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Abstract

During development, organs with different shape and functionality form from a

single fertilized egg cell. Mechanisms that control shape,size and morphology of

tissues pose challenges for developmental biology. These mechanisms are tightly

controlled by an underlying signaling system by which cellscommunicate to each

other. However, these signaling networks can affect tissuesize and morphology

through limited processes such as cell proliferation, celldeath and cell shape changes,

which are controlled by cell mechanics and cell adhesion. One example of such a

signaling system is the network of interacting proteins that control planar polariza-

tion of cells. These proteins distribute asymmetrically within cells and their distri-

bution in each cell determines of the polarity of the neighboring cells. These pro-

teins control the pattern of hairs in the adultDrosophila wing as well as hexagonal

repacking of wing cells during development. Planar polarity proteins also control

developmental processes such as convergent-extension. Wepresent a theoretical

study of cell packing geometry in developing epithelia. We use a vertex model to

describe the packing geometry of tissues, for which forces are balanced throughout

the tissue. We introduce a cell division algorithm and show that repeated cell di-

vision results in the formation of a distinct pattern of cells, which is controlled by

cell mechanics and cell-cell interactions. We compare the vertex model with exper-

imental measurements in the wing disc ofDrosophila and quantify for the first time

cell adhesion and perimeter contractility of cells. We alsopresent a simple model

for the dynamics of polarity order in tissues. We identify a basic mechanism by

which long-range polarity order throughout the tissue can be established. In partic-

ular we study the role of shear deformations on polarity pattern and show that the

polarity of the tissue reorients during shear flow. Our simple mechanisms for order-

ing can account for the processes observed during development of theDrosophila

wing.
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1 Introduction

1.1 Biophysics of Two-Dimensional Tissues

B CA

Figure 1.1: Examples of the epithelial junctional network. (A)Drosophila retina ommatidium

(adapted from [1]), (B) basilar papilla of chicken embryo (adapted from [2]), and

(C) Drosophila wing disc (adapted from [3]).

During development, organs with tremendous diversity in shape and functionality form from

a single fertilized egg cell. Mechanisms that control shape, size and morphology of tissues are

largely unknown. These mechanisms are tightly controlled by an underlying signaling system

by which cells communicate to each other. For example,morphogens, molecules secreted by

localized sources, spread in the tissue and guide the position dependent expression of genes

and control tissues final size and shape [4]. Although many molecules are involved in the

establishment of these signaling systems, the response of cells to such a flow of information

throughout the tissue is limited to processes such as cell division, cell death, cell growth, cell

migration and cell shape changes. All these processes are mainly governed by cell mechanics.

An important model system to study cell mechanics and cell adhesion is two-dimensional

sheets of cells, calledepithelia. Epithelia are formed by repeated cell division from a small

group of cells, which have almost identical properties. Epithelial cells are packed in specific

morphologies via cell-cell adhesion. These cell packings are inherently dynamic structures

and remodel during development. However, biological tissues are structurally and functionally

stable in physiological environments [11]. These two contradictory properties of tissues as

active soft materials, have fascinated scientist for more than a century.
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Epithelial cells assemble adhesive junctions with their neighbors in their apical region; the

adhesion molecules, Cadherin, and components of the actin cytoskeleton are enriched apico-

laterally. These apical junctions can be considered as a two-dimensional network that defines

the cell packing geometry. In Fig. 1.1, three examples of thejunctional network of cells are

shown. In Fig. 1.1 A, we show the retina ommatidium1 of the eye of the fruit fly. The specific

arrangement of cells mimics light scattering, which is essential for correct vision. In Fig. 1.1 B

and C, the junctional network of basilar papilla of a chickenembryo and theDrosophila wing

disc are shown, respectively.

Basic physical principles that govern tissue shape and morphology have been studied in

coarse-grained descriptions on different scales. They range from models that account for cell

mechanics and shape to the hydrodynamic limit where the tissue exhibits the properties of an

active viscoelastic fluid [12]-[19]. Here we discuss in moredetail two models that are developed

to study cell shape and cell packing geometry in epithelia. In [12], Graner and Glazier proposed

an elastic energy functional for cell mechanics and cell-cell interactions based on the large-Q

Potts model description of cells. This model describes a collection ofNC cells by definingNC

degenerate spins,σ(i, j) = 1, 2, ..., NC , wherei andj defines a lattice site. A cellσ is defined

as a collection of all sites in the lattice with spinσ. Their energy functional has two terms: the

first term accounts for cell-cell interactions and the second term accounts for the area elasticity

of cells. They use the Monte Carlo method to minimize their energy functional; at each step a

lattice site is selected at random and its spin is changed from σ to σ′ with probability zero, if

the change in energy,∆H, is positive, 0.5 if∆H = 0 and one if∆H < 0.

This model has been used to study cell sorting [12]. Graneret al. define two cell populations

with different interaction energies. Cells of similar typeattract each other differently than cells

of the other type. Graneret al. show that this can result in cell sorting starting from a mixed

initial configuration. Graneret al. also use this model to study convergent-extension [22]-[24],

a process in which the tissue expands in one direction while contracting in the other direction

in the absence of cell divisions and cell shape changes. To trigger this phenomenon by energy

minimization, they assume that the adhesive energy of the contact surface between two cells

depends on its orientation relative to the axis of elongation of the two cells; i.e. the level

of adhesion molecules might differ on long and short sides ofa cell. They showed that this

mechanism can result in elongation of cells and convergent-extension.

Hufnagelet al. [14] suggest a three dimensional description of tissue mechanics, in which

each cell is represented as a polygon with certain height. The position, shape and height of cells

are determined by the condition of mechanical equilibrium that corresponds to minimization of

1The compound eye of insects is composed of units called ommatidia. An ommatidium contains a cluster of

photoreceptor cells surrounded by support cells.
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the energy functional

E(ri, ξi) =
∑

α

[

ρα + a (Vα − V0)
2 + b

∑

β=ν(α)

(ξα − ξβ)
2 + c(ξα − 1)2

]

, (1.1)

whereρα, Vα, andξα denote the perimeter, volume, and the height of cellα, respectively.V0 is

the preferred volume of cells and the second summation in theparentheses is over all neighbors

of cell α that are labeled asν(α). In this model, the first term mimics cytoskeletal tension

and the second and third terms control deviations of cell volume fromV0 and the penalty on

the variation of cell height between adjacent cells, respectively. The fourth term accounts for

deviation of cell height from its unstressed value. The authors use this model together with a

signaling network to study growth control in developing epithelia due to mechanical feedback.

1.2 Cell Packing and Tissue Morphology

Cell packing geometry was one of the earliest observations after the invention of the micro-

scope [25]. Although the hexagonal packing observed in simple epithelia was explained in

the early1900s by Thompson in his bookOn Growth and Form [26], the packing geometry

of proliferating tissues is still under debate. Proliferating epithelia are not necessarily hexag-

onally packed, but rather cells with different neighbor number coexist. It was shown recently

that the frequency of different classes of polygons is highly reproducible even between different

species. In Fig. 1.2, we show the distribution of different classes of polygons for theDrosophila

wing disc, theHydra epidermis and the tail epidermis ofXenopus [27]. In these three epithe-

lia, hexagons are the most frequent polygons and pentagons and heptagons are the next most

frequent polygon classes.

The distribution of different classes of polygons was first studied theoretically by Cowan

and Morris in [28] and [29], in which they introduced the hypothetical organism,Tessellata

elegans, which is a monolayer planar tissue. Its development startsfrom one polygonal cell

with arbitrary edge number. Division corresponds to addinga new boundary passed randomly

from two sides. An-sided cell will divide into two cells with edge numbers thatare either

(3, n+1), (4, n), (5, n−1), · · · , ((n+3)/2, (n+5)/2) if n is odd and((n+4)/2, (n+4)/2)

if n is even. For example, a four-sided cell can divide into either a triangle and a five-sided cell

or two four-sided cells. This rule can be described by a matrix M . Each matrix element,Mij ,
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Figure 1.2: Distribution of different classes of polygons in theDrosophila wing disc,Hydra

epidermis andXenopus tail epidermis (adapted from [27]). Note that the distribu-

tion of polygon classes for the wing disc presented in [27] isslightly different from

those that we will discuss in Chap. 6. This probably reflects the different methods

used for assigning cells to polygon classes. Polygon-classdistribution depends on

the cutoff used to distinguish boundaries from four-fold vertices (see App. E). For

comparison, we show the distribution of polygon classes that are found by Cowan

and Morris [29] and Gibson et al. [27].

is the probability that ani-sided cell divides to produce aj-sided daughter cell

M =
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. (1.2)

The frequency of different classes of polygons in generation t, mt = {P3, P4, P5, · · · }, relates
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to the frequency of polygon classes one generation before through matrixM

mt = mt−1M

= mt−2M
2

...

= m0M
n. (1.3)

Cowan and Morris showed in [29] that there exists a stationary distribution of polygon classes

starting from any initial condition, which is shown in Fig. 1.2 A.

Clearly the distribution found by Cowan and Morris is different from what is found in nature

for different epithelia. In [27], Gibsonet al. suggest a different division rule that prevents

formation of triangles. Therefore a four-sided cell can only divide into two four-sided cells and

a five-sided cell can divide into four- and five-sided cells. The matrixM is now given by

M =

















1

1/2 1/2

1/4 1/2 1/4

1/8 3/8 3/8 1/8
...

...
...

...

















. (1.4)

Note that here the rows and columns ofM start from four-sided cells. They also introduce

a mean-field approximation to take into account edges that are added to neighboring cells of

a dividing cell. If a cell divides, two neighbor cells of the dividing cell also gain one new

boundary. On average, all cells gain one boundary per generation due to division of neighboring

cells. This can again be represented by a matrixS

S =

















0 1

0 1

0 1

0 1
...

...

















. (1.5)

Now the frequency of polygon classes evolves asmt = mt−1MS, which again converges to an

equilibrium distribution and is different from that found by Cowan and Morris (see Fig. 1.2).

In this model, hexagons are the most common polygons and the distribution is more similar

to experimental observations than that of Cowan and Morris.However, this model predicts no

four-sided cells in its equilibrium configuration due to themean-field approximation introduced

by matrixS which adds one neighbor to all cells. These topological rules that are discussed

in these papers are not based on the physical properties of the cells. However, we expect the
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redistribution of neighbors after cell division to depend on physical cellular properties. Also, a

purely topological description cannot account for cell size and shape or local force balances.

Apart from the topological inhomogeneity discussed above,cell area and cell shape is also

inhomogeneous in proliferating epithelia. The geometric disorder induced by cell division in

proliferating epithelia was first studied in1928, when F.T. Lewis examined the epidermal cells

of the cucumber [30] and [31]. Lewis noted that cells with different neighbor numbers were

present in reproducible proportions, and their average areas varied linearly with neighbor num-

ber. This relation was termed Lewis’s law when it was first studied theoretically by Rivier and

Lissowski in1982 [32]. Rivier and Lissowski showed that cellular networks with this property

are dominant in the plane’s random polygonal tiling that aresubject to the constraints of space

filling and an average neighbor number of six.

1.3 Planar Polarity of Epithelial Cells

The polarization of epithelial cells in the apical-basal axis (perpendicular to the plane of the

epithelia) is well studied and it has been shown that this polarity is critical for the integrity and

functionality of the epithelia. Most epithelia are also polarized in a second axis, in the plane

of the epithelium. This phenomenon is known as planar cell polarity or tissue polarity. Planar

polarity coordinates cell behavior across the epithelium.This polarity is clearly visible in the

epidermis of animals. For example, the scales, bristles, and hairs of insects are typically aligned

along the major body axis. A similar polarity is seen in the epidermis of vertebrates, e.g. the

scales of fish and hair of mammals [36]. Planar polarity is notlimited to cells that are fixed in

space. For example, elongation of the body axis during development involves the coordination

of multiple cell behaviors including cell rearrangement, cell division, and cell shape changes

[37]- [40].

In Fig. 1.3, we show three features of planar polarity in wild-type animals and in mutants

that cannot establish this planar polarity. Fig. 1.3 A showshair polarity in the adultDrosophila

wing, where each cell produces a single cytoskeletal extension which becomes the so-called

wing hair of the adult fly. Wing hairs point distally in wild-type animals, however, in mutants

hairs are misorientated as shown in Fig. 1.3 B. Similarly, the mechanosensory hair cells of the

mouse cochlea extend a series of polarized actin-rich stereociliary bundles that point toward

the fluid-filled lumen of the cochlea and respond to mechanosensory input [41]. We show, an

example of sensory receptor cells of the wild-type mouse cochlea in Fig. 1.3 C. In mutants,

the bundles form but the overall alignment is disrupted as shown in Fig. 1.3 D. In addition

to the polarity of individual cells, group of cells can also behave in a polarized manner, e.g.

rotational symmetry breaking of ommatidia in theDrosophila eye. Ommatidia are composed of

multiple cells in which some cells in each unit differentiate in an asymmetric fashion. The entire
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A EC

B FD

Figure 1.3: Features of planar polarity in epithelia. (A) and (B) Hair pattern in the wild-type

and mutant (diego)Drosophila wing, respectively (adapted from [3]). In wild-type

animals, hairs point in the distal direction of the wing. However, in the mutants

hairs are misoriented and defective hair patterns form. (C)and (D) Wild-type and

mutant (frizzled) sensory hair cells of the mouse cochlea (adapted from [38]). In

wild-type animals, individual sensory cells generate polarized bundles of actin-

based stereocilia. In mutants these bundles still form but their orientation becomes

randomized. (E) and (F) The wild-type and mutant (frizzled)of theDrosophila om-

matidia, or facets, which are composed of photoreceptors (adapted from [83]). In

wild type animals, ommatidia are arranged in precisely oriented trapezoids, while

in the mutant both the arrangement of the photoreceptors in ommatidium and the

arrangement of ommatidia with respect to the whole eye become disorganized.

structure rotates as a unit in the opposite direction in the dorsal and ventral halves of the eye

[42]-[43]. In Fig. 1.3 E, we show part of theDrosophila eye near the dorsal-ventral boundary,

where the boundary is marked by yellow dots. As shown in Fig. 1.3 F, in mutants, both the

arrangement of cells in each ommatidium and the alignment ofthe ommatidia with respect to

the eye is influenced.

An important model system to study planar cell polarity (PCP) is theDrosophila wing, in

which the polarity is readable from the hair pattern in the adult wing. Studies started in1980s

led to the identification of what is now called theFrizzled pathway for the development of

tissue polarity [44]-[49]. The core PCP pathway consists ofthe cell-surface proteinsFrizzled

[50], Strabismus (or Van Gogh) [43], [51], andFlamingo (or Starry night) [52], [53]. There are
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also cytoplasmic proteinsDishevelled [54], [55], Prickle (or Spiny legs) [56] andDiego [57],

that control tissue polarity. Mutants of these proteins generate different patterns of hairs in the

wing. In mutants of the core PCP proteins, wing hairs initiate from a central location on the

apical cell surface and point in the wrong direction. However, in mutants of the cytoplasmic

proteins, the hairs grow from the distal part of the cell but global orientation is affected and

swirling patterns form (see Fig. 1.3 B).

Flamingo

Dishevelled

Strabismus

Frizzled

Diego

Prickle

Figure 1.4: Schematic of planar cell polarity proteins. Proteins involved in establishment of

planar cell polarity fall into two main categories: core PCPproteins and surface

proteins. These proteins are recruited to the apical surface of cells at early devel-

opment. They are sorted out preferentially towards the distal and proximal sides of

the cell, which requires the activity of all polarity proteins. Strabismus, and Prickle

localize at the proximal cell surface, and Frizzled, Dishevelled, and Diego localize

at the distal surface, while Flamingo exists on both sides ofthe cell (adapted from

[35]).

Formation of hairs in theDrosophila wing requires an underlying molecular polarity that in-

cludes an asymmetric distribution of core PCP proteins. Thecore PCP proteins are first recruited

to the apical cell surface and subsequently segregate into complementary apical subdomains be-

fore the onset of hair formation. Flamingo localizes at proximal and distal surfaces [53] and

[58], whereas Frizzled, Dishevelled, and Diego localize atspecifically the distal surface [59]-

[61]. Prickle and Strabismus localize at the proximal surface [56] and [62]. Frizzled can interact

directly with Dishevelled [63], and Strabismus can associate with Prickle [62] and [64]. This

indicates that proximal and distal cell domains consist of at least two protein complexes. The

Flamingo cadherin, which is capable of mediating homophilic adhesion [53], recruits the other

core PCP proteins to the region of the adherens junctions [60]. Once at the surface, the activity

of all six core PCP proteins is required for any of them to achieve a planar polarized distribu-

tion [60], indicating that these proteins participate in a regulatory loop rather than a strict linear

pathway [35]. In Fig. 1.4, a schematic illustrating the distribution of these proteins in the cell is

shown.

During the global organization of polarity in tissues the asymmetric localization of PCP pro-

teins is sensitive not only to the activity of PCP proteins inthe same cell but also to PCP
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activity in adjacent cells. Frizzled activity in one cell isrequired for Prickle localization in its

distal neighbor, whereas Prickle is required for the localization of Dishevelled in the adjacent

proximal cell, suggesting that Frizzled and Prickle interact indirectly across cell boundaries

[56]. Within a cell, there is evidence that Prickle can blockthe association between Frizzled

and Dishevelled [56], although other studies find that Prickle over-expression does not dis-

rupt Dishevelled membrane localization [62]. Conversely,the Diego protein can associate with

Prickle and Strabismus [61] and may counteract Prickle activity to allow Frizzled-Dishevelled

complexes to form at the distal surface [64]. These interactions suggest a mechanism by which

proximal Strabismus-Prickle complexes and distal Frizzled-Dishevelled complexes form in mu-

tually exclusive cellular domains. These proteins could come into contact when they are first

recruited to the apical surface of wing cells during the establishment of polarity.

Currently there are two types of model that have been proposed to explain how polarity

is established throughout a tissue. The first model is based on the gradient of a diffusible

molecule and individual cells might determine their polarity in accordance with the direction of

the slope of the gradient. This model is motivated by experiments carried out in insects other

thanDrosophila. In these experiments, sections of larval epidermis were rotated or moved to

different positions in a segment, resulting in reproducible alterations in polarity of the adult

cuticle [65]. Any experiment leading to an alteration in thedirection of this slope would cause

polarity to be inverted [66]-[68]. In the second type of model, polarity information is prop-

agated via a cell-cell interaction, whereby signals are passed directly between adjacent cells,

without any necessary role for longer range diffusible signals. One example of this class of

models involves each cell polarizing in response to a local secreted ligand and then, in turn,

locally secreting a ligand to signal to its neighbors, thus progressively propagating polarizing

information throughout a tissue [69].

The second model has been discussed more rigorously recently in [70]. In this “feedback”

model, planar polarity could occur through an asymmetric distribution of Frizzled in cells with

comparable levels of Frizzled activity. Frizzled accumulation at the distal surface of a cell would

recruit or retain Strabismus on the proximal surface of the adjacent cell, stabilizing their com-

plementary distributions. Strabismus-Prickle and Frizzled-Dishevelled complexes could then

segregate into reciprocal domains in both cells through an antagonistic effect of the proximal

Prickle protein on Frizzled-Dishevelled association. As aresult, Frizzled is predicted to accu-

mulate on the distal surface of the neighboring cell, thus allowing the cycle to continue. This

model demonstrates that, given a distal bias in Frizzled localization, local interactions among

PCP proteins could provide a robust mechanism for generating planar cell polarity in the ab-

sence of a Frizzled gradient. This model can reproduce both wild-type planar polarity and the

complex patterns that arise in some mutants.
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1.4 Wing Development of the Fruit Fly Drosophila

A B C

Figure 1.5: Drosophila embryonic development. (A)Drosophila melanogaster, which is com-

monly used in biological studies (source Wikipedia photographed by Andre Kar-

wath). (B) Early embryonic development in the fruit flyDrosophila, in which rapid

DNA replication happen in∼ 3 hours and the nuclei accumulate on the surface of

the york sac (adapted from [72]). (C) Part of theDrosophila embryo during DNA

replication (adapted from [73]).

Drosophila melanogaster is a two-winged insect otherwise known as the common fruit fly or

vinegar fly (see Fig. 1.5 A). It is one of the most frequently used model organisms in biology,

including studies in genetics, physiology and life historyevolution. The developmental period

for Drosophila melanogaster varies with temperature; the shortest development time (egg to

adult), 7 days, is achieved at28o C and it increases at higher temperatures (30oC, 11 days).

Females lay∼ 400 eggs (embryos) into rotting fruit or other suitable material. The eggs, which

are about0.5 millimeters long, hatch after 12-15 hours. The resulting larvae grow for about 4

days (at25o C) while molting twice, at about24 and48 hours after hatching. During this time,

they feed on the microorganisms that decompose the fruit, aswell as on the sugar of the fruit

itself. The larvae then encapsulate in the puparium and undergo a four-day-long metamorphosis

(at25o C), after which the adults emerge.

Drosophila melanogaster was among the first organisms used for genetic analysis, and today

it is one of the most widely-used and genetically best-knownof all eukaryotic organisms. All

organisms use common genetic systems, therefore comprehending processes such as transcrip-

tion and replication in fruit flies helps in understanding these processes in other eukaryotes,

including humans. There are several reasons, to useDrosophila as a model system:

(i) The care and culture requires little equipment and uses little space even when studying

large cultures, and the overall cost is low.

(ii) It is small and easy to grow in the laboratory and its morphology is easy to identify once

they are anesthetized.
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(iii) It has a short generation time (about10 days at room temperature) so several generations

can be studied within a few weeks.

(iv) It has a high fecundity (females can lay more than800 eggs in a lifetime, i.e. one egg

every30 minutes with sufficient food).

(v) Males and females are readily distinguished and virgin females are easily isolated, facili-

tating genetic crossing.

Embryogenesis inDrosophila has been extensively studied. After fertilization of the oocyte

the early embryo undergoes rapid DNA replication, until approximately5, 000 to 6, 000 nuclei

accumulate in the unseparated cytoplasm of the embryo. By the end of the 8th division most

nuclei have migrated to the surface, surrounding the yolk sac. After the10th division the pole

cells form at the posterior end of the embryo, segregating the germ line from the syncytium (a

large cell-like structure filled with cytoplasm containingmany nuclei). Finally, after the 13th di-

vision, cell membranes slowly invaginate, dividing the syncytium into individual somatic cells.

In Fig. 1.5 B, we show the embryonic development in the fruit fly Drosophila and in Fig. 1.5

C, we show part of the embryo with microtubules stained. Oncethis process is completed,

gastrulation starts.

salivary 

glands

imaginal discs

mouth parts

antena
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haltere
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Figure 1.6: Drosophila imaginal discs. Schematic ofDrosophila imaginal discs during meta-

morphosis. Each external part of the insect develops from a small number of cells

which grows via cell division (adapted from [74]).

The embryo undergoes well-characterized morphogenetic movements during gastrulation

and early development, including germ-band extension, formation of several furrows, ventral
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invagination of the mesoderm, posterior and anterior invagination of endoderm (gut), as well as

extensive body segmentation until finally hatching from thesurrounding cuticle into a 1st-instar

larva. During larval development, tissues known asimaginal discs grow inside the larva. An

imaginal disc is one of the parts of a insect larva that will become a portion of the outside of

the adult insect during the pupal transformation (see Fig. 1.6). Contained within the body of

the larva, there are pairs of discs that form, for instance, the wings or legs or antennae or other

structures in the adult. During the pupal stage, adult structures including the discs undergo rapid

development. Each disc everts and elongates, with the central portion of the disc becoming the

distal part of whichever appendage it is forming, such as wing, leg, antenna, etc.
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Figure 1.7: Drosophila wing development. (A) Wing disc of the fruit flyDrosophila. The

wing disc grows from∼ 50 to 50, 000 cells in five days (taken by O. Wartlick). (B)

Schematic of the anterior-posterior (green) and dorsal-ventral (red) compartment

boundary in the wing disc (adapted from [3]). (C) Example of theDrosophila wing

disc labeled with apterous in blue, vestigial in red, and Cubitus interruptus (which

only expresses in anterior cells) in green (adapted from [75]). (D) Schematic of

development of theDrosophila wing during metamorphosis (adapted from [3]).

Initially dorsal and ventral parts of the wing are in the sameplane. During meta-

morphosis, the wing disc folds and extends, so that the dorsal and ventral compart-

ments come into contact with each other.

The wing imaginal disc is an excellent system for analyzing pattern formation. The wing disc

is initially specified in the embryo as cluster of20−40 cells. During larval development, the disc
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grows∼ 1000 fold. The wing disc is divided by a compartment boundary thatseparates it into

the anterior and posterior developmental regions. There isalso a second compartment boundary

between the dorsal and ventral region, which develops during the second larval instar. When

the wing forms at the metamorphosis, the future ventral surface folds under the dorsal surface

in the distal region to form the double-layered wing. In Fig.1.7 A, we show an example of the

Drosophila wing disc. A schematic of the anterior-posterior and dorsal-ventral compartment

boundaries are shown in Fig. 1.7 B as green and red lines, respectively.

In the wing disc, signaling regions are set up along the compartment boundaries. Cells at the

anterior-posterior compartment boundary form a signalingregion that specifies pattern along

the anteroposterior axis of the wing. A cascade of events sets up this signaling center. It

begins with the expression of theengrailed gene in the posterior compartment of the disc,

which reflects the pattern of gene expression in the embryonic segment from which the discs

derive. Cells expressingengrailed also express the segment polarity gene,hedgehog. At the

compartment boundary, the secretedhedgehog protein acts over about10 cell diameters and

induces adjacent cells in the anterior compartment to express thedecapentaplegic (or Dpp)

gene. The dorsal-ventral compartment boundary is also a source of signaling region. Cells in

the dorsal compartment express the geneapterous, which induces the synthesis of the proteins

fringe andSerrate. Their action leads to theNotch receptor protein being activated in a discrete

band of cells that later leads to expression of the genewingless. Both Dpp and wingless act as

morphogens whose concentrations provides cells with positional information. The formation

of gradients of morphogen activity is not due to simple diffusion, but rather set up by active

transport of the morphogen and involves endocytosis. Both Dpp and wingless can regulate the

expression of their receptors. In Fig. 1.7 C, we show an example of theDrosophila wing disc

labeled with apterous in blue, vestigial in red, and Cubitusinterruptus (which only expresses in

anterior cells) in green, which indicates the position of compartment boundaries. By the end

of growth, the wing disc folds and extends, so that the dorsaland ventral surfaces come into

contact with each other, as illustrated in Fig. 1.7 D.





2 Physical Description of Cell
Packing

A B C

Figure 2.1: Examples of the apical junctional network in the wing epithelia of the fruit fly

for different stages of development: (A) wing disc stage, (B) pupal stage and (C)

before hair formation (provided by [3]).

Cell packing in epithelia has fascinated scientists for more than a century. In the early1900s,

D’Arcy Wentworth Thompson presented in his famous book, “OnGrowth and Form”, how

forces arising from surface tensions can result in hexagonal packing of epithelial cells. The

mechanisms governing cell shape and epithelial packing arestill unclear. Cell packing is tightly

controlled during epithelial development by a complicatednetwork of genes and can vary from

an irregular packing geometry to a very specific one; we show in Fig. 2.1 three examples of

epithelial packing for different stages of development of the wing of the fruit flyDrosophila.

Although cells have irregular packing and shape in the wing disc stage (Fig. 2.1 A), they form

an almost perfect hexagonal packing in the late stage beforehair formation (Fig. 2.1 C).

Cell shape and cell packing is influenced mostly by cell mechanics. Thus to address the

question of how cell packing geometry is controlled, we needto develop a framework to study

cell mechanics. In this chapter we present a model to accountfor cell mechanics and cell-cell

interactions in epithelia. Since the most interesting features of cell packing occur at the level
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of the junctional network of cells, our two-dimensional model only considers the mechanics of

this network. However, our model accounts for the third dimension indirectly by considering

a preferred area for each cell such that deviation from this preferred area requires work to be

done. We also account for cell adhesion and perimeter contractility, both of which influence

cell shape. We then study the ground states of our model and show that, depending on physical

parameters of the model, three different ground states can exist. We calculate the bulk and shear

modulus of the network as a function of model parameters. We observe that the model exhibits

a phase transition from a solid hexagonal network to a soft irregular one.

2.1 Cell Mechanics in Two-Dimensional Tissues

A B

i j
α
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h
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Figure 2.2: Vertex model. (A) Schematic of epithelial cell packing. Epithelial cells are con-

nected to each other in their apical region by adhesion molecules, which are more

pronounced along a network of adhesive junctions (green), and which are also asso-

ciated with actomyosin fibers (red). They are connected to the extracellular matrix

in their basal level. (B) Example of cell packing in vertex model. Each cell is

represented as a polygon composed of vertices (red dots) which has straight edges.

(C) Schematic of the vertex model, where cells are indicatedby α = 1, 2, ..., NC ,

and vertices are indicated byi = 1, 2, ..., NV . NC andNV are the total number

of cells and vertices in the network, respectively. The length of the cell boundary

between vertexi andj is indicated byLij .

There are many processes that occur within tissues on different time scales, such as the

turnover of specific molecules inside the cells and pattern formations throughout the tissues.

There are three main time scales regarding tissue dynamics.The shortest time scale is due to

relaxation of cell shape in response to local perturbations. This is on the order of seconds to

minutes. Cell division and cell rearrangements take one to several hours, and the formation of
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tissue shapes and patterns happen on time scales of tens of hours to days. The adheren junc-

tional network of epithelial cells is a stable configurationon time scales shorter than those of

cell division, and longer than those of local perturbations. These network configurations obey

a force balance (the net force on the junctional network is zero). In general, forces acting on

the junctional network need not be derived from an energy function. However, the forces we

consider here can, in our simple description, be represented by an energy function.

Here we assume that cells are represented as polygons (straight lines connecting vertices, see

Fig. 2.2 B). This is a good approximation for most epithelia,such as the junctional network

of cells in the wing ofDrosophila, which is the subject of our experimental studies in this

thesis. Therefore, the energy of the junctional network is afunction of position of these vertices:

F = F(Ri), whereRi = (xi, yi) is the position of vertexi in the tissue. The force balance then

implies that the net force on each vertex is zero:Fi = −∂F/∂Ri = 0, for i = 1, ..., NV . The

energy functionF , which corresponds to the work required to deform the junctional network of

cells, consists of three terms regarding cell mechanics andcell-cell interactions

F =
∑

α

Kα

2
(Aα − A(0)

α )2 +
∑

〈i,j〉

ΛijLij +
∑

α

Γα

2
L2

α. (2.1)

The first summation is over all cellsα = 1...NC , whereNC is the total number of cells in the

network. The area and area elasticity modulus of cellα are denoted byAα andKα, respectively.

A
(0)
α is the preferred area of cellα which is related to the volume,Vα and height,hα of the cell:

A
(0)
α ≃ Vα/hα (see Fig. 2.2 A). The area elasticity modulusKα is proportional to the Young’s

modulus of the cells,Yα and the inverse of the preferred area:Kα ≃ Yαhα/A
(0)
α . The bulk

properties of the cells give rise to this term, which accounts for an effective area elasticity for

cells. Any change in the apical area of cells requires that the material in this region flow toward

the basal part of the cell. Since the volume of the cell is changing very slowly compared to cell

shape relaxations, any changes in the apical area cause bending of the lateral boundaries of the

cells, which requires work to be done and this effect is takeninto account by this term.

Multiple mechanisms might influence line tension such that it could vary from edge to edge.

For example, adhesive interactions between cells may favorcell-boundary expansion, whereas

the subcortical actin cytoskeleton might oppose it. The second term in the energy function in

Eq. 2.1 accounts for cell-cell interactions along the junctional region of cell boundaries. The

summation is over all cell boundaries〈i, j〉 andLij is the length of the boundary (see Fig. 2.2

C). Line tensionΛij describes forces along boundary〈i, j〉, which can be positive or negative

depending on the tensile properties of cell boundaries: if the boundary has surface tension

properties, thenΛij is positive; if adhesion predominates thenΛij is negative. The underlying

cellular cytoskeleton mainly contributes to this line tension, but it may also produce an effective

perimeter contractility. This perimeter contractility ismimicked by the third term in Eq. 2.1,

which is a summation over all cells in the network. The perimeter and perimeter contractility
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of cell α are shown byLα andΓα, respectively. This third term tends to shrink the perimeter,

and therefore the area of cells, to zero, which is in opposition to the area elasticity term, which

tends to keep the area of cells equal to their preferred area.

2.2 Ground States of Cell Packing
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Figure 2.3: Ground-State phase diagram of the vertex model. (A) Phase diagram for the ground

state of the vertex model for the energy function given in Eq.2.1 as a function of

dimensionless line tension̄Λ and dimensionless contractilitȳΓ. In the gray region

the ground state is a hexagonal network with a nonzero shear modulus. In the

green region, the network is semisoft and the shear modulus vanishes for limited

deformations. The ground state in the green region is degenerate; any hexagonal

network configuration where cells are irregular in shape, with area and perimeter

of all cells equal toA(0) andL(0), respectively, is a ground state in this green re-

gion. The ground state of the energy in the blue region is alsodegenerate, and any

network configuration where the area of all cells is equal to the preferred areaA(0)

and their perimeter is equal toL(0) is a ground state of the energy. Examples of

the ground state in the gray and blue regions are shown as insets. (B) Schematic of

energy changes as a function of shear deformationLx/Ly, for different regimes of

the phase diagram.

To study the ground state properties of the model, we consider networks where the parameters
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of all cells are identical:Kα = K, Γα = Γ andA
(0)
α = A(0) for all cells andΛij = Λ for all

edges. We will useK(A(0))2 as a unit of energy and
√

A(0) as a unit of length; dividing both

sides of Eq. 2.1 byK(A(0))2, we have a dimensionless work functionf = F/K(A(0))2

f =
1

2

∑

α

(aα − 1)2 + Λ̄
∑

〈i, j〉

ℓij +
Γ̄

2

∑

α

ℓ2
α, (2.2)

whereaα = Aα/A(0), ℓij = Lij/
√

A(0) andℓα = Lα/
√

A(0) are respectively dimensionless

area, bond length and perimeter. We are then left with only two free parameters: dimensionless

line tensionΛ = Λ/K(A(0))3/2 and dimensionless contractilityΓ = Γ/KA(0). These two

parameters then characterize the ground state phase diagram for this simplified model.

We find three different regimes for the ground state of the energy as a function of̄Λ andΓ̄.

Parameter regions corresponding to these regimes are shownin Fig. 2.3 A. In the gray region

the ground state of the energy is a hexagonal network. In the green region the ground state is

degenerate and given by irregular network configurations, for which all cells are six-sided and

fulfill the following two constraints:

(i) the area of cells is equal to the preferred areaA(0) (or aα = 1).

(ii) their perimeter is equal to a preferred perimeterL(0) = −Λ/2Γ (or lα = −Λ̄/2Γ̄).

In the blue region the ground state is also degenerate: any network configuration with arbitrary

cell packing and cell shape is a ground state of the energy, given that the area of all cells is

equal toA(0) and their perimeter is equal toL(0). An example of such a ground state is shown

in Fig. 2.3 A. The striped region on the right-hand side of thephase diagram in Fig. 2.3 A

corresponds to a regime where the line tension and perimetercontractility are so high that the

ground state is a network with vanishing area. This region isbeyond our model in its present

form, and can be studied by adding higher order terms of area elasticity to the energy function

Eq. 2.1, such as̄K(Aα − A(0))4/4.

2.3 Ground State Phase Transitions

2.3.1 Shear and Bulk Modulus

To have a better understanding about the different regimes of the ground state and phase tran-

sitions, we first need to calculate the bulk and shear modulusof the hexagonal network. To

simplify the calculations, we introduce a unit box with periodic boundary conditions as shown

in Fig. 2.4 A. Repeating this box in thex andy directions, we are able to build an infinite

hexagonal lattice. The dimension of the box inx andy directions areLx andLy, respectively.

The box sizesLx andLy are related to the length of the hexagonal network,a: Lx =
√

3a and
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Figure 2.4: Shear and bulk deformations of a hexagonal unit box. An infinite hexagonal net-

work is generated by repeating the unit box inx and y directions. (A) and (B)

Schematic of shear deformation and isotropic expansion of the unit box, respec-

tively.

Ly = 3a. The energy of the unit box as a function ofLx andLy is given by

F = K
(LxLy

2
− A(0)

)2

+ Λ(2l1 + 4l2) + Γ(2l1 + 4l2)
2

= K
(LxLy

2
− A(0)

)2

+ Λ
(2Ly

3
+ 2

√

L2
x +

(Ly

3

)2)

+ Γ
(2Ly

3
+ 2

√

L2
x +

(Ly

3

)2)2

,

(2.3)

whereℓ1 = Ly/3 andℓ2 =
√

(Lx/2)2 + (Ly/6)2 are the length of different sides of the hexagon

in Fig. 2.4 A. For an undeformed unit box,ℓ1 = ℓ2 = a. However, if we impose an affine

deformation,ℓ1 andℓ2 are different.

An affine shear deformation of the unit box is given byL′
x = Lx(1+ ǫ) andL′

y = Ly/(1+ ǫ),

whereǫ ≪ 1 (see Fig. 2.4). The shear modulus of the hexagonal network isthen defined as the

second derivative of the energy (2.3) with respect toǫ

µs =
1

LxLy
lim
ǫ→0

∂2F(L′
x, L

′
y)

∂ǫ2
. (2.4)

The shear modulusµs is a function ofLx andLy. It has a simple form if we rewrite it as a

function ofa

µs = 12
√

3Γ +
√

3Λ/a. (2.5)

The bond lengtha is a function of model parametersK, A(0), Λ andΓ, which is the solution of

the minimization of the energy function in Eq. 2.1

27

2
Ka3 + (36Γ − 3

√
3KA(0))a + 3Λ = 0. (2.6)
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We can calculate the bulk modulusµb, as the second derivative of the work function with respect

to ǫ for deformations (see Fig. 2.4 B)L′
x = Lx(1 + ǫ) andL′

y = Ly(1 + ǫ). The bulk modulus

µb as a function ofa reads

µb = 9
√

3Ka2 − 2KA(0) + 8
√

3Γ. (2.7)

Along the red line in Fig. 2.3 A, the bulk modulus vanishes andthe ground state becomes

unstable. Knowing the exact form of the bulk modulus,µb, we can derive an analytical expres-

sion for the transition line between the solid hexagonal region and the unstable striped region

in Fig. 2.3 A. Settingµb = 0 in Eq. 2.7, we find an expression for the dimensionless lengthof a

hexagonal network,a0, with zero bulk modulus:(24Γ− 2
√

3KA(0))a0 + 3Λ = 0. Substituting

this value ofa0 into Eq. 2.6 we obtain the red boundary line in Fig. 2.3 A

Γ =

√
3

12
KA(0) − (9KΛ2)

1

3

8
Γ ≤

√
3KA(0)

12

Λ = 0 Γ >

√
3KA(0)

12
. (2.8)

In terms ofΛ̄ andΓ̄ the boundary line is given bȳΓ = 1/4
√

3− (3Λ̄)2/3/8 (if Γ̄ <
√

3/12) and

Λ̄ = 0 (if Γ̄ ≥
√

3/12).

2.3.2 Transition from Hexagonal to Soft Networks

The shear modulus of the network decreases for increasing cell-cell adhesion (decreasingΛ). In

the gray region shown in Fig. 2.3 A, any shear deformation requires work as shown in Fig. 2.3

B (first panel). In the green region, however, the shear modulus vanishes (see Fig. 2.3 B middle

panel). In this region any shear deformation that does not result in changes to the hexagonal

packing of the network is admissible at vanishing shear modulus. Further shearing of the net-

work resulting in remodeling of the network requires work. We can calculate an analytical

expression for the transition line between the solid gray region of the phase diagram and the

semisoft green region. In transition from the solid to the semisoft region, the shear modulus

is zero for limited deformations around the perfect hexagonal network. We findµs = 0 for

a0 = −Λ/12Γ. Substituting this value ofa0 in Eq. 2.6 gives us the transition line from the gray

to the green region in Fig. 2.3 A:Γ = −Λ/
√

32
√

3.

In the blue region in Fig. 2.3 A, the network is soft and large deformations at vanishing

shear modulus are admissible. These large deformations consist both of cell shape changes and

remodeling of cell boundaries. The latter deformations require the boundaries to shrink to zero

and expand in the opposite direction (at vanishing shear modulus) resulting in local changes of

cell neighbors, and allowing the network to shear to any extent. As we discussed in Sec. 2.2 the

area and perimeter of cells in the green and blue regions are respectively equal to the preferred
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areaA(0) and preferred perimeterL(0). For a network withℓ1 = 0 (see Fig. 2.4 A), i.e., the

ground state of the energy in the blue region, the area and perimeter of a cell are

Aα = A(0) =
LxLy

2
,

Lα = L(0) = − Λ

2Γ
= 2
√

L2
x + L2

y. (2.9)

The condition to have positive real solutions forLx andLy implies thatL(0) ≥ 4
√

A(0) or

Γ ≤ −Λ/8, which gives the transition line between the green and blue regions in Fig. 2.3 A.

2.4 Summary

One advantage of using epithelia as model systems in biologylies with their great simplicity

compared to three-dimensional tissues. Epithelial cells are connected to each other via adhesive

molecules and establish a junctional adheren network near their apical region. In this chapter

we develop a two-dimensional vertex model to study the mechanics of the junctional network.

In this model each cell is approximated by a polygon (vertices connected by straight bonds). On

time scales shorter than the time scale of cell division and longer than that of local perturbations,

the junctional network is stable and the total force on each vertex is zero. These forces, which

are due to cell mechanics and cell-cell interactions along cell boundaries, can be calculated

using a work function (Eq. 2.1). We introduce two dimensionless parameters,̄Λ and Γ̄, to

characterize the ground states of the model. We find that there exist three phases as a function

of model parameters. In the gray region in Fig. 2.3 A, the ground state is a non-degenerate

hexagonal network. However, in the green and blue regions the ground state is degenerate. In

the green region, the ground states are networks with hexagonal packing such that the area of

all cells is equal to the preferred areaA(0) and their perimeter is equal to the preferred perimeter

L(0). In the blue region ground states fulfill these two conditions on area and perimeter of cells,

with the difference being that the ground state can acquire any packing.

We calculate the bulk and shear modulus of the network using aunit box shown in Fig 2.4.

For all parameter values for which the bulk modulus vanishes(for high line tension and contrac-

tility), the model breaks down and the network becomes unstable (see striped region in Fig. 2.3

A). For decreasing line tension, the shear modulus of the network decreases. In the green re-

gion, the shear modulus vanishes for limited shear deformations while in the blue region, the

shear modulus vanishes for any shear deformation. We calculate analytical expressions for the

transition line between the gray and green regions. We find that for−Λ̄/8 < Γ̄ ≤ −Λ̄/
√

32
√

3

the network is semisoft while for̄Γ ≤ −Λ̄/8, the network is soft. To shear the network in the

blue region to any extent, remodeling of cell boundaries is required such that a boundary shrinks

to zero and expands in the opposite direction. The transition line between the green and blue

regions is calculated in a similar fashion.
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5 days

A B

Figure 3.1: Different stages of development of the wing disc of the fruitfly Drosophila. (A)

Starting with a few cells (∼ 50), the epithelia grows in five days to the size of

∼ 50, 000 cells (provided by O. Wartlick). (B) A small portion of the tissue at

higher magnification showing cell boundaries (provided by [3]).

Most epithelia develop from a few cells to their final size by cell division (proliferation). We

show in Fig. 3.1 A an example of the development of the wing disc of the fruit fly Drosophila.

The wing epithelia starts from about50 cells and it grows to roughly50, 000 cells within five

days. Each divides cell on average about10 times. Spatial patterns of gene expression are

set up in the tissue to control growth, packing and morphologies of the epithelia. Although

cell division and cell rearrangement happens frequently during growth, the packing geometry

of the tissue is highly reproducible, indicating that the underlying mechanisms controlling cell

packing and cell shapes in tissue are robust.

In the previous chapter, we introduced a vertex model to describe cell mechanics and cell

interactions in two-dimensional tissues. To study how proliferation affects the pattern of the

packing geometry of cells in tissues, we introduce cell division in our vertex model. We simu-

late growth of a tissue starting from a few cells up to a large size. Cell division leads to local

rearrangements of the network. This involves changes to therelationship of neighboring cells.

We investigate how packing geometry evolves in a growing network. We also study the effect

of adhesion and cell contractility on the packing patterns of cells in growing epithelia. We show
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that cell division, together with cell mechanics and cell adhesion, control the pattern of cells

in tissues. We then study the phase transitions discussed inthe previous chapter for growing

tissues, and show that there exists a phase transition for non-equilibrium growing networks.

Cell division induces local stresses which can relax through the network via neighboring cell

shape changes, as well as via the remodeling of cell boundaries. We specifically study how

bond remodeling is affected by a local perturbation, such asa cell division, and also how cell

mechanics might influence the spatial distribution of remodeling around a dividing cell. Moti-

vated by laser ablation experiments to cut a boundary in the epithelia, we study in our vertex

model the displacements that are generated by removing a cell boundary from the network. We

show that this perturbation generates anisotropic displacements around the removed boundary,

and that the movements are strongly coupled to tissue mechanics.

3.1 Cell Division in the Vertex Model

Inhomogeneity in the packing geometry of tissues is generated by three topological changes:

cell division, cell disappearance and junctional remodeling. Cell division adds a new cell, and

consequently two new vertices to the network (see Fig. 3.2 A). We define a T1 transition as

the shrinkage of a cell boundary and the expansion in the opposite direction, which changes

the neighbor number relation of surrounding cells (see Fig.3.2 B). After a T1 transition, the

neighbor numbers of the two cells sharing the boundary before the process decrease by one,

while the other two cells gain one boundary. A T2 transition describes the situation when a

triangle shrinks to a point (see Fig. 3.2 C). This process decreases the number of cells in the

epithelia by one and the number of vertices by two. An unstable n-sided cell, goes through a

series of T1 transitions until it becomes a triangle. This triangular cell is then replaced by a

vertex through a T2 transition. A schematic of these three mechanisms is shown in Fig. 3.2

A-C.

The elastic response of cells typically occurs on time scales of seconds to a few minutes

([20] and [21]). Most morphogenetic processes such as cell division and cell rearrangement de-

velop on longer time scales compared to cell shape relaxation. Therefore the junctional network

of cells can be assumed to be a stable and stationary configuration on larger time scales than

those associated with cell shape relaxation. We think of a developing epithelium as a sequence

of stable network configurations which undergo rearrangements in response to local perturba-

tions affecting the stable configuration. Such perturbations include cell division and apoptosis

(cell death), but might also correspond to slow changes in cellular properties. This quasistatic

approximation allows us to define a history of stable configurations by slowly and locally mod-

ifying model parameters. Thus, a particular packing geometry is the consequence of the history

of such perturbations. By using our model, we can numerically simulate the evolution of cell
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A

D

B C

cell division T1 transition T2 transition

Figure 3.2: Topological rearrangements in vertex model. (A) Schematicof cell division: Two

new vertices and a new boundary are added to the network, changing the neighbor

number of surrounding cells. (B) T1 transition: A boundary shrinks to zero length

and expands in the opposite direction. This changes the neighbor relationship of

the surrounding cells. (C) T2 transition: If the area of a triangle vanishes, it is

replaced by a vertex. (D) Cell division in the vertex model. The preferred area of a

dividing cell is increased quasistatically. A new bond is introduced with a random

orientation. Both new cells are assigned the initial preferred area, and the resulting

network is relaxed. The yellow dot indicates the center of the original cell through

which the new boundary is initially formed.

packing geometry during tissue growth. We randomly select one cell and divide it by the fol-

lowing algorithm: we double the preferred area of the cell quasistatically while relaxing the

energy functional with a conjugate gradient method (for details see App. A; see Fig. 3.2 D, first

and second panels). After its size is doubled, the cell is divided by generating a new edge at

a random angle that passes through the cell center (see Fig. 3.2 D, third panel). Here the cell

center is defined as the average of the vertex positions of thecell: C = (
∑n

i=1 Ri)/n wheren is

the number of vertices of the cell. The two daughter cells that are created by this procedure are

assigned the parameters of the other cells, including the preferred areaA(0). The new boundary

also receives the same tensionΛ as other boundaries. The resulting configuration is then relaxed

to the nearest stable configuration (see Fig. 3.2 D, fourth panel). Repeating this algorithm, we

can start from a small number of cells and grow the tissue to any cell number.
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Figure 3.3: Evolution of topology and morphology of a growing tissue. (A) Average area

of n sided cells〈An〉 relative to the average area〈A〉 of all cells as a function

of generation number. (B) FractionPn of cells withn neighbors as a function of

generation number in a growing network for case I (Λ̄ = 0.12, Γ̄ = 0.04). (C)

Normalized energy per cell of a growing network as a functionof the numberNC

of cells, for parameter values corresponding to case I, generation number is also

indicated. The energy approaches a value greater than the ground-state value of the

hexagonal network. (D) Logarithmic plot of standard deviation of 〈An〉/〈A〉 as a

function of generation number for the simulation of case I. (E) Logarithmic plot

of standard deviation of the frequency ofn-sided polygons,σ(Pn) as a function of

generation number for the simulation of case I. (F) The standard deviation of the

energy per cell, averaged over250 individual divisions as a function of cell number.

3.2 Simulation of Tissue Growth

Starting with a few hexagonally packed cells as an initial configuration, we can simulate tissue

growth by dividing randomly selected cells using the algorithm described in Sec. 3.1. During

this process, a distinct network pattern emerges that can becharacterized by the fractionPn

of cells of different polygon classes (i.e., cells with different numbers of neighbors,n) and

by the average areasAn of n-sided cells. For increasing number of cells, the fractionPn of

n-sided cells, and their average areaAn converge to constant values. In Fig. 3.3 A and B we

show the normalized average area〈An〉/〈A〉 and the distributionPn for different classes of

polygons as a function of generation number, respectively.Here〈A〉 indicates the average area

of all cells in the tissue. We use different colors for different classes of polygons according to
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their neighbor number,n and we use the model parameter valuesΛ = 0.12 andΓ = 0.04. A

representative network grown with these parameter values is shown in Fig. 3.4 A; each cell is

colored according to its neighbor number using the same color coding as in Fig. 3.3 A.

In Fig. 3.3 D and E, we show the standard deviationsσ(〈An〉/〈A〉) andσ(Pn) of both the area

and the fraction ofn-sided cells, respectively, which decrease exponentiallywith generation

number. The decay generation time forPn andAn are3.14 and3.60, respectively. Beyond

the larger of these characteristic generation numbers, thetissue patterns become stationary for

increasing generation number. After simulating approximately eight generations of cell division

(from 36 to 10, 000 cells), the standard deviationsσ(Pn) andσ(An) are less than 1%. We also

show in Fig. 3.3 C the normalized energy per cell,F/NCK(A(0))2 of a growing tissue. The

energy per cell first increases with increasing cell number and then fluctuates around a constant

value that is larger than the ground-state value of the hexagonal lattice. In Fig. 3.3 F, we show

the standard deviation of the energy per cell,σ(F/NCK(A(0))2). The standard deviation of the

energy density also decays exponentially with cell number.This indicates that the grown tissue

is trapped in a local minimum and fluctuations resulting fromcell division cannot change the

statistical properties of the tissue. By using such an algorithm, we can generate a distinct pattern

of cells and characterize them by measuring the stationary values of two sets of numbers:Pn,

the fraction ofn-sided cells, which is a measure of packing inhomogeneity, and 〈An〉/〈A〉, the

average area ofn-sided cells normalized by the average area of all cells in the tissue; the latter

quantity is a measure of cellular geometry in tissues.

3.3 Statistics of Cell Packing Geometries

In order to study how tissue morphology is influenced by the physical properties of cells, we

performed growth simulations by systematically varying parameter values. In addition to case I

(Λ = 0.12 andΓ = 0.04), we performed simulations for two more cases. In case II (Λ = 0, Γ =

0.1) contractility is large relative to area elasticity, and the ground state is a hexagonal network,

as it is in case I. For case III (Λ = −0.85, Γ = 0.1) line tension is negative, and the ground state

corresponds to soft networks (see Fig. 2.3 A). Representative networks illustrating the stationary

state for case I, II and III are shown in Fig. 3.4 A, B and C, respectively (colors as in Fig. 3.4

D-I). For these three cases, we start from36 hexagonally packed cells and grow the tissue for

∼ 8 generations (10, 000 cells). We then calculate the stationary values of packing geometry

and tissue morphology as their average values over the last250 cell divisions (see Sec. 3.2).

These specific parameter values corresponding to case I are chosen in order to compare with

experiments. We will discuss in Chap. 6 that for these parameter values, the packing geometry

and tissue morphology in simulations match best with those observed in theDrosophila wing

disc.
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Figure 3.4: Examples of different tissue morphologies. (A)-(C) Examples of stationary net-

work patterns generated by repeated cell division for casesI, II, and III, respec-

tively (case I: Λ̄ = 0.12, Γ̄ = 0.04, case II: Λ̄ = 0, Γ̄ = 0.1, case III:

Λ̄ = −0.85, Γ̄ = 0.1). Color code for polygon class is indicated below panels

D-I. (D)-(F) Stationary distributions of neighbor numbersPn for cases I, II, and III.

(G)-(I) Average areas of different polygon classes normalized to the average area

of cells in the network,〈An〉/〈A〉, for cases I, II, and III.

To accurately compare theory with experiment we need to slightly modify the above method

of quantifying packing geometry. In our simulations all vertices are three-fold vertices: they

are connected to three neighboring vertices. In experiment, however, instrumental resolution

renders cell boundaries shorter than20% of the average bond length invisible. Therefore two

three-fold vertices that are closer than this distance are seen in experiment as a single four-

fold vertex. To mimic this effect in our simulations, after we grow the tissue we replace those

vertices that are closer than20% of the average bond length by a single four-fold vertex, without

any further energy minimization; this correction can slightly modify cell packing and tissue

morphology.

We present the stationary values ofPn for cases I-III in Fig. 3.4 D-F. For case I, pentagons
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form the most common polygon class (see Fig. 3.4 D), and the average neighbor number

〈n〉 =
∑∞

3 nPn = 5.9. This implies that 2.44% four-fold vertices exist, which wecan estimate

using the following method. Using Euler’s theorem for polygons covering a two-dimensional

manifold, the number of vertices,V , number of edges,E and number of cells,C are related

such thatC −E + V = χ, whereχ is the Euler-Poincaré characteristic of the manifold. Foran

infinite plane,χ = 0. For a network that includes three- and four-fold vertices (V = V3 + V4),

the number of edges and the number of cells are given by

E =
3V3

2
+ 2V4

C = E − V =
V3

2
+ V4, (3.1)

whereV3 andV4 are the numbers of three-fold and four-fold vertices, respectively. Therefore

the average neighbor number〈n〉 is given by

〈n〉 =
2E

C
=

6 + 8α

1 + 2α
, (3.2)

whereα = V4/V3 is the fraction of four-fold to three-fold vertices. For a small fraction of

four-fold vertices (V4 ≪ V ), the average neighbor number is〈n〉 ≃ 6 − 4α, which implies that

V4/V = (6 − 〈n〉)/(10 − 〈n〉).
As in case I described in Sec. 3.2, the fractionsPn of polygon classes also converge during

growth simulations for cases II and III. The resulting network morphologies, however, differ

dramatically (compare Fig. 3.4 A, B and C). In case II (see Fig. 3.4 E), the stationary network

contains a smaller fraction of hexagonal cells than in case I(see Fig. 3.4 D). Pentagons are most

common in this case. However, there is also a large fraction of cells with nine or more sides –

even20 sided polygons occur. In case III, the coefficientsΓ andΛ are such that the ground state

is a soft network (see Fig. 2.3 A). Under these conditions, simulating proliferation generates the

stationary network morphology shown in Fig. 3.4 C. Pentagons form the most common polygon

class, and the fraction of cells with a large number of neighbors is smaller than in cases I and II

(see Fig. 3.4 F).

In addition to the topological disorder reflected in the fractionsPn of polygon classes, cells

are geometrically disordered in these three cases. For caseI, the average areaAn increases for

increasingn as shown in Fig. 3.4 G. However, for case II, the average areasAn (see Fig. 3.4

H) vary more strongly with neighbor number than in case I. In case III all polygons have the

same areaA(0) and the same perimeterL(0) = −Λ/2Γ. As a consequence, the cell area does

not depend on neighbor numbern as shown in Fig. 3.4 I. The average neighbor number,〈n〉,
also varies for these three cases. For case II:〈n〉 = 5.95, while for case III:〈n〉 = 5.46, which

indicates that the number of four-fold vertices in case III (by Eq. 3.2) is roughly10 times greater

than the number of four-fold vertices in case II (case II:1.23%, case III:11.89%). These results
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show that cell proliferation can generate packing disorderwith specific reproducible features

that depend on the physical properties of the cells, as described by model parameters̄Γ andΛ̄.

3.4 Phase Transitions in Tissue Growth
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Figure 3.5: Phase transitions for growing tissues. The converged valueof the order param-

eter plotted as a function of dimensionless line tensionΛ̄ (Γ̄ = 0.05). The order

parameter vanishes for̄Λ ≤ −0.4.

We discussed in Sec. 2.3 that there exists a phase transitionfrom solid to semisoft networks

followed by a transition to soft networks, when varying the line tensionΛ̄. Using a series

of analytic arguments, we calculate the transition line between these three regimes. We also

introduced in Sec. 3.2 an algorithm to generate irregular packing geometries using repeated

cell division and junctional rearrangements. We now investigate phase transitions for non-

equilibrium networks, such as growing ones. In order to study phase transitions in growing

networks, we first need to define an order parameter. We define an order parameter,̄F , as the

dimensionless energy density:F̄ = F(Ri)/NC −Λ2/8Γ. Since our order parameter is equal to

the energy density, as we discussed in Sec. 3.2, it fluctuatesfor the first few generations of cell

proliferation and then converges to a well-defined value, depending on parameter values. The

order parameter̄F vanishes for those network configurations for which all cells have area equal

to their preferred areaA(0), and those for which all cells have a perimeter equal to the preferred

perimeterL(0) = −Λ/2Γ.

To study a potential phase transition we simulate tissue growth for different values of the

line tensionΛ̄, keeping the contractility constant (Γ̄ = 0.05). For each set of parameters, we
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start from36 hexagonally packed cells and grow the tissue up to10, 000 cells. We calculate

the average value of the order parameter,〈F̄〉, over the last250 cell divisions. In Fig. 3.5,

we plot the average value of the order parameter, as a function of dimensionless line tension.

The average order parameter vanishes forΛ̄ ≤ −0.4. We repeat these simulations for different

sets of parameter values(Λ̄, Γ̄) and we find that the transition occurs atΓ̄ ≃ −Λ̄/8 for Γ̄ =

0.01, 0.03, 0.05, 0.07 and0.09. However the actual value of〈F̄〉 depends on the accuracy of our

energy minimization algorithm. As we described before, we use a conjugate gradient method

to calculate the local minimum of the energy function. The algorithm (App. A) searches for a

local minimum of the energy function for a given set of variables, and stops if the change in

the energy function for two search steps falls below a certain thresholdǫ. Therefore the actual

value of the energy density, and consequently the value of the order parameter, depends on the

relaxation thresholdǫ. To study if minimization with higher accuracy changes the transition

line, we repeat these simulations for the same set of parameter values(Λ̄, Γ̄) and for different

values ofǫ. In Fig. C.1 we plot the logarithm of the average value of the order parameter as

a function of the logarithm ofǫ for different sets of parameter valuēΛ (given Γ̄ = 0.05). For

Λ̄ > −0.4, decreasing the threshold does not change the average valueof the order parameter,

while for Λ̄ ≤ −0.4 this value converges to zero as we decreaseǫ. Our numerical analysis

strongly suggests that there is a phase transition from solid to soft networks for growing tissues

and that the transition line falls on the line we calculated for the ground state phase transition in

Sec. 2.3.

3.5 Junctional Remodeling

As discussed in Sec. 3.1 our cell division algorithm includes a growing phase of the dividing cell

and a relaxation phase after division. In the growing phase,we increase the preferred area of

the cell to two times the normal value quasistatically in a few steps. After each increment in the

preferred area, the tissue is relaxed to its nearest local minimum. When the size of the dividing

cell has doubled, we introduce a new boundary at a random angle and relax the tissue. In both

phases, local stresses arise in the tissue. These stresses are then relaxed by cell shape changes as

well as cell bond remodeling (T1 transitions). It is also possible that a cell disappears from the

network during tissue relaxation (T2 transitions). The induced patterns of stress in the network

due to cell division depends on the mechanical properties ofcells. Here we study statistics and

pattern of T1 and T2 transitions for a growing network for three cases. These cases have the

same perimeter contractility (Γ̄ = 0.05) but different line tensions (̄Λ = −0.41, 0.1, and 0.16).

The first case corresponds to the soft networks regime (see Fig. 2.3 A), while the other two cases

correspond to the solid regime. For the third case (Λ̄ = 0.16), the bulk modulus is significantly

smaller than the other two cases. Although the cases I-III introduced in Sec. 3.3 have similar
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mechanical behavior, here we restrict ourself to variations in only one parameter (line tension).

For each case, we start from36 hexagonally packed cells and grow the tissue up to10, 000

cells, recording the statistics of T1 and T2 transitions during growth. During a single cell

division a few topological transitions (T1 and/or T2) occur. The number of T1 transitions per

100 cell divisions,fT1, is then defined as

fT1 =
∞
∑

n=0

npn, (3.3)

wherepn is the probability of havingn junctional remodelings after a cell division. In Fig. 3.6

A, we showfT1 for the casēΛ = −0.41 as a function of the total cell number. After the first

few generations, the number of T1 transitions converges to awell-defined value. AlthoughfT1

fluctuates for larger numbers of cell divisions, it is significantly different for different sets of

parameter values. In Fig. 3.6 B we show the converged value ofthe rate of T1 transitions,〈fT1〉,
for these three cases. ForΛ̄ = −0.41, 〈fT1〉 is greater than the other two cases. In the soft

network regime (̄Λ = −0.41), T1 transitions are possible without work being done. However,

for the other two cases the network is solid and there is a barrier for T1 transitions. This is a

possible explanation for the different rates observed for these three cases.

We define the number of T2 transitions per100 cell divisions,fT2, as in Eq. 3.3:fT2 =
∑∞

n=0 npn, wherepn is the probability of havingn T2 transitions after a cell division. In Fig. 3.6

C we showfT2 as a function of cell numberNC for Λ̄ = 0.16. Similar to the number of T1

transitions,fT2 also converges to a value for larger number of cell divisions. We plot the average

value offT2 for different cases. For the soft networks the number of T2 transitions is almost zero

(fT2 = 3.92 × 10−4 ± 2.77 × 10−4). However, for more positive values ofΛ̄, the number of T2

transitions,fT2, increases significantly. For̄Λ = 0.16 it increases up to0.58 and half of the cells

eliminates from the tissue during growth. We conclude that topological rearrangements induced

by cell divisions, does depends on the mechanical properties of the cells. The number of T1

transitions is higher for networks with lower shear modulusand the number of T2 transitions is

higher for networks with lower bulk modulus.

To test the validity of this idea, we systematically change the parameter valuēΛ from −0.41

to 0.16. For each case we grow the tissue up to10, 000 cells and quantify the average number

of T1 and T2 transitions. In Fig. 3.7 A and B, we plot these averages as a function of̄Λ. The

number of T1 transitions increases by a factor of10 for decreasinḡΛ. Up to Λ̄ = −0.38, the

average number of T1 transitions increases smoothly and converges to〈fT1〉 ≃ 0.6. However,

for smaller value of̄Λ, the number of T1 transitions changes abruptly and attains its maximum

value. Interestingly, this value of̄Λ, for which abrupt changes in the number of T1 transitions

occur, coincides with the phase transition from the semisoft to the soft regimes (see Fig. 2.3 A).

The average number of T2 transitions changes more strongly as a function of̄Λ. For Λ̄ < 0.04,

the average number of T2 transitions is negligible. Howeverit increases strongly for higher
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Figure 3.6: (A) Number of T1 transitions per100 cell divisions for a growing tissue for pa-

rameter values(Λ̄ = −0.41, Γ̄ = 0.05) as a function of cell numberNC . (B) The

converged value offT1 for three different cases of line tension. (C) Number of T2

transitions per100 cell divisions for a growing tissue for(Λ̄ = 0.16, Γ̄ = 0.05) as

a function of cell numberNC . (D) Average value offT2 for proliferating networks

with different line tension.

values ofΛ̄ up to 0.58 forΛ̄ = 0.16.

3.6 Tissue Relaxation due to Local Perturbations

As we will discuss in Sec. 6.2, to investigate the interplay of forces acting at the junctional

network of epithelial cells in the wing disc ofDrosophila, we perturbed this stable junctional

network by ablating a section of individual cell boundarieswith a UV laser beam. In response

to the cut, E-cadherin-GFP fluorescence, which is used to mark the junctional network, dis-

appeared from the center of the cut cell boundary, and the vertices at both ends moved from

their initial positions. The vertices subsequently relaxed to new stable positions. Here we study

theoretically the model behavior due to local perturbations such as removal of a cell boundary.

We will term this process as “laser ablation” and the removedbond as the “cut bond” in our
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Figure 3.7: (A) Average number of T1 transitions as a function of line tension Λ̄ for growing

tissues (̄Γ = 0.05). The number of T1 transitions increases for decreasing line

tension and there are sharp changes near the transition linebetween the semisoft

and soft regimes of the ground state phase diagram. (B) Average number of T2

transitions as a function of̄Λ.

theoretical study.

In experiment, we could not saya priori that laser ablation affected only localized line ten-

sion of cell boundaries, or whether perimeter contractility was affected as well. Thus one can

imagine two scenarios to mimic bond cutting experiments. Inthe first scenario, we assume

that laser ablation only affects the tension of the ablated boundary. In the second scenario we

assume that both the tension in the ablated boundary and the contractility of the two cells ad-

jacent to the cut boundary is affected by ablation. These twoscenarios generate different types

of displacements in the vertices surrounding the cut boundary. Removing contractility of the

two cells sharing the cut bond would be expected to result in isotropic expansion of these two

cells, whereas removing bond tension of the cut bond is expected to produce anisotropic de-

formations of the cells adjacent to the cut bond. In the idealized case of a perfectly isotropic

deformation, the perimeter would increase linearly with anincrease in length of the cut bond. In

contrast, a strongly anisotropic deformation would resultin little or no changes in the perimeter

of the two cells sharing the cut bond. Real deformations might comprise a superposition of

both anisotropic and isotropic movements. The measurements of changes in the combined area,

∆Acut, and combined perimeter,∆Lcut, of the two cells adjacent to the cut boundary can be

used as a measure of anisotropy of the displacements, and therefore can distinguish between

these two scenarios. We will discuss in Sec. 6.2 which scenario can best generate the observed

displacements in experiments.

To simulate laser ablation, we select bonds for removal and we set to zero the normalized line
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Figure 3.8: Laser ablation in two different scenarios. (A) and (B) In scenario I, ablation is

simulated by setting onlyΛij = 0 for the cut bond. In scenario II, ablation is

simulated by setting bothΛij = 0 and alsoΓα = 0 for the two cells adjacent to the

cut boundary. (C) and (E) Relative combined area change of cells adjacent to the

cut boundary as a function of relative bond length increase for scenarios I and II (for

parameter values corresponding to case I). (D) and (F) Relative combined perimeter

change of cells adjacent to the cut boundary as a function of relative bond length

increase for scenario I and II (for parameter values corresponding to case I). (G)

and (H) Relative area and perimeter changes for the case(Λ̄ = 0.12, Γ̄ = 0.02) in

scenario II.
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tensionΛ̄ij of the cut bond for scenario I (see Fig. 3.8 A) and bothΛ̄ij and the normalized con-

tractility Γ̄α of the two cells sharing the cut bond for scenario II (see Fig.3.8 B). We start from a

stable network configuration generated by a growth algorithm for parameter values correspond-

ing to case I in Sec. 3.3 (Λ̄ = 0.12, Γ̄ = 0.04). Randomly selecting a boundary for ablation,

we quasistatically decreasēΛij and/orΓ̄α of the cut boundary in few steps, while relaxing the

networks using the conjugate gradient method. For the givenpair of parameters̄Γ andΛ̄ for

all other cells, we determine the resulting distributions of area and perimeter changes of the

pair of cells sharing the removed bonds. In Fig. 3.8 C-F, we show this distribution of the com-

bined area changes,∆Acut normalized to the average area of all cells and combined perimeter

changes,∆Lcut, normalized to the average bond length as a function of normalized bond length

increase, for scenario I and II respectively. Our analysis shows that the combined area changes,

∆Acut, vary more strongly in scenario II than in scenario I. The combined perimeter of the two

cells adjacent to the cut boundary also changes less in scenario I compared to scenario II.

We also examined how different parameter values(Λ̄, Γ̄) affect the results of laser ablation

simulations. We perform laser ablation simulations for parameter values that are slightly dif-

ferent from case I,(Λ̄ = 0.12, Γ̄ = 0.02), such that the tension is the same as case I while the

contractility is slightly different. In Fig. 3.8 G and H, we show normalized area and perimeter

changes, with respect to the normalized change in bond length, for cells surrounding the cut

bond (using scenario II). Our results indicate that even forsuch small changes in parameter

values the results of laser ablation change dramatically. The combined area changes of the cut

cells are less than simulations of case I indicating that less anisotropic movements occur due to

laser ablation. From these simulations, we conclude that laser ablation is strongly sensitive to

the model parameters, line tension and perimeter contractility of cells, and can thus be used for

testing precisely forces in the junctional network of cellsin epithelia.

3.7 Summary

Tissues in nature experience a growing phase during development with several rounds of cell

divisions. The final shape and morphology of the tissue is tightly controlled by a complex gene

network. This network controls patterns of cell division inthe tissue as well as the morphology

of cells. Cell packing and morphology is affected mostly by cell mechanics. In this chapter,

we have introduced a cell division algorithm based on quasistatic changes of cell properties.

This algorithm has two main steps: (i) A growing phase of the dividing cell during which the

preferred area of the cell is doubled in a few steps while minimizing the energy after each

increment. (ii) At the end of this growing phase, we introduce a new boundary at a random

angle passing through the cell center. We assign the same parameters for the two new cells

and new boundaries as in the surrounding tissue. The tissue is then relaxed to the next local
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minimum. Repeating this process, we can grow the tissue starting from a small number of cells

up to an arbitrary size.

Cell division introduces disorder in the packing geometry of the network, which can be char-

acterized by two sets of numbers: The fraction ofn-sided cells,Pn, and the average area of

n-sided cells normalized to the average area of cells in the network, 〈An〉/〈A〉. We show that

these quantities converge to well-defined values for growing tissues. To study how the packing

geometry of a growing network is affected by cell mechanics,we simulate tissue growth for

three sets of parameter values. Repeated cell division together with cell mechanics and cell

adhesion can generate tissue morphologies that are surprisingly different from one another. For

case I (̄Λ = 0.12, Γ̄ = 0.04), pentagons are the most frequent polygon class and the frequency

of six-sided cells is around two times more than case II, where (Λ̄ = 0, Γ̄ = 0.1). For case II,

cells with a large number of sides (nine or more) are frequent, and even20-sided cells are gen-

erated during growth. However, for case III (Λ̄ = −0.85, Γ̄ = 0.1), the frequency of nine-sided

cells is negligible. The area variability is also differentfor these three cases. In both case I and

II, the area ofn-sided cells increases linearly with cell neighbor number,n, but the variation in

case II is much stronger than in case I. This is significantly different for case III, in which the

area of different class of polygons does not depend on neighbor number.

We then study two questions for these growing, non-equilibrium tissues. We first study phase

transitions now for a growing network, which were introduced for the ground state in the pre-

vious chapter. We use the energy density of the network as an order parameter and we simulate

growth for different sets of parameter values. We show that the order parameter vanishes for

parameter values lying in the soft regime of the ground statephase diagram including the line

between the semisoft and soft regimes. The value of the orderparameter depends on the min-

imization threshold. Therefore to check whether decreasesin the threshold can change our

results, we repeat these simulations for different values of the minimization threshold. We find

that changing this threshold has no effect on the transitionline and this line agrees exactly with

the transition line between the semisoft and soft regimes ofthe ground state phase diagram.

The second question that we study here concerns stresses that are induced during cell division.

These stresses can change the shape of surrounding cells as well as resulting in two topological

rearrangements: T1 and T2 transitions. In a T1 transition, aboundary shrinks and expands in

the opposite direction and consequently changes the neighbor number relation of surrounding

cells. T2 transitions correspond to elimination of a cell from the network, such that an unstable

triangle is replaced by a vertex. We study the dynamics of T1 and T2 transitions in a growing

network. We find that the rate of T1 transitions increases fordecreasing line tension (decreasing

the line tension results in decreasing the shear modulus of the network). Near the transition

line between the semisoft and soft regimes of the ground state phase diagram, the rate of T1

transitions increases abruptly. The rate of T2 transitionsincreases for increasing line tension
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(decreasing bulk modulus). For parameter values (Λ̄ = 0.16, Γ̄ = 0.05), this rate is so high that

on average every two cell divisions result in one cell elimination.

We finally studied the displacement field of vertices due to local perturbations such as re-

moval of cell boundaries. We showed that this results in anisotropic movement of vertices

around the removed boundary. Vertices in the direction of the cut bond moves outward, how-

ever, vertices perpendicular to the cut bond moves slightlyinward. We characterize the anisotropy

of movements by quantifying the changes in the combined areaand perimeter of the two cells

that share the removed boundary. In a purely isotropic deformation of the two cells next to the

cut bond, perimeter would increase linearly with the increase in length of the cut bond. How-

ever, a strongly anisotropic deformation would result in almost no changes in the perimeter of

the two cells sharing the cut bond. Since this analysis is motivated most by experiments that

a cell boundary is cut by laser ablation, we cannot say a priori how the laser affect mechanics

of the two cells next to the cut bond. We therefore studied twoscenarios for removal of a cell

boundary. In the first scenario, we only remove the tension ofthe boundary leaving the two

cells next to the boundary otherwise unaffected. In the second scenario, we remove both the

tension on the boundary and also the perimeter contractility of the two cells adjacent to the cut

boundary. In both cases, we decreased the tension (and/or the perimeter contractility) quasistat-

ically, while minimizing the network energy after each quasistatic step. In these scenarios, we

studied the anisotropy of displacements due to ablation andwe found that the second scenario

generates greater anisotropy than the first one. We also studied how mechanical parameters

of the tissue might affect the displacements due to removal of a cell boundary. We found that

slight changes in the parameter values of the model generatesignificantly different displace-

ments around the cut bond. The displacements are less anisotropic for the case that we slightly

change the perimeter contractility of cells from̄Γ = 0.04 to Γ̄ = 0.02, while keeping the line

tension constant. We conclude that laser ablation analysisis quite sensitive to cell mechanics

and cell adhesion in tissues and can be used as a probe to quantify precisely forces in the tissues.



4 Tissue Ordering and Remodeling

Apart from the growing phase of tissue development characterized by frequent round of

cell divisions, most epithelia experience a variety of morphological changes lacking cell di-

vision. This includes processes such as convergent-extension and epithelial repacking. During

convergent-extension, the tissue shears strongly and cells intercalate such that, at the end of the

process, the length of the tissue expands in one direction bya factor of two or three while con-

verging in the other direction. An example of convergent-extension in the embryo ofDrosophila

is shown in Fig. 4.1. Another example of tissue remodeling and ordering happens during pupal

development in the wing ofDrosophila, in which the packing geometry of cells changes dra-

matically toward an almost hexagonal network. This improvement in the hexagonal packing is

accompanied by emergence of another feature of the tissue, namely planar polarization. A set

of interacting proteins redistribute anisotropically inside each cell, such that it becomes struc-

turally polar. These polarized cells align with one anotherthroughout the tissue, giving rise to

global orders. During this process, one round of cell division without growth happen, and the

tissue shears dramatically.

In this chapter we address various questions regarding ordering and remodeling of tissues.

We first study convergent-extension of tissues due to cell intercalation induced by T1 transitions

and show that to have an effective shear flow, we need orientedT1 transitions to occur. We then

study the effect of one round of cell doubling without growthon packing geometry, and show

that oriented cell doubling without growth can shear the network effectively. We identify two

general methods for repacking of a grown tissue: annealing and shear flow of the network. To

anneal the network, we randomly change the tension on cell boundaries and continuously relax

the network towards the next local minimum. We show that repeating this process significantly

results in more regular packing geometry of the tissue. Nextwe study shear flow of the tissue for

no-slip boundary conditions. We show that, similar to annealing, this process can also improve

the hexagonal packing of the network. We then introduce a theory for planar polarity of cells,

which is coarse-grained on the level of proteins that take part in cell polarization. We introduce

a robust mechanism to generate long range order in these systems. Finally we study the effect

of shear flow on tissue polarization and we show that the polarity of cells reorients towards the

shear direction. This suggests that on large length scales the system behaves similar to a liquid
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crystals under shear flow. Using this idea we develop a hydrodynamic theory for polarized

tissues, introducing a phenomenological parameter that controls how polarity is affected by

shear flow.

4.1 Internal Shear Generated by Remodeling

4.1.1 Ordered Junctional Remodeling

A

B

Figure 4.1: Convergent-extension. (A) Schematic of intercalation of cells via junctional re-

modeling, which results in convergent-extension. (B) Convergent-extension in the

Drosophila embryo (adapted from [7]). The tissue expands its initial length by a

factor of two in the absence of cell shape changes or cell division. Cells strongly

intercalate with each other resulting in narrowing of the tissue in one direction and

expansion in the other direction.

In the early development of animal embryos, there exists a stage where the morphology of the

embryo is dramatically restructured by cell migration. These dramatic changes are governed by

convergent-extension processes, in which cells intercalate (change their neighbors via junctional

remodeling) with each other and the tissue becomes longer (extends in one direction). This

extension is not driven by cell division or cell-shape changes, but rather by a rearrangement of
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cells in the epithelium. A schematic of this cell rearrangements, cell intercalation and extension,

is shown in Fig. 4.1 A. Note that cells that are in contact before intercalation, loose their contact

and acquire new neighbors. One classical example of convergent-extension in biology is the

germ-band elongation of the embryo of the fruit flyDrosophila, in which the length of the

epithelia increases by a factor of two. Here the remodeling of cell-cell junctions is not driven

by external forces at the epithelia boundaries, but dependson forces that act locally on cell

boundaries. It has been shown experimentally that junctional remodeling during germ-band

expansion have certain orientation in the plane of the epithelia [7]. A schematic of germ band

expansion in the fruit fly embryo and an image of the tissue is shown in Fig. 4.1 B (adapted

from [7]). Here cells are marked with different colors (initially forming rows) and followed

with time. It is evident that during convergent-extension,cells intercalate and change their

neighbor relations.

In this section, we study the effect of forced junctional remodeling (T1 transitions) on tissue

shape and morphology in the absence of cell divisions. In order to study how the orientation

of the selected bonds for T1 transition might affect the shear rate of the tissue, we select bonds

for junctional remodeling such that their orientation withrespect to thex axis is limited to

[θ, π − θ]. The angle,θ, can vary between zero andπ/2. If θ = 0 then bonds with random

orientation are selected for T1 transitions, and ifθ = π/2 only vertical bonds are selected

for junctional remodeling. Selecting a bond with specific orientation, we then quasistatically

increase the tension on the chosen boundary and relaxing thenetwork towards the next local

minimum. This results in shrinkage of the length of the boundary. We increase the tension on

this boundary until its length falls below a threshold. We then change the neighbor relation

of the two vertices at the end of this specific bond and change the tension of that bond to a

value equal to the other bonds in the tissue. Finally we relaxthe network towards the next local

minimum.

In Fig. 4.2 A, we show the initial network configuration of5, 000 cells generated by growth

algorithm for (̄Λ = 0.06, Γ̄ = 0.05). In Fig. 4.2 B and C, we show the network configura-

tion after10, 000 repeated T1 transitions for two choices of the angleθ = 0 andθ = 4π/9,

respectively. Selection of bonds with random orientation for T1 transitions (θ = 0) results in

almost no shear deformation of the tissue(Lx/Ly ≃ 1 after10, 000 T1 transitions). However,

for θ = 4π/9, this process can generate a continuous shear flow of the tissue (Lx/Ly = 2.23

after10, 000 T1 transitions). In Fig. 4.2 D, we plotLx/Ly as a function of convergent-extension

steps,N , for these two cases. The shear deformationLx/Ly increases linearly withN for the

first 5, 000 T1 transitions. The nonlinear increment inLx/Ly after5, 000 T1 transitions might

be due to finite size of the tissue.

These results suggest that a planar organization of T1 transitions is required for an effective

convergent-extension of the tissue. To study how this angular ordering might affect shear rate
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Figure 4.2: Convergent-extension induced by polarized T1 transitions. (A) A grown net-

work for parameter values (Λ̄ = 0.06, Γ̄ = 0.05). (B) Network configuration

after10, 000 T1 transitions, where bonds are selected at random orientations. (C)

Convergent-extension after10, 000 T1 transitions, where bonds are selected with a

restricted angle (θ = 4π/9). As opposed to the case in (B), the tissue expanded

in the x direction by a factor of∼ 2.23. (D) The aspect ratio of the simulating

box,Lx/Ly, for cases (B) and (C) as a function of cell number. (E) Shear rate for

different sets of parameter values as a function of the angleθ.

of the tissue, we perform simulations while systematicallychanging the angleθ. For each

simulation, we measure the average shear rate as the averageof the variation in the box size

ratio,Lx/Ly. For parameter values as above we plot the average shear ratein Fig. 4.2 E (blue

line) as a function of the angleθ. As discussed previously, forθ = 0 bonds with random

orientation are selected for T1 transitions, and this results in approximately zero shear rate.

However, if we increaseθ, i.e. we select bonds for T1 transition that lie in a limited angular

zone, the shear rate increases up toθ ≃ 7π/18. Interestingly, for a sharper angular zone (θ =

4π/9), the shear rate decreases significantly to a lower non-zerovalue.

We next study how cell mechanics might affect shear rate during convergent-extension. We

repeat simulations similar to the case(Λ̄ = 0.06, Γ̄ = 0.05) for other sets of parameter values;

we choose the same perimeter contractility as the previous case, while vary the line tension. For
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each set of parameter values, we choose different anglesθ and simulate convergent-extension

for 10, 000 steps. In Fig. 4.2 E, we plot the shear rate for each angle and each set of parameter

values. The two cases̄Λ = −0.06 and−0.24 are similar toΛ̄ = 0.06 in that they lie in the

solid region in the ground state phase diagram. These three cases show similar behavior: the

shear rate increases for increasingθ up to a certain value and then decreases for largerθ. The

shear rate for these cases is zero forθ = 0. For other values ofθ, the shear rate decreases for

decreasing line tension̄Λ. For the casēΛ = −0.42, however, the network is soft and for any

choice ofθ the shear rate is approximately zero. From these results we conclude that shearing

a network internally (i.e. as to produce convergent-extension) depends strongly on the system’s

ability to undergo T1 transitions. The shear rate of the tissue during convergent-extension also

depends on the shear modulus of the network. Networks with higher shear modulus have higher

shear rates during convergent-extension and for networks with zero shear modulus, the shear

rate is almost zero.

4.1.2 Cell Division without Growth

In this section we introduce another mechanism that can generate shear in tissues internally in

the absence of external forces. We use a modified cell division algorithm, such that a cell that

has not divided is randomly selected in the tissue. We then introduce the new boundary passing

the cell center and assign half of the preferred area of the mother cell to each of the daughters

and then relax the network to the next local minimum. Note that this algorithm is different from

what we described in Sec. 3.1:

(i) In this algorithm cells only divide once.

(ii) The mother cell does not double its size before division.

(iii) The new daughter cells have half of the preferred area of the mother cell.

Since the preferred area of the daughter cells is half of the mother, the total area of the tissue

almost remains unchanged during this process.

We start from a grown tissue of1, 600 cells for parameter values (Λ̄ = −0.12, Γ̄ = 0.04) and

we perform one rounds of cell division without growth. For the case that there is no preferred

angle for the new boundaries that are formed during cell divisions, the shear rate of the tissue is

negligible. In Fig. 4.3 A and B, we show the initial and final network configurations after one

round of cell division without growth, respectively. However, if we assume a preferred angle

for the new bonds that are formed during cell divisions, thiscan generate strong convergent-

extension. In Fig. 4.3 C, we show the network configuration after one round of oriented cell

division without growth, where the new boundary introducedduring cell divisions attains an

angleθ = π/2 ± π/18. Here, the network shears by a factor of two after one round oforiented

cell doubling without growth. In Fig. 4.3 D, we plot the ratioLx/Ly as a function ofNC for

simulations of isotropic and oriented cell division without growth.
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Figure 4.3: Cell division without growth. (A) The initial network configuration of1600 cells

generated by the growth algorithm for parameter values (Λ̄ = −0.12, Γ̄ = 0.04).

(B) Network configuration after one round of isotropic cell division without growth.

(C) Network configuration after one round of oriented cell division without growth.

The new boundaries that are generated by cell divisions havea preferred initial

angleθ = π/2 ± π/18. The network shears due to oriented cell division without

growth. In A-C cells are colored according to their neighbornumber (for the color

codes see (E)). (D) The tissue aspect ratioLx/Ly as a function of cell number. (E)

The frequency ofn-sided cells during one round of oriented cell division without

growth.

Note that the packing geometry of the network also changes during one round of cell doubling

without growth. We show the frequency ofn-sided cells as a function of cell number for a

network with oriented cell divisions without growth in Fig.4.3 E. The frequency of six-sided

cells decreases for the first half of the process, while the frequency of eight-sided cells increases.

Later the frequency of six-sided cells increases to about60%. Interestingly, the frequency of five

and seven-sided cells approaches to a similar value by the end of the process indicating that they

appear mostly in pairs. From these two sections, we concludethat oriented T1 transitions and

oriented cell division without growth can generate shear inthe network in absence of external

forces. Although for simulations of cell division with growth, we observed that the packing

geometry of the network converges to a specific value and remains unaffected by further cell
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divisions, here one round of oriented cell doubling withoutgrowth improves the hexagonality

of the network.

4.2 Dynamics of Hexagonal Order

4.2.1 Annealing
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Figure 4.4: Simple annealing of the network results in hexagonal repacking of the network.

(A)-(C) Three time points of annealing simulations for a grown tissue correspond-

ing to case I(Λ̄ = 0.12, Γ̄ = 0.04) and noise strength,µ = 0.5. (A) is the initial

network configuration generated by growth. Each cell is colored according to its

neighbor number. (D) Frequency ofn-sided cells as a function of annealing step

for µ = 0.5. (E) Converged value of the frequency of hexagons in annealing simu-

lations as a function of noise strengthµ.

Apart from the growing phase of tissue development, in whichrepeated cell division induces

disorder in the packing geometry of tissues, there is a phaseof development during which

the packing of the tissue changes dramatically toward the hexagonal packing. This process

happens mostly in the absence of cell division. In this and the following sections, we introduce
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two mechanisms that can influence the hexagonal packing of a tissue. In the first mechanism,

we introduce fluctuations in cell boundary tension that can result in annealing of the network

toward the hexagonal ground state. In the second mechanism,we generate a shear flow in the

network that can likewise repack the tissue and increases the hexagonality of the network.

We showed in Sec. 3.2 that cell division introduces disorderin the packing geometry of tis-

sues. During repeated cell division, the tissue becomes trapped in a local minimum of the

energy function and the packing geometry converges toward aspecific pattern. Although cell

division generates fluctuations in packing geometry of the network, these fluctuations are not

sufficient to drive the tissue towards the hexagonal packing. Here we introduce fluctuations in

cell boundary tension that induce rearrangements, which are then biased by the energy function

toward the hexagonal ground state. This is analogous to annealing, during which crystalline

order is approached. We start with an irregularly packed network configuration, in which pro-

liferation had ceased and introduce stochastic changes of line tensionsΛij at randomly chosen

cell boundaries. The line tension of the boundary is then modified asΛij = Λ(1 ± µ), whereµ

is the noise strength and〈Λij〉 = Λ is unchanged.

We start from a grown tissue with irregular packing geometryusing parameter values corre-

sponding to case I(Λ̄ = 0.12, Γ̄ = 0.04) (see Fig. 4.4 A). We then change the tension of each

bond stochastically as described above and relax the network toward a local minimum. During

this process, a number of T1 transitions occur. We repeat this process for many steps until the

network packing converges to a specific distributions. In Figs. 4.4 B and C we show two snap-

shots of an annealing simulation forµ = 0.5, where the tissue rearranges to hexagonal packing

by the end of this process. In Fig. 4.4 D we plot the frequency of different polygon classes as

a function of annealing steps,N . The frequency of six-sided cells increases and converges to a

value, higher than the initial value generated by growth. Consequently the frequencies of other

polygon classes decrease. Interestingly, the frequency ofpentagons, which is the highest at the

beginning of annealing, approaches to a similar value as thefrequency of heptagons. Pentagons

and heptagons appear mostly as pairs during annealing simulations (see Fig. 4.4 C).

We wonder if the stationary frequency of hexagons depends onthe noise strengthµ. We sys-

tematically change the value ofµ from 0.05 to 0.5 and simulate annealing for the given noise

strength. In Fig. 4.4 E, we plot the converged frequency of hexagons,〈P6〉 for simulations of an-

nealing with different noise strength. The converged valueof 〈P6〉 increases linearly with noise

strength. We conclude that the disordered geometry of the proliferating tissue represents a local

minimum of the energy function. Because the global minimum in case I is a perfect hexago-

nal lattice, the energy function would bias fluctuations to bring the initially irregular network

closer to the hexagonal ground state. Our simulations show that introducing fluctuations in line

tension (which could correspond to fluctuations in adhesionand contractility in real tissues) is

sufficient to drive remodeling.
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4.2.2 Shear Flow

The second mechanism that affects tissue packing geometry is shear flow. To generate shear

flow in tissues, we use different boundary conditions than ones used in growth simulations. We

introduce no-slip boundary conditions by fixing the position of vertices on the lower and upper

parts of the simulating box. We also fixLy, the length of the simulating box in they direction.

This is different from growth simulations, where we minimize the energy function with respect

to box sizes,Lx andLy, i.e. we impose no external forces on the boundaries. Here weselect

vertices in the middle of the tissue such that their connecting bonds make a horizontal line (red

line in Fig. 4.5 A). We then impose a small displacement to these vertices in the middle of the

network, relaxing other vertices while keeping the position of vertices on the boundary and in

the middle fixed.

One difficulty in generating shear flow on tissues is the existence of soft elastic modes asso-

ciated with large-scale shear deformations. We use the following algorithm to generate shear

flows, which has three main steps; by repeating these steps wecan generate continuous flow of

the tissue. We first increase slightly thex position of the middle vertices. We then minimize

the energy function using the conjugate gradient method (using higher precision than in other

simulations). During this step, we only minimize the energyfunction with respect to the po-

sition of vertices, while preventing any topological rearrangements (we prevent T1 transitions

from happening). We then search for those bonds that are shorter than a threshold, impose a

T1 transition on those vertices, and relax the network usingthe conjugate gradient method. We

repeat this last step until no T1 transitions happen. We thenincrease the position of the middle

vertices slightly and repeat these steps. We show in Fig. 4.5A three time steps of the shear

flow of a grown tissue, marking a few cells in the tissue with different colors to illustrate their

movements.

In Fig. 4.5 B we plot thex component of the velocity field in the tissue,Vx, (averaged over

thex direction) as a function ofy. The velocity is maximum in the middle of the tissue and

decreases linearly to zero towards the boundary. Small velocities reported fory = 0 andy = Ly

are artifacts due to binning. During the shear flow, the packing of the tissue changes dramati-

cally. The number of hexagons increases while the number of othern-sided cells decreases. We

show three time points of tissue flow in Fig. 4.5 C where each cell is colored according to its

neighbor number (for color codes see Fig. 4.4). As the cells stretch in the shear direction, T1

transitions happen, which increases the number of hexagons. We quantify the proportions of

n-sided cells in the tissue and plot them as a function of shearsteps,N , in Fig. 4.5 D. Similar

to the annealing case, the percentage of pentagons decreases and converges to a value similar

to the percentage of heptagons, which again indicates that five-sided cells and seven-sided cells

appear as pairs during tissue flow. This is evident in the third panel in Fig. 4.5 C. Note that there

is a transition from shear flow to shear banding depending on the magnitude of the increment
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Figure 4.5: Shear flow in the vertex model. (A) Three time points of shear flow in the vertex

model. Vertices lying on the red line in the middle of the tissue move to the left

with constant velocity using no-slip boundary condition . Few cells are colored

differently to illustrate the flow. (B) Packing geometry of the tissue for three time

points of tissue flow (color codes as D). (C) Average of thex component of the

velocity, Vx, over thex direction as a function of normalizedy coordinate. (D)

Frequency of different polygon classes as a function of shear step, N.
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in thex position of the middle vertices during each step. We do not study shear banding in this

thesis.

4.3 Theory of Planar Cell Polarity

As we discuss in Sec. 1.3, planar cell polarity (PCP) is a tissue-level phenomenon that coordi-

nates cell behavior in epithelia. A particular example of planar cell polarity at work is revealed

in the orientation pattern of hairs, which form on the wing ofthe fruit fly Drosophila. Planar

polarity is established by a molecular organization that includes asymmetric distribution of PCP

proteins within cells. The distribution of these proteins in a given cell determines of the polarity

of neighboring cells. At the end of wing development, a specific pattern of PCP orientational

order is established. Here we present a coarse-grained description of cell polarity and discuss

how such a cell-size model can result in large range order of the PCP distribution. We also

discuss how a polarized tissue responds to various deformations such as shear flow.

4.3.1 Planar Polarity in the Vertex Model

i

j

σij σji

k

σjk

α β

A B

Proximal

Distal

Figure 4.6: Schematic of PCP proteins within the vertex model. (A) The level of proximal or

distal proteins on each side of a cell boundary between vertex i andj is denoted

by σα
ij andσβ

ji. (B) Example of PCP configuration for a randomly packed cellular

network.

The vertex model that we described in Chap. 2 could predict packing geometry and tissue

morphology, but contains no information about planar polarity of cells. To explain cell polarity

dynamics and tissue mechanics consistently and within one model we add a PCP subsystem
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to the vertex model. Here we coarse-grained our PCP model over different proteins that are

involved in planar polarization of cells, such that we only consider two type of interacting

proteins. We name these two interacting proteins as “proximal” and “distal” proteins. In this

coarse-grained description of the PCP system each bond between vertexi and j is assigned

two variables,σα
ij andσβ

ji, whereα andβ are indices of the two cells sharing the boundary

〈i, j〉 (see Fig. 4.6 A). These variables,σα
ij , describe the level of PCP proteins on either side of a

boundary and can take values between−1 and1. Positive values ofσα
ij correspond to high levels

of proximal proteins (shown by blue in Fig. 4.6 A and B) while negative values correspond to

the presence of distal proteins (shown by red in Fig. 4.6 A andB). Proximal and distal PCP

proteins form complexes in cells that interact differentlyacross cell boundaries and within the

cell. These complexes attract each other across cell boundaries, while each locally inhibits the

presence of the other within a cell.

These effects can be mimicked by an energy function for the PCP system

E({σα
ij}) = J1

∑

〈i,j〉

σα
ijσ

β
ji − J2

∑

〈i,j,k〉

σα
ijσ

α
jk, (4.1)

whereJ1 andJ2 are interaction parameters. The first term in Eq. 4.1 describes interaction of

PCP proteins across cell boundaries, separating cellsα andβ. The sum is taken over all cell

boundaries〈i, j〉. For positive values ofJ1 the energy is minimal when proximal and distal

proteins interact (proximal and distal proteins accumulate on different sides of a boundary).

The second term, with positiveJ2, describes inhibition of proximal and distal proteins within

cell α; the sum is over all pairs〈ijk〉 of adjacent bonds〈ij〉 and〈jk〉, implying that inhibition

can reach to neighboring bonds. In Fig. 4.6 B, we show an example of distribution of proximal

and distal proteins in a randomly packed network. We consider two additional constraints for

the variablesσα
ij :

(I) equal amounts of proximal and distal proteins are found in each cell.

(II) these amounts do not change with time.

These two constraints can be fulfilled using Lagrange multipliers. These constraints are mathe-

matically given by

(I) →
∑

〈i,j;α〉

σα
ij = 0

(II) →
∑

〈i,j;α〉

(σα
ij)

2 = C, (4.2)

whereC is a constant and the summation〈i, j; α〉 is over all bonds〈i, j〉 of cell α. Using these

additional constraints, we define the energy functionF ({σα
ij})

F ({σα
ij}) = E({σα

ij}) −
∑

α

λα
1

∑

〈i,j;α〉

σα
ij −

∑

α

λα
2

∑

〈i,j;α〉

((σα
ij)

2 − C), (4.3)
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whereλα
1 andλα

2 are the Lagrange multipliers and the summation〈i, j; α〉 is over all bonds〈i, j〉
of cell α. Using such an energy function, we can define a set of dynamic equations for the PCP

level of each cell bond
dσα

ij

dt
= −kp

∂F ({σα
ij})

∂σα
ij

, (4.4)

wherekp = 1/τJ1 is a kinetic coefficient andτ is the relaxation time for proximal and distal

proteins. To fulfill the additional constraint (that the PCPlevel of each bond is limited to

[−1, 1]), we introduce a new variableφα
ij , such thatσα

ij = cos(φα
ij/2). We can then write the

dynamic equations in Eq. 4.4 for the new variablesφα
ij.

4.3.2 Origin of Large-Scale Polarity

Before studying the dynamics of the PCP model, we need to define concepts to analyze the

pattern of PCP proteins in tissues. For a given distributionof proximal and distal proteins

inside each cell, we define a polarity vectorPα for that cell, whereP α
x andP α

y , thex andy

components of the vector are defined as

P x
α =

1

2
√

3

∫ 2π

0

σ(θ) cos θdθ

P y
α =

1

2
√

3

∫ 2π

0

σ(θ) sin θdθ. (4.5)

The PCP distribution,σ(θ), is the level of proximal and distal proteins on cell boundaries at

the angleθ with respect to thex axis. In our model, the PCP distribution is constant over each

boundary and we can do the integration in Eq. 4.5 analytically

P x
α =

1

2
√

3

∫ 2π

0

σ(θ) cos θdθ

=
1

2
√

3

∑

〈i,j〉

σα
ij

∫ θjk

θij

cos θdθ

=
1

2
√

3

∑

〈i,j〉

σα
ij(sin θjk − sin θij)

P y
α =

1

2
√

3

∑

〈i,j〉

σα
ij(cos θij − cos θjk), (4.6)

whereθij is the angle between vertexi and its neighborj. We define the orientation correlation

function

C(Rn) =
1

Nn

∫ Rn+∆R

Rn

dλ
∑

α,β

Pα · Pβ δ(|Rα − Rβ| − λ)

(4.7)
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Figure 4.7: Large-scale polarity. (A) Network of hexagonal packing of36 cells with a ran-

domly distributed proximal and distal proteins. The arrowsshow the direction from

the proximal to the distal sides of cells. (B) Equilibrated PCP configuration of A.

(C) Spatial correlation function of cell polarity,C(Rn), for the networks shown in

A and B. (D) Randomly distributed PCP configuration for a network of 400 cells

in hexagonal packing. For plotting purpose, we only show thepolarity vector of

cells. (E) Equilibrated PCP configuration of D, in which few defects remain in the

network after the equilibration. (F) The correlation function of cell polarity for the

networks shown in D and E.

with the normalization factor

Nn =

∫ Rn+∆R

Rn

dλ
∑

α,β

δ(|Rα − Rβ| − λ). (4.8)

We bin cells according to their center-center distance andRn = n∆R denotes bin boundaries

and∆R is bin size.Rα andRβ indicate the position of the center of cellsα andβ, respectively,

and the sum is over all pairs of cells in the network. In the following sections we choose bin

size∆R as the average cell diameter in the tissue.

To study the behavior of the PCP model described in Sec. 4.3.1, we solve numerically the

dynamic equations for the PCP variables,{σα
ij}, for a hexagonal network packing. We use a

fourth-order Runge-Kutta method to solve the dynamic equations given by Eq. 4.3, with in-

teraction parametersJ1/J2 = 2 and relaxation timeτ = 1. We use a random distribution of

proximal and distal proteins as our initial PCP configuration. For small lattices, the PCP system
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equilibrated toward a state where the polarity arrows of thecells point in the same direction and

long range order appears in the network. Since there is no preferred direction for the polarity of

the network, the final direction of the polarity arrows is random and pointing in one of the six-

fold symmetric directions specified by the hexagonal network. In Figs. 4.7 A and B we show

an example of initial and equilibrated states for a lattice of 36 cells, respectively. In Fig. 4.7

C we plot the correlation functionC(Rn) for the initial and equilibrated pattern of PCP . For

the initial PCP pattern (chosen randomly) the correlation function is almost zero, while for the

equilibrated state the correlation function reaches its maximum.

During equilibration of the PCP system for larger networks polarity defects appear in the

network that are stable for long time scales; the system is trapped in a local minimum, which

requires large fluctuations to pass the barrier towards the global minimum. These defects de-

stroy the long range order in the system. In Figs. 4.7 D and E, we show an example of initial and

long time equilibrated PCP system for a hexagonally packed network of400 cells, respectively

(to show defects in the network more clearly, we only show thepolarity arrows of cells and not

cell boundaries). We also plot the correlation functionC(Rn) for the initial and equilibrated

PCP system in Fig. 4.7 F. The correlation is high for small distances, while it decreases over

large distances due to the presence of defects.
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Figure 4.8: Large-scale PCP order in growing tissues. (A) Part of a growntissue in presence

of PCP proteins. Arrow indicate the direction of polarity ofcells. (B) Small portion

of the tissue in (A). (C) Correlation function of cell polarity for a growing network

as a function of cell-cell distance normalized to bin size,Rn/∆R, for three stages

of tissue growth. The total number of cells,NC , is indicated.

Thus far we cannot generate polarized tissues of arbitrary size starting with a random dis-

tribution of PCP proteins and relaxing the system toward theminimum. The fact that the PCP

system in networks with a small number of cells relaxes spontaneously to its global minimum
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suggests that we can add one more cell to this small polar network by cell division and then

relax the new PCP configuration, while maintains long-rangeorder. Even if the polarity of the

new cell is different from the global polarity of the tissue,due to neighbor interactions they

will align their polarity with the global direction of the tissue polarity. Repeating this process,

we can generate arbitrary large polarized tissues. In Fig. 4.8 A, we show an example of such

a polarized grown tissue. In Fig. 4.8 B, we show a smaller section of the network together

with distribution of proximal and distal proteins on each bond. We plot the correlation func-

tion C(Rn) for different cell numberNC for a growing tissue in Fig. 4.8 C. For increasing cell

number,NC , the shape of the correlation function remains similar and qualitatively converges

to one, indicating that the polarity is essentially preserved during growth.

4.3.3 Reorientation of Polarity by Shear
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Figure 4.9: Polarity reorientation due to shear flow. (A)-(C) Three timepoints of shear flow

of a polarized network. (A) is the initial polarity configuration. Vertices located

on the top blue boundary are fixed and vertices laying on the lower red boundary

move to the left with constant velocity. Due to the shear flow,polarity vector of

cells reorients towards the flow direction. (D) Average angle of polarity vector of

cells over thex direction as a function of normalizedy coordinate for simulations

shown in A and C.

In Sec. 4.2.2, we proposed a method to generate shear flow in the vertex model. Later, in

Sec. 4.3.2 we proposed a mechanism to generate long range order of PCP pattern by growing

a small polar network using repeated cell division. We now wonder how a polarized tissue

behaves under shear flow. To simulate shear flow of these polarnetworks, we should consider

separation of time scales for the PCP relaxation and the cellshape relaxation. Cell shape relax-

ation happens at about several minutes, while PCP relaxation time is about several hours; here

we assume that cell shape relaxes instantaneously due to local perturbations compared to PCP
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relaxation. Therefore for a time step∆t, we solve the dynamic equations for the PCP variables

and then impose a shear step as described in Sec. 4.2.2 while the time is not changed during the

later step.

In Fig. 4.9 A-C, we show part of the network for three time points of tissue flow, where the

polarity of cells is indicated by arrows. Here, we only show cells whose centers are located

above the middle line. Vertices lying on the upper blue boundary are fixed and vertices locating

on the lower red boundary move to the left with a constant velocity. Note that Fig. 4.9 A

represents the initial condition att = 0. Also note that we have imposed periodic boundary

conditions for the PCP variables in bothx andy directions. Due to the shear flow, the polarity

vector of cells reorient, while the global polarity order ispreserved. In Fig. 4.9 D, we show the

average of the polarity angleθ with respect to thex direction, as a function of the normalizedy

coordinate,y/Ly. The polarity of those cells that are close to the boundariesat (y/Ly = 0.5 and

1) is affected strongly by the boundary conditions and dose not reorient effectively due to the

flow. However, for the cells located between these two boundaries, the polarity vectors converge

to a well-defined steady sate value. We conclude that shear flow can reorient the polarity vector

of cells to a specific orientation with respect to the shear direction.

4.3.4 Hydrodynamic Description of Tissue Polarity

The fact that the polarity vector of cells reorient during shear flow of the network and reaches

a steady state value, suggests that we can use a multi-scale approach and describe the dynam-

ics of polarity order for larger scales. This behavior of thePCP model in shear flow, is well

known in liquid crystal physics asnematodynamics. A nematic flow is very similar to normal

liquid flow with a difference that the orientational motion of the molecules are coupled to their

translational motions. Here we consider two mechanisms that can change the orientation of

nematic molecules during flow: vorticity and shear. Vorticity can clearly rotate the orientation

of the molecules, however, the influence of shear component of the flow on orientation of the

molecules is less obvious. This later effect of flow on the molecular orientation is characterized

in liquid crystal physics by a phenomenological coefficientν that couples the orientation of

molecules with shear [76].

Here, we develop a simple model to describe polarity reorientation of cells in shear flow. The

dynamics of the polarity vector of a cell,p, is given by

∂tpα = −νvαβpβ − ωαβpβ, (4.9)

wherevαβ = (∂αvβ + ∂βvα)/2 is the strain rate tensor andωαβ = (∂αvβ − ∂βvα)/2 is the

vorticity of the velocity fieldv. We sum over repeating indices. For|ν| > 1, there is a critical

angleθ0 between the velocity direction and the polarity direction of cells. This angle is given by

cos(2θ0) = 1/ν. Thus far from the boundaries, the polarity vector of cells tend to lie precisely
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at this angle. In the vicinity of the boundaries, since the polarity vectors of cells must adjust

to the boundary conditions, their orientation changes. For|ν| < 1, the polarity vector of cells

are very strongly deformed. We found in Sec. 4.3.3, that the steady state angle of the polarity

vector isθ0 ∼ π/6, which implies that theν ∼ 2.

4.4 Summary

There are many developmental processes that affect tissue shape and morphology in the absence

of growth. Two examples of such processes have been studied in this chapter: convergent-

extension and hexagonal repacking. Convergent-extensionis mostly studied in embryos, such

as the embryo of the fruit flyDrosophila. During convergent-extension the shape of the tis-

sue changes dramatically; it narrows in one direction and expands in the other direction by

a factor of about two. This process is governed internally and there is no external force on

the boundaries of the tissue. In this chapter, we proposed two mechanisms that can generate

convergent-extension. In the first mechanism, we impose T1 transitions in the tissue; a ran-

domly selected cell boundary is forced to shrink continuously to a four-fold vertex and expand

in the opposite direction. We found that the shear rate of thetissue depends on the orientation

of cell bonds that go under T1 transitions. For the situationthat selected bonds are randomly

oriented, the shear rate is zero, however, for the case that only bonds with certain orientation

are selected for T1 transitions, the shear rate is positive.In the second mechanism, we study

how cell division without growth generates internal shear.This process is different from what

described in Sec. 3.1; the preferred area of the diving cell dose not increase before division and

the two daughter cells will have half of the preferred area ofthe mother cell. After one round

of cell division without growth, the total area of the tissueremains unchanged. We show that,

similar to the previous case, oriented cell division without growth generates strong convergent-

extension and also affect the packing geometry of the network: the percentage of hexagons

increases to∼ 60% during this process.

During development of theDrosophila wing, the packing geometry of the tissue changes dra-

matically. The percentage of hexagons in the tissue increases to∼ 80%. Here, we studied two

mechanisms that can change the hexagonal packing of cells significantly. The first mechanism

is based on annealing of the grown tissue by changing adhesion on different bonds stochas-

tically. This can result in fluctuation of cell boundaries. For those networks with hexagonal

ground state, these fluctuations are biased by the energy minimization toward the hexagonal

packing. The percentage of hexagons increases during this process by a factor of two. We also

studied how the packing geometry of the tissue changes during shear flow. We impose shear

flow in the vertex model by selecting a set of vertices that lieone a line and displace them with

constant velocity while relaxing the other vertices in the network. Here, we use no-slip bound-
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ary condition which is different from the boundary conditions used for the growth algorithm.

This generates a shear flow with a linear velocity profile thatis maximum in the center. The

percentage of hexagons increases during this process to∼ 70%.

It is proven experimentally that both convergent-extension and hexagonal repacking of tis-

sues, require organization of a set of molecules that assemble asymmetrically in the cells. Cells

then become polar in the plane of the tissue due to this asymmetric distribution of molecules,

and the polarity of each cell is also aligned with a global direction in the tissue. In this chapter,

we developed a theory for the planar cell polarity which includes two interacting molecules.

We introduce an energy function to mimic their interactions, which has two terms: The first

term describes preferential sorting of these molecules in the cells, and the second term mimics

their interactions across the cell boundaries. We showed that starting with a small network and

random distribution of these molecules, they assemble suchthat global order appears in the

tissue, however, for larger networks defects of cell polarity appear. We introduced a method to

generate long range order in arbitrary large networks usingthe growth algorithm described in

Sec. 3.1. We start with few polar cells and growth the networkby repeated cell division. The

initial order preserves during growth.

We then study how these polar networks behave under shear flow. We found that the polarity

vector of cells reorients, while the general global order ispreserved. The angle of the polarity

vectors converges to a well-defined steady state value. Thissuggests that our PCP system to-

gether with the vertex model behaves similar to a liquid crystal under shear flow. We introduced

a general coarse-grained model for the polarity of cells which is governed by two mechanisms:

vorticity and shear. Although vorticity can reorient polarity vector of cells, the shear might

influence the orientation of polarity vectors differently.We introduce a phenomenological coef-

ficient describing the coupling between shear and orientation of the polarity vector of cells and

give a quantification.





5 Compartment Boundaries:
Interfaces in Epithelia

A B

Figure 5.1: Anterior-Posterior compartment boundary. (A) Large scaleimage of the wing disc

marked for engrailed-lacZ reporter activity (red) to identify the posterior compart-

ment. Anterior compartment is shown to the left. (B) Small section of the wing disc

near the anterior-posterior compartment boundary. The compartment boundary is

straight on both small and large scales (Provided by K. Landsber).

As we discussed in Sec. 1.4, the wing disc of the fruit flyDrosophila is subdivided into

anterior and posterior compartments. Cells in these compartments remain unmixed during de-

velopment and are separated by a sharp and straight boundary. As shown in Fig 5.1 A and B,

the compartment boundary is straight on both the large-scale and also on the scale of individual

cells. Signals produce by cells at the compartment boundaries can result in the local expression

of secreted proteins that organize, at long-range, growth and patterning of tissues. Sharp and

straight interfaces between compartments are crucial for stabilizing the position of such orga-

nizers, and therefore for the precise regulation of tissue growth. Maintaining these boundaries

in proliferating tissues requires mechanisms to counteract cell rearrangements caused by cell

division; however, the details of such mechanisms remain unclear. In this chapter, we will study
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a mechanism that can generate sharp interfaces between two cell populations in proliferating

tissues. We will show that increased bond tension along the compartment boundary is sufficient

to prevent mixing of the two cell populations. We will show that this mechanism is robust in

establishment and maintenance of a sharp boundary on the cell-size length scale, however the

overall large-scale shape of the boundary is not well controlled. We will quantify the shape

and morphology of the boundary for difference tensions along the compartment boundary and

compare them in detail.

5.1 Two-Population Tissue Growth

N=36 N=1152 N=4608

Figure 5.2: Two-population tissue growth. We show three time points of agrowth simula-

tion for a two-population cell network. The initial networkconsists of36 cells in

hexagonal packing divided into two equal compartments, which we label blue for

anterior (A) cells and red for posterior (P) cells . As the tissue grows, the two cell

populations mix with each other. For plotting purpose each panel is rescaled.

To study compartment boundaries in proliferating tissues,as shown in Fig. 5.2, we choose to

label cell populations in our simulations of the vertex model. We will refer to the two resulting

populations as ‘A’ and ‘P’, and to their dividing interface as “compartment boundary”. When

a cell divides in this framework, the two daughter cells attain the same linage (A or P) as the

mother cell. For simplicity, we assign indices to cells according to their distance from the

compartment boundary. Cells that share a boundary with the other population are named A1

and P1 and cells that share a boundary with A1 (or P1) cells are named A2 (or P2).

We can imagine a situation where these two cell populations have different cell mechanics

and cell adhesion, and where the tension along the compartment boundary might be different

from the tension on the other bonds. Here, we simulate two-population tissue growth for the

situation that the tension along the compartment boundary,ΛAP , is the same as the tension on
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other bonds in the tissue (ΛAP = Λ) and two cell types have the same parameter values. Starting

with 36 cells in hexagonal packing (18 cells of each type) we grow the tissue up to5, 000 cells.

We use parameter values corresponding to case I in Sec. 3.3(Λ̄ = 0.12, Γ̄ = 0.04). In Fig. 5.2,

we show three time points (NC = 36, NC = 1152 andNC = 4608). For this situation the

two growing cell populations progressively intermingle asthey grow in size, and the interface

becomes more and more irregular. Even islands of cell type can be found (surrounded by the

other cell type). Note that due to periodic boundary conditions we must have two compartment

boundaries in our simulations. These two boundaries are always identical in our simulations

and the tension on both boundaries are the same.

5.2 Differential Adhesion in Two-Population Growth

A B

Figure 5.3: Two-population tissue growth such that cell mechanics is different for the two com-

partments. (A) The parameter values in the anterior compartment (blue) are (̄Λ =

−0.12, Γ̄ = 0.08) and in the posterior compartment are (Λ̄ = 0.12, Γ̄ = 0.04). (B)

The parameter values in the anterior compartment (blue) are(Λ̄ = 0.24, Γ̄ = 0.02)

and the parameter values in the posterior compartment is similar the posterior com-

partment in A. In both A and B, the tension along the compartment boundary is the

sum of the tension in the A and P compartments.

It is proposed in early1960s [77]-[79], by Steinberg that difference in cell adhesion between

two cell populations can result in cell sorting. This idea islater generalized by Dahmann and

Basler [80] to explain formation of compartment boundariesin theDrosophila wing disc. This

differential adhesion hypothesis might refer to differences in bond tension, as well as differ-

ences in perimeter contractility of cells. We do not knowa priori if cells in the anterior and
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posterior compartments of the wing disc have similar adhesion or contractility. We therefore

simulate tissue growth for situations that the two compartments have different cell adhesion

and perimeter contractility. In these simulations, all cells belonging to the A compartment have

similar line tension,̄Λ and perimeter contractility,̄Γ, which are different from the parameter

values of cells in the P compartment. Here for simplicity, weassume that the tension along the

compartment boundary is the sum of the tensions in the A and P compartments.

Among many possibilities discussed in [98], we show two cases. In both cases, we as-

sume that the line tension and perimeter contractility in the P compartment (red compartment in

Fig. 5.3 A and B), are the same as case I discussed in 3.3 (Λ̄ = 0.12, Γ̄ = 0.04). In Fig. 5.3 A

and B, we show simulations of two-population tissue growth such that the parameter values in

the anterior compartment are (Λ̄ = −0.12, Γ̄ = 0.08) and (̄Λ = 0.24, Γ̄ = 0.02), respectively.

In both cases, differences in adhesion and contractility ofcells do not result in formation of a

sharp boundary between these two populations. Even for the second case, island of one type

forms and cell sorting neither in small-length scales nor inlarge-length scales emerges in these

simulations. Based on these two examples and more detailed studies in [98], we conclude that

although differential adhesion between two cell populations can result in cell sorting in some

situations, in our simulations of two-population tissue growth, this mechanism can not prevent

cell intermingling.

5.3 Increased Interfacial Tension Results in Cell

Sorting

As we showed in Sec. 5.1, for two-population tissue growth where all cells are identical and

the tension on the compartment boundary is the same as the other bonds in the tissue, these

two populations (spatially separated at the beginning of growth) mix together due to cell re-

arrangements. We also discussed in Sec. 5.2 situations thatthe two populations have different

mechanical properties such as different adhesion and perimeter contractility. This also results in

intermingling of cells during growth. Here we introduce a simple mechanism that results in cell

sorting during two-population tissue growth. Similar to Sec. 5.1, we assume that the anterior

and posterior cells have similar mechanical properties, while the tension along the compartment

boundary is higher than the other bonds. This tension is characterized byλ = ΛAP/Λ, which

is the relative tension along the compartment boundary withrespect to the other bonds in the

tissue.

We start from initial conditions with two populations (18 cells of each type) in hexagonal

packing and grow the tissue for a few generations, varyingλ from two to five. In Fig. 5.4,

we show the grown networks for different values ofλ. Increasing the tension along the com-

partment boundary by a factor of two is sufficient to establish and maintain a boundary be-
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Figure 5.4: Compartment boundaries in growing tissues. Grown tissues of 5, 000 cells where

the A and P compartments have the same cell mechanics and linetension (̄Λ =

0.12, Γ̄ = 0.04). Then tension along the compartment boundary is increasedfor

each case (λ = ΛAP/Λ). Increased line tension along the compartment boundary

can result in cell sorting as the boundary becomes straighter for higher tensions

(largerλ). The boundary is colored in white.

tween two cell populations. However, increasing the tension along the compartment boundary

to higher values can generate straighter boundary. For the caseλ = 5, this generates almost

straight boundary, however, the boundary fluctuates on large-scales. Note that decreasing the

tension along the compartment boundary clearly results in cell mixing; the two cell populations

tend to expand their region of contact. Also note that increasing the tension along the com-

partment boundary has effect on cell morphology near the boundary; the angle between two

adjacent compartment cell boundaries is higher than the angle between two adjacent A/A or

P/P cell boundaries, which is120o. In [98], we studied two-population growth with increased

tension along the compartment boundary for other choices ofparameter values (Λ̄, Γ̄). We

found that for the same increment in the tension along the compartment boundary, the boundary

is straighter for situations that the shear modulus of the network is lower. We conclude that in-
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creased tension along the compartment boundary is a robust mechanism that can generate sharp

and straight boundaries.

5.4 Shape and Roughness of Interfaces in Developing

Tissues
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Figure 5.5: (A) Schematic of quantification of roughness for the compartment boundaries.

The compartment boundary is divided in equal intervals∆L. Regions of overhangs

(red part) in the compartment boundary are replaced by a single bond bypassing the

overhang (dotted line). (B) Roughness of the compartment boundaries. Normalized

roughness of the compartment boundary to the average bond length,w/〈Lij〉, as a

function of normalize distanceL/〈Lij〉 for different tensions along the compart-

ment boundary,λ = λAP /Λ.

We introduced in the previous section, a mechanism that can generate interfaces in two-

population tissue growth. To study the shape and morphologyof these boundaries, we quantified

the roughness of the compartment boundary. We measure the roughness of an interface by the

variancew2 as a function of the distanceL along the interface axis over which the variance is

determined. The shape of the interface is defined as a series of vertex positionsRi = (xi, yi),

with i = 0, ..., M , along the compartment boundary that are connected by straight bonds. The

axisR0RM of the compartment boundary is the line connecting the end pointsR0 andRM . The

piecewise linear boundary line is discretized in equal intervals∆L along the axisR0RM . This

defines the orthogonal distanceshk from the axis at the discretization points. Herek = 1 · · ·N0

whereN0 is the number of discretization points. For averaging length L = N∆L, the height
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variance is

w2 =
1

N0 − N + 1

N0−N+1
∑

k=1

( 1

N

N−1
∑

i=0

(hk+i − hk)
2
)

, (5.1)

wherehk = (
∑N−1

i=0 hk+i)/N is the average height at the segment of lengthL starting with

discretization pointk. The value ofw as a function ofL characterizes interface roughness.

Note that for situations with an overhang in the shape of the compartment boundary, we replace

the overhang by a single bond bypassing the overhang. In Fig.5.5 A, we plot the roughness

of the compartment boundary for the mechanism described in Sec. 5.3 in a log-log plot for

different values of the relative tension, along the compartment boundary,λ = ΛAP/Λ. Our

data suggests that the roughness scales as,w = w0L
η, whereη is the roughness exponent. For

λ ≥ 2, the roughness exponent is similar for different values of tension along the compartment

boundary (η ∼ 0.7), however,w0 is different. For increasing tensionλ, w0 decreases, which

indicates that the boundary becomes straighter.

5.5 Summary

In this chapter we introduce a mechanism that can prevent cell mixing in two-population tissue

growth. For the condition that all cells are mechanically identical, stochastic cell division results

in mixing of these two populations. However, if the tension along the compartment boundary

increases with respect to the other bonds in the tissue, cells sort out during growth and a sharp

interface forms. Higher tension along the compartment boundary results in the formation of a

straighter boundary. We characterized the shape of the compartment boundaries by measuring

the roughness of the boundary. We observed that the roughness scales as power-law with respect

to the length of segments of the compartment boundary. Although this mechanism can generate

straight compartment boundary at small-length scales, on large scales the shape of the bound-

ary fluctuates. This suggest that other mechanisms are involving in shaping the compartment

boundaries in developing tissues.





6 Comparison Between Theory and
Experiment

In the previous chapters we have developed a vertex model to study cell mechanics and

cell adhesion. We introduced a growth algorithm and we showed that repeated cell division

generates a specific pattern of cells. The stationary pattern generated by this method depends

on the biophysical parameters of the model. We introduced two sets of numbers to characterize

these patterns. These numbers, which count the frequency and area variability of different

classes of polygons, show significant differences for simulations with different parameters̄Λ

andΓ̄. This indicates that comparing these numbers with ones measured in experiments may

help us to quantify biophysical parameters of tissues usingthe methods introduced in App. E to

quantify cell packing geometries in experimental images.

In this chapter we will compare experiments with our theoretical results. We first will com-

pare cell packing between experiment and simulations and wewill determine a parameter re-

gion in our phase diagram for which the packing geometry of simulated tissues is similar to

ones observed in theDrosophila wing disc. We then will compare the area variability of cells

in experiment and theory, showing that there is a smaller region, which has an overlap with

the packing region, such that the cell morphology is similarin experiments and simulations.

Finally, we will compare displacements of vertices due to laser ablation of cell boundaries, and

we will show that the agreement between theory and experiments is limited to a very small

region in the phase diagram (which has an overlap with the other two regions). Case I, which is

discussed in previous chapters, lies in the overlap of all regions.

Having developed such a quantitative method to measure cellmechanics in tissues, we will

test our hypothesis about increased tension along the compartment boundary. We will first

quantify cell mechanics in the anterior and posterior compartments of the wing disc. We then

will quantify the tension along the anterior-posterior compartment boundary, and show that

the tension along the boundary is greater by a factor of four than the other boundaries in the

network. We will finally simulate clone cells in proliferating tissues and show that, similar to

the experiments, the cells will remain cohesive during growth.
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6.1 Cell Shape and Cell Packing
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Figure 6.1: Comparison of cell packing and tissue morphology between theory and experi-

mental measurements of the wing disc. (A), (B) and (C) Red bars are stationary

distributions of neighbor numbersPn. The green bars in each panel indicate the ex-

perimentally determined distribution of neighbor numbersin the wing disc. (D), (E)

and (F) Average areas of different polygon classes normalized to the average area

of cells in the network,〈An〉/〈A〉, for cases I, II, and III (red lines). These lines are

compared to the experimentally determined values for the wing disc (green lines).

As we discussed in Sec. 3.2, repeated cell division generates disorder in cell packing that

leads to the formation of specific patterns of cells. We showed in Sec. 3.3 that these patterns

are significantly different for different sets of biophysical parameters; namely line tension and

perimeter contractility. We simulate tissue growth for three choices of̄Λ and Γ̄ (case I:Λ̄ =

0.12, Γ̄ = 0.04, case II:Λ̄ = 0, Γ̄ = 0.1 and case III:̄Λ = −0.85, Γ̄ = 0.1). Each pattern is

then characterized by two set of numbers:Pn, the fraction ofn-sided cells and〈An〉/〈A〉, the

average area ofn-sided cells normalized to the average area of all cells. Cell shape and packing

geometry are different in these three cases and the quantified characteristic numbers show the

differences clearly. This suggests that by comparing the values ofPn and〈An〉/〈A〉 for each

case with values measured in an epithelia (such as the wing disc of the fruit flyDrosophila),

we can estimate biophysical parameters of the tissue. To quantitatively describe cell packing

geometry in the wing disc, we analyzed1738 cells from different confocal images of living

wing discs expressing E-cadherin-GFP by using an automatedimage-processing algorithm to

outline the network of apical junctions. From this network,we identify individual cells, cell
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boundaries, and three and four-fold vertices. We define a four-fold vertex as a region of contact

between four cells, the size of which does not exceed the average width of cell boundaries in the

image. This cutoff corresponds to2 pixels – approximately20% of the average cell-boundary

length. We use this information to determine the fraction ofcells with different numbers of

neighbors. In Fig. 6.1 A-C these data are shown by green bars alongside the values obtained

by simulations. Comparing the experimental values for the wing disc ofDrosophila and the

simulation values for cases I-III, we conclude that case I and III have almost the same packing

geometry as the wing disc, but that case II has a clearly different distribution ofn-sided cells

compared to experiment. In case II, the frequency of six-sided cells is half of the observed one

in experiments, and the frequency of three-sided and cells with nine or more neighbors is much

higher than experimental measurements.

We also calculate the average area ofn-sided cells, normalized to the average area of all

cells for the wing disc epithelium. In the wing disc, averagecell areas increase with neighbor

number (see Fig. 6.1 D-F, green lines). The average area of hexagonal cells is slightly larger

than the average area of cells in the epithelium (108%). The average area of five-sided cells

is 82% of the average area of all cells and that of seven sided cells is 136%. Area variation,

as a simple measure of tissue morphology, shows clear differences in experiment from those

obtained by simulations in cases II and III. In case III, cellareas apparently do not correlate at

all with neighbor number, unlike those of the real tissue. Incase II the average areas vary more

strongly with side number than observed in experiment. Of these three cases, case I produces

morphologies and packing geometries closest to that of the real tissue.

We now wonder which parameter regions in our phase diagram generate packing geometry

and tissue morphologies similar to the wing disc. To do this,we first perform growth sim-

ulations for different sets of parameters (black dots in Fig. 6.2) to generate stable network

configurations. For each pair of parameter values we calculate the converged values of the frac-

tion Pn for different class of polygons, as well as the normalized area variation〈An〉/〈A〉. We

quantify the differences between theoretical and experimental results by the quantities∆P and

∆A. The difference between the experimentally observed neighbor number distributionP exp
n

and the one obtained by simulationsP sim
n is characterized by the sum of the squared deviations,

∆P =
∑∞

n=3(P
sim
n − P exp

n )2. The red region in Fig. 6.2 indicates those parameter valuesfor

which∆P < 0.004 ≃ 0.1(∆max −∆min), which∆min and∆max denote the minimal and max-

imal values of∆P found in our simulations. Similarly, the difference between experimentally

determined average areas ofn-sided cells and those obtained in simulations〈Asim
n 〉 is quantified

by ∆A =
∑∞

n=3(〈Asim
n 〉/〈Asim〉 − 〈Aexp

n 〉/〈Aexp〉)2. The blue region in Fig. 6.2 corresponds to

∆A < 0.07. Those parameter values that lie in the overlap of the blue and red regions in Fig. 6.2

generate similar tissue morphology and cell packing to the wing disc of the fruit flyDrosophila.
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Figure 6.2: Parameter regions matching observed tissue properties. Properties of cell packing

for different values of the parametersΛ andΓ (line tension and contractility). Simu-

lations of tissue growth were performed for different parameter values (black dots).

In the red outlined region, the distributionPn of n-sided cells in simulations is sim-

ilar to the one observed in the wing disk ofDrosophila. In the blue outlined region,

the relative areas ofn-sided cells match those observed in experiments. Comparing

simulations of laser ablation with experiments, we find quantitative agreement in

the green outlined region. The yellow dot indicates case I.

6.2 Displacements Upon Laser Ablation

To investigate the interplay of forces acting at the junctional network of epithelial cells in the

wing disc of Drosophila, we perturb the stable network by ablating a section of individual

cell boundaries with a UV laser beam (focused on a spot of1.3 µm diameter in the plane

of epithelial junctions). A single cell-boundary was cut, and the resulting movements of the

network, visualized with E-cadherin-GFP, were observed over several minutes (see Fig. 6.3

A). In response to the cut, E-cadherin-GFP fluorescence disappeared from the center of the

cut cell boundary, and the vertices at both ends moved from their initial positions, increasing

their distance from the cut point. Subsequently, the vertices relaxed to new stable positions.

The distance between the vertices at the ends of the cut-bondincreased asd − d0 = d1(1 −
exp(−t/τ)) for whichd0 +d1 is the final distance andd0 is the initial distance between vertices.

In Fig. 6.3 B, the change in distanced − d0 as a function of time is shown (average over20
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Figure 6.3: Laser ablation of cell boundaries in the wing disc. (A) Single confocal images of a

GFP-E-cadherin-expressing wing disc during a laser-ablation experiment. The first

image shows the epithelial network before the cut, and the second one shows the

same network120 s after the cut. The red cross in the first image of (A) indicates

site of ablation. (B) Change in distanced − d0 between vertices at the ends of the

ablated bond as a function of time, averaged over20 experiments. (C) A sequence

of cropped images of the ablated region, separated by20 s. The time in seconds is

indicated; scale bars represent 5µm.

experiments). The relaxation timeτ varied between13 and94 s for different experiments. In

Fig. 6.3 C, a sequence of cropped images near the ablation region is shown to illustrate how the

distance between vertices increases after ablation.

We discussed in Sec. 3.6 that, due to removal of a cell boundary, vertices surrounding the

cut-bond move in an anisotropic manner. To quantify the anisotropy of the displacements, we

measure the normalized combined area changes and normalized combined perimeter changes

of the two cells sharing the cut-bond. Due to uncertainty in experiment about the effect of laser

ablation on the contractility of the two cells sharing the cut-bond, we introduced two scenarios

to mimic laser ablation in simulations. In scenario I, we assume that laser ablation only results

in removal of the cut-bond and the contractility of the cut cells remains unaffected. In scenario

II, we assume both the tension of the cut-bond and the perimeter contractility of the cells sharing

the cut-bond is affected by the ablation. We also discussed in Sec. 6.1 that for parameter values

corresponding to case I the growth algorithm generates cellpacking geometries similar to the

wing disc epithelium. We ask wether the parameter values corresponding to case I can generate

the same type of movements as ones observed in experiment andwhich scenario can mimic best

the ablation experiment. We quantify the combined area changes and the combined perimeter

changes of the cut cells in experiments and plot them in Fig 6.4 as a function of normalized
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Figure 6.4: (A and C) Changes in the combined areas∆Acut of cells adjacent to an ablated

bond, relative to twice the average cell area2〈A〉, are plotted as a function of the

relative increase in the distance between the vertices of the cut-bond∆ℓcut/〈Lij〉.
(B and D) Relative change of the perimeter∆Lcut/2〈L〉 of the cells adjacent to

the cut-bond;〈L〉 is the average cell perimeter. In (A)-(D), red dots show results

from 20 experiments and gray dots show the results of simulations with different

parameter values for laser ablation.

bond length changes (red dots) together with the data for case I (gray dots) for two different

scenarios. It is evident that scenario II (which assumes both the tension in the cut boundary and

the contractility of the two cells adjacent to the cut-bond affected by ablation), can mimic the

experimentally observed anisotropic movements due to laser ablation.

We are wondering if the vertex model can reproduce not only the displacement of vertices

of the two cells sharing the cut-bond, but in general the displacement field of all vertices in

the tissue due to ablation of a cell boundary. To quantify thedisplacement of vertices in the

field of cells surrounding the cut site, we used a polar coordinate system in whichr denotes

the radial distance from the cut point andθ denotes the angle with respect to the orientation of

the cut boundary. The angle of the cut boundary thus corresponds toθ = 0 andπ. For each

vertex, we determined the radial and tangential componentsDr andDθ of the displacement
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vectorsD (see Fig 6.5 A). As shown in Fig 6.5 A, we group vertices with different colors

according to their normalized distance from the cut centerr̄ = r/〈Lij〉. We first measure the

displacementsDr andDθ of vertices before ablation (for0 < r̄ < 8) to quantify the level of

fluctuations and plot them in Fig. 6.5 B and Fig. D.1, respectively. We then quantify the position

of vertices before and after ablation when they relax to their new positions and determine the

displacementsDr andDθ. They are plotted in Fig. 6.5 C and Fig. D.1 (colors as in Fig. 6.5

A). The radial displacementDr depends on the angleθ relative to the orientation of the cut

boundary. Displacements are maximal for vertices lying along the cut-bond axis. The radial

displacementsDr of those vertices lying in a direction perpendicular to the cut boundary (i.e.,

nearθ = π/2 or 3π/2) were small and did not exceed background noise. Radial displacements

decreased quickly for increasing distancer from the cut-bond. At distances beyond six average

edge lengths, they only marginally exceeded the backgroundnoise (compare the top and bottom

panels in Fig. 6.5 C). Tangential displacementsDθ were smaller and decreased more quickly

with increasing distance from the cut site (see Fig. D.1).

We then simulate laser ablation using scenario II for parameter values corresponding to case

I, calculating radial displacements of vertices at different distances from the bond with respect

to the polar angleθ, and comparing them to observed displacements. Like the area and perime-

ter changes, the radial and tangential displacements of verticesDr andDθ in the surrounding

network were quantitatively reproduced by our simulations(compare Fig. 6.5 C and D; Fig. D.1

A and B). As in the experimental data, maxima ofDr occur at angles0 andπ, whereas maxima

of Dθ occur at3π/4 and7π/4 (Fig. 6.5 D; Fig. D.1 B). For radial displacements, the mag-

nitude of maximal average displacements, as well as their scatter, agreed quantitatively with

those found in experiments, decreasing by similar amounts over similar distances. For tangen-

tial displacements, agreement was also good. Note, however, that for smallr the average of the

amplitudes differs by a factor of two. More experimental data points would be necessary for

determining whether this difference is significant or not.

We showed in Sec. 3.6 that for the case that the parameters of the tissue are slightly different

from case I(Λ̄ = 0.12, Γ̄ = 0.02), the laser ablation simulations result in significantly different

values of∆Acut and∆Lcut. We conclude that the laser ablation simulation is very sensitive to

the physical parameters of the model. To study the range of parameter values in our phase space

that can generate the same type of movements due to laser ablation as ones observed in exper-

iment, we simulate laser ablation for all parameter values in Fig. 6.2. To compare the result

of simulations and experiment, we fit a straight line to the determined variation of normalized

area change∆Acut as a function of normalized bond-length increase∆lcut/〈Lij〉. We quantify

the difference that is between experiment and simulation by∆L; it is the absolute difference

between the slopes of the fit. For scenario I (see Fig. 3.8 A) that we only set to zero the line

tensionΛij of the cut boundary, there is no agreement between experiment and simulations for
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Figure 6.5: (A) Schematic representation of positions and displacements during a laser ablation experiment.

The direction of the cut boundary is indicated by a dashed black line. The position of a vertex

before ablation is described by its radial distancer from the cut point and its angleθ with respect

o the cut-bond orientation. The movement of the vertex from its initial position to its new position

after the cut is described by its displacement vectorD. This vector can be decomposed in radial

and tangential componentsDr andDθ. Vertices are grouped in concentric rings according to their

normalized distance from the cut pointr̄ = r/〈Lij〉 relative to the average bond length〈Lij〉 . (B)

Experimental radial displacement of vertices before laserablation. (C) Radial displacementsDr

of vertices normalized to the average bond length〈Lij〉 observed in20 laser ablation experiments

shown as a function ofθ. The colors correspond to the distance ranges. Black dots show the

average displacements determined by grouping vertices in bins of π/6 radians. (D) Normalized

radial displacements obtained in50 simulations of bond ablation with a network corresponding to

case I, scenario II.
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any (Λ, Γ). Removal of both line tension of the cut boundary and the contractility of adjacent

cells sharing the cut boundary is necessary for achieving quantitative agreement between simu-

lations and experiments (scenario II). The green region in Fig. 6.2 corresponds to∆L < 0.07,

with an additional constraint that average perimeter change is positive.

6.3 Morphology of Compartment Boundaries
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Figure 6.6: Laser ablation of compartment boundaries. (A) Images of E-Cadherin-GFP ex-

pressing wing discs before and after single cell bonds were ablated. Cells of the

posterior compartment are labeled by another marker (GFP-gpi under the control

of engrailed-GAL4) to distinguish from anterior cells. (B)Change in distance be-

tween vertices at the ends of ablated cell bonds (normalizedto the average cell bond

length in the tissue) ,(d − d0)/〈Lij〉, as a function of time for bonds between cells

of the population indicated. A1/A2 refers to cell bonds between A1 cells and their

anterior cell neighbors. Mean and standard error of the meanare shown. Number

of experiments were: A/P,n = 24; A/A, n = 24; P/P,n = 18; A1/A2, n = 16.

Quantification of tension along the anterior-posterior compartment boundary

We showed in Sec. 5.3 that increased tension along the compartment boundary can result in

establishment and maintenance of sharp interfaces betweentwo cell populations in growing tis-

sues. We also showed that using the laser ablation techniquewe can precisely quantify tensions

in the tissue. To test whether the tension on the anterior-posterior compartment boundary in the

wing disc is different from other bonds in the tissue, we performed laser ablation experiments
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for bonds along the compartment boundary. Single cell bondswere cut and the displacement of

vertices of neighboring cells, visualized by E-cadherin-GFP, were recorded over several min-

utes. The posterior compartment was visualized by expressing other proteins (GFP-gpi under

control of the engrailed gene using the GAL4/UAS system).

In Fig. 6.6 A, we show the network of cells before and after ablation for bonds that are shared

between A/A cells, P/P cells and A/P cells (bonds along the compartment boundary). We high-

light boundaries of the two cells sharing the cut-bond in white and the cut bond in red. For

A/A and P/P cuts, the displacements is anisotropic, howeverfor A/P cuts it generates stronger

anisotropic movements of the vertices surrounding the cut-bond. The displacements of the two

vertices of the cut-bond were analyzed. The rate and extent of vertex displacement was in-

distinguishable for ablation of bonds between A/A cells andP/P cells located away from the

anterior-posterior compartment boundary (see Fig. 6.6 B pink and blue lines). By contrast, ab-

lation of the bonds between adjacent anterior and posteriorcells gave rise to significantly larger

displacements (see Fig. 6.6 B, red lines). To test whether the increased line tension is localized

along the A/P compartment boundary or whether there exist a more complex pattern of tension

in the tissue, we performed laser ablation for boundaries between A1/A2 cells, shown in Fig. 6.6

B (green line). There is no significant difference between A1/A2 cuts and the normal A/A and

P/P cuts. These results indicate strongly that the anterior-posterior compartment boundary is

under more tension than normal bonds in the tissue, and that this higher tension is only present

along the compartment boundary.

We introduced a dimensionless parameterλ = ΛAP/Λ in Sec. 5.3 that is the ratio of the ten-

sion along the anterior-posterior compartment boundary tothe tension of all bonds in the tissue

(here bonds in the anterior and posterior compartments havethe same tension). To quantify the

value ofλ in experiment, we calculate the displacements of vertices surrounding the cut-bond

before and after ablation, as done in Sec. 6.2. We only consider those vertices with distances

from the cut site less than two times the average bond length(r̄ = r/〈Lij〉 ≤ 2). In Fig. 6.7

A, B and C, we plot the radial component of the displacement field normalized to the average

bond length in tissue (see Sec. 6.2 for details) as a functionof the angle with respect to the

cut-bond for A/A, A/P and P/P cuts, respectively (red dots; the average of the scatter is shown

by black dots). Laser cuts of the compartment boundaries clearly generate greater anisotropic

movements of the vertices surrounding the cut-bond. In Fig.6.7 D-F we show the normal-

ized radial displacement,Dr/〈Lij〉, for simulations of the A/P compartment boundary for three

cases:λ = 1, 4 and7, respectively. The caseλ = 1 is identical to A/A and P/P cuts in the

wing disc. Forλ = 7 the anisotropy of the movements is much stronger than that observed in

the wing disc. However,λ = 4 generates anisotropic movements in good agreement to move-

ments observed in ablation of the A/P compartment boundary in the wing disc, and we thus

conclude that the tension along the compartment boundary isincreased four times compared to
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Figure 6.7: Anisotropic displacement upon laser ablation for the compartment boundary. (A),

(B) and (C) Radial displacement of vertices due to laser ablation of cell bonds,

normalized to the average bond length,Dr/〈Lij〉, as a function of the angle with

respect to the cut-bond for bonds shared between two anterior cells, A/A, an ante-

rior and a posterior cells, A/P, and two posterior cells, P/P, respectively. (D), (E)

and (F) Radial displacement of vertices normalized to the average bond length in

laser ablation simulations of the compartment boundary forλ = ΛAP /Λ = 1, 4 and

7 as a function of the angle with respect to cut-bond. The blackdots indicate the

average. Only vertices that their distance from the cut siteis less than two times the

average bond length are plotted.
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the tension of other bonds in the tissue.
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Figure 6.8: Roughness of the compartment boundary. (A) Roughness of theanterior-posterior

compartment boundary for four different experiments. The average is shown in

black. (B) Comparison of the roughness of the compartment boundary between

experiment and simulation forλ = 4.

We now wonder if increased tension along the compartment boundary by a factor of four is

sufficient to generate an interface with the same morphologyas ones observed in experiments.

In Sec. 5.4, we introduced a method to quantify the roughnessand shape of compartment bound-

aries. We processed four wing discs and extract the shape of the anterior-posterior compartment

boundaries throughout the tissue. In Fig. 6.8 A, we show the width of the compartment bound-

ary normalized to the average bond length,w/〈Lij〉, as a function of the normalized length

along the boundary,L/〈Lij〉, for each wing disc. We show the average of the normalized width

for these four discs in black. The morphology of the anterior-posterior compartment boundary

is highly reproducible among these discs. In Fig. 6.8 B, we show the roughness of the compart-

ment boundary in simulations ofλ = 4 together with the average of the roughness of anterior-

posterior compartment boundary in theDrosophila wing disc. At small scales (the length of

few cell bonds), the roughness of the anterior-posterior compartment boundary is remarkably

similar to the roughness obtained in the simulations forλ = 4. However, for larger scales, the

anterior-posterior compartment boundary is more straighter than the simulated one forλ = 4;

even it is straighter than simulations ofλ = 7, where the tension along the compartment bound-

ary is increased by a factor of seven. Our results, then indicate that a four-fold increase in cell

bond tension along the compartment boundary, can largely account for the sorting of the cells

at the anterior-posterior compartment boundary and determines the small length-scale behav-

ior. Additional mechanisms might operate to improve the straightness of this boundary at large
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scales.

6.4 Cell Clones in Growing Tissues

Case I Case III

Figure 6.9: Example of clone cells in growing networks for case I and III.In case I, clone cells

remain contiguous during growth, in contrast to clone cellsin case III, where they

disperse and are invaded by unrelated cells.

A clone of cells is generated in biology by modifying a singlecell at an early stage of devel-

opment such that it expresses a certain fluorescent molecule, while all other cells in the tissue

are not able to produce this specific molecule. These molecules are not diffusible to other cells

and therefore they only transfer to daughter cells of a cell having this molecule, through cell

division. In the wing disc it is shown that clones of cells do not disperse from each other during

proliferation [89]-[90]. T1 transition is the most important mechanism that can disperse clone

cells. The fact that clone cells are not dispersed in the wild-type wing disc suggests that T1

transitions do not happen very frequently.

We now wonder if the parameter values that we find for case I (Sec. 3.3) can predict this

experimental observation. We also wonder if our model predicts disperse clones for case III,

where the model parameters are such that the network is liquid, and the rate of T1 transitions

is higher compared to case I. We perform growth simulations for cases I and III during which

we keep track of the identity of cells that originate from a specific cell in the initial hexagonal

network. We color these cells in Fig. 6.9 red. In simulationsof case I, few T1 transitions occur

as the network grows (37 transitions per100 cell divisions), and clones remain cohesive. In

contrast, in the case of a soft tissue (case III),146 T1 transitions occur per100 cell divisions,
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clones are invaded by unrelated cells (see Fig. 6.9). This suggests that the tendency for clones

to remain contiguous during proliferation is a consequenceof physical cellular properties.

6.5 Summary

We introduced in Sec. 3.3, three cases with distinct cell shape and packing geometries. These

cases correspond to different set of parameter values indicating that cell shape and packing ge-

ometry is determined by biophysical properties of cells. Inthis chapter, we used our theoretical

results to quantify tension and perimeter contractility ofcells in theDrosophila wing disc. We

compared the packing geometry of these three cases with the quantified packing of the wing

disc and we found that, case I (Λ̄ = 0.12, Γ̄ = 0.04) and case III (̄Λ = −0.85, Γ̄ = 0.1) gener-

ate similar packing geometries. However, comparing the area variability of polygon classes of

these cases with experiments, we found that only case I generates cellular morphologies sim-

ilar to the wing disc. We conclude that of these three cases, only case I generates similar cell

shape and packing geometries to the ones observed in the wingdisc. To study how cell shape

and packing geometry are influenced by the physical parameters of the model and find regions

of parameter values corresponding to the wing disc, we systematically change these parame-

ter values and performed growth simulations. For each set ofmodel parameters we compare

neighbor number distribution between experiment and simulation and we find that for those

parameter values lie in the red region in Fig. 6.2, the packing geometry is similar in simulations

and experiment. From this analysis , we conclude that the distribution of neighbor numbers

does depend on physical parameters, but there is an extendedregion that is consistent with ex-

periments. Comparing area variability in simulations and experiment, we find that only a subset

of parameter choices is consistent with the cell shapes and network morphologies observed in

the proliferating wing disc, which is outlined in blue in Fig. 6.2. Area variability constrains

parameter values corresponding to the wing disc more than neighbor number distribution.

We have performed laser-ablation experiments of cell boundaries to study the force bal-

ances described by our vertex model and to independently determine parameter values. Laser-

induced cutting of cell junctions causes the vertices at either end to move apart. This results

in anisotropic displacements of vertices in the surrounding network; displacements are maxi-

mal for those vertices lying along the axis of the cut bond. Comparing these experiments to

simulations shows that only a small range of parameters (green outlined region of Fig. 6.2),

which includes those of case I, is consistent with the observed movements. We conclude that

laser-ablation experiments constrain parameter values corresponding to the wing disc the most

among the other measurements. Moreover, we showed that our vertex model can well reproduce

displacements of all vertices in the tissue. We compared thedisplacement field in experiment

and simulations of case I and we found that our theoretical results match well with the exper-
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imental displacements. We also showed that simulations of laser ablation can be mimicked by

removing both the tension in the ablated boundary and the contractility of the two cells adjacent

to the cut boundary.

We introduced a mechanism in Chap. 5 to establish a compartment boundary between two

cell populations in growing tissue, by increasing the cell-bond tension along the compartment

boundary. We examined this hypothesis in experiment for theanterior-posterior compartment

boundary in the wing disc using laser ablation. We performedablation for bonds that are shared

between two anterior cells, two posterior cells as well as the bonds shared between an ante-

rior and posterior cells. We found that the tension is indeedincreased along the compartment

boundary. To quantify the tension along the compartment boundary, we compared the displace-

ment field of vertices surrounding the cut bond in experimentand simulations. We found that

ablation of the compartment boundary generates more anisotropic movements compared to the

ablation of other bonds, and we found that simulations with increased tension by a factor of

four along the compartment boundary can well reproduce the displacements observed in ex-

periment. We then compared the shape and morphology of the anterior-posterior compartment

boundary with the ones generated in simulations for four-fold increase tension along the com-

partment boundary. We found that on small scales, our model generates remarkably similar

morphologies to experiment, however, on larger length-scales the anterior-posterior compart-

ment boundary is straighter than our simulations. We conclude that other mechanisms are also

involved in establishment of the compartment boundary and influence largely the overall shape

of the boundary.





7 Conclusions and Outlook

Most species develop from a fertilized egg cell and during development, different organs with

variety of shape, size and functionality form. Mechanisms that control shape and morphology

of different organs are still not clear. For the past decades, biologist identified complex networks

of signaling molecules that are involved in development of tissues. However, the response of

cells to such a signaling network is only limited to processes such as cell division, cell death,

cell growth, cell migration and cell shape changes. These mechanisms are tightly controlled by

cell mechanics and cell adhesion, which requires careful study of cell mechanics in tissues.

In this thesis, we developed a framework to study cell mechanics and cell interactions in

two-dimensional tissues, so called epithelia. Epithelialcells are connected to each other via

adhesive molecules and establish a junctional adheren network near their apical region. In

order to describe such a network, we used a vertex model, in which each cell is approximated

by a polygon (vertices connected by straight bonds). Since cell shape relaxes much faster than

other developmental processes such as cell division and cell rearrangement, on time scales

shorter than cell division time scale and longer than cell-shape relaxation, the junctional network

is stable and the total force on each vertex is zero. The forces we consider here can in our

simple description be represented by an energy function. Our energy function has three terms

regarding area elasticity, perimeter contractility and cell-cell adhesion. We studied the ground

state properties of the model and we showed that depending onphysical parameters of the

model, there is a phase transition from solid hexagonal network to soft networks, where the

ground state is degenerate.

We introduced a cell division algorithm in our vertex model,based on quasistatic changes of

cell properties. This algorithm has two main steps: (i) A growing phase of the dividing cell that

the preferred area of the cell is doubled in a few steps while minimizing the energy after each

increment. (ii) By the end of this growing phase, we introduce a new boundary at a random

angle passing through the cell center. Repeating this process we can grow the tissue starting

from a small number of cells up to an arbitrary size. Cell packing generated by this algorithm are

characterized according to the fraction and average area ofdifferent polygon classes. We found

that depending on model parameters, distinct patterns of cells emerge with different packing

geometries and morphologies. We studied phase transitionsfor growing networks, which are
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far from equilibrium and we found that there is a transition from solid to soft networks, for

which the transition line falls on the line that we found for the ground state phase transition.

During growth, local stresses are induced in the network dueto cell division that result in cell

shape changes as well as junctional remodeling. We studied how the dynamics of junctional

remodeling in growing networks is affected by cell mechanics and we found that the rate of

junctional remodeling increases for decreasing line tension, while the rate of cell death increases

for increasing line tension.

We also studied the displacement field of vertices due to local perturbations such as removal

of cell boundaries. We showed that this results in anisotropic movement of vertices around the

removed boundary. Vertices in the direction of the cut bond moves outward, however, vertices

perpendicular to the cut bond moves slightly inward. We studied two scenarios for removal of

a cell boundary. In the first scenario, we only remove the tension of the boundary leaving the

two cells next to the boundary otherwise unaffected. In the second scenario, we remove both

the tension on the boundary and also the perimeter contractility of the two cells adjacent to

the cut boundary. We found that the second scenario generates greater anisotropy than the first

one. We also studied how mechanical parameters of the tissuemight affect the displacements

due to removal of a cell boundary. We found that slight changes in the parameter values of the

model generates significantly different displacements around the cut bond, which shows that

this analysis is quite sensitive to cell mechanics and cell adhesion in tissues and can be used as

a probe to quantify precisely forces in the tissues.

Many developmental processes occur in absence of cell division, that affect tissue shape

and morphology. Two examples of such processes have been studied in this thesis: convergent-

extension and hexagonal repacking. During convergent-extension the shape of the tissue changes

dramatically; it narrows in one direction and expands in theother direction by a factor of about

two, which is governed internally. We studied two mechanisms that can generate internal shear

in grown networks: junctional remodeling and cell divisionwithout growth. The later process

is different from what described in our growth simulations;the preferred area of the diving cell

dose not increase before division and the two daughter cellswill have half of the preferred area

of the mother cell. We found that to shear the network effectively, the junctional remodeling

should be oriented. We also found that one round of oriented cell doubling without growth gen-

erates internal shear in the tissue. During repacking, specifically in the Drosophila wing, the

packing geometry of the tissue changes dramatically and thepercentage of hexagons increases

by a factor of two. We studied two mechanisms that can result in hexagonal packing: annealing

and shear flow. Both mechanisms occur during development of theDrosophila wing. We in-

troduced annealing in the vertex model by randomly changingthe adhesion of cell boundaries,

while relaxing the network. This can result in fluctuation ofcell boundaries. For those networks

with hexagonal ground state, these fluctuations are biased by the energy minimization toward
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the hexagonal packing. We found that the percentage of hexagons can increase to∼ 80% during

annealing. We also introduced shear flow in the vertex model by imposing shear on vertices lie

in the middle of the network, while relaxing the other vertices. Shear flow also influences the

packing geometry of the network and the hexagonality increases to∼ 70%.

Processes such as convergent-extension and repacking are controlled by a network of inter-

acting proteins that are involved in planar polarization oftissues. Planar cell polarity is a tissue-

level phenomenon that coordinates cell behavior in epithelia. Planar polarity is established by a

molecular organization that includes an asymmetric distribution of these proteins within cells.

The distribution of these proteins in a given cell determines of the polarity of neighboring cells.

We developed a model to study planar cell polarity in the context of vertex model. Our model

includes two type of molecules that interact across cell boundaries and inhibit each other within

cells. We showed that starting from a random distribution ofthese molecules in cells, for small

networks long-range polarity order emerges, however for larger networks defects of planar po-

larity appear. We found that if we grow a small polarized network, the initial polarity preserves

during growth and we can generate a network of arbitrary sizewith long-range order. We then

studied how these polar networks behave under shear flow. We found that the polarity vector of

cells reorients, while the general global order is preserved and the angle of the polarity vectors

converges to a well-defined steady state value. This behavior of our model is similar to liquid

crystal physics We developed a general coarse-grained model for the polarity of cells which

is governed by two mechanisms: vorticity and shear. Although vorticity can reorient polarity

vector of cells, the shear might influence the orientation ofpolarity vectors differently. We in-

troduce a phenomenological coefficient describing the coupling between shear and orientation

of the polarity vector of cells and give a quantification.

Finally we compare our theoretical results with the experimental ones to quantify for the

first time cell mechanics and cell adhesion in tissues such asthe wing disc of the fruit fly

Drosophila. To study how cell shape and packing geometry are influenced by the physical

parameters of the model and find regions of parameter values corresponding to the wing disc,

we systematically change these parameter values and performed growth simulations. For each

set of model parameters we compare neighbor number distribution between experiment and

simulation and we find that for those parameter values lie in the red region in Fig. 6.2, the

packing geometry is similar in simulations and experiment.From this analysis , we conclude

that the distribution of neighbor numbers does depend on physical parameters, but there is an

extended region that is consistent with experiments. Comparing area variability in simulations

and experiment, we find that only a subset of parameter choices is consistent with the cell

shapes and network morphologies observed in the proliferating wing disc, which is outlined in

blue in Fig. 6.2. Area variability constrains parameter values corresponding to the wing disc

more than neighbor number distribution. We also have performed laser-ablation experiments of
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cell boundaries to study the force balances described by ourvertex model and to independently

determine parameter values. Comparing these experiments to simulations shows that only a

small range of parameters (green outlined region of Fig. 6.2). We conclude that laser-ablation

experiments constrain parameter values corresponding to the wing disc the most among the

other measurements.

Using these techniques, we studied mechanisms that result in establishment and maintenance

of compartment boundaries between two cell populations in developing epithelia. For the con-

dition that all cells are mechanically identical, stochastic cell division results in mixing of these

two populations. However, if the tension along the compartment boundary increases with re-

spect to the other bonds in the tissue, cells sort out during growth and a sharp interface forms.

Higher tension along the compartment boundary results in the formation of a straighter bound-

ary. We examined this hypothesis in experiment for the anterior-posterior compartment bound-

ary in the wing disc using laser ablation. We performed ablation for bonds that are shared

between two anterior cells, two posterior cells as well as the bonds shared between an anterior

and posterior cells. We found that the tension is indeed increased by a factor of four along the

compartment boundary. We then compared the shape and morphology of the anterior-posterior

compartment boundary with the ones generated in simulations for four-fold increase tension

along the compartment boundary. We found that on small scales, our model generates remark-

ably similar morphologies to experiment, however, on larger length-scales the anterior-posterior

compartment boundary is straighter than our simulations.

Our vertex model can be used as a basis for further investigations on how networks of sig-

naling molecules control cell mechanics and consequently final shape, size and morphology of

tissues. In this thesis, we introduced a model to describe planar polarization of tissues, how-

ever we did not discuss how these molecules that are involvedin tissue polarity control cell

mechanics or cell division. There are evidences that planarpolarity proteins tightly control

tissue properties [83], such as packing geometry of tissues[81], cell division orientation [82],

cell migration [84] and convergent-extension [85]-[87]. It is recently proposed that cell packing

geometry influences planar cell polarity signaling and irregular cell packing results in misori-

entation of polarity [88]. The detailed mechanisms of theseprocesses are poorly understood.

In future, we can use the vertex model together with our planar polarity model to study these

mechanisms in details.

We showed theoretically and experimentally that the anterior-posterior compartment bound-

ary is under higher tension compared to the other boundariesin the tissue. However, our further

analysis on the morphology and shape of the compartment boundary, showed that the anterior-

posterior compartment boundary in the wing disc is straighter than the ones in simulations. This

indicates that although four-times increase in the tensionalong the compartment boundary is

sufficient to generate small-length scale morphology, there are other mechanisms that influence
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the overall shape of the compartment boundary. These mechanisms are completely unknown.

Moreover, establishment of the dorsal-ventral compartment boundary is still not clear [89]-[91].

It is worthwhile to test whether the tension along the dorsal-ventral compartment boundary is

increased using laser ablation techniques and how this is comparable to the tension along the

anterior-posterior compartment boundary.

Finally our vertex model can be extended to study more complicated developmental pro-

cesses such as “cell competition” [92]-[95]. Cell competition is a type of short-range cell-cell

interaction described inDrosophila, in which cells expressing different levels of a particular

protein are able to discriminate between their relative levels of that protein in such a way that

one of the cells disappears from the tissue, whereas the other not only survives but also prolif-

erates to fill the space left by the disappearing cells. This was first discovered in experiments in

which the division rate of wing cells was altered by using Minute mutations [92]. The Minute

mutations inDrosophila produce a dominant growth defect and result from inactivating muta-

tions in one of many different ribosomal proteins. Cells homozygous1 for a Minute mutation

cannot manufacture proteins and therefore die; this is not due to cell competition, but rather

cell-autonomous apoptosis. However, cell competition canoccur when cells heterozygous2 for

a Minute mutation, which are viable, are found next to wild-type cells. When flies contain-

ing Minute heterozygous cells together with wild-type cells were created, Minute heterozygous

cells disappeared by apoptosis because of the presence of surrounding wild-type cells, despite

the fact that they would have been viable on their own.

1A cell is homozygous for a particular gene when identical alleles of the gene are present on both homologous

chromosomes.
2A cell is heterozygous for a particular gene when two different alleles occupy the gene’s position on the

homologous chromosomes.





A Conjugate Gradient Mehod

iteration i

conjugate gradient method, iteration i+1

steepest descent method, iteration i+1

Figure A.1: Simple comparison between steepest descent method and conjugate gradient. In

the steepest descent method, we only move slightly in the opposite direction of

gradient of the function in each iteration; However in conjugate gradient method

we move more efficiently in each iteration using conjugate vectors.

The simplest method of minimizing a functionf(x) with N independent variables (x =

(x1, · · · , xN )) knowing the gradient of the function is the Steepest Descent method. In this

method, we start from an initial pointx0 and in each iteration, we move along the direction

−∇f until we are close enough to the solution. Although the steepest descent method has

the advantage of numerical stability, but it performs many small steps in going down a long,

narrow valley, even if the valley is a perfect quadratic formthat makes this method inefficient

from computational point of view. We therefore need to use a more sophisticated method such

as Conjugate Gradient method that includes two basic steps:adding an orthogonal vector to
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the direction of search for minimum and then move in a direction nearly perpendicular to this

vector The conjugate gradient method is an algorithm for thenumerical solution of particular

systems of linear equations, namely those whose matrix is symmetric and positive definite.

The conjugate gradient method is an iterative method, so it can be applied to sparse systems

which are too large to be handled by direct methods such as theCholesky decomposition. Such

systems arise regularly when numerically solving partial differential equations. The conjugate

gradient method can also be used to solve unconstrained optimization problems such as energy

minimization. This difference between steepest descent method and conjugate gradient method

is illustrated in Fig. A.1.

In any iterative minimization method, the new position of variables at stepi, is updated such

that

xi+1 = xi + λih
i, (A.1)

whereλi is a scalar parameter andxi is the position of the variables at stepi. The directionhi

is the search direction towards the minimum. For the steepest descent method this direction is

given by the negative of the gradient of the function,hi = −∇f(x). However, for the conjugate

gradient method, this direction is given via a simple recursion

hi+1 = −∇f(xi+1) + γih
i. (A.2)

There are two slightly different ways of definition ofγi; the first definition was given by Fletcher

and Reeves [96]

γi =
∇f(xi+1).∇f(xi+1)

∇f(xi).∇f(xi)
, (A.3)

wherexi = (xi
0, · · · , xi

N). Later, Polak and Ribiere [97] introduced a new definition for γi

γi =
(∇f(xi+1) −∇f(xi)).∇f(xi+1)

∇f(xi).∇f(xi)
. (A.4)

For certain type of energy functions, the Polak-Ribiere algorithm is less efficient than Fletcher-

Reeves algorithm. The conjugate gradient method is very efficient compared to steepest descent

method, however for some type of energy functionals it sometimes can step so far into a very

strong repulsive energy range where the gradient on this point is almost infinite.



B Cell Packing Geometry

Table B1. Polygon Class Distributions

P3 P4 P5 P6 P7 P8 > P8 〈n〉
Case I 0.11 11.29 32.10 28.39 16.79 7.31 4.02 5.90

Case II 8.21 21.63 24.39 16.18 10.92 6.63 12.05 5.95

Case III 0.05 15.73 40.62 29.20 11.25 2.70 0.45 5.46

Wing disc 1.0 ±
0.77

6.78±
4.18

34.61±
4.06

38.28±
6.29

14.28±
3.36

2.17±
1.76

0.06±
0.24

5.51

Table B2. Area Variation

〈A3〉/〈A〉 〈A4〉/〈A〉 〈A5〉/〈A〉 〈A6〉/〈A〉 〈A7〉/〈A〉 〈A8〉/〈A〉
Case I 0.05 0.42 0.80 1.08 1.30 1.47

Case II 0.03 0.20 0.65 1.21 1.73 2.06

Case III 1.0 1.0 1.0 1.0 1.0 1.0

Wing disc 0.42 ± 0.14 0.56 ± 0.02 0.82 ± 0.01 1.08 ± 0.01 1.36 ± 0.02 1.52 ± 0.05

Table B3. Number of T1 and T2 Transitions

T1 Transition per 100 DivisionsT2 Transition per 100 Divisions

Case I 37 12

Case II 16 3

Case III 146 0



C Numerical Analysis of Phase
Transitions in Tissue Growth
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Figure C.1: Numerical analysis of phase transitions for growing tissues. Logarithmic plot of

the converged value of the order parameter as a function ofǫ, the threshold for the

conjugate gradient minimization method. This is plotted for different values of̄Λ

andΓ̄ = 0.05.



D Displacements Upon Laser
Ablation
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Figure D.1: (A and B) Tangential displacementsDθ of vertices relative to the average bond length〈Lij〉 as a

function of the angleθ indicated in Fig. 6.5 A. Vertices at different distances from the ablation point

are shown in the colors used in Fig. 6.5 A. Black dots show the average displacement for vertices

at different angles, grouped in bins ofπ/6 radians. (A) shows tangential displacements observed

in 20 different experiments. (B) shows tangential displacements obtained in the50 simulations of

bond removal, for which the radial displacements are shown in Fig. 6.5 B.



E Processing Epithelial Images

Original image Removed background Blurred image

A CB

Figure E.1: Filtered epithelial images. (A) Confocal microscopy imageof the Drosophila

wing disc (provided by [3]). This is an input of the image processing software.

(B) Processed image after removing the background from the original image. (C)

Processed image after enhancing the contrast and slight blurring.

In most cases epithelial images that are captured by confocal microscopy require a series

of filtering steps before further analysis. In these images,typically a membrane protein is

marked with florescent molecules to detect cell boundaries.An example of such an image is

shown in Fig. E.1, first panel. We use MATLAB for image-processing and we always refer

to the related functions in MATLAB, however similar functions exist for other programming

languages. We do not explain the details of these functions.The first step for processing the

image is to subtract the background noise. To estimate the background noise, we first use the

IMOPEN() function. We can then use the function IMSUBTRACT() to remove the background

noise. The next step after removing the background noise is to enhance the contrast of the image

using the ADAPTHISTEQ() function. This function uses contrast-limited adaptive histogram

equalization. It selects small regions in the image and enhance the contrast within that region.

These small regions are then combined to each other using bilinear interpolation to eliminate

the artificially induced boundaries.
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One important step before extracting the junctional network of cells is to slightly blur the

image. Blurring might reduce details of the image but this iscrucial for further processing

for the following reason. In the confocal images of epithelial cells, we use florescent proteins

that are reach in the adheren junctional network to identifycell boundaries. These proteins are

not uniformly distributed and there are regions along cell boundaries that the intensity drops

abruptly. To identify a cell in the tissue, we require to detect the region that is bounded by the

boundaries of that cell. These regions of low intensity along cell boundaries can generate errors

in our cell detection algorithm and slight blurring fills these gaps effectively. If we blur strongly,

we might destroy the image very much and one should use properblurring parameters for each

image. We use the function IMFILTER() to blur the image by convolving a Gaussian filter.

To extract the junctional network of cells from these filtered images, we assign to those

pixels with intensity higher than a threshold, a value of one, and to the others a value of zero.

This threshold is different for each image. After removing those objects in the image that

are smaller than a certain size, which correspond to vesicles carrying florescent molecules in

tissues, we segment the image into cells. The goal of segmentation is to simplify and change

the representation of an image into something that is more meaningful and easier to analyze.

For this reason we use a “watershed” algorithm, which is an image processing segmentation

algorithm that splits an image into areas based on the topology of the image. In this algorithm,

we first identify the enclosed region of each cell and label them(1, 2, 3, · · · , NC), whereNC is

the total number of cells in the image. We then increase the area of these regions, analogous to

filling them with water, until two neighboring cells meet at aborder of one pixel width. These

borders are then labeled “zero”, and are taken as the junctional network of cells. In Fig. E.2 A,

we show the watershed segmentation of the epithelial image shown in Fig. E.1, in which each

cell is colored differently.

Extracting the junctional network of cells, we can determine the position of vertices in these

networks. We define a vertex as the center of a3 × 3 pixel box that contains more than two

different cell labels. If the box has three different cell labels, the corresponding vertex is three-

fold and if it contains four different labels, the vertex is four-fold. Note that we replace two

three-fold vertices that are closer than 20% of the average bond length by a four-fold vertex.

We show in Fig. E.2 B the junctional network of cells as green lines, representing three-fold and

four-fold vertices by red and blue dots, respectively. Knowing the position of vertices, we can

determine the number of vertices of each cell and quantify the packing geometry of cells in the

images. In Fig. E.2 C, we show the packing geometry of cells inthe processed image, where

each cell is colored according to its neighbor number (the color code is indicated in Fig. E.2 C).

Note that cells on the border of the image are not counted for the purpose of statistics, and are

colored in black irrespective of their neighbor number.

We can also quantify area, perimeter and elongation of cellsfor the processed watershed
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Figure E.2: Processed epithelial images. (A) Watershed segmentation of the processed image.

Each cell is colored differently. (B) The junctional network of cells and vertices

determined from the watershed segmented image. Three-foldand four-fold ver-

tices are shown by red and blue dots, respectively. (C) Packing geometry of cells

in the processed image. Each cell is colored according to itsneighbor number.

(D) Quantified cell elongation in the processed image. The elongation of cells is

shown by red lines passing through the cell center. The length and direction of

lines correspond to the magnitude and axis of cell elongation, respectively.
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image. Cell area and cell perimeter are simply the number of pixels enclosed by cell boundaries

and the number of boundary pixels of that cell, respectively. Knowing the position of boundary

pixels of a cell, we can quantify cell elongation calculating a traceless, symmetric stretch tensor

of cell α as

Sα
γη =

(

Sα
1 Sα

2

Sα
2 −Sα

1

)

, (E.1)

whereSα
1 andSα

2 are defined as

Sα
1 =

1

Aα

∑

i

cos 2θi

Sα
2 =

1

Aα

∑

i

sin 2θi. (E.2)

The sum in Eq. E.2 is over all pixels of cellα andθ is the angle of pixeli with respect to thex

axis. Aα is the total number of pixels in cellα. The eigenvalue and eigenvector of the stretch

tensor gives us the magnitude and axis of the stretch of the cell, respectively. In Fig. E.2 D, we

show cell stretch as a red bar passing through the cell center.
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