation, and integrated isotropic expansion that corresponds to the change in a state
property. In particular, we ask whether there is a solution with nonzero shear coeffi-
cient f̃ij.

3The fact that Eq. (B.78) is indeed a generalization of Eq. (B.68) can be seen as follows. First, the
existence of solutions Fij , G to Eq. (B.78) is equivalent to the existence of solutions F ′ijkl, G

′
kl to∫

γ

F ′ijkl δUij = G′kl(C)−G′kl(B). (B.79)

Here, F ′ijkl and G′kl should also only depend on the current state of the network. The equivalence
can be seen as follows. If there is a solution Fij , G to Eq. (B.78), then F ′ijkl = Fij and G′kl = G
for any k, l ∈ {x, y} is a non-trivial solution to Eq. (B.79). Conversely, is there is a non-trivial
solution F ′ijkl, G

′
kl to Eq. (B.79), there are k, l ∈ {x, y} such that second rank tensor F ′ijkl (for

fixed k, l) is nonzero. Then, Fij = F ′ijkl and G = G′kl is a non-trivial solution to Eq. (B.78). Now,
Eq. (B.68) is a special case of Eq. (B.79), where we choose F ′ijkl = (δikδjl + δjkδil − δijδkl)/2 and

G′kl is chosen as follows. If Eq. (B.68) holds, one can always express H̃ij(B,C) as the difference

of a state-dependent function K̃: H̃ij(B,C) = K̃ij(C)− K̃ij(B). We set G′kl = K̃kl.
4The factor A4/2 does not change our argument. In principle, one could also include it into fTr,

fA, and f̃ij .
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Proof of path-dependence of integrated shear

Here, we show that a solution to Eq. (B.81) does not exist with nonzero shear coefficient
f̃ij. To this end, we discuss the following counter example. Consider a triangulation
consisting of three unconnected triangles, which we denote by 1, 2, and 3.5 All three
triangles have nonzero elongation norm: |Q̃m| 6= 0 with m ∈ {1, 2, 3}. Here, we
consider an infinitesimal deformation of these triangles without topological transitions.

We demonstrate that from Eq. (B.81) follows that the nematic f̃ij has to be zero.
To this end, we first consider the infinitesimal version of Eq. (B.81):

A4

[
1

2
fTrδUkk +

1

2
f̃ijδŨij + fAδΨ

]
= δG. (B.82)

Here, δG denotes an infinitesimal change of the state property G. We insert the
components of δUij, which read:

δUkk =
1

A4

3∑
m=1

δAm (B.83)

δŨij =
1

A4

3∑
m=1

Am

(
δ|Q̃m|

Q̃m
ij

|Q̃m|
+ (δΦm − δΘm) sinh

(
2|Q̃m|

)εikQ̃m
kj

|Q̃m|

)
(B.84)

δΨ =
1

A4

3∑
m=1

Am
(
δΘm cosh

(
2|Q̃m|

)
− δΦm

[
cosh

(
2|Q̃m|

)
− 1
])

. (B.85)

Here, we used Eqs. (2.26), (B.26) with δŨij = δÑij, (B.27), and (2.35). Insertion into
Eq. (B.82) yields:

δG =
3∑

m=1

[
1

2
fTrδAm

+ Am|f̃ | cos
(
2[Φf − Φm]

)
δ|Q̃m|

+ Am|f̃ | sin
(
2[Φf − Φm]

)
(δΦm − δΘm) sinh

(
2|Q̃m|

)
+ AmfA

(
δΘm cosh

(
2|Q̃m|

)
− δΦm

[
cosh

(
2|Q̃m|

)
− 1
])]

.

(B.86)

Here, |f̃ | and Φf denote norm and angle of the nematic f̃ij, respectively. We also used
Eqs. (A.19) and (A.21) to derive Eq. (B.86).

5It is also possible to construct counter examples with more than three triangles. The important
points here are, that there have to be at least three triangles and that they are unconnected.
However, in principle the three triangles can also be connected by other triangles as discussed
below.
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We look for solutions of Eq. (B.86). Because G is a state quantity and because the
state quantities Am, |Q̃m|, Φm, and Θm of all three triangles can be changed indepen-
dently of each other, we can read the following partial derivatives off Eq. (B.86):

∂G

∂Am
=

1

2
fTr (B.87)

∂G

∂|Q̃m|
= Am|f̃ | cos

(
2[Φf − Φm]

)
(B.88)

∂G

∂Φm
= Am|f̃ | sin

(
2[Φf − Φm]

)
sinh

(
2|Q̃m|

)
− AmfA

[
cosh

(
2|Q̃m|

)
− 1
]

(B.89)

∂G

∂Θm
= −Am|f̃ | sin

(
2[Φf − Φm]

)
sinh

(
2|Q̃m|

)
+ AmfA cosh

(
2|Q̃m|

)
(B.90)

for m ∈ {1, 2, 3}. Thus, these are in total 12 scalar equations.

Now, we show that fA = 0 using the following Maxwell relations for m,n ∈ {1, 2, 3}:(
∂

∂Φm
+

∂

∂Θm

)
∂G

∂An
=

∂

∂An

(
∂G

∂Φm
+

∂G

∂Θm

)
. (B.91)

Separately evaluating left hand side and right hand side, we obtain:

1

2

(
∂fTr

∂Φm
+
∂fTr

∂Θm

)
= fAδmn + Am

∂fA

∂An
. (B.92)

Now, we exploit the fact that the left hand side is independent on n. Insertion of
m = 3, n = 1 and m = 3, n = 2 into Eq. (B.92) yields:

∂fA

∂A1
=
∂fA

∂A2
. (B.93)

Insertion of m = 1, n = 1 and m = 1, n = 2 into Eq. (B.92) yields:

fA + A1∂f
A

∂A1
= A1∂f

A

∂A2
. (B.94)

With Eq. (B.93) finally follows fA = 0.

Finally, we show that |f̃ | = 0 using the following Maxwell relations for m,n ∈
{1, 2, 3}:(

cos
(
2[Φf − Φm]

) ∂

∂|Q̃m|
+

sin
(
2[Φf − Φm]

)
sinh

(
2|Q̃m|

) ∂

∂Φm

)
∂G

∂An

=
∂

∂An

(
cos
(
2[Φf − Φm]

) ∂G

∂|Q̃m|
+

sin
(
2[Φf − Φm]

)
sinh

(
2|Q̃m|

) ∂G

∂Φm

)
.

(B.95)
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Separately evaluating left hand side and right hand side, we obtain:

1

2

(
cos
(
2[Φf − Φm]

) ∂fTr

∂|Q̃m|
+

sin
(
2[Φf − Φm]

)
sinh

(
2|Q̃m|

) ∂fTr

∂Φm

)
= |f̃ |δmn + Am

∂|f̃ |
∂An

.

(B.96)
For the right hand side, we used fA = 0. Now, we exploit the fact that the left hand
side is independent on n. Insertion of m = 3, n = 1 and m = 3, n = 2 into Eq. (B.96)
yields:

∂|f̃ |
∂A1

=
∂|f̃ |
∂A2

. (B.97)

Insertion of m = 1, n = 1 and m = 1, n = 2 into Eq. (B.96) yields:

|f̃ |+ A1∂|f̃ |
∂A1

= A1∂|f̃ |
∂A2

. (B.98)

With Eq. (B.97) finally follows |f̃ | = 0. Hence, there is no solution to Eq. (B.81) with
nonzero shear coefficient f̃ij. In other words, integrated large-scale shear depends not
only on the initial and final states, but on the trajectory of states passed – even if
one adds a state-dependent factor and possible contributions by rotation and isotropic
expansion.

General solution of Eq. (B.81)

From Eq. (B.87) follows thatG and fTr depend only on A4. Then, Eq. (B.82) becomes:

fTr(A4) = 2
dG(A4)

dA4
. (B.99)

Here, we used Eq. (2.38). Thus, there is a solution of Eq. (B.81) for any differentiable
function G(A4). For instance, for G(A4) = ln (A4) we obtain Eq. (B.71).

Modification of the proof connecting the three triangles

The three unconnected triangles discussed above can be connected such that the proof
still applies. Therefore, the triangulation consists of the three triangles already dis-
cussed, but additionally includes connecting triangles of vanishing area Am → 0. Their
contribution to the large-scale deformation δUij is vanishing and hence, the above ar-
gument still applies.
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Figure B.3: Division of the N -sided cell α with N = 6. (A) Triangulation change
due to the division. The shapes of the N triangles initially touching cell α change
discontinuously. Also, two triangles, p and q, are newly created (yellow). (B)
Typically, the axis of the nematic ∆C̃ij (magenta double arrow) is approximately
parallel to the division axis (red double arrow), which is defined by the line con-
necting the centers of the two daughter cells β and γ.

B.5 Shear contributions by single topological
transitions

B.5.1 Cell divisions

Here, we discuss the contribution by a single cell division to local shear. To this end,
we proceed in a similar way as for the T1 transitions in Section 2.1.5.

First, we note that during a single cell division, two additional triangles (p and q)
appear (yellow triangles in Fig. B.3A). Also, the shape of all triangles that belonged
to the mother cell α changes discontinuously upon division (red triangles). This is
because one corner of each of these triangles is displaced from the center of cell α to
the center of one of the daughters β or γ. Thus, in order to describe the effect of the
cell division on local shear, we consider the group of all triangles that belonged to the
mother cell α before the division (red triangles). For a N -sided cell α, these are N
triangles. After the division, the group consists of the same triangles as before; but
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now, it also includes the two newly created triangles p and q. Thus, after the division,
the group encompasses the two daughter cells β and γ.

Now, we discuss the contribution of the cell division to pure shear. Since the margin
of the group does not move during the cell division, we obtain for the shear of the
group:

δŨdiv
ij = 0. (B.100)

However, like during the T1 transition, the average triangle elongation changes dis-
continuously. Before and after the division, the average elongation reads:

Q̃α
ij =

1

Adiv

N∑
m=1

AmQ̃m
ij (before cell division) (B.101)

Q̃β,γ
ij =

1

Adiv

[
ApQ̃p

ij + AqQ̃q
ij +

N∑
n=1

AnQ̃n
ij

]
(after cell division), (B.102)

respectively. Here, Adiv denotes the total area of the group. We use different indices
m and n for the N red triangles before and after the division to indicate that the
elongation for each of these triangles changes discontinuously. For this reason and
because of the two newly appearing triangles, the change of average triangle elongation
is in general finite:

∆Q̃div
ij = Q̃β,γ

ij − Q̃α
ij. (B.103)

Like for the T1 transitions, we introduce a contribution to shear by the cell division
∆C̃div

ij = −∆Q̃div
ij . In analogy to Eq. (2.48), we obtain

δŨdiv
ij = ∆Q̃div

ij + δJ̃div
ij + δD̃div

ij + ∆C̃div
ij . (B.104)

We define the contributions δJ̃div
ij and δD̃div

ij to be zero during the cell division.

The axis of the shear contribution by the cell division ∆C̃div
ij is mostly close to the

division axis connecting the two daughter cell centers (magenta and red double arrows
in Fig. B.3B). This is because the triangles become typically squeezed perpendicular to
division axis during the cell division such that ∆Q̃div

ij is approximately perpendicular
to the division axis (green double arrow).

B.5.2 T2 transitions

Here, we discuss the contribution by a single T2 transition to local shear. To this end
we proceed in a similar way as for T1 transitions and cell divisions.

First, we discuss the triangulation changes induced by the T2 transition. Because
we only allow for threefold vertices, we consider T2 transitions only for three-sided
cells. Thus, during the T2 transition of a cell α, three triangles (m, n, and p) disappear
and a single triangle (q) appears (Fig. B.4). Thus, we focus on the triangle-shaped
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Figure B.4: T2 transition on the three-sided cell α. During the T2 transition,
three triangles (m, n, and p) disappear and are replaced by a single triangle q.

group G that consists of the triangles m, n, and p before the T2 transition. After the
T2 transition, it consists only of the triangle q.

The pure shear of G during the T2 transition reads

δŨT2
ij = 0, (B.105)

because the margin of G does not move. However, the average triangle elongation
changes discontinuously:

∆Q̃T2
ij = Q̃q

ij − Q̃α
ij. (B.106)

Here, we defined the average elongation before and after the T2 transition by:

Q̃α
ij =

1

AT2

[
AmQ̃m

ij + AnQ̃n
ij + ApQ̃p

ij

]
(before T2 transition) (B.107)

Q̃q
ij = Q̃q

ij (after T2 transition). (B.108)

Here, AT2 denotes the total area of the group. Similarly to above, we introduce a
contribution to shear by the T2 transition ∆ẼT2

ij = −∆Q̃T2
ij and write analogously to

Eq. (2.48):
δŨT2

ij = ∆Q̃T2
ij + δJ̃T2

ij + δD̃T2
ij + ∆ẼT2

ij . (B.109)

We define the contributions δJ̃T2
ij and δD̃T2

ij to be zero during the T2 transition.

B.6 Topological transitions at the network margin

Here, we discuss topological transitions at the network margin and how they affect
the triangulation. We clarify how the sequence of cell centers along the triangulation
margin changes due to the topological transitions. Also, we show that topological
transitions at the network margin instantaneously change the part of the cellular
network that is covered by triangles.
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Figure B.5: Illustration of the effect of a T1 transition at the margin of the cellular
network. Black solid lines show cell-cell interfaces. Blue solid lines show the
margin of the cellular network. Red triangles indicate the triangulation and the
yellow solid line indicates the margin of the triangulation. A T1 transition could
occur from left to right or from right to left (bright red solid lines). From left to
right: the T1 transition leads to removal of the triangle m. Also, the sequence
of cell centers along the triangulation margin is changed from . . . ,Rα,Rβ, . . .
to . . . ,Rα,Rγ ,Rβ, . . . . From right to left: the triangle m is gained and the
sequence of cell centers along the triangulation margin is changed.

B.6.1 T1 transitions

Fig. B.5 illustrates the effects of a single T1 transition at the network margin. If the
T1 transition leads to the creation of a new margin bond, a triangle (m) disappears
(from left to right in Fig. B.5). Therefore, the total area covered by triangles decreases.
On the other hand, if the T1 transition removes a margin bond of the cellular network,
a triangle is created (from right to left). Correspondingly, the total area covered by
triangles increases.

Also, during T1 transitions at the margin, the sequence of cell centers along the
triangulation margin changes. If a network margin bond is created, a further cell
center is added to the triangulation margin (from left to right in Fig. B.5). Conversely,
if a bond is removed from the network margin due to the T1 transition, a cell center
is removed from the triangulation margin (from right to left).

B.6.2 Cell divisions

Fig. B.6 illustrates the possible effects of a single cell division at the network margin.
There are two cases: Both daughter cells touch the network margin or only one daugh-
ter cell touches the network margin. First, if both daughter cells touch the network
margin, one triangle is created by the cell division (Fig. B.6A). Also, in the sequence
of cell centers along the triangulation margin, the mother cell center Rα is replaced by
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Figure B.6: Illustration of the effect of cell divisions at the margin of the cellular
network. Black solid lines show cell-cell interfaces. Blue solid lines show the
margin of the cellular network. Red triangles indicate the triangulation and the
yellow solid line indicates the margin of the triangulation. There are two possible
cases: (A) Both daughter cells touch the margin of the cellular network. Then, the
sequence of cell centers along the triangulation margin changes from . . . ,Rα, . . .
to . . . ,Rβ,Rγ , . . . . (B) Only one daughter cell touches the margin of the cellular
network. Then, the sequence of cell centers along the triangulation margin changes
from . . . ,Rα, . . . to . . . ,Rβ, . . . .
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Figure B.7: Illustration of the effect of a T2 transition at the margin of the cellular
network. Black solid lines show cell-cell interfaces. Blue solid lines show the margin
of the cellular network. Red triangles indicate the triangulation and the yellow
solid line indicates the margin of the triangulation. The triangle m disappears
and the sequence of cell centers along the triangulation margin changes from
. . . ,Rα,Rβ,Rγ , . . . to . . . ,Rα,Rγ , . . . .

both daughter cell centers Rβ,Rγ. Thus, the total area covered by triangles changes
in general, too.

Second, if only one daughter cell β touches the network margin, two triangles are
created by the division (Fig. B.6B). In the sequence of cell centers along the triangu-
lation margin, the mother cell center Rα is replaced by the daughter cell center Rβ.
Because Rβ is in general at a different position than Rα, the total area covered by
triangles changes.

B.6.3 T2 transitions

Fig. B.7 illustrates the effects of a single T2 transition at the network margin. During
a T2 transition, one triangle (m) is removed from the triangulation. Correspondingly,
the total area covered by triangles decreases. In the sequence of cell centers along the
triangulation margin, the center of the disappearing cell is removed.

B.7 Alternative triangulation

In this section, we shortly discuss an alternative method to tile the cellular network into
triangles. We first define this alternative triangulation method. Then, we show that
with this triangulation method, the shear created by T1 transitions is zero. Finally, we
list advantages and disadvantages as compared to the triangulation method presented
in the main text (Section 2.1.1).

The alternative triangulation method is defined as follows (Fig. B.8A). Each abut-
ting pair of a bond b (blue solid line) and a cell α (green dot marks center) gives rise
to a triangle (red dashed lines), which we label by 〈α, b〉. The endpoints of the bond
b are two vertices, which we label by m and n. Then, the corners of the triangle 〈α, b〉
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Figure B.8: Illustration of an alternative triangulation method. The cellular net-
work is shown by solid black lines and cell centers are marked by green dots. (A)
Each abutting pair of a bond b (blue solid line) and a cell α gives rise to a triangle
〈α, b〉. The corners of the triangle 〈α, b〉 are defined by the cell center Rα (green
dot) and the vertex positions Pm and P n (dark red dots). (B) Triangulation of
the network shown in Fig. 2.2A,C. Here, triangles are shown by solid red lines. (C)
During the T1 transition on the blue bond, two triangles disappear (yellow solid
lines) and two other triangles appear (also yellow solid lines). Upon appearance
and disappearance, these triangles have area zero. Triangles that stay during the
T1 transition are marked by red solid lines.

are defined by the center Rα of cell α and the vertex positions Pm and P n. This rule
uniquely defines a tiling of the entire cellular network into triangles (Fig. B.8B).

Now, we discuss the contribution of a single T1 transition to tissue shear (Fig. B.8C).
In Section 2.1.5, we explained how a finite change of average triangle elongation dur-
ing a topological transition can be considered as the shear caused by the topological
transition. So, how does the average triangle elongation change during the T1 tran-
sition, here? During the T1 transition, there are no geometrical changes, i.e. the red
triangles do not change their shape. Furthermore, two triangles disappear (yellow
solid lines in Fig. B.8C) and two other triangles appear (also yellow solid lines). Upon
appearance and disappearance, these triangles have area zero. As a consequence, the
average triangle elongation does not change during the T1 transition, where we count
in all triangles shown in Fig. B.8C. Hence, the shear by T1 transitions is always zero
for the triangulation method discussed here.

Finally, we compare the triangulation method discussed here to the method pre-
sented in the main text (Section 2.1.1). For the method discussed here, each N -sided
cell is split exactly into N triangles, whereas for the method discussed in the main text,
a single triangle overlaps in general with several cells. Therefore, cellular quantities
like cellular shear can be more accurately defined with the alternative triangulation.
A further advantage of the alternative method discussed here is that the triangulation
covers the entire cellular network including the margin part, which is not true for the
method presented in the main part. However, the method presented in the main part
is easier to apply to experimental data (Section B.8). The reason for this is that the
alternative method discussed here uses vertex positions, which are hard to define for
the artificial intermediate states introduced in Section B.8.1.
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B.8 Application to experimental data

Here, we show how we extracted the average divergence vkk and the average shear rate
ṽij of the flow field from experimental movies (shown as blue solid lines in Figs. 2.14,
2.16, 2.18, and 2.19). Also, we explain how we computed the average elongation Q̃ij

and the individual components of the average shear rate ṽij (curves shown in Figs. 2.16,
2.17, 2.19, and 2.20). To this end, we first segmented the movies as described in
Section 2.3.1. As a result, we obtained snapshots of the cellular network at discrete
time points ti, which were separated by intervals of ∼ 5 min. Then, we computed the
before-mentioned large-scale quantities for each time interval ti . . . ti+1 separately.

B.8.1 Introduction of artificial intermediate network states

In order to compute the components vkk and ṽij of the flow field, we constructed
artificial intermediate network states between the observed states at the times ti and
ti+1 (Fig. B.9). These artificial states also allowed us to separate shear contributions
by geometrical changes from shear contributions by topological transitions.

We constructed the artificial states as follows. First, we constructed the artificial
state D out of the observed state E at time ti+1 (Fig. B.9D,E). Therefore, the state
D is a copy of state E where all cell divisions are reverted that occur during the time
interval ti . . . ti+1. To this end, any pair of daughter cells is fused to a mother cell.
Then, the position of the mother cell center is defined as the midpoint between the
former daughter cell centers.

Then, we constructed the artificial state B out of the observed state A at time ti
(Fig. B.9A,B). In the first place, the state B is a copy of state A. However, we removed
all cells that were not present in the artificial state D anymore. These are the cells
that undergo a T2 transition during the time interval considered.

Finally, we constructed the artificial network state C out of the artificial state B
(Fig. B.9B,C). To this end, we moved all cell centers of state B to their respective
positions in state D. Thus, the topology in state C is the same as in state B, but the
cell centers are at the same positions as in state D.

Note that for the artificial states that we constructed here, not the whole network
information is defined. Rather, each artificial state defines the information about the
identities and positions of all cell centers. Also, it carries the neighborship information
between cells. This is sufficient to triangulate the network state as described in the
main text (Section 2.1.1). However, vertex positions are not defined in the artificial
states.

B.8.2 Computation of the large-scale quantities

In order to compute the velocity gradient vij, we first compute the displacement gradi-
ent Uij from the displacement of the triangulation margin between the network states
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Figure B.9: Illustration of artificial intermediate network states introduced for a
given time interval ti . . . ti+1. Panels A and E illustrate observed network states
at times ti and ti+1. In order to separate shear contributions by geometrical
changes from shear contributions by topological transitions, we construct artificial
intermediate network states (panels B-D). In all panels, cell centers are indicated
by green dots and triangles are indicated by red solid lines. Additionally, in panels
A and E, bonds are indicated by gray solid lines. The artificial network states are
constructed such that between the states A and B, all T2 transitions occur. A cell
undergoing a T2 transition is indicated by the red dot in panel A. Between states
B and C, all displacements of cell centers occur. Between states C and D, all T1
transitions occur. Here, one T1 transition is shown: the two cells losing contact
are marked by red dots and the two cells gaining contact are marked by blue dots
in panel C. Between states D and E, all cell divisions occur. Here, we show one
cell division: mother and daughter cells are marked by blue dots in panels D and
E.
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B and C using Eq. (2.36). Then, we compute the velocity gradient vij as follows:

vij =
Uij
∆t

. (B.110)

Here, ∆t = ti+1 − ti denotes the duration of the time interval. The components vkk,
ṽij, and ω of the velocity gradient are defined as in Eq. (2.51) (vkk and ṽij are plotted
as blue solid lines in Figs. 2.14, 2.16, 2.18, and 2.19).

We define the average elongation in any of the network states X ∈ {A,B,C,D,E}
analogously to Eq. (2.39):

Q̃X
ij =

〈
Q̃ij(X)

〉
X

. (B.111)

Here, the average 〈 · 〉X of any triangle quantity qm is defined by

〈qm〉X =
1

A4(X)

∑
m

Am(X)qm. (B.112)

The symbols A4(X), Am(X), and Q̃ij(X) denote the value of the respective quantity
in the state X. In Figs. 2.17 and 2.20, the average elongation Q̃X

ij was computed for
the observed network states (X = A,E).

According to Eq. (2.53), the shear rate ṽij decomposes as follows:

ṽij =
DQ̃ij

Dt
+ T̃ij + C̃ij + Ẽij + D̃ij. (B.113)

Now, we show how for a given time interval ti . . . ti+1, we computed the individual
terms on the right hand side for the experimental movies. The corotational derivative
of the average elongation is computed via:

DQ̃ij

Dt
=
Q̃E
ij − Q̃A

ij

∆t
+ J̃ij. (B.114)

Here, we compute J̃ij as follows:

J̃ij = −2

[
cω + (1− c)∆Φ

∆t

]
εikQ̃

avg
kj . (B.115)

We defined Q̃avg
ij = (Q̃A

ij + Q̃E
ij)/2 and c = tanh (2|Q̃avg|)/2|Q̃avg|. Furthermore, ∆Φ =

ΦE −ΦA, where ΦA and ΦE denote the respective angles of the nematics Q̃A
ij and Q̃E

ij.

The corotational derivative of the average elongation DQ̃ij/Dt is plotted as green solid
lines in Figs. 2.16 and 2.19.
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Figure B.10: Illustration of the triangulation method for the case
of N -fold vertices with N > 3. Here, we show the fourfold vertex
m at position Pm (yellow dot). It touches four cells with centers
R1, . . . ,R4 (green dots). We defined the following tiling into
triangles around vertex m. Four triangles were created (red solid
lines). For each triangle, two corners were defined by two subse-
quent cell centers. The third corner was defined by the average
position Cm of all four cell centers (blue dot).

We computed the shear contributions by topological transitions as follows:

T̃ij =
1

∆t

(
Q̃C
ij − Q̃D

ij

)
(B.116)

C̃ij =
1

∆t

(
Q̃D
ij − Q̃E

ij

)
(B.117)

Ẽij =
1

∆t

(
Q̃A
ij − Q̃B

ij

)
. (B.118)

They correspond to the red, cyan, and yellow solid lines in Figs. 2.16 and 2.19, respec-
tively.

In the computation of the correlation contribution D̃ij we had to take into account
that the time intervals are finite, here. Therefore, we included higher order terms:

D̃ij = − 1

∆t

〈(
Um
kk + (Um

kk)
2/4 + (∆Ψm)2 − |Ũm|2

)
Q̃m
ij (C)

〉
B

+
1

∆t

〈
Um
kk + (Um

kk)
2/4 + (∆Ψm)2 − |Ũm|2

〉
B

〈
Q̃m
ij (C)

〉
B

+
1

∆t

〈(
1 +

Um
kk

2

)(
−2∆Θm + 2

(
∆Φm −∆Θm

) [sinh (2| ˜̄Qm|)
2| ˜̄Qm|

− 1

])
εik

˜̄Qm
kj

+
Um
kk

2

[
Q̃m
ij (C)− Q̃m

ij (B)
]〉

B

− J̃ij.
(B.119)

Here, the displacement gradient Um
ij for an individual triangle is defined between states

B and C by Eqs. (2.14) and (2.18). Its components Um
kk, Ũ

m
ij , and ∆Ψm are defined

analogously to Eq. (2.37). Also, we defined ∆Θm = Θm(C)−Θm(B), ∆Φm = Φm(C)−
Φm(B), and ˜̄Qm

ij = [Q̃m
ij (B) + Q̃m

ij (C)]/2. The correlation contribution D̃ij is plotted
as magenta solid lines in Figs. 2.16 and 2.19.
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B.8.3 Triangulation for vertices with more than three bonds

In the main text (Section 2.1.1), we described a method to tile the cellular network
into triangles. There, we restricted to the case where only threefold vertices appear.
However, in the experimental data, we observed N -fold vertices with N > 3. Here, we
explain how we created triangles for these vertices.

A N -fold vertex m touches N cells with centers Rα with α = 1, . . . , N (Fig. B.10).
In order to create the triangles for a vertex with N > 3, we computed the average
position Cm of the cell centers:

Cm =
1

N

n∑
α=1

Rα. (B.120)

Then, we created N triangles as follows. For each triangle, two of the corners were
defined by two subsequent cell centersRα andRα+1 with α = 1, . . . , N−1 (orRN and
R1). The third corner of each triangle was defined by the position Cm. For N = 3,
we created a single triangle as described in the main text.
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Simple shear simulations using the
vertex model

C.1 Implementation of the vertex model

C.1.1 Boundary conditions

Here, we explain how periodic boundary conditions and skewed periodic boundary
conditions were implemented in the vertex model. To this end, we first discuss the
internal representation of network states. Then, we explain and define the concept
of periodicity vectors. Finally, both will help us to rigorously define the boundary
conditions.

Representation of a network state

The entire information about a given network state can be subdivided into a topolog-
ical and a geometrical part. Here, we discuss the geometrical part in detail. In the
simulations presented in this work, the only geometrical information stored were the
vertex positions Pm and the quantities Lx, Ly, and γ characterizing the boundary
conditions. The scalars Lx and Ly denote the width and the height of the simulation
box and we call the scalar γ the simple shear variable. All vertex positions fulfill:

0 ≤ Pm
x < Lx (C.1)

0 ≤ Pm
y < Ly. (C.2)

All other geometrical quantities used – like for instance bond lengths lb, cell areas
Aα, and cell perimeters Lα – were computed from the vertex positions together with
the boundary conditions. To this end, bond vectors had to be computed first. All
other geometrical quantities were then computed from bond vectors only. Thus, the
only place where the boundary conditions come into play is the computation of bond
vectors out of the vertex positions.
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Periodicity of directed bonds

Now, we introduce the concept of periodicity for directed bonds. Here, a directed
bond is a structure like a bond that additionally possesses the directional information
about its starting point and its endpoint.

To illustrate the necessity of the periodicity concept for periodic boundary condi-
tions, consider two given vertices m and n. For periodic boundary conditions, the
vertex m can be connected to the vertex n by infinitely many different directed bonds
b (Fig. C.1). Clearly, there is always the possibility to connect the vertex m directly to
the vertex n without crossing the margin of the simulation box (Fig. C.1A). However,
the directed bond b could also cross for instance once the upper margin of the simu-
lation box before reaching vertex n (Fig. C.1B). It could also cross the right margin
once (Fig. C.1C). Furthermore, it could cross the upper margin once and the right
margin once or it could cross the upper margin twice (Fig. C.1D and E, respectively).

Hence, when computing bond vectors from vertex positions in our simulations, we
also needed to select which one of these directed bonds is actually meant. To this end,
we define a two-dimensional periodicity vector

qb = (qbx, q
b
y) (C.3)

for each directed bond b. Here, qbx and qby are integers. In general, for a directed
bond b starting in m and ending in n, the periodicity vector qb is defined as follows.
When going from m to n, for each crossing of the right margin of the simulation box,
qbx is increased by one. For each crossing of the left margin, qbx is decreased by one.
Similarly, for each crossing of the upper (lower) margin, qby is increased (decreased) by
one. In each panel of Fig. C.1, the respective periodicity vector qb is indicated.

Periodic boundary conditions without skew

Here, we show how for periodic boundary conditions, we computed the bond vector
lb of any directed bond b. If the directed bond b starts at vertex m, ends in vertex n,
and has the periodicity vector qb, we write:

lb = P n − Pm +B(qb). (C.4)

Here, the vector B(qb) characterizes the behavior of the periodic simulation box.
More precisely, it corresponds to the way the integer periodicity vector qb influences
the bond vector lb. For periodic boundary conditions without skew, it is given by:

B(qb) =

(
qbxLx
qbyLy

)
. (C.5)
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Figure C.1: Illustrations of directed bonds b (blue arrows) starting in vertex m
and ending in vertex n (red dots). For periodic boundary conditions, there are
infinitely many possibilities to connect vertex m to vertex n. Here, we show a few
examples. Each panel shows a different directed bond b corresponding to a different
periodicity vector qb. (A) The periodicity vector is qb = (0, 0). Correspondingly,
the directed bond b does not cross any margin of the simulation box. (B) The
periodicity vector is qb = (0, 1) and correspondingly, b crosses the upper margin
once. (C) The periodicity vector is qb = (1, 0) and b crosses the right margin
once. (D) The periodicity vector is qb = (1, 1) and b crosses the upper margin
and the right margin once, respectively. (E) The periodicity vector is qb = (0, 2)
and b crosses the upper margin twice.
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Figure C.2: Influence of the
skew γLy on the bond vector
of the directed bond b (blue
arrow). The periodicity of b
is qb = (0, 1). (A) Without
skew. (B) With skew.

Because this is the only place where the boundary conditions come into play, Eq. (C.5)
can formally be considered as the definition of the periodic boundary conditions with-
out skew.

Skewed periodic boundary conditions

For skewed periodic boundary conditions, we additionally allow for a nonzero skew
γLy. Fig. C.2 illustrates how the skew affects the bond vector of a directed bond b
with periodicity vector qb = (0, 1): The skew γLy is added to the x component of
the bond vector. In contrast to that, for zero periodicity, the bond vector should not
be affected by the skew because it does not cross the upper or lower margin of the
simulation box (Fig. C.1A). In general, for an arbitrary periodicity vector, the vector
B(qb) is given by:

B(qb) =

(
qbxLx + qbyγLy

qbyLy

)
. (C.6)

Thus, for each crossing of the upper (lower) margin of the simulation box, the skew γLy
is added to (subtracted from) the x component of the bond vector lb. Eq. (C.6) can
formally be considered as the definition of the skewed periodic boundary conditions.

C.1.2 Numerical minimization of the work function

In Section 3.1.1, we explained that force-balanced states of the vertex model are de-
scribed as minima of a work function W . Here, we explain how such minima were
numerically computed. To this end, we first show how the value of W was computed
in a given network state. Then, we present how the multidimensional minimization of
W was carried out.

As explained in Section C.1.1, the geometrical information of a network state was
stored in terms of the vertex positions Pm. For a given network state, the value of W
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was computed as follows from the vertex positions Pm. First, all bond vectors lb were
computed out of the vertex positions Pm using the boundary conditions as described
in Section 3.1.1. Then, cell areas Aα, cell perimeters Lα, and bond lengths lb were
computed using only the bond vectors lb. Finally, the value of the work function W
was computed using Aα, Lα, and lb. Similarly, the gradient of W with respect to the
position Pm of a given vertex m could be computed using only bond vectors.

A given network state was relaxed to a minimum of W using the conjugate gradient
method [58, 155]. The conjugate gradient method uses successive line minimizations,
each of which minimizes W along a line through the state space. The directions of
these lines depend on the local gradient of W with respect to the vertex positions. In
the simulations presented in this work, the state space corresponded to the space of
network states. It consisted of all vertex positions Pm and, depending on the boundary
conditions, of the quantities Lx, Ly, and γ. Moreover, after each line minimization,
our algorithm checked for possible topological transitions according to Section C.1.3.

C.1.3 T1 and T2 transitions

Here, we explain how T1 and T2 transitions were realized in our simulations. During
each minimization of the work function W , our algorithm checked for possible T1 and
T2 transitions after each line minimization. During such a check, all bonds were tested
for a T1 transition to occur and all cells were tested for a T2 transition to occur. The
rules for these tests are explained in the following.

Note that in all vertex model simulations presented here, we allowed for N -fold
vertices with N ≥ 3. This is different from earlier vertex model implementations [58,
82, 121, 123], where only N = 3 was allowed. Allowing N ≥ 3 greatly simplifies the
treatment of T1 and T2 transitions.

T1 transitions

Because we allowed for N -fold vertices with N ≥ 3, each proper T1 transition can
be split into two half T1 transitions. During one proper T1 transition, a bond first
shrinks to a single vertex (first half T1 transition). Then, the vertex expands again
into a new bond (second half T1 transition).

Now, we define criteria for each type of half T1 transition separately. This is because
half T1 transitions of both types may occur independently of each other. First, we
discuss the shrinkage of a bond. A bond b was shrunk by a half T1 transition whenever
its length lb was smaller than a cutoff length parameter ΘT1:

lb < ΘT1. (C.7)

In all simulations, we set ΘT1 = 10−6 in dimensionless units. Upon shrinkage of a
bond b, both vertices of bond b were fused into a single vertex.
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Second, to test whether a bond b should be expanded, we proceeded as follows. We
tested every possibility to split a given vertex m into two vertices n and p. Then, we
tested if the dimensionless force F n,p that would drive n and p apart could overcome
the effective line tension Λb

eff by a newly created bond b between n and p:

|F n,p| > Λb
eff . (C.8)

Here, |F n,p| denotes the norm of the force F n,p and Λb
eff is given by

Λb
eff = Λ0 + Γ(Lα + Lβ). (C.9)

The cells α and β are the cells that would become neighbors through expansion of bond
b. Hence, the norm |F n,p| was compared to the effective line tension Λb

eff , which includes
the baseline line tension Λ0 and the contributions of the perimeter contractility of the
cells α and β. Line tension fluctuations were not included.

If the criterion Eq. (C.8) was fulfilled for a vertex m, we picked the possibility of
splitting m into two vertices n, p for which the difference |F n,p| − Λb

eff was maximal.
Then, we created the bond b connecting n and p. The positions of the new vertices
were chosen as follows. The position of n was the same as that of m before. However,
the position of vertex p was chosen such that the bond vector lb of b was given by

lb =
F n,p

|F n,p|
cT1ΘT1. (C.10)

Here, cT1 is a scalar parameter. In all simulations, we set cT1 = 10. Clearly, cT1

must be larger or equal to one, because otherwise, a bond would be shrunk again
immediately after it was expanded. In Eq. (C.10) the force F n,p is used to define the
direction of the new bond.

Occasionally, we observed oscillations of vertex splitting and bond shrinkage. In
order to prevent this, we introduced a maximum number nT1 of T1 splittings that
could occur during a single minimization on a single vertex m. We set this number to
nT1 = 10. When it was reached for a vertex m, this vertex could not be split anymore
during the ongoing minimization.

T2 transitions

Allowing for N -fold vertices with N ≥ 3 greatly simplified the implementations of T2
transitions. Before, for a T2 transition on a n-sided cell α, the number sides of α had
to be reduced to three by subsequent T1 transitions [58]. Then, α could be shrunk to
a three-fold vertex. In contrast to that, in this work, such a cell α was immediately
shrunk to a n-fold vertex.

A cell α was shrunk to a vertex whenever its area became smaller than the cutoff
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Table C.1: Parameter values used for the growth simulations presented in Sec-
tions 3.1.3 and C.2. The varied parameters are marked by ellipses “. . . ”. All
parameter values are given in dimensionless units (Section 3.1.2, page 53).

Parameter Value
mechanics

perimeter elasticity Γ 0.04

baseline line tension Λ0 0.12

line tension fluctuation amplitude ΛF 0.02 . . . 0.10

topological transitions

T1 bond shrinkage cutoff ΘT1 10−6

bond length factor for T1 vertex splitting cT1 10

maximum number of T1 splittings of a vertex per minimization nT1 10

T2 cell area cutoff ΘT2 10−3

time scales

average cell cycle length τdiv 1 . . . 100

numerical time step ∆t 0.01

area parameter ΘT2:
Aα < ΘT2. (C.11)

In all simulations, we set ΘT2 = 10−3 in dimensionless units.

C.2 Growth simulation details

Here, we present the technical details for the growth simulations presented in Sec-
tion 3.1.3. Starting from a relaxed pattern of 6× 6 hexagonal cells, we simulated time
steps of length ∆t = 0.01 for a total simulation time of τdiv, which varied between
τdiv = 1 and τdiv = 100 in dimensionless units. Table C.1 summarizes all parameter
values used.

Each time step consisted in the following parts. First, we checked if a cell should
divide. In a given time step, a given cell divided with a probability of ∆t/τdiv – inde-
pendent of earlier divisions and independent of divisions of other cells. Cell division
was implemented as in ref. [58] without doubling of the preferred cell area and with
isotropic orientation of the division furrow. Afterwards, we updated the line tension
noise ηb for each bond b of the network (Section 3.1.2). Finally, the network was re-
laxed to a new minimum of the work function (Section C.1.2). For the minimization,
the width and height of the simulation box Lx and Ly were kept free, but the simple
shear variable was fixed to zero: γ = 0. Put differently, for the minimization of W ,
not only the vertex positions Pm were varied, but also Lx and Ly.
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Table C.2: Parameter values used for the simple shear simulations presented in
Sections 3.2 and C.3.1. The varied parameters are marked by ellipses “. . . ”. All
parameter values are given in dimensionless units (Section 3.1.2, page 53).

Parameter Value
mechanics

perimeter elasticity Γ 0.04

baseline line tension Λ0 0.12

line tension fluctuation amplitude ΛF 0.02 . . . 0.10

topological transitions

T1 bond shrinkage cutoff ΘT1 10−6

bond length factor for T1 vertex splitting cT1 10

maximum number of T1 splittings of a vertex per minimization nT1 10

T2 cell area cutoff ΘT2 10−3

time scales

simple shear rate γ̇ 0 . . . 1

numerical time step ∆t 0.01

C.3 Simple shear simulations

C.3.1 Simulation details

Here, we present the technical details for the simple shear simulations discussed in
Section 3.2. Starting from a relaxed pattern of 10× 10 hexagonal cells, we simulated
time steps of length ∆t = 0.01. The total simulation time T depended on the line
tension fluctuation amplitude ΛF . For ΛF ≤ 0.04, we set T = 1000 and for ΛF > 0.04,
we set T = 100. Table C.2 summarizes all parameter values used.

Each time step consisted in the following parts. First, we updated the line ten-
sion noise ηb for each bond b of the network (Section 3.1.2). Then, the simple shear
variable γ was increased by γ̇∆t, where the simple shear rate γ̇ is a simulation param-
eter, here. Finally, the network was relaxed to a new minimum of the work function
(Appendix C.1.2). During the minimization, the simple shear variable γ and the sim-
ulation box dimensions Lx and Ly were kept constant. Thus, for the minimization of
W , only the vertex positions Pm were varied.

In order to ensure a constant number of cells, we proceeded as follows. Upon
each T2 transition, we forced the division of a randomly chosen cell. Cell division
was implemented as in ref. [58] without doubling of the preferred cell area and with
isotropic orientation of the division furrow.
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C.3.2 Fluctuations inhibit shear banding

Here, we develop a method to quantitatively test for the appearance of shear bands
in our simple shear simulations. Using this method, we find that even for high shear
rates (γ̇ = 1), shear bands could be prevented by line tension fluctuations with an
amplitude of at least ΛF ≥ 0.02.

Quantitative characterization of shear bands

We first develop a quantitative method to detect the appearance of shear bands.
The appearance of shear bands corresponds to inhomogeneities in the shear field. In
particular, a shear band is a region where most of the shear is localized. In simple shear
simulations without fluctuations, we observe the formation of a single shear band that
persisted until the end of the simulation. But also for small fluctuation amplitude,
we observed shear bands. However occasionally, they disappeared and another shear
band appeared in a different position. Here, we quantify the average persistence of
shear bands.

In order to quantify the persistence of shear bands, we focus on T1 transitions
and on the positions where they occur. When a shear band is formed, most T1
transitions would occur within this shear band. In contrast to that, when the shear
is distributed throughout the whole simulation box, also the T1 transitions occur
uniformly distributed within the whole simulation box. Thus, in order to quantify the
persistence of shear bands, we measure spatio-temporal correlations in the occurrence
of T1 transitions. In particular, we choose to look for correlations in the occurrence
of T1 vertex splittings.1

Now, we define spatio-temporal correlations in the occurrence of T1 vertex splittings.
For the sake of clarity, we first present the definition in a continuous description.
Afterwards, we present the discrete definition used to analyze the simulations.

We start with a locally averaged rate density of T1 splittings that varies in space
and time ρ(r, t). Then, the total rate of T1 splittings r(t) is given by the integral:

r(t) =

∫
ρ(r, t) d2r. (C.12)

Here, we integrate over the whole simulation box.
Typically, the shear bands we observed were roughly parallel to the x axis. There-

fore, all T1 transitions occurring in a shear band have similar y coordinates. Therefore,
in order to quantify the persistence of a shear band, we first define a complex number
p(t) that relates to the average y position of all T1 splittings at a time t:

p(t) =

∫
ρ(r, t) exp

(
2πiry
Ly

)
d2r. (C.13)

1Of course, one could alternatively look for correlations in T1 bond shrinkages or both.
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Here, we integrate over the whole simulation box, the scalar ry is the y component of
the integration variable r, and i is the imaginary unit. In this equation, the y posi-
tion ry of a single T1 vertex splitting is taken into account by the complex number
exp (2πiry/Ly), which has norm one. We choose this representation because of period-
icity in y direction. For the average y position of T1 splittings ȳ, we would then have
p = exp (2πiȳ/Ly). From a different perspective, one could say that p(t) corresponds
to the first Fourier mode of ρ(r, t) with respect to the y axis.

In order to measure the average persistence of shear bands, we look at the per-
sistence of the average y position of the T1 splittings. Therefore, we quantify the
auto-correlation of p(t):

c(τ) =

〈
p(t)p∗(t+ τ)

〉〈
r(t)r(t+ τ)

〉 . (C.14)

Here, the asterisk “∗” indicates complex conjugation. We normalized c(τ) by the auto-
correlation of r(t) such that the norm of c(τ) is never larger than one. In addition,
this normalization removed contributions in c(τ) that are only due to fluctuations in
the T1 splitting rate r(t). Note that here, we are merely interested in the persistence
of the average y position of the T1 splittings.

The auto-correlation c(τ) has the following meaning. A positive real part of c(τ)
corresponds to cases where at times separated by the time lag τ , the average y positions
of T1 splittings are similar. A negative real part of c(τ) corresponds to cases where
the average y positions of T1 splittings are shifted by Ly/2 with respect to each other.
A nonzero imaginary part of c(τ) corresponds to cases where the average y positions
of T1 splittings are shifted by Ly/4 with respect to each other. If distributions of T1
splittings separated by the time lag τ are uncorrelated, the correlation c(τ) is zero.
Hence, a finite life time of shear bands will be visible in a decay of the real part of
c(τ) from positive values towards zero.

Before presenting how the auto-correlation c(τ) depends on the fluctuation ampli-
tude ΛF , we define a discrete version of c(τ) that we used to analyze the simulations.
In the simulations, the T1 splittings were discrete events and the time intervals were
finite. We denote the total number of T1 splittings occurring during a given time
interval tj . . . tj+1 by Rj. Then, the continuous T1 splitting rate r corresponds to
Rj/(tj+1 − tj). Furthermore, the continuous quantity p corresponds to Pj/(tj+1 − tj),
where we defined:

Pj =

Rj∑
k=1

exp

(
2πiyk
Ly

)
. (C.15)

Here, the sum runs over all T1 splittings occurring during the time interval and yk
denotes the y position of the kth T1 splitting. Then, for τ = m∆t with integer m, the
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Figure C.3: The real part of the auto-
correlation C(τ) as defined by Eq. (C.16) for
different values of the line tension fluctuation
amplitude ΛF and for the simple shear rate
γ̇ = 1. All other parameter values used are
the same as in Table C.2. The solid lines in-
dicate the respective averages computed from
100 separate simulation runs. The hatched re-
gions represent the corresponding standard er-
rors of the mean.

auto-correlation c(τ) corresponds to C(τ), which is defined as follows:

C(τ) =
1

Zm

N−m−1∑
j=0

PjP
∗
j+m. (C.16)

Here, we defined

Zm =
N−m−1∑
j=0

RjRj+m. (C.17)

The integer N denotes the total number of time intervals in the simulation. Note that
we tested a number of alternative quantities to characterize the average life time of
shear bands. The auto-correlation c(τ) (with its discrete version C(τ)) turned out to
be the most reliable one.

Fluctuation-dependent persistence of shear bands

Now, we show how the persistence of shear bands depended on the line tension fluc-
tuation amplitude ΛF . To this end, we ran simple shear simulations starting from
a 10 × 10 pattern of hexagonal cells. The total duration of these simulation was
T = 1000 and we used time steps of length ∆t = 0.01.2 We set the shear rate to
γ̇ = 1 and varied the value of the line tension fluctuation amplitude ΛF between 0 and
0.04. For each value of ΛF , we performed 100 independent simulation runs.3 All other
parameter values are the same as in Section C.3.1, Table C.2. Also, as explained in
Section C.3.1, the total number of cells was kept constant by forcing a random cell
division upon occurrence of a T2 transition.

2Note that in order to save disk space, the quantities Rj and Pj defined above were summed over 10
intervals with length ∆t: tj+1 − tj = 10∆t. Thus, the line tension noise ηb was updated and the
network was relaxed at times separated by ∆t. However, the quantities Rj and Pj were written
to disk only after every tenth of these intervals.

3However, for ΛF = 0, we only performed a single simulation run, because without line tension
noise, the simulations are deterministic – at least in the absence T2 transitions.
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In Fig. C.3, we plot the auto-correlation C(τ) for different values of the line tension
fluctuation amplitude ΛF . The imaginary part of C(τ) was never significantly differ-
ent from zero. Therefore, we only discuss the real part, here. Without line tension
fluctuations (ΛF = 0, red solid line), the real part of C(τ) was close to one for all
τ . This is consistent with the observation of a shear band that persisted until the
end of the simulation. For very small fluctuation amplitude (ΛF = 0.0001, cyan solid
line), the situation was similar. For slightly larger fluctuation amplitude (ΛF = 0.01,
magenta solid line, and ΛF = 0.015, black solid line), the real part of C(τ) decreased
with τ , but there was still a significant correlation even for τ = 100. However for
ΛF ≥ 0.02 (blue and green solid lines), the correlation reached zero within the error
bounds before τ = 100. Hence, there were no persistent shear bands for ΛF ≥ 0.02.

C.3.3 Average flow field

Here, we derive the average velocity gradient vij for periodic boundary conditions. We
use the definition from Chapter 2, which reads (Eq. (2.50)):

vij =
1

δtAG

∮
niδuj d`. (C.18)

Here, the scalar δt represents an infinitesimal time interval and AG denotes the area
of the triangulation. The integral runs around the margin of the triangulation. The
vector n denotes the unit normal vector of the triangulation margin pointing outside.
The vector δu denotes the local displacement of the margin during the time interval
δt.

As a first simplification step, we transform Eq. (C.18) into

vij = − εik
δtAG

∮
δuj d`k. (C.19)

Here, the integration goes in counter-clockwise direction around the triangulation
margin. The differential d`k is a vector with norm d` that points in counter-clockwise
direction along the margin. Then, we have nid` = −εikd`k, which we used to derive
Eq. (C.19) from Eq. (C.18).

In order to compute Eq. (C.19), we first have to define the triangulation margin.
For periodic boundary conditions (with or without skew), the triangulation margin is
not uniquely defined. However, one possible definition can be obtained as follows. To
define a first piece of the triangulation margin, one picks a cell center Rα and connects
it to its copy Rα + B(1, 0) (green dots and red line in Fig. C.4).4 We denote the
curve that defines this connection by c(1, 0). It should go only along triangle sides,

4For skewed periodic boundary conditions, the vector B(q) is defined by Eq. (C.6) given the peri-
odicity vector q.
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Figure C.4: Construction of a triangulation margin (red solid lines) for periodic
boundary conditions. A triangulation margin can be constructed starting from the
center Rα of an arbitrary cell α (green dot). The triangulation margin is created
by connecting Rα to its copies Rα +B(1, 0) and Rα +B(0, 1) (red solid lines).
The corresponding curves are denoted by c(1, 0) and c(0, 1), respectively. Then, in
order to obtain a closed contour, c(1, 0) is shifted by B(0, 1) and c(0, 1) is shifted
by B(1, 0) (blue arrows).

i.e. c(1, 0) should be made up of line segments connecting neighboring cell centers.
Similarly, a second piece of the margin can be obtained by connecting Rα to its copy
Rα + B(0, 1). The corresponding curve is denoted by c(0, 1). Finally, in order to
obtain a closed contour, one adds a copy of c(1, 0) that is shifted by B(0, 1) and a
copy of c(0, 1) that is shifted by B(1, 0) (blue arrows). All four paths together yield
the triangulation margin. The triangulation area is AG = LxLy, because it can be
puzzled together from the simulation box rectangle.

For the given definition of the triangulation margin, we obtain from Eq. (C.19):

vij = − εik
δtLxLy

(∫
c(1,0)

[
δuj(r)− δuj

(
r +B(0, 1)

)]
d`k

−
∫
c(0,1)

[
δuj(r)− δuj

(
r +B(1, 0)

)]
d`k

)
.

(C.20)

Here, both line integrals go along the positions r of the curves c(1, 0) and c(0, 1),
respectively. Now, for a given periodicity vector q, we denote the change of the
vector B(q) during the time interval δt by the vector δB(q). Then, we have for the
displacement difference:

δu
(
r +B(q)

)
− δu(r) = δB(q). (C.21)
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Therefore, we obtain from Eq. (C.20):

vij =
εik
LxLy

(
Ḃj(0, 1)Bk(1, 0)− Ḃj(1, 0)Bk(0, 1)

)
. (C.22)

Here, we defined Ḃj(q) = δBj(q)/δt.

For skewed periodic boundary conditions, we insert B(q) as defined by Eq. (C.6)
and obtain for the velocity gradient v:

v =

(
L̇x/Lx 0

γ̇ + γ(L̇y/Ly − L̇x/Lx) L̇y/Ly

)
. (C.23)

With Eq. (2.51) the components of vij read:

vkk =
L̇x
Lx

+
L̇y
Ly

(C.24)

ṽxx =
1

2

(
L̇x
Lx
− L̇y
Ly

)
(C.25)

ṽxy =
γ̇

2
− γṽxx (C.26)

ω = −ṽxy. (C.27)

For our simple shear simulations, we set Lx and Ly constant and we prescribed γ̇.
Then,

vkk = 0 (C.28)

ṽxx = 0 (C.29)

ṽxy = γ̇/2 (C.30)

ω = −γ̇/2. (C.31)

C.3.4 Steady state axis of the elongation nematic

Here, we theoretically discuss simple shear simulations where the elongation relaxation
nematic F̃ij is parallel to the elongation nematic Q̃ij. In particular, we derive a relation
between the steady state angle Ψ and the steady state norm |Q̃| of the elongation Q̃ij.
For F̃ij parallel to Q̃ij, Eq. (3.5) reads:

dQ̃ij

dt
= ṽij + ω

1

|Q̃|
tanh

(
2|Q̃|

)
εikQ̃kj −

Q̃ij

|Q̃|
|F̃ |
(
|Q̃|
)
. (C.32)

Here, we used the definition of the corotational derivative, Eq. (2.54).
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Figure C.5: Relaxation rate of elongation |F̃ |
depending on the elongation norm |Q̃|. Com-
parison of steady state simulation results (col-
ored dots) to theory, Eq. (C.35) (black solid
lines). Note that Eq. (C.35) was derived for
the case where the nematics F̃ij and Q̃ij are
parallel.

Now, we decompose Eq. (C.32) into the part proportional to Q̃ij and into the part
proportional to εikQ̃kj (Section A.2.3). We obtain for the steady state:

γ̇

2
sin (2Φ) = |F̃ |

(
|Q̃|
)

(C.33)

cos (2Φ) = tanh
(
2|Q̃|

)
. (C.34)

Here, we used the values for ṽij and ω derived in Section C.3.3 for fixed Lx, Ly and
for constant γ̇. Also, we used our result from Section A.3.3.

Interestingly, from Eqs. (C.33) and (C.34) follows a relationship between γ̇ and the
steady state values of |Q̃| and |F̃ |(|Q̃|):

γ̇

2 cosh
(
2|Q̃|

) = |F̃ |
(
|Q̃|
)
. (C.35)

Note that such a relationship only exists for simple shear simulations.
We compare Eq. (C.35) to observed steady state values of |F̃ | and |Q̃| for different

simple shear rates γ̇ and different line tension fluctuation amplitudes ΛF (Fig. C.5).
We find that the theory described the simulation results well. Deviations between
simulation results and theory occurred because F̃ij and Q̃ij were not exactly parallel
to each other (Fig. 3.8A).

C.4 Quantification of observables

C.4.1 Definition of stress

Here, we define the stress tensor σij characterizing the mean field stress that is exerted
by the simulation box on the vertex model tissue. We define σij such that for a virtual
deformation, we have the following virtual change of the work function δW :

δW = LxLyσijδUij. (C.36)
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Here, δUij denotes the displacement gradient characterizing the virtual deformation
of the whole vertex model tissue.5

For skewed periodic boundary conditions, we insert δUij for given virtual changes
δLx, δLy, and δγ of the boundary conditions. Using Eq. (C.23), we have:

δW = σxxLyδLx + σyyLxδLy + σyx

(
LxLyδγ + γLxδLy − γLyδLx

)
. (C.38)

This corresponds to the following partial derivatives:

∂W (Lx, Ly, γ)

∂Lx
= σxxLy − σyxγLy (C.39)

∂W (Lx, Ly, γ)

∂Ly
= σyyLx + σyxγLx (C.40)

∂W (Lx, Ly, γ)

∂γ
= σyxLxLy. (C.41)

In order to simplify this, we perform a coordinate transformation. We substitute γ in
the work function W (Lx, Ly, γ) by a newly defined skew variable s = γLy/Lx. This
leads to the following set of equations:

σxx =
1

Ly

∂W (Lx, Ly, s)

∂Lx
(C.42)

σyy =
1

Lx

∂W (Lx, Ly, s)

∂Ly
(C.43)

σyx =
1

L2
x

∂W (Lx, Ly, s)

∂s
. (C.44)

We used these equations to compute three of the components of σij. We defined the
fourth component by:

σxy = σyx. (C.45)

This corresponds to the absence of chiral terms in the work function. The shear stress

5To see that Eq. (C.36) is a sensible mean field definition of σij , we expand it using the definition
of δUij , Eq. (2.36), and Appendix B.1. We obtain:

δW =

∮
fjδuj d`. (C.37)

Here, the integral goes along the triangulation margin defined in Section C.3.3. The vector
fj = σijni corresponds to the line density of the force that the simulation box exerts onto the
vertex model tissue in a given point of the triangulation margin.
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nematic σ̃ij is defined to be the symmetric, traceless part of σij:

σ̃ij =
1

2

(
σij + σji − σkkδij

)
. (C.46)

C.4.2 Shear components

Here, we explain how the quantities appearing in Eq. (3.5) were computed in the
simple shear simulations. First, we discuss the case without topological transitions.
Afterwards, we explain how topological transitions were incorporated.

Without topological transition

Without topological transitions and for a given time interval t . . . (t+∆t), we computed
the quantities ṽij, DQ̃ij/Dt, and D̃ij as follows. In general, the deformation from the
initial state at time t to the final state at time t+∆t is finite. Thus, in order to reduce
deviations due to higher order terms, we constructed N = 99 intermediate states by
linear interpolation of the vertex positions Pm and of the simple shear variable γ.
These intermediate states divided the whole deformation between the states at times
t and t + ∆t into N + 1 successive smaller deformations. Then, the displacement
gradient of the network related to the whole deformation Uij was computed by the
sum of the displacement gradients related to the smaller deformations:

Uij =
N∑
s=0

〈
Um
ij

〉
. (C.47)

Here, the sum runs over all N + 1 smaller deformations s. For s = 0, the initial
state of the smaller deformation is the state at time t and the final state is the first
intermediate state. For 1 ≤ s ≤ N − 1, the initial state is the sth intermediate state
and the final state is the (s + 1)th intermediate state. For s = N , the initial state is
the Nth intermediate state and the final state is the state at time t+ ∆t. The tensor
Um
ij is the discrete displacement gradient of the triangle m for the current smaller

deformation s. It is defined by Eq. (2.18). The averaging bracket is also related to the
current smaller deformation s. It is defined by Eq. (2.34) with the area weights taken
from the initial state of the current smaller deformation. Note that the network was
triangulated as in Section B.8.3.

Now, the shear rate ṽij was computed via:

ṽij =
Ũij
∆t

. (C.48)

Here, Ũij denotes the symmetric, traceless part of Uij.
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The corotational elongation derivative was computed as follows:

DQ̃ij

Dt
=

∆Q̃ij

∆t
+ J̃ij. (C.49)

Here, ∆Q̃ij = Q̃ij(t + ∆t) − Q̃ij(t) denotes the change of the average elongation Q̃ij

during the time interval ∆t. In a given state, the average elongation Q̃ij is given
by Eq. (2.39). The nematic J̃ij denotes the corotational contribution to shear. It is
defined by:

J̃ij = −2

[
c
∆Ψ

∆t
+ (1− c)∆Φ

∆t

]
εik

˜̄Qkj. (C.50)

Here, we defined c = tanh (2| ˜̄Q|)/(2| ˜̄Q|), where ˜̄Q = [Q̃ij(t) + Q̃ij(t + ∆t)]/2 and | ˜̄Q|
is the norm of ˜̄Qij. The angle ∆Ψ is defined to be the antisymmetric part of Uij (as
in Eq. (2.37)). Also, we defined ∆Φ = Φ(t+ ∆t)−Φ(t), where Φ denotes the angle of
˜̄Qij. Expressions in parentheses indicate the state in which the respective quantity is
evaluated.

The correlations contributing to shear were computed as follows:

D̃ij = − 1

∆t

(
K̃G
ij − ˜̄QijUkk

)
+

1

∆t
K̃R
ij − J̃ij. (C.51)

Here, the scalar Ukk denotes the trace of Uij. The nematics K̃G
ij and K̃R

ij represent
correlations that are defined as follows:

K̃G
ij =

N∑
s=0

〈
˜̄Qm
ijU

m
kk

〉
(C.52)

K̃R
ij =

N∑
s=0

〈[
−2∆Ψm + (∆Θm −∆Ψm)

sinh (2| ˜̄Qm|)− 2| ˜̄Qm| cosh (2| ˜̄Qm|)
| ˜̄Qm|

[
cosh (2| ˜̄Qm|)− 1

] ]
εij

˜̄Qm
kj

〉
.

(C.53)

In both equations the sums run over all small deformations and the averaging brackets

are defined like in Eq. (C.47). For a given triangle m, the nematic ˜̄Qm
ij denotes the

average of the elongations in the initial and the final states of the current small defor-

mation s. Note that ˜̄Qm
ij is different from ˜̄Qij defined below Eq. (C.50), which relates

to the whole deformation during the time interval ∆t. The angle ∆Ψm is the antisym-
metric part of Um

ij and relates to the current small deformation s. The angle ∆Θm

denotes the change of the orientation angle Θm during the current small deformation.

The scalar | ˜̄Qm| denotes the norm of the nematic ˜̄Qm
ij .
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Incorporation of topological transitions

Now, we explain how topological transitions were incorporated. At the beginning of
each time interval ∆t, the topological contributions to shear, T̃ij, C̃ij, and Ẽij, were
set to zero.

Now, we consider the effect of a single topological transition occurring during a
minimization of the work function. Upon occurrence of a single topological transition,
the average cell elongation Q̃ij changes instantaneously by ∆Q̃ij. Thus, to take the
effect of this topological transition on shear into account, we added −∆Q̃ij/∆t to the
corresponding nematic T̃ij, C̃ij, or Ẽij.

In addition, because during a topological transition, the triangulation changes, we
could not evaluate Eqs. (C.47), (C.52), and (C.53) for a deformation during which
topological transitions occurred. Therefore, we evaluated Uij, K̃

G
ij , and K̃R

ij separately
in between topological transitions. In the end, the individual contributions were added
up, respectively. More precisely, consider a number n of topological transitions oc-
curring during the time interval ∆t. We denote the initial state of the network at
time t by A and the final state at time t + ∆t by D. The network state before the
kth topological transition is denoted by Bk and the state after the kth topological
transition is denoted by Ck. Thus, the order in which these network states occur is:

A
deformation−−−−−−→ B1

top. transition−−−−−−−−→ C1
deformation−−−−−−→ B2

top. transition−−−−−−−−→ C2 . . . Cn
deformation−−−−−−→ D.

(C.54)
Then, for instance the deformation gradient Uij related to the whole deformation from
A to D is defined as follows:

Uij = Uij(A,B1) + Uij(C1, B2) + · · ·+ Uij(Cn, D). (C.55)

Here, the tensor Uij(X, Y ) for any two network states X and Y without any topological
transition in between is defined as in Eq. (C.47). In particular, the deformation
from X to Y is therefore divided into N + 1 smaller deformations by introducing
N = 99 intermediate states. The definition in Eq. (C.55) is sensible, because during
any topological transition, no deformation occurs.

In the presence of topological transitions, the definitions of the nematics K̃G
ij and

K̃R
ij are modified analogously to Eq. (C.55). These modifications affect the nematic

D̃ij, which depends on K̃G
ij and K̃R

ij . In contrast to that, the computation of DQ̃ij/Dt

and J̃ij is not altered by topological transitions.

Note that in order to save disk space, all quantities, ṽij, DQ̃ij/Dt, T̃ij, C̃ij, Ẽij, and
D̃ij, are averaged over 10 successive time intervals of length ∆t before being written
to the data file.



162 Appendix C: Simple shear simulations using the vertex model

C.4.3 Quantification of uncertainties

Here, we explain how the uncertainties in Figs. 3.6 and 3.8 were computed.
Fig. 3.6A,B: For each time point, the nematic tensors Q̃ij and σ̃ij were averaged over

100 simulation runs. Then, the uncertainties of the xx and xy components of both
tensors correspond to the respective standard errors of the mean. For the nematic Q̃ij,
we denote them by ∆Q̃xx and ∆Q̃xy. Then, the uncertainties of the angles and the
norms were computed according to standard rules for the propagation of uncertainty
for independent variables. For the nematic Q̃ij, we defined:

∆|Q̃| = 2
[
(Q̃xx∆Q̃xx)

2 + (Q̃xy∆Q̃xy)
2
]1/2

(C.56)

∆Φ =
1

2|Q̃|

[
(Q̃xy∆Q̃xx)

2 + (Q̃xx∆Q̃xy)
2
]1/2

. (C.57)

Here, ∆|Q̃| and ∆Φ denote the time-dependent uncertainties in norm and angle of
Q̃ij, respectively.

Fig. 3.6C,D, Fig. 3.8A,B: The uncertainties represented by the error bars are ob-
tained as follows. For a given parameter pair (ΛF , γ̇) and a given simulation run,
the steady state values of Q̃ij, σ̃ij, and F̃ij were determined by averaging the tensor
components for all time points t ≥ t0. Here, the time t0 is a cutoff time (see main
text). Then, for a given parameter pair (ΛF , γ̇), the steady state values of Q̃ij, σ̃ij,
and F̃ij were averaged over all 100 individual simulation runs. The uncertainties of
the tensor components were defined by the respective standard errors of the mean.
Finally, the uncertainties of the steady state norms and angles were computed as in
Eqs. (C.56) and (C.57), respectively.



Appendix D

Coarse-graining of a cellular Core
PCP model

Here, we coarse grain the cellular Core PCP model introduced in refs. [54, 121]. To
this end, we consider a regular hexagonal packing for simplicity. We discuss the
time evolution of a small perturbation of the homogeneous polar ground state in the
hydrodynamic limit. We show that the obtained relaxation corresponds to the generic
decay of the bend and splay modes of the Frank free energy [134, 149].

This chapter is organized as follows. In Section D.1, we first present the cellular
Core PCP model. Then, in Section D.2, we introduce the hexagonal grid and we trans-
form the Core PCP model to Fourier space for convenience. Then, in Section D.3 we
show that the ground state of the homogeneous system shows a continuous degener-
acy. In Section D.4, we discuss the relaxation of a small perturbation of the ground
state in the hydrodynamic limit. Finally, in Section D.5, we compare to generic relax-
ation dynamics of a polarity field. As result, we obtain phenomenological coefficients
describing the relaxation of bend and splay modes in the cellular Core PCP model.

D.1 Core PCP vertex model

Here, we describe the Core PCP model introduced in refs. [54, 121]. It is based on the
vertex model presented in Section 3.1.1.

The PCP protein distribution within the network is described by scalar variables
σb(R

α) on each side of each bond b.1 In particular, if the bond b is shared by the cells
α and β, we denote the respective PCP protein amounts by the variables σb(R

α) and
σb(R

β). The variable σb(R
α) is a real number. It takes negative values whenever there

is more Stbm and associated proteins than Fz and associated proteins. Conversely,
it takes positive values whenever there is more Fz and associated proteins than Stbm
and associated proteins.

Allowed configurations of the protein amounts σb(R
α) within a given cell α are

1Here, we choose for convenience the notation σb(R
α) instead of “σαb ”, which is used in refs. [54,

121].
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defined by the following conditions:∑
b

σb(R
α) = 0 (Condition I) (D.1)∑

b

σ2
b (R

α) = 1 (Condition II). (D.2)

Here, both sums run over all bonds b of cell α. Condition I requires that the total
amount of Stbm and associated proteins equals the total amount of Fz and associated
proteins. Condition II is needed in order to bound the total amount of PCP proteins
within the cell.

Interactions between Core PCP proteins are described by an effective energy. It is
given by

E =
∑
b

σb(R
α)σb(R

β)− J
∑
〈b,c〉

σb(R
α)σc(R

α). (D.3)

Here, the first sum runs over all bonds b of the network, and α and β are the cells that
touch b. The second sum runs over all unsorted pairs of neighboring bonds b and c,
where cell α touches both bonds. The first term describes inter-cellular interactions
across bonds. Unequal signs of σb(R

α) across bonds are energetically favored. The
second term describes intracellular interactions. The dimensionless coefficient J > 0
characterizes the intracellular interaction strength as compared to the inter-cellular
interaction strength. Equal signs of σb(R

α) in neighboring bonds of a given cell are
energetically favored. Note that as compared to refs. [54, 121], we define a dimension-
less energy in order to reduce the number of free parameters.

Based on the effective energy E, the model defines a time evolution of the vari-
ables σb(R

α). To this end, Conditions I and II are imposed by introducing Lagrange
multipliers λαI and λαII into the energy:

Ē = E +
∑
α

(
λαI
∑
b

σb(R
α)

)
−
∑
α

(
λαII

[
1−

∑
b

σ2
b (R

α)

])
. (D.4)

Then, the time evolution of the variables σb(R
α) is defined by

dσb(R
α)

dt
= −r ∂Ē

∂[σb(Rα)]
. (D.5)

Here, the rate r is a parameter representing an inter-cellular relaxation time scale.2

Consistent with that, the rate Jr represents an intracellular relaxation time scale.

2Note that here, we reduced the number of free parameters as compared to refs. [54, 121]. In
particular, we set r = γJ1 and J = J2/J1, where γ, J1, and J2 were parameters defined in
refs. [54].
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Figure D.1: Conventions used for a reg-
ular hexagonal grid of cells. (A) Defini-
tion of the bond indices b for a given cell
α. It increases in counter-clockwise or-
der. (B) Definition of the vector ∆Rb.
The vector ∆Rb denotes the distance
vector of the center of a given cell α to
the center of the cell that touches α via
bond b.

Table D.1: Components of the vectors ∆Rb for all possible values of the bond
index b.

b 0 1 2 3 4 5

∆Rb
x d0 d0/2 −d0/2 −d0 −d0/2 d0/2

∆Rb
y 0 d0

√
3/2 d0

√
3/2 0 −d0

√
3/2 −d0

√
3/2

D.2 Fourier transformation on a hexagonal grid

D.2.1 Hexagonal grid

For simplicity, we consider a nx×ny pattern of regular, hexagonal cells, where one side
of the hexagons is oriented parallel to the y axis (Fig. D.1). The distance between two
abutting cell centers is denoted by d0, and we prescribe periodic boundary conditions.

Around a given cell α, the bond index b can take the values b = 0, . . . , 5 (Fig. D.1A).
The bond index b is zero for the bond being located in positive x direction as seen
from the center of cell α, and it increases in counter-clockwise order. Correspondingly,
we slightly change the notation for σb(R

α). The bond index b in σb(R
α) does not

denote a global bond index anymore. From here on, it denotes the local bond index
b = 0, . . . , 5 relating to cell α.

In addition, we introduce the vectors ∆Rb for b = 0, . . . , 5 (Fig. D.1B). For given
b, the vector ∆Rb denotes the distance vector of the center of a given cell α to the
center of the cell that touches α via bond b. The vector components of ∆Rb are listed
in Table D.1.

In order to facilitate the later Fourier transformation, we rewrite the energy E using
the vectors ∆Rb. We obtain from Eq. (D.3):

E =
1

2

∑
α,b

σb(R
α)σb+3(Rα + ∆Rb)− J

∑
α,b

σb(R
α)σb+1(Rα). (D.6)

Here, both sums run over all cells α of the grid and over all bond indices b = 0, . . . , 5.
Moreover, here and in the following, bond indices b, b+ 1, and b+ 3 are always meant
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Figure D.2: Illustration of the angular Fourier modes ηm for a single cell depend-
ing on the mode index m = −2, . . . , 3. The colored fields indicate the respective
values of σb. Red indicates a positive value and blue indicates a negative value.
(A) The mode with m = 0 corresponds to an isotropic protein distribution. (B)
The modes with |m| = 1 correspond to a polar protein distribution. Also indicated
is the polarity angle ψ. (C) The modes with |m| = 2 correspond to a nematic
protein distribution. (D) The mode with m = 3 corresponds to a higher order
anisotropy.

modulo six. The factor 1/2 in front of the first term is necessary, because now, the
first sum accounts for each bond twice.

D.2.2 Discrete Fourier transformation with respect to angle and
position

Single hexagonal cell

We first discuss the angular Fourier transformation of the protein distribution σb(R
α)

within a single hexagonal cell α. We define a complex angular Fourier mode ηm by:

ηm = 6−1/2

5∑
b=0

σb exp

(
−2πimb

6

)
. (D.7)

Here, the integer m enumerates the Fourier modes. It can take the values m =
−2, . . . , 3. The symbol “i” denotes the imaginary unit and we dismissed the argument
of σb.

Eq. (D.7) defines six different Fourier modes ηm, where the meaning of ηm depends
on m = −2, . . . , 3 (Fig. D.2). The mode with m = 0 characterizes the average amount
of PCP proteins within the cell (Fig. D.2A). It is an isotropic measure. The modes with
|m| = 1 characterize a polar distribution of PCP proteins within the cell (Fig. D.2B).
The corresponding polarity angle ψ of cell α is defined by

ψ = − arg (η1). (D.8)
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Here, “arg” denotes the angle argument of a complex number. The modes with |m| = 2
characterize a nematic distribution of PCP proteins within the cell (Fig. D.2C). Finally,
the corresponding nematic angle is − arg (η2)/2. The mode with m = 3 corresponds
to a higher order anisotropy (Fig. D.2D).

Hexagonal grid

Now, we extend this angular Fourier transformation by a spatial Fourier transfor-
mation. As a result, we have a Fourier transformation in space and in the angle
simultaneously. For our hexagonal grid, we define:

ηm(k) = (6nxny)
−1/2

∑
α,b

σb(R
α) exp

(
−2πimb

6
− ik ·Rα

)
. (D.9)

Here, the vector k denotes a wave vector, and the sum runs over all cells α of the grid
and all bond indices b = 0, . . . , 5. For later reference, we note that as a consequence
of Eq. (D.9):

ηm(k) = η∗−m(−k). (D.10)

Here, we only allow for discrete values of k. The x component of k varies in steps
of 2π/(d0nx) and the y component varies in steps of 4π/(d0ny

√
3). In particular, we

allow for k = 0. Moreover, 0 ≤ kx < 2π/d0 and 0 ≤ ky < 4π/(d0

√
3). Then, it can be

shown that the inverse Fourier transformation reads:

σb(R
α) = (6nxny)

−1/2
∑
k,m

ηm(k) exp

(
2πimb

6
+ ik ·Rα

)
. (D.11)

Here, the sum runs over all allowed wave vectors k and over the mode index values
m = −2, . . . , 3.

D.2.3 Core PCP model in Fourier space

Now, we can rewrite the Core PCP model in Fourier space. First, we rephrase the
conditions Eqs. (D.1) and (D.2). For Condition I, we obtain with Eq. (D.11):

η0(k) = 0 (Condition I) (D.12)

for all allowed wave vectors k. Thus, the isotropic modes with m = 0 can be ignored.
This rephrases the requirement that the total amount of both kinds of proteins is equal
within each cell. Similarly, Condition II can be rewritten by inserting Eq. (D.11) into
Eq. (D.2):

1

nxny

∑
k,m

ηm(k)η∗m(k + k′) = δk′ (Condition II). (D.13)
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Table D.2: Functional dependence of G∆m(k) on k for each possible value of
∆m. Here, we list the exact dependence as they follow from Eq. (D.15) and
Table D.1. For convenience, we note the expressions for 3G∆m(k).

∆m exact value of 3G∆m(k)

0 cos (d0kx) + cos
(
d0kx

2
+ d0ky

√
3

2

)
+ cos

(
d0kx

2
− d0ky

√
3

2

)
1 −i sin (d0kx)− ieiπ/3 sin

(
d0kx

2
+ d0ky

√
3

2

)
− ie−iπ/3 sin

(
d0kx

2
− d0ky

√
3

2

)
2 cos (d0kx)− e−iπ/3 cos

(
d0kx

2
+ d0ky

√
3

2

)
− eiπ/3 cos

(
d0kx

2
− d0ky

√
3

2

)
3 −i sin (d0kx) + i sin

(
d0kx

2
+ d0ky

√
3

2

)
+ i sin

(
d0kx

2
− d0ky

√
3

2

)
4 cos (d0kx)− eiπ/3 cos

(
d0kx

2
+ d0ky

√
3

2

)
− e−iπ/3 cos

(
d0kx

2
− d0ky

√
3

2

)
5 −i sin (d0kx)− ie−iπ/3 sin

(
d0kx

2
+ d0ky

√
3

2

)
− ieiπ/3 sin

(
d0kx

2
− d0ky

√
3

2

)

Here, δk′ represents the Kronecker Delta. It is one for k′ = 0 and zero otherwise. The
sum runs over all allowed wave vectors k and over the values m = −2, . . . , 3 for the
mode index.

Now, we discuss the energy E in Fourier space. Inserting Eq. (D.11) into Eq. (D.6),
we obtain after some transformations:

E =
∑
k,m

η∗m(k)

[
−J cos

(mπ
3

)
ηm(k) +

(−1)m

2

∑
∆m

G∆m(k)ηm+∆m(k)

]
. (D.14)

Here, the outer sum runs over all allowed wave vectors k and over the values m =
−2, . . . , 3 for the mode index. The inner sum runs over ∆m = 0, . . . , 5. The symbol
η∗m(k) denotes the complex conjugate of ηm(k). The index m+ ∆m is meant modulo
six. The symbol G∆m(k) is defined by

G∆m(k) =
1

6

∑
b

exp

(
2πi∆mb

6
+ ik ·∆Rb

)
. (D.15)

Here, the sum runs over all bond indices b = 0, . . . , 5. The symbol G∆m(k) represents
the information about cell neighborships contained in ∆Rb in Fourier space. It can
be computed explicitly from the vectors ∆Rb. The functional dependence of G∆m(k)
on ∆m and k is shown in Table D.2. Note that for k = 0,

G∆m(0) = δ∆m. (D.16)

Thus, G∆m(0) is one for ∆m = 0 and zero otherwise.

Now, we discuss the Fourier transformation of the dynamics. To this end, we first
introduce new Lagrange multipliers νI(k) and νII(k), which correspond to λαI and λαII
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in Fourier space, respectively. The conditions are imposed as follows:

Ē = E +
∑
k

νI(k)η∗0(k)−
∑
k′

νII(k
′)

(
δk′ − 1

nxny

∑
k,m

η∗m(k)ηm(k + k′)

)
. (D.17)

Here and in the following, k and k′ run over all allowed wave vectors and m =
−2, . . . , 3. Eq. (D.17) can be derived from Eq. (D.4).

Now, the Fourier transformation of the time evolutions, Eq. (D.5), reads:3

dηm(k)

dt
= −2r

∂Ē

∂[η∗m(k)]
. (D.19)

Insertion of Ē yields:

dηm(k)

rdt
= 2J cos

(mπ
3

)
ηm(k)− (−1)m

∑
∆m

G∆m(k)ηm+∆m(k)

− 2δmνI(k)− 2

nxny

∑
k′

νII(k
′)ηm(k + k′).

(D.20)

Here, the value of Lagrange multiplier νI(k) is always set such that dη0(k)/dt = 0 for
all k. Then, Condition I can stay fulfilled: η0(k) = 0.

The value of the Lagrange multiplier νII(k) follows from the time derivative of
Eq. (D.13). After some transformations, we obtain:

νII(k
′) =

∑
k,m

η∗m(k + k′)

[
J cos

(mπ
3

)
ηm(k)− (−1)m

2

∑
∆m

G∆m(k)ηm+∆m(k)

]
.

(D.21)
Note that in particular, νII(0) = −E.

Now, we have rewritten the entire Core PCP model in Fourier space. As a con-
sequence of the time evolution, Eq. (D.20), we find for instance that the modes for
different indices m are only coupled via the inter-cellular interactions and via Condi-
tion II. Moreover, the modes for different k are only coupled via Condition II.

3Here, with z = x+iy, we define the derivative of a function f(z, z∗) depending on z and its complex
conjugate z∗ by:

∂f(z, z∗)

∂z∗
=
∂f(x, y)

∂x

∂x(z, z∗)

∂z∗
+
∂f(x, y)

∂y

∂y(z, z∗)

∂z∗
=

1

2

∂f(x, y)

∂x
+

i

2

∂f(x, y)

∂y
. (D.18)

As a consequence, in Eq. (D.19), a factor of 2 appears as compared to Eq. (D.5). After all, this
is because in Fourier space, E depends on the ηm(k) and on their respective conjugates η∗m(k),
which are in total twice as many variables as in the original model, where E depends only on
the σb(R

α). Note however, that in Fourier space, the variables are not independent of each other
because of Eq. (D.10).
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D.3 Continuous degeneracy of the homogeneous
ground state

In this section, we discuss homogeneous states. Then, we have

ηm(k) = 0 for k 6= 0. (D.22)

Furthermore, according to Condition I, η0(0) = 0. Thus, the only remaining Fourier
modes to discuss are ηm(0) for m = −2,−1, 1, 2, 3.

Here, we discuss the ground state energies. The possible states are restricted by
Condition II, which reads:∑

m

|ηm(0)|2 = nxny (Condition II). (D.23)

Here, |ηm(0)| denotes the complex norm of ηm(0). The energy reads:

E =
∑
m

[
−J cos

(mπ
3

)
+

(−1)m

2

]
|ηm(0)|2. (D.24)

We find that under the constraint of Condition II, E attains a global minimum for
states where only the polar mode exists. Thus, because of Eq. (D.10), from which
follows that η1(0) = η∗−1(0), we have for the ground state:

|ηm(0)|2 =
nxny

2
for m = −1, 1 and (D.25)

|ηm(0)|2 = 0 for m = −2, 2, 3. (D.26)

The corresponding ground state energy reads:

E0 = −nxny
2

(J + 1). (D.27)

Note that this energy is independent of the complex argument of η1(0).4 Thus, for the
homogeneous case, the ground state of the Core PCP model is continuously degener-
ated with respect to the polarity angle ψ0.5

4Note that the same is true for the energy of any homogeneous state, Eq. (D.24).
5Note that we find a continuous ground state degeneracy for a more general class of PCP models.

In particular, such a general class may contain an arbitrary number of conditions as long as all
conditions and the energy only contain terms that are linear and quadratic in the σ, and as long
as the conditions or the energy do not introduce external anisotropies. Moreover, for the ground
state degeneracy to appear, the σ do not even have to be scalars. They may also be objects
containing several scalars (for instance one for each PCP protein).
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D.4 Relaxation of hydrodynamic modes

Now, we discuss small long wavelength perturbations from a homogeneous polar
ground state. The angle of the ground state be ψ0, the wave vector of the pertur-
bation be q, and the amplitude of the perturbation be δψ. Thus, we start from the
following initial polarity angle field ψ(r):

ψ(r) = ψ0 + δψ cos (q · r + ϕ). (D.28)

Here, the angle ϕ denotes a constant phase.
The polarity angle field ψ(r) defines the following initial PCP protein distribution:

σb(R
α) = 3−1/2 cos

(
2πb

6
− ψ(Rα)

)
. (D.29)

This distribution clearly fulfills Condition I and the prefactor was chosen such that
Condition II is fulfilled, too.

In the following, we examine the long term relaxation of this PCP field to first order
in δψ and in the hydrodynamic limit, i.e. to second order in d0q. Here, q denotes the
vector norm of q. We choose the second order in d0q, because this is the lowest order
that appears in a generic non-equilibrium theory for the relaxation of the Frank free
energy (see below).

To examine the long-term relaxation of the PCP field, we first transform the initial
condition into Fourier space. Up to first order in δψ, we have:

η1(0) =
(nxny

2

)1/2

e−iψ0 (D.30)

η1(q) = −i
δψ

2

(nxny
2

)1/2

e−iψ0−iϕ (D.31)

η1(−q) = −i
δψ

2

(nxny
2

)1/2

e−iψ0+iϕ. (D.32)

The corresponding modes η−1(k) for k ∈ {−q, 0, q} can be obtained using Eq. (D.10),
which states that ηm(k) = η∗−m(−k). All other modes ηm(k) are zero to first order in
δψ.

Now, given this initial state, we systematically examine which of the modes ηm(k)
are non-zero to first order in δψ during time evolution. To this end, we also have to
discuss the Lagrange multipliers νII(k).

1. Initially, for m ∈ {−1, 1}, the modes ηm(0) are of order 1, and the modes ηm(k)
with k ∈ {−q, q} are of first order in δψ. The other modes ηm(k) are of second
or higher order in δψ.

2. From Eq. (D.21) follows that initially, the Lagrange multiplier νII(0) is of order
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Table D.3: Values of G∆m(k) in the hydrodynamic limit, i.e. to second order in
d0k. Here, k and φk denote the norm and the angle of the vector k, respectively.

∆m 0 1 2 3 4 5

G∆m(k) 1− 1
4
d2

0k
2 − i

2
eiφkd0k −1

8
e2iφkd2

0k
2 0 −1

8
e−2iφkd2

0k
2 − i

2
e−iφkd0k

1, and the Lagrange multipliers νII(k) with k ∈ {−q, q} are of first order in δψ.
The other Lagrange multipliers νII(k) are of second or higher order in δψ.

3. During time evolution, the modes ηm(k) and the Lagrange multipliers νII(k)
with k /∈ {−q, 0, q} remain of second or higher order in δψ. This is because
they start out to be of second or higher order in δψ. Then, for each subsequent
infinitesimal time interval, the Lagrange multipliers νII(k), Eq. (D.21), and the
time derivatives of the modes ηm(k), Eq. (D.20), are of second or higher order
in δψ.

4. Now, we discuss the time evolution of the modes ηm(k) and the Lagrange mul-
tipliers νII(k) for k ∈ {−q, 0, q}. For k = 0 and m ∈ {−1, 1}, the modes
ηm(0) and the Langrange multiplier νII(0) remain of order 1. For k = 0 and
m /∈ {−1, 1}, the modes ηm(0) remain of second or higher order in δψ. Other-
wise, for k ∈ {−q, q} and m 6= 0 the modes ηm(k) and the Langrange multipliers
νII(k) are never of order 1. They are typically of first order in δψ. All of this
follows from the initial conditions and from applying Eqs. (D.20) and (D.21) to
subsequent time intervals.

That for |m| = 1, the modes ηm(0) remain of order 1 follows from Condition II,
Eq. (D.13), and η1(0) = η∗−1(0). Furthermore, from the dynamics, Eq. (D.20),
follows that η1(0) remains constant to first order in δψ.

Thus, in order to determine the relaxation time scale of the perturbation, we only
need to examine the dynamics of the ten modes ηm(k) for k ∈ {−q, q} and m 6= 0.
However, from Eq. (D.10) follows that ηm(−q) = η∗−m(q). Thus, it remains to discuss
the dynamics of the five independent modes ηm(q) with m ∈ {1,−1, 2,−2, 3}.

Now, we explicitly note the dynamics of these five modes, which follows from
Eqs. (D.20) and (D.21). To this end, we use expressions for G∆m(k) that are computed
to second order in d0k (Table D.3). After a number of transformations, we obtain to
second order in d0q:

dη1(q)

rdt
= −

[
J + 1 +

1

8

(
1− 1

2
e−2i(ψ0−φq)

)
d2

0q
2

]
η1(q)

− e−2iψ0

[
J + 1− 1

8

(
1− 1

2
e2i(ψ0−φq)

)
d2

0q
2

]
η−1(q)

− i

4
eiφqd0q η2(q) +

i

4
e−iφq−2iψ0d0q η−2(q)
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+
d2

0q
2

16

[
e−2i(ψ0+φq) − e2iφq

]
η3(q) (D.33)

dη−1(q)

rdt
= −e2iψ0

[
J + 1− 1

8

(
1− 1

2
e−2i(ψ0−φq)

)
d2

0q
2

]
η1(q)

−
[
J + 1 +

1

8

(
1− 1

2
e2i(ψ0−φq)

)
d2

0q
2

]
η−1(q)

+
i

4
eiφq+2iψ0d0q η2(q)− i

4
e−iφqd0q η−2(q)

+
d2

0q
2

16

[
e2i(ψ0+φq) − e−2iφq

]
η3(q) (D.34)

dη2(q)

rdt
=

i

2
e−iφqd0q η1(q)− 2

[
J + 1− 1

8
d2

0q
2

]
η2(q) +

1

8
e2iφqd2

0q
2 η−2(q)

+
i

2
eiφqd0q η3(q) (D.35)

dη−2(q)

rdt
=

i

2
eiφqd0q η−1(q) +

1

8
e−2iφqd2

0q
2 η2(q)− 2

[
J + 1− 1

8
d2

0q
2

]
η−2(q)

+
i

2
e−iφqd0q η3(q) (D.36)

dη3(q)

rdt
=

1

8
e−2iφqd2

0q
2 η1(q) +

1

8
e2iφqd2

0q
2 η−1(q) +

i

2
e−iφqd0q η2(q) +

i

2
eiφqd0q η−2(q)

− 2

[
J + 1− 1

8
d2

0q
2

]
η3(q). (D.37)

Here, q and φq denote norm and angle of the vector q, respectively. They are defined
by:

q = q

(
cosφq
sinφq

)
. (D.38)

Now, we show that when discussing the relaxation of the modes ηm(q) with |m| = 1
to second order in d0q, we can dismiss η3(q). First, we realize that the modes ηm(q)
with |m| = 2 are of first order in d0q, and the mode η3(q) is of second order in d0q.
Furthermore, the mode η3(q) feeds back into the dynamics of the other modes via
factors that are of at least first order in d0q. Thus, η3(q) only creates terms of at least
third order in d0q in the dynamics of the polar modes. Therefore, we can dismiss η3(q)
when discussing the polar dynamics to second order in d0q.

Using similar arguments, the dynamics of the remaining modes can be simplified to:

d

dt


η1(q)
η−1(q)
η2(q)
η−2(q)

 = −M


η1(q)
η−1(q)
η2(q)
η−2(q)

 . (D.39)
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Here, the matrix M is defined by

M = r


a b c d
b∗ a∗ −d∗ −c∗
2c∗ 0 e 0
0 −2c 0 e

 (D.40)

with

a = J + 1 +
1

8

(
1− 1

2
e−2i(ψ0−φq)

)
d2

0q
2 (D.41)

b = e−2iψ0

[
J + 1− 1

8

(
1− 1

2
e2i(ψ0−φq)

)
d2

0q
2

]
(D.42)

c =
i

4
eiφqd0q (D.43)

d = − i

4
e−iφq−2iψ0d0q (D.44)

e = 2(J + 1). (D.45)

The eigenvalues of M read to second order in d0q:

k1 = k2 = 2r(J + 1) (D.46)

k3 = 2r(J + 1) +
rd2

0q
2

8(J + 1)
(D.47)

k4 =
rd2

0q
2

8

(
2− 1

J + 1
− cos

(
2[ψ0 − φq]

))
. (D.48)

Here, the first two eigenvalues, k1 and k2, correspond to the two-dimensional eigenspace
where η1(q) and η−1(q) are zero and η2(q) and η−2(q) take arbitrary non-zero values.
Here we are interested in the relaxation of η1(q) and η−1(q), which is described by k3

and k4. The rate k3 describes a fast relaxation, whereas the rate k4 converges to zero for
d0q → 0. Thus, k4 corresponds to the hydrodynamic relaxation mode. Note that this
relaxation time scale depends on the angle difference between the angle of unperturbed
polar ground state ψ0 and the angle of the wave vector of the perturbation φq. Also
note that the relaxation characterized by the eigenvalue k4 involves both, polar and
nematic modes.
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D.5 Comparison to a generic first order polarity
dynamics

Here, we compare the relaxation rate k4 of the cellular Core PCP model in the hy-
drodynamic limit with the generic relaxation of a polarity field. To this end, we first
formulate the generic theory.

D.5.1 Generic first order polarity dynamics

Here, we describe the generic relaxation of an inhomogeneous polarity field p, which
is normalized to one: pipi = 1. We describe the energetic cost of deformations in the
polarity field p by the Frank free energy in two dimensions [134, 149]:

Fd =
1

2

∫ [
K1(∂xpx + ∂ypy)

2 +K3(∂xpy − ∂ypx)2 + Λ‖pipi

]
d2r. (D.49)

Here, K1 and K3 denote the elasticities associated with splay and bend deformations,
respectively. The coefficient Λ‖ is a Lagrange multiplier, which ensures the normal-
ization of p.

Then, in a hydrodynamic theory for systems close to equilibrium, the first order
polarity dynamics in the absence of material flows is given by [59, 66]:

∂pi
∂t

=
1

γ1

hi. (D.50)

Here, γ1 is a phenomenological coefficient and hi is the conjugated force for the flux
∂pi/∂t. It is given by the functional derivative hi = −δFd/δpi. Insertion of Fd yields:

∂pi
∂t

= (κ1 − κ3)∂i∂jpj + κ3∂j∂jpi −
Λ‖
γ1

pi. (D.51)

Here, we defined the coefficients κ1 = K1/γ1 and κ3 = K3/γ1, characterizing the decay
of splay and bend modes, respectively.

Now, we rephrase the polarity dynamics in terms of the polarity angle θ, which we
define by:

p =

(
cos θ
sin θ

)
. (D.52)

Then, the polarity angle dynamics reads:

∂θ

∂t
= (κ1 − κ3)

[
− p⊥ipj(∂iθ)(∂jθ) + p⊥ip⊥j(∂i∂jθ)

]
+ κ3∂i∂iθ. (D.53)
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Here, we defined the following unit vector perpendicular to p:

p⊥ =

(
− sin θ
cos θ

)
. (D.54)

Now, we consider a small perturbation δθ with respect to the homogeneous ground
state polarity angle ψ0:

θ(r) = ψ0 + δθ(r). (D.55)

Then, the dynamics of δθ reads to linear order:

∂δθ

∂t
= (κ1 − κ3)p⊥ip⊥j∂i∂jδθ + κ3∂i∂iδθ. (D.56)

Now, we define the Fourier transformation of δθ by

δϑ(q) =

∫
δθ(r)e−iq · r d2r. (D.57)

Then, the relaxation dynamics in Fourier space reads:

∂δϑ

∂t
= −(κ1 − κ3)p⊥ip⊥jqiqjδϑ− κ3qiqiδϑ. (D.58)

This can be transformed into:
∂δϑ

∂t
= −kgenδϑ, (D.59)

where the rate kgen is given by:

kgen = q2

(
κ1 + κ3

2
− κ1 − κ3

2
cos
(
2[ψ0 − φq]

))
. (D.60)

Here, q and φq denote angle and norm of q, respectively, according to:

q = q

(
cosφq
sinφq

)
. (D.61)

The rate kgen represents the relaxation rate of a small perturbation in this generic
theory.

D.5.2 Effective relaxation rates of bend and splay modes in the
cellular Core PCP model

Now, we can directly compare the relaxation rate kgen obtained from the generic theory
to the hydrodynamic relaxarion rate k4 in Eq. (D.48). We find that they show the
same dependence on the angle difference ψ0−φq. Thus, we can directly determine the
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effective relaxation rates of bend and splay modes for the cellular Core PCP model:

κ1 =
rd2

0

8

(
3− 1

J + 1

)
(splay) (D.62)

κ3 =
rd2

0

8

(
1− 1

J + 1

)
(bend). (D.63)

We verified these results using vertex model simulations (data not shown).
The interesting result here is the dependence on the dimensionless parameter of the

cellular model J , which characterizes the ratio between intracellular and inter-cellular
coupling strength. For given inter-cellular relaxation rate (r = const.), but vanishing
intracellular coupling (J → 0), bend modes do not relax (κ3 → 0), but splay modes
do (κ1 6= 0). Conversely, for given intracellular relaxation rate (Jr = const), but
vanishing inter-cellular coupling (r → 0), neither bend nor splay modes relax (κ1 → 0
and κ3 → 0). The factors rd2

0 in these results were expected, since the cell center
distance d0 was the only length parameter in the Core PCP model, and the rate r was
the only time scale.





Appendix E

Quantification of polarity patterns in
the fruit fly wing

Here, we present methods that we used to quantify polarity patterns in adult and
pupal fruit fly wings. In Sections E.1 and E.2, we develop algorithms to quantify wing
hair polarity and polarity of clonal PCP protein stainings, respectively. Here, clonal
staining refers to a staining applied only within a random subset of cells in a tissue.
In Section E.3, we rephrase known methods to quantify single cell PCP nematics and
cell elongation nematics. Finally, in Section E.4, we present details on experimental
procedures.

E.1 Hair polarity in the adult fly wing

In Section E.1.1, we describe an algorithm to quantify the local wing hair direction
in digital images. Afterwards, in Sections E.1.2 and E.1.3, we describe how we create
one-dimensional profiles of wing hair angles and wing margin bristles, respectively.

E.1.1 Quantification of the wing hair direction pattern

The basic idea for the quantification of wing hair direction is the following. In a
grayscale light microscopic image of an adult fruit fly wing, hairs are visible as small
black lines (Fig. E.1A,C). In all wing hair images that we examined, the direction of
wing hairs showed at least local order. Because of this, wing images are effectively
hatched by the hairs, where the local axis of the hatching is defined by the local wing
hair direction. This is well illustrated by Fig. E.1A. Therefore, in order to quantify
the vector direction of wing hairs, we proceeded in two steps. First, we determined
the local axis of the wing hairs from a nematic image property characterizing the
local hatching axis. Second, knowing the axis of the wing hairs, we fixed their vector
direction.

This quantification algorithm has similarly been published in refs. [55, 159].
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Figure E.1: Quantification of wing hair direction. (A,B) Magnified parts of adult
fly wings, which carry wing hairs on their dorsal and ventral surfaces. (C,D)
Quantified local directions of the wing hairs. (A,C) Magnified part from a wild
type wing. (B,D) Magnified part from a wing permanently over-expressing Sple
in the posterior compartment. Parameters used: λ = 2 pixels ≈ 1.2µm; c = 5.
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Local wing hair axis

In order to access the local axis of the hatching, we locally define a nematic tensor
auto-correlation. Be I(r) the intensity distribution of the image depending on the
pixel position r. Then, we define the nematic tensor ñij(r) for each position r of the
image:

ñij(r) = I(r)

∫
C(cλ)

I(r + ∆r)g̃ij(∆r, λ) d2∆r. (E.1)

Here, the nematic g̃ij(∆r, λ) is the kernel of the auto-correlation and λ is a parameter.
For a given coordinate system, it is defined by the matrix

g̃(∆r, λ) = e−∆r2/λ2

(
cos (2φ∆r) sin (2φ∆r)
sin (2φ∆r) − cos (2φ∆r)

)
. (E.2)

The nematic g̃ij(∆r, λ) has the same axis as ∆r, where φ∆r is the angle of ∆r. The
norm of g̃ij(∆r, λ) introduces the distance-dependent weighting e−∆r2/λ2

, which decays
on a characteristic length, given by the parameter λ. The integration in Eq. (E.1)
runs over the area of a circle centered at the origin with radius cλ, where c is a cutoff
parameter.

To obtain the local axis of wing hairs, we first computed the nematic tensor ñij(r)
for each pixel, where the integral in Eq. (E.1) is substituted by a sum over pixels.
Then, we divided the whole image into boxes with a side length of 20 pixels. We
interpret the orientation of the average nematic within each box as the local wing hair
axis.

We studied the sensibility of the quantified local hair axis with respect to the pa-
rameters λ and c. Note that the distance-dependent weighting in g̃ij(∆r, λ) effectively
acts as a low pass filter for the image information. Thus, the length scale λ should
be chosen to be on the order of the width of the wing hairs. Fig. E.2 illustrates that
the quantified local hair axis pattern is within the relevant parameter regime largely
insensitive to both parameters. However, for large values of λ, the quantified local
hair axis may become significantly biased by wing veins (see Fig. E.2E). For the wing
hair pattern quantifications shown in Chapter 4, we chose λ = 2 pixels and c = 5.

Fixing the local wing hair vector direction

Having the image divided into boxes and knowing the local hair axis for each of these
boxes, we need to fix the local vector directions. For each box i with axis angle φi,
there are exactly two candidates for the vector direction angle ψi:

ψi = φi and ψi = φi + π. (E.3)

The idea is to employ a semi-automated algorithm. All boxes have a generation
property. The user defines the vector direction ψi for a subset of boxes: these are
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Figure E.2: A magnified region of an adult wing permanently over-expressing Sple
in the posterior compartment and the local axis of wing hairs, which was quantified
using different values for the parameters λ and c. The quantified wing hair axis
(blue bars) depends only weakly on the length scale parameter λ and on the cutoff
parameter c.
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boxes of generation zero. Starting from these boxes, the algorithm iteratively fixes the
vector direction of subsequent generations:

1. For each box i adjacent to at least a single box of an older generation, the
average vector direction ψavg of all adjacent boxes that are of an older generation
is computed:

p

(
cosψavg

sinψavg

)
=

〈(
cosψj
sinψj

)〉
j

, (E.4)

where the average runs over all adjacent boxes j of older generation and p is a
scalar factor that may vary from box to box.

2. The vector direction of box i is set to that angle out of {φi, φi + π} which is
closer to ψavg and box i becomes a member of the current generation.

Steps 1 and 2 are repeated until all boxes have their vector direction fixed.
In a more elaborated version of the algorithm, several passes are required for fixing

the vector direction of all boxes. In a first pass, step 2 is only executed for a box i,
if ψavg deviates not more from φi than a cutoff angle Θ = 0.25π. In a second pass,
the vector directions of the remaining boxes are fixed. The motivation for this is that
whenever the angle difference between neighboring boxes is high, the probability to
pick the wrong vector direction is higher, too.

Figs. E.1B,D and E.3 show examples of quantified wing hair vector direction. In
light microscopic wing hair images, the hairs from both layers, dorsal and ventral, are
visible. That is why, wing hairs often appear to be organized into pairs (Fig. E.1A,C).
Whenever the wing hair directions on both layers differ by more than ca.π/2, we
masked the respective area of the wing (as in Fig. E.3B). However mostly, the hairs
from both layers differ by less than ca. π/4.

E.1.2 Profiles of wing hair direction angles

In order to plot average wing hair angles along a line across the wing blade (as in
Figs. 4.10, 4.13, 4.14, and 4.15), we proceeded as follows. First, we quantified the wing
hair polarity patterns using the algorithm presented in Section E.1.1 and mapped to
our reference coordinate system including a rescaling by the factor λ0 (Fig. 4.9A).
Then, we plotted the wing hair angles along the red line shown in Fig. 4.9A, which is
parallel to the y axis.

Furthermore, we realized that in adult wings, the width ratio of anterior to posterior
compartment is smaller than in wings at 32 hAPF. In order to compare observed wing
hair patterns to results of our theory, we therefore inhomogeneously rescale the y
coordinate of the wing hair data along the profile line as follows. First, we map adult
vein and margin positions to their respective positions at 32 hAPF, where we take
the same wild type wing as reference that already served as model for the wing blade
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Figure E.3: Quantified wing hair direction patterns (A) in a wild type wing and
(B) in a wing permanently over-expressing Sple in the posterior compartment.
Polarity was averaged inside of coarser boxes containing 5 × 5 of the original
boxes. Parameters used: λ = 2 pixels; c = 5.
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outline for the numerical solutions. Then, we map all y positions in between veins (or
between a vein and the margin) by linear interpolation.

After these transformations, the normalized hair polarity vectors of the different
wings were averaged at each position y in order to obtain an average polarity vector
p. In the profile plots, we show the angle of the average polarity vector p. The circular
standard deviation σψ of the angle is defined as follows [164, 165]

σψ = (−2 log |p|)1/2 , (E.5)

where |p| denotes the norm of the average polarity vector p.

E.1.3 Profiles of bristle direction angles

In order to plot bristle angles along the wing margin, we first parametrize positions
on the wing margin by the coordinate s (Fig. G.1A), where differences of s between
two points on the margin are proportional to the corresponding margin arc length.
The coordinate s takes the value of s = 0 at the posterior indentation between hinge
and blade and the value of s = 1 at the anterior indentation. For discrete positions s,
we quantified wing hair angles ψw at a distance w from the margin and bristle angles
ψb using the wing hair algorithm presented in Section E.1.1. Margin angles ψm were
quantified using a local linear fit and are defined to point in clockwise direction around
the wing margin. All angles are defined to increase in counter-clockwise direction. The
angle of zero is defined along the x axis of the coordinate system defined in Fig. 4.9A.

Throughout Chapter 4, we plot profiles of the bristle angle relative to the margin
angle ψb−ψm over s (for example in Fig. G.1B,C). In order to compare the profiles of
different wings, the coordinate s was rescaled such that all vein positions match. To
this end, we proceeded similarly as in Section E.1.2. First, the vein end positions s
of wing veins were mapped onto the vein end positions of a reference wild type wing.
Afterwards, the positions between two vein positions were interpolated linearly.

E.2 Quantification of polarity from images with a
clonal staining

Here, we develop two different methods to quantify cell polarity from images where
only random patches of cells are stained for a PCP protein. These patches are called
clones. The first method, presented in Section E.2.1, uses segmented data. It is
therefore more robust, but on the other hand, segmentation requires time-consuming
hand-correction. In contrast to that, the second method, presented in Section E.2.1,
is in general less robust but runs fully automatically in less than a minute on an image
of approx. 10 megapixels. These quantification algorithms have been published in
refs. [55, 159].
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Figure E.4: Staining of Cadherin (green channel)
and clonal staining for Strabismus (red channel) in
a wing at 16 hAPF that permanently over-expressed
Sple in the posterior compartment. The region
shown belongs to the anterior compartment. Also
indicated is the normal vector nb to one cell bound-
ary b between clone and non-clonal cells.

E.2.1 From segmented image data

Idea

For this method, we need image data with stainings for a membrane marker and a
clonal staining for a PCP protein (Fig. E.4). First, we segment the cell outlines using
the membrane marker staining as in ref. [54]. Then, from the clonal PCP protein
staining, we define the polarity vector pclone of a given clone as follows

pclone,seg. =

∑
b Ibnb∑
b Ib

, (E.6)

where the sum runs over all cell boundaries b between clonal and non-clonal cells. The
vector nb denotes the normal unit vector to this cell boundary pointing outside of the
clone (Fig. E.4) and the scalar Ib is defined by the sum of the fluorescence intensities
of the stained PCP protein along cell boundary b.

Application to a polarity pattern at 16 hAPF

We applied this idea to the quantification of the Core PCP pattern of 16 hAPF wings
that permanently over-express Sple in the posterior compartment (result shown in
Fig. 4.6). Therefore, we used a Cadherin staining for the segmentation and a clonal
Strabismus staining to define the polarity (compare Fig. E.4). Since we chose a Stra-
bismus staining, we additionally flipped the polarity vector pclone in order to fulfill our
convention for the sign of Core PCP (Section 1.4.1).

We quantified the polarity of all clones in five different wings using Eq. (E.6). Then,
we aligned these wings as follows. Because we could not observe the landmarks used
for the coordinate system shown in Fig. 4.9A, we had to choose a different coordinate
system. In the Cadherin staining, we clearly identified three small precursor structures
of sensory organs on vein L3 and one on the anterior cross vein. Therefore, we defined
the vein L3 as x axis based on a linear fit through the three precursor structures on it.
The origin was defined such that the y axis passes through the precursor structure on
the anterior cross vein. Finally, all wings were scaled such that all distal wing margins
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Figure E.5: Clonal staining
of the Fat PCP protein Dachs
in a wild type fruit fly wing at
32 hAPF.

intersected the x axis in the same point.

Using this coordinate system, we averaged the five clone polarity patterns as follows.
We first divided the coordinate system into boxes. Finally, to obtain the polarity
arrows shown in Fig. 4.6, we divided the sum of all clone polarity vectors within each
box by the sum of their norms.

E.2.2 From unsegmented image data

Here, we develop a method to determine clone polarity merely from a grayscale image
representing local fluorescence intensities of a clonal staining of a PCP protein. The
main idea is to exploit the observation that typically, the fluorescence intensity within
a clonal cell was slightly higher than outside of the clone (Fig. E.5). Therefore, we
define the following polarity vector pcoarse(r) at each pixel position r of the image:

pcoarse(r) =
∑
∆r

∆r

|∆r|
exp

(
−|∆r|

2

λ2
p

)
, (E.7)

where the sum runs over those pixel positions r + ∆r that correspond to the 40%
darkest pixel intensities within a cutoff radius of |∆r| ≤ cλp around r. We chose the
length scale parameter λp = 10 pixels and the cutoff parameter c = 2.

When r is a position at the interface between a clonal and non-clonal area, pcoarse(r)
would typically point away from the clone. In order to obtain a sensible measure for
the clone polarity, pcoarse(r) should be weighted such that only the brightest pixels
on the clone outline into account. To achieve such a weighting, we first subtract the
locally averaged pixel intensity from the pixel intensity at r:

∆I(r) = I(r)− 1

Nc

∑
∆r

I(r + ∆r), (E.8)

where the sum runs over all Nc pixels within the cutoff radius |∆r| ≤ cλp. For positive
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∆I(r), the local pixel polarity pcoarse(r) is weighted by
√

∆I(r); whereas for negative
∆I(r), it is not taken into account.

Furthermore, we refine the pixel polarity pcoarse(r) using a local nematic property
similar to that defined for the wing hair axis quantification. For each pixel position
r, we define the nematic tensor

w̃ij(r) =
∑

∆r≤cλn

I(r + ∆r)g̃ij(∆r, λn), (E.9)

where the sum runs over all pixels in a circle with radius cλn around r. The length
scale parameter is λn = 10 pixels and the cutoff parameter is c = 2 as above. The
kernel g̃ij(∆r, λn) is defined as in Section E.1.1.

On a cell boundary with the stained PCP protein on it, the axis of w̃ij(r) reflects the
axis of the cell boundary. Thus, in order to obtain a refined polarity vector prefined(r),
we project pcoarse(r) onto an axis perpendicular to the axis of w̃ij(r):

prefined
i (r) = pcoarse

i (r)− 1

|w̃(r)|
w̃ij(r)pcoarse

j (r), (E.10)

where Einstein notation is used with Latin letters denoting dimension indices and the
norm |w̃(r)| is defined as in Section A.2.2.

Finally, we define the polarity of a clone by

pclone,unseg. =
∑
r

[
I(r)|w̃(r)|

]1/2

prefined(r), (E.11)

where the sum runs over all pixel positions r that belongs to a region encompassing
the clone. However, only those pixels are counted in for which I(r) is positive. The
purpose of the squared root in the prefactor creates a quantity that is linear in the
local pixel intensity. Applying this definition to real data, we found in general a good
agreement with the clone polarity defined by Eq. (E.6) in the previous section, which
involves segmentation.

Note that we compared different variants the clone polarity definition P clone. There-
fore, we varied the prefactor in Eq. (E.11) and tried to omit the refining by the tensor
w̃ij. However, by visual inspection of the respective results and by comparison to
results of Eq. (E.6), the definition presented here performed best.

E.3 Quantification of PCP and cell elongation
nematics

We used known methods to quantify the nematics of PCP and cell elongation [54, 55,
58]. For both, the segmented cellular network is needed.
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Figure E.6: Comparison of the two methods to
determine the polarity of clones stained for PCP
proteins. The green arrows represent the po-
larity determined via segmentation by Eq. (E.6);
whereas the red arrows represent the polarity deter-
mined without segmentation by Eq. (E.11), were
the sum in Eq. (E.11) included all pixels indicated
in blue, respectively. Both methods were applied
to clones with a Frizzled staining in a Prickle mu-
tant wing at 32 hAPF.

E.3.1 Cell elongation nematics

Knowing the outline of a cell α, cell elongation is characterized by a nematic tensor
Q̃α
ij defined by

Q̃α =

(
Qα

1 Qα
2

Qα
2 −Qα

1

)
, (E.12)

with

Qα
1 =

1

Aα

∫
Aα

cos (2φ) d2r

Qα
2 =

1

Aα

∫
Aα

sin (2φ) d2r,

(E.13)

where the integrals goes over the area of cell α, which amounts to Aα. The angle φ
denotes the angle of a point r within cell α with respect to the cell center cα, which
is defined by

cα =
1

Aα

∫
Aα
r d2r. (E.14)

Thus, the nematic tensor Q̃α
ij corresponds to the second Fourier mode of the cell shape

anisotropy.

E.3.2 PCP nematics

Starting from a grayscale image representing the fluorescence intensity of a staining for
a PCP protein, the polarity of cell α is characterized by a nematic tensor P̃α

ij defined
by

P̃ α =

(
Pα

1 Pα
2

Pα
2 −Pα

1

)
, (E.15)
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with

Pα
1 =

1

Np

∫ 2π

0

σα(φ) cos (2φ) dφ

Pα
2 =

1

Np

∫ 2π

0

σα(φ) sin (2φ) dφ,

(E.16)

where Np =
∫ 2π

0
σα(φ) dφ and the function σα(φ) denotes the fluorescence intensity

on the cell outline at an angle φ as seen from the cell center cα defined in Eq. (E.14).
In words, the nematic P̃α

ij corresponds to the second Fourier mode of the angular
distribution of the fluorescence intensity around cell α, normalized by the zeroth mode.

When the whole tissue is stained for a PCP protein, a vector direction can not
be determined, because with our microscopy techniques, we could not determine on
which side of the membrane a given protein resides [58]. Therefore, we determined a
nematic P̃α

ij , which possesses an axis instead of a direction.

E.4 Experimental procedures

Here, we present all the genotypes of the flies used for the experiments presented
in Chapter 4. For more details, see ref. [159]. The experimental protocols used to
obtain all shown wing hair patterns are listed in Table E.1. In order to create flies
that over-express the Core PCP protein Sple in a defined region and during a de-
fined time period, we used the so-called TARGET system [166]. It makes use of
so-called driver genes (for example tub-Gal4, en(105)-Gal4, or wg-Gal4), by which one
can control the tissue region where the over-expression shall occur. Time-controlled
over-expression is achieved by a protein called Gal80TS. Whenever this protein is
present, over-expression is suppressed for low temperatures (18◦C) and enabled for
high temperatures (29◦C). The Fat knockdown in the posterior compartment (wing
hair patterns shown in Fig. 4.4) was achieved using the RNA interference method.

In order to directly study cell polarity during development of the flies, we used
fusions of PCP proteins to fluorescent markers. All genotypes are listed in Table E.2.
To access the developing wing, we either dissected it or we cut the pupal case and
put the living pupa under the microscope. While with the first method, we could
only make a single snapshot per wing, the second method allowed us to record many
snapshots of a single wing.

Note that since we varied the temperature in some of our experiments and because
the speed of development is temperature-dependent, we did not compare developmen-
tal times for different wings directly in Chapter 4. Instead, in our physical description,
we considered a “reference” development which corresponds to a temperature of 25◦C.
Thus, all Core PCP reorientation rates estimated in Section 4.3 correspond to the
development at 25◦C. In order to obtain the actual rates, one has to consider the
change of developmental speed, which may amount to up to a factor of two [19].
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Table E.1: Conditions of space- and time-dependent Sple over-expression for
which the wing hair pattern was studied. Shown is the genotype and the temper-
ature protocol applied for all conditions listed in Section 4.1.1, where the number
in parenthesis indicates the condition number defined in that section. Also shown
are the cases of Fat knockdown in the posterior compartment (used in Fig. 4.4)
and of Sple over-expression at the wing margin (used in Section G.1). In the last
column, all figures are listed where the wing hair data or margin bristle data for
the respective condition are shown.

Condition
name

Genotype
Temperature

protocol
Figures

wild type (1) wild type 25◦C always
4.1A; 4.2A; 4.4A; 4.13A,C;

G.1B,C; G.3; G.4A

posterior Fat
knockdown

w- UAS-Dcr2;
en(105)-Gal4
UAS-fat RNAi

25◦C always 4.4C

ubiquitous Sple over-expression

early (2)
w-; tub-Gal80TS

+ ;

tub-Gal4
UAS-pksple

29◦C
12 hAPF−−−−−→ 18◦C

4.1B; 4.10A; 4.13D,F; G.1B;
G.3; G.4B

late (3) 18◦C
30 hAPF−−−−−→ 29◦C

4.1D; 4.10C; 4.14A,C;
4.15A,C; G.1B; G.3; G.4D

permanent (4) w-; ;
tub-Gal4

UAS-pksple
25◦C always

4.1F; 4.2B; 4.10E; 4.14D,F;
4.15D,F; G.1B,C; G.3; G.4F

posterior Sple over-expression

early (5)

w-;
en(105)-Gal4

+ ;

tub-Gal80TS

UAS-pksple

29◦C
12 hAPF−−−−−→ 18◦C

4.1C; 4.10B; 4.13G,I; G.3;
G.4C

late (6) 18◦C
30 hAPF−−−−−→ 29◦C

4.1E; 4.10D; 4.14G,I;
4.15G,I; G.3; G.4E

permanent (7) 29◦C always
4.1G; 4.4B; 4.10F; 4.14J,L;

4.15J,L; G.3; G.4G

posterior Fat
knockdown

w- UAS-Dcr2;
en(105)-Gal4
UAS-fat RNAi

;

UAS-pksple

+

25◦C always 4.4D

Sple over-expression at the wing margin

permanent
w-;

wg-Gal4
+ ;

UAS-pksple

+

25◦C always G.1C
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Table E.2: Genotypes for the direct study of cell polarity during development. All
experiments listed here were performed at 25◦C. The abbreviations “ubi.” and
“post.” denote ubiquitous Sple over-expression and Sple over-expression in the
posterior compartment, respectively.

Condition
name

Genotype
Antibody
staining

Prep. Figs.

wild type (1)

y- w- hs-Flp; ; ubi-stbm::EYFPVK33 – in vivo
4.2C,E,

4.12
w-; Ds::EGFP-loxP-w+-loxP

FRT40A
– in vivo 4.2G

– rabbit-anti-Fmi,
mouse-anti-Ds2829

dissected 4.3A,C

w- hs-Flp; ;

act5c-FRT-stop-FRT-EGFP::dachs
+

– in vivo 4.5

permanent
ubi. (4)

y- w- hs-Flp; ;
tub-Gal4
UAS-sple

rabbit-anti-Fmi,
mouse-anti-Ds2829

dissected
4.3A,C;

4.2D,F,H

permanent
post. (7)

y- w- hs-Flp;
en(105)-Gal4

+ ;

UAS-sple
act5c-FRT-stop-FRT-stbm::EYFP

– dissected 4.6



Appendix F

Theory for polarity reorientation in
the fruit fly wing

In this chapter, we present supplemental discussions of our theory for polarity reori-
entation. In Section F.1, we analytically solve for stationary solutions of the polarity
angle dynamics. In Section F.2, we present technical details four fitting quantified
wing hair angles to these stationary solutions. In Section F.3, we present technical de-
tails on the numerical solution of the polarity dynamics. In Section F.5 we compute an
effective Core PCP protein turnover rate based on coefficients determined in Chapter 4
and on the coarse-graining of Core PCP dynamics presented in Appendix D. Finally,
in Section F.6, we discuss the effect of additional terms in the polarity reorientation
dynamics.

F.1 Derivation of stationary solutions

We analytically derive stationary solutions of the polarity angle dynamics Eq. (4.7),
which we restate here:

∂ψ

∂t
= k sin

(
2[ψ − θ]

)
− ζ sin

(
ψ − φ

)
+ κ∂i∂iψ, (F.1)

where we assume stationary and homogeneous angles φ and θ with particular relative
orientations of φ− θ = zπ/2, where z is an integer. Homogeneous stationary solutions
and their linear stability with respect to homogeneous perturbations can be calculated
using standard methods. They are listed in Table F.1.

F.1.1 Inhomogeneous stationary solutions

Here, we analytically compute stationary solutions of Eq. (F.1) without boundary
conditions and assuming homogeneity in x direction. Therefore, we first rewrite the
condition of stationarity of Eq. (F.1) into

2
d2ψ̄

dy2
=

1

λ2
sin
(
2ψ̄
)

+
2

µ2
sin
(
ψ̄ − φ̄

)
, (F.2)
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Table F.1: Homogeneous stationary solutions of Eq. (F.1) and the condition of
their linear stability with respect to homogeneous perturbations.

Case: φ− θ = −π/2
Solution ψ1 = θ + π/2 ψ2 = θ − π/2 sin (ψ3/4 − θ) = ζ/2k

Stability for k > 0 ζ/|k| < 2 ζ/|k| > −2 never

Stability for k < 0 ζ/|k| < −2 ζ/|k| > 2 always

Case: φ− θ = 0

Solution ψ1 = θ ψ2 = θ + π cos (ψ3/4 − θ) = ζ/2k

Stability for k > 0 ζ/|k| > 2 ζ/|k| < −2 always

Stability for k < 0 ζ/|k| > −2 ζ/|k| < 2 never

Case: φ− θ = π/2

Solution ψ1 = θ + π/2 ψ2 = θ − π/2 sin (ψ3/4 − θ) = −ζ/2k
Stability for k > 0 ζ/|k| > −2 ζ/|k| < 2 never

Stability for k < 0 ζ/|k| > 2 ζ/|k| < −2 always

Case: φ− θ = π

Solution ψ1 = θ ψ2 = θ + π cos (ψ3/4 − θ) = −ζ/2k
Stability for k > 0 ζ/|k| < −2 ζ/|k| > 2 always

Stability for k < 0 ζ/|k| < 2 ζ/|k| > −2 never
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where we define

λ =

(
κ

2|k|

)1/2

(F.3)

µ =

(
κ

|ζ|

)1/2

(F.4)

θ̄ =

{
θ for k < 0

θ − π/2 for k > 0
(F.5)

ψ̄ =

{
ψ − θ̄ − π for ζ < 0

ψ − θ̄ for ζ > 0
(F.6)

φ̄ = φ− θ̄. (F.7)

We call the length scales λ and µ the nematic and polar length scale, respectively.

Analogy to classical mechanics

In order to analytically solve Eq. (F.2), we consider it as a problem of classical mechan-
ics, where y is the time coordinate and ψ̄ is the spatial coordinate. Then, Eq. (F.2)
corresponds to the Newtonian equation of one-dimensional motion of a point particle
of mass 2 in a potential V (ψ̄):

2
d2ψ̄

dy2
= −∂V (ψ̄)

∂ψ̄
, (F.8)

where the potential is given by

V (ψ̄) = − 1

λ2
sin2 ψ̄ +

2

µ2
cos
(
ψ̄ − φ̄

)
. (F.9)

Since the particle moves in a conservative potential, the energy E is a constant of
motion. It is given by

E =

(
dψ̄

dy

)2

+ V (ψ̄). (F.10)

We solve Eq. (F.10) by separation of variables:[
E − V (ψ̄)

]−1/2

dψ̄ = σ1 dy, (F.11)

where we look for solutions for σ1 = −1 and for σ1 = 1. Note that any non-
homogeneous solution to Eq. (F.11) must be a solution to Eq. (F.2) as well. This
is because squaring of Eq. (F.11) yields Eq. (F.10) and subsequent derivation with
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respect to y yields Eq. (F.2).

Nematic coupling only

Before presenting the general solution of Eq. (F.11), we first consider the special case
of nematic coupling only (µ → ∞). The solution for the case of polar coupling only
(λ→∞) can be obtained analogously. For nematic coupling only, Eq. (F.11) becomes[

Eλ2 + sin2 ψ̄
]−1/2

dψ̄ =
σ1

λ
dy. (F.12)

This equation can be systematically solved by differentiating all possible types of
motion of the point particle for a given energy Eλ2. In each case, Eq. (F.12) can be
integrated analytically using the incomplete elliptic integral of the first kind [160]. As
a result, for all cases, the integrated trajectory can be put into the form

ψ̄(y) = Nπ +
π

2
+ am

(
y − y0

mλ

∣∣∣∣m), (F.13)

where N is an integer and the “am” function is amplitude of the inverse of the incom-
plete elliptic integral of the first kind [160] and where the modulus is given by

m = σ1

[
1 + Eλ2

]−1/2
, (F.14)

where y0 and m are the integration constants. The beforementioned type of motion
depends on Eλ2 and thus on m (see also Fig. 4.8).

Note that the stationary trajectories ψ̄(y) = jπ/2 for integer j are also solutions
of Eq. (F.12), which correspond to the states of stable (odd j) and unstable (even j)
mechanical equilibrium. These solutions are also captured by Eq. (F.13): For even j,
these solutions correspond to |m| = 1 and y0 → ±∞; and for odd j, they correspond
to m→ ±∞.

General solution

In the general case, both couplings, nematic and polar, appear. In order to simplify
expressions, we define the relative strength of the polar coupling with respect to the
nematic coupling by

b =
λ2

µ2
, (F.15)

from which follows that b = |ζ/2k|.
Here, we integrate Eq. (F.11) for φ̄ = 0 and for φ̄ = π/2. For other values of

φ̄ = zπ/2 with integers z 6= 0, 1, stationary solutions can be obtained using the
invariance Eq. (4.9) of the polarity angle dynamics.
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Figure F.1: Potential V (ψ̄)λ2 for the case φ̄ = 0 (black solid lines) and energy
regimes Eλ2 (hatched areas), where in different energy regimes, different analytical
expressions for the solution of Eq. (F.2) apply (see also Table F.2A). Parameter
values: (A) b = 2, (B) b = 0.2.

Stationary states for φ̄ = 0 In order to integrate Eq. (F.11) using elliptic integrals,
we have to transform it appropriately. The transformation t = cos ψ̄ yields[

(1− t)(1 + t)p(t)
]−1/2

dt = −σ1σ2

λ
dy, (F.16)

where the polynomial p(t) is defined by

p(t) = −(t+ b)2 + Eλ2 + b2 + 1 (F.17)

and σ2 denotes the sign of sin ψ̄.

The method of integration for the left hand side of Eq. (F.16) depends on the zeros
of p(t) [160], which depend in turn on the value of the energy Eλ2. Therefore, we
differentiated three regimes for the value of Eλ2 and integrated Eq. (F.16) in each of
these cases (Table F.2A). The energy regimes are illustrated in Fig. F.1, where the case
of strong polar coupling (b > 1) is shown in Fig. F.1A and the case of strong nematic
coupling (b < 1) is shown in Fig. F.1B. Note that these energy regimes correspond
to different types of motion. In particular, for case I, the motion is unbound; for
case II, the motion is bound and oscillatory; and for case III, the motion is stationary
or oscillatory as well but with a smaller amplitude than in case II. At the interfaces
between these regimes, motion is incoming and outgoing or stationary.

Stationary states for φ̄ = π/2 Similar to above, we reexpress Eq. (F.11) in order to
integrate it. Using the transformation t = sin ψ̄, we find[

(1− t)(1 + t)p(t)
]−1/2

dt =
σ1σ2

λ
dy, (F.18)
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Figure F.2: Potential V (ψ̄)λ2 for the case φ̄ = π/2 (black solid lines) and energy
regimes Eλ2 (hatched areas), where in different energy regimes, different analytical
expressions for the solution of Eq. (F.2) apply (see also Table F.2B). Parameter
values: (A) b = 4, (B) b = 0.3.

where the polynomial p(t) is defined by

p(t) = (t+ b)2 + Eλ2 − b2 (F.19)

and σ2 denotes the sign of cos ψ̄.
Like above, the analytical expression for the integral of Eq. (F.18) depends on the

value of the energy Eλ2. The integrals for all possible energy regimes are listed in
Table F.2B. The energy regimes are illustrated in Fig. F.2, where the case of strong
polar coupling (b > 1) is shown in Fig. F.2A and the case of strong nematic coupling
(b < 1) is shown in Fig. F.2B. Again, these energy regimes correspond to different
types of motion. For cases I and IIa, the motion is unbound; whereas for cases IIb
and III, the motion is bound and oscillatory. In cases IIbii and III, motion could be
stationary as well. At the interfaces between these regimes, motion is incoming and
outgoing, stationary, unbound (between cases I and IIa), or oscillatory (between cases
IIbi and III).

Summary The integration of the second order ODE in Eq. (F.2) creates two integra-
tion constants, Eλ2 and y0. The analytical expression that solves Eq. (F.2) depends
on the value of the energy Eλ2. In Table F.2, these solutions are listed for each of the
two cases φ̄ = 0 and φ̄ = π/2.

Furthermore, in Table F.2, the solution is given in terms of sin ψ̄(y) and cos ψ̄(y).
In order to obtain a curve ψ̄(y), we invert these functions in regions where they are
monotonous. Then, we stitch the resulting pieces of ψ̄(y) together so that the resulting
curve is on the one hand continuous and differentiable and on the other hand, it reflects
the type of motion corresponding to the energy regime (see above and Figs. F.1 and
F.2).
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F.2 Fits of stationary states to wing hair angle profiles

Here, we present technical details for the discussion in Section 4.3.1, where we fitted
quantified wing hair angles to stationary solutions of the polarity angle dynamics. In
particular, in Section F.2.1, we define the precise fit function and in Section F.2.2,
we present the fitting method. Finally, in Section F.2.3, we discuss the obtained fit
parameters.

F.2.1 Fit function

Here, we define the functions ψfit(y) with which we fitted the quantified wing hair angle
profiles ψexp(y) in Section 4.3.1. As mentioned in the main text, we plot wing hair
angles along the profile line indicated in red in Fig. 4.9A, because the observed wing
hair patterns appeared to vary significantly in y, but not in x direction. Consistent
with that, we assume homogeneity in x for the fit functions ψfit(y), which corresponds
to a stationary solution of the polarity angle dynamics along the profile line. Thus,
the ψfit(y) are solutions of

0 = k sin
(
2[ψ − θ]

)
− ζ sin

(
ψ − φ

)
+ κ

d2ψ

dy2
, (F.20)

where we assumed the simplified angle fields for nematic coupling θ and for polar
coupling φ as discussed in the main text (Fig. 4.9B,C). In particular, we set θ = 0
everywhere and

φ =

{
−π/2 for y ≤ yL3 and

π/2 for y > yL3,
(F.21)

where yL3 corresponds to the position of the vein L3 on the profile line, which we
measured directly.

In order to obtain solutions for Eq. (F.20), we first solved it separately for y ≤ yL3

and for y > yL3, i.e. for the two cases φ = −π/2 and φ = π/2 following Section F.1.1.
Then, the respective solutions ψ−(y) and ψ+(y) were connected by the following in-
terface conditions:

ψ−(yL3) = ψ+(yL3) and
dψ−(yL3)

dy
=

dψ+(yL3)

dy
, (F.22)

which follow from the assumption of local thermodynamic equilibrium at yL3.

The stationary solutions ψ−(y) and ψ+(y) contain the length scales λ and µ as
parameters, which depend on whether tissue over-expresses Sple (λso and µso) or not
(λwt and µwt). However, for some of the seven experiments listed in Section 4.1.1,
the genetic conditions at late times may differ between both wing compartments.
In particular, in the late and permanent posterior Sple over-expression cases, the
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anterior compartment behaves wild-type-like whereas the posterior compartment over-
expresses Sple. For these cases, we assume different stationary solutions ψP (y) and
ψA(y) for anterior and posterior compartments, respectively. In particular, the solution
ψP (y) applies to the region y ≤ yAP and takes λso and µso as parameters; whereas the
solution ψA(y) applies to the region y ≥ yAP and takes λwt and µwt as parameters.
The parameter yAP describes the position of the AP boundary along the profile line
and the interface conditions are

ψP (yAP ) = ψA(yAP ) and
dψP (yAP )

dy
=

dψA(yAP )

dy
, (F.23)

which follows again from local thermodynamic equilibrium at yAP . Thus, in these
cases, there are two interface positions, yAP and yL3, and the solution of Eq. (F.20) is
defined by three pieces, ψP (y), ψA−(y), and ψA+(y), which are connected by all of the
above interface conditions.

The fit functions may thus contain the length scales λso, µso, λwt, and µwt as param-
eters and the position yAP . Moreover, there are two integration constants resulting
from solving the second order ODE in Eq. (F.20). We used these integration constants
as further fitting parameters.

F.2.2 Fitting procedure

In order to fit the average wing hair angle data ψexp(y) along the profile line with a
fit function ψfit(y), we define the measure

χ2
profile =

N∑
i=1

n(yi)

σ2
ψ(yi)

[
ψexp(yi)− ψfit(yi)

]2
, (F.24)

where the sum runs over N sampling points i at positions yi along the profile line.
The value of N was N = 165 . . . 180 depending on the experimental conditions. The
standard deviation σψ was computed according to the definition in Section E.1.2. The
symbol n(yi) denotes the number of wings for which we measured the local wing hair
direction at yi and which thus enter the average ψexp(y). To minimize χ2

profile depending
on the values of the fit parameters, the Levenberg-Marquardt method was used.1

F.2.3 Fit parameter values for Sple over-expression

Here, we discuss the fit parameter values obtained for late and permanent Sple over-
expression conditions. For the early over-expression conditions, all relevant fit param-
eters are covered in the main text.

1More precisely, the Python method scipy.optimize.leastsq from the SciPy package was used,
which is a wrapper around the lmdif method of the MINPACK package [167].
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Figure F.3: Deviation measure χ2
profile for fits of the wing hair data for the per-

manent, posterior Sple over-expression case to stationary solutions of the polarity
angle dynamics. For each pair λso, µso of Sple over-expression length scales, we
fitted the wing hair profile as described in Sections F.2.1 and F.2.2. The respective
value for χ2

profile is indicated by a color according to the color bar (left). Values

χ2
profile > 250 are indicated in red. The white solid line indicates Eq. (F.27), which

characterizes the minimum valley of χ2
profile by two length parameters. Also indi-

cated are the parameter values from the fits discussed in Section 4.3.1 (see also
Table 4.1). The case of nematic coupling only (ζso = 0 and νso > 0) is indicated
by green dots and the case of a dominating polar coupling (ζso = 4kso < 0) is
indicated by a red dot. Different panels correspond to different signs of kso and
ζso: (A) k < 0, ζ < 0, (B) k > 0, ζ < 0, and (C) k > 0, ζ > 0.

Effective length scales for Sple over-expression

Fitting wing hair angle profiles for late and permanent Sple over-expression conditions
(Fig. 4.10C-F), we found that several combinations of length scales λso and µso and of
the signs of kso and ζso describe our observations. Here, we discuss this in more detail.
Therefore, we focus on the case of permanent, posterior over-expression.

We fitted the wing hair angle profile for permanent, posterior over-expression with
different parameter values for the length scales λso and µso and for different signs of kso

and ζso. In Fig. F.3, we plot the corresponding deviation measure χ2
profile depending

on the parameter values. Therefore, we consider all combinations of the signs of kso

and ζso except for kso < 0, ζso > 0, because we could not sensibly fit the data for
this combination. For the other sign combinations, we scanned the λso, µso parameter
space and plotted the value of χ2

profile = 190 . . . 250 according to a color code. Red
pixels indicate values χ2

profile ≥ 250. We found that χ2
profile is close to its absolute

minimum for many parameter combinations, which resemble a one-dimensional valley.

We found that we could characterize the shape of this valley by two effective length
scales λ

(lim)
so and µ

(lim)
so . To this end, we considered two positions y0 and ys within

the posterior compartment along the profile line, such that the wing hair data curve
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ψexp(y) attained its minimum at y0. Furthermore, around ys, we assumed an effective
slope of the wing hair data curve of ψ′exp(ys) ≈ s. Now, assume that for given kso and
ζso, a fit function ψfit(y) fits the wing hair data well for the length scale parameter
values λso and µso. Then, we used a relation similar to Eq. (F.10) to write

E = s2 − sgn(k)

2λ2
so

cos [2ψfit(ys)] +
2sgn(ζ)

µ2
so

cos [ψfit(ys)− φ] and (F.25)

E = −sgn(k)

2λ2
so

cos [2ψfit(y0)] +
2sgn(ζ)

µ2
so

cos [ψfit(y0)− φ], (F.26)

where the “sgn” function returns the sign of its argument. From these two equations
follows that

1 = sgn(k)

(
λ

(lim)
so

λso

)2

− sgn(ζ)

(
µ

(lim)
so

µso

)2

(F.27)

where we defined

λ(lim)
so

2
=

sin2 [ψfit(y0)]− sin2 [ψfit(ys)]

s2
and (F.28)

µ(lim)
so

2
= 2

sin [ψfit(y0)]− sin [ψfit(ys)]

s2
. (F.29)

Therefore, we assumed that both expressions on the right hand sides of Eqs. (F.28)
and (F.29) are positive. This is based on the observation that the wing hair data
could be well fitted for k > 0 and ζ = 0 (green dashed line in Fig. 4.10F and green
dots in Fig. F.3); and for k = 0 and ζ < 0 (not shown). From these fits, we found the

“limit” length scales λ
(lim)
so = 0.152λ0 and µ

(lim)
so = 0.195λ0. Using these parameters,

we drew the lines corresponding to Eq. (F.27) into the plots in Fig. F.3 (white solid
lines). Indeed, Eq. (F.27) described the minimum valley of χ2

profile very well.

Position of the compartment boundary

The position yAP of the boundary between anterior and posterior compartments (AP
boundary) appears only as fit parameter for the permanent and late posterior Sple
over-expression conditions. The corresponding parameter values for the two cases of
nematic coupling only (ζso = 0 and νso > 0) and for the case of a dominating polar
coupling (ζso = 4kso < 0) are listed in Table F.3.

Comparing to the directly observed position of the AP boundary, the position of
vein L4 was at y = 0.009λ0 and the AP boundary was not more than ≈ 0.04λ0 further
anterior from vein L4 such that according to our observations, yAP ≈ 0.05λ0. This is
coarsely consistent with the values found from the fits (Table F.3), in particular for the
permanent, posterior over-expression condition assuming a dominant polar coupling.
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Table F.3: Values of the fit parameter yAP /λ0 for the case of nematic coupling
only (ζso = 0 and νso > 0) and for the case of a dominating polar coupling
(ζso = 4kso < 0). The fit parameter yAP is only relevant for the permanent
posterior Sple over-expression (“permanent post.”) and late posterior Sple over-
expression (“late post.”) conditions.

yAP/λ0 nematic coupling only dominant polar coupling
permanent post. 0.002 0.056

late post. −0.096 −0.079

F.3 Numerical solution of the polarity reorientation
dynamics

We solved the dynamics for the polarity angle ψ given by Eq. (4.7) on a domain that
was defined by a wild type wing blade at 32 hAPF. We therefore cut off the hinge
by a straight line that connects the anterior indentation and the posterior indentation
at the hinge blade interface. The coordinate system chosen is defined in Fig. 4.9A.
Our numerical solutions covered a time interval of 16 hours corresponding to the
developmental time interval from 16 hAPF to 32 hAPF at 25◦C.

We numerically solved Eq. (4.7) using a first order finite difference method with
Euler time steps. We used squared boxes of size 0.05λ0 and time steps of 0.1 h. In
addition, we reduced the length of the time step if necessary, such that the change in
ψ in any box between two steps is at most 0.01.

We used in general different parameter values for the region corresponding to the
anterior compartment (y > 0) and for the region corresponding to the posterior com-
partment (y < 0). The values of the dynamic parameters k, ζ, and κ could always take
either their respective wild type value or their Sple over-expression value depending
on the genetic condition described (Table 4.2). The parameter values used are listed
in Table 4.3.

As boundary condition, we used Eq. (G.10) with the parameter values for B/K and
a as listed in Table G.1. In the following, we describe in detail the initial conditions
used.

F.3.1 Initial conditions

We used simplified initial conditions, which were based on quantified Core PCP pat-
terns at 16 hAPF. The initial conditions were defined by homogeneous angles ψIC

P and
ψIC
A in the regions that correspond to posterior and anterior compartment, respectively.

For the three initial conditions used, the values of these angles are already mentioned
in the main text. However, for clarity, we list them again in Table F.4. The particular
initial condition used for each of the seven genetic conditions discussed in the main
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Table F.4: Initial conditions for the wild type case, the permanent, posterior Sple
over-expression case (“posterior oe.”), and the permanent, ubiquitous Sple over-
expression case (“ubiquitous oe.”). Listed are the bulk angles in the regions that
correspond to posterior (ψIC

P ) and anterior (ψIC
A ) compartments, respectively.

Condition Posterior angle ψIC
P Anterior angle ψIC

A

wild type π/4 −π/4
posterior oe. π/4 −5π/4

ubiquitous oe. −3π/4 −5π/4

text is listed in Table 4.2.
In between both regions of homogeneous angle ψIC, we used a cubic polynomial to

smoothly interpolate. The functional form of the initial condition is given by

ψIC(x, y) =


ψIC
P for ȳ ≤ 0,

ψIC
P + (ψIC

A − ψIC
P )(3− 2ȳ)ȳ2 for 0 < ȳ ≤ 1, and

ψIC
A for 1 < ȳ,

(F.30)

where ȳ = (y−yIC)/wIC +1/2. The parameters yIC and wIC denote the center position
and the width of the interpolating region, respectively. We always set yIC = 0.1λ0 and
wIC = 0.3λ0. We found that the final states of our numerical solutions were largely
independent of wIC and mainly only the final state of the early, posterior Sple over-
expression case depended on yIC. Therefore, the value of yIC was adjusted by hand
such that the position of the bending region in the final state matched the position
of the bending region in the quantified wing hair pattern for the early, posterior over-
expression case.

F.4 Comparison to an observed PCP reorientation
after 36 hAPF

In Chapter 4, we study the reorientation of Core PCP between 16 hAPF and 32 hAPF.
Here, we discuss a reorientation of both PCP systems simultaneously that was observed
in wild type wings after 36 hAPF. We compare this reorientation to a theory similar to
the Core PCP angle dynamics assumed in Chapter 4 in order to provide an independent
check for parameter values obtained there.

First, we found that the concentration of Pk suddenly decreases in wild type wings
around 36 hAPF [159]. Furthermore, we observed that at the same time, the anisotropy
in the cellular distribution of Core PCP proteins, which is reflected in the norm of the
cellular Core PCP nematic, decreased significantly (Fig. F.4A).

In ref. [159], we provide evidence for the hypothesis that Pk counteracts Sple and
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Figure F.4: Simultaneous reorientation of Core PCP and Fat PCP after 32,hAPF
in a wild type wing, quantified in the region between veins L4 and L5, distal to
the posterior cross vein. (A) Average cellular norm of the Fz nematic depending
on time. (B) Angles of the average Fz nematic (blue circles) and of the average
Ds nematic (red circles). The black line represents a fit to Eqs. (F.33) and (F.34)

simultaneously, which yields the parameter values ζψlate = (−0.20± 0.07) h−1 and

ζφlate = (−0.19 ± 0.09) h−1. Error bars indicate the standard error of the mean
(95% confidence). PCP nematics for single cells were computed as described in
Section E.3.2.

therefore, a lack of Pk could produce similar effects as an over-expression of Sple.
Therefore, according to our findings in Chapter 4, we would expect that after 36 hAPF,
Core PCP reorients opposite to Fat PCP. Indeed, we could experimentally confirm
this late reorientation of Core PCP (Fig. F.4B). Moreover, Fat PCP reoriented as
well. Here, we discuss this late simultaneous reorientation of both PCP systems.

In Chapter 4, the parameter ζso describes reorientation of Core PCP by Fat PCP for
Sple over-expression conditions. Here, we compare the value of ζso used in Chapter 4
to the observed late reorientation shown in Fig. F.4B. To this end, we describe the
reorientation of the Core PCP angle ψ and the Fat PCP angle φ after 36 hAPF by the
following effective theory:

dψ

dt
= −ζψlate sin (ψ − φ) (F.31)

dφ

dt
= −ζφlate sin (φ− ψ), (F.32)

where we only consider a polar coupling between Core PCP and Fat PCP with the
respective coupling coefficients ζψlate and ζφlate. The solution of this coupled system of
differential equations reads

ψ(t) =
1

ζψlate + ζφlate

[
A+ ζψlateΨ(t)

]
(F.33)
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φ(t) =
1

ζψlate + ζφlate

[
A− ζφlateΨ(t)

]
, (F.34)

where
tan
[
Ψ(t)/2

]
= Be−(ζψlate+ζφlate)t (F.35)

and A and B are integration constants. In Fig. F.4B, we fitted this solution to the
observed angles of both PCP systems simultaneously for times t ≥ 36 hAPF, where
fit parameters are A, B, ζψlate, and ζφlate. We obtained from these fits ζψlate = (−0.20 ±
0.07) h−1 and ζφlate = (−0.19 ± 0.09) h−1. Thus, both polar coupling coefficients have

similar values. Moreover, the value of ζψlate, which describes reorientation of Core PCP
by Fat PCP, is of the same order of magnitude as the value for Sple over-expression
ζso = −0.4 h−1 assumed in Chapter 4.

F.5 Comparison to the turnover rate of Core PCP
clusters

In Chapter 4, we determined the parameter value κwt = 10−2 λ2
0 h−1, which describes

the tendency of Core PCP to align locally in wild type tissue. Here, we check its order
of magnitude by comparing it to the turnover time of Core PCP clusters, which is
known to be on the order of a few minutes [36, 37, 54].

In order to connect both quantities in a simplified manner, we reconsider the Core
PCP vertex model described in Appendix D. There, we show that for regular hexagonal
cellular packings, the coefficients describing local polarity alignment are given by

κsplay =
rA0

4
√

3

(
3− 1

J + 1

)
(splay) (F.36)

κbend =
rA0

4
√

3

(
1− 1

J + 1

)
(bend). (F.37)

Here, κsplay and κbend describe the relaxation of splay and bend modes in the polarity
field, respectively. The coefficient r is a parameter of the Core PCP vertex model,
which we consider as a proxy for the subcellular Core PCP cluster turnover rate, here.
The symbol A0 denotes the area of a hexagonal cell, which is given by A0 = d2

0

√
3/2,

where d0 is the distance of two neighboring cell centers. The parameter J describes
the ratio between the intracellular interaction strength of Core PCP proteins and the
inter-cellular interaction strength within Core PCP clusters.

In our hydrodynamic description in Chapter 4, we do not assume different relaxation
rates for bend and splay modes. Therefore, here, we consider κwt to be the average of
both. Solving for r yields:

r =
4κwt

√
3

cA32hAPF

. (F.38)
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Here, we substituted the area A0 by the average cell area in the wing blade at 32 hAPF,
A32hAPF. We measured A32hAPF in the segmented movies described in Section 2.3.1:

A32hAPF = 10−3 λ2
0. (F.39)

Furthermore, the coefficient c is defined by

c = 2− 1

J + 1
. (F.40)

Because J > 0, the coefficient c takes values between 1 ≤ c ≤ 2. Taken together, we
find that:

r ∼ 1 min−1. (F.41)

This corresponds to the measured Core PCP cluster turnover time scale of a few
minutes [36, 37, 54].

F.6 Possible additional effects

Here, we study effects that could possibly influence the polarity angle dynamics and
that are not taken into account by the dynamics assumed in Chapter 4 (Eq. (4.7)). In
Section F.6.1, we consider alternative bulk terms. In particular, we study the effect
of local tissue rotation and we discuss the scenario where the nematic coupling is
entirely defined by local tissue shear. In Section F.6.2, we discuss a possible effect
of wing veins. Finally, in Section F.6.3, we discuss possible effects of a gradient in
Sple expression as it appears in the late and permanent posterior Sple over-expression
cases.

F.6.1 Variants of the polarity angle bulk dynamics

Here, we compare variants of the polarity angle dynamics by fitting their prediction to
experimental data. To this end, we numerically solved a given polarity angle dynamics
with wild type parameters. Then, we applied the method from Section 4.3.2 in order
to quantify the deviation χ2 of the numerical solution from quantified time-dependent
Core PCP data in a wild type wing.

As a prerequisite for this study, we measured the time-dependent flow field in a
pupal wing using a particle image velocimetry method [54, 58]. In particular, we
extracted space- and time-dependent local tissue rotation rate and local tissue shear
rate, which are respectively represented by the antisymmetry ω and by the traceless,
symmetric part ṽij of the velocity gradient.
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Figure F.5: Deviation χ2 between numerical solutions of the polarity angle dy-
namics and quantified time-dependent Core PCP data in wild type wings. The
deviation χ2 is defined as in Eq. (4.17) and was computed for 200 times for each
curve. For the numerical solutions, we chose different assumptions for the polar-
ity angle dynamics. (A) As in the main text, the polarity angle ψ is reoriented
by an effective shear nematic s̃ij towards θ = 0 (blue solid line, Eq. (4.7)). For
the red solid curve, we additionally considered the effect of local tissue rotation
(Eq. (F.42)). (B) The polarity angle ψ is reoriented by the actual local shear field
(blue solid line, Eq. (F.44)). For the red solid curve, we additionally considered
the effect of local tissue rotation (Eq. (F.45)).

Effects of tissue rotation

Here, we take the effect of local tissue rotation into account via the corotational term
in Eq. (4.2). This yields the following polarity angle dynamics

∂ψ

∂t
= ω + kwt sin

(
2[ψ − θ]

)
− ζwt sin

(
ψ − φ

)
+ κwt∂i∂iψ, (F.42)

where, as in the main text, we assume that the nematic coupling coefficient kwt is
constant and homogeneous. Also, we set θ = 0, ζwt = 0, and λwt = 0.07λ0. For a
given value of kwt, the value of κwt was determined according to Eq. (4.14).

In Fig. F.5A, we plot the deviation χ2 between experiment and numerical solutions
over kwt. Without local tissue rotation, we found the minimal deviation of χ2

min = 0.253
(blue solid line; same plot as in Fig. 4.12 in the main text); whereas if we included
the effect of local tissue rotation, we found χ2

min = 0.267 (red solid line). Thus, taking
local tissue rotation into account did not improve the fit. For this reason, we neglected
the corresponding term in the main text.
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Nematic coupling defined by quantified shear pattern

Here, we assume that the nematic coupling kwts̃ij is entirely due to local tissue shear:

kwts̃ij = νwtṽij, (F.43)

where νwt is a model parameter. Therefore, we obtain the following polarity angle
dynamics:

∂ψ

∂t
= νwt|ṽ| sin

(
2[ψ − θṽ]

)
− ζwt sin

(
ψ − φ

)
+ κwt∂i∂iψ, (F.44)

where |ṽ| and θṽ denote the norm and the angle of the measured local tissue shear
rate ṽij (both defined as in Section A.2.2). We also studied a variant of the polarity
angle dynamics where we additionally included the effect of local tissue rotation:

∂ψ

∂t
= ω + νwt|ṽ| sin

(
2[ψ − θṽ]

)
− ζwt sin

(
ψ − φ

)
+ κwt∂i∂iψ. (F.45)

For both variants, we set ζwt = 0 and λwt = 0.07λ0. For a given value of νwt, the
value of κwt was determined according to Eq. (4.14) with kwt = νwt|ṽ|, where we set
|ṽ| = 0.01 h−1 (compare blue solid line in Fig. 2.16A).

In Fig. F.5B, we plot the deviation χ2 between experiment and numerical solutions
over νwt. For a coupling to local tissue shear but not to local tissue rotation, the
minimal deviation was χ2

min = 0.382 (blue solid line); whereas if we included local tissue
rotation, we found χ2

min = 0.334 (red solid line). For the latter case, the minimum was
at νwt = −3 confirming the findings in refs. [54, 58].

To sum up, the fit was improved by taking local tissue rotation into account. How-
ever, the experimental Core PCP data were still significantly better described by a
simplified effective shear nematic with θ = 0 and constant rate kwt as in the main text
(Fig. F.5A, blue solid line). Because the simplified effective shear nematic resembled
much more the quantified cell elongation pattern (Fig. 4.2E) than the quantified tis-
sue shear pattern [54], this suggests that cell elongation could have a more important
effect on Core PCP reorientation than tissue shear. Further evidence is given by the
experimental correlations shown in Fig. 4.3.

F.6.2 Effect of wing veins

A number of observations indicated that Core PCP tends to align parallel to wing
veins. For example in all wings examined, wing hairs were mostly aligned parallel to
wing veins (Fig. 4.1). Furthermore, in cases where wing hairs near a wing vein were
not parallel to it, the wing hair pattern appeared to be significantly deflected by the
wing vein (Fig. F.6A; blue line and orange dots in Fig. F.6B). Here, we establish a
description of this effect within our hydrodynamic theory.

In order to describe such an effect, we consider an additional term in the effective
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Figure F.6: (A) The direction of wing hairs (arrows) in wild type wings appeared
to be deflected by wing veins (shown here: vein L5). (B) Including an aligning
effect by wing veins into our theory (red solid line) described the observed wing
hair angles for the permanent, ubiquitous Sple over-expression (blue solid line)
better than without the vein effect (black dashed line). The wing hair angles are
plotted along the red line in Fig. 4.9A. The parameters for the black dashed line
are listed in Table 4.3B. For the red solid line, we additionally set λV = 0.15λ0.
Orange dots indicate vein positions and vein angles.

potential:

Ftotal = · · · − 1

2
KV

∑
m

∫
r(m)

piw̃
(m)
ij pj ds, (F.46)

where the dots indicate the contributions to Ftotal considered in Chapter 4, as given by
Eqs. (4.1) and (G.1). The sum index m runs over all wing veins considered here, which
are the longitudinal veins L2 to L5 and both cross veins. In our theory, each vein m
is described by a curve r(m)(s), which is parametrized by the arc length coordinate s
(i.e.

∣∣dr(m)/ds
∣∣ = 1). The local orientation of vein m at some position s is described

by the nematic w̃
(m)
ij , which is normalized to one.2 The coefficient KV defines the

elasticity associated with polarity alignment by veins. For KV > 0, the polarity p
tends to align parallel to the local vein axis. For KV < 0, it aligns perpendicular.

The resulting term in the polarity angle dynamics reads

∂ψ(r, t)

∂t
= · · · − κ

λV

∑
m

∫
r(m)

δ
(
r − r(m)

)
sin
(
2[ψ − ϑ(m)]

)
ds, (F.47)

where a characteristic length scale λV = K/KV appears. Here, we assume KV > 0
and therefore, λV > 0. The symbol δ denotes the Dirac distribution and the angle
ϑ(m) is the local angle of vein m (i.e. it is the angle of w̃

(m)
ij ). Note that this assumed

effect of vein alignment corresponds to the effect of an effective shear term for k < 0

2I.e. w̃
(m)
ij = 2

(
dr

(m)
i /ds

)(
dr

(m)
j /ds

)
− δij .
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that is localized to the wing veins (compare to first term in Eq. (4.7)).

First, we ask how this additional term affects the polarity angle dynamics. In order
to understand this more clearly, we consider the one-dimensional dynamics along the
profile line (Fig. 4.9A) assuming homogeneity of ψ in x direction:

∂ψ(y, t)

∂t
= k sin

(
2[ψ − θ]

)
− ζ sin

(
ψ − φ

)
+ κ

∂2ψ

∂y2

− κ

λV

∑
m

δ
(
y − y(m)

)
|cosϑ(m)|

sin
(
2[ψ − ϑ(m)]

)
,

(F.48)

where y(m) denotes the position of vein m along the profile line (i.e. it is the y com-
ponent of r(m)). For a given vein m, we integrate the whole equation on an interval
y(m) − ε . . . y(m) + ε, which yields:

∂ψ
(
y(m) + ε

)
∂y

−
∂ψ
(
y(m) − ε

)
∂y

=
sin
(

2
[
ψ(y(m))− ϑ(m)

])
λV |cosϑ(m)|

for ε→ 0, (F.49)

where the contributions from the first two terms of Eq. (F.48) vanish for ε→ 0. Thus,
in our hydrodynamic description, the vein effect induces discontinuities in the gradient
of ψ. The magnitude of these discontinuities is higher for small length scales λV and
for large deviations between polarity angle and vein angle.

We found that the wing hair pattern for the permanent, ubiquitous Sple over-
expression case was matched better by our physical theory if we included the vein
term. In Fig. F.6B, we compare the quantified wing hair angles (blue solid line) to nu-
merical solutions of the polarity angle dynamics without the vein effect (black dashed
line; same curve as the red solid line in Fig. 4.15) and to the numerical solution in-
cluding the vein effect (red solid line). We found that including the vein effect helped
explaining the observations. In particular, around y = 0, the quantified wing hair
angles were much better described by a discontinuity in the gradient of polarity angle
field, which is in our theory created by the vein effect. Note that in very posterior
regions (y . −0.6λ0), there was a defect in the quantified wing hair pattern, which
could not be reproduced by our numerical solutions.

F.6.3 Effect of gradients in Sple protein concentration

Here, we shortly discuss two additional terms for our hydrodynamic description, which
describe possible effects of gradients in Sple protein concentration. As a first possible
effect, the elastic constant characterizing the tendency of polarity to align locally
K could in principle depend on Sple concentration. Indeed, we observed that the
fluorescence intensity of Core PCP proteins at the membrane is increased in tissue
over-expressing Sple. Therefore, we discuss the effect of inhomogeneities in K on the
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polarity angle dynamics, here.

Second, gradients in Sple concentration could directly bias Core PCP: Consider a
cell that detects different concentrations of Sple within two opposing neighboring cells.
It is plausible that the cell’s Core PCP is biased by this concentration difference, since
cells form complexes of Core PCP proteins across cell boundaries.3 Indeed, such an
effect could be reflected by the quantified wing hair pattern shown in Fig. 4.4D. In
this wing, Sple was over-expressed in the posterior compartment, but at the same
time, Fat was knocked down there as well. It is plausible that the polar coupling to
Fat PCP is suppressed in these wings. Therefore, wing hair polarity should be as in
wild type wings, which was indeed observed at least distally in these wings. However,
in the region close to the AP boundary, wing hair polarity pointed posteriorly. This
is consistent with the picture that the direction Core PCP in this region is directly
influenced by the gradient of Sple concentration.

In order to describe the second effect in our hydrodynamic theory, we assume the
following additional term in the effective free energy:

Ftotal = · · · −
∫
Ksppi(∂icsp) d2x, (F.50)

where the dots indicate the contributions to Ftotal considered before, as given by
Eqs. (4.1) and (G.1). The symbol csp denotes the local Sple concentration and Ksp

denotes the associated elasticity. For Ksp > 0, polarity tends to point in the same
direction as the Sple concentration gradient. For Ksp < 0, it tends to point antiparallel
to the gradient. According to our discussion above, we would expect a positive sign
of Ksp.

Also allowing for inhomogeneities in K, the resulting polarity angle dynamics reads

∂ψ

∂t
= k sin

(
2[ψ − θ]

)
− ζ sin

(
ψ − φ

)
+ κ∂i∂iψ

+
1

γ1

(∂iK)(∂iψ)− Ksp|∇csp|
γ1

sin
(
ψ − φsp

)
,

(F.51)

where the symbol φsp denotes the angle of ∇csp. The first of the two additional terms
tends to adapt the gradient of ψ to inhomogeneities in K. When a region with small
K is close to a region with high K, this term tends to decrease the gradient of ψ where
K is high and tends to increase the gradient of ψ where K is low. For positive Ksp,
the second additional term in the ψ dynamics reorients the polarity angle towards the
direction of the Sple gradient φsp. Because it corresponds to a polar coupling to the
Sple gradient, it is formally very similar to the second term in the above equation.

Considering a gradient in Sple concentration applies in particular to the posterior
Sple over-expression conditions. In these wings, Sple was over-expressed in the poste-

3This is similar to the so-called “factor X” models, compare Section 1.5.3.



214 Appendix F: Theory for polarity reorientation in the fruit fly wing

rior compartment, but not in the anterior compartment. Therefore in our description,
we consider the simplified Sple gradient

∂xcsp = 0

∂ycsp = −δ(y − yAP )∆cso,
(F.52)

where the symbol yAP denotes the position of the AP boundary and ∆cso > 0 denotes
the increase in Sple protein concentration that is induced by the over-expression.
Moreover, we assume inhomogeneous K according to

K =

{
KP for y ≤ yAP and

KA for y > yAP .
(F.53)

Thus, the symbol KP denotes the value of K in the posterior compartment and KA

denotes the value in the anterior compartment. Then, assuming homogeneity in x
direction, the condition of local thermodynamic equilibrium at the AP boundary yields
the following interface condition at the AP boundary

KA
∂ψ (yAP + ε, t)

∂y
−KP

∂ψ (yAP − ε, t)
∂y

= Ksp∆cso sin
[
ψ(yAP )− φsp

]
for ε→ 0.

(F.54)
Thus, both effects do independently induce a discontinuity in the gradient of ψ. The
effect of an inhomogeneous K alone creates a ratio of slopes ∂ψ/∂y that corresponds
to the ratio of the values of K in both compartments. In contrast to that, the effect
of alignment of polarity with the Sple gradient alone creates a jump in the slope of ψ,
which is large for a large elasticity Ksp as compared to K, for a large Sple concentration
difference created by the Sple over-expression ∆cso, and for a large deviation of the
polarity angle from the Sple gradient direction. Therefore, this term is formally similar
to the term describing the effect of wing veins. The main difference between both is
the factor of two, which appears in the sine function for the vein effect, because for
veins, only a local axis could be defined; whereas for the Sple gradient, a direction can
be defined.



Appendix G

Boundary conditions for the polarity
field in the fruit fly wing

Here, we establish boundary conditions based on quantified directions of bristles that
grow out of the wing margin. Therefore, in Section G.1, we discuss quantified bristle
direction profiles along the margin. Based on these observations, in Section G.2,
we develop an effective physical theory for bristle directions including a coupling to
Core PCP. This theory corresponds to the boundary conditions of the polarity field p.
Afterwards, in Section G.3, we fit our theory to experimental data in order to determine
parameter values. Finally, in Section G.4, we compare our theory to quantified bristle
direction profiles.

G.1 Quantification of wing margin bristle directions

We noticed that the bristles along the wing margin point in similar directions as wing
hairs close to them do. Thus, to better understand the boundary conditions that affect
Core PCP reorientation, we studied the direction of margin bristles. Also, we discuss
a possible influence of Sple over-expression on margin bristle direction.

In order to quantify margin bristle angles, we first parametrized positions on the
wing margin by the coordinate s, which varies between s = 0 and s = 1 (Fig. G.1A
and Appendix E.1.3). For discrete positions s, we quantified margin bristle angles ψb
and margin angles ψm, where margin angles are defined to point in clockwise direction
around the wing margin.

First, we compared the bristle angles for four different conditions (conditions 1-
4; see Section 4.1.1). To this end, for each wing, we plotted profiles of the bristle
angles relative to the margin ψb − ψm over the position coordinate s (Fig. G.1B).
For each condition, we plotted the profile of at least three different wings and found
that the bristle angle profile was largely reproducible. Furthermore, the profile for
late ubiquitous over-expression largely resembled the wild type profile. Similarly, the
profiles for early and permanent ubiquitous over-expression largely resembled each
other.

We discussed two alternative explanations for these observations. According to the
first explanation, the bristle direction at a given position s on the margin only depends
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Figure G.1: Quantification of margin bristle directions in fruit fly wings. (A)
Parametrization of the wing margin by the variable s. At discrete positions s,
we define the angles ψb, ψm, and ψw, which correspond to margin bristle angle,
margin angle, and wing hair angle at a distance w from the margin, respectively.
All angles are defined to increase in counter-clockwise direction. (B) Margin bristle
direction profile for wild type wings as well as permanent, early, and late ubiquitous
Sple over-expression. (C) Margin bristle direction profile for wild type wings, wings
permanently and ubiquitously over-expressing Sple, as well as wings permanently
over-expressing Sple only at the wing margin. For each condition in panels B and
C, the data of at least three wings are shown. In panels A-C, the positions of the
ends of the longitudinal veins L2-L5 are marked.
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on whether Sple is over-expressed at s at some critical time point or not. According to
our observations (Fig. G.1B), this critical time point should be before 16 hAPF. This is
because in late Sple over-expression wings, there is no over-expression before 16 hAPF.
Consistent with that, we observed mainly the wild type bristle angle profile for these
wings. Conversely, in early Sple over-expression wings, there is over-expression before
16 hAPF. Therefore, we observed a bristle angle profile which largely corresponded to
the permanent over-expression. Another feature of such an explanation is that it has
to assume that cells at the margin are aware of their position, since the bristle angles
are position-dependent in a reproducible manner.

In contrast to that, the second explanation assumes that it does not matter whether
Sple is over-expressed at the wing margin or not. Furthermore, the bristle direction
is not fixed before bristle outgrowth; rather, bristles may merely have a few preferred
angles with respect to the margin. In addition, the bristle direction is coupled to Core
PCP of margin cells, which is in turn coupled to the Core PCP system in the bulk.
According to this explanation, we observed different bristle angle profiles for different
perturbations (Fig. G.1B), because the Core PCP system behaved differently in the
bulk. Because bristles still have preferred angles, bristle directions were reproducible,
even for different conditions.

In order to distinguish between both explanations, we quantified bristle angles of
wings which permanently over-express Sple only within a stripe at the wing margin.
According to the first explanation, the bristle angle profile in these wings should
resemble that of permanent ubiquitous over-expression wings. Conversely, according
to the second explanation, the over-expression only at the margin should affect the
wild type margin bristle directions only little. Indeed, a comparison of the bristle
angle profiles for all three conditions suggested the second explanation (Fig. G.1C).

G.2 Physical theory for the direction of wing margin
bristles

G.2.1 Effective potential describing the boundary conditions

Motivated by these experimental findings, we model the boundary conditions as fol-
lows. In each point of the boundary, there is an effective potential fb(ψb − ψm) for
the bristle angle ψb with respect to the margin angle ψm, where preferred angles are
defined by the functional form of fb. This effective potential is the same for wild type
tissue and for tissue over-expressing Sple. Furthermore, the bristle direction is coupled
by an elastic element to the local Core PCP direction at the boundary. Therefore, the
boundary contributions to the total free energy read

Fboundary =

∮ [
fb(ψb − ψm)− C cos (ψb − ψ0)

]
dl, (G.1)
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Figure G.2: The effective potential fb(ψb − ψm) for the bristle angle relative to
the margin ψb − ψm. The parameter values are (A) a = −0.40, (B) a = −0.25,
and (C) a = −0.10.

where the integral goes around the boundary. The elasticity C couples the bristle
angle ψb to the angle ψ0, which denotes the value of ψ at the boundary. In order to
energetically favor that ψb and ψ0 point in the same direction, we require C > 0.

We chose the functional form of the effective potential fb(ψb−ψm) by the following
requirements.

1. For simplicity, fb(ψb − ψm) should be symmetric around ψb − ψm = π/2, which
corresponds to the absence of chiral terms at the boundary.

2. Since all observed bristles pointed away from the wing blade, we choose to en-
ergetically favor the corresponding angle interval ψb − ψm = 0 . . . π.

3. Our observations in the previous section indicate the existence of two preferred
relative bristle angles ψb − ψm. This is reminiscent of a double well potential.

A simple generic form of fb(ψb − ψm) that includes all three aspects is given by

fb(ψb − ψm) = B
[
− sin

(
ψb − ψm

)
+ a cos

(
2[ψb − ψm]

)]
, (G.2)

where B and a are elastic coefficients that may in general depend on position on the
boundary. Because of the second requirement, B has to be positive. In Fig. G.2, the
potential fb(ψb−ψm) is plotted for three different parameter values a. For a < −0.25,
the effective potential fb(ψb − ψm) possesses two minima within the relevant angle
interval ψb − ψm = 0 . . . π (Fig. G.2A); otherwise, fb(ψb − ψm) possesses only a single
minimum within this interval, which is located at ψb − ψm = π/2 (Fig. G.2B,C).

G.2.2 Effective thermodynamic equilibrium at the boundary

The general form of the boundary conditions follows from the condition of local ther-
modynamic equilibrium at the boundary, allowing for variations in ψb and ψ0. The
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relevant terms of Ftotal are given by

Ftotal =

∫
K

2
(∂iψ)(∂iψ) d2x+

∮ [
fb(ψb − ψm)− C cos (ψb − ψ0)

]
dl + . . . , (G.3)

where we used that
(∂ipj)(∂ipj) = (∂iψ)(∂iψ) (G.4)

for p = (cosψ, sinψ)T.

Now, we compute the variation of Ftotal, where we allow for independent variations of
the bristle angle ψb and the boundary value ψ0 of the polarity angle field ψ. Integration
by parts yield:

δFtotal =

∮ [
niK(∂iψ)δψ0 + f ′b(ψb − ψm)δψb + C sin (ψb − ψ0)(δψb − δψ0)

]
dl

−
∫
∂i
[
K(∂iψ)

]
δψ d2x+ . . . ,

(G.5)

where n denotes the unit normal vector to the boundary pointing outside and f ′b
denotes the first derivative of the effective bristle potential fb. The condition of local
thermodynamic equilibrium at the boundary yields:

−f ′b(ψb − ψm) = C sin (ψb − ψ0) from variation of ψb and (G.6)

Kni∂iψ = C sin (ψb − ψ0) from variation of ψ0. (G.7)

These are the boundary conditions in their general form. They simultaneously describe
bristle orientations ψb and the polarity angle ψ at the boundary, denoted by ψ0.

G.3 Determination of parameter values

In order to find appropriate parameter values, we fit these boundary conditions to
observed data of margin bristle angles ψb, hair angles ψw at a distance w from the
margin, and margin angles ψm. To this end, we first note that from Eqs. (G.6) and
(G.7) directly follows that

Kni∂iψ = −f ′b(ψb − ψm). (G.8)

Because we could not determine the exact polarity angle ψ0 at the margin, we choose
an effective description assuming a strong coupling between polarity at the margin and
bristle orientation, i.e. C � B and C � Ba. Then, from Eqs. (G.6) follows

|ψb − ψ0| � 1. (G.9)
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Figure G.3: Plots of quantified differences of margin bristle angles ψb and wing
hair angles ψw close to the wing margin (blue dots). Also shown are fits to
Eq. (G.14) (red solid lines), which reflects the theoretically assumed boundary
condition Eq. (G.10). Each blue data point corresponds to a quantified pair ψb,
ψw (see Fig. G.1A). The data shown include at least three wings for each of the
seven genetic conditions considered. We differentiated two regions: (A) posterior
to vein L3 (s = 0 . . . 0.57) and (B) anterior to vein L3 (s = 0.57 . . . 1), where the
position coordinate s is defined in Fig. G.1A.

With Eq. (G.8) follows

ni∂iψ =
B

K

[
cos
(
ψ0 − ψm

)
+ 2a sin

(
2[ψ0 − ψm]

)]
. (G.10)

This equation is used as boundary condition for the numerical solution of Eq. (4.7),
where the parameters B/K and a are position-dependent.

To find the parameter values for B/K and a, we plot for each quantified pair of
margin bristle angle ψb and wing hair angle ψw the difference of both angles over the
average ψ̄bw = (ψb + ψw)/2− ψm of both angles with respect to the margin angle ψm
(Fig. G.3).

Now, we derive a function to fit these data. To this end, we approximate the normal
derivative ni∂iψ in Eq. (G.8) using the polarity angle ψw at a distance w from the
boundary:

wni∂iψ = ψ0 − ψw. (G.11)

Then, with |ψb − ψ0| � 1 follows

ψb − ψw = −w
K
f ′b(ψb − ψm). (G.12)
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Table G.1: Parameter values for the boundary condition Eq. (G.10). We differ-
entiate three regions: posterior to vein L3 (subscript “P”), anterior to vein L3
(subscript “A”), and the straight line cuts off the hinge to close the domain where
we solve Eq. (4.7) (subscript “H”). Lengths are given in terms of λ0, which is
defined in Fig. 4.9A.

wing margin posterior
to vein L3

wing margin anterior
to vein L3

straight line cutting
hinge from blade

BP/K aP BA/K aA BH/K aH
70/λ0 −0.23 16/λ0 −0.32 0 –

We Taylor expand f ′b around ψ̄bw = (ψb + ψw)/2− ψm:

f ′b(ψb − ψm) = f ′b(ψ̄bw)− 1

2
(ψb − ψw)f ′′b (ψ̄bw). (G.13)

This finally yields

ψb − ψw =
cos ψ̄bw + 2a sin

(
2ψ̄bw

)
K

weffB
+ 1

2

[
sin ψ̄bw − 4a cos

(
2ψ̄bw

)] . (G.14)

Here, the known distance w was substituted by an effective value weff in order to
compensate for the approximation of a strong coupling C between bristle direction
and polarity exactly at the margin.

We fitted the data in Fig. G.3 by Eq. (G.14), where weffB/K and a were fit pa-
rameters. Therefore, we identified two regions which could be described with dif-
ferent parameter values. Posterior to vein L3 (s = 0 . . . 0.57), the data were well
described by weffB/K = 2.9 and a = −0.227 (Fig. G.3A); whereas anterior to vein
L3 (s = 0.57 . . . 1), the data were reasonably described by weffB/K = 0.689 and
a = −0.316 (Fig. G.3B).

In order to identify the parameter values for the boundary condition Eq. (G.10), we
still needed to calibrate the effective distance weff . By comparing the quantified bristle
angles for the wild type case to the final boundary polarity of numerical solutions (see
below), we found that weff = 1.5w, where w = 0.028λ0. The resulting parameters for
the boundary conditions are listed in Table G.1.

For our numerical solutions, in addition to the two above-mentioned boundary re-
gions, we also considered the straight line which cuts the blade from the hinge. In that
region, we assumed for simplicity a free boundary condition with ni∂iψ = 0, which
results from Eq. (G.10) with B = 0 (see also Table G.1).
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G.4 Comparison of theory and experiment

Here, we compare the boundary polarity ψ0 of the final states of numerical solutions of
Eq. (4.7) (see green arrows in the second columns in Figs. 4.13 and 4.15, respectively)
to quantified bristle angle profiles (Fig. G.4). We found that both do largely agree,
which is in particular true for the wild type case and the late over-expression cases
(Fig. G.4A,D,E).

We find that deviations between experiment and theory of boundary angles mostly
correspond to deviations in the bulk polarity (see Section 4.3.2). For instance, for both
early over-expression cases, the deviations in the bulk polarity that were observed
distally were also reflected in the deviations in the boundary polarity between the
ends of veins L5 and L2 (Fig. G.4B,C). Similarly, the deviations that were observed
proximally and posteriorly were reflected in the boundary angles for s . 0.1. Similarly,
the deviations between experiment and theory of boundary angles that occur in both
permanent over-expression cases between the ends of veins L5 and L2 coincided with
defects in the bulk of the corresponding wing hair patterns.
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Figure G.4: Comparison of boundary polarity angles ψ0 of the final state of nu-
merical solutions (red solid lines) to quantified bristle angles ψb (blue solid lines),
both with respect to the margin angle ψm. Each blue line represents the data of a
single wing. The numerical solutions correspond to those shown in Figs. 4.13 and
4.15.





Table of symbols

Here, we list important symbols appearing in this thesis together with the place where
they are defined.

Chapter 2: Tissue shear in cellular networks

state properties of a triangle m

Smij Eq. (2.6) state tensor

Am Eq. (2.11) area

Qm
ij Eq. (2.7) symmetric shape tensor

Q̃m
ij Eq. (2.10) elongation nematic; traceless, symmetric part of Qm

ij

Φm below
Eq. (2.12)

angle of the elongation nematic Q̃m
ij

Θm Eq. (2.7) absolute triangle orientation angle

deformation properties of a triangle m
(symbols describing an infinitesimal transformation in parentheses)

Mm
ij Eq. (2.14) linear transformation tensor

Um
ij (δUm

ij ) Eq. (2.18) discretely defined displacement gradient

∆Ψm (δΨm) Eq. (2.19) rotation angle

∆Nm
ij (δNm

ij ) Eq. (2.19) symmetric deformation tensor

δŨm
ij below

Eq. (2.25)
infinitesimal shear; symmetric, traceless part of δUm

ij

δJ̃mij Eq. (2.29) infinitesimal corotational contribution to shear

δΞm Eq. (2.30) infinitesimal shear-induced contribution to rotation
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large-scale deformation of a cellular network

vij Eq. (2.50) velocity gradient

ω Eq. (2.51) vorticity of the velocity field

ṽij Eq. (2.51) shear rate nematic

J̃ij Eq. (2.55) corotational contribution to the shear rate

T̃ij Eq. (2.57) shear rate induced by T1 transitions

C̃ij Eq. (2.58) shear rate induced by cell divisions

Ẽij Eq. (2.59) shear rate induced by T2 transitions

D̃ij Eq. (2.56) shear rate induced by correlations

Chapter 3: Mechanical behavior of shearing tissue in a vertex model

Note that in most of Chapter 3 and Appendix C, dimensionless units are used (Sec-
tion 3.1.2, page 53). Here, we discuss dimenionless parameters omitting the bar.

vertex model

W Eq. (3.1) work function describing force-balanced states

Γ Eq. (3.1) perimeter elasticity parameter

Λb Eq. (3.1) line tension of bond b

Λ0 Eq. (3.2) line tension offset parameter

ΛF Eq. (3.2) line tension fluctuation amplitude parameter

kΛ Eq. (3.2) characteristic rate of line tension fluctuations

boundary conditions

Lx Section 3.1.4 width of the periodic simulation box

Ly Section 3.1.4 height of the periodic simulation box

γ Section 3.1.4 total simple shear

γ̇ Section 3.1.4 simple shear rate
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observables

σ̃ij Eq. (C.46) mean field shear stress

Q̃ij Eq. (2.39) average cell elongation

F̃ij Eq. (3.7) nematic describing the relaxation of elongation

Chapter 4: Quantitative study of polarity reorientation in the fruit fly wing

vector and nematic fields

p Section 4.2 vector field representing the Core PCP field

q Section 4.2 vector field representing the Fat PCP field

s̃ij Section 4.2 nematic field representing the effective shear field

angle fields

ψ Eq. (4.4) angle of the vector field p representing Core PCP

φ Eq. (4.4) angle of the vector field q representing Fat PCP

θ Eq. (4.4) angle of the nematic field s̃ij representing effective shear

polarity dynamics parameter

k Eq. (4.5) coupling of p to the nematic field s̃ij

ζ below
Eq. (4.7)

coupling of p to the other vector field q

κ below
Eq. (4.7)

coefficient describing the local slignment of the vector
field p

length scales

λ Eq. (4.14) length scale comparing the local polarity alignment to
the nematic coupling

µ Eq. (4.16) length scale comparing the local polarity alignment to
the polar coupling

λ0 Fig. 4.9A length unit chosen for a given fly wing (corresponding
to the half wing width)
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