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Abstract

Cilia are ubiquitous organelles involves in eukaryotic motility. They are long, slender,

and motile protrusions from the cell body. They undergo active regular oscillatory beating patterns

that can propel cells, such as the algae Chlamydomonas, through fluids. When many cilia beat in

synchrony they can also propel fluid along the surfaces of cells, as is the case of nodal cilia.

The main structural elements inside the cilium are microtubules. There are also molecular motors

of the dynein family that actively power the motion of the cilium. These motors transform chemical

energy in the form of ATP into mechanical forces that produce sliding displacement between the

microtubules. This sliding is converted to bending by constraints at the base and/or along the

length of the cilium. Forces and displacements within the cilium can regulate dyneins and provide a

feedback mechanism: the dyneins generate forces, deforming the cilium; the deformations, in turn,

regulate the dyneins. This feedback is believed to be the origin of the coordination of dyneins in

space and time which underlies the regularity of the beat pattern.

Goals and approach. While the mechanism by which dyneins bend the cilium is understood, the

feedback mechanism is much less clear. The two key questions are: which forces and displacements

are the most relevant in regulating the beat? and how exactly does this regulation occur?

In this thesis we develop a framework to describe the spatio-temporal patterns of a cilium with

different mechanisms of motor regulation. Characterizing and comparing the predicted shapes and

beat patterns of these different mechanisms to those observed in experiments provides us with fur-

ther understanding on how dyneins are regulated.

Results in this thesis. Chapters 1 and 2 of this thesis are dedicated to introduce cilia, chapters

3-6 contain the results, and chapter 7 the conclusions.

In chapter 1 we introduce the structure of the cilium, and discuss different possible regulatory

mechanisms which we will develop along the thesis. Chapter 2 contains a quantitative description

of the ciliary beat observed in experiments involving Chlamydomonas.

In chapter 3 we develop a mechanical theory for planar ciliary beat in which the cilium can bend,

slide and compress normal to the sliding direction. As a first application of this theory we analyze

the role of sliding cross-linkers in static bending.
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In chapter 4 we introduce a mesoscopic description of molecular motors, and show that regulation

by sliding, curvature or normal forces can produce oscillatory behavior. We also show that motor

regulation by normal forces and curvature bends cilia into circular arcs, which is in agreement with

experimental data.

In chapter 5 we use analytical and numerical techniques to study linear and non-linear symmetric

beats. We show that there are fundamental differences between patterns regulated by sliding and by

curvature: the first only allows wave propagation for long cilia with a basal compliance, while the

second lacks these requirements. Normal forces can only regulate dynamic patterns in the presence

of an asymmetry, and the resulting asymmetric patterns are studied in chapter 6.

In chapter 6 we study asymmetric beats, which allow for regulation by normal deformations of

the cilium. We compare the asymmetric beat from Chlamydomonas wild type cilia and the beat of a

symmetric mutant to the theoretically predicted ones. This comparison suggests that sliding forces

cannot regulate the beat of these short cilia, normal forces can regulate them for the wild type cilia,

and curvature can regulate them for wild type as well as for the symmetric mutant. This makes

curvature control the most likely regulatory mechanism for the Chlamydomonas ciliary beat.
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But I want to take you into […] a world which is inhabited
by the overwhelming majority of the organisms in this
room.

E. M. Purcell, 1976

1
Introduction

Cilia are ubiquitous eukariotic organelles. Diverse in scale and function, they are involved in a
number of different motile tasks, yet at the core of all cilia lies a common structure: the axoneme.
Imaging of bending cilia, of their internal structure, and biochemical experiments, have given rise
to models of the ciliary structure, as well as suggestions for their functioning. In this section we
give an overview of the internal components of the cilium, its structure, and some of the suggested
models for their dynamic regulation.

1.1 What cilia are and where to find them

Cilia are long thin organelles which protrude from eukaryotic cells. They are motile structures fun-
damental for the functioning of cells. Indeed, immotile cilia are related with problems in embryonal
development, and lead to human diseases such as primary ciliary diskinisia [3]. Although with dif-
ferences among species, the core structure of cilia is highly conserved, yet they are involved in a
number of diverse functions.

Cilia can exhibit a variety of periodic ondulatory motions in the presence of chemical energy.
These beat patters are involved in fluid flow and propulsion of micro-swimmers. Examples of cilia
involved in fluid flow are the nodal cilia, responsible for the breaking of left-right symmetry in the
development of vertebrates [62]. Another example are the cilia in the mammalian lungs, responsible
for the flow of mucus [82] (see Fig. 1.1).

Many eukaryotic micro-swimmers use cilia to propel themselves. Such microorganisms can have
as many as hundreds of cilia (as in the case of Paramecium, see Fig. 1.1), but in this thesis we will
focus on microorganisms with one or two cilia. Examples of cells with one motile cilia are the sperm
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1.1. What cilia are and where to find them

Anopheles Sperm

TrypanosomaSea Urchin Sperm

Bull SpermChlamydomonas Reinhardtii

Nodal cilia Bronchial cilia Paramecium

Figure 1.1: Examples of cilia creating flows and self-propelling micro-swimmers. Nodal cilia [62] and cilia in
bronchi [90] produce fluid flows. In the other examples cilia propel microorganisms. These micro-swimmers can have
one cilium (as in the sperm examples shown), two (as in the case of Chlamydomonas Reinhardtii), or many, as in
the case of Paramecium [1]. Bars correspond to 10µm. The figure is adapted from [28].

of sea urchin, bull or anopheles (see Fig. 1.1). An example of an organism with two cilia is the
unicellular algae Chlamydomonas, the main model system studied in this thesis (see Fig. 1.1).

There is great variability among the ciliary properties of the micro-swimmers in Fig. 1.1. Among
them these cilia differ in size, beat frequency, wave number, and amplitudes. Estimates of these
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1.2. Inside a cilium: the 9+2 axoneme

Organism Length (µm) Frequency (s−1) Wave number Amplitude (µm)
Chlamydomonas 10 50 1 1
Sea Urchin Sperm 60 30 2 5
Trypanosome 30 20 3 0,6
Bull Sperm 50 20 1 0,5
Anopheles Sperm >80 ? >3 >1,5

Table 1.1: Characteristics of the beat patterns of some flagellates. There is great variability among the beat of
flagellates. While Chlamydomonas has a short and fast cilium, Bull Sperm has a long slow one.

properties for the examples in Fig. 1.1 are in Table 1.1. But however different their beating properties
are, underlaying all of them reside the same structural elements, which we review in the next section.

1.2 Inside a cilium: the 9+2 axoneme

In the core of cilia lies a cytoskeletal cylindrical structure called the axoneme. The axoneme is a
cylindrical bundle of 9 parallel microtubules doublets. At its center there are 2 additional micro-
tubules, the central pair (see Fig. 1.2 B). They extend from the basal end, attached to the cell body,
to the distal end. While there are other possible structures [22, 64], the 9+2 axoneme is a highly
evolutionary conserved structure [21]. Here we will focus on the Chlamydomonas axoneme which is
an example of the 9+2 arrangement.

central pair

doublets1

2

3

4

56

7

8

9

1 2

outer dynein arms

radial
spokes

central pair

A Binner dynein arms

doublets nexin links

Figure 1.2: The 9+2 axoneme. A. Schematic cross-section of the 9+2 structure showing the doublet microtubules,
the inner and outer dynein arms, the nexin links, the radial spokes and the central pair. B. Schematic of a bent and
twisted axoneme showing the doublets (blue) and central pair (gray). Note the relative sliding between the doublets.

The doublets and the central pair are connected by the radial spokes (see Fig. 1.2 A), responsible
to keep the radius of the diameter at ≈ 200nm [61]. The doublets are parallel to each other and
from the radius we estimate a spacing of ≈ 30 nm. Each doublet is connected to its near-neighbors
by cross-linkers such as nexin, see section 1.2.3. These provide a resistance to the relative sliding
of doublets, and to changes in the spacing between them. Doublets are also connected by dynein
molecular motors 1.2.2, which create active sliding forces when ATP is present. All these elements are
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1.2. Inside a cilium: the 9+2 axoneme

present in a highly structured manner in the axoneme, repeating along the long axis of the cylinder
with a period of ≈ 96 nm. In the following we describe in more detail the main characteristics of the
axonemal elements.

1.2.1 Scaffolding elements: doublet microtubules and the central pair

The main structural elements of the axoneme are microtubules, present in the doublets as well as in
the central pair. Microtubules are filamentous protein complexes which have scaffolding functions
in the eukaryotic cytoskeleton. Structurally, they are hollow cylinders with a diameter of 24 nm

composed of thirteen protofilaments (see Fig. 1.3). The basic structural element of a protofilament
is the αβ tubulin dimer, with a length of roughly 8nm. Because this dimer is polar the mircotubules
are polar as well, which grow much faster from the + end than from their − end [92].

axonemal doublet

microtubule B

protofilamentαβ dimer

microtubule

microtubule A

A B

Figure 1.3: Microtubules and doublets. A. Each microtubule is composed of thirteen protofilaments, shifted with
respect to each other. A protofilament is a linear assembly of αβ dimers. B. Cross-section of a doublet. Each
doublet consists of two microtubules, one complete (microtubule B, with thirteen protofilaments) and one incomplete
(microtubule A, with ten protofilaments).

The elastic properties of microtubules can be accurately accounted for using a model of in-
compressible semi-flexible polymers with a bending stiffness of ∼ 24 pN·µm2 [37]. While recent
experiments suggest that compressibility and shearing may play a role in determining this stiffness
[63, 88], in this thesis we will consider microtubules as inextensible and non shearing.

In the axoneme microtubules appear in the central pair and in the doublets. The central pair
consists of two singlet microtubules (i.e., with all 13 protofilaments, see Fig. 1.3) longitudinally con-
nected between them. But while its basic component, namely the microtubules, have well known
properties, those of the central pair are complex and elusive. For example, there is evidence suggest-
ing that the central pair shows a large twist when extruded from the axoneme [59]. The orientation
of the central pair is used as a reference to number the doublets, as in Fig. 1.2.

The doublets are composed of one A-microtubule and one B-microtubule. The A-microtubule has
all 13 protofilaments, while the B-microtubule has only 10 and a half protofilaments (see Fig. 1.3).
The stiffness of microtubule doublets has not been directly measured, but simple mechanical consid-
erations suggest that they are roughly three times that of a single microtubule, and so we estimate
their bending rigidity as ∼ 70 pNµm2 [37].

The doublets and the central pair are the main structural elements involved in determining the
bending stiffness of the axoneme. Using mechanical considerations one can estimate the stiffness
of the axonemal bundle as being 30 times higher as that of a single microtubule, which yields
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1.2. Inside a cilium: the 9+2 axoneme

power
stroke

ATP binding
+ hydrolisys

DTP release
+ binding

stem
ring

stalk

Figure 1.4: Mechanochemical cycle of
dynein. A dynein motor is composed of a ring
with 6AAA domains, a stem (in yellow) and a
stalk with a MT binding domain at its end. ATP
binding enhances the detachment of dynein’s
stalk from the microtubule, and its hydrolysis
locks it in a strained state in which the ring is
rotated. DTP release aids the dynein to bind
to the microtubule. Finally, once bound, the
power stroke occurs, leaving the bound motor
in a state with high ATP affinity.

≈ 600 pN·µm2 for the stiffness of the axoneme [37]. This number can be compared with several
direct measurements of axonemal stiffness. While these vary with the experimental conditions (such
as the presence of vanadate or ATP), for rat sperm [79] as well as sea urchin sperm [74] the value of
≈ 4· 103 pN·µm2 has been measured, in good agreement to the previous estimate.

1.2.2 Active force generating elements: dynein motors

The ciliary beat is powered by axonemal dyneins, which are a family of molecular motors (see
Fig. 1.4). They convert chemical energy into mechanical work, with one full mechano-chemical cycle
corresponding to the hydrolysis of one ATP molecule. The Chlamydomonas axoneme in particular
contains 14 different types of dyneins and has a total of ∼ 104 of these motors [94] over its length of
roughly 10µm. And while these dyneins can have diverse properties (such as different ATP affinities,
gliding speeds, or capability of generating torques [44, 84]), we focus here on their generic properties.

Dyneins are periodically distributed along the nine microtubule doublets, with their stem (yellow
in Fig. 1.4) rigidly attached to the A-microtubule, and their stalks being briefly in contact with the
adjacent B-microtubule during the power stroke process [37]. Stem and Stalk are connected by a
6AAA ring, and all together the weight of a motor domain is roughly ∼ 300 kDa [40, 78]. Their size
is roughly 30 nm, and the their structure is sketched in Fig. 1.4 [17, 75].

It is known that during their power stroke, dyneins generate forces that tend to slide the axonemal
doublets with respect to each other. For instance, after a protease treatment of the axoneme the
presence of ATP makes the doublets slide apart [86]. Finally it is worth noting that it has been
shown in vitro that motors such as dynein and kinesin are capable of generating oscillatory behaviors
reminiscent to beat patterns in the presence of ATP [76, 81]. All this evidence supports the idea
that dyneins generate sliding forces which regulate the beat pattern of the axoneme.

Electron micrographs have shown that a motion of the tail of up to 15 nm may occur [17]. As an
upper limit to force generation we can consider that all the energy contained in one ATP molecule
(which is ∼ 25 kBT ≈ 100 pN· nm, [37]) is invested in this motion, and thus we estimate a force of
100 pN·nm

15 nm = 6.7 pN. On the other hand, indirect estimates have resulted in motor forces of up to
∼ 5 pN[52], suggesting that axonemal dynein can generate as much force as cytoplasmic dynein [27]
or kinesin [20, 87].

While the mechano-chemical dynein cycle has not been fully deciphered, much is known about
its main steps [39]. ATP binding is known to occur with an affinity of roughly 4.7µM−1s−1 (for
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1.3. Structural asymmetries

ATP concentrations below 60µM) [68], which dramatically accelerates detachment of the dynein
tail from the microtubule. After this, ATP is hydrolyzed and a conformational change occurs which
renders dynein to its pre-powerstroke configuration. This slow step occurs at roughly ∼ 0.2 s−1, and
is thus the rate-limiting step [47]. ADP increases the affinity of dynein to microtubules (which may
also be influenced by additional conformational changes [48]), leading to a binding state in which
the powerstroke occurs, which completes the dynein cycle (see Fig. 1.4). Overall the duty ratio of
dynein (fraction of cycle time which it spends bound the B-microtubule) has been estimated to be
∼ 10% [37], and it is thus considered a non-processive motor.

1.2.3 Passive cross-linkers: nexin and the radial spokes

Radial spokes and nexin cross-linkers are passive structural elements involved in maintaining the
structural integrity of the axoneme. Coarsely, the radial spokes (see Fig. 1.2) help to sustain the
radius of the axoneme, while the nexin cross-linkers prevent the doublets from sliding apart. We
now review some of the more intricate details of nexin and radial spokes.

The nature of nexin linkers has long been debated. Indirect evidence suggests that a protein com-
plex must be involved in constraining the sliding of doublets, since protease treatment of axonemes
results in telescoping of the doublets when ATP is present [86]. Furthermore, it is believed that
such a constraint is fundamental in transforming the sliding dynein forces into axonemal bending,
see section 1.4. But while early electro microscopy identified nexin as a separate protein complex
[32, 93], recent work suggests that it is part of the dynein regulatory complex [8, 34, 61]. This would
imply that the cross-link nexin can be closely involved in regulating the behavior of the dynein regu-
latory complex, and thus the flagellar beat. Furthermore, recently it has been suggested that dynein
is linked to the radial spokes [49]. In any case, it is clear that dynein provides passive resistance to
sliding, as indeed it’s stiffness has been directly measured to be ∼ 2.0 pN· nm−1 for 1µm of axoneme.
This number increases five fold in the absence of ATP (when dyneins are attached), thus further
indicating that dynein and nexin are intimately related may be a highly regulated passive struc-
ture [58]. Finally, since it stretches about ten times its equilibrium length, its force-displacement
behavior has been suggested to be non-linear [55].

In each 96 nm axonemal repeat there are two radial spokes per doublet in the Chlamydomonas
axoneme [65]. Recently, it has been shown that there is also an incomplete third radial spoke,
which is believed to be an evolutionary vestige [5]. When the radius of the axoneme is reduced,
radial spokes compress, which suggests that they are involved in sustaining the cross-section of the
axoneme [102]. However, recent evidence has shown that radial spokes are connected to the same
regulatory complex identified as nexin, which suggests that they may also act as regulators of the
beat [5]. While axonemes can beat in the absence of radial spokes [100], it has been observed that
the gliding speed of dynein increases substantially in the presence of radial spokes [83].

1.3 Structural asymmetries

In a coarse view the picture of the axoneme is highly symmetrical. It is periodical in its longitudinal
direction, with a period of 96 nm. It also has ninefold rotational symmetry around its longitudinal
axes, with motors connecting all the doublets. However, recent studies have shown that this picture
is not accurate. There are many important structural asymmetries in the axoneme, which can have
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Figure 1.5: Chirality of Chlamydomonas.
Representation of Chlamydomonas with two
axonemes (polar, indicated by arrowheads) of
the same chirality (note the doublets ordering)
as they are believed to be located in the cell [16].

an important role in regulating the beating dynamics.

1.3.1 Axoneme polarity

The axoneme is a polar structure, and is thus not symmetric along its length. There are several
polar asymmetries in the axoneme, the most obvious one is that the microtubule doublets themselves
are made of polar proteins such as the doublets. Furthermore, along each repeat the distribution of
dyneins and radial spokes is not homogeneous. More importantly, there are two polar asymmetries
which occur on a larger scale: the asymmetry between the ends, due mainly to the basal body; and
the asymmetry along its arc-length, due to inhomogeneous distribution of motors.

The two ends of the axoneme are fundamentally different. First, the distal end (farthest from
the cell body) is the + end of the doublet microtubules and is thus constantly being polymerized.
Second, at the basal end of the axoneme there is a complex structure called the basal body. The basal
body is the region where the axoneme attaches to the cell body, and it’s composed of microtubule
triplets which get transformed into doublets as the basal body transforms to the axoneme (see Fig.
30 in [72], also [72]). Evidence suggests that the basal body is elastic, and can allow for doublets
sliding at the base of the axoneme [91, 95, 97]. This has led to the proposal that a basal constraint
is an important regulatory mechanism for regulating the beat [71, 76], with some evidence that it
may be necessary for beating [26, 29].

But besides of differences at the ends of the axoneme, along its length there are also asymmetries in
the distribution of dyneins [16, 101] as well as cross-linkers [66]. The 96 nm repeats are homogoneous
only in the central part of the axoneme, with repeats changing as they approach the ends. For
instance, certain types of dyneins (like inner dynein arms) are missing towards the base of the
axoneme [16]. Yet some other types of dynein are present only near the base, the so-called minor-
dyneins [101].

1.3.2 Chirality

Since the axoneme is polar, and the dyneins are bound to the A tubule and exert their power stroke
on the B tubule, the axoneme is a chiral structure (compare in Fig. 1.5 the two axonemes, which
have the same chirality). Furthermore, to date only axonemes with one handedness have been found.
One immediate consequence for Chlamydomonas is that it swims with two left arms. That is, unlike
with human arms, its two flagella are not mirror-symmetric with respect to each other (see Fig. 1.5).
But beyond this intrinsic chirality, detailed studies on the axonemal structure have revealed further
chiral asymmetries which we now discuss.
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1.4. The mechanism of ciliary beat

Certain adjacent doublets are connected by various structures: the doublets 1 and 2 are connected
by the so-called 1-2 bridge, believed to be important in setting the beating plane [16, 36]. Additional
cross-linkers have recently been identified the doublets 9 and 1, 5 and 6; as well as 1 and 2 [66]. All
these structures have been suggested to constrain the sliding of the doublets they link, thus defining
the beating plane as that in which the non-sliding doublets lay (which is roughly that of doublets 1
and 5, see Fig. 1.2). Another asymmetry in the beating plane are the presence of beaks inside the
B tubules, filamentous structures are all along doublets 1, 5 and 6 [36, 66].

Several species of inner dyneins are also missing in certain doublets, for example in the doublet
1 [16]. Interestingly, the same dynein arms that are missing in the basal region are also missing all
along the axoneme in the doublet 9, thus coupling the polar asymmetry with the chiral asymmetry.

Further contribution to this chiral asymmetry can come from the inherent twist observed in the
central pair, whose interaction with the doublets remains unclear [46]. Furthermore, evidence in Sea
Urchin sperm has shown that the axoneme itself can take spiral-like shapes, which are intrinsically
chiral [96].

1.4 The mechanism of ciliary beat

How the beating patterns of cilia occur is a subject of intense research, and the main topic we address
in this thesis. It is generally believed that the beat is generated by alternating episodes of activation
of opposing sets of dynein [85]. Which dyneins are activated and which are deactivated is believed
to be regulated by a mechano-chemical feedback. The beat is thus believed to be a self-organized
process, with no a priori prescription of dynein activity: dyneins regulate the beat, and the beat
regulates the dyneins. We now go over the key points of this process, reviewed in [15, 54, 98].

• Dyneins produce active sliding forces: Since dyneins can slide doublets [84] and slide
axonemes apart [86], it is believed that they produce sliding forces between the doublets,
see section 1.2.2. In a rotationally symmetric axoneme all these forces balance exactly and
there is no net sliding force, a situation termed tug-of-war [38]. In this case fluctuations can
create a small imbalance in force, which is then amplified by the motors and finally produces
a significant net sliding force. Alternatively, chiral asymmetries (see 1.3) in the axoneme can
also result in a net sliding force.

• Passive cross-linkers constrain sliding and convert it into bending: The net sliding
force produced when the dyneins on one side of the axoneme win the tug-of-war leads to
relative motion between the doublets [11]. Thanks to cross-linkers along the axoneme [8, 55],
and possibly also at the base [4, 13, 71], this sliding is constrained and converted into bending.

• A mechano-chemical feedback can amplify the bending and produce switching. In
the tug-of-war scenario, when one set of dyneins wins and the axoneme bends, the other set
of dyneins becomes gradually less active while the winning side becomes more active, thus the
bending is increased [38]. However, possibly due to a delay in the mechano-chemical cycle by
the dyneins [38, 57, 71], eventually the switch occurs and the opposing dyneins become active.
The bend is thus reversed, giving rise to an oscillation.

Of the three processes described above, the one which is the least understood is that of the
mechano-chemical feedback. It is not clear what mechanical cue is sensed by the dyneins, and how
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1.4. The mechanism of ciliary beat

it is sensed. We now review some of the proposals.

1.4.1 Sliding control

In sliding control, the mechano-chemical feedback responsible for the switch occurs by the dynein
motors sensing the sliding displacement between doublets. Motor models where response to sliding
can induce oscillations of a group of motors have a long history [10, 31, 42, 43]. The way the
feedback can appear varies from one model to another, typically for processive motors it is believed
that sliding forces induce detachment of motors [31], while for non-processive motors like dynein
ratchet mechanisms have been suggested [42, 43]

An axoneme bends because of the sliding forces generated by the opposing dyneins in the plane
perpendicular to the bending plane. For example, if the beating plane is formed by the doublets 1
and 5, the opposing dyneins are those in doublets 3 and 8 (see Fig. ?? and [35]). In this case,
the sliding experienced by one set of motors is positive, in the sense that it favors their natural
displacement to the + end of the axoneme. The displacement of the opposing set of motors is
negative. It is believed that this acts as a regulatory mechanism of the motors force, with the
dyneins that slide to the positive direction creating an active force and the others a resisting force.

sliding control normal force controlcurvature control

detach
detach

detach
load
force

normal
force

+ + +

Figure 1.6: Three mechanism of motor regulation. In curvature control bending of the doublets enhances their
detachment (left panel). In sliding control sliding of the doublets to the minus end produces a load force with triggers
detachment (center panel). In normal force control the increase in spacing of the doublets produces a normal force
that tends to detach dyneins.

This mechanism has been shown to produce beating patterns [10, 19], that under certain spe-
cial conditions are very similar to the beat of Bull Sperm [71]. Furthermore, there is also direct
observation of sliding oscillations in straight axonemes [45, 99].

1.4.2 Curvature control

In curvature control, the switching of molecular motors is regulated by the curvature of the flagellum.
This mechanism was initially proposed in [57], where the moment generated by the motors was
suggested to be controlled by a delayed reaction to curvature. Later works have used the motor
moment density as the quantity to be affected by curvature [9, 14, 71].

Notice that there is a crucial difference between curvature and sliding control. In sliding control
oscillations can occur for straight filaments (as, for example, occurs in actin fibers in the presence
of myosin [67]). This is impossible in curvature control. Models of the axoneme where curvature
regulates the beat operate by opposing motors being activated or inactivated when a critical value
of the curvature is reached, together with a delay [9, 13]. One reason why opposing motors may
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1.5. Physical description of axonemal beat

react differently to curvature is that active and inactive motors, perpendicular to the beating plane,
experience different concavity of the adjacent doublet (see Fig. 1.6).

This model is supported by the fact that some flagellar waves seem to show a traveling wave
of constant curvature [12]. Furthermore, while the study in [71] favored a sliding control model,
curvature control also showed good agreement with the Bull Sperm beat. However, there is no
accepted mechanism of curvature sensing by dynein motors. Direct geometrical sensing is unlikely,
given the small size of dynein compared to curvatures in the axoneme [71]. Indeed, a radius of
curvature of 2µm corresponds to the bending of an 8 nm tubulin dimer through an angle of only
0.025 degrees which is two orders of magnitude smaller than the curved-to-straight conformation
associated with the straightening of a free GDP-bound tubulin subunit needed for its incorporation
into the microtubule wall [60, 70]. An alternative explanation is provided by the geometric clutch
[53], reviewed in the next section.

1.4.3 Geometric clutch

In the geometric clutch the key factor regulating the switch of dynein motors is the spacing between
the doublets, or equivalently the corresponding transverse force (t−force) between them [50, 53].
The hypothesis is that there are two contributions to the t−force coming from curvature and sliding.
The contribution of the curvature is termed global t−force, and tends to detach motors. This global
t−force will be termed normal force in our description. The sliding contributes to the local t−force,
which tends to attach motors and is much smaller than the global t−force [52]. Thus the geometric
clutch combines effects of sliding and curvature control.

It has been suggested in [51] that in a beating axoneme the opposing dyneins that perform the
work ultimately bending the axoneme are those in the beating plane, which is the opposite to
what has been suggested in [35] for sliding control. There is an additional element required in the
geometric clutch, which is a distributor of the t−force between the opposing sides of the axoneme.
Radial spokes have been suggested to fulfill this role [52].

Computer models using the geometric clutch have successfully replicated the beat of Chlamy-
domonas [51]. Furthermore, there is direct experimental evidence suggesting that bent axonemes
show higher spacing in bent regions, where the global t−force increases [56]. However, it is so far
unclear how the t−force is distributed in a cross-section of the axoneme [53]. This implies that it
is not known how it gets distributed between the opposing motors. The same problem is present
in curvature control, but not in sliding control: there opposing motors experience opposite sliding
displacement.

1.5 Physical description of axonemal beat

To gain insight into ciliary beat, in this thesis we combine tools of non-linear dynamics, elasticity,
and fluid mechanics. This will allow us to provide a full description of the self-organized dynamics of
a cilia propelled by molecular motors [18, 57]. We now give some brushstrokes on the main elements
of the theory.

First, to derive the mechanical forces we will use a variational approach. That is, we will con-
struct an energy functional G[r], where r(s) is the position of the arc-length point s of the cilium,
which collects all the elastic properties of the cilium. By performing variations, we will obtain the
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mechanical forces. Second, to describe the effect of molecular motors, we will write down a dynamic
equation for the motor force which tends to slide the doublets apart. This dynamic equation will
depend on the internal strains and stresses of the cilium, thus coupling the system. Third, to model
the fluid we will use resistive force theory [30], in which the fluid force is characterized by two fric-
tion coefficients ξn and ξt (corresponding to normal and tangential motion). This simplification is
possible because the Reynolds number of a cilium is small, which allows us to neglect non-linear
effects [69]; and because the cilium is a slender body, with a diameter a much smaller than its length
L.

Putting all these elements together, we will obtain a dynamic equation for the shape of the cilium.
If we parametrize the cilium by its local tangent angle ψ(s, t) at arc-length s and time t, we will
have to linear order the following force balance equation

ξn∂tψ = −κ∂4sψ − a∂2sf . (1.1)

This equation includes the effects of fluid friction, elasticity (with κ = EI, E the young modulus
and I the second moment of inertia), and the motor force f . The full description of the system still
requires an equation that couples the motor force dynamics to an internal strain in the cilium. For
example, if the motor force responds to sliding velocity (as has been suggested [10, 19]), we have to
linear order

f(s, t) =

∫ t

0

χ(t− t′)∆(s, t′)dt′ (1.2)

where χ(t − t′) is the linear response function, and ∆ is the local sliding between doublets. The
two equations above define a linearized dynamical system which can undergo oscillatory instabili-
ties and go to a limit cycle (which, to be described, requires to take into account non-linearities).
Alternatively, the motor force could respond to changes in the local curvature ∂sψ [9, 57] or the
doublets spacing a [50]. In this thesis we characterize the beat patterns corresponding to these three
different different regulatory mechanisms, and compare the results to the experimentally observed
ciliary patterns described in the next chapter.

1.6 Conclusions

• The core element of the cilium is the axoneme: a cylindrical bundle of microtubules connected
by dynein molecular motors.

• The beat of cilia is a self-organized process powered through microtubule sliding forces that
are produced by dynein motors.

• Self-organization arises through motor regulation via one (or several) of the following mecha-
nisms: regulation by microtubules sliding, by their curvature, or by the normal force arising
between them.
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Does it contain any experimental reasoning concerning
matter of fact and existence? No. Commit it then to
the flames.

David Hume, 1748

2
Characterization of the Chlamydomonas beat

Chlamydomonas cilia can be isolated from the cell and, in the presence of ATP, beat period-
ically. In this section we mathematically describe the beat pattern of intact as well as disintegrated
cilia. We show that the observed beat pattern of an intact cilium is well characterized by its static
and fundamental harmonics. While for wild-type the zeroth harmonic is very important as the beat
is asymmetric, this is not the case for a symmetric mutant which we analyze. We also show that
in disintegrated cilia pairs of doublets can interact with each other, reaching a static equilibrium
in which the shape is a circular arc. All of the data appearing in this section was taken in the
laboratory of Jonathon Howard: the data from the first section by Veikko Geyer, and that of the
second by Vikram Mukundan.

2.1 The beat of isolated Chlamydomonas cilia

The cilia of Chlamydomonas can be isolated from the cell body [77]. When their membrane is
removed and ATP is added to the solution, they exhibit periodic beat patters [7]. This is evidence
that the beat of the axoneme is a self-organized property, as it occurs independent of the cell body
and with ATP homogeneously present around the axoneme.

Our collaborators in the group of Jonathon Howard, in particular Veikko Geyer, have imaged
the beat of isolated Chlamydomonas axonemes using high speed phase contrast microscopy with
high spatial and temporal resolution. The pixel-size was of 139× 139 nm2/pixel, and the frame-rate
103 s−1. In comparison, the typical size of the axonemes was L ∼ 10µm, and the characteristic
beat frequency f ∼ 50 s−1. Nine frames from a sample beat pattern appear in Fig. 2.1, the tracking
of the axoneme appears as a green line, the basal end of the axoneme is marked by a black circle.
The tracking was performed using the fiesta code published in [73]. As one can see, the beat of the
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2.1. The beat of isolated Chlamydomonas cilia

axoneme is asymmetric, and because of this the axoneme swims in circles. While the typical beat
frequency of the axoneme is f ∼ 50 s−1, the rotational frequency of the axoneme is ten times slower,
on the order of frot ∼ 5 s−1.

0ms

20ms

40ms

60ms

80ms

100ms

120ms

140ms

160ms

5μm

B

t/T

0

1/4

1/2

3/4

swimming direction

wave propagation

A

Figure 2.1: Time series of a beating cilium. A. An isolated Chlamydomonas cilium has an asymmetric beat
pattern which makes it swim counter-clockwise. The tracking is noted with a green line, and the base with a black
circle (adapted from [28]). B. Beat pattern over one period of duration T obtained after tracking, showing forward
wave propagation (from base, indicated with a black circle, to tip) and thus counter-clockwise swimming. As time
progresses over one period the cilium changes color following the circular legend counter-clockwise

The tracked cilium is characterized at each time t by a set of two dimensional pointing vectors
r(s, t) from the fixed laboratory reference frame to each point along the axonemal arc-length s ∈
[0, L], with L the length of the cilium (see Fig. 2.2). To describe its shape decoupled from the
swimming we use an angular representation. That is, for each point along the cilium we calculate
the tangent angle Ψ(s, t) with respect to the horizontal axis x, see Fig. 2.2. Note that this angular
representation contains less information than the vectorial representation, in particular the swimming
trajectory is lost. However Ψ(s, t) still retains information about the rotation velocity of the axoneme
frot. To obtain a pure shape description we also subtract this rotation, that is

ψ(s, t) = Ψ(s, t)− frott , (2.1)

where the tangent angle ψ(s, t) now only describes the shape of the axoneme.

Since the beat of Chlamydomonas is periodic in time, we analyze the shape information ψ(s, t)

by transforming its temporal coordinate to frequency space. This can be done using a fast Fourier
transform, and the result for the mid-point of the axoneme is shown in Fig. 2.3 A. There are peaks
around frequencies multiple of the fundamental frequency, and a background of noise. Neglecting
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r(s)

20ms

y

x

tangent
angle ψ(s)arc-length, s
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Figure 2.2: Tracking the tangent an-
gle. The tangent angle ψ(s) at arc-
length s measured from the basal end,
is defined with respect to the lab frame
xy using the pointing vector r(s).

the noise, the beat can thus be approximated by the following Fourier decomposition

ψ(s, t) ≈
n=+∞∑
n=−∞

ψn(s) exp(i2πnft) (2.2)

Where f is the fundamental frequency of the beat, which in the example considered in Fig. 2.3 A
is f = 55.4 s−1. The modes ψn(s) are complex functions of s, and their amplitude decreases as the
mode increases, see Fig. 2.3 A. Because the angle is a real quantity, its modes satisfy ψ−n = ψ∗

n.

0 100 200 300 400
Frequency (Hz)

500
10-6

10-4

10-2

Arc-length (μm)
0 5 10

-3

-2

-1

0

0.0

0.4

0.8

1.2

-6

-4

0

-2

Arc-length (μm)
0 5 10

Arc-length (μm)
0 5 10

A B C Df

2f
3f

4f

0 100 200 300 400
Frequency (Hz)

500

10-6

10-4

10-2

Arc-length (μm)
0 5 10

-3

-2

-1

0.0

0.4

0.8

1.2

-6

-4

0

-2

Arc-length (μm)
0 5 10

Arc-length (μm)
0 5 10

0f

2f
3f

4f

E F G H
MBO2 mutant

Wild Type

Figure 2.3: Characterization of the Chlamydomonas beat. Top, characterization of Wild Type beat. A. The power
spectrum of the angle at mid-length shows up to seven harmonics or modes. B. The zeroth mode of the angle grows
linearly over arc-length, resulting in a circular arc of constant curvature. C. The amplitude of the first mode is roughly
constant over arc-length. D. The phase of the first mode drops∼ 2π over the length of the cilium. Bottom, character-
ization of mbo2 beat. The main difference resides in F, mbo2 shows a small zeroth mode since its beat is symmetric.
Each line corresponds to an individual cilium, and the bolder one corresponds to the same cilium in panels B, C and
D for WT, and in panels F, G and H for mbo2.

Importantly, the above description includes the zeroth mode ψ0(s), which corresponds to the
average shape of the cilium and defines its asymmetry. In Fig. 2.3 B this mode is shown for an
example. As one can see, besides a flattening at the ends, the tangent angle decreases monotonically
along the axoneme. The amplitude and phase profiles of the first, second and third dynamic modes
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2.2. Bending of disintegrated axonemes into circular arcs

are shown in Fig 2.3 B and C. As one can see, the amplitude of the first mode is much larger than
that of all higher modes, and roughly constant along the arc-length with a small dip in the middle.
The phase profile of the first mode is shown in Fig. 2.3 D, and is monotonically decreasing. Over
the full length of the axoneme the phase decreases about 2π, which corresponds to a wave-length
equal to the length of the axoneme.

The curvature is the derivative of the tangent angle with respect to the arc-length. This means
that the constant slope of the angle in the zeroth mode corresponds to a constant mean curvature
of roughly ∼ 0.25 rad·µm−1. Furthermore, since the amplitude of the first mode is approximately
constant and its phase decreases with a constant slope, we conclude that a good approximation of
the Chlamydomonas ciliary beat, shown in Fig. 2.4 A, is the superposition of an average constant
curvature, Fig. 2.4 B, and plane wave of its angle, Fig. 2.4 C. Thus, the beat of Chlamydomonas is
fundamentally asymmetric, and its asymmetry is well characterized by a constant mean curvature.

+=
B CA

Figure 2.4: Schematic of asymmetric beat. An asymmetric beat (A) can be described as a circular arc (constant
mean curvature, B) plus a plane angular wave (C). Figure adapted from [28].

It is important to note that this asymmetry is not present during the phototropic response of
Chlamydomonas and in certain mutants that Move Backwards Only (MBO). The MBO 1-3 mutants
beat symmetrically [28, 80]. In particular the mutant MBO 2 has a very small static component in
the beat, see Fig. 2.3 A. Interestingly, the amplitude profile of the first mode is very similar to that
of the wild type cilium, as one can see by comparing Fig. 2.3 B and Fig. 2.3 C. The same is true of
the phase profile, which appears in Fig. 2.3 C. Thus, these mutants have a beat that, while lacking
the asymmetry, are in the rest very similar to that of the wild-type cilium. Finally, it is worth noting
that also wild-type Chlamydomonas can exhibit symmetric beat patterns in the presence of Calcium,
although these are three-dimensional beats fundamentally different from those of mbo2 [7, 28].

2.2 Bending of disintegrated axonemes into circular arcs

In the presence of a protease treatment, axonemes partially loose their cross-linkers. When this
occurs, two doublets can interact via the dyneins of one of them. This provides a minimal sys-
tem, which has been reported to produce sliding and bending waves [4, 60]. In particular, at low
concentrations of ATP, pairs of filaments associate, and propagate small bending waves towards
the basal end as one filament slides along the other (Fig. 2.5, first row, arrows). Furthermore, in
some occasions the two filaments re-associate along their entire length and bend into a circular arc
(Fig. 2.5, second row). The system then becomes unstable and the filaments separate again.

To analyze the bending process in detail, the shapes of the filaments pairs are digitized, as shown
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5.7 s5.4 s5.1 s4.8 s4.5 s4.2 s
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5 μm

Figure 2.5: Sliding of adjacent doublets in a split axoneme One doublet slides along another and then dissociates
(0.0 to 4.0 s). After reassociating (4.2 s), the two doublets remain in close apposition and bend into a circular arc (4.5
s to 5.7 s) before dissociating again (not shown). Figure adapted from [60].

in Fig. 2.6 A. From this one can calculate the tangent angle as a function of arc-length in successive
frames as the filaments become more and more bent, see Fig. 2.6 B. Importantly, the filament pair
approaches a steady-state shape in which the tangent angle increases linearly with arc length, except
at the very distal end where it flattens (Fig. 2.6, 5.1 s to 5.7 s). Such a linearly increasing tangent
angle implies that the steady-state shape is approximately a circular arc. This static constant
curvature is analogous to that observed in the wild-type Chlamydomonas cilia as was described in
section 2.1.
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Figure 2.6: Tracking the doublets. A. The shape
was characterized by tracking the centerline of intensity
along the filament contour marked by green crosses.
B. The tangent angles are plotted as a function of arc-
length. The tangent angle increased linearly with arc-
length (times 5.1 − 5.7 s), indicating that the shape of
the doublets is nearly a circular arc. The curvature of
the arc is increasing over time and approaches a final,
quasi-static shape at 5.7 s. Figure adapted from [60].

There is evidence that the two interacting filaments are two doublet microtubules and not two
singlet microtubules or one doublet microtubule interacting with the central pair. The two individual
singlet microtubules that comprise the central pair will each have a lower intensity than a doublet.
However, the interacting filaments (Fig. 2.7 A and B, red) have the same intensities as the non-
interacting filaments (Fig. 2.7 A and B, blue). This implies that the interacting filaments are not
two singlet microtubules (which would both be much dimmer than the non-interacting filaments) or
a singlet and a doublet (one of the two interacting filaments would be much dimmer than the other).

One of the advantages of this experiment is that the shapes reach a quasi-static limit, which can be
analyzed assuming mechanical equilibrium. The assumption of mechanical equilibrium means that
the frictional forces due to motion through the fluid can be ignored, and applies if the relaxation
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Figure 2.7: Intensity analysis of filaments. A. Frame
of a bending event with line-scans of filaments interact-
ing (red), non-interacting (blue) and overlapping (green).
B. Corresponding intensity profiles. The interacting and
non-interacting filaments have similar intensity, while
the intensity in the overlap is 4 times higher than the
non-overlap regions, as corresponds to dark-field mi-
croscopy. Figure adapted from [60].

time of the bent beam in the fluid is much smaller than the typical time of the bending observed.
The relaxation time of a beam in a fluid is ∼ ξnL

4/κ. Using κ = 120 pN·µm2 for the doublets
stiffness, ξn = 0.0034 pN· s·µm−2 for the fluid friction, and L = 5µm for the length, we obtain a
relaxation time of ∼ 0.01 s, which is much smaller than the typical duration of the process ∼ 1 s.

2.3 Conclusions

• The beat of the Chlamydomonas cilium is well described by its static and fundamental mode.

• In a wild-type cilium the static mode is large and has the shape of a circular arc, producing
an asymmetry in the beat. In an mbo2 cilium the static mode is small, and the resulting beat
symmetric.

• Pairs of doublets are statically bent into circular arcs due to motor regulation.
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One can’t be satisfied with just looking at so wonderful a
structure: chiefly because one can’t get clear on how such
an unbelievable motion is brought about

Antoni van Leeuwenhoek, 1713

3
Force balance of planar cilia

The planar beat of a cilium can be described as a pair of opposing filaments. In
this section we introduce a two-dimensional representation of the axoneme as a pair of opposing
inextensible filaments. We consider the sliding as well as variable spacing between these filaments.
By balancing mechanical and fluid forces, we derive the general non-linear dynamic equations of
a cilium beating in a plane. As a first application of this theory, we study the role of sliding
cross-linkers in the static bending of a cilium.

3.1 Planar geometry of the axoneme

We describe the axoneme by a pair of opposing filaments, which we label A and B (see Fig. 3.1).
Each filament is parametrized by the arc-length s of the centerline, which ranges from 0 at the base
to L at the tip. The filaments are separated by a distance a(s) which can depend on the arc-length,
and they can slide with respect to each other at every point.

The geometry of the centerline is characterized by r(s), a two-dimensional pointing vector from
the laboratory frame. At any given point of the centerline we can define the local tangent vector
t(s) and the local normal vector n(s), as shown in Fig. 3.1. The tangent vector is given by

t =
∂r

∂s
= ṙ , (3.1)

where in the last expression we have introduced a notation in which upper dots denote arc-length
derivatives. This notation will be kept throughout the rest of this thesis, with the number of dots
denoting the order of the arc-length derivative. The normal vector is defined simply as normal to
t(s), with orientation such that t × n points out of the xy plane. Using the tangent vector we
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3.1. Planar geometry of the axoneme

x

yr(s)
∆0

a(s)ψ(s)
t(s)n(s)

∆(s)

filament A

filament B

arc-length, s

Figure 3.1: Planar geometry of a cilium. Scheme of a cilium as a pair of opposing filaments (labeled A and B)
separated by a spacing a(s) with depends on the arc-length s (measured from the base, black circles). The relative
sliding of the filaments∆(s) is shown, as well as the sliding at the base∆0. Each position along the centerline (dashed
line) is characterized by a position vector r(s) with origin at the laboratory frame xy. From the position vector we can
obtain the tangent vector field t(s), as well as the normal n(s) field through Eq. 3.3. The tangent angle ψ(s) can be
calculated at each point (see Eq. 3.2).

can also define the local tangent angle ψ(s) between the tangent vector t(s) and the x-axis. The
relationship between the tangent angle and the pointing vector of the centerline is

r(s) = r0 +

∫ s

0

(
cos(ψ(s′))

sin(ψ(s′))

)
ds′ , (3.2)

where r0 = r(s = 0) is the position of the base of the centerline. The local curvature of the centerline
C(s) is given by the arc-length derivative of the tangent angle, C(s) = ψ̇(s). The geometry of the
centerline is thus given by the set of equations

ṙ = t ; ṫ = ψ̇n ; ṅ = −ψ̇t (3.3)

which are the Frenet-Serret formulas for the special case of a planar geometry in the absence of
torsion.

Having introduced the geometry of the centerline we relate it to that of the pair of opposing
filaments. Since each of the filaments is at a distance a(s)/2 from the centerline, we can write

rA(s) = r(s) +
a(s)

2
n(s) , rB(s) = r(s)− a(s)

2
n(s) . (3.4)

Note that s does not parametrize the arc-length of either of the filaments, but that of the centerline.
The arc-length along each of the filaments is given by

sA(s) =

∫ s

0

|ṙA(s′)|ds′ and sB(s) =

∫ s

0

|ṙB(s′)|ds′ . (3.5)

Using the corresponding Frenet-Serret frame for each of the filaments, we obtain the curvature of
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3.2. Static balance of forces

the filaments (see Appendix A). To lowest order these curvatures are given by

CA(s) ≈ ψ̇(s) +
ä(s)

2
, and CB(s) ≈ ψ̇(s)− ä(s)

2
(3.6)

where geometric non-linearities have been neglected.
The sliding of one filament with respect to the other at centerline arc-length position s is given

by the mismatch in arc-length along one filament with respect to the other plus the reference sliding
at the base. We thus have

∆A(s) = ∆0 + sB(s)− sA(s) and correspondingly ∆B(s) = −∆A(s) ; (3.7)

where ∆0 is the basal sliding of filament A with respect to B. From now on we take as reference
filament B, and define the local sliding as that of A, we thus have ∆(s) = ∆A(s). The explicit
expression of the local sliding can be calculated using Eqs. 3.5 and is given to cubic order by

∆(s) ≈ ∆0 +

∫ s

0

a(s′)ψ̇(s′)ds′ . (3.8)

Note that Eqs. 3.6 and 3.8 take a particularly simple form in the limit of homogeneous spacing
a→ a0, in which ∆(s) = ∆0 + a0(ψ(s)− ψ(0)), and CA = CB = ψ̇.

3.2 Static balance of forces

As discussed in section 2, the axoneme is composed of passive and active mechanical elements. The
passive elastic elements such as the doublets and nexin cross-linkers provide structural integrity to
the axoneme, and tend to restore it to a straight configuration without sliding. On the other hand
the active elements create sliding forces between the doublets which ultimately bend it.

All the key elements of our ciliary description are provided in Fig. 3.2. To characterize their
mechanical properties, we introduce the following work functional:

G[∆0, a, r] =

∫ L

0

[
κ0
2
(C2

A + C2
B) +

k

2
∆2 − fm(s)∆ +

k⊥
2
(a− a0)

2 +
Λ

2
(ṙ2 − 1)

]
ds+

k0
2
∆2

0 (3.9)

where the explicit expressions of curvatures and sliding are given in Eqs. 3.6 and 3.8. The integral
contains the energy density of the bulk of the axoneme, and the last term is the energetic contribution
of the base. The first term in the integral is the bending energy characterized by the bending rigidity
κ0 (in pN·µm2) of each filament, which favors straight shapes. The second term is the energy of
elastic linkers of stiffness density k (in pN·µm−2) which are stretched by sliding (purple springs in
Fig. 3.2). The stiffness (in pN·µm−1) of basal linkers is denoted k0 (blue spring in Fig. 3.2 ). We
have denoted by k⊥ (in pN·µm−2) the stiffness to normal deformations relative to the reference
spacing a0 (green springs in Fig. 3.2). The work performed by motors which generate relative force
fm (in pN·µm−1) between the two filaments is given by the contribution −fm∆. We have also
introduced a Lagrange multiplier Λ (in pN) to ensure the inextensibility of the centerline.

To obtain the equations of static equilibrium of the axoneme under external forces we use the
virtual work principle. We consider as reference a straight configuration (r(s)=sx), with no basal
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3.2. Static balance of forces

k0 k k

-FAfilament A
+FB

filament B
-FB

+FA

Figure 3.2: Mechanics inside a cilium: Op-
posing motors in filaments A/B (green circles)
produce forces FA/B, and reactions −FA/B.
Normal compression is constrained by springs
(green) of stiffness k⊥. Sliding is limited by bulk
springs (purple, stiffness density k) and a basal
spring (blue, stiffness k0).

sliding (∆0 = 0) and homogeneous spacing (a = a0). The virtual work principle establishes that
the internal virtual work δWi = δG performed by a variation {δr, δa, δ∆0} , is equal to the external
work δWe performed by external forces against this variation. For the forces applied on the bulk of
the axoneme we have

δWi = δG = δWe ,∫ L

0

ds

(
δG

δr
· δr+ δG

δa
δa

)
+

δG

δ∆0
δ∆0 =

∫
ds f ext· δr . (3.10)

Where f ext are the bending force density applied externally in each point with a specified direction
in the plane, and we are assuming that there are no external basal forces (conjugate of δ∆0) or
compressive forces (conjugate of δa). At the boundaries, the same principle applies, and we have

Fext
0 · δr(0) = δG

δr(0)
· δr(0) , Fext

L · δr(L) = δG

δr(L)
· δr(L) ,

T ext
0 δψ(L) =

δG

δṙ(L)
· δṙ(0) , T ext

L δψ(L) =
δG

δṙ(L)
· δṙ(L) ,

0 =
δG

δa(0)
δa(0) , 0 =

δG

δa(L)
δa(L) ,

0 =
δG

δȧ(0)
δȧ(0) , 0 =

δG

δȧ(L)
δȧ(L) . (3.11)

Where we have now introduced the external forces Fext
0 and Fext

L at the boundaries. We have also
allowed the presence of external torques T ext

0 and T ext
L at the boundaries.

To obtain the balance of forces in the axoneme the first step is to calculate the corresponding
functional derivatives. Doing standard variation calculus as detailed in Appendix A we obtain

δG

δr
= ∂s

[
(κψ̈ − ȧF + af)n− τt

]
,

δG

δa
= k⊥(a− a0) + κ

....
a /2− Fψ̇ ,

δG

δ∆0
= −F (0) + F0 . (3.12)

Where κ = 2κ0 is the stiffness of both filaments, and we have introduced the static sliding force
density f and the basal force F0 as

f(s) = fm(s)− k∆(s) ,

F0 = k0∆0 ; (3.13)
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3.3. Dynamics of a cilium in fluid

and the integrated force F (s) =
∫ L
s
f(s′)ds′. In the first equation we have introduced the Lagrange

multiplier τ = Λ + κψ̇2 − Fψ̇a to replace Λ. We prefer τ as it can be interpreted as the tension of
the centerline. This can be seen by the following relation

τ(s) = τ(0)− t(s)·
∫ s

0

δG

δr
(s′)ds′ , (3.14)

which can be derived directly from Eq. 3.12.
The static equilibrium balance equations are thus given by

f ext = ∂s

[
(κψ̈ − ȧF + af)n− τt

]
,

k⊥(a− a0) = Fψ̇ − κ
....
a /2 ,

k0∆0 = F (0) . (3.15)

The forces and torques balances at the ends are obtained by using the boundary terms of the
variations. This yields

Fext
0 = (κψ̈ − ȧF + af)n− τt , Fext

L = (κψ̈ − ȧF + af)n− τt ,

T ext
0 = −κψ̇ + ak0∆0 , T ext

L = κψ̇ ,

0 = ȧ = ä , 0 = ȧ = ä ; (3.16)

where the equations to the left correspond to those at the basal end s = 0 and those to the right
at the distal end s = L. Note from Eq. 3.15 that the coupling between the spacing a and the angle
ψ is non-linear, since F is of order ψ. This implies that for small bending the change in spacing is
negligible.

3.3 Dynamics of a cilium in fluid

So far we have considered the static equilibrium of a cilium, where the mechanical passive and active
elements of the axoneme are balanced by time-independent external forces. In the case in which the
cilium is immersed in a fluid, the external forces to which it is subject are fluid forces. This is the
basis of the description introduced in 1.5, and can be summarized by

f ext(s) = ffl(s) , (3.17)

where ffl are the forces that the fluid exerts on the axoneme along its length.

Figure 3.3: Sketch of Resistive Force Theory: The
motion of a fragment of axoneme is characterized by the
local velocity ∂tr, which can be projected in the tangen-
tial t and normal n directions with respect to the arc-
length. The local fluid drag force opposes these com-
ponents with corresponding drag coefficients ξt and ξn.
Since ξn > ξt for slender rods, ffl and ∂tr are not par-
allel, making net propulsion possible.
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3.3. Dynamics of a cilium in fluid

In general, obtaining the fluid forces acting on a moving object is not an easy task, as it involves
solving the non-linear Navier-Stokes equation. However at low Reynolds number and in the limit
of slender filaments (which applies to freely swimming cilia, see discussion in section 1.5), the fluid
forces take the simple form

ffl = −(nnξn + ttξt)· ∂tr . (3.18)

This corresponds to forces opposing the moving filament with a drag coefficient ξn in the normal
direction, and a coefficient ξt in the tangential direction (see Fig. 3.3).

This description of the fluid-cilium interaction is known as Resistive Force Theory (RFT), and
was introduced in a seminar paper by Hancock [33]. The effective friction coefficients can be related
[30, 33] to the fluid viscosity µ as

ξn =
4πµ

log(2L/a) + 1/2
and ξt =

2πµ

log(2L/a)− 1/2
. (3.19)

Crucially, the friction coefficients are different and satisfy ξn > ξt. This asymmetry allows that,
without exerting any net force on the fluid, the cilium can propel itself. We note here that the validity
of RFT for ciliary beat has been verified in the literature for several swimming micro-organisms
[24, 41], and is also verified in Appendix A for some examples of freely swimming Chlamydomonas
cilia.

To collect the effect of the fluid viscosity and other viscous components inside the axoneme, we
introduce the following Rayleigh dissipation functional

R[∂t∆0, ∂ta, ∂tr] =

∫ L

0

[
ξt
2
(t· ∂tr)2 +

ξn
2
(n· ∂tr)2 +

ξi
2
(∂t∆)2 +

ξ⊥
2
(∂ta)

2

]
ds+

ξ0
2
(∂t∆0)

2 (3.20)

The first two terms inside the integral refer to fluid friction. We have also included internal slid-
ing friction ξi and compressive friction ξ⊥, both measured in pN· s·µm−2. Finally, the base also
contributes to the internal sliding friction with a coefficient ξ0 (in pN· s·µm−1).

Just as the mechanical forces are obtained through variations of the mechanical work functional
G with respect to the corresponding fields {∆0, a, r}, the dissipative viscous forces are obtained
through variations of the Rayleigh functional with respect to their time derivatives. Thus, ignoring
inertia, the force balance is now established as

δG

δr
+

δR

δ∂tr
= 0 ,

δG

δa
+

δR

δ∂ta
= 0 ,

δG

δ∆0
+

δR

δ∂t∆0
= 0 . (3.21)

From this we obtain the dynamics of the centerline r(s, t), the spacing a(s, t) and the basal sliding
∆0(t). Using the functional derivatives in Eq. 3.12, and computing those of the Rayleigh functional
we obtain the following set of dynamic equations

(ξnnn+ ξttt)· ∂tr = −∂s
[
(κψ̈ − ȧF + af)n− τt

]
,

ξ⊥∂ta = Fψ̇ − k⊥(a− a0)− κ
....
a /2 ,

ξ0∂t∆0 = F (0)− k0∆0 ; (3.22)
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3.3. Dynamics of a cilium in fluid

where we have omitted the dependences on time and arc-length, f denotes the sliding force density,
and F =

∫ L
s
f(s′)ds′ its integral. Analogously to f , we can define the normal force density f⊥ and

the basal force F0. We thus have

f = fm − k∆− ξi∂t∆ ,

f⊥ = k⊥(a− a0) + ξ⊥∂ta ,

F0 = k0∆0 + ξ0∂t∆0 . (3.23)

Note that while all three forces contain viscous and elastic components, only the sliding force f has
a contribution of active motor forces.

The equations above depend on the tension τ , which is a Lagrange multiplier. The standard
procedure to obtain its value is to use the corresponding constraint equation, which in this case
is ṙ(s, t)2 = 1. Since the dynamic equations do not directly involve r(s, t), but instead involve its
time derivative ∂tr(s, t), we calculate the time derivative of the constraint and obtain ∂tṙ

2 = 0.
This equation can alternatively be written as ∂tṙ2 = 2t· ∂tṙ = 0, from which we obtain the tension
equation

τ̈ − ξt
ξn
ψ̇2τ = − ξt

ξn
ψ̇∂s(κψ̈ − ȧF + af)− ∂s

[
ψ̇(κψ̈ − ȧF + af)

]
. (3.24)

Together with the boundary conditions given in Eq. 3.16, the set of Eqs. 3.22-3.24 constitute a
complete set of integro-differential equations. Provided a prescription for the motor force fm and
the external boundary forces these equations can be solved to obtain dynamic shapes of the cilium.

3.3.1 Constrain of constant filament spacing

The dynamic equations of a cilium take a particularly simple form when it is imposed that the
spacing a between the filaments is constant along the arc-length, that is a(s) → a0. This requires
that k⊥ → ∞, while keeping the normal force f⊥ = k⊥(a−a0) finite, such that it acts as a Lagrange
multiplier. The resulting dynamic equations are

(ξnnn+ ξttt)· ∂tr = −∂s
[
(κψ̈ + a0f)n− τt

]
, (3.25)

ξ0∂t∆0 = F (0)− k0∆0 . (3.26)

Note, that in this limit the sliding is determined by the shape through

∆ = ∆0 + a0(ψ(s)− ψ(0)) . (3.27)

Finally, the equation for the Lagrange multipliers τ (tension) and f⊥ (normal force) become

ξn
ξt
τ̈ − ψ̇2τ = −ψ̇(κ

...
ψ + a0ḟ)−

ξn
ξt
∂s[ψ̇(κψ̈ + a0f)] , (3.28)

f⊥ = Fψ̇ ; (3.29)

which have to be solved at every time. Note that, while τ explicitly appear in the dynamic equation,
f⊥ does not. Another important fact is that the expression of f⊥ is quadratic, which means that
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3.4. Requirements for static bending

for small changes in the shape the normal force is negligible. This is analogous to the non-linear
coupling between spacing and bending seen before.

The boundary equations in 3.16 simplify to the following four equations

Fext
0 = (κψ̈ + a0f)n− τt , Fext

L = (κψ̈ + a0f)n− τt ,

T ext
0 = −κψ̇ + a0(k0∆0 + ξ0∂t∆0) , T ext

L = κψ̇ . (3.30)

With adequate choices of the external forces and torques at the basal and distal ends (Fext
0/L and

T ext
0/L), these provide the six necessary boundary conditions. In this work, we will focus on three

types of boundary conditions summarized in Fig. 3.4. These are free ends (A), in which the cilium
is not subject to external forces or torques; pivoting base (B), in which the base of the cilium is held
fixed, and it’s constrained from rotating with a stiffness kp while the distal end is free; and clamped
base (C), in which the base is held fixed and kp → ∞ enforces that ψ(0) = 0 with the distal end
free.

pivoting clampedfreeA B C

Figure 3.4: Schematic of boundary conditions: A free cilium (A) is not subject to any external forces or torques. For
a pivoting cilium (B) the force balance at the base is replaced by the conditions of no basal motion, and there is an
additional basal torque coming from the pivoting spring. In the clamped case (C) the base does not move, and the
pivot is so stiff that the tangent angle at the base remains fixed.

In section 2.1 we described the beat of Chlamydomonas cilia using an angular representation.
Motivated by this, we introduce an angular representation of the dynamic equation above by using
∂tṙ = n∂tψ. This directly gives

∂tψ = ξ−1
n (−κ

....
ψ − a0f̈ + ψ̇τ̇ + τψ̈) + ξ−1

t ψ̇(κψ̇ψ̈ + a0fψ̇ + τ̇) , (3.31)

which, to linear order, is Eq. 1.1 of the introduction. Together with the tension equation and the
boundary conditions, this equation provides a mechanical description of the angles of all points along
the cilium. Eq. 3.2 relates angle and position, and shows that the angular representation does not
contain the trajectory of the basal point r0(t). It can, however, be obtained by inserting the solution
of the tangent angle in the right hand side of Eq. 3.25 and integrating r0(t) over time.

3.4 Requirements for static bending

In order to understand the mechanism regulating the shape of the cilium, we begin by analyzing the
static limit. In absence of external forces and torques, Eqs. 3.15 can be integrated. Constraining
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3.4. Requirements for static bending

the spacing to be homogeneous (see 3.3.1), the force balances simply become

κψ̈(s) = −a0f(s) ,

k0∆0 =

∫ L

0

f(s′)ds′ ; (3.32)

with f = fm − k∆ the sliding force density. The tension in this case is null (i.e., τ(s) = 0), and the
normal force is given by

f⊥ = κψ̇2/a0 , (3.33)

which as indicated before is a second order term. The normal force is always positive, indicating
that filaments tend to split apart. Finally, there are two boundary conditions

κψ̇(0) = a0k0∆0 and ψ(0) = 0 , (3.34)

which allow to calculate static shapes ψ(s).
In the static regime the force produced by the motors in either filament is the stall force, that is

FA = FB = Fst. Considering motor densities ρA and ρB, we have that fm = (ρA − ρB)Fst. If both
filaments have the same densities of motors then ρA = ρB. In this case we have that the opposing
forces balance each other and fm = 0, thus the cilium doesn’t bend (ψ(s) = 0) nor does it slide
(∆0 = 0). When ρA ̸= ρB, then Eq. 3.32 gives non-trivial solutions.
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Figure 3.5: Role of cross-linkers in bending. A. For weak cross-linkers we have L ≫ ℓ, and the resulting shape
has a linearly decreasing curvature. As cross-linkers get stronger (values for increasing shades of green are k =
10−1 pN/µm2, k = 102 pN/µm2 and k = 103 pN/µm2), L becomes comparable and eventually bigger than ℓ,
which flattens the resulting shape. B. Dependence of maximal curvature with cross-linker stiffness for three values of
basal compliance. The softer the cross-linkers, the larger the curvature. Lighter shades of red correspond to lower
values of k0 (k0 = 92352 pN/µm, k0 = 923.5 pN/µm and k0 = 9.2 pN/µm), and the dots correspond to
the shapes in A. C. Dependence of maximal curvature with basal stiffness for three decreasing cross-linker stiffness
(decreasing shades of blue correspond to k = 2280 pN/µm2, k = 228 pN/µm2 and k = 22.8 pN/µm2). Stiffer
bases result in higher curvatures. D. Three examples of shapes corresponding to the dots in C. Other parameters
are κ = 1730 pN·µm2; L = 30µm; a = 0.185µm; fm = 500 pN/µm and, unless otherwise specified,
k0 = 92352 pN/µm and k = 228 pN/µm2, which results in ℓ ≈ 15.
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3.4. Requirements for static bending

We can analytically solve Eq. 3.32 for the case of a constant motor force along the arc-length,
and obtain

ψ(s) =
aℓk0∆0

κ

cosh[L/ℓ]− cosh [(L− s)/ℓ]

sinh [L/ℓ]
, (3.35)

where we have used the two boundary conditions in Eq. 3.16, and defined the characteristic length

ℓ =
√
κ/(ka2) (3.36)

beyond which the sliding compliance of the cross-linkers becomes significant. The basal sliding ∆0

is obtained via Eq. 3.27, and is

∆0 =
fm

k + (k0/ℓ) coth[L/ℓ]
. (3.37)

Note that due to the presence of static cross-linkers with stiffness k the net sliding force f = fm−k∆
does depend on arc-length even if the motor force does not.

To characterize the static shapes given by Eq. 3.35 we first consider the limit in which the role
of cross-linkers is small. According to Eq. 3.36 in this case we have L ≪ ℓ. We thus expand in L/ℓ

and to lowest order obtain

ψ(s) ≈ −a0fst
κ

(
s2

2
− sL

)
. (3.38)

This parabolic solution implies that for filaments of length L≪ ℓ the curvature ψ̇ decreases linearly
along the arc-length from its maximum value at the base to the minimum at the tip, as is shown in
Fig. 3.5 A. As filaments get longer relative to ℓ the effect of cross-linkers becomes more prominent,
which makes the curvature decrease sub-linearly, and also reduces the maximum curvature at the
base (see Fig. 3.5 A, darker shades of green).

A key parameter that characterizes the bent cilium is thus its maximal curvature Cmax = ψ̇(0),
which is shown in Fig. 3.5 B as a function of k for several values of k0. The maximal curvature
decreases monotonically as the cross-linkers become stiffer, and saturates for vanishing cross-linker
stiffness. At the same time, the maximal curvature increases as the base of the cilium becomes
stiffer (k0 grows), and eventually saturates in the limit of an incompressible base for which ∆0 = 0

when k0 ≫ kL, see Fig. 3.5 C (three examples of shapes appear in Fig. 3.5 D). Clearly in this limit
the maximal curvature still depends on the bulk cross-linker stiffness k. In particular, for k0 = 0

there is a sliding ∆ = fm/k, but the cilium remains straight, ψ = 0. Our analysis thus indicates
that for the static bending of cilia a basal stiffness is necessary, and the stronger it is the higher the
bend. Biologically, this basal stiffness can arise from the distinct properties of the basal body. Thus
severing the basal body and other basal constrains is expected to straighten actively bent cilia.

Until now we have shown that bending requires a lateral asymmetry (ρA ̸= ρB) and a polar
asymmetry which we have identified as the basal stiffness (k0 ̸= 0). An alternative way of introducing
the polar asymmetry is to remove the basal constrain (k0 = 0) but consider an inhomogeneous cross-
linker stiffness. One possibility is a linear profile k(s) = k̃(1 − ϵs/L), with ϵ the slope of the linear
gradient and k̃ the cross-linker stiffness at the base. In this case, one recovers a flat solution when
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Figure 3.6: Bending with a cross-linker gradi-
ent. The maximal curvature grows with the cross-
linker slope ϵ. Values are as in Fig. 3.5, with in-
creasing shades of green corresponding to k̃ =
10−1 pN/µm2, k̃ = 102 pN/µm2 and k̃ =
104 pN/µm2. ℓ is defined with k(s = 0) = k̃.

ϵ = 0. As the gradient slope grows (see Fig. 3.5 C), a bend develops and the maximal curvature
increases (see Fig. 3.6). Since a linear gradient is a smaller inhomogeneity than a basal stiffness, the
maximal curvature in the limit L ≫ ℓ is smaller than in the case where a basal stiffness is present
(compare Fig. 3.6 to Fig. 3.5 A).

3.5 Conclusions

• We obtained the equations of motion for a pair of inextensible filaments with a variable spacing
between them that are immersed in a fluid and subject to active sliding forces. These equations
show that the normal force between the filaments is a non-linear effect.

• The static bending of a filament pair requires: (i) the presence of a lateral asymmetry, such
as a motor density higher in one filament than in the other; (ii) a polar asymmetry, such as
basal constraint; (iii) a filament length larger than the characteristic length ℓ defined by the
cross-linkers.
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If we conceive of a being whose faculties are so sharpened
that he can follow every molecule […], such a being […]
would be able to do what is impossible to us

James C. Maxwell, 1871

4
Dynamics of collections of motors

The beat of cilia is powered by the action of molecular motors. In this chapter we
introduce a mesoscopic description of the force generated by the dynein motors, and show how oscil-
latory instabilities emerge as a collective property of these. We also introduce a minimal stochastic
biochemical motor model in which motors are regulated through their detachment rate. We finally
demonstrate that if the detachment rate is regulated by normal forces or curvature, the static shape
of the cilium corresponds to a circular arc. This is in agreement with experimental data obtained
for the shapes of interacting doublet pairs.

4.1 Nonlinear response of the motor force

Consider that a cilium is dynamically bent. Its mechanical strains and stresses, such as the sliding
∆, curvature ψ̇, and normal force f⊥, will depend on time. In such a scenario, the motor force can
be generically characterized by its non-linear response to these strains and stresses. This reflects the
idea that motors can dynamically respond to the mechanics of the cilium. For example, in the case
in which motors respond to the sliding of the doublets, we will have

fm(s, t) = F (0) +

∫ ∞

−∞
F (1)(t− t′)∆(s, t′)dt′ +

∫ ∞

−∞
F (2)(t− t′, t− t′′)∆(s, t′)∆(s, t′′)dt′dt′′

+

∫ ∞

−∞
F (3)(t− t′, t− t′′, t− t′′′)∆(s, t′)∆(s, t′′)∆(s, t′′′)dt′dt′′dt′′′ + . . . , (4.1)

where F (h) is the response kernel of order h, and terms of order higher than cubic have not been
included. Note that the F (h) can in principle depend on arc-length, which would account for in-
homogeneities of the motors along the cilium. In this thesis however we will consider them to be

33



4.1. Nonlinear response of the motor force

arc-length independent.

For periodic dynamics with fundamental frequency ω, the response equation in Fourier space is

fm,j = F (0) + F
(1)
j (ω)∆j + F

(2)
k,j−k(ω)∆k∆j−k + F

(3)
k,l,j−k−l(ω)∆k∆l∆j−k−l + . . . , (4.2)

with the nonlinear response coefficients F (h)
i,j,k,...(ω) being the h−dimensional Fourier transform of the

corresponding h−order kernel. The coefficients F (h)
i,j,k,... completely characterize the motor-filament

interaction, and examples of them are given in sections 4.2 and 4.3. The linear response coefficient
is of particular importance, and we use a distinct notation for it:

λ(jω) = F
(1)
j (ω) , (4.3)

where the static response is λ(0) and the linear response to the fundamental mode is λ(ω). The
linear dynamic response then becomes

fm,1 = λ(ω)∆1 . (4.4)

Analogous relations can be written for regulation via normal forces and curvature, and for each
case we will use a different greek letter for the linear response coefficient. Thus for curvature response
we have

fm,1 = β(ω)ψ̇1 , (4.5)

where in this case β(ω) = F
(1)
1 (ω), with F (1)

j obtained from a relation analogous to Eq. 4.2 involving
curvature. Finally, for normal force response we use

fm,1 = γ(ω)f⊥,1 , (4.6)

with γ(ω) = F
(1)
1 (ω).
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Figure 4.1: Force-velocity curve of a col-
lection of motors. For values of the control
parameterΩ in the subcritical regionΩ < Ωc

the force velocity curve is monotonic. In this
regime, in the absence of any force, motors
move at the collective velocity v0 > 0. At the
critical value Ω = Ωc an instability occurs,
and in the region where Ω > Ωc the system
is unstable and there are two possible collec-
tive velocities. Coupling the motors with an
elastic element will then give rise to oscilla-
tions [42]. For Eq. 4.7 we have Ω = α1, and
v0 = 0.
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4.2. Oscillatory instability of sliding filaments with motors

4.2 Oscillatory instability of sliding filaments with motors

A collection of molecular motors can cooperate to produce collective behavior such as spontaneous
motion [42] or oscillatory instabilities [43]. To show this, we consider a simple motor model in which
the motor force responds to the local sliding velocity of filaments. In particular, we consider the
following model

∂tfm = − 1

τ0
(fm − α1∂t∆+ α3(∂t∆)3) , (4.7)

where the model parameters are the relaxation time τ0, the response parameter α1, and the satu-
ration strength α3 > 0. These parameters do not depend on the arc-length s, corresponding to a
homogeneous distribution of motors along the cilium. In this description of the motor force there
are no quadratic terms, which is a consequence of time-reversal symmetry. The response coefficients
of this model can be easily calculated, and are

F
(1)
j (ω) =

α1iωj

1 + iωjτ0
and F

(3)
j,k,l(ω) =

α3iω
3jkl

1 + iωτ0(j + k + l)
, (4.8)

with ω = 2π/T the fundamental angular frequency and T the period of the oscillation.

At the steady state in which the sliding velocity ∂t∆ is stationary, this model is characterized by
a non-linear force velocity relation schematized in Fig. 4.1, in which Ω = α1 is the control parameter.
While for values α1 ≤ 0 the force-velocity is stable, for α1 > 0 there is a region of instability of the
motor force (see Fig. 4.1). This instability may give rise to beat patterns of the cilium, which we
will study in the next chapters of this thesis. To illustrate this it is helpful to consider a very stiff
cilium, with κ → ∞. In this limit bending and fluid forces are not relevant, and setting the basal
stiffness and viscosity to zero, the filament will remain straight (thus ψ̇ = 0). The internal sliding
forces are then balanced, and we have

fm − k∆− ξi∂t∆ = 0 . (4.9)

Together with the motor model in Eq. 4.7, this equation defines a dynamical system. To see how
this system can exhibit an instability, consider as an ansatz small perturbations of force and sliding
which are ∝ exp(σt) [42, 43]. In general σ = τ−1+iω is complex, with τ the characteristic relaxation
time of the perturbation, and ω the frequency of the perturbation. Using this ansatz in the equations
one obtains for σ the following second order characteristic equation

σ = (k + ξiσ)(1 + τ0σ)/α1 , (4.10)

which we now discuss.

Using the coefficient α1 as control parameter, we study the stability of this dynamical system.
In particular, note that for α1 = 0 the system is clearly stable and non-oscillatory, and so τ < 0

while ω = 0. As α1 increases the system is still stable (i.e. τ < 0), but since ω ̸= 0 it will exhibit
damped oscillations as shown in Fig 4.3 A. Eventually, the control parameter may reach a critical
value αc for which one of the two solutions to Eq. 4.10 becomes critical, that is τ → ∞. In this
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4.3. A stochastic biochemical model of ciliary motors
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Figure 4.2: Oscillatory instability of motor force. A. For values of the control parameter α1 < αc the system is
stable and shows damped oscillations. B. At the critical point α1 = αc sinusoidal oscillations occur. C. Far from
the critical point α1 > αc non-linear oscillations occur, with higher harmonics and a different frequency to that of
critical sinusoidal oscillations. In this example, triangular waves. The parameters used for this numerical integration of
Eqs. 4.7 and 4.9 are k = 1812 pN/µm2, ξi = 9.76 pNs/µm2, τ = 0.00378 s, α1 = {15, 17.6, 30}pN s/µm2

and α3 = 4· 10−3 pN s3/µm4. The same initial sliding was used in all cases, and the axes of all three panels are
equal.

case small amplitude sinusoidal oscillations appear with frequency ω, as can be seen in Fig. 4.3 B.
Finally, for values larger than the critical one (the region α1 > αc) non-linear oscillations occur.
Their amplitude is set by the nonlinear saturation term α3, see Fig. 4.3 C.

Similar models can be worked out for curvature and normal force control. In such cases, however,
the dynamics of the motor model cannot be studied independently from those of the filaments. It is
indeed this coupling between the motor force and filaments, together with the dynamic instability
of the motor force, which underlies the ciliary beat. An example of a mechanism in which the motor
force responds to changes in curvature is

∂tfm = − 1

τ0
(fm − α1ψ̇ + α3ψ̇

3) . (4.11)

Here τ0 corresponds to a delay, α1 to the linear response, and α3 to the saturation which controls
the amplitude. The response coefficients in this case are given by

F
(1)
j (ω) =

α1j

1 + iωjτ0
and F

(3)
j,k,l(ω) =

α3ω
2jkl

1 + iωτ0(j + k + l)
. (4.12)

4.3 A stochastic biochemical model of ciliary motors

So far we have considered an effective description of the motor force, we now introduce a minimal
stochastic biochemical model capable of giving active response to sliding, curvature, and normal
force. To do so, we first note that in the description of the axoneme as a pair of opposing filaments,
motors are present on filament A and filament B (see Fig. 3.2). The motors rigidly attached through
their stem to filament B exert with their stalks a force per motor FB on filament A during their
power stroke, and a reaction force FB in filament B. The analogous holds for motors with their
stem attached to A. Since motors can stochastically attach and detach from the filaments, there are
probabilities pA and pB of a motor being attached to either filament. Thus, given line densities of
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4.3. A stochastic biochemical model of ciliary motors

motors ρA and ρB along the two filaments, the total motor force density exerted on filament A is

fm = ρBpBFB − ρApAFA , (4.13)

and analogously filament B is subject to a force −fm.

In steady state where motors are stalled the motor force is Fst = FA = FB, where Fst is the stall
force. When the motors are moving at a certain velocity, they are characterized by a force-velocity
relationship, which we consider for simplicity to be linear with slope α. Thus for the motors in
filament A we have

FA = Fst − α∂t∆A , (4.14)

where we note that α ≥ 0 acts as an active friction. Analogously, the force generated by the
antagonistic motors is FB = Fst + α∂t∆B. Since ∆A = ∆ and ∆B = −∆ (see 3.1), we can write for
the net motor density the following relation

fm = (ρApA − ρBpB)Fst + (ρApA + ρBpB)α∂t∆ . (4.15)

Considering the densities of motors to be homogeneous along the filaments, the description of the
motor force is completed with the binding kinetics of the motors.

Since motors can either be bound and exert force or unbound, we have for the motors in filament
A the following equation

dpA
dt

= −koff,ApA + kon(1− pA) , (4.16)

and an analogous equation for the binding probabilities of motors in filament B. It is known that the
detachment rate of a molecular motor can be enhanced by the forces which they sustain, and the
dependence is exponential according to Bell’s law [6]. If we generalize this to also allow curvature
dependent detachment, we have

koff,A = k0 exp

[
FA

F c
+
f⊥
f c⊥

+
CA

Cc

]
, (4.17)

where F c is the characteristic sliding detachment force, f⊥ is the normal force as defined in Eq. 3.23,
f c⊥ the characteristic normal spacing detachment force, and Cc the characteristic detachment cur-
vature. Together Eqs. 4.15 to 4.17 form a minimal biochemical description of the motor force. This
description, alternative to the generic approach used in the previous section, also gives rise to os-
cillatory instabilities as can be seen in Fig. 4.3. The nonlinear response coefficients of the generic
approach corresponding to this biochemical model can be obtained by expanding these equations in
powers of the strains and stresses.

In the static regime, the motors are stalled, and the motor force density takes the value

fm = (ρA − ρB)p0Fst , (4.18)

where p0 is the stall attachment probability which in the limit CA = CB = ψ̇ of constant spacing
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Figure 4.3: Sliding oscillations of antagonistic biochemical motors. A. The probabilities of the motors in the rigid
filaments A and B to be bound oscillate with a phase shift. B. The mismatch in binding probability generates a net
active motor force fm, which is also oscillatory. C. This finally results in sliding oscillations. The parameters used
for this numerical integration of Eqs. 4.15 and 4.17 are k = 1812 pN/µm2, ξi = 9.76 pNs/µm2, kon = 14 s−1,
k0 = 2.3 s−1, α = 0.04, ρA = ρB = 103 motors/µm, F c = 1pN, and Fst = 4pN.

(see Eq. 3.6) is the same for motors on both filaments. This static attachment probability is given
by

p0 =

(
1 +

k0
kon

exp

[
Fst

F c
+
f⊥,0
f c⊥

+
ψ̇0

Cc

])−1

, (4.19)

and is independent of the static sliding, but depends on the static curvature and normal force making
static regulation of bent shapes possible. Importantly, the static motor force vanishes for the case
ρA = ρB. Thus, in this model static active force can only be generated when lateral symmetry is
broken.

Following the path outlined in the previous section, the response coefficients of the motor force
to sliding, curvature, and normal forces can be calculated. In particular, the linear coefficients are

λ(ω) = −(ρA + ρB)p0(1− p0)
iω + ω2p0/kon
1 + (ωp0/kon)2

Fst

F c
α+ (ρA + ρB)p0αiω ,

β(ω) = (ρA − ρB)p0(1− p0)
1− iωp0/kon
1 + (ωp0/kon)2

Fst

Cc
,

γ(ω) = (ρA − ρB)p0(1− p0)
1− iωp0/kon
1 + (ωp0/kon)2

Fst

f c⊥
. (4.20)

Importantly, for the case ρA = ρB in which lateral symmetry is preserved, the response coefficients
to curvature and normal force vanish (β(ω) = 0 and γ(ω) = 0), but the one to sliding does not (this
is only true in the limit a→ a0, otherwise curvature control would produce a response to spacing).
On the other hand, in the case that ρA ̸= ρB this model exhibits static regulation if it is sensitive to
curvature and normal forces, since according to Eq. 4.19 p0 will be a function of arc-length. In this
case the linear response coefficients above will not be homogeneous along the arc-length. Finally,
we note that in the sliding response coefficient only the first term is active, with the second one
corresponding to protein friction.

38



4.4. Motor regulation produces circular bends

4.4 Motor regulation produces circular bends

In section 3.4 we saw that the shapes resulting from a constant motor force in the cilium are spirals,
which correspond to a linear decrease in curvature. The presence of cross-linkers makes the decay
of curvature even stronger (see Fig. 3.5). However, we described in section 2.2 experiments where
the shapes of statically bent doublets were circular arcs. That is, they were characterized by a
linearly growing tangent angle and thus a constant curvature (see Fig. 2.6). This suggests that
motor regulation as introduced in this chapter may be responsible for producing a non-homogeneous
distribution of bound motors leading to the observed shapes of bent cilia.
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Figure 4.4: Formation of arcs under force regulation. A uniform force distribution (panel A, red curve) produces a
spiral shape (panel B, red curve). Tip-concentrated force distributions (panel A, yellow and blue curves) produce nearly
circular arcs (panel B, yellow and blue curves).

We can infer the distribution of active motors from the shape using the moment balance equation
(Eq. 3.32), which after one integration is F (s) = κC(s)/a0. This balance equation implies that the
motor activity is concentrated at the distal end of the filaments pair, s = L. This follows because
a circular arc (i.e., a shape with constant curvature) requires a constant total force, which in turn
requires the sliding force density f(s) to be zero except at the distal end. Indeed, in Fig. 4.4 A
we show three examples of motor force distributions, with the corresponding shapes in Fig. 4.4 B
obtained from numerically solving Eq. 3.32. As the motor force accumulates more at the tip of the
cilium, the shape becomes closer to a circular arc.

To obtain such circular shapes we consider the biochemical model from the previous section in
the static limit. In this case there is no sensitivity to sliding, as ∂t∆ = 0, but motors can sense
curvature and normal forces. The moment balance Eq. 3.32 together with Eq. 4.19 for the motor
binding probability results in

κψ̈(s) = − ρAA0Fst

1 + u exp

[(
ψ̇(s)√
a0F c

⊥/κ

)2

+ ψ̇(s)
Cc

] . (4.21)

where we have used that the normal force is given by f⊥ = ψ̇2/a0 and that ρB = 0, since in the
doublet experiment only the motors of one filament are exerting active forces. We have also defined
the parameter u = k0 exp[Fst/F

c]/kon, which is the fraction of time that the motor spends unbound.
This equation leads to force concentration at the distal end, as can be seen by the following argument.

Motor sliding forces cause bending, which results in a normal force that tends to separate the
filament pair. When the normal force f⊥(s) exceeds the characteristic normal force density Fc,
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4.4. Motor regulation produces circular bends

the motors detach, resulting in a decrease in sliding force. Only near the distal end, at which
the curvature decreases to zero (according to the boundary condition in Eq. 3.34), will the normal
force fall below its critical value and the motors will remain attached. Thus, this motor regulation
mechanism results in feedback: as the doublet starts to bend, the higher curvature at the base
(Fig. 4.4) causes basal motors to detach, and as the bend develops there will be a wave of detachment
that only stops at the distal end. Note that this argument is equally valid for normal force and
curvature regulation.

4.4.1 Comparison to disintegrated doublet experiments

To compare quantitatively the predictions of this model with the experimental data, we numerically
integrated Eq. 4.21 using the boundary conditions in Eq. 3.34. For regulation via normal force,
which is shown in yellow in Fig. 4.5, we use as parameters a stall motor force Fst = 5pN, a motor
density ρA = 200µm−1, a bending stiffness κ = 120 pNµm2, a critical-motor force f c⊥ = 200 pN/µm

and no curvature control Cc → ∞. For the solution under curvature control which is shown in
blue, we use the same parameters but a critical curvature of Cc = 0.18µm−1 and no normal force
regulation by setting f c⊥ → ∞. In both cases we considered the fraction of unbound time to be
u = 0.1.
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Figure 4.5: Comparison of model and tracked data. A. Tangent angle vs arc-length for several control mechanisms.
Red line corresponds to no control (or sliding control), yellow to normal force control, and blue to curvature control.
Black circles correspond to tracked data, note that no control departs significantly from the data. B. Curvature vs
arc-length for three control mechanisms. The data, which is noisier than in A, shows a roughly constant curvature that
decreases towards the end. Normal force control (yellow) and curvature control (blue) show the same behavior, but no
control (in red) does not.

As we can see in Fig. 4.5, these two regulatory mechanisms (in blue and yellow) give rise to
shapes in which the tangent angle increases roughly linearly, as corresponds to a constant curvature.
They both show good agreement with the experimental data (black circles), and are clearly different
from the case of no regulation (red lines). We mention now that the forces and shapes in Fig. 4.4
correspond to these solutions. That is, normal-force and curvature regulation concentrates the forces
at the distal tip. In this region where motors are attached, there is a sharp decrease of the curvature,
which is zero at the end of the filament (Fig. 4.5 B).

If there is no regulation by normal force or curvature, then all motors will have the same prob-
ability of being attached, resulting in a constant force per unit length. As already discussed, this
results in a linearly decreasing curvature (see Figs. 4.4 and 4.5, red lines), which is not consistent
with the experimental data. The sliding control model, where detachment is proportional to the
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sliding force experienced by the motors (given by Eq. 4.14), also leads to a constant force density
because, at steady state, the shear force experienced by all the motors is the same, and corresponds
to the stall force. Thus, the sliding control model also has a constant shear force per unit length,
and, like the unregulated case, leads to a non-circular shape, inconsistent with the observations.
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Figure 4.6: Dependence of average curvature on fil-
ament length. The curvatures of the five tracked split
axonemes (insets) show a weak dependence on their
length (green symbols). Curvature control (blue line) and
normal-force control (yellow line) both predict the ob-
served weak length dependence, without introducing
additional parameters. In the absence of regulation, the
predicted linear scaling vastly deviates from the data
(red line).

To determine how curvature depends on filament length, we analyzed five pairs of microtubule
doublets that showed the arcing behavior whose lengths ranged from 5 to 9 µm. A total of 24 arcing
events were observed, with up to 8 events for a single pair of filaments. All bent into nearly circular
arcs (Fig. 4.6, upper images). The average curvature (excluding the last 1 µm from the distal tip)
increased only weakly with the length of the doublets (Fig. 4.6, filled points). The same parameters
used in Fig. 4.5 were then used to fit the curvature vs. length data for all five doublet pairs, without
any additional parameters. Both the curvature control and the normal-force control models were
in very good agreement with the data (Fig. 4.6, blue and yellow curves respectively). The models
predict a weak dependence of the curvature on filament length because it is only the most-distal
motors that generate the bending forces. By contrast, if the density of active motors were constant
along the doublets, as in the sliding control model, then the average curvature would be proportional
to length (integrating Eq. 3), which is inconsistent with the data (Fig. 4.6, red line).

4.5 Conclusions

• We developed an effective description for the non-linear dynamic response of a collection of
motors to changes in curvature, sliding, and normal forces; and showed that it can give rise to
oscillatory instabilities.

• Regulation of motor detachment by normal forces or curvature gives rise to tip accumulated
forces in the static limit, thus bending pairs of filaments into circular arcs. A sliding control
mechanism produces homogeneous force distribution and thus spiral shapes.

• Circular arcs similar to those obtained by the theory are observed for pairs of doublets, which
supports regulation by normal forces or curvature instead of sliding.
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The nature of the mechanism which initiates and propa-
gates transverse bending waves along the length of a flag-
ellum has been the subject of discussion for many years

K. E. Machin, 1958

5
Non-linear dynamics of the cilia beat

Cilia exhibit a great variety of beating patterns. In this chapter we analyze how different
mechanisms of motor regulation give rise to non-linear beat patterns which allow ciliary propulsion.
The critical beats are analyzed analytically to linear order. Finite amplitude beats, which are non-
linear, are supercritical. We investigate them by numerically integrating the time-domain equations
of motion.

We first consider sliding regulation, and show that wave propagation is only possible for long cilia
and in the presence of a boundary asymmetry. This is the case of single-flagellates such as Bull
Sperm, where the cilium is long and the head provides the required asymmetry. We further show
that under sliding control the boundaries play a fundamental role in determining the direction of
wave propagation.

We then move on to curvature control, where we show that the direction of wave propagation
is determined by the motor parameters instead of the boundaries. Furthermore, under curvature
control wave propagation is possible for short cilia such as those of Chlamydomonas.

5.1 Bending waves under sliding control

It was shown in section 4.2 that motors regulated by sliding of the filament pair can become dynam-
ically unstable. Consider a motor model characterized by its response coefficients λ(h)i,j,... to sliding.
Further, we assume that the motor does not couple to curvature or normal forces. In such a case,
we say that motors are controlled by sliding.

Consider now that at time t = 0 a small complex sliding perturbation ∆(s, t) = ∆(s) exp(σt) is
turned on, where in general σ = τ−1 + iω with τ the relaxation time of the perturbation and ω its
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Figure 5.1: Onset ofmodes instability in cilia. A, B, C. The value of |Γ|−1 (withΓ the boundary value determinant of a
free cilium) is plotted as a function of the relaxation rate σ′ and frequency σ′′ using the motor model in Eq. 4.7 (red dots
correspond to divergencies, where modes lie). In the subcritical regime all modes are stable, with negative relaxation
rate. In the critical regime the mode denoted by 1 becomes unstable with a zero relaxation rate. In the supercritical
regime mode 1 is unstable. D, E, F. Time traces for the tip angle after solving the non-linear dynamic equations for
the values used in A, B and C correspondingly. There is a clear transition from damped, to critical, and supercritical
oscillations. Parameters used as in Fig. 5.2, and for the motor model k = 228 pN/µm2, ξi = 0.1 pN· s/µm2,
α3 = 2· 10−4 pN· s3/µm4, τ0 = 0.0038 s and α1 = 0.8 pN· s/µm2 (for A and D), α1 = 1.24 pN· s/µm2 (for B
and E) and α1 = 1.52 pN· s/µm2 (for C and F).

frequency. The effect of the sliding perturbation on the force can then be described by

f(s, t) = −χ(σ)∆(s) exp(σt), (5.1)

where χ(σ) is the sliding response coefficient. This coefficient combines passive and active elements,
and is given by

χ(σ) = −λ(σ) + k + σξi , (5.2)

with k the sliding stiffness, ξi the internal viscosity, and λ(σ) the response coefficient of the motor
force. The response to small perturbations λ(σ) can be calculated by inserting the perturbation
ansatz in the non-linear response Eq. 4.1. Keeping the linear order results in λ(σ) =

∫∞
0
λ(t −

t′)e−σ(t−t
′)dt′, which is the analytical continuation of the Fourier coefficient λ(ω) introduced before.

The tangent angle likewise evolves according to ψ(s, t) = ψ(s)eσt. We can obtain an equation for
the complex amplitude ψ(s) of the angle by linearizing Eq. 3.31, which results in

σξnψ(s) = −κ
....
ψ + a2χ(σ)ψ̈ . (5.3)

Provided the dependence on σ of the response χ(σ) and a choice of boundary conditions, this
boundary value problem can be solved. Using the boundary conditions a discrete set of solutions or
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5.1. Bending waves under sliding control

modes can be obtained, each characterized by a relaxation time τ and an angular frequency ω.

In Fig. 5.1 we show the stability of the different modes of the motor model in 4.2, for which
λ(σ) = α1σ/(1 + στ0) with τ0 the relaxation time of the motors, and α1 the control parameter. For
values α1 < αc all modes (which appear as red dots in Fig. 5.1 A) have a negative relaxation rate
τ < 0 and are thus stable. Their response is characterized by a damped oscillation of frequency ω

(see Fig. 5.1 D). At the critical value α1 = αc one mode, which we noted 1 in Fig. 5.1 B, becomes
critical: it’s characterized by τ → ∞. In this case the system shows small amplitude oscillations (see
5.1 E). Finally, in the supercritical regime α1 > αc, the system is stabilized by non-linearities and
shows large amplitude oscillations (see Fig. 5.1 F, where the full non-linear problem was solved).

5.1.1 Critical beats in frequency domain

For a cilium that beats at its critical poin, a perturbation does not decay nor does it increase,
as τ → ∞. Critical perturbations thus evolve as exp[σt] = exp[iωct], producing sustained small
amplitude oscillations of critical frequency ωc. Since at the critical point only one harmonic is
present, we have

ψ(s, t) = ψ1(s)e
iωct + ψ∗

1(s)e
−iωct , (5.4)

where we have used that the angle is a real quantity and thus ψ−n = ψ∗
n, and the sub-index 1 denotes

the fundamental mode. For simplicity, we are considering that the oscillation has no static mode.
Equations analogous to 5.4 apply to the basal sliding and the motor force. Further, the relationship
between the sliding force and the sliding displacement is given by

f1(s) = −χc∆1(s) , (5.5)

where χc = χ(σ = iωc) with the control parameter at the critical point, Ω = Ωc. From now on we
drop the sub-index 1, since it applies to all geometrical and mechanical variables of the system. The
relation between basal sliding ∆0 and basal force F0 is

F0 = χ0∆0 , (5.6)

with the critical value of the passive basal compliance χ0 = k0 + iωcξ0.

Consistent with the presence of just one harmonic, at the critical point the amplitude of the
oscillations is small. Critical oscillations are thus described by the linear equation 5.3. Using
σ = iωc and χ = χc results in

iω̄cψ = −
....
ψ + χ̄cψ̈ , (5.7)
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5.1. Bending waves under sliding control

where bars denote dimensionless quantities, and we have used the following transformations

s̄ =
s

L
, t̄ = tω , τ̄ =

L2

κ
τ , ∆̄ =

∆

a0
, f̄ =

a0L
2f

κ
,

k̄0 =
a20L

κ
k0 , ξ̄0 =

a20Lω

κ
ξi , k̄ =

a20L
2

κ
k , ξ̄i =

a20L
2ω

κ
, λ̄ =

a20L
2

κ
λ ,

ξ̄ =
ξn
ξt

, ω̄ =
L4ωξn
κ

, χ̄0 = k̄0 + iξ̄0 , χ̄c = k̄ + iξ̄i − λ̄ . (5.8)
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Figure 5.2: Critical beats of free cilia under sliding control. A. Space of critical solutions for free ends. The value
of |Γ|−1 is plotted as a function of χ, where Γ is the determinant to the boundary value problem. Yellow to blue
corresponds to increasing values, and divergences (red dots) correspond to critical modes. These are numbered by
|χn| < |χn+1| (one divergence corresponds to a trivial solution, and is not marked). B. Color code used throughout
this thesis, as time progresses over one period the shade of the cilium changes color counter-clockwise. C. Three
critical beats for free cilia. While mode 1 shows a forward (base-to-tip) traveling wave which results in swimming
towards the left, mode 2 has a backward traveling wave, and mode 4 shows no wave propagation, being a standing
mode. Arrows denote direction of wave propagation. The parameters used were the typical ones of Bull Sperm:
κ = 1730 pN·µm2, ξn = 0.0034 pN· s/µm2, L = 58.3µm, ωc = 2π· 20· s−1, a0 = 0.185µm and k0 = ∞
(which ensures no basal sliding).

Note that, since Eqs. 3.29 and 3.28 are non-linear, tension and normal force vanish to first order,
τ = 0 and f⊥ = 0. We will see in the next chapter that this does not apply to asymmetric
ciliary beats. Given the critical frequency ωc, the linear ordinary differential equation for ψ(s) is an
eigenvalue problem, which has a discrete set of solutions for the eigenvalues

χc = χn with n = 1, 2, . . . (5.9)

The set of eigenvalues χn is determined by the condition that the determinant Γ(χ̄c; ω̄c, χ̄0) of the
homogeneous system of equations imposed by the boundary conditions is zero (see Appendix B for
details). They are numbered according to the rule |χn| < |χn+1|.

In Fig. 5.2 we show the value of |Γ(χ′ + iχ′′)|−1 over the space of negative values of χ′ and χ′′,
which is where the active motor response λ dominates over the passive response of k + iωcξi. The
value of ω̄c ∼ 104 is a typical one for Bull Sperm, and the basal compliance has been taken very stiff
|χ0| ∼ 105. Red dots correspond to divergences where a mode exists. A time-trace of some of the
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5.1. Bending waves under sliding control

modes is also shown in Fig. 5.2. The first mode for a free axoneme is forward swimming. The wave
propagates forward from base to tip, thus allowing for propulsion towards the left. This mode is also
the one that was numbered 1 in Fig. 5.1. This is the first to become unstable with the motor model
of 4.2. The second mode is backwards swimming. Finally, there is an infinite number of standing
modes, of which an example is shown (see Appendix B for phase and amplitude profile of modes 1
and 2).

At the critical point the characteristics of the modes, such as direction of wave propagation
or amplitude profile, depend on the boundary conditions, on the basal compliance χ̄0, and on
the dimensionless frequency ω̄. But besides this, they are generic and independent of the motor
model dynamics. That is, they are independent of the functional dependence of χ̄ on ω̄, as long as
χ(ωc) = χn for a certain n. For now we restrict ourselves to the case of free cilia, and study the
effect of χ̄0 and ω̄c on the modes. In particular, the dimensionless frequency ω̄ can be understood
as a ratio of two length scales

ω̄ =

(
L

ℓ0

)4

, with ℓ0 =

(
κ

ξnω

)1/4

. (5.10)

The characteristic length ℓ0 is the typical wavelength of a cilium when driven from a boundary. It is
also the length beyond which hydrodynamic effects become negligible [57]. The length L is simply
the length of the flagellum.
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Figure 5.3: Length scaling of modes. A. Scaling of the real (χ′, solid lines) and imaginary (χ′′, dashed lines) parts of
the eigenvalues for the first and second modes in Fig. 5.2. The real part vanishes (linearly) for short lengths. B. Scaling
of the wave velocity (see Eq. 5.11) with the length of the cilium, arrows mark typical values for Chlamydomonas
and Bull Sperm. Short cilia show no wave propagation, as all solutions become standing waves. Long cilia allow
forward (in mode 1) and backward (in mode 2) wave propagation. The basal stiffness is k0 → ∞, which prevents
basal sliding.

For short cilia L ≪ ℓ0, we have ω̄c ≪ 1. In the limit of ω̄c → 0 the complex component of the
response vanishes, χ′′ → 0, as can be seen in Fig. 5.3 A [18]. In this regime viscous components
(of the surrounding fluid and the sliding force) vanish and the phase profile of ψ(s) becomes flat for
all modes. They become standing modes, which do not allow for wave propagation. This effect is
better described using the wave propagation velocity

vw = −
∫ L

0

|ψ(s)|2∂s arg(ψ(s))ds , (5.11)

which is proportional to the swimming velocity [18]. Note that, for waves propagating from base
to tip, the wave velocity is positive; while for waves propagating from tip to base it is negative.
This can be seen in Fig. 5.3 B, where vw has been plot as a function of L/ℓ0, as cilia get shorter
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5.1. Bending waves under sliding control

their wave velocity decreases, vanishing asymptotically as L/ℓ0 → 0. It is important to note that,
while in Bull Sperm L/ℓ0 is sufficiently large to allow for wave propagation, this is not the case for
Chlamydomonas. This suggests that Chlamydomonas cilia are not regulated by sliding control.

The basal compliance χ0 has a fundamental role in regulating the flagellar beat, particularly
when motors are controlled by sliding. The reason is that Eq. 5.7 is symmetric around the midpoint
s = 1/2, thus not reflecting the polar asymmetry of the axoneme (see section 1.3.1). The breaking
of polar symmetry has to come from the boundary conditions or, for a free axoneme, from the
presence of a basal compliance χ0 ̸= 0. To better understand this we expand the eigenvalues in k0:
χn = χ

(0)
n +k0χ

(1)
n +k20χ

(2)
n + . . . . Introducing this in the equation of the determinant and matching

terms we can determine the coefficients χ(i)
n . We distinguish between standing modes (such as mode

2), for which χ
(0)
n ̸= 0; and traveling modes (such as 1), for which χ

(0)
n = 0 (see Fig. 5.4 A).
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Figure 5.4: Scaling of modes with normalized basal stiffness. A. Since mode 2 is a standing mode it does not
vanish for small values of k̄0 = a20Lk0/κ. Mode 1 however is a directional mode, and vanishes in the absence of
basal compliance (as k0 → 0 we have χ′ ∝ k0 and χ′′ ∝ k20 ). B. Mode 1, which is a directional mode, does
not substantially alter its directionality as the basal stiffness changes. Mode 2 looses its directionality when the base
decreases its stiffness. Parameters as those in Fig. 5.2, which correspond to L/ℓ0 = 7.3.

Standing modes do not allow for wave propagation when k0 = 0, in this limit they are standing
waves. So while static bending is impossible in the absence of a basal constrain, as shown in section
3.4, dynamic solutions do exist. These standing modes gain directionality as the basal compliance
grows, resulting in an increase of wave velocity (see Fig. 5.4 B, mode 2). On the other hand,
traveling modes vanish when k0 = 0, but for an arbitrarily small basal compliance allow for strong
wave propagation (see mode 1 in Fig. 5.4 A).

5.1.2 Non-linear beats in time-domain

Although Fig. 5.1 B shows that mode 1 is the first to become unstable, in order to obtain finite am-
plitude beat patterns it is necessary to numerically integrate the set of Eqs. 3.26-3.31 supplemented
with Eq. 4.7 for the motor force in the supercritical regime. This system of equations is a set of
non-linear coupled partial differential equations of fourth order with an integral term for the basal
sliding. The oscillatory transition corresponds to a Hopf bifurcation, and as the control parameter
α1 moves away from the critical point αc the amplitude of the oscillation grows as (α1 − αc)

1/2.
Furthermore, the saturation term α3 of the motor model also controls the amplitude, in this case
following the inverse scaling α−1/2

3 (see Appendix B, where both these scalings where verified). Thus
by sufficiently decreasing the saturation term and increasing the control parameter, finite amplitude
beats will occur. We note here that, since sliding control only produces wave propagation for long
cilia, we consider parameters such that L/ℓ0 ≈ 7, as is the case in Bull Sperm.
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Figure 5.5: Non-linear beat pattern of a free cilium. A. Time trace of the swimming cilium with mode 1 dominating
(see Fig. 5.2). The base is to the left, and the wave propagates right towards the tip, making the cilium move towards
the left. Parameters as those in Fig. 5.1, with α1 = 5.2 pN· s/µm2 and α3 = 2· 10−3 pN· s3/µm4. B. The power
spectrum of the angle at the mid-point of the cilium (obtained through a Discrete Fourier Transform of the numerical
integration) shows peaks in the odd harmonics, due to the antisymmetry of the problem to the transformation t→ −t.

The numerical integration of this dynamical system is far from trivial, and the custom-made
numerical algorithm is described in Appendix B. In Fig. 5.5 A we can see the time trajectory of a
typical beat pattern in the supercritical regime. This beat corresponds to mode 1 in the non-linear
regime, and it shows a forward traveling wave which makes the free cilia swim. To show that this
beat is non-linear we plot the power spectrum of the mid-angle, which exhibits higher odd harmonics.
The lack of even harmonics is due to the odd parity of the equations of motion and the motor model.
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Figure 5.6: Tangent angle of linear and non-linear solution. A. Kymograph of the tangent angle of the analytical
critical solution over three periods. As one can see the waves propagate from base to tip. It is also clear that the
amplitude decreases towards the tip. Height normalized to match that of the non-linear solution. B. Same as A but
for the non-linear solution obtained numerically. We can see that frequency, wave profile and amplitude are in good
agreement with the analytical linear solution. Parameters as in Fig. 5.5.

To better compare this non-linear beat pattern with the critical (thus, linear) beat of mode 1, we
show in Fig. 5.6 a kymograph of the angle ψ(s, t) by adjusting the amplitude of the linear analytical
solution to that of the non-linear numerical solution. As one can readily see, the beat patterns are
very similar. The frequency is roughly the same, and in both cases the wave clearly propagates
towards the tip (forward) with a slowing down of the propagation towards the end. Furthermore, in
both cases the amplitude of the beat decays over arc-length, with the decay being stronger in the
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5.1. Bending waves under sliding control

non-linear theory than in the linear one.

5.1.3 Role of boundary conditions

Boundary conditions have an important effect on the patterns of beating cilia [18, 19]. This can be
readily seen in Fig. 5.7, where we directly compare the non-linear beat patterns for freely pivoting
and clamped bases (see Fig. 3.4). These beat patterns differ qualitatively from those of a freely
swimming cilium. Most importantly, while for a pivoting base the wave propagation is forward
(Fig. 5.7 A, from base to tip), it is reversed in the case of a clamped base (Fig. 5.7 B, from tip to
base).

BFreely pivoting base (non-linear) Clamped base (non-linear)A

low basal stiffness, frequency 10 s-1

high basal stiffness, frequency 13.4 s-1

low basal stiffness, frequency 10.3 s-1

high basal stiffness, frequency 16.2 s-1

t/T
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1/2
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Figure 5.7: Beat patterns with different boundary conditions. A. Beat pattern for a freely pivoting base, the
wave travels and the basal stiffness has little relevance. B. Beat patterns for a clamped base show a backwards
traveling wave. Changing the basal stiffness produces a significant change in the beat pattern. In A top ξ0 =
26.8 pN· s/µm, k0 = 102 pN/µm, α1 = 16.8 pN· s/µm2, α3 = 1.6· 10−3 pN· s3/µm4; bottom same be-
sides k0 = 105 pN/µm and α3 = 4· 10−2 pN· s3/µm4. In B α1 = 18pN· s/µm2, α3 = 4· 10−3 pN· s3/µm4,
ξ0 = 268 pN· s/µm, with top k0 = 103 pN/µm and bottom k0 = 5· 105 pN/µm. Other parameters as in
Fig. 5.1, with ξi = 9.3 pN· s/µm2 and k = 228 pN/µm2.

This change in direction of wave propagation is not affected by changes in the basal stiffness. In
fact, a decrease in basal stiffness has little effect in the beating patterns for a pivoting cilium (other
than reducing the amplitude, which we compensated by also reducing α3, see Fig. 5.7 B). In the case
of a clamped base a change in basal stiffness changes the beating mode (this is detailed in Appendix
B). Yet, this change of mode does not affect the direction of wave propagation (see Fig. 5.7 A).
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1.0 Figure 5.8: Wave velocity vs pivoting stiffness. As the

pivoting stiffness increases, the wave velocity of mode 1
decreases. At a certain value the wave reverses and the
wave propagates backwards. This is in agreement with
Fig. 5.7, which shows backwards waves for clamped
(kp → ∞) and forward traveling for pivoting (kp → 0).
Parameters as in Fig. 5.2, with k0 = 8.7· 103 pN/µm.

To better understand the change in direction of wave propagation as the base goes from pivoting
to clamped, we analytically studied how the first mode is influenced by the pivoting stiffness kp. In
Fig. 5.8 we plot the wave velocity of mode 1 as a function of the pivoting stiffness. For kp = 0 the
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5.1. Bending waves under sliding control

cilium is freely pivoting, and for kp → ∞ we have that ψ(0) = 0 and the cilium is clamped. As one
can readily see, stiffening the basal pivot produces a reversal of wave direction, in agreement with
the non-linear beat patterns in Fig. 5.7.

This dependence on the direction of wave propagation on the boundary conditions provides a
simple and elegant mechanism of change in swimming direction for a micro-organism. Simply stiff-
ening the connection between the head and the cilium can produce wave reversal. It can however
also be seen as a limitation of sliding control, not allowing forward wave propagation for clamped
cilia. In the next section we show a way to circumvent this issue.

5.1.4 Motor regulation with effective inertia and the beat of Bull Sperm

The choice of motor model determines which mode gets selected, as shown in Fig. 5.1. Since in
Fig. 5.2 we saw that different modes have different direction of wave propagation the relevance of
the motor model is clear. In the case of a clamped cilium, we saw that the first mode is a backwards
traveling one (see Fig. 5.8), but there is a higher mode which is forward traveling (see Fig. 5.9), in
agreement with experimental observations for the beat of Bull Sperm [71].
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Figure 5.9: Linear beats of clamped cilia under sliding control. A. Space of solutions for a clamped cilium, with
red dots in the critical modes (again we see a trivial mode). B. Three critical beats. The first mode shows backwards
wave propagation, as already discussed. The second mode is a standing mode. Mode 3 however shows forward
propagation, and the beat patter is similar to that of Bull Sperm. Parameters as in Fig. 5.2, but for a frequency of
14.7s−1.

To excite this forward mode without activating the backwards one a more complex motor model
than that of Eq. 4.7 is necessary. A simple modification to that model is to include a higher order
time-derivative for the motor force, that is

α0∂
2
t fm + τ0∂tfm + fm = α1∂t∆− α3(∂t∆)3 , (5.12)

where α0 accounts for effective inertial effects (these need not come from mechanical inertia, they
may be of chemical origin). Indeed, for an adequate choice of parameters this model permits to
select the forward traveling mode. The resulting beat pattern of a numerical integration of the
equations is given in Fig. 5.10. As one can see, the wave propagation is very clearly backwards and
the amplitude grows along the arc-length.

51



5.2. Bending waves under curvature control

wave propagation

Figure 5.10: Forward wave in clamped cilium. Using the motor model of Eq. 5.12 allows to excite the second mode
at a frequency of 14.7 s−1. This beat is similar to that of Bull Sperm, although with lower amplitude. The parameters
used are those in Fig. 5.2, with a basal stiffness k0 = 92352 pN/µm, a basal compliance ξ0 = 268 pN· s/µm. The
motor parameters are τ0 = 10−3 s,m = 3.5· 10−5 s2, α1 = 110 pN· s/µm2, and α3 = 0.93 pN· s3/µm4.

The implication of this is that forward modes also exist for clamped cilia under sliding control,
however they are modes of order higher than one. To be excited, a complex motor model which
includes inertial effects is necessary. This suggests that, if indeed the beat of Bull Sperm is well
explained by a sliding control mechanism, the microscopic details of such a mechanism must include
some kind of chemical inertia.

5.2 Bending waves under curvature control

So far we have studied the beat patterns produced when motors are controlled by sliding of the
doublets. However motors can instead be controlled by changes in the curvature of the cilium. In
this case the response of the sliding force to a sliding perturbation ∆(s, t) = ∆(s) exp(σt) is passive,
characterized by the sliding stiffness k and internal friction ξi. However its response to curvature
ψ̇ = ∆̇/a can be active. We thus have

f(s) = −χ(σ)∆(s)− β(σ)ψ̇(s) , (5.13)

with χ(σ) = k+ ξiσ the passive viscoelastic response, and β(σ) the linear response coefficient of the
motors to curvature (see Eq. 4.5).

5.2.1 Critical beats in frequency domain

At the critical point Ω = Ωc, the beat patterns exhibit only one harmonic with critical frequency
ωc. In this case the small amplitude beats are characterized by linearization of Eq. 3.31 together
with the linear response of Eq. 5.13, which using σ = iωc results in

iω̄ψ = −
....
ψ + χ̄ψ̈ + β̄c

...
ψ , (5.14)

where we have defined the dimensionless curvature response at the critical point as β̄c = a0L
κ βc,

and bars as before denote dimensionless quantities. Provided boundary conditions, obtaining the
critical modes is an eigenvalue problem. In this case the discrete set of eigenvalues are given by the
condition

βc = βn with n = 1, 2, . . . (5.15)
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Figure 5.11: Critical beats of free cilia under curvature control without basal compliance. A, C. Space of critical
solutions for free ends. The value of |Γ|−1 is plotted as a function of β for a fixed value of χ. Divergences (red
dots) correspond to critical modes, which are numbered by |βn| < |βn+1|. The region of orward modes is in A,
and that of backward modes in C (these regions are symmetric to each other). B , D. Time traces of the first two
modes, which in A show forward wave propagation (thus swimming to the left), and backwards traveling waves in
D. Arrows denote direction of wave propagation.The parameters used were the typical ones of Chlamydomonas
cilium: κ = 400 pN·µm2, k = 15· 103pN/µm2, ξn = 0.0034 pN· s/µm2, L = 12µm, ωc = 2π· 40· s−1,
a0 = 0.06µm and k0 = 0.

We now use the condition |βn| < |βn+1| to label the modes, and drop bars as all quantities are
dimensionless.

Note that there is a fundamental difference between Eq. 5.7, characteristic of sliding control; and
Eq. 5.14, characteristic of curvature control. The former is symmetric with respect to the change
s→ −s, whereas the latter is not. Thus, motor regulation by curvature explicitly takes into account
the polarity of the motor-doublet interaction. Importantly, Eq. 5.14 does remain unchanged under
a change of s → −s and β → −β. This means that there will be pairs of modes with opposite
directions of wave propagation corresponding to values of βc with opposite signs. In Fig. 5.11 A
and C we show two regions of the space of critical modes of a freely swimming cilium regulated
by curvature, and see that this is indeed the case. The first two modes corresponding to forward
traveling waves appear in Fig. 5.11 B, while those corresponding to backward waves (which we note
1− and 2−) are shown in Fig. 5.11 D. These modes are identical aside from a different direction of
wave propagation.

Since the polar symmetry is already broken in the motor-filament interaction, a basal compliance is
not required to produce wave propagation under curvature control. Indeed, Fig. 5.11 was obtained
without basal compliance (i.e., χ0 = 0), which means that under curvature control there are no
standing modes: all modes are traveling. In Fig. 5.12 we see how the forward and backward first
modes (1 and 1−) depend on the basal compliance. The eigenvalues show little change. Furthermore,
also the wave velocity remains little affected as the modes exhibit only a small change (see Appendix
B). This is in contrast with the role of the basal compliance under sliding control.
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Figure 5.12: Depdence of modes with normalized basal stiffness. A. The eigenvalues of first forward and backward
modes show little dependence on the basal compliance k̄0 = a20Lk0/κ. In particular, they are both directional. B.
The wave velocity decreases as the basal stiffness decreases, but always maintaining its sign unaffected. Parameters
as those in Fig. 5.11, which correspond to normalized length L/ℓ0 ≈ 2.4 and normalized sliding stiffness k̄ ≈ 22

In section 3.4 we saw that not only a basal compliance was necessary to produce wave propagation
in freely swimming cilia under sliding control, but also a minimum length (see Fig. 5.3). In Fig. 5.13
we show that this is not the case under curvature control. While the eigenvalues of the modes
depend strongly on the length of the cilium (see Fig. 5.13 A), wave propagation can occur for short
and long cilia, see Fig. 5.13 B.
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Figure 5.13: Scaling of modes with cilium length. A. Scaling of the real (β′, solid lines) and imaginary (β′′, dashed
lines) parts of the eigenvalues for the first and second modes in Fig. 5.11. The real part vanishes for short lengths. B.
Wave velocity vs length of the cilium, arrows note typical values for Chlamydomonas and Bull Sperm. Unlike in
sliding control, short and long cilia allow for strong wave propagation. Parameters as in Fig. 5.11.

5.2.2 Non-linear beats in time-domain

Integrating in time and space the dynamical system posed by Eqs. 3.26-3.31 together with Eq. 4.11
for the motor force we obtain non-linear beat patterns under curvature control. The numerical
scheme used was the same as for sliding control. The control parameter α1 was adjusted to the
supercritical regime, and α3 was regulated so that the amplitude of the beats was large. Finally,
since (unlike sliding control) curvature control can produce wave propagation for short cilia, we
restricted ourselves to the regime relevant for Chlamydomonas in which L/ℓ0 ≈ 2.

In Fig. 5.5 A and B we show two resulting beat patterns. As can be readily seen by comparison
with Fig. 5.11 B and D these beats correspond to the modes 1 and 1−, and thus show wave propa-
gation in the forward (for A) and backward (for B) directions. The difference in the motor model
to activate one or the other is the following change of sign: α1 → −α1 and α3 → −α3. In each
case there is strong propulsion in one beat, unlike for the case in Fig. 5.5. This is because the large
amplitude of the beat is roughly constant along the arc-length.

To compare this non-linear beat patterns with the critical modes we again use kymographs. Since
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Figure 5.14: Non-linear beat pattern of a free cilium regulated by curvature. A, B. Time traces of swimming
cilia with mode 1 (in A) and mode 1− in B dominating (see Fig. 5.2). In A the wave travels forward and the cilium
to the left, vice-versa in B. C. The power spectrum of the angle at the mid-point of the cilium for the trajectory in
A has a fundamental frequency of f = 29.2 s−1. Parameters in A as those in Fig. 5.11, with α1 = 700 nN,
α3 = 5000 nN·µm2 and τ0 = 0.3 s. In B the same with change α1 → −α1 and α3 → −α3.

mode 1− is the mirror symmetric of mode 1, we just focus on the latter. In Fig. 5.15 the kymographs
of the angle ψ(s, t) show that the waves propagate from base to tip steadily. The amplitude is
homogeneous along the length of the cilium, with a small dip around the midpoint in agreement
with what was shown in Fig. 2.3 for the beat of Chlamydomonas. There is good agreement between
the numerical solution in Fig. 5.15 B corresponding to the non-linear beat patterns with the critical
solution in Fig. 5.15 A obtained analytically in frequency domain.
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Figure 5.15: Tangent angle of linear and non-linear solution. A. Kymograph of the tangent angle of the analytical
critical solution over three periods for mode 1. Waves propagate forward (base to tip) and the amplitude is roughly
constant along arc-length with a dip around the mid-point. Height normalized to match that of the non-linear solution.
B. Same as A but for the non-linear solution which was obtained numerically. Frequency, wave profile and amplitude
are in good agreement with the analytical linear. Parameters as in Fig. 5.14.

5.2.3 Role of boundary conditions

We have seen that boundary conditions play a crucial role in the beat patterns produced by sliding
control, being capable of reverting the direction of wave propagation. Under curvature control the
direction of wave propagation is set by the motors, and preserved with different boundary conditions.
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Figure 5.16: Beat patternswith different boundary conditions. A.Beat patterns of the forward and backwardmodes
for a freely pivoting base. B. Forward and backward beat patterns for a clamped base. Parameters as in Fig. 5.11,
besides: in A and B top α1 = 500 nN, α3 = 2000 nN·µm2 and τ0 = 0.03 s; in a and B bottom α1 = 180 nN,
α3 = 20nN·µm2, and τ0 = 0.03 s. The emerging beat frequencies in A and B top to bottom are: f = 199.9 s−1,
f = 248.3 s−1, f = 132.3 s−1 and f = 132.4 s−1.

In the top panels of Fig. 5.16 A and B we have the non-linear beat patterns of a freely pivoting and
clamped cilium with motors regulated by curvature. In both cases the wave propagates backwards,
and the amplitude increases along the arc-length. The difference between the patterns is minor, thus
unlike under sliding control changing the pivoting stiffness has a small effect on wave propagation.
The same is true for the basal stiffness, which only has a minor effect on the beat patterns under
curvature control (see Fig. B.2). These beat patterns are remarkably similar to those of Bull Sperm,
however they correspond to short cilia: while for the top panels of A and B cilia of L = 12.3µm

were used, the typical length of the Bull Sperm cilium is L = 52.3µm. We thus studied the beat
patterns of long cilia under curvature control for clamped and freely pivoting boundary conditions,
see bottom panels of Fig. 5.16 A and B. As in the case of short cilia, the wave propagation is forward
for both boundary conditions. The wave number for these long cilia is around three, which is larger
than that observed for Bull Sperm.

To conclude, the effect of boundary conditions on the beat pattern on a curvature control mech-
anism are smaller than on a sliding control mechanism. To obtain wave-reversal under curvature
control a change in the microscopic details of the motors is necessary, changes at the boundaries
do not suffice. Loosely speaking, the reason is that the fundamental modes of curvature control are
directional, while those of sliding control are standing and only become directional when a boundary
asymmetry is included.

5.3 Conclusions

• A cilium in which motors are controlled by sliding has the following requirements for producing
wave propagation: a basal asymmetry, such as a basal compliance; and a length larger than the
characteristic dynamic length ℓ0. In the absence of these conditions the cilium shows standing
waves.

• The direction of wave propagation of the first sliding control mode is determined by the bound-
ary conditions. These conclusions are also valid for supercritical beats, analyzed numerically
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in the time domain.

• Contrary to sliding control, when motors are regulated by curvature wave propagation exists
in the absence of a basal asymmetry and for lengths of the cilium short compared to ℓ0. They
are thus not subjected to the requirements of sliding control.

• The direction of wave propagation in curvature control is determined by the motor response,
and the main effect of changing the length of the cilium is changing the wave-number of the
beat. These conclusions are valid for supercritical beats, analyzed numerically in the time
domain.
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If a solution fails to appear…and yet we feel success is just
around the corner, try resting for a while.

Santiago Ramón y Cajal, 1916

6
Motor regulation in asymmetric beats

The beat of Chlamydomonas cilia is intrinsically asymmetric. In this chapter we explore the
consequences of this asymmetry in motor regulation. We develop a theory of asymmetric beats, and
show that due to the asymmetry normal forces can regulate the beat. We discuss the asymmetric
beat patterns activated by sliding, curvature and normal force control. We end the chapter by
comparing the beats patterns obtained from the asymmetric theory with those tracked of wild-type
and mbo2 Chlamydomonas cilia.

6.1 Dynamics of an asymmetrically beating cilium

So far we have discussed beat patterns that are symmetric, as the one depicted in Fig. 6.1 A.
Symmetric beats have a flat mean shape (green line). The beat of Chlamydomonas cilia however is
asymmetric and thus has an average curvature, as seen in Fig. 6.1 B.

If the beat is planar, the swimming path of an isolated asymmetric cilium is circular. This is indeed
the case for the Chlamydomonas cilium swimming near a surface, as seen in Fig. 2.1. Furthermore,
the same is also true for single flagellates such as Bull Sperm [23]. For non-planar asymmetric beats
the path is a spiral [25]. Thus the asymmetry is of fundamental importance in determining the
swimming path of a microswimmer. We now provide a physical description for asymmetric ciliary
beats.

We study the physics of asymmetrically beating cilia by describing the small amplitude dynamics
of the cilium around a mean shape. To do this we perform an expansion of the dynamic equations
of a beating cilium around a static shape. That is, consider the dynamics of the beating cilium
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BA
wave propagation

asymmetric beatsymmetric beat

wave propagation

Figure 6.1: Symmetric and asymmetric planar beats. A. Symmetric beat patterns such as the one of Bull Sperm
have a flat mean shape (green line). B. Asymmetric beats such as that of the Chlamydomonas cilium show a curved
mean shape (green line).

described by

ψ(s, t) = ψ0(s) + ψ1(s)e
iωt + ψ∗

1(s)e
−iωt , (6.1)

where ψ0 is the static mode and ψ1 the fundamental mode. Analogous expressions hold for other
mechanical quantities (tension, sliding force, etc.). By introducing this into the dynamic equations
of the beating cilium and expanding in powers of ψ1 we obtain a hierarchy of equations. Using the
static component of this hierarchy allows us to calculate the mean shape. With the static mode at
hand, we can then solve the equation for the fundamental mode ψ1.

The equations of the zeroth mode correspond to a static force balance, as derived in section
3.4. These equations show that the average curvature of the cilium ψ̇0 is determined by the static
contribution of the sliding force f0. In the limit of small amplitude ψ1 we can write the dynamics
of the fundamental Fourier mode if the average shape is given:

iωξnψ1 = −
....
ψ1 − a0f̈1 + ψ̇0τ̇1 + ψ̈0τ1 +

ξn
ξt
ψ̇0(κψ̇0ψ̈1 + a0ψ̇0f1 + τ̇1) ,

ξn
ξt
τ̈1 − ψ̇2

0τ1 = −ψ̇0(κ
...
ψ1 + a0ḟ1)−

ξn
ξt
∂s[ψ̇0(κψ̈1 + a0f1)] . (6.2)

This pair of equations is the generalization of the equations for the symmetric beat. In them, the
fundamental mode is coupled to the static mode. Since the force balance of the static mode has been
used, the coupling only appears through the mean curvature ψ̇0 and its derivatives. In the case in
which the static mode vanishes (ψ̇0 = 0) we recover Eq. 1.1, and the tension also vanishes. However,
for asymmetric beats all terms may be equally relevant. Solutions to the system above are obtained
using the sliding force balance χ0∆0,1 =

∫ 1

s
f1(s

′)ds′ and the boundary conditions of Eq. 3.30.

6.1.1 Beats around a circular arc

The static mode of the Chlamydomonas beat corresponds within a good approximation to a circular
arc (see Figs. 2.3 A and 2.4). This motivates studying asymmetric beats in which the average
curvature is constant. The balance of static forces states that κψ̇0 = a0F0 (see section 3.4). Thus
to obtain a circular arc with constant curvature ψ̇0 = C0, the static force must be constant along
the length of the cilium with magnitude F0 = κC0/a0. This implies that the sliding force density is

60



6.2. Motor regulation in asymmetric beats

given by

f0 = δ(s− L)κC0/a0 , (6.3)

which corresponds to an accumulation of the static sliding force at the distal end of the cilium, as
already described in section 2.2. The static mode of the basal sliding corresponding to this shape
with constant static curvature is ∆0,0 = κC0/(k0a0), and the sliding displacement along the cilium
is ∆0(s) = κC0/(k0a0) + aC0s. For beats in which the static shape corresponds to a circular arc,
the linear dynamic equations become.

iωξnψ1 = −κ
....
ψ 1 − a0f̈1 +

(
1 +

ξn
ξt

)
C0τ̇1 + ξC2

0 (κψ̈1 + a0f1) ,

ξn
ξt
τ̈1 − C2

0τ1 = −
(
1 +

ξn
ξt

)
C0(κ

...
ψ1 + a0ḟ1) . (6.4)

These equations have constant coefficients, and as such can be analytically solved if boundary
conditions and an additional equation for the motor force are provided.

6.2 Motor regulation in asymmetric beats

Just like in the symmetric case, in asymmetric beats the motor force responds to the strains and
stresses within the cilium (see chapter 4). There is, however, a fundamental difference. Due to the
asymmetry, the normal force f⊥ has a non-vanishing fundamental mode, which is given by

f⊥,1 = ψ̇0(F1 + κψ̇1/a0) . (6.5)

Note that in the symmetric case ψ̇0 = 0 this mode vanishes, and the normal force only has modes
of order two and higher.

This fundamental mode of the normal force in asymmetric beats allows that motors are dynam-
ically regulated to linear order by normal stress. The most general form of the linear motor force
response is thus

fm,1 = λ(ω)∆1 + β(ω)ψ̇1 + γ(ω)f⊥,1 , (6.6)

which is a generalization of the models in section 4.2 and allows for regulation by sliding, curvature,
and normal forces. With this linear motor model, we obtain the following static mode of the sliding
force

f0 = (λ(0)− k)∆0 + β(0)ψ̇0 + γ(0)f⊥,0 + δ(s− L)κC0/a0 , (6.7)

which also incorporates the role of cross-linkers of stiffness k, and where the last term corresponds
to the static force at the tip responsible for creating the asymmetry. So far this motor description
is completely general. We now discuss the conditions under which the static curvature is constant.
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6.3. Unstable modes of a circular cilium

6.2.1 Motor regulation around a circular arc

We have seen that when the static mode has a constant curvature, the static sliding force accumulates
at the tip. In this scenario all terms besides the last one in Eq. 6.7 vanish. Since in sliding control
motors are regulated by sliding velocity, the linear response λ(ω) vanishes at zero frequency, that
is λ(0) = 0. The same is true for curvature control. Thus in mechanisms in which the motor
force is regulated by the time-derivatives of the curvature, we will have β(0) = 0. Note that such
a mechanism is different from what is usually referred to as curvature control, which is a delayed
response of the motor force to curvature [14, 57, 71]. The same applies to normal force control: when
the motor force depends on time-derivatives of the normal force, we have that γ(0) = 0. Under these
conditions the static force has a term corresponding to the cross-linkers, and one which accumulates
at the tip.

The cross-linkers with stiffness k will deviate the static mode away from a circular arc. To estimate
how large their effect is, we compare the tip accumulated force F0 = κC0a0 with the total static
sliding force

∫ L
0
k∆0. Dividing these two terms we obtain

∫ L
0
k∆0(s)ds

F0
=
kL

k0
+
L2

2ℓ2
, (6.8)

where ℓ is the characteristic length associated to cross-linkers (see Eq. 3.36). In the case in which
ℓ≫ L and for large values of the basal compliance k0 ≫ kL we have that the effect of cross-linkers
can be neglected. In conclusion, for motor models in which the motor force depends on the time
derivatives of sliding, curvature, or normal forces, and where the role of cross-linkers is small, we
can have beats around a circular arc.

6.3 Unstable modes of a circular cilium

6.3.1 Dispersion relation

Before studying the critical modes of an asymmetric cilium, it is instructive to study the stability
of perturbations with a fixed wave-length λ = 1/q. To do so we interpret the cilium as an infinite
elastic medium which can become unstable due to the action of molecular motors. A perturbation
of fixed wavelength will evolve as

ψ(s, t) = eσt−iqs , (6.9)

where σ = τ−1 + iω with τ−1 the growth rate and ω the frequency at which the perturbation
evolves. Analogous equations hold for the tension, normal force and basal sliding. Introducing this
perturbation in the dynamic equations provides a dispersion relation σ(q), which determines the
stability of the different wave-lengths 1/q.

We now focus on the case of constant static curvature C0 with the general motor model introduced
in the previous section. After replacing the perturbation in the dynamic equations, we obtain the
following dispersion relation in implicit form:

a20χ(σ)− ia0qβ(σ)− 2iκqC0γ(σ) = −κq2 − ξn

(
1− i

C0γ(σ)

q

)
Aσ , (6.10)
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6.3. Unstable modes of a circular cilium

which has units of a force balance. Here χ(σ) = k+ σξi − λ(σ) is the net sliding compliance, and A
is the function

A(q,K) =
q2 + ξtC

2
0/ξn

(q2 − C2
0 )

2
. (6.11)

Provided the dependence of the motor response on σ we can study the dispersion relation σ(q).
As an example, consider the case in which motors are regulated by curvature and so γ = 0 and

λ = 0. For simplicity we study the symmetric case C0 = 0 with the motor model introduced in
Eq. 4.11, which corresponds to β(σ) = α1/(1 + τ0σ). In Fig. 6.2 A we plot the dispersion relation
for positive values of the control parameter Ω = α1. As one can see at the critical value αc > 0

a traveling mode with wave-vector qc > 0 becomes unstable at the positive frequency ωc > 0, see
also Fig. 6.2 B. Simultaneously, a mode −qc becomes unstable at a negative frequency −ωc. Both
these modes correspond to forward traveling waves. For negative values of the control parameter
α1, modes can also become unstable. Indeed, at α1 = −αc the mode qc > 0 becomes unstable
with a negative frequency −ωc and the mode qc < 0 is also critical with frequency ωc. Both modes
correspond in this case to backwards traveling waves. We can conclude that the instabilities result
in traveling waves whose direction of propagation is determined by the value of α1, thus by motor
model details.

This is different from the behavior for a sliding control mechanism, in which β = 0 and γ = 0.
In sliding control Eq. 6.10 is symmetric with respect to q, which indicates that for positive and
negative q the frequencies will have the same sign. Thus at the critical point waves traveling in
opposite directions appear, which result in a standing mode. These conclusions are in agreement
with the conclusions of the previous chapter for the critical beats of a cilium of finite length with
free ends as boundary conditions.
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Figure 6.2: Dispersion relation for curvature control. A. Relaxation rate of a fixed wave-length perturbation for three
values of the control parameter. At the critical point two modes become unstable. B. Characteristic frequency of the
modes. Since qc has frequency ωc and−qc has frequency−ωc, both modes have the same direction of propagation.
The values of the control parameter used are {αc/2, αc, 3αc/2} (in red, green and blue respectively), and time is in
units of τ0.

To analyze the dispersion relation the dependence of the motor model on σ is necessary. However
at the critical point Ω = Ωc the behavior of the system is generic. When Ω = Ωc the relaxation
time of a critical wave-length diverges, and thus σ = iωc with ωc the critical frequency. Using this
condition in Eq. 6.10 we obtain that the critical values of the response coefficients satisfy certain
conditions for each motor regulation mechanism. In particular, for sliding control where β = 0 and
γ = 0, we obtain that the real and imaginary part of χ have to be negative. For curvature control
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6.3. Unstable modes of a circular cilium

we have that the real part of β is positive and the imaginary part negative for forward traveling
waves, the opposite is true for backward traveling waves. For normal force control the imaginary
part of γ has to be positive for forward and negative for backward traveling waves. The sign of the
real part depends on motor parameters. Importantly, while for sliding and curvature control these
signs are independent of the sign of the static curvature C0, under normal force control the signs
flip with the sign of C0. This reveals that for the same set of motor parameters under normal force
regulation the sign of the curvature regulates the direction of wave propagation. These results are
summarized in table 6.1.

wave direction χ′, χ′′ β′, β′′ γ′, γ′′

sliding control ↔ −,− 0, 0 0, 0

curvature control → +,+ +,− 0, 0

normal force control → (C0 < 0) +,+ 0, 0 ∓,+

Table 6.1: Response coefficients for different regulatory mechanisms. The signs of the real part (single prime) and
imaginary part (double prime) of the response coefficients to sliding (χ), curvature (β) and normal force (γ) is given for
three regulatory mechanisms: sliding control (with either direction of wave propagation), curvature control (for forward
waves) and normal force control (for forward waves with a negative mean curvature).

Sliding control Curvature control Normal force control

A

t/T

0

1/4

1/2

3/4

Clamped

Sliding control Curvature control Normal force control

B Pivoting

Figure 6.3: Examples of critical asymmetric beat patterns. A. Beat patterns of a clamped cilium under sliding,
curvature, and normal force control. Sliding control produces standing waves, curvature and normal force control
produce forward traveling waves. B. Same as A but for a pivoting base boundary conditions, as corresponds to
the intact Chlamydomonas cilium. Arrows denote direction of wave propagation. The parameters used for the
cilium were those typical of Chlamydomonas used in the previous chapter (as in Fig. 5.11) with a static curvature
C0 = −0.25µm−1. The resulting response coefficients preserved the sign convention of table 6.1, with γ′ < 0.

6.3.2 Mode selection by boundary conditions

To obtain critical beat patterns we need to consider a cilium of finite length, and provide boundary
conditions. The procedure is the same as the one outlined in Appendix B, but using this time
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equations 6.4 for the dynamics and equation 6.6 for motor regulation. In Fig. 6.3 we provide some
examples of critical asymmetric beats of cilia with a clamped and pivoting base, with a free tip (free
base beats are considered in the next section). Typical values of Chlamydomonas were used for the
ciliary parameters (see caption).

Under sliding control there is no wave propagation, and no net swimming of the cell is pos-
sible. As already shown in the previous chapter, this is because wave propagation under sliding
control only occurs for cilia long compared to the characteristic length ℓ0 (see section 5.1.1), but the
Chlamydomonas cilium satisfies L ∼ ℓ0. Curvature control produces strong wave propagation both
for clamped and pivoting cilia. Finally, normal force control also produces strong wave propagation,
revealing this new mechanism as a candidate for regulation of the beat of asymmetric cilia.

6.4 Beat of freely swimming cilia: experimental comparison

Which motor regulatory mechanism is responsible for producing the bending waves observed in the
beat of Chlamydomonas cilia? To answer this question we explored the three regions of parameter
space in table 6.1 for free end boundary conditions (no external torques or forces, see Fig. 3.4). We
defined the mean square displacement distance R2(ψthe, ψexp) between the theoretically obtained
critical mode and the experimental data, and found its minimum value in the corresponding region
of parameter space. The result of a typical fit is shown in Fig. 6.4.
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Figure 6.4: Fits of Chlamydomonas wild-type beat. Best fits of the real (orange) and imaginary (blue) parts of
the first Fourier mode of the tangent angle under sliding control (A), curvature control (B) and normal force control (C).
Below, the corresponding position space tracked data for the first mode (D) followed by the fits (E to G). Arrows denote
direction of wave propagation. The data corresponds to a cilium of lengthL = 10.13µm, frequency f = 73.05 s−1,
and mean curvature C0 = −0.25µm−1

As we can see, both normal force control and curvature control provide good fits, while slid-
ing control does not. Sliding control does not produce good fits since the length of the cilium is
comparable to the characteristic dynamic length ℓ0, and thus does not allow for wave propagation
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(see section 5.1.1). Curvature control was already shown to produce traveling waves of constant
amplitude for symmetric beats, this is now shown to also be true for asymmetric beats and to agree
quantitatively with the Chlamydomonas beat. Normal force control produces similar fits to curvature
control since, according to Eq. 6.5, normal force is a probe for curvature sensing. Table 6.2 collects
average parameters resulting from the fits of 10 different cilia (see Appendix C for details). The
resulting basal stiffness is very large, since taking χ′ to be due to cross-linkers, we have k0 ≫ χ′L.
However, the characteristic length defined by χ′ is short, ℓ ≈ 3µm. With such strong cross-linkers
it would be impossible to bend the Chlamydomonas cilium as much as observed, which suggests the
origin of the sliding compliance may be motor response and not cross-linkers.

Sliding control Curvature control Normal Force control
R2 (%) 46± 5 94± 1 95± 1

χ′, χ′′ (nN·µm−2) −16± 3,−1.5± 0.4 15± 5, 2± 1 14± 2, 1± 1

β′, β′′ (pN) 0 5± 90,−5964± 768 0

γ′, γ′′ 0 0 0.09± 0.07, 1.9± 0.1

χ′
0, χ

′′
0 (mN·µm−1) 0.5± 1, 0.6± 1 0.04± 0.1, 6· 10−3 ± 10−3 0.2± 0.4, 2· 10−3 ± 3· 10−3

∆0,0 (nm) −57± 90 −37± 45 −40± 50

|∆0,1| (nm) 16.6± 7.4 10± 10 8± 8

Table 6.2: Average parameters extracted from fits of wild-type cilia. Curvature controla and normal force control
provide very good fits, unlike sliding control which is not capable of producing wave propagation due to the shortness
of the axoneme (see Fig. 6.4).
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Figure 6.5: Fits of Chlamydomonas mbo2 beat. Best fits of the real (orange) and imaginary (blue) parts of the first
Fourier mode of the tangent angle under sliding control (A), curvature control (B) and normal force control (C). Below,
the corresponding position space tracked data for the first mode (D) followed by the fits (E to G). The data corresponds
to a cilium of length L = 9.43µm, frequency f = 38.00 s−1, and mean curvature C0 = −0.027µm−1.

Normal force control and curvature control can both produce beats very similar to that of wild-
type, and a priori there is no argument favoring one rather than the other in this asymmetric beat.

66



6.5. Conclusions

Sliding control Curvature control Normal Force control
R2 (%) 70± 4 96± 1 96± 1

χ′, χ′′ (nN·µm−2) −19± 2,−1.0± 0.3 16± 5, 5± 5 13± 4, 2± 1

β′, β′′ (pN) 0 400± 700,−6700± 600 0

γ′, γ′′ 0 0 0.2± 0.4, 30± 20

χ′
0, χ

′′
0 (nN·µm−1) 40± 20, 0.67± 0.03 14± 7, 102 ± 102 10± 1, 20± 10

∆0,0 (nm) −6± 5 −13± 9 −17± 10

|∆0,1| (nm) 40± 10 40± 20 50± 20

Table 6.3: Average parameters extracted from fits of mbo2 cilia. Curvature and normal force control provide very
good fits, but the values of γ in normal force control are very spread and different from those in the wild-type fits.

However, for symmetric beats where C0 = 0, the dynamic component of the normal force vanishes
and normal force control as described in our planar model cannot be a regulatory mechanism.
We thus fitted the symmetric beating mutant mbo2, where the static curvature is reduced by one
order magnitude as compared to wild-type (see section 2.1). In this case the results obtained were
similar to the case of wild-type (see Fig. 6.5): sliding control cannot produce wave propagation,
while curvature and normal force control are in good agreement with the data. There is however
an important difference between the fits of mbo2 and wild-type under curvature and normal force
control. Under curvature control the value of the response coefficient β is well preserved from
wild-type to mbo2, but this is not the case for γ under normal force control (see table 6.3). The
reason is that in mbo2 the small static curvature results in a small normal force, which requires a
correspondingly larger response coefficient γ to be sensed. While not impossible, such a change in
sensitivity is hard to justify. Finally, we note that the inferred basal compliance for mbo2 is several
orders of magnitude below the value for wild-type.

To conclude: a length scale argument suggests that the beat of Chlamydomonas cilia can not
be regulated by sliding, and the existence of wave propagation in symmetric beats suggests that it
cannot be regulated by normal forces. This suggests that curvature is the likely mechanism through
which the beat is regulated, in agreement with the good fits obtained.

6.5 Conclusions

• We developed a theory for the asymmetric beat of cilia. In contrast to symmetric beats, the
normal force has a linear dynamic component, which allows for normal force motor regulation.

• For cilia short compared to the characteristic dynamic length ℓ0, curvature control and nor-
mal force control produce wave propagation for clamped, pivoting and free end boundary
conditions. Due to the short length, in all these cases sliding control produces standing waves.

• Curvature and normal force control produce asymmetric beat patterns as those observed in
isolated wild-type cilia. With similar motor parameters, curvature control also produces beats
as those of the symmetric mbo2 mutant.
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7
Conclusions and future work

Cilia are highly conserved structures involved in many cellular processes. Much is
known about their structure, and their main constitutents are well identified. Yet, how these compo-
nents self-organize in order to produce an orchestrated beat has remained a challenging question for
the past fifty years. Today, it is widely believed that the response of dynein motors to the stresses
and strains within the cilium are the key to unravel its beat pattern. Yet what the differences are
between alternative regulatory mechanisms is poorly understood. In this thesis we characterized
the different beat patterns produced by three motor regulatory mechanisms, sliding, curvature, and
normal force control; and compared them to experimental data.

7.1 Summary and conclusions

In this thesis we have used numerical and analytical tools in order to analyze different static and
dynamic patterns of cilia, and compared them to experiments performed by our collaborators. Below
we summarize the main findings.

• In chapter 3 we developed a planar theory for beating cilia by balancing hydrodynamic and
mechanical forces. Importantly, we incorporated sliding and normal cross-linkers at the bulk
of the cilium, as well as at the base. We then showed that basal cross-linkers are necessary to
produce bending, and that those at the bulk define a fundamental length-scale beyond which
the cilium is straight.

• In chapter 4 we introduced the collective behavior of molecular motors, and showed that they
are capable of producing dynamic instabilities such as oscillations. We then proposed a model
by which motors can sense sliding, curvature and normal forces. In the static regime sensitivity
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7.2. Future work

to curvature and normal forces gives raise to circular arcs, in agreement with experimental
evidence in disintegrated cilia.

• In chapter 5 we characterized the symmetric beat patterns corresponding to motor regula-
tion by sliding and curvature. We showed that sliding control requires an asymmetry at the
boundaries as well as a minimal length to produce wave propagation. This is in contrast to
curvature control, which is capable of producing wave propagation in both directions irre-
spective of boundary conditions and length. We also characterized the critical beats under
several conditions, and obtained non-linear beat patterns by numerically solving the dynamic
equations.

• In chapter 6 we showed that asymmetrically beating cilia, such as those in Chlamydomonas, can
be regulated via normal forces. We indeed showed that the resulting beat patterns obtained by
curvature and normal force control are in good agreement with those measured for wild-type
cilia. Furthermore, with similar parameters curvature control also produced beat patterns
analogous to those of the symmetric mbo2 Chlamydomonas mutant. Because these cilia are
very short, sliding control does not produce wave propagation.

To conclude, our work shows that curvature, sliding, and normal forces can all regulate beat pat-
terns. However, important differences exist on the conditions under which any of these mechanisms
can operate: sliding requires long cilia and a constraint at one end, and normal force requires an
asymmetry. Furthermore, the resulting beat patterns can also be very different. In the case of the
wild-type Chlamydomonas cilia in particular, we have good evidence that curvature or normal forces
can regulate its beat, while sliding can not.

7.2 Future work

The results in this thesis suggest new lines of research to gain further insight into the regulatory
mechanisms behind ciliary beat. Perhaps the most prominent unanswered question is the origin of the
static asymmetry of the Chlamydomonas axoneme. While in chapter 4 we suggested a mechanism
capable of producing circular arcs for disintegrated axonemes, the intact cilium is a complicated
structure whose full understanding requires a three-dimensional treatment. Given the new light
shed here about ciliary beat by the incorporation of normal forces and asymmetries, it is a necessary
next step to develop a three-dimensional model of the cilium which includes radial and transverse
elastic elements which may regulate the static bend.

Such a model could also point towards mechanisms by which motors can sense curvature or normal
forces. For instance, radial stresses or the three-dimensional extension of the normal force here stud-
ied could be the means by which curvature regulation arises. Furthermore, new imaging techniques
could allow to indirectly observe the strains conjugate to such stresses. Together with a technique to
observe the waves of dynein activity, this could provide direct evidence on the mechanism of motor
regulation.

In this work we have used a coarse grained description of the motor force, which proved rich enough
to allow for distinctive selection of beating modes, as well as amplitude and frequency selection.
If different beating modes are experimentally characterized and then compared to the models here
introduce, this could provide new information about the motor model. New patterns can be accessed
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changing experimental conditions as temperature, ATP, and viscosity; or characterizing mutants
other than mbo2. Mutants with long flagella are particularly interesting, given the important role
of the length in determining the beat pattern.
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A
Calculus of variations and test of resistive force

theory

In this appendix we complete the calculus of variations outlined in 3.2 and 3.3. We also show
how Resistive Force Theory is a valid model for axoneme-fluid interactions by comparing theoretical
predictions of RFT to experimental measurements.

A.1 Variations of mechanical and rayleigh functionals

We begin by giving the full expressions for the curvature of filament A. First note that

ṙA =
(
1− a

2
ψ̇
)
t+

ȧ

2
n

r̈A = −
(
ȧψ̇ +

a

2
ψ̈
)
t+

(
(1− a

2
ψ̇)ψ̇ +

ä

2

)
n . (A.1)

The tangent vector of filament A is defined as

tA =
∂rA
∂sA

=
ṙA
|ṙA|

, (A.2)

which can be readily calculated using Eqs. A.1. It is then straight-forward to calculate the normal
vector nA which is normalized and perpendicular to tA. Once normal and tangent vectors are known,
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A.1. Variations of mechanical and rayleigh functionals

the curvature is simply

CA = nA·
∂tA
∂sA

=
nA· ṫA
|ṙA|

, (A.3)

which again can be calculated using Eqs. A.1. Replacing a → −a we obtain the expression of CB,
and expanding to leading (second) order we have Eq. 3.6.

To derive the variations of the energy functional, we begin by writing Eq. 3.9 in the alternative
form

G =

∫ L

0

[
κ

2
ψ̇2 +

κ

2

(
ä

2

)2

+
k

2
∆2 − fm(s)∆ +

k⊥
2
(a− a0)

2 +
Λ

2
(ṙ2 − 1)

]
ds+

k0
2
∆2

0 (A.4)

for which we have simply used Eq. 3.6. We begin by calculating the variation with respect to the
spacing a, which is:∫ L

0

ds
δG

δa
δa =

∫ L

0

{
κ
ä

2
δä+ k⊥(a− a0)δa− f

∫ s

0

ψ̇δads′
}
ds

=

[
κ
ä

2
δȧ

]L
0

−
∫ L

0

fds

∫ L

0

ψ̇δads+

∫ L

0

{
−κ

...
a

2
δȧ+ k⊥(a− a0)δa+ ψ̇δa

∫ s

0

fds′
}
ds =

=

[
κ
ä

2
δȧ

]L
0

−
[
κ
ȧ

2
δa

]L
0

+

∫ L

0

δa

{
κ

....
a

2
+ k⊥(a− a0)− ψ̇F

}
ds (A.5)

Where we have defined the net static sliding force density f = fm − k∆, the integrated force
F =

∫ L
s
fds′, we have used Eq. 3.8 for relating sliding to spacing, and in the last equality we have

introduced a boundary term inside the integral.

We now calculate the variation with respect to the position of the center-line r. Before proceed-
ing1, we note that ψ̇ = n· ṫ, so that δψ̇ = n· δṫ = n· δr̈. In the first equality we have used that
ṫ· δn = 0, which comes from imposing |n| = 1. After this preamble, we have∫ L

0

ds
δG

δr
δr =

∫ L

0

{
κψ̇n· δr̈− f

∫ s

0

an· δr̈ds′ + Λt· δṙ
}
ds =

∫ L

0

{
(κψ̇ − aF )n· δr̈+ Λt· δṙ

}
ds

=
[
(κψ̇ − aF )n· δṙ

]L
0
+
[(

−(κψ̈ − ȧF + af)n+ τt
)
· δr
]L
0

+

∫ L

0

∂s

{
(κψ̈ − ȧF + af)n− τt

}
· δrds (A.6)

Where we have integrated by parts twice, and defined the tension τ = Λ + κψ̇2 − aF ψ̇ following
Eq. 3.14. The variation with respect to the basal sliding ∆0 is easy to calculate:

δG

δ∆0
δ∆0 = (k0∆0 −

∫ L

0

fds)δ∆0 . (A.7)

The variations of the Rayleigh dissipation function given in Eq. 3.20 are calculated in much the
same way, with all terms balancing those of the equilibrium variations. For the basal sliding velocity

1For completeness, we also note that δψ = n· δt
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A.2. Plane wave and hydrodynamic test

variations we have

δR

δ∂t∆0
δ∂t∆0 = (ξ0∂t∆0 − Fi(0))δ∂t∆0 , (A.8)

where we have defined the internal friction force Fi(s) =
∫ L
s
fids

′, with fi = −ξi∂t∆ being the
internal friction force density. For the spacing velocity the variation is∫ L

0

ds
δR

δ∂ta
δ∂ta =

∫ L

0

{
ξ⊥∂ta− ψ̇Fi

}
δ(∂ta)ds . (A.9)

Finally, for the velocity of the filament the variation gives∫ L

0

ds
δR

δ∂tr
δ∂tr = [−aFin· δ∂tṙ]L0 + [(−(−ȧFi + afi)n+ τit) · δ∂tr]L0

+

∫ L

0

((ξnnn+ ξttt)· ∂tr+ ∂s {(−ȧFi + afi)n− τit}) · δ∂trds (A.10)

where we have defined τi = −aFiψ̇ as the dissipative component of the tension.

A.2 Plane wave and hydrodynamic test

In section 2.1 it was stated that the axonemal beat of the Chlamydomonas axoneme can be under-
stood as an angular plane wave (see Fig. 2.4), that is

ψ(s, t) = frott+ C0s+A cos (2π(νt− s/λ)) (A.11)

where C0 is the mean curvature, frot the global rotational frequency , λ is the wavelength, A is
the amplitude and ν the frequency. We now use this simple description to verify the model of
axoneme-fluid interaction introduced in 3.3 (Resistive Force Theory). In RFT the fluid force is
given by

ffl = −(nnξn + ttξt)· ∂tr , (A.12)

with r(s, t) the position of the axoneme over time which relates to the shape ψ(s, t) via

r(s, t) = r0(t) +R(s, t) = r0(t) +

∫ s

0

(
cos(ψ(s′, t))

sin(ψ(s′, t))

)
ds′ , (A.13)

with r0(t) being the trajectory of the basal end, and R(s, t) the shape of the axoneme. Note that
since ṙ = Ṙ, the shape alone defines the tangent and normal vector fields, independent of the position
of the base r0.

Since in RFT the inertia of the fluid is neglected, the sum of all forces exerted on it must vanish,
and we thus have∫ L

0

ffl(s, t)ds = −
∫ L

0

(nnξn + ttξt) · (∂tr0(t) + ∂tR0(s, t))ds = 0 . (A.14)
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A.2. Plane wave and hydrodynamic test

Taking the tangent angle ψ(s, t) given by Eq. A.11 the only unknowns on this equation are the
components of the basal velocity ∂tr0(t). We can thus numerically solve this equation in order to
obtain the velocity of the base at each time-step, and reconstruct the axonemal trajectory.

5 μm

5 
μ

m

A B C

Figure A.1: Reconstructed vs tracked trajectories.. Tracked trajectories (in yellow) and reconstructed trajectories
(in black) using the plane wave approximation of the beat (in Eq. A.11) and a RFT model of the fluid (Eq. A.12). The
values used in the panels {A,B,C} are: C0 = {0.26, 0.22, 0.28}µm−1, λ = {11.2, 11.0, 10.1}µm, L =
{12, 11, 11}µm, frot = {7.7, 5.0, 5.9}s−1, ν = {62.5, 62.7, 65.1}s−1, and A = {0.67, 0.54, 0.66}. Figure
adapted from [28].

In Fig. A.1 three comparisons of the reconstructed trajectories (in red) to the actual trajectories (in
black) are given. Notice the very good agreement, given that the shape information used corresponds
to a plane wave approximation of the beat. This neglects amplitude profile, higher harmonics, and
fluctuations. Fig. A.1 thus confirms not only that RFT applies to Chlamydomonas axonemes, but
that the plane wave approximation on the axonemal beat discussed in 2.1 is accurate.
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B
Critical modes and numerical methods

In this appendix detail different beating modes referred to in chapter 5. We show
the beat patterns, amplitude and phase profiles of several critical beats, as well as non-linear beats
obtained numerically. We also describe the numerical method used to solve the dynamical system,
and characterize the dynamical transition.

B.1 Characterization of critical modes

The equation which characterizes the critical beats of symetric cilia regulated via sliding or curvature
is

iωψ = −
....
ψ + χcψ̈ + β̄c

...
ψ , (B.1)

where χc and βc are the rlinear response coefficients to sliding and curvature respectively, and we are
using the normalization rules in Eqs. 5.8 to make all quantities dimensionless. The general solution
to this linear equation is

ψ̃1(s) =
4∑

α=1

Aα exp(kαs) (B.2)

where {Aα} are the amplitudes determined by the boundary conditions, and {kα} are the solutions
to the characteristic equation, which is:

iη = −k4α + χck
2
α + βck

3
α . (B.3)
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B.1. Characterization of critical modes

To obtain the coefficients {Aα} we insert Eq. B.2 into the boundary conditions, which gives a
linear set of equations in {Aα}. This linear system will depend on ω, χc and βc through the solutions
of the characteristic polynomial kα(ω, χc, βc). It will also depend on the basal sliding ∆0, which
makes the system appear homogeneous. However, using the sliding force balance

χ0∆0 =

∫ 1

0

[
χc∆(s) + βψ̇(s)

]
ds (B.4)

together with ∆(s) = ∆0+ψ(s)−ψ(0) we can eliminate the basal sliding dependence, so that we have
a homogeneous system of four equations. The determinant of the coefficient matrix of this system
Γ is a function of the set of seven parameters {ω, χ′, χ′′, β′, β′′, χ′

0, χ
′′
0} (where primes and double

primes denote real and imaginary part), and it has to be null to obtain non-trivial solutions. Given
five of these parameters, the condition Γ = 0 is a complex equation that gives a discrete spectrum
of solutions for the other two. For example, in sliding control we typically fix all parameters besides
χ′ and χ′′, which we determine from the condition Γ = 0. In this case we order the modes according
to |χn| < |χn+1|. In curvature control it is β′ and β′′ which are determined from the determinant
condition, and the ordering of the modes follows |βn| < |βn+1|.

In Fig. B.1 we show the amplitude and phase profile of the first two modes of a freely swimming
cilium with a small and a high basal compliance. As one can see mode 1 is a directional mode,
which shows strong wave propagation from base to tip for high and low basal compliance alike
(yellow curves, panes A and C for small basal stiffness and B and D for large). This is contrast with
mode 2 (red curves), which shows a dramatic change as the basal compliance becomes smaller: while
for a large value of the basal compliance mode 2 show wave propagation from tip to base (panels B
and D), when the basal compliance is small it becomes a standing mode with no wave propagation
(panels A and C). The length in all cases is L/ℓ0 ≈ 10 (typical of Bull Sperm), guaranteeing that
wave propagation is possible.
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Figure B.1: Modes 1 and 2 of sliding control for free ends. As one can readily see, for a large basal compliance
(panels to the right) both modes are directional and have opposing directions of wave propagation. As the basal
compliance vanishes mode 2 looses its directionality and becomes a standing mode, while mode 1 remains directional.
Parameters as in Fig. 5.2.
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B.2. Non-linear dynamics of beating cilium

The basal compliance has a less dramatic effect in beats controlled by curvature. In Fig. B.2
we compare the amplitude and phase profiles of the first unstable mode under curvature control
for a high (in red) and low (in blue) basal compliance. As one can see, while the increase in basal
compliance makes the amplitude decrease near the base, the effect is much smaller than for sliding
controlled beat patterns.
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Figure B.2: Mode 1 of curvature control for free ends. A large change in the basal stiffness has a minimal effect
on the beat pattern of this mode. Parameters as in Fig. 5.11, with low and high basal compliances corresponding to
k0 = 0 and k0 = 104 pN·µm−1.

As stated in the main text, all sliding control modes loose directionality when the length of the
cilium L becomes comparable to the characteristic length ℓ0. In Fig. B.3 A, B and C we have a
time trace as well as amplitude and phase profiles of mode 1 of a freely beating cilium under sliding
control. Although the basal compliance is high such that all modes can be directional, due to the
small length of the cilium L/ℓ0 ≈ 3 they show no wave propagation (see A, and the flat phase profile
in C). Cilia regulated via curvature however can exhibit wave propagation for short (see Fig. 5.11)
as well as long lengths (see Fig. B.3 D, E and F).
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Figure B.3: Beat patterns of long and short cilia. A, B &C.Beat pattern of a short (L/ℓ0 ≈ 3) freely swimming cilium
regulated by sliding. In agreement with Fig. 5.3 no wave propagation occurs, unlike the beat of long cilia (see Fig. 5.5).
D, E & F. Beat pattern of a long (L/ℓ0 ≈ 15) freely swimming cilium regulated by curvature. Wave propagation is
strong, just as for short cilia (see Fig. 5.13)

B.2 Non-linear dynamics of beating cilium

The onset of the oscillatory regime in our description of cilia occurs via a Hopf bifurcation. That is,
as the control parameter Ω crosses some critical value Ωc, the system starts oscillating with small
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B.3. Numerical methods

amplitude at a critical frequency ωc. We characterized the properties of this Hopf bifurcation by
numerically integrating the dynamical system for a range of values of the control parameter Ω = α1.
As shown in Fig. B.4 A the oscillatory behavior can be understood as a dynamic phase transition.
There are two associated scaling laws near the critical point: the amplitude of the beat increases as
(α1 − αc)

1/2, in Fig. B.4 B; and it decreases as α−1/2
3 , in panel Fig. B.4 C
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Figure B.4: Numerical characterization of bifurcation. A. For values of the control parameter smaller than the critical
one, the system is stable and there are no oscillations (green area). For values higher than the critical, finite amplitude
oscillations appear. B. The amplitude increases as the critical parameter grows as a power law. C. The saturation
parameter also scales with the amplitude as a power law. Results obtained by performing a series of simulations for
a pivoting cilium regulated via sliding.

It was seen in chapter X that modifying the basal stiffness could produce a significant change in
the beat pattern of a clamped cilium. In Fig. B.5 A we analyze how the motor response of the first
two modes changes as a function of the basal stiffness k0. The crucial point is that at some critical
value of k0 their order flips. Thus the mode which is second at a low basal stiffness, becomes first at
a high basal stiffness. As a consequence the mode gets excited. By numerically computing a series of
simulations of the non-linear theory we indeed observed a change in the beat patterns of the cilium,
which we represent in Fig. B.5 B and C by the amplitude and frequency of the beat respectively.
Interestingly, this change is not abrupt as should be expected. The reason is that near the critical
point both modes become very similar, although not equal, thus the discrete jump to be expected
in all quantities is very much smoothed out.
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Figure B.5: Mode swapping as a function of the basal stiffness. A. As the basal stiffness changes the two modes
swap their order: for high basal compliance |χ1| > |χ2|, for low |χ1| < |χ2|. B. As one or the other modes are gets
activated there is a jump in the amplitude of the beat. While this jump is discrete, the two modes are very similar near
the cross-over point so the jump appears continuous. C. As the modes change, so does their characteristic frequency.

B.3 Numerical methods

To solve the dynamical system defined by the ciliary mechanics and the motor dynamics in the time
domain, we used a custom made numerical algorithm. It consists of an adaptation of the IMEX
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finite differences algorithm in [89], but including a predictor-corrector iteration loop [2]. We now
outline the key steps of the algorithm.

For concreteness, we write down the equations that were solved for the case of a clamped cilium
where motors were regulated via sliding velocity. The dynamic equations are in this case:

∂tψ = ξ−1
n (−κ

....
ψ − a0f̈ + ψ̇τ̇ + τψ̈) + ξ−1

t ψ̇(κψ̇ψ̈ + a0fψ̇ + τ̇) (B.5)
ξn
ξt
τ̈ − ψ̇2τ = −ψ̇(κ

...
ψ + a0ḟ)−

ξn
ξt
∂s[ψ̇(κψ̈ + a0f)] (B.6)

f = fm − k∆− ξi∂t∆ (B.7)

∂tfm = − 1

τ0
(fm − α1∂t∆+ α3(∂t∆)3) (B.8)

ξ0∂t∆0 =

∫ L

0

f(s)ds− k0∆0 (B.9)

with ∆(s) = ∆0 + a0(ψ(s)− ψ(0)), and boundary conditions

κ
...
ψ(0) + a0ḟ(0)− ψ̇(0)τ(0) = 0 ; κψ̈(L) + af(L) = 0

ψ(0) = 0 ; ψ̇(L) = 0

κψ̇(0)ψ̈(0) + a0ψ̇(0)f(0) + τ̇(0) = 0 ; τ(L) = 0 . (B.10)

The meaning of the color scheme will be explained below. The main challenges to numerically
integrate these equations are the following: they have a high order in space, they are non-linear,
and they have coupled time-derivatives.

To proceed, we first discretize the angle, tension, and motor force along the arc-length. We also
discretized all the differential operators using a second order finite differences scheme, with side
derivatives at the boundaries [89]. To deal with the fourth order spatial derivative we use an IMEX
scheme. That is, we treat the fourth order term implicitly (that is, in the new time step, noted
by green) and all the others explicitly (in the old time step, noted by blue). Finally, in order to
evolve the system in time, we discretize the time-derivatives with a first order Euler scheme, thus
∂tψ = (ψ − ψ)/dt with dt the discretization time.

There is a draw-back with the previous iteration scheme. In the boundary conditions and tension
equations all terms must be evaluated in the new time step. The boundary conditions, which are
required to obtain the updated ψ, involve the updated tension τ . But according to Eq. B.6 to obtain
τ we need ψ. To solve this issue we perform a loop within each time step, such that initially we use
the old tension τ in the boundary conditions, and with it obtain an estimate for the updated angle.
We then solve the tension equation, and obtain an estimate for the updated tension. We then use
this estimated tension in the boundary conditions to re-estimate the angle, and also re-estimate the
tension. This process is iterated until the boundary conditions are satisfied with enough accuracy,
and then we move to the next time step.

The accuracy of the method was ensured by calculating the residual sliding forces (using Eq. B.9,
all quantities evaluated in the same time step) and the differential equation residue (using Eq. B.5,
also quantities in the same time step). In all cases the relative errors were kept below 10−2, with
often much smaller errors. The stability of the algorithm changed depending on the region of the
parameter space, mainly determined by the length of the cilium which strongly affects the sperm
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number (L/ℓ0)
4. This parameter was changed up to three orders of magnitude. The different types

of boundary conditions, and the ratio of time-scales defined by the different viscosities was also a
limiting factor in the numerical stability of the algorithm. While several simple calibration methods
were used for debugging the code, the most reliable is the direct comparison of the obtained numerical
solutions with the analytical ones at the bifurcation point (see for example Figs. 5.5 and 5.14).
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C
Fit results

In this appendix we collect the detailed results of fitting the experimental data.
We show the resulting fitting parameters for ten wild type and ten mbo2 mutant beats under four
different motor control mechanisms.

C.1 Additional fitting results

The beats of ten wild type and ten mbo2 cilia were tracked using the procedure outlined in chapter
2. In the following tables we collect the main characteristics these beats, which were necessary for
performing the fits.

As one can see, the main difference between mbo2 and wild type cilia resides in the mean curvature
C0: for wild-type the mean curvature is about twenty times larger than for mbo2 mutants. To fit
the data we used the following parameters: a bending stiffness of κ = 400 pN·µm2, a spacing of
a = 60nm, and a friction coefficients ξn = 2ξt = 0.0034 pN· s·µm−2.

For each motor model (sliding control, curvature control and normal force control) the space of
parameters was constrained following the sign convention in table 6.1. For normal force control,
since the sliding friction (χ′′) seemed to be rather small, we further constrained the sign of γ′ to be
negative. Finally, in all cases the basal compliance was forced to be passive, thus with positive signs
of real and imaginary part. A fourth model in of sliding control with an active base was considered,
which resulted in better fits than sliding control with a passive base.
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C.1. Additional fitting results

wild-type data
axoneme L (µm) f(s−1) C0(mm−1)

1 10. 73. -250.
2 10. 67. -290.
3 10. 70. -210.
4 11. 65. -250.
5 11. 68. -220.
6 11. 74. -230.
7 11. 65. -240.
8 12. 62. -210.
9 12. 64. -220.
10 12. 44. -200.

mbo2 mutant data
axoneme L(µm) f(s−1) C0(mm−1)

1 8.4 41. -9.3
2 8.8 23. -26.
3 9. 33. -41.
4 9.2 23. -5.5
5 9.4 21. -50.
6 9.4 21. -8.2
7 9.4 38 -32.
8 9.7 18. -27.
9 10. 22. -20.
10 11. 43. -39.

The fitting produce was the following. For each set of parameters the critical mode was obtained,
and the mean squared distance of the predicted theoretical shape ψthe to the experimental one ψexp

was obtained R2(ψthe, ψexp). With the Mathematica 9 FindMaximum algorithm the maxima of this
function was obtained. The fit parameters used were four (plus an arbitrary amplitude which can
not be determined from the linear theory) for curvature and normal force control, and two for sliding
control and sliding control with an active base. Reducing the number of parameters however did not
worsen the quality of the fits of curvature control. For instance, fixing χ′′ = 0 and β′ = 0 allowed
for an average fitting score of ∼ 94%, while it reduced the number of parameters to two.
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Figure C.1: Normal force control and curvature control fits for wild-type. Panels A1 to A10 correspond to normal
force control fits, and panels B1 to B10 correspond to curvature control. The cilium labeled 3 is not shown, as it
appears already in Fig. 6.4. The parameters obtained from the twenty fits are reported in the next page in the same
order as in this figure.
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Figure C.2: Normal force control and curvature control fits for mbo2 mutant. Panels A1 to A10 correspond to
normal force control fits, and panels B1 to B10 correspond to curvature control. The cilium labeled 7 is not shown, as
it appears already in Fig. 6.5. The parameters obtained from the twenty fits are reported in the next page in the same
order as in this figure.
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Figure C.3: Sliding control and sliding control with an active base fits for wild-type. Panels A1 to A9 correspond
to normal force control fits, and panels B1 to B9 correspond to curvature control. The cilium labeled 7 is not shown,
as it appears already in Fig. 6.5. The parameters obtained from the twenty fits are reported in the next page in the
same order as in this figure.
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C.1. Additional fitting results
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1.1 Examples of cilia creating flows and self-propelling micro-swimmers. Nodal
cilia [62] and cilia in bronchi [90] produce fluid flows. In the other examples cilia
propel microorganisms. These micro-swimmers can have one cilium (as in the sperm
examples shown), two (as in the case of Chlamydomonas Reinhardtii), or many, as in
the case of Paramecium [1]. Bars correspond to 10µm. The figure is adapted from [28]. 4

1.2 The 9+2 axoneme. A. Schematic cross-section of the 9+2 structure showing the
doublet microtubules, the inner and outer dynein arms, the nexin links, the radial
spokes and the central pair. B. Schematic of a bent and twisted axoneme showing the
doublets (blue) and central pair (gray). Note the relative sliding between the doublets. 5

1.3 Microtubules and doublets. A. Each microtubule is composed of thirteen protofil-
aments, shifted with respect to each other. A protofilament is a linear assembly of
αβ dimers. B. Cross-section of a doublet. Each doublet consists of two microtubules,
one complete (microtubule B, with thirteen protofilaments) and one incomplete (mi-
crotubule A, with ten protofilaments). . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Mechanochemical cycle of dynein. A dynein motor is composed of a ring with
6AAA domains, a stem (in yellow) and a stalk with a MT binding domain at its end.
ATP binding enhances the detachment of dynein’s stalk from the microtubule, and
its hydrolysis locks it in a strained state in which the ring is rotated. DTP release
aids the dynein to bind to the microtubule. Finally, once bound, the power stroke
occurs, leaving the bound motor in a state with high ATP affinity. . . . . . . . . . . 7

1.5 Swimming path of the axoneme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Three mechanism of motor regulation. In curvature control bending of the
doublets enhances their detachment (left panel). In sliding control sliding of the
doublets to the minus end produces a load force with triggers detachment (center
panel). In normal force control the increase in spacing of the doublets produces a
normal force that tends to detach dyneins. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Time series of a beating cilium. A. An isolated Chlamydomonas cilium has an
asymmetric beat pattern which makes it swim counter-clockwise. The tracking is
noted with a green line, and the base with a black circle (adapted from [28]). B.
Beat pattern over one period of duration T obtained after tracking, showing forward
wave propagation (from base, indicated with a black circle, to tip) and thus counter-
clockwise swimming. As time progresses over one period the cilium changes color
following the circular legend counter-clockwise . . . . . . . . . . . . . . . . . . . . . 16

2.2 Tracking the tangent angle. The tangent angle ψ(s) at arc-length s measured
from the basal end, is defined with respect to the lab frame xy using the pointing
vector r(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

100



Listing of figures

2.3 Characterization of the Chlamydomonas beat. Top, characterization of Wild
Type beat. A. The power spectrum of the angle at mid-length shows up to seven
harmonics or modes. B. The zeroth mode of the angle grows linearly over arc-length,
resulting in a circular arc of constant curvature. C. The amplitude of the first mode
is roughly constant over arc-length. D. The phase of the first mode drops ∼ 2π over
the length of the cilium. Bottom, characterization of mbo2 beat. The main difference
resides in F, mbo2 shows a small zeroth mode since its beat is symmetric. Each
line corresponds to an individual cilium, and the bolder one corresponds to the same
cilium in panels B, C and D for WT, and in panels F, G and H for mbo2. . . . . . . 17

2.4 Schematic of asymmetric beat. An asymmetric beat (A) can be described as
a circular arc (constant mean curvature, B) plus a plane angular wave (C). Figure
adapted from [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Sliding of adjacent doublets in a split axoneme One doublet slides along another
and then dissociates (0.0 to 4.0 s). After reassociating (4.2 s), the two doublets remain
in close apposition and bend into a circular arc (4.5 s to 5.7 s) before dissociating
again (not shown). Figure adapted from [60]. . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Tracking the doublets. A. The shape was characterized by tracking the centerline
of intensity along the filament contour marked by green crosses. B. The tangent
angles are plotted as a function of arc-length. The tangent angle increased linearly
with arc-length (times 5.1− 5.7 s), indicating that the shape of the doublets is nearly
a circular arc. The curvature of the arc is increasing over time and approaches a final,
quasi-static shape at 5.7 s. Figure adapted from [60]. . . . . . . . . . . . . . . . . . . 19

2.7 Intensity analysis of filaments. A. Frame of a bending event with line-scans
of filaments interacting (red), non-interacting (blue) and overlapping (green). B.
Corresponding intensity profiles. The interacting and non-interacting filaments have
similar intensity, while the intensity in the overlap is 4 times higher than the non-
overlap regions, as corresponds to dark-field microscopy. Figure adapted from [60]. . 20

3.1 Planar geometry of a cilium. Scheme of a cilium as a pair of opposing filaments
(labeled A and B) separated by a spacing a(s) with depends on the arc-length s
(measured from the base, black circles). The relative sliding of the filaments ∆(s)
is shown, as well as the sliding at the base ∆0. Each position along the centerline
(dashed line) is characterized by a position vector r(s) with origin at the laboratory
frame xy. From the position vector we can obtain the tangent vector field t(s), as well
as the normal n(s) field through Eq. 3.3. The tangent angle ψ(s) can be calculated
at each point (see Eq. 3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Mechanics inside a cilium: Opposing motors in filaments A/B (green circles)
produce forces FA/B, and reactions −FA/B. Normal compression is constrained by
springs (green) of stiffness k⊥. Sliding is limited by bulk springs (purple, stiffness
density k) and a basal spring (blue, stiffness k0). . . . . . . . . . . . . . . . . . . . . 24

3.3 Sketch of Resistive Force Theory: The motion of a fragment of axoneme is
characterized by the local velocity ∂tr, which can be projected in the tangential t and
normal n directions with respect to the arc-length. The local fluid drag force opposes
these components with corresponding drag coefficients ξt and ξn. Since ξn > ξt for
slender rods, ffl and ∂tr are not parallel, making net propulsion possible. . . . . . . . 25

3.4 Schematic of boundary conditions: A free cilium (A) is not subject to any ex-
ternal forces or torques. For a pivoting cilium (B) the force balance at the base is
replaced by the conditions of no basal motion, and there is an additional basal torque
coming from the pivoting spring. In the clamped case (C) the base does not move,
and the pivot is so stiff that the tangent angle at the base remains fixed. . . . . . . . 28
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3.5 Role of cross-linkers in bending. A. For weak cross-linkers we have L ≫ ℓ, and
the resulting shape has a linearly decreasing curvature. As cross-linkers get stronger
(values for increasing shades of green are k = 10−1 pN/µm2, k = 102 pN/µm2 and
k = 103 pN/µm2), L becomes comparable and eventually bigger than ℓ, which flattens
the resulting shape. B. Dependence of maximal curvature with cross-linker stiffness
for three values of basal compliance. The softer the cross-linkers, the larger the
curvature. Lighter shades of red correspond to lower values of k0 (k0 = 92352 pN/µm,
k0 = 923.5 pN/µm and k0 = 9.2 pN/µm), and the dots correspond to the shapes in
A. C. Dependence of maximal curvature with basal stiffness for three decreasing
cross-linker stiffness (decreasing shades of blue correspond to k = 2280 pN/µm2, k =
228 pN/µm2 and k = 22.8 pN/µm2). Stiffer bases result in higher curvatures. D.
Three examples of shapes corresponding to the dots in C. Other parameters are κ =
1730 pN·µm2; L = 30µm; a = 0.185µm; fm = 500 pN/µm and, unless otherwise
specified, k0 = 92352 pN/µm and k = 228 pN/µm2, which results in ℓ ≈ 15. . . . . . 29

3.6 Bending with a cross-linker gradient. The maximal curvature grows with the
cross-linker slope ϵ. Values are as in Fig. 3.5, with increasing shades of green corre-
sponding to k̃ = 10−1 pN/µm2, k̃ = 102 pN/µm2 and k̃ = 104 pN/µm2. ℓ is defined
with k(s = 0) = k̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Force-velocity curve of a collection of motors. For values of the control param-
eter Ω in the subcritical region Ω < Ωc the force velocity curve is monotonic. In this
regime, in the absence of any force, motors move at the collective velocity v0 > 0.
At the critical value Ω = Ωc an instability occurs, and in the region where Ω > Ωc

the system is unstable and there are two possible collective velocities. Coupling the
motors with an elastic element will then give rise to oscillations [42]. For Eq. 4.7 we
have Ω = α1, and v0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Oscillatory instability of motor force. A. For values of the control parameter
α1 < αc the system is stable and shows damped oscillations. B. At the critical point
α1 = αc sinusoidal oscillations occur. C. Far from the critical point α1 > αc non-linear
oscillations occur, with higher harmonics and a different frequency to that of critical si-
nusoidal oscillations. In this example, triangular waves. The parameters used for this
numerical integration of Eqs. 4.7 and 4.9 are k = 1812 pN/µm2, ξi = 9.76 pNs/µm2,
τ = 0.00378 s, α1 = {15, 17.6, 30}pN s/µm2 and α3 = 4· 10−3 pN s3/µm4. The same
initial sliding was used in all cases, and the axes of all three panels are equal. . . . . 36

4.3 Sliding oscillations of antagonistic biochemical motors. A. The probabilities
of the motors in the rigid filaments A and B to be bound oscillate with a phase shift.
B. The mismatch in binding probability generates a net active motor force fm, which
is also oscillatory. C. This finally results in sliding oscillations. The parameters
used for this numerical integration of Eqs. 4.15 and 4.17 are k = 1812 pN/µm2,
ξi = 9.76 pNs/µm2, kon = 14 s−1, k0 = 2.3 s−1, α = 0.04, ρA = ρB = 103 motors/µm,
F c = 1pN, and Fst = 4pN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Formation of arcs under force regulation. A uniform force distribution (panel
A, red curve) produces a spiral shape (panel B, red curve). Tip-concentrated force
distributions (panel A, yellow and blue curves) produce nearly circular arcs (panel B,
yellow and blue curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Comparison of model and tracked data. A. Tangent angle vs arc-length for
several control mechanisms. Red line corresponds to no control (or sliding control),
yellow to normal force control, and blue to curvature control. Black circles correspond
to tracked data, note that no control departs significantly from the data. B. Curvature
vs arc-length for three control mechanisms. The data, which is noisier than in A, shows
a roughly constant curvature that decreases towards the end. Normal force control
(yellow) and curvature control (blue) show the same behavior, but no control (in red)
does not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Swimming path of the axoneme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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5.1 Onset of modes instability in cilia. A, B, C. The value of |Γ|−1 (with Γ the
boundary value determinant of a free cilium) is plotted as a function of the relaxation
rate σ′ and frequency σ′′ using the motor model in Eq. 4.7 (red dots correspond
to divergencies, where modes lie). In the subcritical regime all modes are stable,
with negative relaxation rate. In the critical regime the mode denoted by 1 becomes
unstable with a zero relaxation rate. In the supercritical regime mode 1 is unstable.
D, E, F. Time traces for the tip angle after solving the non-linear dynamic equations
for the values used in A, B and C correspondingly. There is a clear transition from
damped, to critical, and supercritical oscillations. Parameters used as in Fig. 5.2, and
for the motor model k = 228 pN/µm2, ξi = 0.1 pN· s/µm2, α3 = 2· 10−4 pN· s3/µm4,
τ0 = 0.0038 s and α1 = 0.8 pN· s/µm2 (for A and D), α1 = 1.24 pN· s/µm2 (for B and
E) and α1 = 1.52 pN· s/µm2 (for C and F). . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Critical beats of free cilia under sliding control. A. Space of critical solutions
for free ends. The value of |Γ|−1 is plotted as a function of χ, where Γ is the determi-
nant to the boundary value problem. Yellow to blue corresponds to increasing values,
and divergences (red dots) correspond to critical modes. These are numbered by
|χn| < |χn+1| (one divergence corresponds to a trivial solution, and is not marked).
B. Color code used throughout this thesis, as time progresses over one period the
shade of the cilium changes color counter-clockwise. C. Three critical beats for free
cilia. While mode 1 shows a forward (base-to-tip) traveling wave which results in
swimming towards the left, mode 2 has a backward traveling wave, and mode 4 shows
no wave propagation, being a standing mode. Arrows denote direction of wave propa-
gation. The parameters used were the typical ones of Bull Sperm: κ = 1730 pN·µm2,
ξn = 0.0034 pN· s/µm2, L = 58.3µm, ωc = 2π· 20· s−1, a0 = 0.185µm and k0 = ∞
(which ensures no basal sliding). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Length scaling of modes. A. Scaling of the real (χ′, solid lines) and imaginary
(χ′′, dashed lines) parts of the eigenvalues for the first and second modes in Fig. 5.2.
The real part vanishes (linearly) for short lengths. B. Scaling of the wave velocity
(see Eq. 5.11) with the length of the cilium, arrows mark typical values for Chlamy-
domonas and Bull Sperm. Short cilia show no wave propagation, as all solutions
become standing waves. Long cilia allow forward (in mode 1) and backward (in mode
2) wave propagation. The basal stiffness is k0 → ∞, which prevents basal sliding. . . 47

5.4 Scaling of modes with normalized basal stiffness. A. Since mode 2 is a standing
mode it does not vanish for small values of k̄0 = a20Lk0/κ. Mode 1 however is a
directional mode, and vanishes in the absence of basal compliance (as k0 → 0 we
have χ′ ∝ k0 and χ′′ ∝ k20). B. Mode 1, which is a directional mode, does not
substantially alter its directionality as the basal stiffness changes. Mode 2 looses its
directionality when the base decreases its stiffness. Parameters as those in Fig. 5.2,
which correspond to L/ℓ0 = 7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Non-linear beat pattern of a free cilium. A. Time trace of the swimming cilium
with mode 1 dominating (see Fig. 5.2). The base is to the left, and the wave propagates
right towards the tip, making the cilium move towards the left. Parameters as those
in Fig. 5.1, with α1 = 5.2 pN· s/µm2 and α3 = 2· 10−3 pN· s3/µm4. B. The power
spectrum of the angle at the mid-point of the cilium (obtained through a Discrete
Fourier Transform of the numerical integration) shows peaks in the odd harmonics,
due to the antisymmetry of the problem to the transformation t→ −t. . . . . . . . . 49

5.6 Tangent angle of linear and non-linear solution. A. Kymograph of the tangent
angle of the analytical critical solution over three periods. As one can see the waves
propagate from base to tip. It is also clear that the amplitude decreases towards the
tip. Height normalized to match that of the non-linear solution. B. Same as A but for
the non-linear solution obtained numerically. We can see that frequency, wave profile
and amplitude are in good agreement with the analytical linear solution. Parameters
as in Fig. 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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5.7 Beat patterns with different boundary conditions. A. Beat pattern for a freely
pivoting base, the wave travels and the basal stiffness has little relevance. B. Beat pat-
terns for a clamped base show a backwards traveling wave. Changing the basal stiff-
ness produces a significant change in the beat pattern. In A top ξ0 = 26.8 pN· s/µm,
k0 = 102 pN/µm, α1 = 16.8 pN· s/µm2, α3 = 1.6· 10−3 pN· s3/µm4; bottom same
besides k0 = 105 pN/µm and α3 = 4· 10−2 pN· s3/µm4. In B α1 = 18pN· s/µm2,
α3 = 4· 10−3 pN· s3/µm4, ξ0 = 268 pN· s/µm, with top k0 = 103 pN/µm and bottom
k0 = 5· 105 pN/µm. Other parameters as in Fig. 5.1, with ξi = 9.3 pN· s/µm2 and
k = 228 pN/µm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.8 Wave velocity vs pivoting stiffness. As the pivoting stiffness increases, the wave
velocity of mode 1 decreases. At a certain value the wave reverses and the wave
propagates backwards. This is in agreement with Fig. 5.7, which shows backwards
waves for clamped (kp → ∞) and forward traveling for pivoting (kp → 0). Parameters
as in Fig. 5.2, with k0 = 8.7· 103 pN/µm. . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.9 Linear beats of clamped cilia under sliding control. A. Space of solutions for a
clamped cilium, with red dots in the critical modes (again we see a trivial mode). B.
Three critical beats. The first mode shows backwards wave propagation, as already
discussed. The second mode is a standing mode. Mode 3 however shows forward
propagation, and the beat patter is similar to that of Bull Sperm. Parameters as in
Fig. 5.2, but for a frequency of 14.7s−1. . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.10 Forward wave in clamped cilium. Using the motor model of Eq. 5.12 allows to
excite the second mode at a frequency of 14.7 s−1. This beat is similar to that of Bull
Sperm, although with lower amplitude. The parameters used are those in Fig. 5.2,
with a basal stiffness k0 = 92352 pN/µm, a basal compliance ξ0 = 268 pN· s/µm.
The motor parameters are τ0 = 10−3 s, m = 3.5· 10−5 s2, α1 = 110 pN· s/µm2, and
α3 = 0.93 pN· s3/µm4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.11 Critical beats of free cilia under curvature control without basal compli-
ance. A, C. Space of critical solutions for free ends. The value of |Γ|−1 is plotted
as a function of β for a fixed value of χ. Divergences (red dots) correspond to critical
modes, which are numbered by |βn| < |βn+1|. The region of orward modes is in A,
and that of backward modes in C (these regions are symmetric to each other). B , D.
Time traces of the first two modes, which in A show forward wave propagation (thus
swimming to the left), and backwards traveling waves in D. Arrows denote direction
of wave propagation.The parameters used were the typical ones of Chlamydomonas
cilium: κ = 400 pN·µm2, k = 15· 103pN/µm2, ξn = 0.0034 pN· s/µm2, L = 12µm,
ωc = 2π· 40· s−1, a0 = 0.06µm and k0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12 Depdence of modes with normalized basal stiffness. A. The eigenvalues of first
forward and backward modes show little dependence on the basal compliance k̄0 =
a20Lk0/κ. In particular, they are both directional. B. The wave velocity decreases as
the basal stiffness decreases, but always maintaining its sign unaffected. Parameters as
those in Fig. 5.11, which correspond to normalized length L/ℓ0 ≈ 2.4 and normalized
sliding stiffness k̄ ≈ 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.13 Scaling of modes with cilium length. A. Scaling of the real (β′, solid lines) and
imaginary (β′′, dashed lines) parts of the eigenvalues for the first and second modes
in Fig. 5.11. The real part vanishes for short lengths. B. Wave velocity vs length of
the cilium, arrows note typical values for Chlamydomonas and Bull Sperm. Unlike in
sliding control, short and long cilia allow for strong wave propagation. Parameters as
in Fig. 5.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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5.14 Non-linear beat pattern of a free cilium regulated by curvature. A, B.
Time traces of swimming cilia with mode 1 (in A) and mode 1− in B dominating (see
Fig. 5.2). In A the wave travels forward and the cilium to the left, vice-versa in B. C.
The power spectrum of the angle at the mid-point of the cilium for the trajectory in
A has a fundamental frequency of f = 29.2 s−1. Parameters in A as those in Fig. 5.11,
with α1 = 700 nN, α3 = 5000 nN·µm2 and τ0 = 0.3 s. In B the same with change
α1 → −α1 and α3 → −α3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.15 Tangent angle of linear and non-linear solution. A. Kymograph of the tangent
angle of the analytical critical solution over three periods for mode 1. Waves propagate
forward (base to tip) and the amplitude is roughly constant along arc-length with
a dip around the mid-point. Height normalized to match that of the non-linear
solution. B. Same as A but for the non-linear solution which was obtained numerically.
Frequency, wave profile and amplitude are in good agreement with the analytical
linear. Parameters as in Fig. 5.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.16 Beat patterns with different boundary conditions. A. Beat patterns of the
forward and backward modes for a freely pivoting base. B. Forward and backward
beat patterns for a clamped base. Parameters as in Fig. 5.11, besides: in A and B top
α1 = 500 nN, α3 = 2000 nN·µm2 and τ0 = 0.03 s; in a and B bottom α1 = 180 nN,
α3 = 20nN·µm2, and τ0 = 0.03 s. The emerging beat frequencies in A and B top to
bottom are: f = 199.9 s−1, f = 248.3 s−1, f = 132.3 s−1 and f = 132.4 s−1. . . . . . . 56

6.1 Symmetric and asymmetric planar beats. A. Symmetric beat patterns such as
the one of Bull Sperm have a flat mean shape (green line). B. Asymmetric beats such
as that of the Chlamydomonas cilium show a curved mean shape (green line). . . . . 60

6.2 Dispersion relation for curvature control. A. Relaxation rate of a fixed wave-
length perturbation for three values of the control parameter. At the critical point
two modes become unstable. B. Characteristic frequency of the modes. Since qc has
frequency ωc and −qc has frequency −ωc, both modes have the same direction of
propagation. The values of the control parameter used are {αc/2, αc, 3αc/2} (in red,
green and blue respectively), and time is in units of τ0. . . . . . . . . . . . . . . . . . 63

6.3 Examples of critical asymmetric beat patterns. A. Beat patterns of a clamped
cilium under sliding, curvature, and normal force control. Sliding control produces
standing waves, curvature and normal force control produce forward traveling waves.
B. Same as A but for a pivoting base boundary conditions, as corresponds to the
intact Chlamydomonas cilium. Arrows denote direction of wave propagation. The
parameters used for the cilium were those typical of Chlamydomonas used in the
previous chapter (as in Fig. 5.11) with a static curvature C0 = −0.25µm−1. The
resulting response coefficients preserved the sign convention of table 6.1, with γ′ < 0. 64

6.4 Fits of Chlamydomonas wild-type beat. Best fits of the real (orange) and imaginary
(blue) parts of the first Fourier mode of the tangent angle under sliding control (A),
curvature control (B) and normal force control (C). Below, the corresponding position
space tracked data for the first mode (D) followed by the fits (E to G). Arrows
denote direction of wave propagation. The data corresponds to a cilium of length
L = 10.13µm, frequency f = 73.05 s−1, and mean curvature C0 = −0.25µm−1 . . . 65

6.5 Fits of Chlamydomonas mbo2 beat. Best fits of the real (orange) and imaginary
(blue) parts of the first Fourier mode of the tangent angle under sliding control (A),
curvature control (B) and normal force control (C). Below, the corresponding position
space tracked data for the first mode (D) followed by the fits (E to G). The data
corresponds to a cilium of length L = 9.43µm, frequency f = 38.00 s−1, and mean
curvature C0 = −0.027µm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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A.1 Reconstructed vs tracked trajectories.. Tracked trajectories (in yellow) and re-
constructed trajectories (in black) using the plane wave approximation of the beat
(in Eq. A.11) and a RFT model of the fluid (Eq. A.12). The values used in the
panels {A,B,C} are: C0 = {0.26, 0.22, 0.28}µm−1, λ = {11.2, 11.0, 10.1}µm, L =
{12, 11, 11}µm, frot = {7.7, 5.0, 5.9}s−1, ν = {62.5, 62.7, 65.1}s−1, andA = {0.67, 0.54, 0.66}.
Figure adapted from [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.1 Modes 1 and 2 of sliding control for free ends. As one can readily see, for a large
basal compliance (panels to the right) both modes are directional and have opposing
directions of wave propagation. As the basal compliance vanishes mode 2 looses
its directionality and becomes a standing mode, while mode 1 remains directional.
Parameters as in Fig. 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.2 Mode 1 of curvature control for free ends. A large change in the basal stiffness
has a minimal effect on the beat pattern of this mode. Parameters as in Fig. 5.11,
with low and high basal compliances corresponding to k0 = 0 and k0 = 104 pN·µm−1. 79
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