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Abstract

The development of a multicellular organism, such as a human or an animal, begins
with the fertilization of an egg cell. Thereupon the organism grows by repeated cell
divisions until the adult size is reached and growth stops. Although it is known that
intrinsic mechanisms determine the final size of developing organs and organisms,
the basic principles of growth control are still poorly understood. However, there
is strong evidence that certain morphogens, which are a special class of signaling
molecules, act as growth factors and play a key role in growth control.

In this work, growth control is studied from a mainly theoretical viewpoint. A
discrete vertex model describing the organization of cells by a network of polygons
is used, including a description of the cell cycle and a description of dynamical
morphogen distributions. Self-organized growth is studied by introducing growth
rules that govern cell divisions based on the local morphogen level. This discrete
description is complemented by a continuum theory to gain further insight into the
dynamics of self-organized growth processes.

The theoretical description is applied to the developing wing of the fruit fly
Drosophila melanogaster. In the developing wing, which is an epithelium consisting
of single-layered cell sheets, the morphogen Decapentaplegic (Dpp) acts as a key
growth factor. Experimental data shows that the Dpp distribution is dynamic and
adapts to the size of the developing wing. Two mechanisms that rely on a regula-
tory molecule species and lead to such a dynamic behaviour of the Dpp distribution
are studied. Several growth rules are tested and the resulting growth behaviour is
quantitatively compared to experimental data of the developing wing. A partic-
ular growth rule, that triggers a cell division when the local morphogen level has
increased by a certain relative amount, is found to be consistent with experimen-
tal observations under normal and several perturbed conditions. It is shown that
mechanical stresses that arise due to spatial growth inhomogeneities can have a
stabilizing effect on the growth process.
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1. Introduction

1.1. The Development of Multicellular Organisms

The development of a multicellular organism from a single cell is an intriguing form
of self-organization. Although nearly all cells within an organism are genetically
identical [5], internal processes lead to the emergence of highly organized structures
such as eyes, hearts, and brains. An adult human body, for example, consists
of roughly 1013 cells, and is characterized by more than 200 different cell types
and 11 major organ systems, each consisting of various specialized organs [5, 167].
To generate such high complexity, several developmental processes such as growth,
pattern formation, and cell differentiation act in concert [182]. Growth is achieved by
an increase in cell size, an increase in cell number, and by deposition of extracellular
materials such as bone and shell. The emergence of spatio-temporal patterns of cell
activities that lead to regular structures is called pattern formation. An important
function of pattern formation is to define the main body axes, for example the axis
which runs from the head to the tail of the organism. Cell differentiation is the
process that renders cells structurally and functionally different from each other,
leading to distinct cell types such as muscle or skin cells. How growth, pattern
formation, and cell differentiation are coordinated during development is largely
unknown. However, there is evidence that special signaling molecules, which are
known as morphogens, play a key role for the coordination of these processes.

1.1.1. Morphogens and Pattern Formation

In 1952, the mathematician Alan Turing suggested that systems of reacting and
diffusing chemicals could account for pattern formation during development [170].
He termed these chemicals morphogens. Turing showed that stable spatial patterns
can evolve from initially homogeneous morphogen distributions due to a diffusion
driven instability. Many patterns which are generated by this mechanism bear a
striking resemblance to coat patterns found on animals like the zebra or leopard. It
has therefore been suggested that Turing’s mechanism underlies most of the observed
coat markings [122]. Whether this is actually true has not yet been confirmed
experimentally. However, Turing’s idea has inspired extensive research on pattern
formation in reaction-diffusion systems [68, 113, 131, 96, 123].

The contemporary morphogen concept was established by Lewis Wolpert in 1969
[181]: morphogens are signaling molecules that spread from localized sources and
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form graded concentration profiles in a tissue, so that the local morphogen con-
centration contains positional information. Such concentration profiles are called
morphogen gradients. The response of target cells, for example the expression of a
certain gene, directly depends on the local morphogen concentration. The French
flag model provides a clear illustration of Wolpert’s idea (see figure 1.1). Many
morphogens that match the contemporary definition have been found in develop-
ing organisms. Well known examples are Bicoid [45, 46, 47, 48], Activin [70, 72],
Hedgehog [12, 85, 80], Decapentaplegic [59, 179, 102, 126], Squint [34], and Sonic
hedgehog [140]. Morphogens are highly conserved in evolution, so that the same
type of morphogen is usually found in different organisms.

Morphogen concentration

Position

Target cells

Morphogen thresholds

Figure 1.1.: The French flag model of pattern formation. The cells are exposed to a
decaying morphogen gradient. Each cell can differentiate into one of three different cell
types, which are indicated by the colors blue, white, and red. The cell type is determined
by the local morphogen concentration in a threshold dependent manner.

Binding to receptors on the cell surface, morphogens can trigger intracellular
signaling cascades that lead to the expression of target genes [77, 151, 172, 143].
Theoretical analysis of signaling systems has shown that feedback loops can generate
bistability with well-defined input thresholds for the transition between states [18,
8]. Indeed, the expression of target genes often behaves like a switch, changing
discontinuously at certain morphogen thresholds [71]. However, it has also been
observed that cellular responses depend on the exposure time to the morphogen
[40, 74], or on the combination of several morphogen signals [54].
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Recently it was proposed that certain morphogen gradients adapt to the size of
the tissue. This behaviour, which is called gradient scaling, has been suggested
for the BMP (Bone Morphogenetic Protein) activity gradient in Xenopus embryos
[15], and for the Dpp (Decapentaplegic) gradient in the Drosophila wing imaginal
disc [174, 175]. Such scaling behaviour has also been reported for the concentration
profiles of molecules that act downstream in morphogen signaling cascades [163, 81,
175]. Gradient scaling is an important feature because it can ensure that patterns
are appropriately scaled and proportions are preserved if the size of an organism
deviates from the usual size, for example due to lack of food [10]. For the mechanism
underlying scaling of the BMP activity gradient a simple model has been proposed
[15]. However, neither the role of gradient scaling nor the mechanism underlying it
are understood in the case of the Dpp morphogen in the Drosophila wing imaginal
disc. Scaling of the Dpp gradient is the subject of chapter 3.

1.1.2. Morphogens and Growth Control

In contrast to pattern formation, little is known about the principles of growth con-
trol. How the sizes of animals or organs are determined still remains an open question
[36]. For the normal growth of organs during development, extrinsic factors such as
nutrients and hormones are essential. However, these extrinsic factors do not deter-
mine the size under normal conditions. Instead, it has been suggested that the size
of organs is determined by organ-intrinsic mechanisms [27]. Strong evidence for such
mechanisms is provided by experiments in which developing organs grow to their
characteristic sizes after the transplantation into adult hosts [171, 114, 42, 153, 27].
Because growth and pattern formation are closely interrelated, it is not surprising
that many morphogens are crucial for growth regulation. Growth promoting effects
have for instance been observed for Sonic hedgehog in the chick wing [168] and in the
vertebrate neural tube [32], and for Hedgehog in the developing Drosophila eye [49].
Other examples are morphogens belonging to the TGF-β superfamily (Transforming
Growth Factor β) or to the FGF family (Fibroblast Growth Factor) [94].

The best studied model system for growth control is the developing wing of the
fruit fly Drosophila melanogaster, on which we will focus in the following. There, the
morphogen Decapentaplegic plays a key role for the organ-intrinsic growth control
mechanism [4, 145]. Because it is most likely that growth control mechanisms are
similar in different species, it is expected that the understanding of wing development
is of great value.

1.2. The Fruit Fly Drosophila Melanogaster

1.2.1. Development of the Fly

The fruit fly Drosophila melanogaster has been used as a biological model system
for a century, starting with the first Drosophila research paper published in 1910 by
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Thomas Morgan [120]. He was awarded the Nobel Prize in Physiology or Medicine
1933 for his discoveries concerning the role played by the chromosome in heredity.
Today, the fruit fly is one of the best studied organisms, in particular concerning its
genetics and developmental biology. The genome of Drosophila has been sequenced
and is thought to contain roughly 13,600 genes [2].

Figure 1.2.: Drawings of a male (left) and female (right) wild type Drosophila
melanogaster by E. M. Wallace (1934). Courtesy of the Archives, California Institute
of Technology.

Development of the fly begins with the fertilization of the egg, which is approx-
imately 0.5 mm long and oval in shape [50]. The embryo develops inside the egg,
until a larva hatches after one day. Larval life, during which most growth takes
place, is divided into three stages between which molts occur. Each stage is called
an instar. The larva grows from 0.5 mm at hatching to 4.5 mm at the end of the
third instar. Five days after fertilization, the larva encapsulates in the puparium
and undergoes metamorphosis, during which an extensive morphological transfor-
mation occurs. The adult fly, which is about 2.5 mm long, emerges from the pupal
case after approximately four additional days. The speed of development depends
on temperature; the given timings correspond to T = 25◦C.
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1.2.2. The Wing Imaginal Disc

Figure 1.3.: (A) Cartoon of a wing imaginal disc. The oval region in the lower part
indicates the wing pouch, which forms the wing blade during metamorphosis. The ex-
pression domains of Hh (green) and Dpp (red) are shown. The dashed line indicates the
compartment boundary, which separates the anterior compartment (A) from the posterior
compartment (P). Figure reprinted from [38], with permission from Elsevier. (B) Imagi-
nal discs in the Drosophila larva, and the corresponding adult body parts formed during
metamorphosis. The discs are drawn to the same scale, and are oriented to show their
mature shapes and folding. Placements are approximate and half of the larval midsection
is omitted here. There exist two discs of each type 1-9, so in total, a larva contains 19
imaginal discs. Figure reprinted from [76], with permission from Cambridge University
Press.

Structure of the Wing Imaginal Disc

Many body parts of the adult fly that are formed during metamorphosis, for ex-
ample the wings, legs, or eyes, develop inside the larva as imaginal discs (see figure
1.3). Imaginal discs are composed of single-layered sheets of epithelial cells. The
two imaginal discs that form the wings during metamorphosis are called the wing
imaginal discs, or simply wing discs. A wing disc is essentially a two-sided epithelial
sac. One side is composed of elongated, columnar cells and the other side, which
is known as the peripodial membrane, consists of flat cells (see figure 1.4). The
columnar side of the disc forms the wing blade, wing hinge, and parts of the body
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wall during metamorphosis. The wing blade is formed by the wing pouch, which is
an oval-shaped part of the columnar epithelium (see figure 1.3).

Epithelial cells form characteristic cell packings due to adhesive junctions in their
apical region. The predominantly hexagonal cell pattern was already noted in early
microscopic analyses of epithelia [147]. However, due to geometric disorder induced
by cell divisions [103, 104], the growing wing disc does not exhibit a regular hexag-
onal pattern. Instead, the cell packing geometry in the wing disc can be described
by a distribution of polygons with different neighbour numbers [58, 157, 67].

The wing disc consists of two different cell populations, anterior cells and poste-
rior cells, which remain separated during development [65]. Each of these two cell
populations is called a compartment. The straight interface that separates the ante-
rior and posterior compartments is called a compartment boundary [38]. During the
second larval instar, another perpendicular compartment boundary forms, separat-
ing the dorsal and ventral compartments [66, 41, 128]. Compartments are relevant
for growth control because they determine where morphogens are produced.

Growth Behaviour of the Wing Imaginal Disc

The wing disc initially consists of approximately 40 cells [105]. During the four
days of larval development, the number of cells increases approximately 1000-fold
due to cell divisions [55, 64, 69], which occur approximately homogeneously in space
[69, 64, 146]. It has been observed that cell divisions have a preferred orientation
with respect to the dorsal-ventral compartment boundary [9], and that growth is
weakly anisotropic [20]. Like other developing organs, the wing disc is thought to
possess an organ-intrinsic growth control mechanism [27]. Strong evidence for such
a mechanism is provided by experiments in which developing wing discs grow to
normal sizes when transplanted into adult flies [63, 26].

Damaging some of the imaginal discs in the larva can retard the pupal stage of
development. Although the intact imaginal discs have additional time for growth
under such conditions, the discs develop into organs of normal size [154]. This
experiment demonstrates that the available time for growth does not determine the
final size of an organ.

It has also been shown that the maximum speed of growth does not determine
the final organ size. This has been shown using experiments involving the group
of Minute mutations, which owes its name to the abnormally small bristles on the
adult body. In cells carrying a Minute mutation, growth is slowed down as compared
to non-Minute cells due to reduced ribosome levels [119, 144, 112]. It is possible to
generate wing discs with a Minute anterior compartment and a non-Minute posterior
compartment. Although the Minute compartment grows slower than the non-Minute
compartment, the final size of both compartments is normal at the end of larval
development [108]. This experiment also demonstrates that the sizes of the two
compartments are controlled separately.

In two other experiments it is shown that the number of cells can be altered
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Figure 1.4.: Dpp gradient in a grown wing disc. The scale bars correspond to 50 µm.
The anterior compartment is on the left side in these pictures. (A) Double staining of
the wing disc showing Dpp in green and cell profiles in red. The arrowhead points to the
Dpp source in the columnar epithelium and the asterisk indicates the Dpp source in the
periopodial membrane. (B) Double staining of a cross section of the wing disc along the
dashed blue line in A, showing cell profiles in red, superimposed by GFP-Dpp expression
(green) in the lower panel. (C) Magnified view of GFP-Dpp localization in a region of
the wing disc corresponding to the yellow box in A. (D) Schematic representation of the
wing disc section shown in B. Here, the green color indicates the location of the Dpp
source (arrowhead: columnar epithelium, asterisk: peripodial membrane). The peripodial
membrane is colored red elsewhere. Figure adapted from [98], with permission from The
Company of Biologists.
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without significantly affecting the size. In the first experiment, two rounds of cell
divisions are blocked in a compartment without changing its size. The affected
compartment contains fewer but larger cells [177]. In the second experiment, the
number of cells in a compartment is changed by manipulating the expression of cell
cycle genes. Nevertheless, compartment sizes are not changed significantly [127].

Apoptosis (cell death) is a rather rare phenomenon in wild type wing discs. Ap-
proximately 1.4% of the cells are dead at any instant. Dead cells remain in the
epithelium for 2–4 hours before they are engulfed by other cells [116]. Apoptosis
becomes considerable in experiments with Minute mutants, where a phenomenon
known as cell competition has been observed: slow growing Minute cells next to fast
growing non-Minute cells exhibit an increased apoptosis rate, which leads to the
complete elimination of Minute clones in a non-Minute background [119, 155, 159].
It was thought that cell competition is important to ensure the proper final size of
the organ under such conditions. However, recently it was shown that cell compe-
tition plays no significant role in growth control [107]. This conclusion was drawn
from the observation that compartment sizes are unchanged if cell competition is
inhibited by an antiapoptopic protein.

The described growth behaviour suggests that the mechanism that controls the
size of the wing disc neither relies on counting cell numbers nor on measuring time.

Morphogens Produced in the Wing Imaginal Disc

Four morphogens are known to play a role in wing development: Hedgehog (Hh),
Decapentaplegic (Dpp), Wingless (Wg), and Glass bottom boat (Gbb). Hh is only
produced in the posterior compartment [162, 12]. The Hh receptor Patched (Ptc)
is in turn only expressed in the anterior compartment. Thus, only anterior cells can
respond to Hh [79, 125, 132]. Hh is degraded in the anterior compartment, such
that it forms a decaying morphogen gradient there [166, 35]. Anterior cells respond
to Hh by producing Dpp if the Hh concentration is sufficiently high [12, 85, 183]. As
a result, Dpp is produced in a narrow stripe along the anteroposterior compartment
boundary (see figure 1.3). Dpp molecules are degraded while spreading in the whole
wing disc, which leads to a decaying morphogen gradient [93]. The Dpp gradient
has been visualized by labeling Dpp with green fluorescent protein (GFP), see figure
1.4 [53, 163]. The genes spalt and optomotor-blind are transciptionally activated
at different Dpp concentrations [126, 102]. Spalt is only expressed close to the
Dpp source, whereas optomotor-blind has a broader expression domain. Like Dpp,
Gbb also belongs to the TGF-β superfamily [180, 73]. The expression domain of
Gbb essentially comprises the whole wing disc [92]. The expression pattern of Wg
changes during development. From the late third larval instar on, Wg is produced
in a narrow stripe at the dorsoventral compartment boundary and in rings that
outline the wing pouch [184, 110]. Whether or not Wg is a classical morphogen is
controversial because there is evidence that Wg only maintains the expression of its
target genes instead of initiating it [110].
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Effects of Morphogen Signaling on Growth

The morphogen Dpp plays a major role in growth control [4, 145]. The name De-
capentaplegic was coined because mutations in the corresponding gene cause defects
in 15 of the 19 imaginal discs [156]. If Dpp production is defective, the wing disc fails
to grow sufficiently and forms a small stump instead of a wing [183, 156]. Clones
lacking the Dpp receptors Punt or Thickveins also fail to grow [28]. Furthermore,
the inhibition of Dpp signaling slows cell growth and division [109]. Conversely, ec-
topic expression of Dpp in the wing disc causes additional growth [30, 183]. Clones
expressing a permanently active Dpp receptor overgrow as well [126, 102, 109, 141].

Compared to Dpp, the other morphogens seem to play a less important role in
growth control in the wing disc. A direct influence of the morphogen Hh onto cell
proliferation has not been observed in the wing disc. The morphogen Wingless
(Wg) owes its name to the fact that mutations in the corresponding gene give rise
to wingless flies [150]. Instead, these mutant flies show a symmetric duplication
of body wall structures [118]. The absence of wings in Wg mutants is not due to
insufficient growth as in Dpp mutants. Rather, the explanation seems to be that Wg
signaling is required to specify which cells will form the wing [129]. Without this Wg
signal, cells that normally would form the wing will form body wall parts instead. It
has also been shown that Wg signaling inhibits apoptosis in the wing. Furthermore,
Wg signaling represses growth in the wing pouch during the third larval instar [88].
Little is known about the role of Gbb in growth control. However, mutations in the
Gbb gene have mild effects as compared to Dpp mutations [92, 73].

1.3. Theoretical Approaches

1.3.1. Formation of Morphogen Gradients

Several different models for the formation of morphogen gradients have been pro-
posed. Shortly after the contemporary morphogen concept was introduced by Wolpert
[181], Francis Crick suggested in a theoretical study, that morphogen gradients are
formed by simple diffusion of the morphogens in the tissue [37]. Indeed, there is
experimental evidence that the Dpp and Wg gradients in the wing disc form via
extracellular diffusion [13, 161]. In another model, extracellular propagation guided
by receptors on the cell surface is proposed as a mechanism for the formation of
morphogen gradients [91]. Another suggestion is that cytonemes, actin-based ex-
tensions which project from the cells to the Dpp source, play a role in Dpp transport
[138, 82]. The suggested role of cytonemes in Dpp transport has little experimental
support.

Contrary to the suggestion that the Dpp gradient forms via extracellular diffusion
[100], it has been argued that diffusion alone cannot account for the dynamics of
the Dpp gradient in the wing disc. Instead, it is thought that active transport
of Dpp via endocytosis and re-secretion is essential [98, 53]. Because morphogens
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move from cell to cell in a planar fashion in this model, the mechanism is known as
planar transcytosis. It has been shown that transcytosis leads to robust morphogen
gradients, which are insensitive to the morphogen production rate [24, 25, 23]. On
length scales large compared to a cell diameter, planar transcytosis can be described
by nonlinear reaction-diffusion equations. The kinetic parameters governing Dpp
spreading in the wing disc have been determined experimentally, using a linearized
equation of the form

∂c(x, t)

∂t
= ν(x, t)− kc(x, t) +D

∂2c(x, t)

∂x2
(1.1)

to describe the dynamics of the Dpp gradient [93]. Here, c(x, t) is the Dpp area
concentration, ν(x, t) is the production rate per unit area, k is the degradation rate,
and D is the effective diffusion coefficient of Dpp molecules. Which model provides
the best description of the morphogen gradients in the wing disc is still an open ques-
tion. Therefore, details of morphogen gradient formation are not taken into account
in this work: the dynamics of morphogen gradients is either described by equations
of the form (1.1) or by spatially discrete versions of it. In other studies, systems
of partial differential reaction-diffusion equations have been used to investigate the
robustness of morphogen gradients with respect to gene expression levels [51, 52].
Furthermore, scaling of morphogen gradients with tissue size has been studied using
this approach [15, 10, 14].

1.3.2. Growth of Epithelia

Many biological tissues behave as soft, elastic materials on short timescales and as
viscous liquids on long timescales [139, 61, 164]. Furthermore, active processes such
as the chemically driven dynamics of the cytoskeleton characterize biological tissues,
which are therefore in a thermodynamic non-equilibrium state. Hydrodynamic the-
ories can describe the physical properties of such complex materials on large length
scales and long timescales [97, 75]. Such hydrodynamic theories have been used
to show that oriented cell divisions can lead to anisotropic tissue growth and thus
influence tissue shape [21, 20, 19].

Growth of epithelia can also be described by representing each cell individually
[22, 117, 44, 43]. In vertex models, which were originally introduced to study the
evolution of cellular structures such as foams, each cell is represented by a polygon
[158, 176, 124]. To describe growth of epithelia, vertex models have been developed
that take the mechanical properties of cells into account by means of a work function
[58, 83]. Simulations of a particular vertex model have shown excellent agreement
with experimental data with respect to the cell packing topology, morphology, and
the rate of apoptosis [57, 58, 157]. This vertex model, which is described in chapter
2, is used to describe the cell packing geometry of growing epithelia in this thesis.
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A B

Figure 1.5.: Simulation results of the vertex model that is used to describe the cell pack-
ing geometry of growing epithelia in this work (see chapter 2). The number of neighbours
is indicated for each cell by a color code. Green: 4, yellow: 5, white: 6, blue: 7, red:
8, violet: 9 or more. (A) Parameter values: Γ/KA(0) = 0.04, Λ/K(A(0))3/2 = 0.12 (B)
Parameter values: Γ/KA(0) = 0.1, Λ/K(A(0))3/2 = 0

1.3.3. Growth Control in the Wing Imaginal Disc

Many different models for growth control in the wing disc have been formulated
[4, 145]. In all of them, Dpp plays a key role. However, almost all of these models
are vague, lack experimental support, and have not been formulated in a mathe-
matical form. None of the existing models have been compared with quantitative
experimental data.

One difficulty in developing a model is to explain how the spatially inhomogeneous
distribution of Dpp molecules can induce spatially homogeneous growth in the wing
disc. It has been suggested that a gradient of a growth inhibitor that parallels the
Dpp gradient leads to spatially homogeneous growth [148]. This explanation seems
unlikely because no such growth inhibitor has been identified [4].

Another suggestion is that a mechanical feedback ensures growth homogeneity
[152]. According to this model, higher Dpp levels lead to faster growth. However, a
locally increased growth rate causes local compression of the tissue, which generates
mechanical stress. Sufficiently high mechanical stress in turn leads to a decrease
of the local growth rate. A simulation of this feedback mechanism using a vertex
model indeed yields approximately homogeneous growth [83]. Yet, experimental
observations that indicate that mechanical stress influences cell proliferation in the
wing disc are lacking. To explain the termination of growth, two crucial assumptions
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are made in this model: the Dpp gradient is radially symmetric and has a fixed
decay length [83]. From these assumptions it follows that a cell that is sufficiently
far away from the point-like Dpp source receives too little Dpp and thus stops
growing. This fact combined with the assumed radial symmetry of the Dpp gradient
results in a ring of non-proliferating cells, which leads to the compression of the
growing inner cells. The compression of the inner cells leads to the termination
of growth. A similar mechanism has been proposed in [3]. However, the assumed
radial symmetry and fixed decay length of the Dpp gradient are inconsistent with
experimental observations [175].

Another well known model assumes that the Dpp gradient is linear and that the
Dpp levels in the center and at the margin of the wing disc are fixed [39]. The
growth rate is assumed to be dependent on the slope of the gradient, which is
position-independent. As the disc grows, the slope of the linear gradient decreases
until growth finally terminates when the slope is sufficiently small. This model is
unsatisfactory because the assumption of a linear Dpp gradient is inconsistent with
reports of an exponentially decaying Dpp gradient [93]. Concerning whether or not
proliferation depends on the slope of the Dpp gradient, experimentalists have made
contradictory claims [141, 142, 146].

1.4. Overview of This Work

How can a morphogen gradient control epithelial growth in a self-organized manner?
Still, there exists no model that has substantial experimental support. In addition
to biological experiments, physical concepts are essential to develop a satisfying
model. Therefore, we have taken an interdisciplinary approach to the problem of
growth control. This work represents the theoretical viewpoint. The theoretical
description that is developed is general and can be applied to essentially any two-
dimensional tissue. However, most parts of this work are focused on a particular
model system, the Drosophila wing disc, for which quantitative experimental data
is available thanks to a collaboration with the biochemistry group of M. González-
Gaitán. The remainder of this thesis is organized as follows.

In chapter 2, a general description of morphogen gradients and growth in epithelial
tissues is developed. This description is based on a vertex model in which cells are
represented as polygons and mechanical tissue properties are taken into account. In
chapter 3, mechanisms that may underlie the scaling of morphogen gradients with
tissue size are explored. We study two different mechanisms that both require a
regulatory molecule species to achieve scaling of the Dpp gradient. In chapter 4 we
explore how growth of developing tissues can be controlled in a self-organized way.
We introduce local cellular growth rules that are based on a morphogen signal and
study the resulting growth behaviour of the system. We find temporal growth rules
that generate largely homogeneous growth and are consistent with experimental
data of the wing disc. In chapter 5, we develop mean field descriptions of the
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systems studied in chapter 4. It is shown that essential features are captured by
nonlinear dynamical systems. In chapter 6, the relationship between tissue growth
and mechanical stresses is investigated. We show that mechanical stresses can have
a stabilizing effect on tissue growth. The growth behaviour of perturbed systems,
most of which correspond to mutant wing discs, is studied in chapter 7 in order to
gain further insight into the properties of the cellular growth rules. We conclude in
chapter 8 with a discussion of what has been achieved in this work.





2. Morphogen Gradients and Tissue
Growth in a Vertex Model

2.1. Tissue Mechanics

v
lvv'

v'

Li

Aj

Figure 2.1.: Cellular packing obtained by a simulation of the vertex model. The area Aj
of cell j, the perimeter Li of cell i, and the length lvv′ of the bond 〈v, v′〉 are indicated.

The vertex model describes the network of adherens junctions of an epithelium
as a two-dimensional network of polygons [57, 58, 157]. Each polygon represents
a cell and the configuration of the network is characterized by the positions of the
vertices, and the connections between them. The mechanical properties of the cells
are captured by the work function

F =
∑
i

K

2

(
Ai − A(0)

i

)2

+
∑
i

Γ

2
L2
i +

∑
〈v,v′〉

Λvv′lvv′ , (2.1)

where the sum extends over all cells in the first two terms and over all bonds in the
third term. The first term describes area elasticity of cells with an elastic coefficient
K. Here Ai is the area and A

(0)
i is the preferred area of cell i. We choose the

value A
(0)
i = A(0) as the preferred area for all cells i that are not undergoing cell

division. The second term in (2.1) describes the stiffness of the cell perimeter Li by
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a coefficient Γ, and the third term accounts for the line tensions Λvv′ of the bonds
separating the cells. The bond connecting vertex v and v′ is denoted by 〈v, v′〉 and
lvv′ is the length of the bond.

We assign the constant line tension Λvv′ = Λ to all bonds, except those that sep-
arate different cell populations (see section 2.2). We consider stable and stationary
network configurations, which satisfy mechanical force balance and correspond to
local minima of the work function. The relaxation to the force balanced state is
performed numerically by minimizing F with respect to the vertex positions using
a conjugate gradient algorithm (see appendix F) [133, 136]. During the relaxation
process, bonds may shrink and vanish if it is energetically favourable. If a bond
vanishes it may form again and expand, such that it results in a cell boundary re-
arrangement (T1 process). If the area of a triangular cell reduces below a threshold
it is replaced by a single vertex (T2 process). This topological change corresponds
to extrusion of an apoptotic cell from the epithelium.

A B

Figure 2.2.: Topological changes in the vertex model. (A) Cell boundary rearrangement
between four cells (T1 process). (B) Elimination of a small triangular cell (T2 process).

We choose a simulation box of variable size and periodic boundary conditions.
The linear dimensions Lx and Ly of the periodic simulation box are determined
by the minimum of F for a given number of cells. This choice corresponds to
a situation where no external force is applied to the tissue. Note that periodic
boundary conditions are appropriate to describe the topology of the wing disc, which
consists of two cell layers that are connected at the edges.

2.2. Compartments and Their Interfaces

We introduce two different cell populations by assigning a population variable ρi to
each cell i. The variable ρi can assume two discrete states which are denoted A and
P , corresponding to the anterior (A) and posterior (P ) compartments of the wing
disc. In order to generate sharp interfaces between the populations we set the line
tension at bonds that separate cells from different populations to Λvv′ = κΛ, which
is increased by a factor κ as compared to other bonds. The increased mechanical
tension at the interface prevents mixing of the A and P populations when the
system is growing [101]. Due to the periodic boundary conditions there exist two
AP -interfaces in the system.
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2.3. Morphogen Dynamics

In a continuum description, the dynamics of the Dpp gradient with diffusion coeffi-
cient D and degradation rate k can be described by the following reaction-diffusion
equation (see appendix G) [175, 93],

∂c(x, t)

∂t
= ν(x, t)− kc(x, t) +D

∂2c(x, t)

∂x2
. (2.2)

Here, c(x, t) is the Dpp area concentration and ν(x, t) is the Dpp production rate
per unit area; x denotes position and t denotes time. The steady state solutions of
(2.2) are given by exponential functions with decay length λ =

√
D/k. In the vertex

model, we describe the distribution of the morphogens Dpp and Hh by assigning
molecule numbers n

(D)
i and n

(H)
i to each cell i, respectively. Production, degradation,

and transport of morphogen molecules are described by spatially discrete versions
of equation (2.2):

d

dt
n

(D)
i = p

(D)
i − k(D)

i n
(D)
i + d(D)

∑
j

bij

(
n

(D)
j − n(D)

i

)
, (2.3)

d

dt
n

(H)
i = p

(H)
i − k(H)

i n
(H)
i + d(H)

∑
j

bij

(
n

(H)
j − n(H)

i

)
. (2.4)

Here, pi is the production rate and ki is the degradation rate of the respective
morphogen in cell i. The third term on the right hand side of (2.3) and (2.4)
accounts for morphogen spreading by a diffusion process. The sum extends over all
neighbour cells j of cell i. The length of the bond separating cell j and i is denoted
bij. The parameter d and the diffusion coefficient D are related by D ' A

3/2
c d, where

Ac is the area of a cell. The solutions of (2.3) and (2.4) are determined numerically
using a fifth-order Runge-Kutta method with adaptive stepsize control [31, 136].

2.3.1. Rules for Morphogen Production

The Hh source is represented by the rule

p
(H)
i =

{
0 if ρi = A,

p(H) if ρi = P ,
(2.5)

and consists thus of the whole P population. The Dpp source is generated by the
rule

p
(D)
i =

{
p(D)Θ

(
n

(H)
i − n(H)

T

)
if ρi = A,

0 if ρi = P .
(2.6)

Here, Θ denotes the Heaviside step function, and n
(H)
T is the Hh threshold above

which Dpp production is switched on in the A population. The parameters p(H)
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and p(D) characterize the production of morphogens in the system. The rules (2.5)
and (2.6) generate stripes of Dpp producing cells along the AP -interfaces. Due to
the choice of periodic boundary conditions, two AP -interfaces exist and two Dpp
sources are generated. However, it is more convenient to deal with only one Dpp
source. Therefore, we eliminate one Dpp source by imposing that one of the two
AP -interfaces is impenetrable for Hh molecules. The width of the Dpp source is
defined by

w =
1

Ly

∑
p
(D)
i 6=0

Ai, (2.7)

where the sum extends over all Dpp producing cells.

A B C

 800

 0

 400

 7000

 0

 3500

Ly

Lx

Figure 2.3.: Configuration of a system consisting of 1300 cells. (A) Cell population
variable ρi indicated for each cell by a color code. ρi = A: blue, ρi = P : red. The
AP -interfaces are indicated by white lines. The periodic simulation box is drawn in black.

(B) Hh level n
(H)
i indicated for each cell by a color code. Cells from the A population in

which the Hh level exceeds the threshold for Dpp production are marked with white dots

(n
(H)
T = 250). (C) Dpp level n

(D)
i indicated for each cell by a color code.

2.3.2. Rules for Morphogen Degradation

For the degradation rate of Hh we choose the following rule,

k
(H)
i =

{
k(H) if ρi = A,

0 if ρi = P .
(2.8)

Due to this rule, the width w of the Dpp source grows logarithmically with system
size (see appendix I), consistent with experimental observations. Regulating k

(D)
i

appropriately leads to scaling of the Dpp gradient, which we discuss in chapter 3.
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2.4. The Cell Cycle

In this section, cell cycle states and cell divisions are introduced. The residence
times in the cell cycle states and the angles of cell division are chosen to be ran-
dom. Therefore the vertex model simulations are stochastic. Most simulation results
presented in this work are therefore averages over several realizations.

2.4.1. Cell Cycle States

A B

M

I

C Division

0 2 4 6 8 10 12 14
τI [h]

0

0.1

0.2

0.3

0.4

p(
τ I) [

h-1
]

ξ = 25
ξ = 10
ξ = 5

Figure 2.4.: (A) Probability distribution of the residence time τI in cell cycle state I,
shown for τ̄I = 5 h and different choices of the parameter ξ. The gamma distribution p(τI)
is defined in equation (2.9). (B) Schematic representation of the cell cycle states. State C
behaves like a checkpoint in the cycle.

We introduce a cell cycle variable σi for each cell i. The variable σi can assume
three discrete states, which are denoted M , I, and C. They correspond to mitosis
(M), a part of interphase with fixed duration (I), and a part of interphase with
variable duration (C). The cell switches its state in the order M → I → C → M
in a cyclic fashion. The transition M → I is accompanied by a cell division (see
section 2.4.2). The cell cycle states M and I are characterized by stochastic, gamma
distributed residence times τM and τI with probability densities

p(τM) = τ ξ−1
M

exp (−ξτM/τ̄M)

(τ̄M/ξ)ξΓ(ξ)
, p(τI) = τ ξ−1

I

exp (−ξτI/τ̄I)
(τ̄I/ξ)ξΓ(ξ)

. (2.9)

Here, Γ denotes the gamma function and ξ > 0 is the shape parameter of the gamma
distributions. The average residence times are denoted τ̄M and τ̄I . The standard
deviations ∆τM and ∆τI of the distributions obey ∆τM/τ̄M = ξ−

1
2 , ∆τI/τ̄I = ξ−

1
2 .

The quantity ξ−
1
2 is thus a measure for the degree of randomness of the residence
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times. The randomness of τM and τI ensures that cell divisions occur asynchronously.
In contrast to state M and I, the residence time in state C is determined by a
growth rule. Growth rules are introduced in chapter 4. If the residence time in state
C vanishes and if no T2 processes occur, the system reaches its maximum growth
rate ĝ and number of cells N increases exponentially for sufficiently long times,
N(t) ∼ exp(ĝt). The maximum growth rate ĝ can be determined using equation
(E.15). We obtain

ĝ =
ξ

2τ̄M τ̄I

(√
4τ̄M τ̄I21/ξ + (τ̄M − τ̄I)2 − τ̄M − τ̄I

)
. (2.10)

The function ĝ(ξ) is strictly decreasing if τ̄M and τ̄I are fixed. In the limiting cases,
ĝ behaves as follows,

lim
ξ→0

ĝ =∞, lim
ξ→∞

ĝ =
ln 2

τ̄
, (2.11)

where τ̄ = τ̄M + τ̄I is the average cell cycle time. The limiting value ln 2
τ̄

is a good
approximation for the maximum growth rate ĝ if the parameter ξ is not too small.
For example, the relative difference between ln 2

τ̄
and ĝ is less than 1.4% if ξ ≥ 25.

In most simulations we choose ξ = 25, in which case ĝ ≈ ln 2
τ̄

is thus an excellent
approximation (the black curve in figure 2.4A corresponds to ξ = 25).

2.4.2. Cell Divisions

Tissue growth is generated by cell divisions, which are described in the vertex model
in the following way. While a cell is in cell cycle state M , its preferred area A

(0)
i

is doubled quasistatically. When a cell switches from state M to I, a new bond is
created, passing through the cell center at a random angle. This process transforms
the cell into two new cells and corresponds to a cell division (see figure 2.5). The

preferred areas A
(0)
j of the two new cells are set to the value A(0), the cell cycle

variables σj are set to I, and the values of the cell population variables ρj are
inherited from the precursor cell. The molecule numbers ni are shared equally
between the two new cells.

2.5. Initial System Configuration

We choose a hexagonal network consisting of N0 cells as an initial configuration, with
the A and P populations each constituting one half of the network. The initial values
of the cell cycle variables σi are chosen randomly from {M, I} with probabilities

p(M) =
τ̄M

τ̄M + τ̄I
, p(I) = 1− p(M). (2.12)

A random initial residence time is assigned to cell i, which is denoted by τ
(0)
M for

state M and τ
(0)
I for state I. We choose piecewise constant probability distributions
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Figure 2.5.: Cell division in the vertex model. The preferred area A
(0)
i of the dividing

cell, which is colored in grey, is doubled before a new bond is inserted, transforming the
cell into two cells. Figure adapted from [58].

for the initial residence times,

p(τ
(0)
M ) =

1

τ̄M
Θ(τ

(0)
M )Θ(τ̄M − τ (0)

M ), p(τ
(0)
I ) =

1

τ̄I
Θ(τ

(0)
I )Θ(τ̄I − τ (0)

I ). (2.13)

As initial condition for the morphogen distributions we choose for all cells i,

n
(D)
i = 0, n

(H)
i = 0. (2.14)

In general, there is an initial non-exponential growth phase in simulations of the
described vertex model. After this complicated non-exponential growth phase, the
system grows exponentially with the maximum growth rate ĝ, as long as the resi-
dence time in cell cycle state C vanishes. We choose initial conditions for the cell
cycle states and residence times that exhibit a high degree of randomness, because
this choice ensures that the exponential growth phase is reached quickly, which per-
mits to easily fit simulated growth curves to experimental data.

In the following chapters the vertex model is used to study gradient scaling and
self-organized growth. An example of a growth curve obtained by simulating the
vertex model is shown in figure 3.4 on page 26.





3. Scaling of Morphogen Gradients
in Growing Tissues

3.1. Experimental Evidence for Scaling

The Dpp morphogen gradient in the wing disc decays on a characteristic length scale
λ [93]. In recent experiments it has been observed that λ is not constant during
development. Instead, λ is approximately proportional to the linear dimension of
the wing disc, which is shown in the following [175]. This dynamic property of the
Dpp gradient is denoted by the term scaling.
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Figure 3.1.: (A) Decay length λ of the GFP-Dpp gradient shown as a function of the
disc width L. A fit of the function λ = mL yields m = 0.121 ± 0.003. (B) Decay length
λd of the dad-nRFP gradient shown as a function of L. A fit of the function λd = mdL
yields md = 0.145± 0.003.

We used a fluorescent GFP-Dpp fusion protein [53, 163] to quantify GFP-Dpp
gradients in the posterior compartment of the wing disc as a function of the distance
x from the Dpp source at different times during larval development (see appendix
J). To obtain the decay length of the gradients, we fitted the function

c(x) = c0 exp(−x/λ) (3.1)

to the data, where c0 and λ are fit parameters. We found that λ is approximately
proportional to the width L of the posterior compartment (figure 3.1A). We also
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determined the decay length λd of the dad-nRFP gradient, which shows the expres-
sion of the Dpp target gene daughters against dpp (dad) [169, 111, 165, 178] using
nuclear red fluorescent protein (nRFP). The dad-nRFP gradient can be regarded
as a measure of the Dpp signaling level. We observed that the decay length λd
has the same magnitude as λ and that it is also approximately proportional to L
(figure 3.1B). The GFP-Dpp and dad-nRFP experiments were performed by Ortrud
Wartlick.

The scaling property of the GFP-Dpp and the dad-nRFP gradients can also be
shown in a way that does not require any curve fitting. Instead, the gradients are
normalized to unity amplitude and are displayed as a function of the relative position
r = x/L. In these plots, the gradients measured at different times collapse into one
single curve, which indicates scaling (figure 3.2). The normalization of the gradients
is necessary because the amplitudes increase with time.

n=129

A B

n=99

Figure 3.2.: (A) GFP-Dpp gradients from t = 48 h to t = 130 h (representing the whole
growth period of the wing disc), normalized to unity amplitude and displayed as a function
of the relative position r = x/L. The gradients collapse into one single curve due to the
scaling property. Below, a density plot is shown (arbitrary units). (B) Corresponding
normalized dad-nRFP gradients, with density plot below. Figure reproduced from [175],
with permission from the American Academy of Arts and Sciences.

In a continuum description, the decay length of the steady state GFP-Dpp gradi-
ent is given by λ =

√
D/k, where D is the diffusion coefficient and k is the degrada-

tion rate (see appendix G). Either an increase of D or a decrease in k could account
for the observed scaling. To determine which of these processes causes the scaling of
the GFP-Dpp gradient, D and k were measured in wing discs of two different sizes
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using fluorescence recovery after photobleaching (FRAP) experiments (performed
by Anna Kicheva) [93]. Additionally, we used a reporter assay that allowed us to
estimate the temporal changes of these parameters (experiments performed by Or-
trud Wartlick, see appendix J.2). The results of these analyses indicate that the
diffusion coefficient D is roughly constant whereas the degradation rate k decreases
substantially during development (figure 3.3). We find that the degradation rate is
inversely proportional to the wing disc area. Recently a secreted molecule species
called Pentagone was found, which is thought to play an important role in scaling of
the Dpp gradient [173]. Our results suggest that Pentagone affects the Dpp gradient
by regulating the degradation rate k.
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Figure 3.3.: (A) Effective GFP-Dpp diffusion coefficient D shown as a function of the
disc area A. (B) Effective GFP-Dpp degradation rate k shown as a function of the area
A. A fit of the power law k ∼ Aγ yields γ = −1.05± 0.03.

3.2. Mechanisms for Scaling of Morphogen Gradients

In this section, we study two mechanisms that may underlie the scaling of the Dpp
gradient. For that purpose we use vertex model simulations in which the growth
rate is predetermined and consistent with experimental data (see figure 3.4). In the
simulations the Dpp decay length λ is determined by fitting exponential functions
to the Dpp distribution in the P population (see figure 3.5). To quantify scaling, λ
is displayed as a function of the width L of the P population, which is defined by

L =
1

Ly

∑
ρi=P

Ai. (3.2)

Here the sum extends over all cells belonging to the P population. Additionally,
normalized Dpp gradients are displayed as a function of the relative position at
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different times. In these plots, scaling is indicated by a collapse of the gradients
into one single curve. The parameter values used in the simulations are given in the
tables 3.1, 3.2, and 3.3 at the end of this chapter.
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Figure 3.4.: (A) Area of the P population shown as a function of time. Here the residence
time τC in cell cycle state C is also chosen to be gamma distributed. The probability
density p(τC) has the form given in equation (2.9), but the mean τ̄C increases with time
as follows: τ̄C = (τ̄M + τ̄I) (exp[(t− t0)/τg]− 1). Here τ̄M , τ̄I , t0, and τg are parameters
(see table 3.3 on page 35). The temporal increase of τ̄C leads to a temporal decrease of
the growth rate. (B) Configuration of the cell cycle variables σi at t = 85 h (N = 1.2 · 104

cells). The state of σi is indicated by a color code for each cell. Red: M , blue: I, black:
C. The AP -interfaces are indicated by white lines. Cell proliferation, represented by cell
cycle state M (red), is stochastic, spatially homogeneous on average, and occurs either in
single cells or in small clusters, as observed in experiments [115].

The growth rate of the system is much smaller than the Dpp degradation rate,
which determines the relaxation rate of the Dpp gradient (see appendix G). There-
fore convection of Dpp molecules due to the movement of cells can be neglected:
the gradient is renewed faster than growth occurs. Consequently, the decay length
is approximately given by λ =

√
D/k and the Dpp gradient does not scale if the

diffusion coefficient D and degradation rate k are constant parameters. However
scaling can be achieved if the degradation rate of Dpp is allowed to change dynam-
ically while the system is growing. The two mechanisms that we study require an
additional molecule species that regulates the degradation of Dpp. We denote this
molecule species by the name expander, which was introduced by Danny Ben-Zvi
and Naama Barkai [10, 14]. Analogous to equations (2.3) and (2.4), we describe the
dynamics of expander molecules by

d

dt
n

(E)
i = p

(E)
i − k(E)

i n
(E)
i + d(E)

∑
j

bij

(
n

(E)
j − n(E)

i

)
, (3.3)
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where n
(E)
i is the number of expander molecules, p

(E)
i is the expander production

rate, and k
(E)
i is the expander degradation rate in cell i. The parameter d(E) and

the expander diffusion coefficient D(E) are related by D(E) ' A
3/2
c d(E), where Ac is

the area of a cell. The length of the bond separating cell j and i is denoted bij.
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Figure 3.5.: Projection of the Dpp gradient on the x-axis at t = 64 h (N = 3600 cells).
Each point corresponds to a cell. The decay length λ is determined by fitting the func-
tion n(x) = B1 exp(−x/λ) + B2 exp(x/λ) to the gradient in the P population using the
Levenberg-Marquardt algorithm and B1, B2, and λ as fit parameters [136]. The ampli-
tude of the Dpp gradient is defined by n0 = n(x0), where x0 is the x-coordinate of the
AP -interface adjacent to the Dpp source. The x-coordinates of the AP -interfaces are de-
fined by the average vertex position of the corresponding interface, accounting for periodic
boundary conditions. Due to random fluctuations, the P population is larger than the A
population here. The width of the Dpp source, w, is defined in equation (2.7).

The first mechanism that we study, the expander dilution mechanism, is related
to mechanisms that have been proposed previously in the context of Turing-type
reaction-diffusion systems of pattern formation. It has been shown that scale invari-
ant patterns can be generated in such systems by introducing a regulatory molecule
species whose concentration depends on the system size [130, 84, 87]. The second
mechanism, the expansion-repression feedback, was originally proposed and ana-
lyzed in [10, 14]. However this analysis focused on systems of different sizes that
are not growing. Here we study the expansion-repression mechanism, but we take
growth of the system into account. In appendix A we furthermore show that the
assumption of a nonlinear Dpp degradation term does not provide a simpler expla-
nation for the experimentally observed scaling of the Dpp gradient.
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3.2.1. Expander Dilution

The dilution mechanism requires that expander molecules are neither degraded nor
produced,

k
(E)
i = 0, p

(E)
i = 0, (3.4)

but initially supplied at a fixed amount in each cell. The total number of expander
molecules in the system n

(E)
S = N0n

(E)
0 is thus constant but the cellular levels drop

due to dilution. The initial number of expander molecules per cell is denoted n
(E)
0 ,

and N0 is the inital number of cells. We impose a linear relationship between the
Dpp degradation rate k

(D)
i in cell i and the local expander level n

(E)
i ,

k
(D)
i = γn

(E)
i . (3.5)

Here, γ is a constant parameter. Cell divisions cause a dilution of expander molecules
so that spatially homogeneous growth leads to a spatially homogeneous Dpp degra-
dation rate, which is inversely proportional to the total number of cells N .
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Figure 3.6.: Decay length λ as a function of L for different choices of D(E) in the dilu-
tion mechanism. There is no significant difference between the three different simulation
results. The deviations are due to random fluctuations.

Because growth is isotropic, k ∼ L−2 holds. From this relationship, λ ∼ L
follows (see figure 3.6), because the Dpp gradient can be approximated as being in
a steady state. For the rectangular system geometry in the simulation, a continuum
description yields

λ =

√
4D(D)

γn
(E)
S Ac

L, (3.6)
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Figure 3.7.: Dpp gradients in a growing system shown at three different times. Each
point corresponds to a cell. In this simulation the dilution scaling mechanism is used and
the expander diffusion coefficient is chosen to be D(E) = 1 µm2/s. The x-coordinate of the
AP -interface adjacent to the Dpp source is denoted x0. Top (A): The amplitude and the
decay length of the Dpp gradient increases with time due to the decrease in the degradation
rate. Bottom (B): Normalized Dpp gradients shown as a function of the relative position.
The normalized Dpp gradients collapse into one curve because λ ∼ L (see figure 3.6).
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where Ac is the average cell area. Thus, the proportionality between λ and L is exact
in a steady state approximation. Therefore, normalized Dpp gradients at different
times collapse into one curve if they are plotted as function of the relative position
(see figure 3.7B), in agreement with experimental data (see figure 3.2).

Because growth and consequently dilution of the expander molecules is spatially
homogeneous on average, the dilution mechanism does not require that expander
molecules are diffusible. Even if the expander is non-diffusible, the Dpp gradient
scales consistently with experimental data.

3.2.2. Expansion-repression Feedback

In this section we discuss the expansion-repression feedback mechanism for gradient
scaling. This mechanism requires that expander production is repressed by high
levels of Dpp, so that only cells with sufficiently low Dpp levels produce expander
molecules [10, 14]. Additionally, increasing expander levels have to cause a decrease
in the Dpp degradation rate. Here, we consider an idealized case in which the
expander is not degraded. Moreover, we impose that expander production in cell i
depends on the local Dpp level and behaves like a switch,

k
(E)
i = 0, p

(E)
i = p(E)Θ

(
n

(D)
T − n(D)

i

)
. (3.7)

The Dpp threshold, below which the production of expander molecules with rate p(E)

is switched on, is denoted n
(D)
T . The required decrease of the Dpp degradation rate

with increasing expander concentration is taken into account by choosing a suitable
functional relationship between these two quantities. We choose a Hill function,
which was already used in previous works to describe a repression effect [14, 15],

k
(D)
i =

ω(
n

(E)
C

)h
+
(
n

(E)
i

)h . (3.8)

Here k
(D)
i is the Dpp degradation rate in cell i, n

(E)
i is the number of expander

molecules in cell i, and ω, h, and n
(E)
C are constant parameters. The parameter n

(E)
C

determines a cutoff for the Dpp degradation rate and is chosen such that it is small
as compared to the typical number of expander molecules per cell.

The steady state expander distribution is flat because expander molecules are
diffusible but not degraded. However, because the system grows continuously and
is not in a steady state, the diffusion coefficient D(E) has to be sufficiently large
to ensure an approximately homogeneous expander distribution. Let τ be the time
interval during which the system size doubles. Considering that expander molecules
have to diffuse a distance of the order L within the time interval τ , one obtains the
following condition for an approximately homogeneous expander distribution,

D(E) � L2

2τ
. (3.9)
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Figure 3.8.: Snapshot of a system (t = 64 h, N = 3600) with expansion-repression
feedback. Cells producing expander molecules due to low Dpp levels are marked with red
dots. Dpp producing cells are marked with white dots. The distribution of Dpp molecules
is indicated by a color code. Parameter values: D(E) = 1 µm2/s and p(E)/ω = 1.

Inserting typical values (L = 150 µm, τ = 25 h) into (3.9) yields D(E) � 0.1 µm2/s.
To ensure a spatially homogeneous distribution, the expander must thus diffuse fast
as compared to Dpp, which is characterized by D(D) = 0.1 µm2/s [93].

Furthermore, the production rate p(E) has to be sufficiently high to ensure that
gradient scaling can keep up with tissue growth (see figure 3.9). Within the time
interval τ , additional expander molecules have to be produced to achieve gradient
scaling. The required magnitude of p(E) can be estimated by comparing the number
of required expander molecules with the maximum number of expander molecules
that can be produced, which is given by Nτp(E). Here the number of cells is denoted
N . Generally, the necessary magnitude of p(E) depends on the relationship between
k

(D)
i and n

(E)
i . For the choice given in equation (3.8), the average number of expander

molecules per cell n̄(E) has to increase by a factor of 21/h during the time interval
τ , because λ ≈ (D(D)(n̄(E))h/ω)1/2 must approximately increase by a factor of 21/2

to achieve scaling. Taking dilution into account, we therefore obtain the following
condition for the production rate,

p(E) � 21+1/h − 1

τ

(
ωλ2

D(D)

)1/h

. (3.10)

For the choice h = 1 and typical values (λ = 20 µm, τ = 25 h, D(D) = 0.1 µm2/s)
the condition becomes p(E)/ω � 10−1. If the production rate does not fulfill this
condition, scaling of the Dpp gradient is insufficient (see figure 3.9). However, if
p(E)/ω is too large (� 1), we observe a significant overshooting of λ in the early
stages of the simulation. This overshooting of λ is due to an overshooting production
of expander molecules at the onset of the simulation, when almost no Dpp molecules
are present. Subsequently, the excess expander molecules are diluted due to growth
so that λ decreases temporarily.
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Figure 3.9.: Decay length λ as a function of L for different choices of p(E) in the
expansion-repression mechansim (D(E) = 1 µm2/s). For high production rates there is a
considerable overshooting effect at the onset of the simulation.

If D(E) obeys (3.9) and p(E)/ω has an appropriate magnitude (≈ 1), the system
is close to the steady state and the Dpp level in the minimum of the gradient is
approximately equal to the repression threshold. Using a continuum description
and approximating the Dpp gradient by the single exponential steady state solution
given in equation (G.24), one obtains the following equation describing scaling,

λ =
L

ln
(
c0Ac/n

(D)
T

) , (3.11)

c0 =
νλ2

2D(D)

(
1− exp(−w

λ
)
)
. (3.12)

Here, c0 is the amplitude of the Dpp gradient and ν is the Dpp production rate per
unit area. The width w of the Dpp source, which increases as the system grows,
is parametrized by w = b1 ln(L/b2) (see appendix I). The proportionality between
λ and L is not exact in the continuum description because c0 depends both on λ
and L. Therefore, normalized Dpp gradients at different times do not collapse to
one curve if they are plotted as a function of the relative position (see figure 3.10B).
However, since the dependence on c0 is only logarithmic in equation (3.11), λ is
roughly proportional to L. Consequently there is an approximate collapse of the
gradients in figure 3.10B.
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Figure 3.10.: Dpp gradients in a growing system shown at three different times. Each
point corresponds to a cell. In this simulation the expansion-repression scaling mechanism
is used and the following parameter values are chosen, D(E) = 1 µm2/s and p(E)/ω = 1.
The x-coordinate of the AP -interface adjacent to the Dpp source is denoted x0. Top
(A): The amplitude and the decay length of the Dpp gradient increases with time due to
the decrease in the degradation rate. Bottom (B): Normalized Dpp gradients shown as
a function of the relative position. The normalized Dpp gradients do not collapse to one
curve because the proportionality between λ and L is not exact, see equation (3.11).
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Figure 3.11.: Dpp gradient amplitude n0 shown as a function of the area AP of the P
population. Fits of the power law n0 ∼ AβP to the simulation data, excluding data points
with AP < 103 µm2, yield β = 0.85±0.01 for the dilution mechanism, and β = 0.600±0.003
for the expansion-repression mechanism. The power law fits are indicated by dashed lines.
For comparison, the experimentally determined amplitude c0 of the dad-nRFP gradient
is shown, for which the scale with arbitrary units on the right side applies. The fit to the
experimental data yields the exponent β = 0.79 ± 0.05. Thus only the dilution scaling
mechanism leads to an agreement with the experimental data. Parameter values of the
simulations: D(E) = 1 µm2/s and p(E)/ω = 1. As long as the growth rate is comparable
to the growth rate used in these simulations, the exponents β are essentially determined
by the scaling mechanism. Therefore the exponents given here are also valid for the
simulations in chapter 4, where the growth rate is determined by cellular growth rules.

Parameter Meaning Value

n
(E)
0 Initial number of expander molecules per cell 3·104

γ Rate constant 10−2 h−1

d(E) Parameter describing expander diffusion (0 – 2600) µm−1h−1

D(E) Corresponding expander diffusion coefficient (0 – 10) µm2s−1

Table 3.1.: Parameter values used for the expander dilution mechanism.
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Parameter Meaning Value

n
(E)
0 Initial number of expander molecules per cell 0

n
(D)
T Dpp threshold for expander production 10
ω Rate constant 104 h−1

n
(E)
C Cutoff parameter 30
h Hill coefficient 1

d(E) Parameter describing expander diffusion (0 – 2600) µm−1h−1

D(E) Corresponding expander diffusion coefficient (0 – 10) µm2s−1

p(E) Expander production rate (102 – 105) h−1

Table 3.2.: Parameter values used for the expansion-repression feedback mechanism.

Parameter Meaning Value

Γ/KA(0) Dimensionless cell perimeter stiffness 0.04

Λ/K(A(0))3/2 Dimensionless cell bond tension -0.12

A(0) Preferred cell area 6.83 µm2

κ AP -interface tension factor -5
N0 Initial number of cells 36
τ̄M Mean residence time in cell cycle state M 0.75 h
τ̄I Mean residence time in cell cycle state I 3.12 h
t0 Starting time of the simulation 24.6 h
τg Timescale on which τ̄C increases 42 h
ξ Gamma distribution shape parameter 25

p(H) Hh production rate 104 h−1

k(H) Hh degradation rate in A cells 36 h−1

d(H) Parameter describing Hh diffusion 130 µm−1h−1

D(H) Corresponding Hh diffusion coefficient 0.5 µm2s−1

n
(H)
T Hh threshold for Dpp production 250

p(D) Dpp production rate 104 h−1

ν Dpp production rate per unit area 1800 µm−2h−1

d(D) Parameter describing Dpp diffusion 26 µm−1h−1

D(D) Corresponding Dpp diffusion coefficient 0.1 µm2s−1

b1 Parameter describing the Dpp source 7.1 µm
b2 Parameter describing the Dpp source 6.4 µm

Table 3.3.: Parameter values used in this chapter. For the mechanical parameter values
given here, T2 processes do not occur, and the average cell area is given by Ac ≈ 0.8A(0) ≈
5.5 µm2.
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Summary In this chapter we have shown experimental evidence for the scaling of
the Dpp gradient and discussed two possible scaling mechanisms. Both mechanism,
the dilution mechanism and the expansion-repression mechanism, rely on a regula-
tory molecules species, the expander. The expansion-repression scaling mechanism
can achieve an approximate proportionality between the Dpp decay length λ and
the growing system size L, if the parameters are chosen appropriately (figure 3.9).
Because the proportionality is not exact, normalized Dpp gradients displayed as a
function of the relative position do not collapse into one curve (figure 3.10B). In
contrast, the dilution scaling mechanism leads to an exact proportionality between
λ and L (figure 3.6). As a result, normalized Dpp gradients displayed as a function
of the relative position do collapse into one curve (figure 3.7B), as observed experi-
mentally for both the GFP-Dpp and the dad-nRFP gradients (figure 3.2). Despite
the simplicity of the dilution scaling mechanism, the agreement with experimental
data is thus better than in the case of the expansion-repression mechanism. In a
plot showing the gradient amplitude as a function of the posterior area, the agree-
ment with experimental data is also better for the dilution scaling mechanism (figure
3.11).



4. Self-organized Growth Described
by Cellular Growth Rules

In this chapter we explore how growth of developing tissues can be controlled in a
self-organized way. Growth control and the mechanisms by which the final sizes of
animals and organs are determined are still poorly understood [36]. Growing organs
have to be supplied with essential extrinsic factors such as nutrients and hormones
during development. Therefore developing organs can apparently not be considered
as closed systems. However there is strong evidence that many organs possess organ-
intrinsic growth control mechanisms [27]. Essentially, these mechanisms control
growth and determine the final organ size if the tissue is provided with a sufficient
amount of the necessary extrinsic factors. In the following we want to consider this
situation, in which it is justified to consider growth control in the developing organ
as an internal process.

An appropriate theoretical description of such systems should not depend on
any functions with explicit time-dependence, because such functions correspond to
external control. External growth control was for example used in the last chapter.
There the cell cycle time was determined by an explicitly time-dependent function
(see caption of figure 3.4). In our description of growth control in this chapter
we do not use such functions. Instead, the timing of cell divisions is determined by
cellular growth rules that only depend on the local neighbourhood of the cell. In our
description, the growth behaviour of the system is thus not controlled externally but
emerges from local growth rules. We therefore speak of self-organized growth and
argue that organ-intrinsic growth control mechanisms are appropriately described
in this way.

In our study we again use the vertex model and focus on the Drosophila wing
imaginal disc, for which experimental data is available. In the vertex model, a
growth rule defines a condition on which the transition from cell cycle state C to
cell cycle state M occurs. Thus a growth rule essentially defines when a cell should
divide. Because the morphogen Dpp plays a major role in growth control in the wing
disc (see section 1.2.2), we introduce cellular growth rules that couple the decision to
divide a cell to the local Dpp level. The goal of our study is to find the mechanism
by which Dpp controls growth. In particular we want to answer the question how
the inhomogeneous Dpp distribution can stimulate homogeneous growth.

The Dpp gradient is not static but it adapts to the size of the tissue. Both the
decay length and the amplitude of the gradient increase during development (see
figures 3.1 and 3.11 in the previous chapter). This behaviour suggests two plausible
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types of growth rules: one that depends on temporal changes of the cellular Dpp
concentration and one that depends on the slope of the Dpp gradient. The growth
rules that are based on temporal changes of the cellular Dpp concentration are
denoted temporal growth rules and are discussed in section 4.1. The growth rules
that depend on the slope of the Dpp gradient are denoted spatial growth rules and
are discussed in section 4.2. The idea that the growth rate depends on the slope of
the Dpp gradient has been proposed previously [39].

It turns out that the growth behaviour does not only depend on the growth
rule, but also on the choice of the scaling mechanism. Therefore we discuss the
growth behaviour for the dilution mechanism as well as for the expansion-repression
mechanism. Furthermore, it turns out that the temporal growth rules are sensitive
to initial conditions and fluctuations at the onset of the simulation. However, the
initial configuration of the wing disc is unknown and experimental data for very
small discs is not available. Therefore we introduce a cell number threshold Ng that
determines when the growth rules are switched on. As long as the number of cells
N is smaller than Ng, the transition C → M occurs instantaneously for any cell so
that the system is forced to grow exponentially in the beginning. By choosing Ng

sufficiently large, we are able to study the behaviour of the growth rules independent
of details concerning the initial conditions. The growth behaviour that results if the
rules are applied from the beginning on, when the system is small and fluctuations
are strong, is discussed in appendix B. In appendix C we discuss further details. We
estimate the dynamic range that a signaling system would have to cover to make
growth control by the Dpp gradient possible. Moreover we estimate the minimum
number of Dpp molecules in the wing disc, and the uncertainties in the Dpp signal
due to molecule number fluctuations.

Two important quantities characterizing a growth rule are the resulting system
size as a function of time, and the growth rate g, which is defined as the number of
cell divisions per cell per unit time (see appendix E). The growth curves obtained by
the vertex model simulations are compared to growth curves of wing discs measured
by Ortrud Wartlick. The parameter values used in the simulations are given in the
tables 4.1, 4.2, and 4.3 on pages 52 and 53. In all figures shown in this chapter,
error bars indicate the standard error of the mean if not stated otherwise.

4.1. Temporal Growth Rules

The temporal growth rules discussed in this section are based on the idea that the
Dpp signaling pathway is sensitive to relative changes of the input signal [175].
A sensitivity to relative temporal changes rather than absolute values might be
a general property of cellular signaling systems. Such a behaviour is typical for
adaptive sensory systems and is known to exist in other signaling scenarios such
as bacteria and sperm chemotaxis [11, 6, 62]. There, the determination of relative
temporal changes is achieved by combining adaptation with a dynamic response
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[11, 6, 62]. The Dpp signaling pathway is a dynamic network of signal transduction
components, which may generate an adaptive response by combining feed-forward
and feedback elements in its pathway structure.

4.1.1. Deterministic Temporal Rule

The deterministic temporal rule is defined as follows: the transition C →M occurs
in cell i if the relative temporal difference of the Dpp level exceeds a threshold,

n
(D)
i (t)− n(D)

i,0

n
(D)
i,0

≥ α. (4.1)

The parameter α is equal to the relative increase of the Dpp level that is necessary
to trigger the transition. The number of Dpp molecules that were in the precursor
cell of cell i when the transition C →M occured there is denoted n

(D)
i,0 . In figure 4.1,

a time series of the Dpp concentration in a cell is shown. Cell division events are
indicated by vertical lines in this figure. The growth behaviour that results from the
deterministic temporal rule depends on which scaling mechanism is chosen. There-
fore we discuss the growth behaviour separately for the dilution scaling mechanism
and for the expansion-repression scaling mechanism.
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Figure 4.1.: Number of Dpp molecules n(D) in an individual cell during a simulation
of self-organized growth (determinsitic temporal rule, α = 64%), shown as a function of
time. When the cell divides, the time series is continued with one of the two daughter
cells. Here, the dilution scaling mechanism is used. The growth rule is switched on at
t ≈ 40 h. Cell division events are indicated by dashed lines. Directly after a cell division,
the cellular Dpp level drops by 50% due to dilution.
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Dilution Scaling Mechanism

If the dilution scaling mechanism is chosen, the growth curve can be matched to
experimental data well by choosing the parameter α appropriately (α = 64%), see
figure 4.2. For this choice, the system still grows slowly (g ≈ 0.02 h−1) at the time
of pupariation (t ≈ 110 h), corresponding to a cell cycle time of τ ≈ 35 h, which is
consistent with experimental studies [107].
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Figure 4.2.: Area AP of the P population shown as a function of time for the determin-
istic temporal rule. The dilution scaling mechanism is used in these simulations.

Growth is largely homogeneous in space on average, see figures 4.3 and 4.10C,
consistent with experimental observations [69, 64, 146]. The homogeneity of growth
can be understood using the following simplified continuum description. The Dpp
concentration ci perceived by cell i at position xi is given by

ci(t) = c0(t) exp

(
−xi(t)
λ(t)

)
, (4.2)

and the relative time derivative is given by

ċi
ci

=
ċ0

c0

− d

dt

(xi
λ

)
, (4.3)

where c0 is the Dpp gradient amplitude and λ is the Dpp decay length. Because the
deterministic temporal rule essentially depends on the relative time derivative of the
cellular Dpp concentration, ċi/ci, this growth rules generates spatially homogeneous
growth if ċi/ci is independent of the cellular position xi. Indeed, we can show that
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the assumption of spatially homogeneous growth is self-consistent if the gradient
scales. From the assumption of homogeneous growth it follows that the relative
position of a cell ri = xi/L is time-independent. Because of the scaling property
λ ∼ L, which is ensured by the dilution scaling mechanism, it follows that the ratio
xi/λ is time-independent as well. According to equation (4.3), the relative time
derivative of the cellular Dpp level is then independent of xi,

ċi
ci

=
ċ0

c0

, (4.4)

which leads to spatially homogeneous growth. The assumption of spatially homoge-
neous growth is thus self-consistent in this simplified continuum description, which
applies to the P population.
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Figure 4.3.: Local growth rate g, generated by the deterministic temporal rule together
with the dilution scaling mechanism, shown as a function of time and position using a color
code (α = 64%, average over 400 simulations). The average positions of the AP -interfaces
are indicated by solid lines. The Dpp source is located between the dashed line and the
central solid line.

In the A population, next to the anterior border of the Dpp source, there is how-
ever slightly less proliferation than elsewhere (see figure 4.3). This inhomogeneity
is due to the asymmetry caused by the Dpp source. Whether or not a cell produces
Dpp molecules depends on the local Hh concentration. Cells in the A population
that move away from the AP -interface due to growth may stop Dpp production if
the local Hh concentration becomes too small. In cells that stop Dpp production,
the temporal increase of the Dpp concentration is attenuated, leading to fewer cell
divisions. As a result, the A population grows less than the P population. The
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growth asymmetry of the two cell populations is in agreement with experimental
data (see figure 4.4). For vanishing expander diffusion coefficient D(E) the growth
asymmetry is more pronounced.
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Figure 4.4.: Ratio of the cell number in the P population (NP ) to the cell number in
the A population (NA). The solid lines are simulations of the deterministic temporal
rule with the dilution scaling mechanism (α = 64%). As initial condition, an asymmetric
configuration with NP = 14 and NA = 28 is chosen here to compare the simulation results
with experimental data measured by Ortrud Wartlick. The ratio NP /NA is calculated
from the measured compartment areas assuming a constant cell density.

Expansion-repression Scaling Mechanism

If the expansion-repression scaling mechanism is chosen instead of the dilution mech-
anism, the parameter α must be chosen smaller (α . 10%) to cause substantial
growth. Growth is strongly inhomogeneous in space, and most cell divisions occur
in the Dpp source (see figures 4.5 and 4.10E). Growth is inhomogeneous because the
expansion-repression mechanism does not achieve perfect scaling: the proportion-
ality between the Dpp decay length λ and the system size L is only approximate.
Hence, the argument explaining the homogeneity of growth for the dilution scaling
mechanism, which was given in the previous section, does not hold for the expansion-
repression mechanism. The assumption of homogeneous growth is not self-consistent
because the ratio xi/λ is not time-independent in this case.

According to equation (4.2) there are two factors that determine the Dpp con-
centration in cell i: the Dpp concentration profile, which is determined by c0 and
λ, and the position of the cell, xi. Due to growth, cells move away from the Dpp
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source, which would cause a decrease in the cellular Dpp concentration if the Dpp
concentration profile was fixed. However, changes in the Dpp concentration profile
can compensate for this decrease. The expansion-repression scaling mechanism is
designed such that the Dpp concentration in cells located in the minimum of the
gradient is essentially fixed (see section 3.2.2): the loss in Dpp concentration due
to the movement of the cell is compensated by the increase in the Dpp gradient
amplitude. However, cells that are located closer to the Dpp source do experience
an increase in the cellular Dpp concentration. The closer a cell is located to the Dpp
source, the smaller is the effect of the movement of the cell, and the larger is the
relative temporal increase in the cellular Dpp concentration. Therefore most cell
divisions occur in the Dpp source.
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Figure 4.5.: Local growth rate g, generated by the deterministic temporal rule together
with the expansion-repression scaling mechanism, shown as a function of time and position
using a color code (α = 5%, average over 25 simulations). The average positions of the
AP -interfaces are indicated by solid lines. The Dpp source is located between the dashed
line and the central solid line. Most cell divisions occur in the Dpp source (see also figure
4.10E on page 48).

4.1.2. Stochastic Temporal Rule

The stochastic temporal rule is related to a model describing cell replenishment in
the epidermis [89, 95]. The main features shared by this model and the growth
rule are the distinction between proliferating and non-proliferating cells, and the
stochastic transition between the two cell types. Here, the proliferating cells are
denoted type A cells, and the non-proliferating cells are denoted type B cells. The
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transition C →M occurs instantaneously for type A cells. In contrast, the transition
C → M never occurs for type B cells, which implies that these cells cannot divide.
Initially all cells are of type A. However, whether a new cell that is generated by a
cell division is of type A or B is determined as follows. When the transition C →M
occurs in cell i, which initiates a cell division, the probability %i(t) that a daughter
cell of cell i is of type A is determined. The probabilities of the three possible kinds
of cell divisions are thus given by

A→


A+ A probability %2

i

A+B probability 2%i(1− %i)
B +B probability (1− %i)2

. (4.5)

We choose a piecewise linear relationship between %i(t) and the relative time deriva-
tive of the Dpp level in cell i:

%i(t) =


1 if 1 ≤ θζi(t),

θζi(t) if 0 < θζi(t) < 1,

0 if θζi(t) ≤ 0.

ζi(t) =
n

(D)
i (t)− n(D)

i,0

(t− ti,0)n
(D)
i,0

. (4.6)

Here, θ is a parameter, ti,0 is the time when the transition C → M occured in the

precursor cell of cell i, and n
(D)
i,0 is the number of Dpp molecules in the precursor

cell at that time. The quantity ζi(t) is thus a measure for the average relative
time derivative of the Dpp level in cell i. For this growth rule the parameter Ng

has the following meaning: all cells are of type A as long as the number of cells
satisfies N < Ng. The growth behaviour resulting from the stochastic temporal
rule is also qualitatively different for the dilution scaling mechanism and for the
expansion-repression scaling mechanism.

Dilution Scaling Mechanism

The growth curves can be matched to experimental data by choosing the parameter
θ appropriately (see figure 4.6), as in the case of the deterministic temporal rule.
However, there is a significant difference between the two rules. In case of the
stochastic temporal rule, growth has stopped completely at the time of pupariation
(t ≈ 110 h, see figures 4.6 and 4.7), whereas the system still grows with a small
rate at that time if the deterministic temporal rule is used (figures 4.2 and 4.3).
However, we cannot use this difference to exclude one of the two rules because there
is no conclusive evidence from experimental studies as to whether or not growth in
the wing disc has stopped at the time of pupariation.

Growth is roughly homogeneous in space (see figure 4.7), which can be understood
using the argument given in section 4.1.1. However, compared to the deterministic
temporal rule, the stochastic temporal rule leads to growth that is less homogeneous.
The reduced proliferation in the region directly anterior to the Dpp source is also
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Figure 4.6.: Area AP of the P population shown as a function of time for the stochastic
temporal rule. The dilution scaling mechanism is used in these simulations.
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Figure 4.7.: Local growth rate g, generated by the stochastic temporal rule together with
the dilution scaling mechanism, shown as a function of time and position using a color
code (θ = 9 h, average over 400 simulations). The average positions of the AP -interfaces
are indicated by solid lines. The Dpp source is located between the dashed line and the
central solid line.
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due to the asymmetry caused by the Dpp source (see section 4.1.1). However, for
the stochastic temporal rule this growth inhomogeneity is more pronounced, so that
it is even visible in figure 4.10D. Additionally, proliferation in the P population
exhibits a weak spatial dependence.

Expansion-repression Scaling Mechanism

Growth is strongly inhomogeneous in space, and most cell divisions occur in the
Dpp source if the expansion-repression scaling mechanism is chosen (see figures 4.8
and 4.10F). Growth is inhomogeneous because the expansion-repression mechanism
does not achieve perfect scaling: the proportionality between the Dpp decay length
λ and the system size L is only approximate (see section 4.1.1).
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Figure 4.8.: Local growth rate g, generated by the stochastic temporal rule together with
the expansion-repression scaling mechanism, shown as a function of time and position
using a color code (θ = 100 h, average over 25 simulations). The average positions of the
AP -interfaces are indicated by solid lines. The Dpp source is located between the dashed
line and the central solid line. Most cell divisions occur in the Dpp source (see also figure
4.10F on page 48).

4.1.3. Clone Size Distributions

To obtain an experimental criterion to discriminate between the stochastic temporal
rule and the deterministic temporal rule, we analyze clone size distributions for both
growth rules. Any cell that is selected at an arbitrary point in time gives rise to a
clone, which consists of the progeny of the selected cell. The initial cell giving rise to
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the clone is denoted founder cell. The number of cells Nc(t) that constitute a clone is
a stochastic quantity because the simulations are stochastic, for example due to the
stochastic cell cycle times. The clone size distributions are obtained by determining
clone sizes at a fixed time in many simulations. If the founder cells of the clones
are selected at the onset of the simulation, the resulting clone size distributions are
similar for both growth rules, because the initial phase of the simulation, when all
cells divide with the maximum rate, is the same in both cases.
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Figure 4.9.: Distributions of the clone size Nc for the deterministic temporal rule and
the stochastic temporal rule. The clone size distributions are obtained by determining
clone sizes at t = 96 h in many simulations. The founder cells of the clones are selected at
t = 48 h. The dilution scaling mechanism and the following growth rule parameters are
used here: α = 64%, θ = 9 h.

If the founder cells are selected at a later time point, after the initial exponential
growth phase, the resulting clone size distributions are clearly different for the two
growth rules (see figure 4.9). The deterministic temporal rule generates distributions
with pronounced peaks at powers of 2 (4, 8, 16, 32), and almost no clones consist of
just 1 or 2 cells. The distribution exhibits peaks due to the deterministic nature of
the growth rule. If the cells in a clone would divide perfectly synchronized, then the
number of cells constituting a clone would double after each cell cycle, and the clone
size would always be a power of 2. Due to fluctuations, the synchrony of cell divisions
is not perfect in the simulations of the deterministic temporal growth rule. Therefore
the peaks at the powers of 2 are broadened. In contrast to the deterministic temporal
rule, the stochastic temporal rule generates clone size distributions that have a peak
at Nc = 2, but no pronounced peaks at higher powers of 2.
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A B

C D

E F

Figure 4.10.: Configuration of the cell cycle variables σi generated by different growth
rules. The state of σi is indicated by a color code for each cell. Red: M , blue: I, black:
C. The AP -interfaces are indicated by white lines. (A-D) Dilution scaling mechanism.
(E-F) Expansion-repression scaling mechanism. (A) Instantaneous spatial rule (t = 95 h,
N = 5·104, uT = 0.6). (B) Time-averaged spatial rule (t = 73 h, N = 1.5·104, uT = 0.375,
τu = 5 h). (C) Deterministic temporal rule (t = 93 h, N = 1.3 · 104, α = 64%). (D)
Stochastic temporal rule (t = 75 h, N = 1.1 · 104, θ = 9 h). (E) Deterministic temporal
rule (t = 116 h, N = 1.0 · 104, α = 5%). (F) Stochastic temporal rule (t = 92 h,
N = 1.0 · 104, θ = 100 h).
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4.2. Spatial Growth Rules

The two spatial growth rules are based on a vectorial measure ~ui for the local,
relative slope of the Dpp gradient. For each cell i we define

~ui =
1

n
(D)
i

∫ 2π

0

dϕ

(
cosϕ
sinϕ

)
n

(D)
ji(ϕ), (4.7)

where the angle ϕ is measured relative to the cell center (see figure 4.11). The index
of the neighbour cell of cell i that is located in the direction ϕ is denoted ji(ϕ). For
an exponential gradient with decay length λ � δ in a network of hexagonal cells
the modulus ui = |~ui| is given by

ui =
3δ

λ
, (4.8)

where δ is the distance between the centers of two neighbouring cells. Because the
decay length increases in the growing system due to gradient scaling (see chapter 3),
the quantity ui decreases with time. The growth behaviour generated by the spatial
growth rules is qualitatively the same for the dilution scaling mechanism and the
expansion-repression scaling mechanism, because the Dpp gradient is exponential
regardless of the scaling mechanism.

650

0

325

u=1.5

u=0.75

Figure 4.11.: Dpp level n
(D)
i (color coded) and vectors ~ui, shown for each cell i in an

exponential Dpp gradient scaled with the expansion-repression mechanism (t = 43 h,
N = 500 cells). The arrow length is proportional to the modulus ui, which goes to zero
in the maximum and minimum of the Dpp gradient. The AP -interfaces are indicated by
white lines.
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4.2.1. Instantaneous Spatial Rule

The instantaneous spatial rule is defined as follows: the transition C → M occurs
in cell i if the local relative slope of the Dpp gradient exceeds a threshold value uT ,

ui(t) ≥ uT . (4.9)

For both scaling mechanisms the resulting growth behaviour is qualitatively the
same: for sufficiently small thresholds uT the system stops to grow after an initial
exponential growth phase. However, for larger values of uT the system becomes
unstable as travelling waves of proliferating cells appear (see figure 4.10A on page
48). These waves are caused by local perturbations of the Dpp gradient as a result
of cell divisions. A cell division dilutes Dpp molecules which leads to large values of
ui in the vicinity. Therefore, cell divisions can trigger further cell divisions nearby.
This instability generates travelling waves of proliferation that sustain growth. This
growth behaviour is not consistent with experimental observations.

4.2.2. Time-averaged Spatial Rule
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Figure 4.12.: Local growth rate g generated by the time-averaged spatial rule, shown as
a function of time and position using a color code (average over 25 simulations, uT = 0.375,
τu = 5 h). The average positions of the AP -interfaces are indicated by white beaded lines.
The Dpp source is located between the dashed line and the central beaded line. Here
the dilution scaling mechanism is used. The results for the expansion-repression scaling
mechanism are qualitatively the same.



Chapter 4. Self-organized Growth Described by Cellular Growth Rules 51

Due to the instability of the instantaneous growth rule we have considered an
alternative spatial rule that involves time-averaging of the quantity ui(t). According
to the time-averaged spatial rule, the transition C →M occurs in cell i if

ūi(t) ≥ uT , (4.10)

where the time average ūi(t) is defined as

ūi(t) =
1

τu

∫ t

−∞
dt′ui(t

′) exp

(
−t− t

′

τu

)
. (4.11)

The parameter τu represents the averaging time. We determine ūi(t) by solving the
dynamic equation

d

dt
ūi =

1

τu
(ui − ūi) (4.12)

numerically using a Runge-Kutta method with adaptive stepsize control [31, 136].
When cell i divides, the two daughter cells inherit the value of ūi.
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Figure 4.13.: Area AP of the P population shown as a function of time for the time-
averaged spatial rule (τu = 5 h). The dilution scaling mechanism is used here. The results
for the expansion-repression scaling mechanism are qualitatively the same.

The effect of fluctuations caused by cell divisions is damped by considering the
time-average in the growth rule, and the resulting growth behaviour is qualitatively
the same for both scaling mechanisms. No waves of proliferating cells are observed
for sufficiently long averaging times τu & 1 h. Instead, the system grows expo-
nentially until growth stops rather abruptly, due to the threshold-character of the
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growth rule (see figure 4.13). During the growth phase, there is a pronounced in-
homogeneity in the spatial pattern of proliferation: in the maximum and minimum
of the Dpp gradient where the slope goes to zero, there is almost no proliferation
at all (see figure 4.12 and 4.10B). Such a striking spatial growth inhomogeneity has
not been reported in experimental studies of the wing disc, which suggests that
the time-averaged spatial rule is inappropriate to describe growth control in that
system.

Parameter Meaning Value

Γ/KA(0) Dimensionless cell perimeter stiffness 0.04

Λ/K(A(0))3/2 Dimensionless cell bond tension -0.12

A(0) Preferred cell area 6.83 µm2

κ AP -interface tension factor -5
N0 Initial number of cells 36
Ng Cell number threshold for growth rules 360
τ̄M Mean residence time in cell cycle state M 0.75 h
τ̄I Mean residence time in cell cycle state I 5 h
ξ Gamma distribution shape parameter 25

p(H) Hh production rate 104 h−1

k(H) Hh degradation rate in A cells 36 h−1

d(H) Parameter describing Hh diffusion 130 µm−1h−1

D(H) Corresponding Hh diffusion coefficient 0.5 µm2s−1

n
(H)
T Hh threshold for Dpp production 250

p(D) Dpp production rate 104 h−1

d(D) Parameter describing Dpp diffusion 26 µm−1h−1

D(D) Corresponding Dpp diffusion coefficient 0.1 µm2s−1

t0 Starting time of the simulation 21.3 h
b1 Parameter describing the Dpp source 7.1 µm
b2 Parameter describing the Dpp source 6.4 µm
α Parameter of the deterministic growth rule 64%
θ Parameter of the stochastic growth rule 9 h
uT Parameter of the spatial growth rules 0.375
τu Parameter of the time-averaged growth rule 5 h

Table 4.1.: Parameter values used in this chapter if not stated otherwise. For the me-
chanical parameter values given here, T2 processes do not occur, and the average cell area
is given by Ac ≈ 0.8A(0) ≈ 5.5 µm2. The simulations are terminated if N > 5 · 104, or if
the growth rate satisfies g < 4 · 10−3 h−1, which corresponds to a cell cycle time of more
than one week.
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Parameter Meaning Value

n
(E)
0 Initial number of expander molecules per cell 0

n
(D)
T Dpp threshold for expander production 25
ω Rate constant 104 h−1

n
(E)
C Cutoff parameter 30
h Hill coefficient 1

d(E) Parameter describing expander diffusion 2600 µm−1h−1

D(E) Corresponding expander diffusion coefficient 10 µm2s−1

p(E) Expander production rate 104 h−1

Table 4.2.: Parameter values used for the expansion-repression feedback mechanism in
this chapter if not stated otherwise.

Parameter Meaning Value

n
(E)
0 Initial number of expander molecules per cell 3·104

γ Rate constant 10−2 h−1

d(E) Parameter describing expander diffusion 260 µm−1h−1

D(E) Corresponding expander diffusion coefficient 1 µm2s−1

Table 4.3.: Parameter values used for the expander dilution mechanism in this chapter
if not stated otherwise.
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Summary In this chapter we explored how growth of developing tissues can be
controlled in a self-organized way. For that purpose we introduced cellular growth
rules that govern cell divisions based on the local Dpp level. We formulated two spa-
tial growth rules that are based on the slope of the Dpp gradient, and two temporal
growth rules that depend on relative temporal changes of the cellular Dpp concen-
tration. Both spatial growth rules lead to a growth behaviour that is inconsistent
with experimental studies of the wing imaginal disc. The instantaneous spatial rule
leads to a highly unstable behaviour. Growth cannot be reliably controlled with
this rule due to travelling waves of cell divisions. The time-averaged spatial rule
does not exhibit this instability for sufficiently long averaging times. However, this
rule leads to a striking spatial growth inhomogeneity: in the maximum and mini-
mum of the Dpp gradient almost no cell divisions occur. Furthermore, the shape
of the growth curve does not fit the experimental data well. The growth behaviour
resulting from the temporal growth rules depends on the scaling mechanism. If
the expansion-repression mechanism is used, both temporal growth rules generate
strongly inhomogeneous growth: most cell divisions occur inside the Dpp source.
However, both temporal rules lead to a growth behaviour that is consistent with
experimental observations if the expander dilution mechanism is used to scale the
Dpp gradient. Then, growth is largely homogeneous and the growth curves agree
well with experimental data. The deterministic temporal rule and the stochastic
temporal rule can be distinguished by determining the distribution of clone sizes. In
contrast to the stochastic rule, the deterministic rule generates several pronounced
peaks in these distributions.



5. Continuum Description of
Self-organized Growth

In this chapter we develop continuum descriptions of the systems studied in the
previous chapter to gain a better understanding of the vertex model simulations. We
only consider mean values and neglect fluctuations and cell death. Furthermore we
only consider the dilution scaling mechanism because only this mechanism leads to
largely homogeneous growth in case of the temporal growth rules. For simplicity, we
describe the Dpp gradient by a single exponential function. In this approximation,
the relative slope of the Dpp gradient, on which the spatial growth rules depend, is
inversely proportional to the Dpp decay length and thus position-independent (see
section 4.2 on page 49). Furthermore, we neglect any spatial growth inhomogeneities.
In this case the relative temporal derivative of the Dpp concentration ci perceived
by cell i, on which the temporal growth rules depend, is also position-independent
(see section 4.1.1 on page 40),

ċi
ci

=
ċ

c
. (5.1)

Here, c is the Dpp gradient amplitude. Because the quantities that are relevant for
the growth rules are position-independent, we can neglect the spatial extension of
the system and describe it by ordinary differential equations.

5.1. Continuum Description of the Dpp Dynamics

Due to the dilution scaling mechanism, the Dpp degradation rate k is inversely
proportional to the system size A, which is a continuous quantity in this chapter.
The degradation rate thus obeys

k̇ = −gk, (5.2)

where g = Ȧ/A is the growth rate. In our continuum description we take into account
that the Dpp gradient is not in a steady state as long as the system grows. During the
growth process, the Dpp gradient relaxes towards the steady state. The timescale
of relaxation is given by k−1. One can understand this relationship by realizing
that the lifetime of a Dpp molecule is given by k−1. Furthermore, the diffusion
time of a Dpp molecule for travelling a distance corresponding to the decay length
λ̂ =

√
D/k is of the order k−1. Another way of showing that k−1 is the relaxation

time of the Dpp gradient is to solve the time-dependent diffusion equation for the
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Dpp concentration c(x, t). For constant parameters and a δ shaped Dpp source that
is concentrated at x = 0, the solution obeys (see appendix G.2.1),

c(x, t) ∼ e−
|x|
λ̂

(
1−

exp(−kt) exp( |x|
λ̂

)
√
πkt

)
if
√
kt� 1 and

√
kt� |x|

λ̂
, (5.3)

which shows that the concentration profile relaxes exponentially with time constant
k−1 towards the steady state. In this chapter we therefore use the approximation
that the Dpp gradient amplitude c, which is defined as the concentration at the
AP -interface, and the decay length λ relax towards the steady state values with
relaxation time k−1,

ċ = k(ĉ− c), (5.4)

λ̇ = k(λ̂− λ). (5.5)

Here, ĉ is the steady state value of the gradient amplitude, and λ̂ is the steady state
value of the decay length. These quantities are given by (see appendix G.2.2)

ĉ =
ν

2k
(1− e−w/λ̂), (5.6)

λ̂ =
√
D/k, (5.7)

where ν is the production rate per unit area, k is the degradation rate, w is the
width of the Dpp source, and D is the diffusion coefficient. The production rate and
the diffusion coefficient are constant parameters, but the degradation rate and the
source width are time-dependent. The width of the Dpp source w grows logarith-
mically with the width L of the system (see appendix I). Because the system grows
isotropically, A ∼ L2, the temporal increase of w can be described by the dynamic
equation

ẇ = ηg, (5.8)

where η ≥ 0 is a parameter that determines how fast the Dpp source widens.

5.2. Continuum Description of the Growth Dynamics

At early times, all growth rules generate exponential growth with the maximum
growth rate ĝ, which can be determined using equation (2.10). Subsequently, the
growth rate g decreases. To complete the continuum description of self-organized
growth, we need to add an explicit expression for the growth rate, which depends
on the growth rule. In general, the system size is determined by the growth rate
according to

A(t) = A0 exp

(∫ t

t0

dt′g(t′)

)
, (5.9)
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where A0 is the system size at the initial time t0. Because k(t) obeys equation (5.2),
the system size can also be determined using the equation

A(t) =
A0k0

k(t)
. (5.10)

Here, k0 is the initial degradation rate.

5.2.1. Stochastic Temporal Growth Rule

The stochastic growth rule, which is introduced in section 4.1.2, imposes that there
are two different kinds of cells: proliferating cells (type A) and non-proliferating
cells (type B). The growth rate of the proliferating cells is given by ĝ, and the mean
growth rate of the system is given by

g = ĝφ, (5.11)

where φ is the expectation value of the relative fraction of proliferating cells,

φ =
NA

NA +NB

. (5.12)

The expectation values of the number of proliferating and non-proliferating cells are
denoted NA and NB. According to the stochastic rule (4.6), a new cell generated by
a cell division is a proliferating cell with probability %. This probability depends

Type of cells generated by a cell division Probability
Two proliferating cells %2

Two non-proliferating cells (%− 1)2

One proliferating and one non-proliferating cell 2%(1− %)

Table 5.1.: Probabilities of the three different kinds of cell divisions that are possible
according to the stochastic growth rule.

on the average relative time derivative of the Dpp level in the precursor cell. Here,
we approximate % by

% =


0 if ∆ ≤ 0,

∆ if 0 < ∆ < 1, ∆ = θ̄k(ĉ− c)/c,
1 if 1 ≤ ∆,

(5.13)

where we have used equation (5.4) to substitute ċ, and where θ̄ is an effective
parameter corresponding to the parameter θ in equation (4.6). The expectation
values NA and NB obey

ṄA = ĝ(2%− 1)NA, (5.14)

ṄB = ĝ(2− 2%)NA, (5.15)
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Figure 5.1.: System size A shown as a function of time. The solid lines are obtained by
solving the nonlinear system (5.17) numerically using the initial conditions and parame-
ter values given in table 5.2 on page 69. The system size is determined using equation
(5.10). The dashed lines indicate the area of the P population obtained by vertex model
simulations of the stochastic rule, using the parameter values given in the tables 4.1 and
4.3. Because the continuum approximation is an effective description, the growth rule
parameter has to be chosen differently than in the simulations to obtain the same final
size A∗. There is good agreement between the simulation and the continuum approxima-
tion with respect to the shape of the growth curve. The experimental data measured by
Ortrud Wartlick shows the area of the posterior compartment. The Dpp production rate
ν does not influence the growth curve. The dependence of the final size A∗ on the growth
rule parameter θ̄ is shown in figure 5.2. The dependence of A∗ on the other parameters is
shown in the figures 5.9, 5.10, 5.11, and 5.12.
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from which the following equation describing the dynamics of φ follows,

φ̇ = ĝφ(2%− 1− φ). (5.16)

Thus we obtain a four-dimensional, nonlinear dynamical system,

d

dt


c
k
w
φ

 =


k(ĉ− c)
−ĝφk
ηĝφ

ĝφ(2%− 1− φ)

 . (5.17)

In figure 5.1 we show growth curves obtained by solving this system numerically.
The system has infinitely many fixed points x∗, which we parametrize using the
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Figure 5.2.: Ratio of the final size A∗ to the initial size A0 for the stochastic growth rule
as a function of the parameter θ̄.

degradation rate k∗ and the Dpp source width w∗ at the fixed point. Both k∗ and
w∗ are larger than zero for physical reasons. The Dpp gradient amplitude c∗ at the
fixed point is determined by the equation

c∗ =
ν

2k∗
(1− e−w∗

√
k∗/D). (5.18)

Thus the fixed points have the form

x∗ =


c∗

k∗

w∗

0

 . (5.19)
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The Jacobian matrix, evaluated at the fixed point, reads

J∗ =


−k∗ −c∗ + νw∗

4
√
Dk∗

e−w
∗
√
k∗/D ν

√
k∗/D

2
e−w

∗
√
k∗/D 0

0 0 0 −k∗ĝ
0 0 0 ηĝ
0 0 0 −ĝ

 . (5.20)

The eigenvalues of this matrix are given by λ1 = −ĝ, λ2 = −k∗, and λ3 = 0. The
stability of the nonlinear system cannot be determined using linear stability analysis
because one eigenvalue is zero. However we can conclude that the linearized system
is always stable because the eigenvalue λ3 = 0 has double algebraic and geometric
multiplicity. The multiplicity of the zero eigenvalue is two because the set of fixed
points is a two-dimensional manifold.

5.2.2. Deterministic Temporal Growth Rule

According to the deterministic temporal growth rule introduced in section (4.1.1), a
cell division is triggered when the relative increase of the cellular Dpp level reaches
a threshold. To obtain a continuum approximation, we rewrite this rule in the
following form,

∆c

c
≥ ᾱ, (5.21)

where ∆c is the increase in the Dpp amplitude c during the cell cycle time τ , and
ᾱ > 0 is an effective parameter corresponding to the parameter α in equation (4.1).
We divide this inequality by τ and use the approximations ċ ≈ ∆c

τ
and g ≈ ln 2

τ
,

which yields

g ≤ ln 2

ᾱ

ċ

c
. (5.22)

The approximation g ≈ ln 2
τ

is good as long as the cell cycle time τ is small compared
to the timescale on which τ changes. The growth rate g is limited by the maximum
value ĝ. Therefore the equal sign in the inequality (5.22) applies if the right-hand
side is smaller or equal to ĝ. In that case, the gradient amplitude c and the system
size A are related by the following power law (see figure 5.3),

c ∼ Aβ, β =
ᾱ

ln 2
. (5.23)

Using the inequality (5.22), equation (5.4), and taking into account that ĝ is an
upper bound for g, we get

g =

{
ln 2
ᾱ
k(ĉ− c)/c if ln 2

ᾱ
k(ĉ− c)/c < ĝ,

ĝ otherwise.
(5.24)
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We finally obtain a three-dimensional, nonlinear dynamical system,

d

dt

 c
k
w

 =

k(ĉ− c)
−gk
ηg

 . (5.25)

In figure 5.5 on page 63 we show growth curves obtained by solving this system
numerically. The system has infinitely many fixed points x∗, which we parametrize
using the degradation rate k∗ and the Dpp source width w∗ at the fixed point,

x∗ =

 c∗

k∗

w∗

 . (5.26)
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Fit: β = 0.776 ± 0.007 (α = 0.538 ± 0.005)
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Fit: β = 0.847 ± 0.004 (α = 0.587 ± 0.003)
Simulation (α = 80%)

Fit: β = 0.887 ± 0.003 (α = 0.615 ± 0.002)

Figure 5.3.: Here, the Dpp gradient amplitude is shown as a function of the area of
the P population. The data is averaged over 25 vertex model simulations in each case.
The solid lines are fits of the power law c ∼ Aβ, see equation (5.23). Data points that
satisfy A < 103 µm2 are excluded from the fit because small systems grow exponentially,
independent of the Dpp dynamics. Using the fit results and the relation ᾱ = β ln 2, we
estimate values for the parameter ᾱ of the continuum approximation (see figure 5.5).

Both k∗ and w∗ are larger than zero for physical reasons. The Dpp gradient
amplitude c∗ at the fixed point is determined by equation (5.18). The Jacobian
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Figure 5.4.: Ratio of the final size A∗ to the initial size A0 for the deterministic growth
rule as a function of the parameter ᾱ.

matrix, evaluated at the fixed point, reads

J∗ =


−k∗ −c∗ + νw∗

4
√
Dk∗

e−w
∗
√
k∗/D ν

√
k∗/D

2
e−w

∗
√
k∗/D

(k∗)2 ln 2
ᾱc∗

k∗ ln 2
ᾱ
− νw∗

√
k∗/D ln 2

4ᾱc∗
e−w

∗
√
k∗/D −νk∗

√
k∗/D ln 2

2ᾱc∗
e−w

∗
√
k∗/D

−ηk∗ ln 2
ᾱc∗

−η ln 2
ᾱ

+ νηw∗ ln 2

4ᾱc∗
√
k∗D

e−w
∗
√
k∗/D νη

√
k∗/D ln 2

2ᾱc∗
e−w

∗
√
k∗/D

 .

(5.27)

It has the eigenvalues λ1 = k∗( ln 2
ᾱ
− 1) − ν

√
k∗/D(w∗−2η) ln 2

4ᾱc∗
e−w

∗
√
k∗/D and λ2 = 0,

which has double algebraic and geometric multiplicity. The fixed point is unstable
if λ1 > 0, which is equivalent to the following inequality,

ᾱ < ln 2

(
1−

(w∗ − 2η)
√
k∗/D

2(ew
∗
√
k∗/D − 1)

)
. (5.28)

The temporal increase of the Dpp source width, which is taken into account via
the parameter η, has a destabilizing effect on the system because it increases the
eigenvalue λ1. In the limiting case η = 0, in which λ1 assumes its minimal value,
the inequality (5.28) simplifies to

ᾱ < F
(
w∗
√
k∗/D

)
ln 2, (5.29)

F (x) = 1− x

2(ex − 1)
. (5.30)
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The function F is strictly increasing on the interval (0,∞) and behaves as follows,

lim
x→0

F (x) =
1

2
, lim

x→∞
F (x) = 1. (5.31)

From this it follows that all fixed points are unstable if ᾱ < ln 2
2
≈ 0.35, which leads

to unbounded growth.
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Figure 5.5.: System size A shown as a function of time. The solid lines are obtained by
solving the nonlinear system (5.25) numerically using the initial conditions and parameter
values given in table 5.2 on page 69. The system size is determined using equation (5.10).
The values used for the parameter ᾱ are determined by power law fits to simulation results
(see figure 5.3). The dashed lines indicate the area of the P population obtained by vertex
model simulations of the deterministic temporal rule, using the parameter values given in
the tables 4.1 and 4.3. If growth does not stop, the simulation has to be aborted at some
point. Therefore the dashed black line ends at t = 85 h. The agreement between simulation
and continuum approximation is less good that in the case of the stochastic temporal rule,
because here the continuum theory has been derived using the approximation g ≈ ln 2

τ .
This approximation is only valid as long as the cell cycle time τ is small compared to the
timescale on which τ changes. The experimental data measured by Ortrud Wartlick shows
the area of the posterior compartment. The Dpp production rate ν does not influence the
growth curve. The dependence of the final size A∗ on the growth rule parameter ᾱ is
shown in figure 5.4. The dependence of A∗ on the other parameters is shown in the figures
5.9, 5.10, 5.11, and 5.12.
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5.2.3. Spatial Growth Rules

According to the time-averaged spatial growth rule introduced in section (4.2.2),
cell divisions stop when the time-averaged relative slope of the Dpp gradient falls
below a threshold. We approximate this rule in the following way,

g =

{
ĝ if λ̄ ≤ λ̄T ,

0 otherwise.
(5.32)

Here, λ̄T > 0 is a parameter and λ̄ is the time-average of λ, which obeys

d

dt
λ̄ = τ−1

λ (λ− λ̄). (5.33)

The averaging time is denoted τλ. The limit τλ → 0 corresponds to the instanta-
neous spatial growth rule introduced in section (4.2.1). We thus obtain a three-
dimensional, nonlinear dynamical system,

d

dt

kλ
λ̄

 =

 −gk
k(λ̂− λ)
τ−1
λ (λ− λ̄)

 . (5.34)

In figure 5.6 we show growth curves obtained by solving this system numerically.
The system has infinitely many fixed points x∗, which we parametrize using the Dpp
degradation rate k∗ at the fixed point,

x∗ =

 k∗√
D/k∗√
D/k∗

 . (5.35)

Due to physical reasons, k∗ must be larger than zero. In order that x∗ is a fixed
point, k∗ must additionally fulfill k∗ < D(λ̄T )−2. The Jacobian matrix, evaluated at
the fixed point, reads

J∗ =

 0 0 0

−
√
D/k∗

2
−k∗ 0

0 τ−1
λ −τ−1

λ

 . (5.36)

It has the eigenvalues λ1 = −k∗, λ2 = −τ−1
λ , and λ3 = 0. Due to the zero eigenvalue,

the stability of the nonlinear system cannot be determined using linear stability
analysis. However we can conclude that the linearized system is always stable.
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Figure 5.6.: System size A shown as a function of time. The solid lines are obtained by
solving the nonlinear system (5.34) numerically using the initial conditions and parameter
values given in table 5.2 on page 69. The system size is determined using equation (5.10).
The dashed lines indicate the area of the P population obtained by vertex model simu-
lations of the time-averaged spatial rule, using the parameter values given in the tables
4.1 and 4.3. The experimental data measured by Ortrud Wartlick shows the area of the
posterior compartment. The dependence of the final size A∗ on the growth rule param-
eters λ̄T and τλ is shown in the figures 5.7 and 5.8. The dependence of A∗ on the other
parameters is shown in the figures 5.9, 5.10, and 5.11.
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Figure 5.7.: Ratio of the final size A∗ to the initial size A0 for the time-averaged spatial
growth rule as a function of the parameter λ̄T .
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Figure 5.8.: Ratio of the final size A∗ to the initial size A0 for the time-averaged spatial
growth rule as a function of the parameter τλ.
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Figure 5.9.: Ratio of the final size A∗ to the initial size A0 as a function of the maximum
growth rate ĝ.
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Figure 5.10.: Ratio of the final size A∗ to the initial size A0 as a function of the initial
Dpp degradation rate k0.
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Figure 5.11.: Ratio of the final size A∗ to the initial size A0 as a function of the Dpp
diffusion coefficient D.
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Figure 5.12.: Ratio of the final size A∗ to the initial size A0 as a function of the parameter
η, by which the widening of the Dpp source is taken into account.
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Parameter Meaning Value
A0 Initial system size 98.3 µm2

t0 Initial time 21.3 h
c0 Initial Dpp gradient amplitude 0 µm−2

λ0 Initial Dpp decay length 0 µm
λ̄0 Initial time-averaged Dpp decay length 0 µm
k0 Initial Dpp degradation rate 300 h−1

w0 Initial Dpp source width 10−10 µm
φ0 Initial relative fraction of proliferating cells 1
ĝ Maximum growth rate 0.121 h−1

η Dpp source parameter 3.5 µm
ν Dpp production rate per unit area 1800 µm−2h−1

D Dpp diffusion coefficient 0.1 µm2s−1

θ̄ Parameter of the stochastic temporal rule 9.13 h
ᾱ Parameter of the deterministic temporal rule 0.587
λ̄T Parameter of the time-averaged spatial rule 18.5 µm
τλ Parameter of the time-averaged spatial rule 5 h

Table 5.2.: Initial conditions and parameter values used in this chapter, if not stated
otherwise. Numerical solutions are determined using the software Mathematica 6.





6. Relationship Between Tissue
Growth and Mechanical Stresses

In this chapter we study the relationship between proliferation, apoptosis (cell
death), and mechanical stresses. As in the previous chapters we focus on the wing
imaginal disc, where we estimate that forces of the order of 0.1-1 µN act on the cells
(see appendix D). It is not known if forces of this magnitude have a significant effect
on proliferation or apoptosis. However there is evidence that mechanical stresses
can influence the expression of certain genes during development [56], and that me-
chanical stresses play an important role in tumour growth [29]. It is thus plausible
that mechanical stresses also may have an influence on the growth behaviour of the
wing disc. In accordance with this view, it has been proposed that the homogeneity
of growth in the wing disc is due to a mechanical effect [152].

In the vertex model the cell interior is described as a homogeneous elastic material.
The mechanical pressure Pi inside cell i is thus given by

Pi = − ∂F
∂Ai

= K(A
(0)
i − Ai) (6.1)

and has the dimension force per length. To account for apoptosis in the vertex model,
we allow for T2 processes by choosing the mechanical parameters appropriately [58]
(see table 6.2 for parameter values). Cells having a sufficiently small area due to
high mechanical pressure are removed from the system and replaced by a vertex,
which corresponds to the extrusion of an apoptopic cell from the epithelium. The
occurrence of T2 processes thus depends on the mechanical stresses in the system.
The apoptosis rate Ω is defined as the number of T2 processes per cell per unit time
(see appendix E)

In section 6.1 we first study how proliferation influences mechanical stresses in the
tissue. Here the rate of proliferation is predetermined and independent of mechanical
stresses. We consider spatially homogeneous proliferation as well as cases in which
the proliferation rate in a small clone is locally increased or decreased with respect
to the rest of the tissue. The parameter values used in this section are given in table
6.1 on page 75.

In section 6.2 we explore how mechanical stresses can influence self-organized
growth by adding a mechanical feedback to the deterministic temporal growth rule.
The parameter values used in this section are given in table 6.2 on page 80. In all
figures shown in this chapter, error bars indicate the standard error of the mean.
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6.1. Influence of Proliferation on Mechanical Stresses

6.1.1. Homogeneous Proliferation

Here we choose the proliferation rate to be homogeneous in time and space on
average. In this case the pressure distribution does not change significantly while the
system grows (see figure 6.1). The mean pressure shows a slight temporal increase in
the beginning of the simulation but remains approximately constant for N & 1000
(not shown). Increasing the tension of the AP -interface by increasing the parameter
κ leads to a minor increase of the mean pressure P̄ . The apoptosis rate Ω is more
than one order of magnitude smaller than the growth rate g (see figure 6.2).
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Figure 6.1.: Normalized pressure distribution f(P ) in a homogeneously growing system
shown for different system sizes N and different AP -interface tension factors κ.
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Figure 6.2.: Growth rate and apoptosis rate in a homogeneously growing system (κ = 1).
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6.1.2. Inhomogeneous Proliferation

Here we study how a locally increased or decreased proliferation rate influences
the mechanical stresses and the apoptosis rate in the system. For that purpose we
create a small clone that has a different proliferation rate than the rest of the system.
The simulations are performed as follows. When the simulation starts we choose
a random cell to be the founder of the clone. The clone consists of the progeny
of this founder cell. We then let the whole system grow homogeneously until the
total number of cells exceeds a threshold Nt, in order to get a moderate clone size
and thus reduce fluctuations. When the number of cells exceeds Nt, we either stop
proliferation in the clone or in the rest of the system to create a difference between
the proliferation rates. Proliferation in the respective cells is stopped by halting cell
cycle progression in cell cycle state C.

Locally Increased Proliferation Rate in a Clone

 1.1 KA(0)

 0

 

Figure 6.3.: Snapshop of a system consisting of N = 1000 cells. The mechanical pressure
Pi is indicated for each cell by a color code. Here only the clone cells proliferate, which
are shown without dots. The mechanical pressure and the apoptosis rate in the clone is
increased as a result. The other, non-proliferating cells are indicated by white dots.

Here the clone cells proliferate with constant rate, whereas the other cells stop
to proliferate when N exceeds the threshold Nt. The result of the locally increased
proliferation rate in the clone with respect to the rest of the system is a local increase
in the pressure and apoptosis rate (see figures 6.4 and 6.5). In contrast, the pressure
and apoptosis rate in the rest of the system is decreased (see figures 6.4 and 6.5).
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Figure 6.4.: Mean pressure P̄ in the clone and in the other cells, shown as a function of
the number of cells N . Here the cells not belonging to the clone stop to proliferate when
N exceeds Nt = 500.
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Figure 6.5.: Average apoptosis rate Ω in the clone and in the other cells, shown as a
function of time. Here the cells not belonging to the clone stop to proliferate when the
number of cells N exceeds Nt = 500, which corresponds to t ≈ 20 h.
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Locally Decreased Proliferation Rate in a Clone

Here the clone cells stop to proliferate when N exceeds Nt, whereas the other cells
continue to proliferate. When the clone cells stop to proliferate, the pressure inside
the clone drops (see figure 6.6). As a result the apoptosis rate in the clone is reduced
(not shown). Actually, for our choice of the parameter values, the apoptosis rate in
the clone drops to zero when the clone cells stop to proliferate.
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Figure 6.6.: Mean pressure P̄ , shown as a function of the number of cells N . Here the
clone cells stop to proliferate when N exceeds Nt = 500.

Parameter Meaning Value

Γ/KA(0) Dimensionless cell perimeter stiffness 0.04

Λ/K(A(0))3/2 Dimensionless cell bond tension 0.12
κ AP -interface tension factor 1
N0 Initial number of cells 36
Nt Cell number threshold for inhomogeneous growth 500
τ̄M Mean residence time in cell cycle state M 0.75 h
τ̄I Mean residence time in cell cycle state I 5 h
τC Residence time in cell cycle state C 0 h
ξ Gamma distribution shape parameter 25

Table 6.1.: Parameter values used in section 6.1 if not stated otherwise. The values for
the mechanical parameters are taken from the paper [58]. The global relaxation method
is used here (see appendix F), and all results are averages over 25 simulations.
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6.2. Influence of Mechanical Stresses on
Self-organized Growth

In this section we explore how mechanical stresses can influence self-organized growth.
Cells that grow in size prior to a cell division have to perform mechanical work
against the pressure they are exposed to. Because cell growth and cell division are
coupled in the wing imaginal disc, we expect that sufficiently high mechanical pres-
sures can inhibit proliferation. To study this effect, we extend the deterministic
temporal growth rule with a mechanical feedback that inhibits proliferation at high
pressures and stimulates proliferation at low pressures. For this purpose the param-
eter α, which was introduced in equation (4.1) on page 39, is replaced by a variable
α(Pi) that depends on the local pressure,

α(Pi) = α(0) + χ(Pi − P (0)). (6.2)

Here α(0), χ, and P (0) are parameters. The relative increase of the Dpp level neces-
sary to trigger a cell division thus increases linearly with the pressure Pi inside the
cell. The parameter P (0) is chosen close to the mean pressure in the system. The
strength of the mechanical feedback is determined by χ and can be estimated by
considering that the mean and standard deviation of α(Pi) are approximately given
by α(0) and χσP . Here, σP denotes the standard deviation of the pressure distribu-
tion. Its magnitude is given by σP ≈ 10−1KA(0) (see figure 6.1). The mechanical
feedback is weak if χσP � α(0), and it is strong if χσP ≈ α(0).
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Figure 6.7.: Number of cells N shown as a function of time for different choices of the
parameter χ. The growth rule is switched on at t ≈ 55 h (Ng = 360).

As long as the mechanical feedback is weak, the growth curves do not differ much
from each other (see figure 6.7). However, if the mechanical feedback is strong, the
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growth rate decays slower and the system becomes significantly larger (blue curve
in figure 6.7). The reason for this overgrowth is that, if the feedback is strong,
then those cells that are exposed to sufficiently low pressure divide regardless of the
dynamics of the Dpp gradient, because α(Pi) ≈ 0 for these cells. The parameter χ
must thus be chosen sufficiently small in order to maintain the mean behaviour of
the system.

The growth asymmetry between the A and P population is reduced when the
strength of the mechanical feedback is increased (see figure 6.8). However, this
effect is weak; even for a strong feedback a significant asymmetry remains. The
reason for the stabilizing effect of the mechanical feedback is the following: due to
the asymmetry of the Dpp source, the deterministic temporal rule generates more
proliferation in the P population as compared to the A population (see section
4.1.1), which leads to a higher pressure in the P population (see figure 6.11 and
also section 6.1.2). The pressure difference between the P and A populations has
two effects. Firstly, the apoptosis rate is systematically higher in the P population
as compared to the A population (see figure 6.9). However, this difference in the
apoptosis rate cannot compensate for the growth asymmetry of the two populations
because the apoptosis rate is generally too small. Secondly, due to the mechanical
feedback in the growth rule, the pressure difference leads to an inhibition of growth
in the P population and a stimulation of growth in the A population. Therefore, the
relative difference between the growth rates of the P and A populations is reduced
as the strength of the feedback is increased (see figure 6.10).
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Figure 6.8.: Ratio of the cell number in the P population (NP ) to the cell number in
the A population (NA) shown as a function of the total number of cells N . The growth
asymmetry is reduced by the mechanical feedback.
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Figure 6.9.: Apoptosis rate Ω in the A and P population, shown as a function of time
for different choices of the parameter χ. The growth rule is switched on at t ≈ 55 h. The
apoptosis rate in the P population is systematically higher due to a higher pressure. The
apoptosis rate depends strongly on the strength of the mechanical feedback.
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Figure 6.10.: Growth rate g in the A and P population, shown as a function of time for
different choices of the parameter χ. The growth rule is switched on at t ≈ 55 h. The
relative difference between the growth rates in the A and P populations is decreased as
the strength of the feedback is increased.
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Furthermore the mechanical feedback slightly reduces the mean pressure in the
system (figure 6.11). Moreover the standard deviation of the pressure distribution is
reduced (figure 6.12). Due to these changes in the pressure distribution, fewer cells
are exposed to high pressure which reduces the probability for T2 processes. Con-
sequently, increasing the strength of the mechanical feedback leads to a substantial
decrease in the apoptosis rate (see figure 6.9).

In the literature it has been suggested that the spatial homogeneity of growth in
the wing disc relies on a mechanical feedback [152, 83, 3]. We indeed find that a
mechanical feedback can have a stabilizing effect on the system, as growth inhomo-
geneities, pressure fluctuations, and the rate of apoptosis are reduced. However, the
stabilizing effect concerning the growth asymmetry is weak. Without mechanical
feedback, the P population is approximately 35% bigger than the A population when
the total system size reaches N = 1.5 · 104 cells. This asymmetry can be reduced by
the mechanical feedback, but if the feedback is too strong, the shape of the growth
curve is changed substantially (figure 6.7). However, a moderate feedback strength
that maintains the shape of the growth curve is only able to reduce the asymmetry
to 25% (χ = 1.25/KA(0)). In the light of this result, the proposal that a mechanical
feedback can ensure the spatial homogeneity of growth in the wing imaginal disc
seems implausible.
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Figure 6.11.: Mean pressure P̄ shown as a function of the total number of cells N . The
mechanical feedback decreases the mean pressure in the system and also slightly decreases
the pressure difference between the A and P populations.
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Figure 6.12.: Standard deviation σP of the pressure distribution in the whole system
shown as a function of the total number of cells N . The standard deviation is decreased
as the strength of the feedback is increased.

Parameter Meaning Value

Γ/KA(0) Dimensionless cell perimeter stiffness 0.04

Λ/K(A(0))3/2 Dimensionless cell bond tension 0.12

A(0) Preferred cell area 13.7 µm2

κ AP -interface tension factor 5
τ̄I Mean residence time in cell cycle state I 8.3 h

d(D) Parameter describing Dpp diffusion 3.0 µm−1h−1

D(D) Corresponding Dpp diffusion coefficient 0.01 µm2s−1

t0 Starting time of the simulation 24.6 h

n
(E)
0 Initial number of expander molecules per cell 3·104

γ Dilution scaling mechanism parameter 9.2 · 10−4 h−1

α(0) Growth rule parameter 0.64

P (0)/KA(0) Growth rule parameter 0.54

Table 6.2.: Parameter values used in section 6.2. For parameters that are not listed,
the values in table 4.1 on page 52 are used. The average cell area is given by Ac ≈
0.4A(0) ≈ 5.5 µm2. The parameter values correspond to the haltere disc (see section 7.1).
The dilution scaling mechanism is used, and the global relaxation method is chosen (see
appendix F).
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Summary In this chapter we have studied the relationship between tissue growth
and mechanical stresses using the vertex model. We have shown that the pressure
distribution in a homogeneously growing system is essentially independent of the
system size. We investigated the effect of local deviations from a homogeneous
proliferation rate. We found that a locally increased proliferation rate results in a
local pressure increase, which in turn leads to a locally increased apoptosis rate.
Conversely, a locally decreased proliferation rate results in a local pressure decrease
and a locally decreased apoptosis rate. We then explored how mechanical stresses
can influence self-organized growth. For this purpose we used the deterministic
temporal growth rule and added a mechanical feedback that inhibits proliferation
at high pressures and stimulates proliferation at low pressures. We found that this
feedback has a stabilizing effect on the system, as growth inhomogeneities, pressure
fluctuations, and the rate of apoptosis are reduced.





7. Self-organized Growth Under
Perturbed Conditions

In this chapter we study self-organized growth under conditions that deviate from
the conditions in chapter 4. Most of these new conditions correspond to mutant
wing discs for which experimental data is available. The aim of this chapter is to
further check the consistency between theory and experiment. We focus on the
deterministic temporal growth rule because it has already shown good agreement
with experimental data in chapter 4. In section 7.1 we study the growth behaviour
under conditions that correspond to the haltere discs. The two haltere discs give
rise to the halteres of the fly, which are small organs that help to maintain stability
in flight. In section 7.2 we study the effect of cell clones that produce permanently
active Dpp receptors, which locally enhance the Dpp signal. The clones in these
simulations represent the so-called TkvQD clones. Experiments using these clones
are particularly interesting because it is possible to control the expression of the
permanently active Dpp receptors externally by adding a drug to the food of the
larvae [175]. In section 7.3 we study the effects of changes in the maximum growth
rate. These simulations correspond to experiments with Minute mutants. For a
brief description of the Minute mutants see section 1.2.2. In section 7.4 we fix the
width of the Dpp source, which corresponds to experiments in which the morphogen
Hh is replaced by non-diffusible HhCD2 [160]. In section 7.5 we include system-wide
Dpp production in the simulations, mimicking ubiquitous Dpp expression with the
C765-Gal4 driver [146]. In the last section 7.6 we demonstrate that the growth be-
haviour generated by the deterministic temporal rule can by stabilized by nonlinear
Dpp auto-repression. The experimental growth curves shown in this chapter were
measured by Ortrud Wartlick. Error bars indicate the standard error of the mean
if not stated otherwise.

7.1. Kinetic Parameters Estimated from Haltere
Imaginal Discs

The initial size of the haltere disc and the growth rate in the initial, exponential
growth phase are smaller as compared to the case of the wing disc (see figure 7.1).
If only these parameters are changed but otherwise the parameters estimated from
the wing discs are used, the growth curve does not match the experimental haltere
data (turquoise curve in figure 7.1). However, we estimate that both the Dpp
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diffusion coefficient and degradation rate are approximately one order of magnitude
smaller in the haltere disc (see appendix J.2). Changing these two parameters
additionally (parameter set 3, see table 7.2) results in growth dynamics consistent
with experimental data for both the deterministic temporal rule and the stochastic
temporal rule (see figure 7.1).
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Figure 7.1.: Area of the P population shown as a function of time. Parameter set 1
refers to the parameters values that are used to simulate normal wing discs (see tables 4.1
and 4.3). Parameter set 2 is given in table 7.1, and parameter set 3 is given in table 7.2.

Parameter Meaning Value
N0 Initial number of cells 18
τ̄I Mean residence time in cell cycle state I 8.3 h
t0 Starting time of the simulation 15.6 h

Table 7.1.: Parameter set 2, which is used to simulate haltere discs. For parameters not
listed here, we take the values from the normal wing disc simulations (see tables 4.1 and
4.3).
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Parameter Meaning Value
N0 Initial number of cells 18
τ̄I Mean residence time in cell cycle state I 8.3 h
t0 Starting time of the simulation 15.6 h

d(D) Parameter describing Dpp diffusion 3.0 µm−1h−1

D(D) Corresponding Dpp diffusion coefficient 0.01 µm2s−1

γ Dilution scaling mechanism parameter 9.2 · 10−4 h−1

Table 7.2.: Parameter set 3, which is used to simulate haltere discs. For parameters not
listed here, we take the values from the normal wing disc simulations (see tables 4.1 and
4.3).

7.2. Local Production of Permanently Active Dpp
Receptors

In this section we discuss simulations in which cell clones produce permanently
active Dpp receptors, known as TkvQD receptors [141]. In these simulations each

cell is assigned a number of TkvQD receptors n
(T )
i , which obeys

d

dt
n

(T )
i = p

(T )
i − k

(T )
i n

(T )
i . (7.1)

Here, p
(T )
i is the production rate and k

(T )
i is the degradation rate of TkvQD receptors

in cell i. When a cell divides, each daughter cell inherits half of the receptors. At
the onset of the simulation, one founder cell in the P population is chosen, whose
progeny constitute the TkvQD clone. To study the position dependence of the clone
behaviour, we choose the founder cell of the TkvQD clone either adjacent to the Dpp
source (medial) or at a maximum distance from the Dpp source (lateral). Only cells

that belong to the TkvQD clone produce TkvQD receptors, so that n
(T )
i = 0 for all

times if cell i does not belong to the clone. The production rate and degradation
rate of the receptors is the same for all cells within the clone, p

(T )
i = p(T ), k

(T )
i = k(T ).

In experiments, TkvQD receptor production is induced by adding a drug to the food
of the Drosophila larvae [175]. Therefore we choose the production of receptors to
be time-dependent in the simulations. Production begins at t = t(T ) and increases
linearly within the time interval ∆t(T ) until the maximum production rate p̂(T ) is
reached,

p(T )(t) =


0, if t < t(T )

p̂(T )(t− t(T ))/∆t(T ), if t(T ) ≤ t ≤ t(T ) + ∆t(T )

p̂(T ), if t(T ) + ∆t(T ) < t.

(7.2)

We define the Dpp signal s
(D)
i in cell i by

s
(D)
i = n

(D)
i + n

(T )
i , (7.3)
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where n
(D)
i is the number of Dpp molecules in cell i. In the simulations presented

in this section we use the deterministic temporal growth rule. However, we use a
version of this rule in which the Dpp signal s

(D)
i is considered instead of n

(D)
i . To

assess the effect of receptor production we compare the behaviour of the TkvQD

clones with control clones that do not produce receptors. The parameter values
chosen in this section are given in table 7.3.

After the initiation of TkvQD receptor production, Dpp signaling levels in the
TkvQD clones become higher than in control clones (see figure 7.2). Due to the tem-
poral increase in Dpp signaling levels, the deterministic temporal growth rule leads
to an overgrowth of TkvQD clones with respect to control clones (see figures 7.4 and
7.5). On average, lateral TkvQD clones overgrow by a factor 4.0 ± 0.2 and medial
TkvQD clones overgrow by a factor 2.4 ± 0.2 (at t = 120 h). These results are in
excellent agreement with experimental observations, where lateral clones overgrow
by a factor 3.7 and medial clones by a factor 2.1 [109]. Our simulations suggest
the following explanation for the difference between medial and lateral clones: the
relative increase in Dpp signaling caused by the TkvQD receptors is larger in lateral
clones, because there the normal Dpp levels are low. According to the determin-
istic temporal growth rule, cell divisions are triggered by relative increases in Dpp
signaling. Because the relative increases are higher in lateral clones, these clones
overgrow more than medial ones.

In the simulations in this section we use the dilution scaling mechanism with
non-diffusible expander molecules. Therefore, the Dpp degradation rate in each
cell only depends on the cell generation number. The higher the cell generation
number is, the smaller is the Dpp degradation rate. Due to the overgrowth of the
TkvQD clones, the Dpp degradation rate in these clones is smaller as compared to
control clones. The Dpp degradation rate inside the clone also influences the Dpp
levels in the vicinity. This effect can be observed for the lateral TkvQD clones: Dpp
signaling levels are higher in cells that surround a lateral TkvQD clone as compared
to cells that surround a control clone (see figure 7.3). Due to this effect, the growth
rate in cells surrounding lateral TkvQD clones is slightly elevated (see figure 7.6).
Increased proliferation in the vicinity of TkvQD clones has indeed been observed
experimentally [141]. The deterministic temporal growth rule together with the
dilution scaling mechanism provide an explanation for this non-autonomous effect
of the TkvQD clones upon proliferation.
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Figure 7.2.: Average Dpp signal s̄
(D)
c inside the clone shown as a function of time. The

starting time of receptor production is indicated by the dotted line.
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Figure 7.3.: Average Dpp signal s̄
(D)
b in the non-TkvQD cells that are bordering the clone,

shown as a function of time. The starting time of receptor production is indicated by the
dotted line.
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Figure 7.4.: Clone size Nc shown as a function of time. The starting time of receptor
production is indicated by the dotted line.
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Figure 7.5.: Growth rate gc of the clone shown as a function of time. The starting time
of receptor production is indicated by the dotted line.
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Figure 7.6.: Growth rate gb of the non-TkvQD cells that are bordering the clone, shown
as a function of time. The starting time of receptor production is indicated by the dotted
line.

Parameter Meaning Value

t(T ) Starting time of receptor production 61 h

∆t(T ) Time interval of increasing receptor production 10 h

p̂(T ) Maximum receptor production rate 102 h−1

k(T ) Receptor degradation rate 2 · 10−2 h−1

α Deterministic temporal growth rule parameter 68%

d(E) Parameter describing expander diffusion 0 µm−1h−1

D(E) Corresponding expander diffusion coefficient 0 µm2s−1

Table 7.3.: Parameter values used to study TkvQD clones. For parameters not listed
here, we take the values from the normal wing disc simulations (see tables 4.1 and 4.3).
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Figure 7.7.: Configuration of a system containing a lateral TkvQD clone (t = 120 h,
N = 3 · 104 cells). The AP -interfaces are indicated by thick lines. (A) Dpp signaling

level s
(D)
i shown for each cell by a color code. Dpp producing cells, which are located

in the medial region, are indicated by black dots. The TkvQD clone in the lateral region
is easily recognized by the high signaling levels. (B) Here, the color code indicates the
cell generation to which each cell belongs. The starting cells of the simulation belong to
generation 1. Each cell division increases the cell generation number by one. The TkvQD

clone is indicated by black dots.
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7.3. Changes in the Maximum Growth Rate

Growth is slowed down in cells carrying a Minute mutation as compared to non-
Minute cells due to reduced ribosome levels [119, 144, 112]. To mimic Minute mu-
tants in our simulations, we decrease the maximum growth rate by increasing the
average residence times in cell cycle state M and I (see table 7.4). If the stochastic
temporal growth rule is used, the resulting growth curve is inconsistent with experi-
mental data (black line in figure 7.8A). Additionally, the growth rule parameter θ has
to be changed to match the experimental curve (blue line in figure 7.8A). However,
in the case of the deterministic temporal growth rule, the resulting growth curve
matches the experimental Minute data quantitatively (black line in figure 7.8B).

We therefore further investigate the behaviour of Minute mutants using the deter-
ministic temporal growth rule. In the simulations of minute wing discs, we choose
one cell in the P population to be the founder of a fast growing non-Minute clone.
For the non-Minute cells we use the same values for τ̄M and τ̄I as for normal wing
disc cells (see table 4.1). This non-Minute clone does not perturb the growth curve
substantially (red line in figure 7.8B).

In experiments it has been observed that non-Minute clones created in a Minute
wing disc can account for a large fraction of a compartment due to their faster growth
rate. It has been reported that non-Minute clones can account for up to 60%− 90%
of a compartment in such experiments [66]. In our simulations we observe a similar
effect: although the fraction of non-Minute cells is only 2.8% at the onset of the
simulation, the non-Minute clone accounts for 15% of the total number of cells at
the end (red curve in figure 7.9).

To further investigate the behaviour of non-Minute clones, we add a mechanical
feedback to the growth rule (see section 6.2) and allow for apoptosis by choosing the
mechanical parameters appropriately (see table 7.5). In section 6.2 we show that the
mechanical feedback and apoptosis have a stabilizing effect on the system. Here, we
also observe such a stabilizing effect: the fraction of fast growing non-Minute cells is
reduced by apoptosis (figure 7.9). However, the effect of the mechanical feedback in
the growth rule is not significant (compare the blue and turquoise curves in figure
7.9).

We conclude that the Minute mutation is easily described in our simulations if we
use the deterministic temporal growth rule. In this case, it is sufficient to decrease
the maximum growth rate to account for the growth curve of a pure Minute wing
disc. Furthermore, the behaviour of simulated fast growing non-Minute clones in
a Minute background is qualitatively the same as in experiments: the relative size
of the non-Minute clone increases substantially due to its larger maximum growth
rate.
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Figure 7.8.: Area AP of the P population shown as a function of time. For the Minute
and Minute/Clone simulations we use the parameter values given in table 7.4. In the
Minute/Clone simulation we create a fast growing non-Minute clone at the onset of the
simulation. For the wing disc simulations we use the parameter values given in the tables
4.1 and 4.3. The dilution scaling mechanism is used here. Top (A): Stochastic temporal
growth rule. Bottom (B): Deterministic temporal growth rule.
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Figure 7.9.: Simulations of non-Minute clones in different backgrounds. The number of
cells belonging to the non-Minute clone is denoted Nc, and N denotes the total number of
cells. We use the deterministic temporal growth rule and the dilution scaling mechanism
here. The following parameters are used, non-Minute background: see tables 4.1 and 4.3,
Minute background without apoptosis: see table 7.4, Minute background with apoptosis:
see table 7.5. The parameter value χ = 0 corresponds to the absence of mechanical
feedback; χ = 1.25/KA(0) corresponds to the presence of mechanical feedback.

Parameter Meaning Value
τ̄I Mean residence time in cell cycle state I 8 h
τ̄M Mean residence time in cell cycle state M 1.2 h
t0 Starting time of the simulation 17.5 h

Table 7.4.: Parameter values used to simulate Minute mutants. The mean residence
times are 1.6 times longer than in the simulations of normal wing discs. For parameters
not listed here, we take the values from the normal wing disc simulations (see tables 4.1
and 4.3).
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Parameter Meaning Value
τ̄I Mean residence time in cell cycle state I 8 h
τ̄M Mean residence time in cell cycle state M 1.2 h
t0 Starting time of the simulation 17.5 h

Γ/KA(0) Dimensionless cell perimeter stiffness 0.04

Λ/K(A(0))3/2 Dimensionless cell bond tension 0.12
κ AP -interface tension factor 5

A(0) Preferred cell area 13.7 µm2

α(0) Growth rule parameter 0.64

P (0)/KA(0) Growth rule parameter 0.54

χ ·KA(0) Growth rule parameter 0 or 1.25

Table 7.5.: Parameter values used to simulate Minute mutants including apoptosis and
mechanical feedback (see section 6.2). The parameter χ determines the strength of the
mechanical feedback. For χ = 0 there is no feedback, for χ = 1.25/KA(0) there is a strong
feedback. The mean residence times are 1.6 times longer than in the simulations of normal
wing discs. For parameters not listed here, we take the values from the normal wing disc
simulations (see tables 4.1 and 4.3).

7.4. Fixed Dpp Source Width

In experiments it is possible to replace the diffusible morphogen Hh by membrane-
tethered HhCD2 molecules, which are functional but non-diffusible [160]. Therefore,
HhCD2 molecules cannot spread in the anterior compartment of the wing disc. Only
anterior cells that are bordering the posterior compartment receive a HhCD2 signal,
which leads to a one cell diameter wide Dpp source in these mutants. In contrast,
the width w of the Dpp source grows during development in wild type wing discs (see
appendix I). The growth rate in the initial, exponential growth phase is smaller in
HhCD2 mutant discs as compared to normal discs (see figure 7.10). This difference
in the growth rates may be due to a difference in the temperatures at which the
larvae are kept, because the speed of development depends on temperature. In
the experiments with normal wing discs, the temperature is kept at T = 25◦C. In
contrast, in the experiments with the HhCD2 mutant wing discs, the temperature is
kept at T = 18◦C for the first 48 h after egg laying and at T = 30◦C for the rest of
the time [175]. Furthermore, the ratio between the dad-nRFP decay length λd and
the width L of the posterior compartment is different in the HhCD2 mutant disc. A
fit of the function λd = mdL using md as fit parameter yields md = 0.098± 0.004 in
the HhCD2 mutant (not shown) and md = 0.145± 0.003 in normal wing discs (see
figure 3.1), which suggests that either the diffusion coefficient or the degradation
rate of Dpp is different in the HhCD2 mutant.

We perform simulations mimicking HhCD2 mutant wing discs by imposing a Dpp
source in the A population that consists of a given number of cells rows adjacent to
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one of the two AP -interfaces. The morphogen Hh plays no role in these simulations.
We use the deterministic temporal growth rule and the dilution scaling mechanism.
To match the HhCD2 data, we adjust the growth rate in the initial, exponential
growth phase. Although the dad-nRFP decay length in the HhCD2 mutant is dif-
ferent from the wild type, we use the same values for the kinetic Dpp parameters
because changing the initial Dpp degradation rate or the Dpp diffusion coefficient
does not influence the simulation results significantly.
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w = 2 cell rows (α = 64%)
w = 5 cell rows (α = 64%)
HhCD2 wing disc data
Wing disc data (T = 25°C)

Figure 7.10.: Total area A shown as a function of time. The width of the Dpp source is
denoted w. The parameter values used for the simulations are given in table 7.6.

If the same value for the growth rule parameter α is used as in the case of the
normal wing disc simulation (α = 64%), the simulated HhCD2 mutant stops to grow
early (see figure 7.10). Using a broader Dpp source of fixed width does not change
this behaviour. The reason for the early termination of growth is that a growing
Dpp source in the normal wing disc simulation contributes to an increase of the Dpp
level, which stimulates growth. In these simulations the parameter α is tuned such
that the effect of the growing Dpp source is taken into account. Because this effect
is missing in the HhCD2 mutant simulation, the parameter α has to be decreased
to match the experimental growth curve.

Although one expects that only Hh molecules are affected in the HhCD2 mutant
wing disc, it is conceivable that also the parameter α must be changed to describe
the properties of this mutant correctly. The observation that the ratio between
λd and L is different in the HhCD2 mutant as compared to a normal wing disc is
already a hint that this mutant is more complex than one would expect.
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Parameter Meaning Value
τ̄I Mean residence time in cell cycle state I 8.5 h
t0 Starting time of the simulation 21.7 h

Table 7.6.: Parameter values used to simulate HhCD2 mutant wing discs. For parameters
not listed here, we take the values from the normal wing disc simulations (see tables 4.1
and 4.3).

7.5. System-wide Dpp Production

In experiments the morphogen Dpp can be expressed in the whole wing disc using
the so-called C765-Gal4 driver [146]. However, quantitative measurements of the
additional Dpp production rate caused by the C765-Gal4 driver are lacking. The
growth curves of these C765-Dpp mutant discs differ from the growth curves of
normal wing discs (see figure 7.11). During the larval stage of normal wing discs,
which ends at the time of pupariation at t ≈ 110 h, the C765-Dpp mutant discs are
systematically smaller than the normal wing discs (except for the first data point
at t = 24 h). However, the larval stage is prolonged by more than 50 hours in the
C765-Dpp mutants. The mutant discs continue to grow during this extra time and
become larger than normal wing discs in the end.

We mimic the C765-Dpp mutant by adding an extra Dpp production term p
(D)
+ to

each cell in the vertex model simulation. We perform two different versions of this
simulation. In version I, the extra production rate is constant, p

(D)
+ = c. In version

II, the extra production rate increases linearly with time, p
(D)
+ = r(t− t0), where r

is the rate of increase and t0 is the starting time of the simulation. Otherwise, we
use the same parameters as in the simulations of normal wing discs (see tables 4.1
and 4.3).

Version I and version II of the C765-Dpp mutant simulation produce similar re-
sults. Both the deterministic temporal rule and the time-averaged spatial rule gen-
erate growth curves that deviate from the experimental data (see figure 7.11). The
additional system-wide Dpp production flattens the Dpp distribution. According to
the time-averaged spatial rule, cells only proliferate as long as the relative slope of
the Dpp distribution is larger than a threshold (see section 4.2.2). Therefore, the
extra Dpp production term reduces the system size if the time-averaged spatial rule
is used. In case of the deterministic temporal rule, the system overgrows substan-
tially because the additional Dpp production term leads to faster temporal increases
of the Dpp levels.

A plausible explanation for the discrepancy between the simulations and the ex-
perimental data is, that the extra Dpp production term introduced in the simulations
does not describe the C765-Dpp mutant appropriately. Furthermore, unknown feed-
backs, which are not included in the simulation, might stabilize growth of the wing
disc against the perturbations induced in the C765-Dpp mutant. In section 7.6 we
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discuss an example of such a stabilizing feedback. It is also possible that external
factors such as nutrition supply limit the size of the C765-Dpp mutant. Further-
more, the values of the growth rule parameters might have to be changed to describe
the properties of the C765-Dpp mutant correctly.
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Figure 7.11.: Total area A shown as a function of time. The parameter values used in
the simulations are given in the table 7.7. Interestingly, the normal wing disc simulation
(no extra Dpp production) matches the C765-Dpp mutant data well.

Parameter Meaning Value
c Constant extra Dpp production rate (Version I) 103 h−1

r Rate of increase of extra Dpp production rate (Version II) 30 h−2

Table 7.7.: Parameter values used to study C765-Dpp mutant wing discs. For parameters
not listed here, we take the values from the normal wing disc simulations (see tables 4.1
and 4.3).
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7.6. Nonlinear Dpp Auto-repression

In this section we study the effect of nonlinear Dpp auto-repression on the growth
behaviour. To describe Dpp auto-repression, we choose the following rule for the
Dpp production rate p

(D)
i in cell i,

p
(D)
i =

{
p(D)H

(
n

(D)
i

)
Θ
(
n

(H)
i − n(H)

T

)
if ρi = A,

0 if ρi = P .
(7.4)

Here, n
(D)
i is the number of Dpp molecules in cell i and n

(H)
i is the number of Hh

molecules in cell i. The population variable is denoted ρi, the Hh threshold above
which Dpp production is switched on in the A population is denoted n

(H)
T , Θ denotes

the Heaviside step function, and p(D) is the maximum Dpp production rate per cell.
The difference between the rule (7.4) and the standard rule (2.6) lies in the term

H
(
n

(D)
i

)
=

Rh(
n

(D)
i

)h
+Rh

, (7.5)

which describes Dpp auto-repression by a Hill-type function with parameters h and
R. Dpp auto-repression kicks in when the Dpp level in the cell becomes comparable
to the repression level R. Here, we choose the deterministic temporal growth rule
and the dilution scaling mechanism. We use the same parameter values as in the
normal wing disc simulations if not stated otherwise (see tables 4.1 and 4.3).

The nonlinear feedback has a stabilizing effect on the system. Without auto-
repression, the system overgrows if the parameter α of the deterministic temporal
rule is chosen too small (e.g. α = 50%). However, if auto-repression is activated,
the growth curves can be tuned to match the experimental data by choosing the
repression level R appropriately, even for small values of α (see figure 7.12). Dpp
levels increase during growth so that Dpp auto-repression becomes important at the
end of the growth phase. Therefore, Dpp auto-repression can change the shape of the
growth curve at the end of the growth phase without influencing the initial growth
phase much. Furthermore, already a small change of the average Dpp production
rate due to auto-repression can have a large impact on the growth rate. For example,
for α = 64%, activation of Dpp auto-repression reduces the average Dpp production
rate only by approximately 20% (for R = 6000, see figure 7.13). However, this
reduction substantially changes the shape of the growth curve at late times (compare
the black and red curves in figure 7.12).

Nonlinear Dpp auto-repression is an example of a feedback that stabilizes the
system and provides a mechanism to fine-tune the shape of the growth curves. It is
likely that similar feedbacks stabilize growth in the wing disc.
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Figure 7.12.: Area AP of the P population shown as a function of time. Here we choose
the Hill coefficient h = 4.
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Figure 7.13.: Average Dpp production rate p̄
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S in the Dpp source shown as a function

of time. The Dpp source consists of all cells that are characterized by a non-zero Dpp
production rate. Here we choose the Hill coefficient h = 4.
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Summary In this chapter we studied self-organized growth under perturbed con-
ditions to further check the consistency between theory and experiment, focusing
on the deterministic temporal growth rule. The first perturbation we applied to the
system was to use parameter values estimated from haltere dics. The haltere is an
organ important for the stability during flight. It is related to the wing, but it is
much smaller. We estimated that the kinetic parameters of Dpp are approximately
tenfold smaller in the haltere disc. Using the parameter values estimated for the
haltere disc resulted in a growth curve exhibiting good agreement with experimental
data. Moreover, we simulated wing discs in which the Dpp source width is fixed to
one cell diameter as in the HhCD2 mutant. The growth behaviour is sensitive with
respect to this mutation. The resulting growth curve is only in agreement with the
experimental data if the growth rule parameter is changed substantially. Another
perturbed condition that we simulated is system-wide Dpp production. The system
becomes much larger in the simulation as compared to corresponding experiments.
However, the corresponding mutant wing disc is not well understood. We argued
that the discrepancy between theory and experiment may also be explained by exter-
nal factors such as limited nutrition supply or by unknown feedbacks that stabilize
the wing disc against perturbations. We also studied the effect of producing per-
manently active Dpp receptors in cell clones. We showed that clones in which the
receptor is produced become larger than normal clones. The amount of overgrowth
depends on the position of the clone. If the clone is far away from the Dpp source,
then the clone overgrows more than if it is close to the source. These results are
in good quantitative agreement with experimental measurements. We furthermore
investigated the effects of decreasing the maximum growth rate of the system. We
found that the deterministic growth rule is robust with respect to this perturba-
tion. The growth curve agrees with experimental data from wing discs in which
the maximum growth rate is decreased due to a Minute mutation. We finally dis-
cussed a possible stabilizing feedback. We demonstrated that the growth behaviour
generated by the deterministic temporal rule can by stabilized by nonlinear Dpp
auto-repression.



8. Conclusion

In this thesis we have studied self-organized growth in developing tissues from a
theoretical viewpoint, focusing on the Drosophila wing disc as a model system. In
chapter 1 this model system was introduced, and the reader was also familiarized
with the necessary biological background, such as the experimental findings that
the morphogen Decapentaplegic (Dpp) controls growth in the wing disc, and that
growth is approximately homogeneous in space. Furthermore, we presented existing
theoretical approaches to describe growth in epithelia, the formation of morphogen
gradients, and growth control in the wing disc.

In chapter 2 we introduced a general theoretical description of morphogen gradi-
ents and growth in epithelia. This description is based on a two-dimensional vertex
model in which cells are represented as polygons and mechanical tissue properties
are taken into account. The distribution of morphogens within the cellular network
is described by assigning molecule numbers to each cell. The dynamics of these
distributions is described by systems of coupled differential equations that allow for
molecule exchange between neighbouring cells. Furthermore, the cell cycle is de-
scribed by introducing a cell cycle variable that can assume three different states.
We have applied this model to describe the key features of the wing disc with regard
to growth and morphogen distributions.

In chapter 3 we studied scaling of the Dpp distribution. Scaling means that the
characteristic decay length of the exponential Dpp distribution is proportional to the
width of the wing disc. We analysed experimental data and concluded that scaling
is caused by a temporal decrease in the Dpp degradation rate. Using our theoretical
description of the wing disc, we studied two mechanisms that may underlie scaling.
Both mechanisms rely on an additional molecule species that we call the expander.
The expander behaves differently in the two scaling mechanisms, but in both cases
the expander ensures that the Dpp degradation rate decreases appropriately while
the system grows. In the dilution scaling mechanism, expander molecules are neither
degraded nor produced, but they are provided initially and subsequently diluted due
to growth. We showed that the Dpp gradient scales if the Dpp degradation rate is
proportional to the local expander concentration.

The expansion-repression scaling mechanism relies on a feedback loop between the
Dpp distribution and expander production. Expander molecules are not degraded,
but they are produced where the Dpp concentration is sufficiently low. The Dpp
degradation rate depends on the local expander concentration in such a way that
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increasing the expander concentration causes an increase in the Dpp decay length.
We demonstrated that this feedback leads to an exponential Dpp distribution that
approximately scales, if the diffusion coefficient and the production rate of the ex-
pander are sufficiently large. We showed that the required magnitudes of these two
quantities depend on the growth rate of the system.

We have not been able to decide if the dilution mechanism or the expansion-
repression mechanism describes scaling in the wing disc correctly. Future experi-
ments, in which scaling under perturbed conditions is studied, are required to deter-
mine which mechanism operates in the wing disc. In appendix A, we furthermore
checked if a nonlinearity in the Dpp degradation term is an alternative explanation
for the observed scaling of the Dpp distribution. We concluded that this is not the
case.

In chapter 4 we explored how growth of developing tissues can be controlled in
a self-organized way. For that purpose we formulated four different growth rules
for the vertex model. These growth rules govern cell divisions based on the local
Dpp level. In general, the resulting growth behaviour does not only depend on the
growth rule but also on the scaling mechanism. Therefore we discussed the result-
ing growth behaviour for the dilution mechanism as well as the expansion-repression
mechanism. Two growth rules, which we denoted spatial rules, depend on the slope
of the Dpp distribution. Essentially, these rules impose that cells divide as long
as the local relative slope is larger than a threshold. We showed that the system
exhibits an instability if the instantaneous slope of the Dpp distribution is consid-
ered. In this case, local perturbations of the Dpp gradient caused by cell divisions
can trigger further cell divisions nearby, leading to travelling waves of proliferation,
which are inconsistent with experimental observations. We demonstrated that this
instability can be eliminated by considering the time-averaged slope of the Dpp
distribution in the growth rule. In this case, fluctuations are damped and growth
stops reliably. However, this rule generates spatially inhomogeneous growth: in the
maximum and minimum of the Dpp distribution, almost no cell division occur. Such
a striking inhomogeneity has not been reported in experimental studies of the wing
disc. Therefore, we argued that the spatial growth rules do not correctly describe
growth control in the wing disc.

The two other growth rules studied in chapter 4 have been denoted temporal
rules, because they depend on temporal changes in the cellular Dpp concentration.
These growth rules are based on the idea that the Dpp signaling pathway is sen-
sitive to relative changes of the input signal. One such growth rule, which we call
deterministic temporal rule, imposes that a cell division occurs when the cellular
Dpp concentration has increased by a certain relative amount. The other temporal
rule, which we call stochastic temporal growth rule, imposes two cell types: prolif-
erating cells and non-proliferating cells. Whether a cell generated by a cell division
is a proliferating cell or not depends stochastically on the temporal increase of the
Dpp concentration in the precursor cell. We showed that both temporal rules gener-
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ate similar growth behaviour. The expansion-repression scaling mechanism leads to
strongly inhomogeneous growth that is inconsistent with experimental observations.
In contrast, growth is approximately homogeneous and the growth curves agree well
with experimental data if the dilution mechanism is chosen to ensure scaling of the
Dpp distribution.

Although the deterministic temporal rule and the stochastic temporal rule exhibit
many similarities, we found significant differences. At late times corresponding to
the end of larval development, the stochastic temporal rule leads to the complete
termination of growth, whereas the deterministic temporal rule leads to a finite
growth rate. Thus, these two rules could be distinguished by careful experiments
that determine if there are mitotic cells in the wing disc immediately before the pu-
pal stage of development. Moreover, we showed that the two growth rules generate
different clone size distributions. The deterministic temporal rule generates distri-
butions that exhibit striking peaks at cell numbers that are powers of two, whereas
the stochastic temporal rule leads to smooth distributions.

The main result of chapter 4 is the finding that one of the temporal growth rules
may correctly describe growth control in the wing disc. However, this finding re-
quires that scaling of the Dpp distribution is caused by a mechanism equivalent to
the dilution scaling mechanism.

In chapter 5 we developed mean field approximations of the systems that were
studied in chapter 4. We argued that the relaxation time of the Dpp distribution
is determined by the Dpp degradation rate. Using this result and taking advantage
of the spatial homogeneity of growth, we demonstrated that the vertex model sim-
ulations can be approximated by nonlinear dynamical systems. We found that the
effective growth rule parameters of these dynamical systems must be renormalized
with respect to the parameters of the vertex model simulations.

The interplay between tissue growth and mechanical stresses was investigated
in chapter 6. We first studied the impact of proliferation on mechanical stresses.
We found that a locally increased proliferation rate results in a local pressure in-
crease, which in turn leads to a locally increased apoptosis rate. Conversely, a
locally decreased proliferation rate results in a local pressure decrease and a locally
decreased apoptosis rate. We then explored how mechanical stresses can influence
self-organized growth. For this purpose we used the deterministic temporal growth
rule and added a mechanical feedback that inhibits proliferation at high pressures
and stimulates proliferation at low pressures. We found that this feedback has a
stabilizing effect on the system, as growth inhomogeneities, pressure fluctuations,
and the rate of cell death are reduced.

In chapter 7 we studied self-organized growth under perturbed conditions, most of
which corresponded to mutant wing discs for which experimental data is available.
The aim of this chapter was to further check the consistency between theory and
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experiment. We focused on the deterministic temporal growth rule because it had
already shown good agreement with experimental data in chapter 4. We showed that
this growth rule results in a growth behaviour that is consistent with experimental
data for haltere discs and Minute mutants. Furthermore, this growth rule could
explain key features observed in experiments with clones expressing permanently
active Dpp receptors. These experiments are particularly important because they
allow to externally manipulate the Dpp signaling levels in clones. For two mutant
conditions that are less well understood, the HhCD2 mutant and the mutant with
ubiquitous Dpp expression, the agreement between simulation and experiment was
less good though. We furthermore discussed a possible stabilizing feedback. We
demonstrated that the growth behaviour generated by the deterministic temporal
rule can by stabilized by nonlinear Dpp auto-repression.

In this work we have proposed a growth rule that governs cell divisions in the
Drosophila wing imaginal disc. According to this growth rule, a cell division occurs
when the cellular Dpp concentration has increased by a certain relative amount.
This growth rule can explain many key observations that have not been understood
so far, for example the spatial homogeneity of growth, the different sizes of wing and
haltere, and the behaviour of clones expressing permanently active Dpp receptors.
Future experiments, for example in vitro experiments in which cell cultures grow
under controlled conditions, will have to show if the suggested growth rule truly
captures the essence of growth control in the wing imaginal disc.



A. Scaling Behaviour of
Non-exponential Morphogen
Gradients
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Figure A.1.: Projection of a non-exponential Dpp gradient on the x-axis at t = 63 h
(N = 3600, Lx = 160 µm, L = 80 µm, k(D) = 0.01 h−1, m = 2). Each point corresponds
to a cell. Due to the nonlinearity, Dpp is degraded slowly when Dpp levels are low.
Therefore the Dpp levels are comparably high far from the Dpp source. The exponential
fit (see caption of figure 3.5 on page 27) yields B1 = 543 ± 2, B2 = 0.51 ± 0.02, and
λ = (17.0± 0.1) µm.

In this section we show that the assumption of a nonlinear Dpp degradation term
does not provide a simple explanation for the experimentally observed scaling of the
Dpp gradient. We perform this analysis because we cannot exclude the possibility
that the Dpp gradient in the wing disc follows a power law rather than an exponential
function (see appendix J). Power law gradients are scale free so that the system size
L would be the only length scale in such a system. Fitting exponential functions to
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power law gradients would impose the system size upon the exponential functions
and yield values for λ that increase with L.

To test if a misinterpretation of power law gradients as exponential gradients pro-
vides a simple explanation for the observed proportionality between λ and L, we
fit exponential functions to non-exponential Dpp gradients generated in the vertex
model, and display the obtained decay length λ as a function of L. The fitting pro-
cedure is explained in the caption of figure 3.5. The non-exponential Dpp gradients
are generated using a nonlinear Dpp degradation term, which is proportional to the
m-th power of the cellular Dpp level. In contrast to section 3.2, the coefficient k(D)

of the degradation term is the same for all cells and is kept constant here. The
nonlinear dynamic equations governing the Dpp gradient are thus given by

d

dt
n

(D)
i = p

(D)
i − k(D)

(
n

(D)
i

)m
+ d(D)

∑
j

bij

(
n

(D)
j − n(D)

i

)
. (A.1)

For m 6= 1, the steady state Dpp gradient outside of the Dpp source follows the
power law n(D)(x) ∼ (x+x0)2/(1−m) in a continuum description with infinite system
size. Here, x is the distance from the Dpp source and x0 is a constant. We use two
different exponents, m = 2 and m = 1.65, and vary the coefficient k(D) over three
orders of magnitude, respectively. The other parameters are the same as in section
3.2. The parameter value m = 1.65 is obtained by fits of power laws to GFP-Dpp
gradients (see appendix J.1.2).

Indeed, the decay lengths λ obtained by exponential fits increase with increasing
system size L (see figure A.2). However, for all parameter values used, the slope of
these curves is too small to account quantitatively for the experimental data. We
conclude that a nonlinear Dpp degradation term with a fixed rate coefficient does
not provide an alternative explanation for the experimentally observed scaling of
the Dpp gradient in the wing disc.
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Figure A.2.: Decay length λ of non-exponential Dpp gradients shown as a function of L.
Top (A): m = 2. Bottom (B): m = 1.65.





B. Sensitivity of the Growth Rules
with Respect to Initial Conditions

Here we investigate how sensitive the growth rules introduced in chapter 4 are with
respect to initial conditions. For that purpose we apply the growth rules from the
beginning of the simulation on, when the system is small and fluctuations are strong.
In chapter 4 the growth rules were not applied from the beginning on, but after a
tenfold increase in system size (Ng = 360). The parameter Ng determines when the
growth rule is switched on. As long as the number of cells obeys N < Ng, the system
is forced to grow exponentially with the maximum growth rate. If N ≥ Ng, growth
is governed by the growth rule. The parameter values used in the simulations are
given in the tables 4.1 and 4.3 on pages 52 and 53.

B.1. Deterministic Temporal Rule
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Figure B.1.: Mean number of cells N shown as a function of time, obtained from 25
realizations of the simulation using the deterministic temporal rule with the dilution scal-
ing mechanism (α = 64%). The one-sided error bars indicate the standard deviation.
Individual realizations are shown as dotted lines for Ng = 36 and Ng = 360.
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The system behaviour is sensitive to initial conditions. If the growth rule is applied
from the onset of the simulation on, the relative variance of the resulting growth
curves becomes considerable, and in many realizations of the simulation the system
stops to grow early, when consisting of only a few hundred cells (see figure B.1).

If the growth rule is switched on after a tenfold increase in system size, these early
terminations of growth do not occur, the system becomes larger, and the relative
variance of the growth curves is reduced (see figure B.1). Instead of switching on
the growth rule at later times, the relative variance of the growth curves can also be
reduced by using a Dpp source that is more regular and exhibits less fluctuations (see
figure B.2). Using the stabilized Dpp source described in the caption of figure B.3
has a similar effect as switching on the growth rule after a tenfold increase in system
size. The strong effect of Dpp source fluctuations on the variance of the growth
curves might be a reason for additional feedbacks in the Hh signaling network that
provide robustness to the Dpp source [52, 86]. For vanishing expander diffusion
coefficient D(E) the sensitivity to initial fluctuations is less pronounced (data not
shown).
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Figure B.2.: Mean number of cells N shown as a function of time, obtained from 25
realizations of the simulation using the deterministic temporal rule with the dilution scaling
mechanism (α = 64%). The one-sided error bars indicate the standard deviation. In these
simulations, the growth rule is applied from the beginning on (Ng = 36). The difference
between the two Dpp sources is explained in the caption of figure B.3. The solid black
line is the same as in figure B.1.
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Figure B.3.: Mean Dpp source width w shown as a function of time, obtained from
25 realizations of the simulation using the deterministic temporal rule with the dilution
scaling mechanism (α = 64%, Ng = 360). The error bars indicate the standard deviation,
which is a measure for the fluctuations of the source width. At early times, the width
of the self-organized source is significantly bigger, is less smooth as a function of time,
and exhibits stronger fluctuations as compared to the width of the stabilized Dpp source.
The self-organized Dpp source is generated in response to Hh molecules, see section 2.3.1,
and is used in all simulations if not stated otherwise. The stabilized Dpp source obeys the
following rule: cell i produces Dpp molecules with rate p(D), if ρi = A, and if the minimum
distance from the center of cell i to any vertex belonging to one particular AP -interface
is smaller than f(L) = b1 ln(L/b2). Here, L is the width of the P population and b1 and
b2 are parameters (see table 4.1).

B.2. Stochastic Temporal Rule

Similar to the case of the deterministic temporal rule, the system behaviour is sen-
sitive to initial conditions. Switching on the growth rule later by increasing Ng

reduces the relative variance of the growth curves, and also increases the system
size (see figure B.4). Using a stabilized Dpp source has qualitatively the same effect
on the system (see figure B.5), similar to the case of the deterministic temporal rule.
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Figure B.4.: Mean number of cells N shown as a function of time, obtained from 25
realizations of the simulation using the stochastic temporal rule with the dilution scaling
mechanism (θ = 9 h). The one-sided error bars indicate the standard deviation. Individual
realizations are shown as dotted lines for Ng = 36 and Ng = 360.
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Figure B.5.: Mean number of cells N shown as a function of time, obtained from 25
realizations of the simulation using the stochastic temporal rule with the dilution scaling
mechanism (θ = 9 h). The one-sided error bars indicate the standard deviation. In these
simulations, the growth rule is applied from the beginning on (Ng = 36). The difference
between the two Dpp sources is explained in the caption of figure B.3. The solid black
line is the same as in figure B.4.
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B.3. Time-averaged Spatial Rule

The time-averaged spatial rule is insensitive with respect to initial conditions: whether
the growth rule is applied from the onset of the simulation on or after a tenfold in-
crease in system size has a negligible effect on the mean and standard deviation of
the resulting growth curves (see figure B.6).
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Figure B.6.: Mean and standard deviation of the number of cells N shown as a function
of time for the time-averaged spatial rule with the dilution scaling mechanism (uT = 0.375,
τu = 5 h). The growth rule is applied if N > Ng. The coefficients of variation of the final
sizes are 1.7% (Ng = 36) and 1.2% (Ng = 360). The relative difference between the means
of the final sizes is 0.5%.





C. Dynamic Range and Uncertainty
of Local Dpp Levels

Growth control by the Dpp gradient requires a signaling system that is able to deal
with Dpp concentrations of different orders of magnitude. The dynamic range of
Dpp signaling can be estimated by comparing the highest and lowest Dpp levels
in the system. We find in our simulations, using the deterministic temporal rule
and the dilution scaling mechanism, that the dynamic range increases with time
but that it does not exceed three orders of magnitude (figure C.1). The parameter
values used in the simulation are given in the tables 4.1 and 4.3 on pages 52 and 53.

30 40 50 60 70 80 90 100 110
t [h]

0

100

200

300

400

500

n 0 / 
n m

in

Figure C.1.: Dynamic range of the Dpp gradient in the P population shown as a function
of time. The maximum and minimum number of Dpp molecules per cell, n0 and nmin, are
determined by curve fitting as described in figure 3.5.

Furthermore we estimate the minimal Dpp concentration in the system using sim-
ulations. We find that the number of Dpp molecules in the minimum of the gradient
is of the order of 10 molecules per cell. Low molecule numbers and finite measure-
ment time lead to an uncertainty in the Dpp signal [17]. The relative uncertainty is
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given by
∆c

c
= (5πTDca/3)−1/2 . (C.1)

Here, ∆c is the concentration uncertainty, c is the mean concentration, T is the mea-
surement time, D is the diffusion coefficient, and a is the radius of the measurement
volume. Using simulations, we estimate ∆c/c in lateral regions where Dpp levels are
minimal and thus the relative uncertainty maximal. For the measurement time T
we take a typical cell cycle time τ , which we estimate from the growth rate g by the
relation τ ≈ ln(2)/g, and we choose a = 2.5 µm, D = 0.1 µm2/s. Figure C.2 shows
that even in lateral regions there are enough molecules to determine the Dpp signal
with considerable precision, due to the available measurement time. The relative
uncertainty decreases with time because both the available measurement time and
the minimal Dpp concentration increase with time. The relative uncertainty is small
compared to the parameter α used in the deterministic temporal rule, which shows
that growth can indeed be controlled by the Dpp gradient, in spite of low molecule
numbers.
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Figure C.2.: Estimated relative concentration uncertainty in the minimum of the Dpp
gradient, shown as function of time.



D. Estimation of the Mechanical
Forces in the Wing Imaginal Disc

Here we estimate the magnitude of the mechanical forces acting on cells in the wing
imaginal disc. The parameter K of the vertex model (see chapter 2), which describes
the elasticity of cells, can be related to the Young’s modulus E [99]. Dimensional
analysis yields K ' hE/A(0), where h is the height of a cell. The Young’s modulus E
has not yet been measured for wing disc cells, but it has been measured for other cell
types. These measurements can be used to estimate the magnitude of the parameter
K. The literature provides the following values: E = 1−50 kPa for human platelets
[137], E = 37 kPa for young human epithelial cells [16], E = 1 kPa for fibroblasts
[106]. In general, the Young’s modulus is of the order 1− 100 kPa in biological cells
[7, 90]. Using the values E = 10 kPa, h = 30 µm, and A(0) = 10 µm2, we estimate

K ≈ 0.03 µN/µm3. (D.1)

Typical pressures are thus of the order KA(0) ≈ 0.3 µN/µm. Using the values for
the dimensionless mechanical parameters given in table 6.1, we get the following
estimates for the cell bond tension and cell perimeter stiffness,

Λ ≈ 0.1 µN, Γ ≈ 0.01 µN/µm. (D.2)

Considering these estimates for the parameters K, Λ, and Γ, we conclude that forces
of the order of 0.1-1 µN act on a cell in the wing imaginal disc.





E. Growth and Apoptosis Rates

E.1. Continuous System

E.1.1. Definitions

In a system where the number of cells is described by a continuous variable N , we
define the growth rate g by

g =
dNg

Ndt
, (E.1)

where dt denotes an infinitesimal time interval, and dNg ≥ 0 is the increase in system
size within that time interval due to growth. The time-averaged growth rate gT (t)
we define by

gT (t) =
1

T

∫ t+T/2

t−T/2
dt′g(t′) =

1

T

∫
dNg

N
, (E.2)

where T is the time over which the growth rate is averaged. Analogously, we define
the apoptosis rate Ω by

Ω =
dNΩ

Ndt
, (E.3)

where dNΩ ≥ 0 is the decrease in system size within the time interval dt due to
cell death. The total change in system size within the time interval dt is given by
dN = dNg − dNΩ. Thus N obeys

Ṅ

N
= g − Ω. (E.4)

E.1.2. Relationship Between Doubling Time and Growth Rate

In situations where Ω = 0, i.e. growth is the only process that changes the system
size, equation (E.4) yields g = Ṅ/N . If the growth rate is constant we can integrate
this equation and obtain N(t) ∼ exp(gt). Thus the growth rate g and the time τ
during which the system doubles its size are related by

g =
ln 2

τ
. (E.5)



120 E.2. Discrete System

E.2. Discrete System

E.2.1. Definitions

We now consider a cell population that consists of a discrete number of cells N(t).
Because the cell number is a discrete variable here, the instantaneous growth rate
is a series of δ-functions, which is inconvenient to quantify growth. We therefore
consider the average over a time interval T ,

g(t) =
1

T

K∑
k=1

1

Nk

, (E.6)

which we denote the stochastic growth rate, because it is based on counting stochas-
tic cell division events. The number of cell divisions that occur in the population
during the time interval (t− T/2, t + T/2] is denoted K, and Nk is the population
size when cell division number k occurs. If several cell divisions occur at the same
time, then the divisions are counted one by one, such that Nk is increased after each
division. Definition (E.6) is the discrete version of equation (E.2), which is obtained
by replacing the integral by a sum, and by replacing dNg by 1. Analogously, we
define the stochastic apoptosis rate by

Ω(t) =
1

T

J∑
j=1

1

Nj

. (E.7)

Here the number of T2 processes (cell deaths) that occur during the time interval
(t − T/2, t + T/2] is denoted J , and Nj is the population size when T2 process
number j occurs.

In general, the size N(t) of the considered cell population is not determined by
the cell divisions and T2 processes that occur in the population. For example, if
one considers the cell population that is constituted by the cells that produce Dpp
molecules, then N(t) is given by the size of the Dpp source, which depends on the
Hedgehog distribution. The definitions (E.6) and (E.7) are also applicable to such
cases.

E.2.2. Relationship Between Cell Cycle Time and Growth Rate

Deterministic Cell Cycle Time

Here we consider the case in which the cell cycle time τ is a constant with zero
variance (τ = τ̄). To obtain a relationship between τ and the stochastic growth rate
g, we consider a growing system without apoptosis. Analogous to the continuous
case, the system size grows exponentially, N(t) ∼ exp(ḡt). The quantity ḡ = ln 2

τ
is

denoted average growth rate. Without apoptosis, equation (E.6) becomes

g(t) =
1

T

K∑
k=1

1

N1 + k − 1
. (E.8)
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If we average over the duration of one cell cycle, T = τ , then each cell divides
exactly once within the averaging interval (t− T/2, t+ T/2]. Thus K = N1, so that
we obtain

g(t) = τ−1Ψ(N1). (E.9)

Here, we introduce the function Ψ,

Ψ(x) = ψ(2x)− ψ(x), (E.10)

where ψ(x) = d
dx

ln Γ(x) is the digamma function, and Γ(x) =
∫∞

0
tx−1e−tdt is the

gamma function. The function Ψ has the following properties,

Ψ(1) = 1, (E.11)

lim
x→∞

Ψ(x) = ln 2. (E.12)

Consequently, we obtain

g ≈

{
1
τ

if N ≈ 1,
ln 2
τ

if N � 1.
(E.13)

Thus, g overestimates the average growth rate of the cell population if the number
of cells is of the order 1. However in large cell populations, the stochastic growth
rate g is equal to the average growth rate ln 2

τ
.

Stochastic Cell Cycle Time

We now consider the case in which the cell cycle time τ is chosen from a time-
independent gamma distribution with probability density function

p(τ) = τ ξ−1 exp(−ξτ/τ̄)

(τ̄ /ξ)ξΓ(ξ)
. (E.14)

Here, ξ > 0 is the shape parameter of the gamma distribution and τ̄ is the mean.
The standard deviation is denoted ∆τ . The coefficient of variation is given by
∆τ/τ̄ = ξ−

1
2 . If ξ is an integer, then the gamma distribution represents the sum of ξ

independent, exponentially distributed random variables, each of which has a mean
of τ̄ /ξ. If ∆τ is larger than zero, there is generally a transient, non-exponential
growth phase at the onset of growth. After this phase, the system grows exponen-
tially, N(t) ∼ exp(ḡt) (see figure E.2). The average growth rate ḡ in the exponential
growth phase depends not only on the mean τ̄ , but also on the standard deviation
∆τ , which might be surpising at first glance (see figures E.1 and E.2). The growth
rate increases with increasing standard deviation. The origin of this behaviour lies
in the exponential nature of growth: if a cell divides quickly by chance, then its two
daughter cells can immediately contribute to growth after the division. The average
growth rate ḡ can be determined using the implicit relation

2

∫ ∞
0

exp(−ḡτ)f(τ)dτ = 1, (E.15)
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where f(τ) is the probability density function of the cell cycle times [135]. For
gamma distributed cell cycle times, this equation can be solved for ḡ,

ḡ =
ξ

τ̄
(21/ξ − 1). (E.16)

For fixed τ̄ , the function ḡ(ξ) is strictly decreasing and behaves as follows,

lim
ξ→0

ḡ = ∞,

lim
ξ→1

ḡ =
1

τ̄
,

lim
ξ→∞

ḡ =
ln 2

τ̄
.

The product ḡτ̄ is shown as a function of ξ in figure E.3. For fixed τ̄ , the deterministic
limit leads thus to the smallest possible growth rate. By increasing the variance of
the gamma distribution, the growth rate can be made arbitrarily large. In the figures
E.2 and E.3 it is shown that the stochastic growth rate g converges to the average
growth rate ḡ in large systems.

E.2.3. Temporally and Spatially Resolved Growth Rate

To resolve the growth rate temporally and spatially in vertex model simulations, we
divide the system into J stripes parallel to the Dpp source. The width ∆x of each
stripe is given by ∆x = Lx/J , where Lx is the linear dimension of the system in
the direction perpendicular to the Dpp source. The stripe with index j corresponds
to the spatial interval [(j − 1)∆x, j∆x]. Analogously, we consider K time intervals.
The time interval with index k is given by [(k−1)∆t, k∆t], where ∆t is the length of
the time intervals. The pair of indices (j, k) determines a space-time interval. Each
time a cell divides, the x-coordinate of the cell center and the time t are used to
allocate the cell division to a space-time interval. The number of cell divisions that
occur in the space-time interval (j, k) is denoted ∆Njk. The total number of cells
in the system, averaged over the time interval with index k, is denoted Nk. The
number of cells per stripe at the corresponding time is thus approximately given by
Njk = Nk/J . We approximate the average growth rate gjk in the space-time interval
(j, k) by the number of cell divisions per cell per unit time,

gjk =
∆Njk

Njk∆t
. (E.17)
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Figure E.1.: Stochastic growth rates g obtained by evaluating the right-hand side of
equation (E.6) in simulations. The initial number of cells is denoted N0. The cell cycle of
these initial cells starts at t = 0. The cell cycle time τ is chosen from a gamma distribution.
The mean of the gamma distribution τ̄ and the averaging time T are chosen to be 1 hour
in all simulations. We show results for different standard deviations ∆τ of the gamma
distribution. In the limiting case ∆τ = 0, the cell cycle time is a deterministic quantity.
The simulations confirm the result given in equation (E.13): if N � 1, then g is equal to
the average growth rate ln 2

τ of the deterministic system (compare the red curve and the

black line). However if N ≈ 1, then g is larger than ln 2
τ (compare the orange curve and

the black line). If the standard deviation ∆τ of the gamma distribution is larger than
zero, the system also grows exponentially after a transient, non-exponential phase in the
beginning (see figure E.2). However the growth rate of the system is larger than in the
deterministic case, although the mean of the gamma distribution is kept constant. Error
bars indicate the standard error of the mean.
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Figure E.2.: Number of cells N shown as a function of time. The simulations are de-
scribed in the caption of figure E.1. Here we choose N0 = 36 cells and τ̄ = 1 h in all
simulations. For each simulation we determine the stochastic growth rate g in the expo-
nential growth phase by evaluating the right-hand side of equation (E.6). We plot the
function f(t) = A exp(gt) (solid lines), where we choose A such that f(t) goes through the
last data point generated by the simulation. In each case, the function f(t) matches the
exponential part of the growth curve generated by the corresponding simulation, which
shows that the stochastic growth rate g can be used to determine the average growth rate
ḡ of the system. Error bars indicate the standard error of the mean.
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Figure E.3.: This figure shows – for gamma distributed cell cycle times – that the stochas-
tic growth rate g is equal to the average growth rate ḡ in large systems. The solid red line
shows the product of average growth rate ḡ and average cell cycle time τ̄ as a function
of the shape parameter ξ of the gamma distribution, according to equation (E.16). The
black dots show the product of stochastic growth rate g and average cell cycle time τ̄ .
The stochastic growth rate g is determined in large systems (N > 104) using simulations,
which are described in the caption of figure E.1. The black line indicates the limiting value
of ḡτ̄ for ξ →∞. Error bars indicate the standard error of the mean.





F. Relaxation of the Cellular
Network in the Vertex Model

The work function (2.1) describing the mechanical properties of the epithelium is
a function of the vertex coordinates {(xv, yv)} and the connection between the ver-
tices. To relax the cellular network numerically, we introduce normalized vertex
coordinates, x̃v = xv/Lx, ỹv = yv/Ly, where Lx and Ly are the linear dimensions of
the periodic simulation box (see figure F.1). The normalized coordinates lie in the
interval [0, 1). The numerical minimization of the work function F with respect to
the variables {(x̃v, ỹv), Lx, Ly} is performed using a C-implementation of the Polak-
Ribière version of the conjugate gradient algorithm [133, 136]. This algorithm uses
successive one-dimensional minimizations to find the minimum. The directions of
the one-dimensional minimizations are determined using the gradient of the work
function. However, each one-dimensional minimization only requires iterated eval-
uations of the work function. The numerical computation of the work function is
parallelized using the OpenMP interface for shared-memory parallel programming
[33].

F.1. Global Relaxation of the Network

The simultaneous minimization of the work function with respect to all variables
{(x̃v, ỹv), Lx, Ly} is denoted global relaxation. The dimension of the minimization
problem is given by 2NV + 2, where NV is the number of vertices. For simulations
in which the cellular pressure is analyzed or the growth rule depends on pressure,
we have chosen global relaxation for the minimization of the work function. For
large systems, global relaxation becomes time consuming because the minimization
is performed in a very high-dimensional space and the iterated evaluation of the
work function (2.1) is computationally intensive (see figure F.2).

F.2. Local Relaxation of the Network

Simulations, in which the cellular pressure is neither analyzed nor enters the growth
rule, do not require accurate minimization of the work function. To decrease the
execution time of such simulations we have used a local relaxation strategy for the
cellular network. The local relaxation consists of two steps: relaxation of the cellular
neighbourhood and relaxation of the simulation box.
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F.2.1. Relaxation of the Cellular Neighbourhood

Lx

Ly

R

Figure F.1.: Schematic of the local relaxation strategy. Here, the preferred area of the
red cell was increased. The vertices VR lying within the circle with radius R (dashed line)
are indicated by small circles. The corresponding cells CR are colored orange.

We start with a globally relaxed cellular network. If the preferred area A
(0)
i of

cell i is changed or cell i divides we construct a virtual circle with radius R around
the center of cell i. Next, we identify all vertices VR that lie within this circle.
Furthermore, we identify all cells CR and all bonds BR containing at least one such
vertex. We subsequently define a local energy which corresponds to the part of the
cellular network lying inside the circle,

FR =
∑
i∈CR

K

2

(
Ai − A(0)

i

)2

+
∑
i∈CR

Γ

2
L2
i +

∑
〈v,v′〉∈BR

Λvv′lvv′ . (F.1)

Here, the first two sums of the right hand side extend over all cells that are elements
of the set CR and the third sum extends over all bonds which are elements of BR.
In the next step, the function FR is minimized with respect to the normalized
coordinates of the vertices that are elements of VR. The variables Lx and Ly remain
fixed in this step. The speed of this minimization step does not depend on system
size because both the dimension of the minimization problem and the effort to
compute the local energy FR only depend on the radius R (for sufficiently small R).
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F.2.2. Relaxation of the Simulation Box

In the second step of the local relaxation method, the work function of the whole
system (2.1) is minimized with respect to the two variables Lx and Ly. In this
step, all normalized vertex coordinates {(x̃v, ỹv)} are fixed. The evaluation of the
work function (2.1) is indeed computationally intensive and depends on system size,
however the minimization is only two-dimensional. To decrease the execution time
of the simulations, we only relax the simulation box when a cell division has occured.

F.3. Comparison Between Global and Local
Relaxation

We compare the global to the local relaxation method with different circle radii R,
which we measure in units of the average cell diameter δ. For that purpose, we let
the system grow with a constant average growth rate including some fluctuations.
The simulations are run on Intel Xeon quad-core processors (Nehalem X5570) at
2.93 GHz clock speed. On each core of the CPU two threads can be executed in
parallel, so that each simulation can use up to eight threads at most. The execution
time of the simulation is strongly reduced by the local relaxation method. Using four
parallel threads, it takes about 2 weeks to grow a system to 45,000 cells using global
relaxation (see figure F.2). Using local relaxation, it takes only 5 hours (R = 5δ).
The difference in the energy per cell F/N between local and global relaxation is
smaller than 3%, even for small radii R (see figure F.3). The mean pressure is about
10% larger for the global relaxation as compared to local relaxation (see figure F.4).
Furthermore, the standard deviation σP of the pressure distribution is roughly 20%
smaller for the global relaxation (see figure F.5). In simulations, in which the cellular
pressure Pi does not enter the growth rule explicitly, these differences are negligible
and do not influence the results significantly.

Parameter Meaning Value

Γ/KA(0) Dimensionless cell perimeter stiffness 0.04

Λ/K(A(0))3/2 Dimensionless cell bond tension 0.12
κ AP -interface tension factor 1
N0 Initial number of cells 36
τ̄M Mean residence time in cell cycle state M 0.75 h
τ̄I Mean residence time in cell cycle state I 5 h
ξ Gamma distribution shape parameter 25
τC Residence time in cell cycle state C 0 h

Table F.1.: Parameter values used for the simulations in this section.
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Figure F.2.: Execution time of the simulation shown as a function of the number of cells
N . Here, we use four parallel threads for each simulation.
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Figure F.3.: Average energy per cell F/N shown as a function of the number of cells N .
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Figure F.4.: Average cellular pressure P̄ = 〈 ∂F∂Ai 〉 shown as a function of the number of

cells N .
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Figure F.5.: Standard deviation σP of the pressure distribution shown as a function of
the number of cells N .





G. Continuum Description of the
Dpp Morphogen Gradient

The dynamics of the Dpp gradient with constant diffusion coefficient D and constant
degradation rate k can be described by the partial differential equation

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
− kc(x, t) + ν(x, t). (G.1)

Here, c(x, t) is the Dpp area concentration and ν(x, t) is the Dpp production rate per
unit area. In this section, the solutions of (G.1) for both finite and infinite system
size are discussed.

G.1. Finite System Size

Equation (G.1) together with the no-flux boundary conditions

∂c

∂x
(−L, t) = 0,

∂c

∂x
(+L, t) = 0, (G.2)

describe the dynamics of the Dpp gradient in a finite system of width 2L.

G.1.1. Time-dependent Solution

General Solution

The general solution of (G.1) fulfilling the boundary conditions (G.2) is given by

c(x, t) =

∞∫
0

dt′
+L∫
−L

dx′G(x′, t′;x, t)ν(x′, t′) +

+L∫
−L

dx′G(x′, 0;x, t)c(x′, 0), (G.3)

G(x′, t′;x, t) =
Θ(t− t′)

2L

∞∑
j=0

exp

{
−
(

1 +
(jπλ

2L

)2
)
k(t− t′)

}
(G.4)

×
{

(−1)j cos

(
jπ(x+ x′)

2L

)
+ cos

(
jπ(x− x′)

2L

)
− δj,0

}
.
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This result is obtained by the Green’s function method as follows. We first define
the following linear operators,

L̂ =
∂

∂t′
−D ∂2

∂x′2
+ k, M̂ = − ∂

∂t′
−D ∂2

∂x′2
+ k. (G.5)

For any arbitrary function G the following equation holds,

GL̂c− cM̂G =
∂

∂t′
Gc+D

∂

∂x′

(
c
∂G

∂x′
−G ∂c

∂x′

)
. (G.6)

Integration of (G.6) yields

∞∫
0

dt′
+L∫
−L

dx′
(
GL̂c− cM̂G

)
=

+L∫
−L

dx′ [Gc]t
′=∞
t′=0 +D

∞∫
0

dt′
[
c
∂G

∂x′
−G ∂c

∂x′

]x′=+L

x′=−L
.

(G.7)
We now require that the function G satisfies

M̂G(x′, t′;x, t) = δ(x− x′)δ(t− t′), (G.8)

lim
t′→∞

G(x′, t′;x, t) = 0,

∂G

∂x′
(−L, t′;x, t) = 0,

∂G

∂x′
(+L, t′;x, t) = 0.

Using these properties of G and equation (G.7) we obtain the formal solution given
in equation (G.3). To calculate G we use the Fourier representations

G(x′, t′;x, t) =
1

2π

+∞∫
−∞

dω G̃(x′, ω;x, t)eiωt
′
, (G.9)

δ(t− t′) =
1

2π

+∞∫
−∞

dω eiω(t′−t),

and transform equation (G.8) into Fourier space,(
−iω −D ∂2

∂x′2
+ k

)
G̃(x′, ω;x, t) = e−iωtδ(x− x′).

The solution of this equation that fulfills the boundary conditions

∂G̃

∂x′
(−L, ω;x, t) = 0,

∂G̃

∂x′
(+L, ω;x, t) = 0,

is given by

G̃(x′, ω;x, t) =
cosh

(
κ(x+ x′)

)
+ cosh

(
κ(2L− |x− x′|)

)
2Dκ sinh (2Lκ)

e−iωt, κ =

√
k − iω
D

.

(G.10)
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To obtain G we insert (G.10) into (G.9). The integral in (G.9) is solved using the
residue theorem. For t′ > t, the integration path is closed by a semicircle in the
upper half-plane. Because the integrand g(ω) = G̃(x′, ω;x, t)eiωt

′
is holomorphic

in the upper half-plane, the integral in (G.9) vanishes for t′ > t. For t′ < t, the
integration path is closed by a semicircle in the lower half-plane. There, g(ω) has
simple poles at

ω = −i(Dπ
2j2

4L2
+ k), j ∈ N ∩ {0},

and the corresponding residues are given by

Res

(
g, ω = −i(Dπ

2j2

4L2
+ k)

)
=

i

2L
exp

{
−
(

1 +
(jπλ

2L

)2
)
k(t− t′)

}
×
{

(−1)j cos

(
jπ(x+ x′)

2L

)
+ cos

(
jπ(x− x′)

2L

)
− δj,0

}
,

where λ =
√
D/k. The residue theorem finally yields the Green’s function given in

equation (G.4).

Solution for a Time-independent Dpp Source of Finite Width

Using equations (G.3) and (G.4), one can calculate the time dependent solution for
a Dpp source of finite width w which is described by

ν(x) = νΘ(−x)Θ(x+ w). (G.11)

The solution is given by

c(x, t) =
νw

2kL

(
1− e−kt

)
+

ν

πk

∞∑
j=1

1− exp
{
−
(
1 +

(
jπλ
2L

)2)
kt
}

j
(
1 +

(
jπλ
2L

)2) (G.12)

×
{(

(−1)j − 1
)

sin
(jπx

2L

)
− (−1)j sin

(jπ(x− w)

2L

)
+ sin

(jπ(x+ w)

2L

)}
,

if c(x, 0) = 0 is used as initial condition for the Dpp gradient.

G.1.2. Steady State Solution

The steady state solution is obtained by taking the limit limt→∞ c(x, t) of the time-
dependent solution (G.3). For a Dpp source of finite width w described by equation
(G.11), it is however more convenient to obtain the steady state solution by solving

D
d2c(x)

dx2
− kc(x) + νΘ(−x)Θ(x+ w) = 0,

dc

dx
(−L) = 0,

dc

dx
(+L) = 0,
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Figure G.1.: Dpp gradient described by equation (G.12) shown for three different points
in time (w = 0.2L, λ = 0.2L). The series in equation (G.12) is truncated at j = 1000.
Dotted line: kt = 0.1, dashed line: kt = 1, solid line: kt = 10. The Dpp gradient for kt =
10 is so close to the steady state described by equation (G.13) that it is indistinguishable
from the steady state in this figure.

with an exponential ansatz. The solution is given by

c(x) =


B1 exp(−x

λ
) +B2 exp(x

λ
), if 0 ≤ x ≤ L,

B3 exp(−x
λ
) +B4 exp(x

λ
) + C, if − w < x < 0,

B5 exp(−x
λ
) +B6 exp(x

λ
), if − L ≤ x ≤ −w,

(G.13)

where Bi and C are constant coefficients,

C =
ν

k
, C̃ = C(2e

4L
λ − 2)−1,

B1 = C̃e
2L−w
λ (e

w
λ − 1)(e

2L
λ + e

w
λ ), B2 = e−

2L
λ B1,

B3 = C̃
(

1− e
2L
λ − e

4L−w
λ + e

2L+w
λ

)
, B4 = C̃

(
e
w
λ + e

2L
λ − e

2L−w
λ − e

4L
λ

)
,

B5 = C̃e−
w
λ (e

w
λ − 1)(1 + e

2L+w
λ ), B6 = e

2L
λ B5.

G.2. Infinite System Size

Equation (G.1) together with the boundary conditions

lim
x→−∞

c(x, t) = 0, lim
x→+∞

c(x, t) = 0, (G.14)

describe the dynamics of the Dpp gradient in the limit of an infinitely large system.
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G.2.1. Time-dependent Solution

General Solution

The general solution of (G.1) fulfilling the boundary conditions (G.14) is given by

c(x, t) =

∞∫
0

dt′
+∞∫
−∞

dx′ F (x′, t′;x, t)ν(x′, t′) +

+∞∫
−∞

dx′ F (x′, 0;x, t)c(x′, 0), (G.15)

F (x′, t′;x, t) =
Θ(t− t′)e−k(t−t′)
√

2π
√

2D(t− t′)
exp

−1

2

(
x− x′√

2D(t− t′)

)2
 . (G.16)

This result is obtained by the Green’s function method as follows. Using the defini-
tions (G.5) and integrating equation (G.6), we obtain the identity

∞∫
0

dt′
+∞∫
−∞

dx′
(
FL̂c− cM̂F

)
=

+∞∫
−∞

dx′ [Fc]t
′=∞
t′=0 +D

∞∫
0

dt′
[
c
∂F

∂x′
− F ∂c

∂x′

]x′=+∞

x′=−∞
.

(G.17)
Here, we denote the Green’s function by F rather than G to avoid confusion with
the Green’s function of the finite system problem. We now require that F satisfies

M̂F (x′, t′;x, t) = δ(x− x′)δ(t− t′), (G.18)

lim
t′→∞

F (x′, t′;x, t) = 0,

lim
x′→−∞

F (x′, t′;x, t) = 0, lim
x′→+∞

F (x′, t′;x, t) = 0.

Using these properties of F and equation (G.17) we obtain the formal solution given
in equation (G.15). To calculate F we use the Fourier representations

F (x′, t′;x, t) =
1

4π2

+∞∫
−∞

dq

+∞∫
−∞

dωF̃ (q, ω;x, t)ei(qx
′+ωt′), (G.19)

δ(t− t′) =
1

2π

+∞∫
−∞

dω eiω(t′−t),

δ(x− x′) =
1

2π

+∞∫
−∞

dq eiq(x
′−x),

and transform equation (G.18) into Fourier space. This procedure yields

F̃ (q, ω;x, t) =
e−i(qx+ωt)

Dq2 + k − iω
. (G.20)
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Inserting (G.20) into (G.19) results in

F (x′, t′;x, t) =
1

4π2

+∞∫
−∞

dq eiq(x
′−x)

+∞∫
−∞

dωf(ω), f(ω) =
eiω(t′−t)

Dq2 + k − iω
.

The integral over the variable ω is solved using the residue theorem. For t′ > t,
the integration path is closed by a semicircle in the upper half-plane. Because the
integrand f(ω) is holomorphic in the upper half-plane, the integral vanishes for
t′ > t. For t′ < t, the integration path is closed by a semicircle in the lower half-
plane. There, f(ω) has a simple pole at ω = −i(Dq2 + k) and the corresponding
residue is given by

Res
(
f, ω = −i(Dq2 + k)

)
= ie(Dq2+k)(t′−t).

The remaining integration over the variable q is carried out directly, so that we
finally get the Green’s function given in equation (G.16).

Solution for a Time-independent Dpp Source of Finite Width

Using equations (G.15) and (G.16), one can calculate the time dependent solution
for a Dpp source of finite width w described by (G.11). The solution is given by

c(x, t) =
ν

2
√
Dk

0∫
−w

dx′ e−
|x−x′|
λ (1− Φ),

Φ =
1

2

(
erfc
(√

kt− |x− x
′|

2λ
√
kt

)
+ e

2|x−x′|
λ erfc

(√
kt+

|x− x′|
2λ
√
kt

))
,

if c(x, 0) = 0 is used as initial condition for the Dpp gradient. The relaxation towards
the steady state is described by the function Φ, which has the following properties,
limt→0 Φ = 1, limt→∞Φ = 0. The complementary error functions are defined as

erfc(z) =
2√
π

∞∫
z

e−t
2

dt = 1− erf(z).

Solution for a δ Dpp Source

For a Dpp source described by ν(x) = rδ(x− x0) the solution is given by

c(x, t) =
re−

|x−x0|
λ

2
√
Dk

(1− φ), (G.21)

φ =
1

2

(
erfc
(√

kt− |x− x0|
2λ
√
kt

)
+ e

2|x−x0|
λ erfc

(√
kt+

|x− x0|
2λ
√
kt

))
.(G.22)
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The relaxation towards the steady state is described by the function φ, which has
the following properties, limt→0 φ = 1, limt→∞ φ = 0. If the conditions

√
kt � 1

and
√
kt � |x − x0|/λ hold, the arguments of the complementary error functions

are much larger than unity. In this case we can use the approximation [1]

erfc(z) ≈ e−z
2

z
√
π

for z →∞,

and approximate φ as follows,

φ ≈ e−kte
|x−x0|
λ

√
πkt

. (G.23)

Inserting this approximation into equation (G.21) yields the approximate solution

c(x, t) ≈ re−
|x−x0|
λ

2
√
Dk

(
1− e−kte

|x−x0|
λ

√
πkt

)
if
√
kt� 1,

√
kt� |x− x0|

λ
.

This approximation shows that the Dpp gradient relaxes exponentially towards the
steady state. The time constant of the relaxation is given by the inverse of the
degradation rate k.
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Figure G.2.: Comparison of the exact expression of φ given by equation (G.22) (solid
lines) with the approximation (G.23) (dashed lines).
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G.2.2. Steady State Solution

For a Dpp source of finite width w described by equation (G.11), the steady state
solution can be obtained by taking the limit λ/L → 0 of solution (G.13). This
procedure yields

c(x) =


c0 exp(−x

λ
), if 0 ≤ x,

ν
2k

(
2− exp(−x+w

λ
)− exp(x

λ
)
)
, if − w < x < 0,

c0 exp(x+w
λ

), if x ≤ −w,
(G.24)

where the gradient amplitude is given by

c0 =
ν

2k
(1− e−

w
λ ). (G.25)
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Figure G.3.: Steady state of the Dpp gradient described by equation (G.24) shown for
w = λ.



H. The Hedgehog Morphogen
Gradient

H.1. Experimental Observations

The morphogen Hh is only produced in the posterior compartment of the Drosophila
wing disc in response to the protein Engrailed [78, 60, 134]. From there, Hh spreads
into the anterior compartment. In contrast, the Hh receptor Patched (Ptc) is not
produced in the posterior but only in the anterior compartment [79, 125, 132]. As
a result, only anterior cells are responsive to Hh. The range of Hh in the anterior
compartment is limited by Ptc, which binds and sequesters Hh [35, 166].

H.2. Continuum Description

We describe the Hh gradient by the time-independent diffusion equation with pro-
duction and degradation terms,

0 = Da
d2h(x)

dx2
− kah(x) if − L ≤ x < 0, (H.1)

0 = Dp
d2h(x)

dx2
− kph(x) + ν if 0 ≤ x ≤ L. (H.2)

We use the no-flux boundary conditions

dh

dx
(−L) = 0,

dh

dx
(+L) = 0.

The area concentration of Hh is denoted h(x) and ν is the Hh production rate per
unit area. The interval −L < x < 0 corresponds to the anterior compartment and
0 < x < L corresponds to the posterior compartment (Hh source). The diffusion
coefficient D and degradation rate k of Hh can be different in the two intervals. The
subscript of D and k indicates the interval. The corresponding decay lengths of Hh
are given by λa =

√
Da/ka, λp =

√
Dp/kp. In the following, we discuss the solutions

of (H.1) and (H.2) for both a finite and a vanishing Hh degradation rate in the Hh
source.

H.2.1. Finite Hedgehog Degradation in the Hedgehog Source

For kp > 0, the solution is given by sums of exponential functions.
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Figure H.1.: Hh gradients described by equation (H.3) shown for different system sizes
L. Solid lines: L = 150 µm, Dashed lines: L = 75 µm, Dotted lines: L = 30 µm. Blue
lines: λa = 10 µm, λp = 50 µm. Red lines: λa = 10 µm, λp = 10 µm. The shape of the
Hh gradient is almost invariant for λa = 10 µm, λp = 10 µm.
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Figure H.2.: Hh concentration h0 at the origin shown for λa = 10 µm, λp = 50 µm.
The dependence of h0 on L is weak. Solid line: Exact expression given in equation (H.4).
Dashed line: Approximation for λa � L given in (H.7).
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Exact Solution

The exact solution is given by

h(x) =

{
B1 exp(− x

λa
) +B2 exp( x

λa
) if − L ≤ x < 0,

B3 exp(− x
λp

) +B4 exp( x
λp

) + C if 0 ≤ x ≤ L,
(H.3)

C =
ν

kp
, B1 =

C
2

exp(− L
λa

)

cosh( L
λa

) + λp
λa

coth( L
λp

) sinh( L
λa

)
, B2 = exp(

2L

λa
)B1,

B3 =
−C

2
exp( L

λp
)

cosh( L
λp

) + λa
λp

coth( L
λa

) sinh( L
λp

)
, B4 = exp(−2L

λp
)B3.

The hedgehog concentration h0 = h(0) at the origin is given by

h0 =
ν/kp

1 + λp
λa

coth( L
λp

) tanh( L
λa

)
. (H.4)

For λa = λp, h0 does not depend on L and is given by h0 = ν/2kp.

Approximate Solution for Large Systems

For λa � L, the solution can be approximated by

h(x) =

{
h0 exp( x

λa
) if − L ≤ x < 0,

B3 exp(− x
λp

) +B4 exp( x
λp

) + C if 0 ≤ x ≤ L,
(H.5)

C =
ν

kp
, h0 =

C

1 + λp
λa

coth( L
λp

)
, (H.6)

B3 =
−C

2
exp( L

λp
)

cosh( L
λp

) + λa
λp

sinh( L
λp

)
, B4 = exp(−2L

λp
)B3. (H.7)

H.2.2. Vanishing Hedgehog Degradation in the Hedgehog
Source

For kp = 0, the Hh morphogen gradient inside the Hh source becomes parabolic.

Exact Solution

The exact solution is given by

h(x) =

{
B1 exp(− x

λa
) +B2 exp( x

λa
) if − L ≤ x < 0,

B3x
2 +B4x+ h0 if 0 ≤ x ≤ L,

(H.8)
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Figure H.3.: Hh gradients described by equation (H.8) shown for different system sizes
L and λa = 10 µm. Solid line: L = 150 µm, Dashed line: L = 75 µm, Dotted line: L = 30
µm.

0 20 40 60 80 100 120 140 L !Μm"0

500

1000

1500

h0Dp#Ν !Μm2"

Figure H.4.: Hh concentration h0 at the origin shown for λa = 10 µm. Solid line: Exact
expression given in (H.9). Dashed line: Linear approximation (valid for λa � L) given in
(H.11).
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C =
νλaL

Dp

, B1 =
C

exp(2L
λa

)− 1
, B2 = exp(

2L

λa
)B1,

B3 = − C

2λaL
, B4 =

C

λa
, h0 = C coth(

L

λa
). (H.9)

Approximate Solution for Large Systems

For λa � L, the solution can be approximated by

h(x) =

{
h0 exp( x

λa
) if − L ≤ x < 0,

B3x
2 +B4x+ h0 if 0 ≤ x ≤ L,

(H.10)

h0 =
νλaL

Dp

, B3 = − h0

2λaL
, B4 =

h0

λa
. (H.11)





I. The Dpp Source

I.1. Generation of the Dpp Source in the Wing
Imaginal Disc

Cells in the anterior compartment of the Drosophila wing disc produce and secrete
Dpp if the local Hh level is sufficiently high [12, 85, 183]. Because Hh is only
produced in the posterior compartment (see appendix H), the Dpp source consists
of a stripe of anterior cells along the anteroposterior compartment boundary.

I.2. Continuum Description

Using the definitions and results from section H.2, we derive expressions for the width
of the Dpp source. If Dpp production is induced when the local Hh concentration
h(x) exceeds the threshold hT (for −L < x < 0), the width w of the Dpp source is
determined by h(−w) = hT . For a finite Hh degradation rate in the Hh source, we
obtain

w = λa ln

(
ν

kphT

[
1 +

λp
λa

coth(
L

λp
)

]−1
)

(I.1)

using equation (H.5). Here ν is the Hh production rate per unit area, kp is the Hh
degradation rate in the interval 0 < x < L, and L corresponds to the width of a
compartment. The decay length of the Hh gradient is denoted λa in the interval
−L < x < 0 and λp in the interval 0 < x < L. For vanishing Hh degradation in the
Hh source we obtain

w = λa ln

(
νλaL

DphT

)
(I.2)

using equation (H.10). Here the diffusion coefficient of Hh in the interval 0 < x < L
is denoted Dp.

I.3. Comparison of Theory and Experimental Data

To fit expression (I.1) to experimental data, we use λa, λp, and ν/kphT as fit pa-
rameters and L as the independent variable. The fit yields a large decay length λp
and is very insensitive to the fit parameters λp and ν/kphT , which indicated by the
huge standard errors (see table I.1). For the fit of expression (I.2) we use λa and
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Fit parameter Optimal value
λa (8.7± 2.4) µm
λp (3287± 5 · 105) µm

ν/kphT 1.1 · 105 ± 4 · 107

Table I.1.: Result of the least squares fit of expression (I.1) to experimental data.

Fit parameter Optimal value
λa (8.3± 1.2) µm

DphT/νλa (10.1± 3.5) µm

Table I.2.: Result of the least squares fit of expression (I.2) to experimental data.

DphT/νλa as fit parameters. The resulting fit is nearly indistinguishable from the
fit of expression (I.1), offering a simpler description with only two fit parameters.
These results suggest that the decay length of Hh is much larger in the posterior
compartment than in the anterior one. A plausible explanation is provided by the
expression pattern of the Hh receptor Ptc, which is only produced in the anterior
compartment [35, 79, 125, 132]. Upon binding to the receptor Ptc, Hh is inter-
nalized into the cell and degraded [166]. Because Ptc is absent in the posterior
compartment, a much smaller Hh degradation rate is expected there.
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Figure I.1.: Dpp source width w shown as a function of the width L of the posterior com-
partment. The source width was measured by Ortrud Wartlick using in situ hybridization
against dpp-mRNA, and expressing GFP-Dpp under the control of dpp-GAL4 in the wing
disc. Red line: fit of expression (I.1). Blue line: fit of expression (I.2).
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J.1. Analysis of GFP-Dpp and Dad-nRFP Gradients

J.1.1. Measurement of the Gradients

The experimental measurements of the GFP-Dpp and dad-nRFP gradients were
performed by Ortrud Wartlick as follows.

A fluorescent GFP-Dpp fusion protein [53, 163] expressed in the endogenous Dpp
source with the dpp-Gal4 driver was used to quantify GFP-Dpp profiles in the poste-
rior compartment as a function of distance x from the Dpp source at different times
t during larval development. To ensure that the fluorescence intensity originating
from GFP-Dpp molecules is proportional to the GFP-Dpp concentration, previously
established linear GFP-Dpp imaging conditions were used [93]. The fixation, mount-
ing, and imaging conditions were the same for all imaginal discs of a given dataset.
The GFP-Dpp profiles were quantified with the software ImageJ using maximum
projections of z-stacks comprising the apical most 7 µm of the wing disc epithelium.
Maximum projections were used to reduce effects of varying cell density and disc
thickness on the gradient profile. The measurement of the GFP-Dpp concentration
was complicated by auto-fluorescence of the tissue, which means that the tissue is
fluorescent even if no GFP-Dpp molecules are present. The background signal due to
auto-fluorescence was measured in non-GFP-Dpp expressing discs fixed at the same
time in the same sample, and subtracted from the intensity measured in GFP-Dpp
expressing discs in order to obtain the GFP-Dpp signal.

Dad-nRFP is a transcriptional reporter construct expressing red fluorescent pro-
tein (RFP) in the cell nucleus under the control of the promoter of daugthers against
dpp (dad), which is a Dpp target gene [169, 111, 165, 178]. The dad-nRFP gradi-
ents, quantified as a function of distance x from the Dpp source at different times
t during larval development, serve as a representative readout of the Dpp signal.
The gradient profiles were quantified with the software ImageJ using maximum pro-
jections of z-stacks through the nuclei of the disc epithelium. The proportionality
between nRFP fluorescence intensity and nRFP concentration was confirmed using
a stepwise bleaching assay [175]. The background signal due to auto-fluorescence
was determined by a measurement outside of the cell nucleus, because RFP is only
present inside the cell nucleus.
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J.1.2. Data Fitting

Fit Functions

We fit four different functions to the GFP-Dpp and dad-nRFP gradients. The first
three fit functions are given by

c(1)(x) = B1 exp(−x/λ), (J.1)

c(2)(x) = B1 exp(−x/λ) +B2 exp(x/λ), (J.2)

c(3)(x) = A(x+ x0)−β. (J.3)

The analytical form of the fourth fit function is unknown because it is determined
numerically (see below). The first two fit functions c(1) and c(2) are solutions of
the time-independent diffusion equation with a linear degradation term (see ap-
pendix G.1.2 and G.2.2). The third fit function c(3) is a special solution of the
time-independent diffusion equation with a nonlinear degradation term,

0 = D
d2

dx2
c− kcm, (J.4)

satisfying the boundary condition limx→∞ c(x) = 0. The parameters A and β are
given by

A =

(
2D(m+ 1)

k(m− 1)2

) 1
m−1

, β =
2

m− 1
, (J.5)

and x0 is an integration constant. The fourth fit function c(4) is the general solution
of equation (J.4). To determine this solution, we define

Λ =
√
D/k, v =

dc

dx
, (J.6)

and write equation (J.4) as a two-dimensional system of first order differential equa-
tions,

d

dx

(
c
v

)
=

(
v

Λ−2cm

)
. (J.7)

The solution of (J.7) is determined numerically using the Matlab routine ode113,
which is a variable order Adams-Bashforth-Moulton predictor-corrector solver [149].
The so obtained solution c(4) is fit to the data using c(0), v(0), Λ, and m as fit
parameters.

The optimization of the fits with respect to the fit parameters is performed by
minimizing the sum of squared residuals,

χ2 =
∑
i

(
ci − c(xi)

σi

)2

, (J.8)

using the Matlab routine lsqnonlin, which is an implementation of the Levenberg-
Marquardt algorithm. In equation (J.8), the sum extends over all data points i, ci
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is the measured concentration at position xi, c(xi) is the value of the fit function at
that position, and σi is a weighting factor that is proportional to the measurement
error. In case of the GFP-Dpp gradients we choose σi = 1, corresponding to constant
absolute measurement errors, because we are unable to determine the background
fluorescence with high precision. In case of the dad-nRFP gradients, the background
fluorescence can be determined with higher precision. Therefore we choose σi = ci for
the dad-nRFP gradients, corresponding to constant fractional measurement errors.

Results for the GFP-Dpp Gradients

The fits of c(1) and c(2) to the GFP-Dpp gradients yield values for the decay length
λ that increase with the width L of the posterior compartment, consistent with a
linear relationship between λ and L (figure J.1A). The GFP-Dpp gradient scales.
The gradient amplitude c0 = c(0) also increases as the wing discs grow (figure J.1B).
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Figure J.1.: Results obtained by fitting the functions c(1) and c(2) to the GFP-Dpp gradi-
ents. (A) Decay length λ shown for different values of L. (B) Gradient amplitude c0 = c(0)
shown for different areas Ap of the posterior compartment.

The fits of c(3) to the GFP-Dpp gradients yield clustered values for β (figure J.2A).
This result suggests that the GFP-Dpp gradients can also be described by power
laws with a constant exponent β, which corresponds to a constant exponent m of
the nonlinear degradation term in equation (J.4). However, there are some gradient
profiles that yield values for β which differ significantly from the average (figure
J.2A). Those GFP-Dpp gradients that result in β < 2 are treated as outliers and
disregarded in the calculation of the average. The average value is β = 3.09, corre-
sponding to m = 1.65. We repeat the fits of c(3) to the GFP-Dpp gradients with the
parameter β fixed to the average value 3.09. Figure J.2C shows that in the majority
of the cases the fit of the single exponential function c(1) is superior to the fit of c(3)
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with fixed β. We also calculate Λ =
√
D/k for the fits with fixed parameter β from

the fit results for A using equations (J.5). We find an approximately linear relation-
ship between Λ and L (figure J.2B). This result shows, that the GFP-Dpp gradients
cannot be described with constant parameters D and k throughout development,
even if nonlinear Dpp degradation with a constant exponent is assumed.
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Figure J.2.: Results obtained by fitting the functions c(3) and c(4) to the GFP-Dpp gra-
dients. (A) Power law exponent β obtained by fits of c(3) shown for different values of L.
The data points shown in grey are treated as outliers and are disregarded in the calcula-
tion of the mean (3.09), which is indicated by the dashed line. (B) Results for Λ =

√
D/k

obtained by fitting c(3) with a fixed exponent β = 3.09 to the gradients. (C) If χ2
1/χ

2
3 < 1,

the function c(1) describes the gradient better than the function c(3). Here, χ2
1 and χ2

3

denote the sum of squared residuals, defined in equation (J.8), for the fit of c(1) and the fit
of c(3), respectively. (D) Exponent m obtained by fitting the function c(4) to the gradients
shown for different values of L.

The fits of c(4) always yield the smallest value for χ2 and are thus the best fits.
This result follows from the definition of c(4) because the three other fit functions
are a subset of the general solution of equation (J.4). However, fits of the function
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c(4), which involve four fit parameters, are inappropriate to obtain meaningful infor-
mation about the exponent m from the GFP-Dpp gradients. The obtained values
for m are neither constant nor do they show a systematic trend (figure J.2D).

Results for the Dad-nRFP Gradients

The fit results for the dad-nRFP gradients are similar to the results obtained for the
GFP-Dpp gradients. The fits of c(1) and c(2) to the dad-nRFP gradients yield values
for the decay length λ that are consistent with a linear relationship between λ and
L (figure J.3A). Like the GFP-Dpp gradient, the dad-nRFP gradient scales. The
gradient amplitude c0 = c(0) increases significantly as the wing discs grow (figure
J.3B).
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Figure J.3.: Results obtained by fitting the functions c(1) and c(2) to the dad-nRFP
gradients. (A) Decay length λ shown for different values of L. (B) Gradient amplitude
c0 = c(0) shown for different areas Ap of the posterior compartment.

Fitting the function c(3) to the dad-nRFP gradients yields values for β between 2.5
and 5 (figure J.4A). The average value is β = 3.26. Fits of c(3) with the parameter
β fixed to the average value 3.26 are in almost all cases inferior to fits of the single
exponential function c(1) (figure J.4C). Calculating Λ =

√
D/k for the fits with fixed

parameter β, we find an approximately linear relationship between Λ and L, like
in the case of the GFP-Dpp gradients (figure J.4B). We conclude that exponential
functions describe the dad-nRFP gradients better than power laws.

Fits of the function c(4) are unsuitable to obtain meaningful information about
the exponent m from the dad-nRFP gradients. The obtained values for m scatter
strongly (figure J.4D).
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Figure J.4.: Results obtained by fitting the functions c(3) and c(4) to the dad-nRFP
gradients. (A) Power law exponent β obtained by fits of c(3) shown for different values of
L. The mean (3.26) is indicated by the dashed line. (B) Results for Λ =

√
D/k obtained

by fitting c(3) with a fixed exponent β = 3.26 to the gradients. (C) If χ2
1/χ

2
3 < 1, the

function c(1) describes the gradient better than the function c(3). Here, χ2
1 and χ2

3 denote
the sum of squared residuals, defined in equation (J.8), for the fit of c(1) and the fit of c(3),
respectively. (D) Exponent m obtained by fitting the function c(4) to the gradients shown
for different values of L.
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J.2. Estimation of the Temporal Variation of Kinetic
Dpp Parameters

We used dad-nRFP and blk-nGFP reporter constructs to investigate whether a
temporal decrease of the degradation rate k or a temporal increase of the diffusion
coefficient D is the reason for the scaling of the Dpp gradient (experiments per-
formed by Ortrud Wartlick). Blk-nGFP is a transgenic construct expressing nuclear
GFP under the control of the blk promoter, the regulatory element responsible for
expression of Dpp in the imaginal discs [121]. The fluorescence of nuclear GFP can
therefore be used to estimate the Dpp production rate. We measured the nGFP
fluorescence intensity in the Dpp source, using maximum projections of z-stacks
comprising all nuclei. From the intensity profiles, the source width w was estimated
by eye, using a fluorescence intensity cut-off. The nGFP fluorescence intensity was
integrated over the Dpp source and divided by the source width w to obtain the
average fluorescence intensity I(G) per unit area. As a rough approximation we as-
sumed that the Dpp production rate per unit area ν is proportional to the average
fluorescence intensity of nuclear GFP,

ν = f1I
(G), (J.9)

where f1 is a constant.

The dad-nRFP reporter is described in section J.1.1. We fit the function I(R)(x) =

I
(R)
0 exp(−x/λ(R)) to the dad-nRFP gradients to obtain the gradient amplitude I

(R)
0

and the decay length λ(R). In order to obtain estimates for the kinetic parameters,
we assume that the fluorescence intensity I(R)(x) is proportional to the Dpp con-
centration c(x). In this approximation, the Dpp and dad-nRFP decay lengths are
equal,

λ = λ(R). (J.10)

Furthermore, we obtain

c0 = f2I
(R)
0 , (J.11)

where f2 is a constant and c0 = ν
2k

(
1− exp(−w

λ
)
)
, is the Dpp gradient amplitude

according to equation (G.24). Here, k is the Dpp degradation rate. Combining
equations (J.9), (J.10), and (J.11), we obtain the following estimates for the Dpp
degradation rate and diffusion coefficient,

k = f
I(G)

2I
(R)
0

(
1− exp(− w

λ(R)
)
)
, (J.12)

D = k(λ(R))2, (J.13)

where f = f1/f2 is a constant.
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J.2.1. Wing Imaginal Disc

Figure J.5 shows the estimates for the parameters ν, λ, k, and D describing the
Dpp gradient in the wing disc. The production rate ν is largely constant, apart
from an increase in the beginning of development (figure J.5A). The decay length λ
is approximately proportional to the width L of the posterior compartment (figure
J.5B). The degradation rate k decreases by more than two orders of magnitude.
We find that the degradation rate and the disc area A are related by a power law,
k ∼ Aγ. A fit yields the exponent γ = −1.05 ± 0.03 (figure J.5C). The diffusion
coefficient decreases by less than one order of magnitude during development (figure
J.5D). We conclude that a decrease of the Dpp degradation rate k is most likely the
reason for the scaling of the Dpp gradient.
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Figure J.5.: Estimates for the parameters ν, λ, k, and D describing the Dpp gradient in
the wing disc. The disc area is denoted A and the width of the posterior compartment
is denoted L. (A) Production rate ν shown for different values of A. (B) Decay length λ
shown for different values of L. (C) Degradation rate k shown for different values of A. A
fit of the power law k ∼ Aγ is indicated by the solid line (γ = −1.05±0.03). (D) Diffusion
coefficient D shown for different values of A.
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J.2.2. Haltere Imaginal Disc

For the haltere imaginal discs we obtain results that are qualitatively the same
as for the wing disc. In the haltere, the estimated Dpp degradation rate is also
inversely proportional to the area, k = (sA)−1, where s is a constant. However,
for imaginal discs of the same size, the estimated degradation rate is smaller in the
haltere disc than in the wing disc. The ratio is given by kh/kw = sw/sh, where
the subscript indicates the imaginal disc type. We determine sw and sh by fitting
straight lines to k−1 plotted as a function of A, and obtain kh/kw = 0.09 (figure
J.6A). To estimate the ratio of the diffusion coefficients, we assume that they are
constant in the wing and haltere discs throughout development. We fit the function
λ = rL to the experimental data and determine the slope r for wing and haltere
discs (figure J.6B). As an estimate for the ratio of the diffusion coefficients we obtain
Dh/Dw = swr

2
h/shr

2
w = 0.12. These results suggest that the degradation rate and

diffusion coefficient of Dpp are approximately one order of magnitude smaller in
haltere discs than in wing discs of the same size.
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Figure J.6.: Estimation of the difference between kinetic Dpp parameters in wing and
haltere discs. (A) Inverse of the degradation rate k−1 shown as a function of the disc area
A. The slopes of the linear fits are given by sw = 1.22 · 10−5 µm−2 for the wing discs, and
sh = 1.32 · 10−4 µm−2 for the haltere discs. (B) Decay length λ shown as a function of L.
The slopes of the linear fits are given by rw = 0.157 for the wing discs, and rh = 0.18 for
the haltere discs.





Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover
Publications, 1972.

[2] M. D. Adams et al. The genome sequence of Drosophila melanogaster. Science,
287(5461):2185–2195, 2000.

[3] T. Aegerter-Wilmsen, C. M. Aegerter, E. Hafen, and K. Basler. Model for
the regulation of size in the wing imaginal disc of Drosophila. Mechanisms of
Development, 124(4):318–326, 2007.

[4] M. Affolter and K. Basler. The Decapentaplegic morphogen gradient: From
pattern formation to growth regulation. Nature Reviews Genetics, 8(9):663–
674, 2007.

[5] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molec-
ular Biology of the Cell, Fourth Edition. Garland Science, 2002.

[6] U. Alon, M. G. Surette, N. Barkai, and S. Leibler. Robustness in bacterial
chemotaxis. Nature, 397(6715):168–171, 1999.

[7] J. L. Alonso and W. H. Goldmann. Feeling the forces: atomic force microscopy
in cell biology. Life Sciences, 72(23):2553–2560, 2003.

[8] D. Angeli, J. E. Ferrell Jr., and E. D. Sontag. Detection of multistability,
bifurcations, and hysteresis in a large class of biological positive-feedback sys-
tems. Proceedings of the National Academy of Sciences of the United States
of America, 101(7):1822–1827, 2004.
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M. González-Gaitán. Dynamics of Dpp signaling and proliferation control.
Science, 331(6021):1154–1159, 2011.

[176] D. Weaire and J. P. Kermode. Computer simulation of a two-dimensional
soap froth – I. Method and motivation. Philosophical Magazine B: Physics
of Condensed Matter; Electronic, Optical and Magnetic Properties, 48(3):245–
259, 1983.

[177] K. Weigmann, S. M. Cohen, and C. F. Lehner. Cell cycle progression, growth
and patterning in imaginal discs despite inhibition of cell division after inac-
tivation of Drosophila Cdc2 kinase. Development, 124(18):3555–3563, 1997.

[178] A. Weiss, E. Charbonnier, E. Ellertsdóttir, A. Tsirigos, C. Wolf, R. Schuh,
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