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Abstract

During development, organs with different shape and fanetity form from a
single fertilized egg cell. Mechanisms that control shaes and morphology of
tissues pose challenges for developmental biology. Thesgamisms are tightly
controlled by an underlying signaling system by which ceienmunicate to each
other. However, these signaling networks can affect tisszee and morphology
through limited processes such as cell proliferation,aegdith and cell shape changes,
which are controlled by cell mechanics and cell adhesiore &ample of such a
signaling system is the network of interacting proteing twentrol planar polariza-
tion of cells. These proteins distribute asymmetricallyhivi cells and their distri-
bution in each cell determines of the polarity of the neigimpcells. These pro-
teins control the pattern of hairs in the adDiosophila wing as well as hexagonal
repacking of wing cells during development. Planar pofgribteins also control
developmental processes such as convergent-extensiorprésdlent a theoretical
study of cell packing geometry in developing epithelia. VEe a vertex model to
describe the packing geometry of tissues, for which forces®alanced throughout
the tissue. We introduce a cell division algorithm and shioat tepeated cell di-
vision results in the formation of a distinct pattern of seivhich is controlled by
cell mechanics and cell-cell interactions. We compare #reex model with exper-
imental measurements in the wing disdybsophila and quantify for the first time
cell adhesion and perimeter contractility of cells. We gisesent a simple model
for the dynamics of polarity order in tissues. We identifyasic mechanism by
which long-range polarity order throughout the tissue caedtablished. In partic-
ular we study the role of shear deformations on polaritygatand show that the
polarity of the tissue reorients during shear flow. Our senpkechanisms for order-
ing can account for the processes observed during develdprhéhe Drosophila
wing.
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1 Introduction

1.1 Biophysics of Two-Dimensional Tissues

Figure 1.1: Examples of the epithelial junctional network. (Byosophila retina ommatidium
(adapted from [1]), (B) basilar papilla of chicken embryddpted from [2]), and
(C) Drosophilawing disc (adapted from [3]).

During development, organs with tremendous diversity apghand functionality form from
a single fertilized egg cell. Mechanisms that control shape and morphology of tissues are
largely unknown. These mechanisms are tightly controliedrounderlying signaling system
by which cells communicate to each other. For exampiarphogens, molecules secreted by
localized sources, spread in the tissue and guide the pogiBpendent expression of genes
and control tissues final size and shape [4]. Although maniecates are involved in the
establishment of these signaling systems, the responsellsfte such a flow of information
throughout the tissue is limited to processes such as aedlioin, cell death, cell growth, cell
migration and cell shape changes. All these processes ané/rgaverned by cell mechanics.

An important model system to study cell mechanics and cdikeain is two-dimensional
sheets of cells, callegpithelia. Epithelia are formed by repeated cell division from a small
group of cells, which have almost identical properties. tikgdial cells are packed in specific
morphologies via cell-cell adhesion. These cell packingsiaherently dynamic structures
and remodel during development. However, biological #ssare structurally and functionally
stable in physiological environments [11]. These two caditttory properties of tissues as
active soft materials, have fascinated scientist for mioa@ &2 century.
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Epithelial cells assemble adhesive junctions with theiginigors in their apical region; the
adhesion molecules, Cadherin, and components of the adtiskeleton are enriched apico-
laterally. These apical junctions can be considered as altmensional network that defines
the cell packing geometry. In Fig. 1.1, three examples ofjuinetional network of cells are
shown. In Fig. 1.1 A, we show the retina ommatidiuafi the eye of the fruit fly. The specific
arrangement of cells mimics light scattering, which is aiaéfor correct vision. In Fig. 1.1 B
and C, the junctional network of basilar papilla of a chiclkenbryo and thé&rosophila wing
disc are shown, respectively.

Basic physical principles that govern tissue shape and hnobogy have been studied in
coarse-grained descriptions on different scales. Thegeréiom models that account for cell
mechanics and shape to the hydrodynamic limit where thedisghibits the properties of an
active viscoelastic fluid [12]-[19]. Here we discuss in mdetail two models that are developed
to study cell shape and cell packing geometry in epithetigl 2], Graner and Glazier proposed
an elastic energy functional for cell mechanics and cdllinteractions based on the large-Q
Potts model description of cells. This model describes kectbn of N cells by definingV¢«
degenerate spins{i, j) = 1,2, ..., No, wherei and; defines a lattice site. A cell is defined
as a collection of all sites in the lattice with spin Their energy functional has two terms: the
first term accounts for cell-cell interactions and the seldenm accounts for the area elasticity
of cells. They use the Monte Carlo method to minimize theargy functional; at each step a
lattice site is selected at random and its spin is changed érdo o’ with probability zero, if
the change in energ\H, is positive, 0.5 ifAH = 0 and one ifAH < 0.

This model has been used to study cell sorting [12]. Grahar. define two cell populations
with different interaction energies. Cells of similar tygiract each other differently than cells
of the other type. Granest al. show that this can result in cell sorting starting from a rdixe
initial configuration. Graneet al. also use this model to study convergent-extension [22]-[24
a process in which the tissue expands in one direction wbitéracting in the other direction
in the absence of cell divisions and cell shape changes.iggetrthis phenomenon by energy
minimization, they assume that the adhesive energy of théacbsurface between two cells
depends on its orientation relative to the axis of elongatbthe two cells; i.e. the level
of adhesion molecules might differ on long and short sidea oéll. They showed that this
mechanism can result in elongation of cells and converggtansion.

Hufnagelet al. [14] suggest a three dimensional description of tissue @r@ch, in which
each cell is represented as a polygon with certain heigtd.pbisition, shape and height of cells
are determined by the condition of mechanical equilibribiat torresponds to minimization of

1The compound eye of insects is composed of units called oidima®An ommatidium contains a cluster of
photoreceptor cells surrounded by support cells.
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the energy functional

B(ri6) =Y [pata(Va= Vo) +b 3 (=& +e(a-1, @D
a fB=v(a)

wherep,, V,, and¢, denote the perimeter, volume, and the height of eglespectivelylj is
the preferred volume of cells and the second summation ipahentheses is over all neighbors
of cell « that are labeled as(«). In this model, the first term mimics cytoskeletal tension
and the second and third terms control deviations of celima from1;, and the penalty on
the variation of cell height between adjacent cells, retpalg. The fourth term accounts for
deviation of cell height from its unstressed value. The axgluse this model together with a
signaling network to study growth control in developingteplia due to mechanical feedback.

1.2 Cell Packing and Tissue Morphology

Cell packing geometry was one of the earliest observatiftes tne invention of the micro-
scope [25]. Although the hexagonal packing observed in lemepithelia was explained in
the early1900s by Thompson in his boo®n Growth and Form [26], the packing geometry
of proliferating tissues is still under debate. Prolifergtepithelia are not necessarily hexag-
onally packed, but rather cells with different neighbor tn@mcoexist. It was shown recently
that the frequency of different classes of polygons is higeproducible even between different
species. In Fig. 1.2, we show the distribution of differdasses of polygons for tHerosophila
wing disc, theHydra epidermis and the tail epidermis Benopus [27]. In these three epithe-
lia, hexagons are the most frequent polygons and pentaguhkeptagons are the next most
frequent polygon classes.

The distribution of different classes of polygons was fitsidgeed theoretically by Cowan
and Morris in [28] and [29], in which they introduced the hyipetical organismessellata
elegans, which is a monolayer planar tissue. Its development stesta one polygonal cell
with arbitrary edge number. Division corresponds to ad@inmgw boundary passed randomly
from two sides. An-sided cell will divide into two cells with edge numbers tlaae either
(3, n+1),(4, n), (5, n—1),--- ., ((n+3)/2, (n+5)/2)if nisodd and(n+4)/2, (n+4)/2)
if n is even. For example, a four-sided cell can divide into eithiziangle and a five-sided cell
or two four-sided cells. This rule can be described by a matfi Each matrix element)/,;,
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Figure 1.2: Distribution of different classes of polygons in tBeosophila wing disc,Hydra
epidermis ancKenopus tail epidermis (adapted from [27]). Note that the distribu-
tion of polygon classes for the wing disc presented in [28]ightly different from
those that we will discuss in Chap. 6. This probably reflentsdifferent methods
used for assigning cells to polygon classes. Polygon-desssbution depends on
the cutoff used to distinguish boundaries from four-foldtes (see App. E). For
comparison, we show the distribution of polygon classesadtafound by Cowan
and Morris [29] and Gibson et al. [27].
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The frequency of different classes of polygons in genendtiov, = {P;, Py, Ps, - -- }, relates
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to the frequency of polygon classes one generation befooegh matrix\/

my = mt_lM

= my_oM?

Cowan and Morris showed in [29] that there exists a statpdastribution of polygon classes
starting from any initial condition, which is shown in Fig21A.

Clearly the distribution found by Cowan and Morris is di#fat from what is found in nature
for different epithelia. In [27], Gibsomt al. suggest a different division rule that prevents
formation of triangles. Therefore a four-sided cell canyafiVide into two four-sided cells and
a five-sided cell can divide into four- and five-sided celleeTnatrix)/ is now given by

1
1/2 1/2
M= 1/4 1/2 1/4 . (1.4)
1/8 3/8 3/8 1/8

Note that here the rows and columns af start from four-sided cells. They also introduce
a mean-field approximation to take into account edges tleaadded to neighboring cells of
a dividing cell. If a cell divides, two neighbor cells of thévidiing cell also gain one new
boundary. On average, all cells gain one boundary per gemedue to division of neighboring
cells. This can again be represented by a matrix

0

S = 0 1 . (1.5)

Now the frequency of polygon classes evolvesas= m;_ 1M S, which again converges to an
equilibrium distribution and is different from that foung owan and Morris (see Fig. 1.2).
In this model, hexagons are the most common polygons andishd@dtion is more similar

to experimental observations than that of Cowan and Mok @wvever, this model predicts no
four-sided cells in its equilibrium configuration due to thean-field approximation introduced
by matrix S which adds one neighbor to all cells. These topologicalsrtifeat are discussed
in these papers are not based on the physical propertieg aktls. However, we expect the
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redistribution of neighbors after cell division to dependphysical cellular properties. Also, a
purely topological description cannot account for celesamd shape or local force balances.

Apart from the topological inhomogeneity discussed aboedl,area and cell shape is also
inhomogeneous in proliferating epithelia. The geometisorier induced by cell division in
proliferating epithelia was first studied 928, when F.T. Lewis examined the epidermal cells
of the cucumber [30] and [31]. Lewis noted that cells withfelént neighbor numbers were
present in reproducible proportions, and their averagasararied linearly with neighbor num-
ber. This relation was termed Lewis’s law when it was firstgtd theoretically by Rivier and
Lissowski in1982 [32]. Rivier and Lissowski showed that cellular networkshathis property
are dominant in the plane’s random polygonal tiling thatsareject to the constraints of space
filling and an average neighbor number of six.

1.3 Planar Polarity of Epithelial Cells

The polarization of epithelial cells in the apical-basaisaperpendicular to the plane of the
epithelia) is well studied and it has been shown that thianiylis critical for the integrity and
functionality of the epithelia. Most epithelia are alsogri#ed in a second axis, in the plane
of the epithelium. This phenomenon is known as planar cedrg or tissue polarity. Planar
polarity coordinates cell behavior across the epithelidinis polarity is clearly visible in the
epidermis of animals. For example, the scales, bristleshairs of insects are typically aligned
along the major body axis. A similar polarity is seen in theepnmis of vertebrates, e.g. the
scales of fish and hair of mammals [36]. Planar polarity islinoited to cells that are fixed in
space. For example, elongation of the body axis during dpweént involves the coordination
of multiple cell behaviors including cell rearrangemerall civision, and cell shape changes
[37]- [40].

In Fig. 1.3, we show three features of planar polarity in witde animals and in mutants
that cannot establish this planar polarity. Fig. 1.3 A shbuis polarity in the adulDrosophila
wing, where each cell produces a single cytoskeletal exienghich becomes the so-called
wing hair of the adult fly. Wing hairs point distally in wilggpe animals, however, in mutants
hairs are misorientated as shown in Fig. 1.3 B. Similarlg,tiechanosensory hair cells of the
mouse cochlea extend a series of polarized actin-richatiigay bundles that point toward
the fluid-filled lumen of the cochlea and respond to mecharsxsg input [41]. We show, an
example of sensory receptor cells of the wild-type mousdleacin Fig. 1.3 C. In mutants,
the bundles form but the overall alignment is disrupted asvshin Fig. 1.3 D. In addition
to the polarity of individual cells, group of cells can alsehlave in a polarized manner, e.g.
rotational symmetry breaking of ommatidia in theosophila eye. Ommatidia are composed of
multiple cells in which some cells in each unit differergit an asymmetric fashion. The entire
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Figure 1.3: Features of planar polarity in epithelia. (A) and (B) Haittpen in the wild-type
and mutant (diegaProsophilawing, respectively (adapted from [3]). In wild-type
animals, hairs point in the distal direction of the wing. Hewer, in the mutants
hairs are misoriented and defective hair patterns form.a(@l) (D) Wild-type and
mutant (frizzled) sensory hair cells of the mouse cochleagsed from [38]). In
wild-type animals, individual sensory cells generate ppéal bundles of actin-
based stereocilia. In mutants these bundles still formherit brientation becomes
randomized. (E) and (F) The wild-type and mutant (frizzletthe Drosophilaom-
matidia, or facets, which are composed of photoreceptaoiapfad from [83]). In
wild type animals, ommatidia are arranged in preciselyrded trapezoids, while
in the mutant both the arrangement of the photoreceptorsnmatidium and the
arrangement of ommatidia with respect to the whole eye bedatisorganized.

structure rotates as a unit in the opposite direction in trsal and ventral halves of the eye
[42]-[43]. In Fig. 1.3 E, we show part of tHerosophila eye near the dorsal-ventral boundary,
where the boundary is marked by yellow dots. As shown in Fi8.F in mutants, both the
arrangement of cells in each ommatidium and the alignmetitebmmatidia with respect to
the eye is influenced.

An important model system to study planar cell polarity (P@Pthe Drosophila wing, in
which the polarity is readable from the hair pattern in thaleding. Studies started ih980s
led to the identification of what is now called tleizzled pathway for the development of
tissue polarity [44]-[49]. The core PCP pathway consistthefcell-surface proteinsrizzed
[50], Strabismus (or Van Gogh) [43], [51], andFlamingo (or Sarry night) [52], [53]. There are
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also cytoplasmic proteinBishevelled [54], [55], Prickle (or Spiny legs) [56] and Diego [57],
that control tissue polarity. Mutants of these proteinsagate different patterns of hairs in the
wing. In mutants of the core PCP proteins, wing hairs irgtiom a central location on the
apical cell surface and point in the wrong direction. Howewre mutants of the cytoplasmic
proteins, the hairs grow from the distal part of the cell blotbgl orientation is affected and
swirling patterns form (see Fig. 1.3 B).

e @ Flamingo
>4 5? S @ Frizzled
N @ Strabismus
A\ Oﬁ 4 @ Dishevelled
IEANE @ Prickle
° g \e Diego

Figure 1.4: Schematic of planar cell polarity proteins. Proteins imeal in establishment of
planar cell polarity fall into two main categories: core PQ#teins and surface
proteins. These proteins are recruited to the apical seidhcells at early devel-
opment. They are sorted out preferentially towards theb#std proximal sides of
the cell, which requires the activity of all polarity pratei Strabismus, and Prickle
localize at the proximal cell surface, and Frizzled, Disiiad, and Diego localize
at the distal surface, while Flamingo exists on both sidebefcell (adapted from
[35]).

Formation of hairs in th®rosophila wing requires an underlying molecular polarity that in-
cludes an asymmetric distribution of core PCP proteins.cbine PCP proteins are first recruited
to the apical cell surface and subsequently segregateontplementary apical subdomains be-
fore the onset of hair formation. Flamingo localizes at jmad and distal surfaces [53] and
[58], whereas Frizzled, Dishevelled, and Diego localizepacifically the distal surface [59]-
[61]. Prickle and Strabismus localize at the proximal stefgb6] and [62]. Frizzled can interact
directly with Dishevelled [63], and Strabismus can asdecdth Prickle [62] and [64]. This
indicates that proximal and distal cell domains consisttdéast two protein complexes. The
Flamingo cadherin, which is capable of mediating homoplaitihesion [53], recruits the other
core PCP proteins to the region of the adherens junctior]s (@fce at the surface, the activity
of all six core PCP proteins is required for any of them to eetia planar polarized distribu-
tion [60], indicating that these proteins participate iregulatory loop rather than a strict linear
pathway [35]. In Fig. 1.4, a schematic illustrating the dlsttion of these proteins in the cell is
shown.

During the global organization of polarity in tissues thgrametric localization of PCP pro-
teins is sensitive not only to the activity of PCP proteinghe same cell but also to PCP
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activity in adjacent cells. Frizzled activity in one cellrisquired for Prickle localization in its
distal neighbor, whereas Prickle is required for the lazdion of Dishevelled in the adjacent
proximal cell, suggesting that Frizzled and Prickle interadirectly across cell boundaries
[56]. Within a cell, there is evidence that Prickle can blalok association between Frizzled
and Dishevelled [56], although other studies find that Peickver-expression does not dis-
rupt Dishevelled membrane localization [62]. Converstilg,Diego protein can associate with
Prickle and Strabismus [61] and may counteract Prickleviggtio allow Frizzled-Dishevelled
complexes to form at the distal surface [64]. These inteastsuggest a mechanism by which
proximal Strabismus-Prickle complexes and distal Frad#Deshevelled complexes form in mu-
tually exclusive cellular domains. These proteins coulcheanto contact when they are first
recruited to the apical surface of wing cells during the ldgghment of polarity.

Currently there are two types of model that have been praptsexplain how polarity
is established throughout a tissue. The first model is baseth® gradient of a diffusible
molecule and individual cells might determine their pdiam accordance with the direction of
the slope of the gradient. This model is motivated by expenits carried out in insects other
thanDrosophila. In these experiments, sections of larval epidermis weteted or moved to
different positions in a segment, resulting in reprodueidlterations in polarity of the adult
cuticle [65]. Any experiment leading to an alteration in theection of this slope would cause
polarity to be inverted [66]-[68]. In the second type of mhgmlarity information is prop-
agated via a cell-cell interaction, whereby signals ares@aslirectly between adjacent cells,
without any necessary role for longer range diffusible algn One example of this class of
models involves each cell polarizing in response to a loeateted ligand and then, in turn,
locally secreting a ligand to signal to its neighbors, thumgpessively propagating polarizing
information throughout a tissue [69].

The second model has been discussed more rigorously ne@eifl0]. In this “feedback”
model, planar polarity could occur through an asymmetistrdiution of Frizzled in cells with
comparable levels of Frizzled activity. Frizzled accuntiolaat the distal surface of a cell would
recruit or retain Strabismus on the proximal surface of tdja@ent cell, stabilizing their com-
plementary distributions. Strabismus-Prickle and FedzDishevelled complexes could then
segregate into reciprocal domains in both cells throughraaganistic effect of the proximal
Prickle protein on Frizzled-Dishevelled association. Agsult, Frizzled is predicted to accu-
mulate on the distal surface of the neighboring cell, thimaahg the cycle to continue. This
model demonstrates that, given a distal bias in Frizzledlipation, local interactions among
PCP proteins could provide a robust mechanism for gengrateamar cell polarity in the ab-
sence of a Frizzled gradient. This model can reproduce badthtype planar polarity and the
complex patterns that arise in some mutants.
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1.4 Wing Development of the Fruit Fly Drosophila

Figure 1.5: Drosophila embryonic development. (A)rosophila melanogaster, which is com-
monly used in biological studies (source Wikipedia phoapired by Andre Kar-
wath). (B) Early embryonic development in the fruit Byosophila, in which rapid
DNA replication happen inv 3 hours and the nuclei accumulate on the surface of
the york sac (adapted from [72]). (C) Part of theosophila embryo during DNA
replication (adapted from [73]).

Drosophila melanogaster is a two-winged insect otherwise known asdimaron fruit fly or
vinegar fly (see Fig. 1.5 A). It is one of the most frequentigdisnodel organisms in biology,
including studies in genetics, physiology and life histewplution. The developmental period
for Drosophila melanogaster varies with temperature; the shortest dewedot time (egg to
adult), 7 days, is achieved a8° C and it increases at higher temperatur@s'C, 11 days).
Females lay~ 400 eggs (embryos) into rotting fruit or other suitable mateffde eggs, which
are about).5 millimeters long, hatch after 12-15 hours. The resultingda grow for about 4
days (at25° C) while molting twice, at about4 and48 hours after hatching. During this time,
they feed on the microorganisms that decompose the fruitedlsas on the sugar of the fruit
itself. The larvae then encapsulate in the puparium andrgodefour-day-long metamorphosis
(at25° C), after which the adults emerge.

Drosophila melanogaster was among the first organisms used for gemetligsss, and today
it is one of the most widely-used and genetically best-knoivall eukaryotic organisms. All
organisms use common genetic systems, therefore complielggirocesses such as transcrip-
tion and replication in fruit flies helps in understandinggh processes in other eukaryotes,
including humans. There are several reasons, t®ussophila as a model system:

(i) The care and culture requires little equipment and usts $pace even when studying
large cultures, and the overall cost is low.

(i) It is small and easy to grow in the laboratory and its marlogy is easy to identify once
they are anesthetized.
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(iii) It has a short generation time (abolit days at room temperature) so several generations
can be studied within a few weeks.

(iv) It has a high fecundity (females can lay more tts@0 eggs in a lifetime, i.e. one egg
every30 minutes with sufficient food).

(v) Males and females are readily distinguished and virgmdles are easily isolated, facili-
tating genetic crossing.

Embryogenesis iDrosophila has been extensively studied. After fertilization of theyte
the early embryo undergoes rapid DNA replication, untilragpmately5, 000 to 6, 000 nuclei
accumulate in the unseparated cytoplasm of the embryo. &eitld of the 8th division most
nuclei have migrated to the surface, surrounding the yatk adter the10th division the pole
cells form at the posterior end of the embryo, segregatiaggrm line from the syncytium (a
large cell-like structure filled with cytoplasm containimgny nuclei). Finally, after the 13th di-
vision, cell membranes slowly invaginate, dividing the gyiium into individual somatic cells.
In Fig. 1.5 B, we show the embryonic development in the fryitkosophila and in Fig. 1.5
C, we show part of the embryo with microtubules stained. Cthce process is completed,
gastrulation starts.

, imaginal discs
salivary

glands

o mouth parts

antena
eye

J ‘;.‘{

haltere

) wing

genitalia

Figure 1.6: Drosophilaimaginal discs. Schematic &frosophila imaginal discs during meta-
morphosis. Each external part of the insect develops fromal siumber of cells
which grows via cell division (adapted from [74]).

The embryo undergoes well-characterized morphogenetiements during gastrulation
and early development, including germ-band extensioméasion of several furrows, ventral
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invagination of the mesoderm, posterior and anterior imeagtgon of endoderm (gut), as well as
extensive body segmentation until finally hatching fromgherounding cuticle into a 1st-instar
larva. During larval development, tissues knownmaginal discs grow inside the larva. An
imaginal disc is one of the parts of a insect larva that wittdrmae a portion of the outside of
the adult insect during the pupal transformation (see Fig). 1Contained within the body of
the larva, there are pairs of discs that form, for instarfee wings or legs or antennae or other
structures in the adult. During the pupal stage, adult siras including the discs undergo rapid
development. Each disc everts and elongates, with theatgmirtion of the disc becoming the
distal part of whichever appendage it is forming, such agwieg, antenna, etc.

Posterior

=

= —
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e =]
(W a

Anterior

Figure 1.7: Drosophila wing development. (A) Wing disc of the fruit fliprosophila. The
wing disc grows from~ 50 to 50, 000 cells in five days (taken by O. Wartlick). (B)
Schematic of the anterior-posterior (green) and dorsatrak(red) compartment
boundary in the wing disc (adapted from [3]). (C) Exampleh&f@Drosophila wing
disc labeled with apterous in blue, vestigial in red, andi@hinterruptus (which
only expresses in anterior cells) in green (adapted fron).[7®) Schematic of
development of thérosophila wing during metamorphosis (adapted from [3]).
Initially dorsal and ventral parts of the wing are in the sgutene. During meta-
morphosis, the wing disc folds and extends, so that the Hanskventral compart-
ments come into contact with each other.

The wing imaginal disc is an excellent system for analyziatjggn formation. The wing disc
is initially specified in the embryo as cluster2if—40 cells. During larval development, the disc
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grows~ 1000 fold. The wing disc is divided by a compartment boundary Hegtarates it into
the anterior and posterior developmental regions. Thasta second compartment boundary
between the dorsal and ventral region, which develops duha second larval instar. When
the wing forms at the metamorphosis, the future ventrabserfolds under the dorsal surface
in the distal region to form the double-layered wing. In Hig/ A, we show an example of the
Drosophila wing disc. A schematic of the anterior-posterior and deveaitral compartment
boundaries are shown in Fig. 1.7 B as green and red linesctggly.

In the wing disc, signaling regions are set up along the cotnyEnt boundaries. Cells at the
anterior-posterior compartment boundary form a signateggon that specifies pattern along
the anteroposterior axis of the wing. A cascade of events getthis signaling center. It
begins with the expression of ttemgrailed gene in the posterior compartment of the disc,
which reflects the pattern of gene expression in the embecysegment from which the discs
derive. Cells expressingngrailed also express the segment polarity geimigehog. At the
compartment boundary, the secretesligehog protein acts over abodt) cell diameters and
induces adjacent cells in the anterior compartment to espiteedecapentaplegic (or Dpp)
gene. The dorsal-ventral compartment boundary is also @eai signaling region. Cells in
the dorsal compartment express the gapterous, which induces the synthesis of the proteins
fringeandSerrate. Their action leads to thidotch receptor protein being activated in a discrete
band of cells that later leads to expression of the g@ngless. Both Dpp and wingless act as
morphogens whose concentrations provides cells with ipasitinformation. The formation
of gradients of morphogen activity is not due to simple diftun, but rather set up by active
transport of the morphogen and involves endocytosis. Bqih &hd wingless can regulate the
expression of their receptors. In Fig. 1.7 C, we show an ekawipthe Drosophila wing disc
labeled with apterous in blue, vestigial in red, and Cuhitsrruptus (which only expresses in
anterior cells) in green, which indicates the position ahpartment boundaries. By the end
of growth, the wing disc folds and extends, so that the dagdl ventral surfaces come into
contact with each other, as illustrated in Fig. 1.7 D.






2  Physical Description of Cell
Packing

Figure 2.1: Examples of the apical junctional network in the wing eitnef the fruit fly
for different stages of development: (A) wing disc stage, [{Bpal stage and (C)
before hair formation (provided by [3]).

Cell packing in epithelia has fascinated scientists forertban a century. In the earlyp00s,
D’Arcy Wentworth Thompson presented in his famous book, ‘Growth and Form”, how
forces arising from surface tensions can result in hexdgueeking of epithelial cells. The
mechanisms governing cell shape and epithelial packingtdiranclear. Cell packing is tightly
controlled during epithelial development by a complicatetivork of genes and can vary from
an irregular packing geometry to a very specific one; we showig. 2.1 three examples of
epithelial packing for different stages of developmentha wing of the fruit flyDrosophila.
Although cells have irregular packing and shape in the wisg gtage (Fig. 2.1 A), they form
an almost perfect hexagonal packing in the late stage be&rdormation (Fig. 2.1 C).

Cell shape and cell packing is influenced mostly by cell memsa Thus to address the
question of how cell packing geometry is controlled, we nigedevelop a framework to study
cell mechanics. In this chapter we present a model to acdoutll mechanics and cell-cell
interactions in epithelia. Since the most interestinguezd of cell packing occur at the level
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of the junctional network of cells, our two-dimensional nebdnly considers the mechanics of
this network. However, our model accounts for the third disien indirectly by considering
a preferred area for each cell such that deviation from tregepred area requires work to be
done. We also account for cell adhesion and perimeter axiifng both of which influence
cell shape. We then study the ground states of our model awd tlat, depending on physical
parameters of the model, three different ground states)dan ®Ve calculate the bulk and shear
modulus of the network as a function of model parameters. Mgemve that the model exhibits
a phase transition from a solid hexagonal network to a sefjuiar one.

2.1 Cell Mechanics in Two-Dimensional Tissues

A B C

Figure 2.2: Vertex model. (A) Schematic of epithelial cell packing. tBgiial cells are con-
nected to each other in their apical region by adhesion matdecwhich are more
pronounced along a network of adhesive junctions (greew)ydnich are also asso-
ciated with actomyosin fibers (red). They are connectedaeitracellular matrix
in their basal level. (B) Example of cell packing in vertexaeb Each cell is
represented as a polygon composed of vertices (red dotshwias straight edges.
(C) Schematic of the vertex model, where cells are indichjed = 1, 2, ..., N¢,
and vertices are indicated by= 1, 2, ..., Ny. Nc and Ny are the total number
of cells and vertices in the network, respectively. The tergf the cell boundary
between vertex and; is indicated byZ;;.

There are many processes that occur within tissues on dlifféime scales, such as the
turnover of specific molecules inside the cells and pattermétions throughout the tissues.
There are three main time scales regarding tissue dynafmies shortest time scale is due to
relaxation of cell shape in response to local perturbatidrigs is on the order of seconds to
minutes. Cell division and cell rearrangements take oneversl hours, and the formation of
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tissue shapes and patterns happen on time scales of tenarsftbadays. The adheren junc-
tional network of epithelial cells is a stable configuratmmtime scales shorter than those of
cell division, and longer than those of local perturbationsese network configurations obey
a force balance (the net force on the junctional network is)zeln general, forces acting on
the junctional network need not be derived from an energgtfan. However, the forces we
consider here can, in our simple description, be repreddnt@an energy function.

Here we assume that cells are represented as polygonglistraes connecting vertices, see
Fig. 2.2 B). This is a good approximation for most epithefiach as the junctional network
of cells in the wing ofDrosophila, which is the subject of our experimental studies in this
thesis. Therefore, the energy of the junctional networkfigyation of position of these vertices:
F = F(R;), whereR,; = (z;, y;) is the position of vertexin the tissue. The force balance then
implies that the net force on each vertex is zdfg:= —0F /OR; = 0, fori = 1,..., Ny. The
energy functionF, which corresponds to the work required to deform the jumeti network of
cells, consists of three terms regarding cell mechanicscahdtell interactions

K, r
— o — A0)2 L. —ag?
F = E 5 (A — A"+ ; ‘> ALy + E 5 L. (2.2)
@ 1,] 64

The first summation is over all cells = 1... N, where N is the total number of cells in the
network. The area and area elasticity modulus ofeealte denoted byl,, and K ,, respectively.
AV is the preferred area of cellwhich is related to the volumé, and heightj,, of the cell:
AV ~ Va/ha (See Fig. 2.2 A). The area elasticity modulids is proportional to the Young’s
modulus of the cellsy,, and the inverse of the preferred ardd;, ~ Yaha/Aff). The bulk
properties of the cells give rise to this term, which accedat an effective area elasticity for
cells. Any change in the apical area of cells requires thanthterial in this region flow toward
the basal part of the cell. Since the volume of the cell is ghanvery slowly compared to cell
shape relaxations, any changes in the apical area causegp@fdhe lateral boundaries of the
cells, which requires work to be done and this effect is takemaccount by this term.

Multiple mechanisms might influence line tension such thebuld vary from edge to edge.
For example, adhesive interactions between cells may falbboundary expansion, whereas
the subcortical actin cytoskeleton might oppose it. Th@sdderm in the energy function in
Eq. 2.1 accounts for cell-cell interactions along the jioral region of cell boundaries. The
summation is over all cell boundariés j) andL;; is the length of the boundary (see Fig. 2.2
C). Line tension\;; describes forces along bounday;), which can be positive or negative
depending on the tensile properties of cell boundarieshefioundary has surface tension
properties, then\,; is positive; if adhesion predominates they) is negative. The underlying
cellular cytoskeleton mainly contributes to this line tens but it may also produce an effective
perimeter contractility. This perimeter contractilityrramicked by the third term in Eq. 2.1,
which is a summation over all cells in the network. The petenand perimeter contractility
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of cell o are shown by, andIl',,, respectively. This third term tends to shrink the perimete
and therefore the area of cells, to zero, which is in oppwsiid the area elasticity term, which
tends to keep the area of cells equal to their preferred area.

2.2 Ground States of Cell Packing
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Figure 2.3: Ground-State phase diagram of the vertex model. (A) Phaggain for the ground
state of the vertex model for the energy function given in Eg.as a function of
dimensionless line tensiak and dimensionless contractility. In the gray region
the ground state is a hexagonal network with a nonzero shedulos. In the
green region, the network is semisoft and the shear modalnisives for limited
deformations. The ground state in the green region is degeneany hexagonal
network configuration where cells are irregular in shapeharea and perimeter
of all cells equal toA® and L(¥), respectively, is a ground state in this green re-
gion. The ground state of the energy in the blue region is dégenerate, and any
network configuration where the area of all cells is equaheogreferred ared
and their perimeter is equal t©6°) is a ground state of the energy. Examples of
the ground state in the gray and blue regions are shown as.ir{B¢ Schematic of
energy changes as a function of shear deformatioft,, for different regimes of
the phase diagram.

To study the ground state properties of the model, we cons&terorks where the parameters
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of all cells are identicalX,, = K, T, = I andA® = A© for all cells andA;; = A for all
edges. We will usé((A®)? as a unit of energy and’ A as a unit of length; dividing both
sides of Eq. 2.1 by<' (A(®)2, we have a dimensionless work functign= 7 /K (A©®)?

f:%Z(aa—1)2+I\<Z>&j+gZ£§, (2.2)
1, ] [e*

«

wherea, = A,/AO), (;; = L;;/vA©® and¢, = L,/VA© are respectively dimensionless
area, bond length and perimeter. We are then left with ontyftee parameters: dimensionless
line tensionA = A/K(A©)3/2 and dimensionless contractiliy = I'/KA®. These two
parameters then characterize the ground state phaserdiégrthis simplified model.

We find three different regimes for the ground state of theggnas a function ofA andT.
Parameter regions corresponding to these regimes are shdvign 2.3 A. In the gray region
the ground state of the energy is a hexagonal network. Inrhengregion the ground state is
degenerate and given by irregular network configuratiasrswhich all cells are six-sided and
fulfill the following two constraints:

(i) the area of cells is equal to the preferred aféd (or a, = 1).

(ii) their perimeter is equal to a preferred perimetéd = —A /2T (or [, = —A/2T).

In the blue region the ground state is also degenerate: danprieconfiguration with arbitrary
cell packing and cell shape is a ground state of the energgnghat the area of all cells is
equal toA® and their perimeter is equal 1d”. An example of such a ground state is shown
in Fig. 2.3 A. The striped region on the right-hand side of pimase diagram in Fig. 2.3 A
corresponds to a regime where the line tension and periroetgractility are so high that the
ground state is a network with vanishing area. This regidreigond our model in its present
form, and can be studied by adding higher order terms of dasti@ty to the energy function
Eqg. 2.1, such a& (A, — A®)*/4.

2.3 Ground State Phase Transitions

2.3.1 Shear and Bulk Modulus

To have a better understanding about the different regirhgeearound state and phase tran-
sitions, we first need to calculate the bulk and shear mocafiise hexagonal network. To
simplify the calculations, we introduce a unit box with @elic boundary conditions as shown
in Fig. 2.4 A. Repeating this box in the andy directions, we are able to build an infinite
hexagonal lattice. The dimension of the boxriandy directions arel, andL,, respectively.
The box sized., and L, are related to the length of the hexagonal netwarkl,, = v/3a and
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Figure 2.4: Shear and bulk deformations of a hexagonal unit box. An it#ihexagonal net-
work is generated by repeating the unit boxzirand y directions. (A) and (B)
Schematic of shear deformation and isotropic expansioh@unit box, respec-
tively.

L, = 3a. The energy of the unit box as a functionfof and L, is given by

L.L 2
F o= K(?y - A<O>) A2 4 Aly) + D(20 + 4l)?

L,L 2 2L L,\2 2L L,\2\2
() e i (5)) (e (3

(2.3)

wherel; = L, /3andl, = \/(L,/2)? + (L,/6)? are the length of different sides of the hexagon
in Fig. 2.4 A. For an undeformed unit box, = ¢, = a. However, if we impose an affine
deformation/; and/, are different.

An affine shear deformation of the unit box is givenldy= L,(1+¢) andL; = L, /(1 +e¢),
wheree < 1 (see Fig. 2.4). The shear modulus of the hexagonal netwdhlersdefined as the
second derivative of the energy (2.3) with respect to

1 *F(L,, L)

- I oy 2.4
LoL, =0 0e2 (24)

[hs

The shear modulug, is a function ofL, and L,. It has a simple form if we rewrite it as a
function ofa
fs = 12737 + V/3A /a. (2.5)

The bond length is a function of model parametefs, A, A andI’, which is the solution of
the minimization of the energy function in Eq. 2.1

27
5 Ka® + (36T — 3V3KA®)a + 3A = 0. (2.6)
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We can calculate the bulk modulug as the second derivative of the work function with respect
to ¢ for deformations (see Fig. 2.4 B), = L,(1 +¢) and L} = L,(1 + ¢). The bulk modulus
1y @s a function ofi reads

1y = 9v3Ka?> — 2K A© 4 8/3T. (2.7)

Along the red line in Fig. 2.3 A, the bulk modulus vanishes #melground state becomes
unstable. Knowing the exact form of the bulk modulug,we can derive an analytical expres-
sion for the transition line between the solid hexagonalomeg@nd the unstable striped region
in Fig. 2.3 A. Settings, = 0 in Eq. 2.7, we find an expression for the dimensionless leofh
hexagonal networky,, with zero bulk modulus{24T’ — 2v/3K A©)a + 3A = 0. Substituting
this value ofa, into Eq. 2.6 we obtain the red boundary line in Fig. 2.3 A

= @KA(O) _ (9KA2)% T < V3EAY
12 8 - 12
3KAO
A=0 r> fT (2.8)

In terms of A andI the boundary line is given by = 1/4+/3 — (3A)%3/8 (if T < v/3/12) and
A=0(fT >+3/12).

2.3.2 Transition from Hexagonal to Soft Networks

The shear modulus of the network decreases for increaslirgatikadhesion (decreasing). In
the gray region shown in Fig. 2.3 A, any shear deformationireg work as shown in Fig. 2.3
B (first panel). In the green region, however, the shear mmsanishes (see Fig. 2.3 B middle
panel). In this region any shear deformation that does rsatlrén changes to the hexagonal
packing of the network is admissible at vanishing shear rusduFurther shearing of the net-
work resulting in remodeling of the network requires work.e \3an calculate an analytical
expression for the transition line between the solid grayore of the phase diagram and the
semisoft green region. In transition from the solid to theniseft region, the shear modulus
is zero for limited deformations around the perfect hexafoetwork. We findu, = 0 for

ap = —A/12I". Substituting this value aof,, in Eq. 2.6 gives us the transition line from the gray
to the green region in Fig. 2.3 A = —A/+/32V/3.

In the blue region in Fig. 2.3 A, the network is soft and larggodmations at vanishing
shear modulus are admissible. These large deformatiorssstdoth of cell shape changes and
remodeling of cell boundaries. The latter deformationsimegthe boundaries to shrink to zero
and expand in the opposite direction (at vanishing sheawutasiiresulting in local changes of
cell neighbors, and allowing the network to shear to anyrextés we discussed in Sec. 2.2 the
area and perimeter of cells in the green and blue regiongeapectively equal to the preferred
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areaA© and preferred perimetdr®). For a network with/; = 0 (see Fig. 2.4 A), i.e., the
ground state of the energy in the blue region, the area amchgir of a cell are
L.L,

Ay = AO =
2 Y

A
Lo,=L" = —or = 2 L2 + L2 (2.9)

The condition to have positive real solutions fby and L, implies thatZL(©® > 4+/A©) or
T < —A/8, which gives the transition line between the green and ldgimns in Fig. 2.3 A.

2.4 Summary

One advantage of using epithelia as model systems in bidlegyvith their great simplicity
compared to three-dimensional tissues. Epithelial cei€annected to each other via adhesive
molecules and establish a junctional adheren network heardpical region. In this chapter
we develop a two-dimensional vertex model to study the mackaf the junctional network.
In this model each cell is approximated by a polygon (vestm@nnected by straight bonds). On
time scales shorter than the time scale of cell division angér than that of local perturbations,
the junctional network is stable and the total force on eamstex is zero. These forces, which
are due to cell mechanics and cell-cell interactions alagljboundaries, can be calculated
using a work function (Eg. 2.1). We introduce two dimensims| parameters) and T, to
characterize the ground states of the model. We find tha #vdast three phases as a function
of model parameters. In the gray region in Fig. 2.3 A, the gtbstate is a non-degenerate
hexagonal network. However, in the green and blue regiomgitbund state is degenerate. In
the green region, the ground states are networks with heshgacking such that the area of
all cells is equal to the preferred ard&) and their perimeter is equal to the preferred perimeter
L In the blue region ground states fulfill these two condiion area and perimeter of cells,
with the difference being that the ground state can acquyegacking.

We calculate the bulk and shear modulus of the network usingitebox shown in Fig 2.4.
For all parameter values for which the bulk modulus vanigfasigh line tension and contrac-
tility), the model breaks down and the network becomes bhs{@ee striped region in Fig. 2.3
A). For decreasing line tension, the shear modulus of thear&tdecreases. In the green re-
gion, the shear modulus vanishes for limited shear defoomstwhile in the blue region, the
shear modulus vanishes for any shear deformation. We eddcahalytical expressions for the
transition line between the gray and green regions. We fiatfth —A /8 < T' < —A//32V/3
the network is semisoft while far < —/_\/8, the network is soft. To shear the network in the
blue region to any extent, remodeling of cell boundariesdgiired such that a boundary shrinks
to zero and expands in the opposite direction. The tramsitn® between the green and blue
regions is calculated in a similar fashion.



3 Dynamics of Tissue Growth

Figure 3.1: Different stages of development of the wing disc of the fflyitDrosophila. (A)
Starting with a few cells{ 50), the epithelia grows in five days to the size of
~ 50,000 cells (provided by O. Wartlick). (B) A small portion of thessue at
higher magnification showing cell boundaries (provided3jy. [

Most epithelia develop from a few cells to their final size iyl division (proliferation). We
show in Fig. 3.1 A an example of the development of the wing dighe fruit fly Drosophila.
The wing epithelia starts from abobid cells and it grows to roughl§0, 000 cells within five
days. Each divides cell on average aboittimes. Spatial patterns of gene expression are
set up in the tissue to control growth, packing and morphekgf the epithelia. Although
cell division and cell rearrangement happens frequentiyndugrowth, the packing geometry
of the tissue is highly reproducible, indicating that thelerying mechanisms controlling cell
packing and cell shapes in tissue are robust.

In the previous chapter, we introduced a vertex model tordescell mechanics and cell
interactions in two-dimensional tissues. To study howifgtion affects the pattern of the
packing geometry of cells in tissues, we introduce cellgion in our vertex model. We simu-
late growth of a tissue starting from a few cells up to a laige.sCell division leads to local
rearrangements of the network. This involves changes teeth&éonship of neighboring cells.
We investigate how packing geometry evolves in a growingvagt. We also study the effect
of adhesion and cell contractility on the packing patterfretis in growing epithelia. We show
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that cell division, together with cell mechanics and celheslon, control the pattern of cells
in tissues. We then study the phase transitions discussti iprevious chapter for growing
tissues, and show that there exists a phase transition feequoilibrium growing networks.
Cell division induces local stresses which can relax thhotlng network via neighboring cell
shape changes, as well as via the remodeling of cell bowesdaklVe specifically study how
bond remodeling is affected by a local perturbation, such esll division, and also how cell
mechanics might influence the spatial distribution of reeliod) around a dividing cell. Moti-
vated by laser ablation experiments to cut a boundary in pitbedia, we study in our vertex
model the displacements that are generated by removingd laoceidary from the network. We
show that this perturbation generates anisotropic dispt@nts around the removed boundary,
and that the movements are strongly coupled to tissue mmshan

3.1 Cell Division in the Vertex Model

Inhomogeneity in the packing geometry of tissues is geadrhy three topological changes:
cell division, cell disappearance and junctional remadgliCell division adds a new cell, and
consequently two new vertices to the network (see Fig. 3.2¥¢ define a T1 transition as
the shrinkage of a cell boundary and the expansion in the 3fgpdirection, which changes
the neighbor number relation of surrounding cells (see Fig.B). After a T1 transition, the
neighbor numbers of the two cells sharing the boundary bettoe process decrease by one,
while the other two cells gain one boundary. A T2 transiti@satibes the situation when a
triangle shrinks to a point (see Fig. 3.2 C). This processadses the number of cells in the
epithelia by one and the number of vertices by two. An unstakdided cell, goes through a
series of T1 transitions until it becomes a triangle. Thisnigular cell is then replaced by a
vertex through a T2 transition. A schematic of these threehaeisms is shown in Fig. 3.2
A-C.

The elastic response of cells typically occurs on time scafeseconds to a few minutes
([20] and [21]). Most morphogenetic processes such as metlidn and cell rearrangement de-
velop on longer time scales compared to cell shape relaxafioerefore the junctional network
of cells can be assumed to be a stable and stationary cortfayuom larger time scales than
those associated with cell shape relaxation. We think ofvaldping epithelium as a sequence
of stable network configurations which undergo rearrangesi@ response to local perturba-
tions affecting the stable configuration. Such perturlmetimclude cell division and apoptosis
(cell death), but might also correspond to slow changeslinlaeproperties. This quasistatic
approximation allows us to define a history of stable con&gans by slowly and locally mod-
ifying model parameters. Thus, a particular packing geomethe consequence of the history
of such perturbations. By using our model, we can numeyvicathulate the evolution of cell
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A B C
TXEX XK A-A
cell division T1 transition T2 transition
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Figure 3.2: Topological rearrangements in vertex model. (A) Schenwdtaell division: Two
new vertices and a new boundary are added to the networkgittatine neighbor
number of surrounding cells. (B) T1 transition: A boundahnyiisks to zero length
and expands in the opposite direction. This changes thénbeigelationship of
the surrounding cells. (C) T2 transition: If the area of arngle vanishes, it is
replaced by a vertex. (D) Cell division in the vertex moddiepreferred area of a
dividing cell is increased quasistatically. A new bond isoeduced with a random
orientation. Both new cells are assigned the initial prefarea, and the resulting
network is relaxed. The yellow dot indicates the center efdhginal cell through
which the new boundary is initially formed.

packing geometry during tissue growth. We randomly seleeteell and divide it by the fol-
lowing algorithm: we double the preferred area of the celsistatically while relaxing the
energy functional with a conjugate gradient method (foadesee App. A; see Fig. 3.2 D, first
and second panels). After its size is doubled, the cell igldt/ by generating a new edge at
a random angle that passes through the cell center (see.EiD, 3hird panel). Here the cell
center is defined as the average of the vertex positions e&theC = (3" | R;)/n wheren is
the number of vertices of the cell. The two daughter cellsdna created by this procedure are
assigned the parameters of the other cells, including thieed areal®). The new boundary
also receives the same tensibas other boundaries. The resulting configuration is thexxeel

to the nearest stable configuration (see Fig. 3.2 D, fountelpaRepeating this algorithm, we
can start from a small number of cells and grow the tissueyaat number.
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Figure 3.3: Evolution of topology and morphology of a growing tissue.) (Average area
of n sided cells(A,,) relative to the average ardal) of all cells as a function
of generation number. (B) Fractiaf, of cells withn neighbors as a function of
generation number in a growing network for case\l€ 0.12, ' = 0.04). (C)
Normalized energy per cell of a growing network as a functbthe numberNV,
of cells, for parameter values corresponding to case I|,rgéna number is also
indicated. The energy approaches a value greater thandbadystate value of the
hexagonal network. (D) Logarithmic plot of standard dewiaif (A,)/(A) as a
function of generation number for the simulation of caseEl. Ilogarithmic plot
of standard deviation of the frequencyrekided polygonsg (P,) as a function of
generation number for the simulation of case I. (F) The sieshdeviation of the
energy per cell, averaged o\&0 individual divisions as a function of cell number.

3.2 Simulation of Tissue Growth

Starting with a few hexagonally packed cells as an initiaifiguration, we can simulate tissue
growth by dividing randomly selected cells using the aldon described in Sec. 3.1. During
this process, a distinct network pattern emerges that cashéeacterized by the fractioR,

of cells of different polygon classes (i.e., cells with diffnt numbers of neighbors) and

by the average area$, of n-sided cells. For increasing number of cells, the fractignof
n-sided cells, and their average aréa converge to constant values. In Fig. 3.3 A and B we
show the normalized average argd,)/(A) and the distributionP, for different classes of
polygons as a function of generation number, respectivdye (A) indicates the average area
of all cells in the tissue. We use different colors for diffet classes of polygons according to
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their neighbor number, and we use the model parameter vales 0.12 andT = 0.04. A
representative network grown with these parameter vakissawn in Fig. 3.4 A; each cell is
colored according to its neighbor number using the same coliing as in Fig. 3.3 A.

In Fig. 3.3 D and E, we show the standard deviatie((s!,,) /(A)) ando (P,) of both the area
and the fraction of:-sided cells, respectively, which decrease exponentiilly generation
number. The decay generation time 8y and A,, are3.14 and 3.60, respectively. Beyond
the larger of these characteristic generation numbergjghge patterns become stationary for
increasing generation number. After simulating approxetyeeight generations of cell division
(from 36 to 10, 000 cells), the standard deviation$P,,) ando(A,,) are less than 1%. We also
show in Fig. 3.3 C the normalized energy per c#lNo K (A©®)? of a growing tissue. The
energy per cell first increases with increasing cell numbdrthen fluctuates around a constant
value that is larger than the ground-state value of the henadattice. In Fig. 3.3 F, we show
the standard deviation of the energy per cellF /No K (A©)2). The standard deviation of the
energy density also decays exponentially with cell numbleis indicates that the grown tissue
is trapped in a local minimum and fluctuations resulting froail division cannot change the
statistical properties of the tissue. By using such an &lgor we can generate a distinct pattern
of cells and characterize them by measuring the statiorelnes of two sets of numberg,,
the fraction ofn-sided cells, which is a measure of packing inhomogenaeityd,)/(A), the
average area of-sided cells normalized by the average area of all cellseartigsue; the latter
quantity is a measure of cellular geometry in tissues.

3.3 Statistics of Cell Packing Geometries

In order to study how tissue morphology is influenced by thespatal properties of cells, we
performed growth simulations by systematically varyinggpaeter values. In addition to case |
(A = 0.12 andl’ = 0.04), we performed simulations for two more cases. In casa K=(0,T =

0.1) contractility is large relative to area elasticity, and tiround state is a hexagonal network,
asitisin case I. For case IIN(= —0.85, T = 0.1) line tension is negative, and the ground state
corresponds to soft networks (see Fig. 2.3 A). Represgatagitworks illustrating the stationary
state for case I, Il and IIl are shown in Fig. 3.4 A, B and C, exspely (colors as in Fig. 3.4
D-1). For these three cases, we start frdéhhexagonally packed cells and grow the tissue for
~ 8 generationsl1(, 000 cells). We then calculate the stationary values of packegnietry
and tissue morphology as their average values over th@3astell divisions (see Sec. 3.2).
These specific parameter values corresponding to case haserm in order to compare with
experiments. We will discuss in Chap. 6 that for these patanvalues, the packing geometry
and tissue morphology in simulations match best with thdseeosed in thédrosophila wing
disc.
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Figure 3.4: Examples of different tissue morphologies. (A)-(C) Exaaspbdf stationary net-
work patterns generated by repeated cell division for cgsksand lll, respec-
tively (case :':A = 0.12, T' = 0.04, case ILA = 0, ' = 0.1, case Il
A = —0.85, T' = 0.1). Color code for polygon class is indicated below panels
D-I. (D)-(F) Stationary distributions of neighbor numbéisfor cases I, I, and IIl.
(G)-() Average areas of different polygon classes nornedlito the average area
of cells in the network{A,,) /(A), for cases |, II, and IlI.

To accurately compare theory with experiment we need toiignodify the above method
of quantifying packing geometry. In our simulations all twegs are three-fold vertices: they
are connected to three neighboring vertices. In experintentever, instrumental resolution
renders cell boundaries shorter th#)¥ of the average bond length invisible. Therefore two
three-fold vertices that are closer than this distance eea $n experiment as a single four-
fold vertex. To mimic this effect in our simulations, afteewrow the tissue we replace those
vertices that are closer thaq’% of the average bond length by a single four-fold vertex, auth
any further energy minimization; this correction can slighmodify cell packing and tissue
morphology.

We present the stationary valuesiof for cases I-lll in Fig. 3.4 D-F. For case |, pentagons



3.3 Statistics of Cell Packing Geometries 35

form the most common polygon class (see Fig. 3.4 D), and tleeage neighbor number
(n)y =3 3" nP, =5.9. This implies that 2.44% four-fold vertices exist, which van estimate
using the following method. Using Euler’'s theorem for palyg covering a two-dimensional
manifold, the number of vertice$;, number of edgesiy and number of cells¢' are related
suchthat” — E + V = x, wherey is the Euler-Poincaré characteristic of the manifold. &or
infinite plane,y = 0. For a network that includes three- and four-fold vertidés= V3 + V),
the number of edges and the number of cells are given by

C:E—V:%H@ (3.1)

whereVs andV, are the numbers of three-fold and four-fold vertices, respely. Therefore
the average neighbor number) is given by

_2E_6+8oz

=5 = Ti2a (32)

wherea = V,/Vj is the fraction of four-fold to three-fold vertices. For aalirfraction of
four-fold vertices 1, < V), the average neighbor number(is ~ 6 — 4«, which implies that
Va/V = (6 = (n))/(10 — (n)).

As in case | described in Sec. 3.2, the fractidfysof polygon classes also converge during
growth simulations for cases Il and lll. The resulting netkvmorphologies, however, differ
dramatically (compare Fig. 3.4 A, B and C). In case Il (see Big E), the stationary network
contains a smaller fraction of hexagonal cells than in césed Fig. 3.4 D). Pentagons are most
common in this case. However, there is also a large fracti@elts with nine or more sides —
even20 sided polygons occur. In case llI, the coefficiefitandA are such that the ground state
is a soft network (see Fig. 2.3 A). Under these conditiomsygating proliferation generates the
stationary network morphology shown in Fig. 3.4 C. Pentagonm the most common polygon
class, and the fraction of cells with a large number of neigblis smaller than in cases | and Il
(see Fig. 3.4 F).

In addition to the topological disorder reflected in the fiaus £, of polygon classes, cells
are geometrically disordered in these three cases. Foil cdseaverage ared,, increases for
increasingn as shown in Fig. 3.4 G. However, for case Il, the average afigasee Fig. 3.4
H) vary more strongly with neighbor number than in case |.dseclll all polygons have the
same areal”) and the same perimeté&f®) = —A/2T. As a consequence, the cell area does
not depend on neighbor numberas shown in Fig. 3.4 I. The average neighbor number,
also varies for these three cases. For cas@}l:= 5.95, while for case lll:(n) = 5.46, which
indicates that the number of four-fold vertices in caseldyl Eq. 3.2) is roughly 0 times greater
than the number of four-fold vertices in case Il (caséa 23%, case I11:11.89%). These results
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show that cell proliferation can generate packing disowd#n specific reproducible features
that depend on the physical properties of the cells, as itbescby model parametefsandA.

3.4 Phase Transitions in Tissue Growth
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Figure 3.5: Phase transitions for growing tissues. The converged \aitlee order param-
eter plotted as a function of dimensionless line tensiofi’ = 0.05). The order
parameter vanishes for < —0.4.

We discussed in Sec. 2.3 that there exists a phase tranaiorsolid to semisoft networks
followed by a transition to soft networks, when varying tieeltensionA. Using a series
of analytic arguments, we calculate the transition lineMeen these three regimes. We also
introduced in Sec. 3.2 an algorithm to generate irregulakipg geometries using repeated
cell division and junctional rearrangements. We now ingasé phase transitions for non-
equilibrium networks, such as growing ones. In order to \sfpidase transitions in growing
networks, we first need to define an order parameter. We defineder parameterF, as the
dimensionless energy densit§: = F(R;)/Nc — A?/8T. Since our order parameter is equal to
the energy density, as we discussed in Sec. 3.2, it fluctimtéise first few generations of cell
proliferation and then converges to a well-defined valupedding on parameter values. The
order parameteF vanishes for those network configurations for which allsklve area equal
to their preferred ared©), and those for which all cells have a perimeter equal to théepred
perimeterL®) = —A /2.

To study a potential phase transition we simulate tissuevtrdor different values of the
line tensionA, keeping the contractility constarit (= 0.05). For each set of parameters, we
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start from36 hexagonally packed cells and grow the tissue upOtd)00 cells. We calculate
the average value of the order parametér), over the las250 cell divisions. In Fig. 3.5,
we plot the average value of the order parameter, as a fumeofidimensionless line tension.
The average order parameter vanishes\far —0.4. We repeat these simulations for different
sets of parameter valug¢d, ') and we find that the transition occurslat~ —A/8 for I' =
0.01,0.03,0.05,0.07 and0.09. However the actual value &) depends on the accuracy of our
energy minimization algorithm. As we described before, we a conjugate gradient method
to calculate the local minimum of the energy function. Thgoathm (App. A) searches for a
local minimum of the energy function for a given set of valésh and stops if the change in
the energy function for two search steps falls below a aettaieshold. Therefore the actual
value of the energy density, and consequently the valueeobttier parameter, depends on the
relaxation threshold. To study if minimization with higher accuracy changes ttansition
line, we repeat these simulations for the same set of paeamatues A, T') and for different
values ofe. In Fig. C.1 we plot the logarithm of the average value of thdeo parameter as
a function of the logarithm of for different sets of parameter valde(given” = 0.05). For

A > —0.4, decreasing the threshold does not change the averageofdhgorder parameter,
while for A < —0.4 this value converges to zero as we decreas®ur numerical analysis
strongly suggests that there is a phase transition frord smBoft networks for growing tissues
and that the transition line falls on the line we calculat@diie ground state phase transition in
Sec. 2.3.

3.5 Junctional Remodeling

As discussed in Sec. 3.1 our cell division algorithm inckidgrowing phase of the dividing cell
and a relaxation phase after division. In the growing phageincrease the preferred area of
the cell to two times the normal value quasistatically inva &eps. After each incrementin the
preferred area, the tissue is relaxed to its nearest locaimaim. When the size of the dividing
cell has doubled, we introduce a new boundary at a randone @amgl relax the tissue. In both
phases, local stresses arise in the tissue. These stressiesrarelaxed by cell shape changes as
well as cell bond remodeling (T1 transitions). It is alsogibke that a cell disappears from the
network during tissue relaxation (T2 transitions). Theuoed patterns of stress in the network
due to cell division depends on the mechanical propertiegis. Here we study statistics and
pattern of T1 and T2 transitions for a growing network forenicases. These cases have the
same perimeter contractility’(= 0.05) but different line tensions = —0.41, 0.1, and 0.16).
The first case corresponds to the soft networks regime (ge@ BiA), while the other two cases
correspond to the solid regime. For the third case=(0.16), the bulk modulus is significantly
smaller than the other two cases. Although the cases I4ibduced in Sec. 3.3 have similar
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mechanical behavior, here we restrict ourself to variagioronly one parameter (line tension).

For each case, we start frod6 hexagonally packed cells and grow the tissue upOt@00
cells, recording the statistics of T1 and T2 transitionsirduigrowth. During a single cell
division a few topological transitions (T1 and/or T2) occlihe number of T1 transitions per
100 cell divisions, fr1, is then defined as

=3 np.. (3.3)
n=0

wherep,, is the probability of having: junctional remodelings after a cell division. In Fig. 3.6
A, we show fy for the case\ = —0.41 as a function of the total cell number. After the first
few generations, the number of T1 transitions convergesaeladefined value. Althoughfr;
fluctuates for larger numbers of cell divisions, it is sigeafitly different for different sets of
parameter values. In Fig. 3.6 B we show the converged valtieeafite of T1 transitions,fr1),
for these three cases. FAr= —0.41, (fr1) is greater than the other two cases. In the soft
network regime £ = —0.41), T1 transitions are possible without work being done. Have
for the other two cases the network is solid and there is advdar T1 transitions. This is a
possible explanation for the different rates observedifese¢ three cases.

We define the number of T2 transitions pél0 cell divisions, f1,, as in Eq. 3.3:fr> =
> oo Pn, Wherep, is the probability of having T2 transitions after a cell division. In Fig. 3.6
C we showfr, as a function of cell numbeN. for A = 0.16. Similar to the number of T1
transitions,fr, also converges to a value for larger number of cell divisid¥s plot the average
value of f1, for different cases. For the soft networks the number of @@ditions is almost zero
(fro = 3.92 x 1074 4+ 2.77 x 10~%). However, for more positive values af the number of T2
transitions,fr,, increases significantly. Far = 0.16 it increases up t6.58 and half of the cells
eliminates from the tissue during growth. We conclude thpological rearrangements induced
by cell divisions, does depends on the mechanical progesfi¢he cells. The number of T1
transitions is higher for networks with lower shear moduod the number of T2 transitions is
higher for networks with lower bulk modulus.

To test the validity of this idea, we systematically charfggeparameter valu& from —0.41
to 0.16. For each case we grow the tissue ugd @000 cells and quantify the average number
of T1 and T2 transitions. In Fig. 3.7 A and B, we plot these ages as a function of. The
number of T1 transitions increases by a factoi ®for decreasing\. Up toA = —0.38, the
average number of T1 transitions increases smoothly anekoges to{ fr1) ~ 0.6. However,
for smaller value of\, the number of T1 transitions changes abruptly and att&maaximum
value. Interestingly, this value d¥, for which abrupt changes in the number of T1 transitions
occur, coincides with the phase transition from the serhtedhe soft regimes (see Fig. 2.3 A).
The average number of T2 transitions changes more strosglyfianction ofA. For A < 0.04,
the average number of T2 transitions is negligible. Howetvarcreases strongly for higher
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Figure 3.6: (A) Number of T1 transitions per00 cell divisions for a growing tissue for pa-
rameter valuesA = —0.41, T = 0.05) as a function of cell numbe¥.. (B) The
converged value of for three different cases of line tension. (C) Number of T2
transitions pei 00 cell divisions for a growing tissue fdri\ = 0.16, T' = 0.05) as
a function of cell numbeN.. (D) Average value off for proliferating networks
with different line tension.

values ofA up to 0.58 forA = 0.16.

3.6 Tissue Relaxation due to Local Perturbations

As we will discuss in Sec. 6.2, to investigate the interpl&yooces acting at the junctional
network of epithelial cells in the wing disc @rosophila, we perturbed this stable junctional
network by ablating a section of individual cell boundamath a UV laser beam. In response
to the cut, E-cadherin-GFP fluorescence, which is used td& mhar junctional network, dis-
appeared from the center of the cut cell boundary, and thiecgsrat both ends moved from
their initial positions. The vertices subsequently retht@new stable positions. Here we study
theoretically the model behavior due to local perturbatisach as removal of a cell boundary.
We will term this process as “laser ablation” and the remdvend as the “cut bond” in our
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Figure 3.7: (A) Average number of T1 transitions as a function of linesien A for growing
tissues [ = 0.05). The number of T1 transitions increases for decreasirg lin
tension and there are sharp changes near the transitiobdimeeen the semisoft
and soft regimes of the ground state phase diagram. (B) geemamber of T2
transitions as a function o¥.

theoretical study.

In experiment, we could not saypriori that laser ablation affected only localized line ten-
sion of cell boundaries, or whether perimeter contragtikis affected as well. Thus one can
imagine two scenarios to mimic bond cutting experimentsthinfirst scenario, we assume
that laser ablation only affects the tension of the ablataehidary. In the second scenario we
assume that both the tension in the ablated boundary andtheactility of the two cells ad-
jacent to the cut boundary is affected by ablation. Thesestwemarios generate different types
of displacements in the vertices surrounding the cut bogyndaemoving contractility of the
two cells sharing the cut bond would be expected to resulotropic expansion of these two
cells, whereas removing bond tension of the cut bond is eéggdeo produce anisotropic de-
formations of the cells adjacent to the cut bond. In the idedlcase of a perfectly isotropic
deformation, the perimeter would increase linearly witlramease in length of the cut bond. In
contrast, a strongly anisotropic deformation would resulittle or no changes in the perimeter
of the two cells sharing the cut bond. Real deformations mogimprise a superposition of
both anisotropic and isotropic movements. The measurenaéohanges in the combined area,
AA..;, and combined perimete\AL.,;, of the two cells adjacent to the cut boundary can be
used as a measure of anisotropy of the displacements, aredditeecan distinguish between
these two scenarios. We will discuss in Sec. 6.2 which se@gnan best generate the observed
displacements in experiments.

To simulate laser ablation, we select bonds for removal andetito zero the normalized line
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Figure 3.8: Laser ablation in two different scenarios. (A) and (B) Inrsm&o |, ablation is
simulated by setting only\;; = 0 for the cut bond. In scenario Il, ablation is
simulated by setting botKij = 0 and alsd’,, = 0 for the two cells adjacent to the
cut boundary. (C) and (E) Relative combined area changellsf agjacent to the
cut boundary as a function of relative bond length increassdenarios | and 1l (for
parameter values corresponding to case |). (D) and (F) iReledmbined perimeter
change of cells adjacent to the cut boundary as a functiorlafive bond length
increase for scenario | and Il (for parameter values coaredimg to case |). (G)
and (H) Relative area and perimeter changes for the @ase 0.12,T' = 0.02) in
scenario Il.
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tensionA;; of the cut bond for scenario | (see Fig. 3.8 A) and hathand the normalized con-
tractility ', of the two cells sharing the cut bond for scenario Il (see FigB). We start from a
stable network configuration generated by a growth algorfibr parameter values correspond-
ing to case | in Sec. 3.3\(= 0.12,T = 0.04). Randomly selecting a boundary for ablation,
we quasistatically decrease; and/orT,, of the cut boundary in few steps, while relaxing the
networks using the conjugate gradient method. For the gdaénof parameter§ and A for

all other cells, we determine the resulting distributiohsea and perimeter changes of the
pair of cells sharing the removed bonds. In Fig. 3.8 C-F, vasthis distribution of the com-
bined area changea A, hormalized to the average area of all cells and combinedneter
changesAL..;, normalized to the average bond length as a function of nilmethbond length
increase, for scenario | and Il respectively. Our analylsts\s that the combined area changes,
AA.., vary more strongly in scenario Il than in scenario |. The borad perimeter of the two
cells adjacent to the cut boundary also changes less inrsaéicampared to scenario Il.

We also examined how different parameter val(esT') affect the results of laser ablation
simulations. We perform laser ablation simulations forapaeter values that are slightly dif-
ferent from case I(A = 0.12, T' = 0.02), such that the tension is the same as case | while the
contractility is slightly different. In Fig. 3.8 G and H, wa@w normalized area and perimeter
changes, with respect to the normalized change in bondHefgt cells surrounding the cut
bond (using scenario Il). Our results indicate that evenstarth small changes in parameter
values the results of laser ablation change dramaticalig. dombined area changes of the cut
cells are less than simulations of case | indicating that déegsotropic movements occur due to
laser ablation. From these simulations, we conclude tisat lablation is strongly sensitive to
the model parameters, line tension and perimeter corittacti cells, and can thus be used for
testing precisely forces in the junctional network of cellgpithelia.

3.7 Summary

Tissues in nature experience a growing phase during dewelopwith several rounds of cell
divisions. The final shape and morphology of the tissue Itligcontrolled by a complex gene
network. This network controls patterns of cell divisiorthe tissue as well as the morphology
of cells. Cell packing and morphology is affected mostly Byl mechanics. In this chapter,
we have introduced a cell division algorithm based on qtetsischanges of cell properties.
This algorithm has two main steps: (i) A growing phase of tiwdihg cell during which the
preferred area of the cell is doubled in a few steps while mizing the energy after each
increment. (ii) At the end of this growing phase, we introel@cnew boundary at a random
angle passing through the cell center. We assign the samaenpters for the two new cells
and new boundaries as in the surrounding tissue. The tissthen relaxed to the next local
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minimum. Repeating this process, we can grow the tissugrgjdrom a small number of cells
up to an arbitrary size.

Cell division introduces disorder in the packing geomefrihe network, which can be char-
acterized by two sets of numbers: The fractiomedided cells,P,, and the average area of
n-sided cells normalized to the average area of cells in theark, (A,,)/(A). We show that
these quantities converge to well-defined values for grgwissues. To study how the packing
geometry of a growing network is affected by cell mechanwes,simulate tissue growth for
three sets of parameter values. Repeated cell divisiorihteg&iith cell mechanics and cell
adhesion can generate tissue morphologies that are sogbyidifferent from one another. For
case | \ = 0.12, [ = 0.04), pentagons are the most frequent polygon class and theciney
of six-sided cells is around two times more than case Il, @ltgr= 0, T' = 0.1). For case II,
cells with a large number of sides (nine or more) are frequard ever20-sided cells are gen-
erated during growth. However, for case IN & —0.85, T’ = 0.1), the frequency of nine-sided
cells is negligible. The area variability is also differént these three cases. In both case | and
I, the area ofz-sided cells increases linearly with cell neighbor numhghut the variation in
case Il is much stronger than in case I. This is significanffgint for case Ill, in which the
area of different class of polygons does not depend on neigiimber.

We then study two questions for these growing, non-equilibttissues. We first study phase
transitions now for a growing network, which were introddider the ground state in the pre-
vious chapter. We use the energy density of the network ascn parameter and we simulate
growth for different sets of parameter values. We show thatarder parameter vanishes for
parameter values lying in the soft regime of the ground gihtse diagram including the line
between the semisoft and soft regimes. The value of the pal@meter depends on the min-
imization threshold. Therefore to check whether decreasdise threshold can change our
results, we repeat these simulations for different valdéseminimization threshold. We find
that changing this threshold has no effect on the transiith@and this line agrees exactly with
the transition line between the semisoft and soft regimésefround state phase diagram.

The second question that we study here concerns stressasgtiraduced during cell division.
These stresses can change the shape of surrounding celd as vesulting in two topological
rearrangements: T1 and T2 transitions. In a T1 transitidsguandary shrinks and expands in
the opposite direction and consequently changes the neighlmber relation of surrounding
cells. T2 transitions correspond to elimination of a calhfrthe network, such that an unstable
triangle is replaced by a vertex. We study the dynamics of AdLE2 transitions in a growing
network. We find that the rate of T1 transitions increasesléareasing line tension (decreasing
the line tension results in decreasing the shear modululseohétwork). Near the transition
line between the semisoft and soft regimes of the grouneé gliadse diagram, the rate of T1
transitions increases abruptly. The rate of T2 transitionseases for increasing line tension
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(decreasing bulk modulus). For parameter valdes-(0.16, I' = 0.05), this rate is so high that
on average every two cell divisions result in one cell eliation.

We finally studied the displacement field of vertices due tmlgerturbations such as re-
moval of cell boundaries. We showed that this results inaroepic movement of vertices
around the removed boundary. Vertices in the direction efdit bond moves outward, how-
ever, vertices perpendicular to the cut bond moves sligi¥ard. We characterize the anisotropy
of movements by quantifying the changes in the combined amdgerimeter of the two cells
that share the removed boundary. In a purely isotropic d&tion of the two cells next to the
cut bond, perimeter would increase linearly with the inseeen length of the cut bond. How-
ever, a strongly anisotropic deformation would result mast no changes in the perimeter of
the two cells sharing the cut bond. Since this analysis igvaied most by experiments that
a cell boundary is cut by laser ablation, we cannot say aigraw the laser affect mechanics
of the two cells next to the cut bond. We therefore studiedseenarios for removal of a cell
boundary. In the first scenario, we only remove the tensioth@fooundary leaving the two
cells next to the boundary otherwise unaffected. In the mgcuenario, we remove both the
tension on the boundary and also the perimeter contrgatilithe two cells adjacent to the cut
boundary. In both cases, we decreased the tension (and/petimeter contractility) quasistat-
ically, while minimizing the network energy after each gstatic step. In these scenarios, we
studied the anisotropy of displacements due to ablationnantbund that the second scenario
generates greater anisotropy than the first one. We alseedthdw mechanical parameters
of the tissue might affect the displacements due to remdvaloll boundary. We found that
slight changes in the parameter values of the model gengigidicantly different displace-
ments around the cut bond. The displacements are lessrapiedor the case that we slightly
change the perimeter contractility of cells frdm= 0.04 toI" = 0.02, while keeping the line
tension constant. We conclude that laser ablation analysjsite sensitive to cell mechanics
and cell adhesion in tissues and can be used as a probe tafgpeattisely forces in the tissues.



4  Tissue Ordering and Remodeling

Apart from the growing phase of tissue development chanaetd by frequent round of
cell divisions, most epithelia experience a variety of ninmpgical changes lacking cell di-
vision. This includes processes such as convergent-eateasd epithelial repacking. During
convergent-extension, the tissue shears strongly arslinércalate such that, at the end of the
process, the length of the tissue expands in one directi@fagtor of two or three while con-
verging in the other direction. An example of convergerteasgion in the embryo ddrosophila
is shown in Fig. 4.1. Another example of tissue remodelindj@mlering happens during pupal
development in the wing dDrosophila, in which the packing geometry of cells changes dra-
matically toward an almost hexagonal network. This improgat in the hexagonal packing is
accompanied by emergence of another feature of the tisauggly planar polarization. A set
of interacting proteins redistribute anisotropicallyideseach cell, such that it becomes struc-
turally polar. These polarized cells align with one anotieoughout the tissue, giving rise to
global orders. During this process, one round of cell donsvithout growth happen, and the
tissue shears dramatically.

In this chapter we address various questions regardingingdand remodeling of tissues.
We first study convergent-extension of tissues due to delt¢alation induced by T1 transitions
and show that to have an effective shear flow, we need oridritécnsitions to occur. We then
study the effect of one round of cell doubling without growtt packing geometry, and show
that oriented cell doubling without growth can shear thewoek effectively. We identify two
general methods for repacking of a grown tissue: anneahgshaear flow of the network. To
anneal the network, we randomly change the tension on cetideries and continuously relax
the network towards the next local minimum. We show thataéipg this process significantly
results in more regular packing geometry of the tissue. Nexttudy shear flow of the tissue for
no-slip boundary conditions. We show that, similar to atingathis process can also improve
the hexagonal packing of the network. We then introduce aryhi®r planar polarity of cells,
which is coarse-grained on the level of proteins that takeipa&ell polarization. We introduce
a robust mechanism to generate long range order in thesensysEinally we study the effect
of shear flow on tissue polarization and we show that the pylaf cells reorients towards the
shear direction. This suggests that on large length sda¢esyistem behaves similar to a liquid
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crystals under shear flow. Using this idea we develop a hydhaahic theory for polarized
tissues, introducing a phenomenological parameter thatrals how polarity is affected by
shear flow.

4.1 Internal Shear Generated by Remodeling

4.1.1 Ordered Junctional Remodeling

A

Figure 4.1: Convergent-extension. (A) Schematic of intercalation @fscvia junctional re-
modeling, which results in convergent-extension. (B) G&gent-extension in the
Drosophila embryo (adapted from [7]). The tissue expands its initinbté by a
factor of two in the absence of cell shape changes or cekidni Cells strongly
intercalate with each other resulting in narrowing of tlssdie in one direction and
expansion in the other direction.

In the early development of animal embryos, there existagesivhere the morphology of the
embryo is dramatically restructured by cell migration. 3&dramatic changes are governed by
convergent-extension processes, in which cells inteieé&taange their neighbors via junctional
remodeling) with each other and the tissue becomes long&n@s in one direction). This
extension is not driven by cell division or cell-shape chemdut rather by a rearrangement of



4.1 Internal Shear Generated by Remodeling 47

cells in the epithelium. A schematic of this cell rearrangeis, cell intercalation and extension,
is shown in Fig. 4.1 A. Note that cells that are in contact befotercalation, loose their contact
and acquire new neighbors. One classical example of commerxtension in biology is the
germ-band elongation of the embryo of the fruit Dyosophila, in which the length of the
epithelia increases by a factor of two. Here the remodelingeth-cell junctions is not driven
by external forces at the epithelia boundaries, but depend®rces that act locally on cell
boundaries. It has been shown experimentally that junaticemodeling during germ-band
expansion have certain orientation in the plane of the efilti7]. A schematic of germ band
expansion in the fruit fly embryo and an image of the tissudav in Fig. 4.1 B (adapted
from [7]). Here cells are marked with different colors (iaity forming rows) and followed
with time. It is evident that during convergent-extensioglls intercalate and change their
neighbor relations.

In this section, we study the effect of forced junctional oglmling (T1 transitions) on tissue
shape and morphology in the absence of cell divisions. lerota study how the orientation
of the selected bonds for T1 transition might affect the shat@ of the tissue, we select bonds
for junctional remodeling such that their orientation withspect to ther axis is limited to
[0, = — 0]. The anglef, can vary between zero and2. If # = 0 then bonds with random
orientation are selected for T1 transitions, and i= 7/2 only vertical bonds are selected
for junctional remodeling. Selecting a bond with specifientation, we then quasistatically
increase the tension on the chosen boundary and relaxingetirk towards the next local
minimum. This results in shrinkage of the length of the bargdWe increase the tension on
this boundary until its length falls below a threshold. Wertlchange the neighbor relation
of the two vertices at the end of this specific bond and chahgdension of that bond to a
value equal to the other bonds in the tissue. Finally we riflexnetwork towards the next local
minimum.

In Fig. 4.2 A, we show the initial network configuration @f000 cells generated by growth
algorithm for \ = 0.06, I' = 0.05). In Fig. 4.2 B and C, we show the network configura-
tion after 10, 000 repeated T1 transitions for two choices of the arfgle 0 andf = 4x/9,
respectively. Selection of bonds with random orientatienT1 transitions{ = 0) results in
almost no shear deformation of the tissug /L, ~ 1 after10,000 T1 transitions). However,
for 6 = 4r/9, this process can generate a continuous shear flow of thetigs/L, = 2.23
after10, 000 T1 transitions). In Fig. 4.2 D, we pldt, /L, as a function of convergent-extension
steps,V, for these two cases. The shear deformatfignL, increases linearly wittV for the
first 5,000 T1 transitions. The nonlinear incrementin/L, after5,000 T1 transitions might
be due to finite size of the tissue.

These results suggest that a planar organization of T1liti@msis required for an effective
convergent-extension of the tissue. To study how this axgaidering might affect shear rate
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Figure 4.2: Convergent-extension induced by polarized T1 transitio(s) A grown net-
work for parameter values\(= 0.06, I' = 0.05). (B) Network configuration
after 10,000 T1 transitions, where bonds are selected at random oriensat(C)
Convergent-extension aftéf, 000 T1 transitions, where bonds are selected with a
restricted anglel = 47/9). As opposed to the case in (B), the tissue expanded
in the x direction by a factor o~ 2.23. (D) The aspect ratio of the simulating
box, L,/ L,, for cases (B) and (C) as a function of cell number. (E) Shatar for
different sets of parameter values as a function of the ahgle

of the tissue, we perform simulations while systematicalynging the anglé. For each
simulation, we measure the average shear rate as the ax@drtgevariation in the box size
ratio, L, /L,,. For parameter values as above we plot the average shean Fitg 4.2 E (blue
line) as a function of the anglé. As discussed previously, far = 0 bonds with random
orientation are selected for T1 transitions, and this tesul approximately zero shear rate.
However, if we increasé, i.e. we select bonds for T1 transition that lie in a limitedyalar
zone, the shear rate increases up ta 77/18. Interestingly, for a sharper angular zoe=
47 /9), the shear rate decreases significantly to a lower nonvztue.

We next study how cell mechanics might affect shear ratenduronvergent-extension. We
repeat simulations similar to the case= 0.06, I' = 0.05) for other sets of parameter values;
we choose the same perimeter contractility as the previases, evhile vary the line tension. For
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each set of parameter values, we choose different afigdesl simulate convergent-extension
for 10, 000 steps. In Fig. 4.2 E, we plot the shear rate for each angle actd ®t of parameter
values. The two cases = —0.06 and—0.24 are similar toA = 0.06 in that they lie in the
solid region in the ground state phase diagram. These tlasesshow similar behavior: the
shear rate increases for increasthgp to a certain value and then decreases for latgdihe
shear rate for these cases is zerodfer 0. For other values of, the shear rate decreases for
decreasing line tensioh. For the case\ = —0.42, however, the network is soft and for any
choice off) the shear rate is approximately zero. From these resultonawde that shearing
a network internally (i.e. as to produce convergent-extensiepends strongly on the system’s
ability to undergo T1 transitions. The shear rate of thaugsduring convergent-extension also
depends on the shear modulus of the network. Networks wgthenishear modulus have higher
shear rates during convergent-extension and for netwoitksagro shear modulus, the shear
rate is almost zero.

4.1.2 Cell Division without Growth

In this section we introduce another mechanism that canrgenshear in tissues internally in
the absence of external forces. We use a modified cell divaigorithm, such that a cell that
has not divided is randomly selected in the tissue. We thigadace the new boundary passing
the cell center and assign half of the preferred area of ththenaell to each of the daughters
and then relax the network to the next local minimum. Notétifia algorithm is different from
what we described in Sec. 3.1:

(i) In this algorithm cells only divide once.

(i) The mother cell does not double its size before division

(iif) The new daughter cells have half of the preferred arfeh® mother cell.

Since the preferred area of the daughter cells is half of tbthen, the total area of the tissue
almost remains unchanged during this process.

We start from a grown tissue of 600 cells for parameter valued (= —0.12, T = 0.04) and
we perform one rounds of cell division without growth. Foe ttase that there is no preferred
angle for the new boundaries that are formed during celstivis, the shear rate of the tissue is
negligible. In Fig. 4.3 A and B, we show the initial and finabtmerk configurations after one
round of cell division without growth, respectively. Hovesyif we assume a preferred angle
for the new bonds that are formed during cell divisions, t@a generate strong convergent-
extension. In Fig. 4.3 C, we show the network configuratiderabne round of oriented cell
division without growth, where the new boundary introducknling cell divisions attains an
angled = 7/2 + 7/18. Here, the network shears by a factor of two after one rouratiehted
cell doubling without growth. In Fig. 4.3 D, we plot the ratlg /L, as a function ofN. for
simulations of isotropic and oriented cell division with@uowth.
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Figure 4.3: Cell division without growth. (A) The initial network configation of 1600 cells

generated by the growth algorithm for parameter valdes-(—0.12, T' = 0.04).

(B) Network configuration after one round of isotropic cedlision without growth.

(C) Network configuration after one round of oriented celision without growth.
The new boundaries that are generated by cell divisions hgweeferred initial
angled = 7/2 + 7/18. The network shears due to oriented cell division without
growth. In A-C cells are colored according to their neighbomber (for the color
codes see (E)). (D) The tissue aspect ratig L, as a function of cell number. (E)
The frequency of:-sided cells during one round of oriented cell division itk
growth.

Note that the packing geometry of the network also changesglane round of cell doubling
without growth. We show the frequency efsided cells as a function of cell number for a
network with oriented cell divisions without growth in Fig.3 E. The frequency of six-sided
cells decreases for the first half of the process, while gguency of eight-sided cells increases.
Later the frequency of six-sided cells increases to abdfidt Interestingly, the frequency of five
and seven-sided cells approaches to a similar value by theféhe process indicating that they
appear mostly in pairs. From these two sections, we conc¢hateoriented T1 transitions and
oriented cell division without growth can generate sheahenetwork in absence of external
forces. Although for simulations of cell division with grély we observed that the packing
geometry of the network converges to a specific value andirsmanaffected by further cell
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divisions, here one round of oriented cell doubling withgrawth improves the hexagonality
of the network.

4.2 Dynamics of Hexagonal Order

4.2.1 Annealing

(]
e
“.

o8

9
(]
L

S04
QN K
03L
0.1F
0 \r\_g , . | | T 1 .
0 1000 2000 N 3000 4000 5000 O 0.1 0.2 M 0.3 04 0.5

Figure 4.4: Simple annealing of the network results in hexagonal reppgcéf the network.
(A)-(C) Three time points of annealing simulations for awnatissue correspond-
ing to case (A = 0.12, ' = 0.04) and noise strengthy = 0.5. (A) is the initial
network configuration generated by growth. Each cell is malcaccording to its
neighbor number. (D) Frequency ofsided cells as a function of annealing step
for 4 = 0.5. (E) Converged value of the frequency of hexagons in anmgaimu-
lations as a function of noise strength

Apart from the growing phase of tissue development, in whegeated cell division induces
disorder in the packing geometry of tissues, there is a pbaskevelopment during which
the packing of the tissue changes dramatically toward txadmnal packing. This process
happens mostly in the absence of cell division. In this areddiowing sections, we introduce
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two mechanisms that can influence the hexagonal packingis$@et In the first mechanism,
we introduce fluctuations in cell boundary tension that esult in annealing of the network
toward the hexagonal ground state. In the second mechawsmenerate a shear flow in the
network that can likewise repack the tissue and increaselsekagonality of the network.

We showed in Sec. 3.2 that cell division introduces disondéne packing geometry of tis-
sues. During repeated cell division, the tissue becom@péhin a local minimum of the
energy function and the packing geometry converges towagkaific pattern. Although cell
division generates fluctuations in packing geometry of thsvork, these fluctuations are not
sufficient to drive the tissue towards the hexagonal packiere we introduce fluctuations in
cell boundary tension that induce rearrangements, whigkh&n biased by the energy function
toward the hexagonal ground state. This is analogous toasinge during which crystalline
order is approached. We start with an irregularly packedordt configuration, in which pro-
liferation had ceased and introduce stochastic changéseofdnsions\;; at randomly chosen
cell boundaries. The line tension of the boundary is thenifieabasA;; = A(1 £ 1), wherep
is the noise strength and,;;) = A is unchanged.

We start from a grown tissue with irregular packing geomasing parameter values corre-
sponding to case(IA = 0.12, T = 0.04) (see Fig. 4.4 A). We then change the tension of each
bond stochastically as described above and relax the netaard a local minimum. During
this process, a number of T1 transitions occur. We repesiptioicess for many steps until the
network packing converges to a specific distributions. ysF4.4 B and C we show two snap-
shots of an annealing simulation fpr= 0.5, where the tissue rearranges to hexagonal packing
by the end of this process. In Fig. 4.4 D we plot the frequerfaifterent polygon classes as
a function of annealing stepd]. The frequency of six-sided cells increases and conveqas t
value, higher than the initial value generated by growtmgaguently the frequencies of other
polygon classes decrease. Interestingly, the frequenpgmifigons, which is the highest at the
beginning of annealing, approaches to a similar value ageleency of heptagons. Pentagons
and heptagons appear mostly as pairs during annealingagions (see Fig. 4.4 C).

We wonder if the stationary frequency of hexagons dependienoise strength. We sys-
tematically change the value pffrom 0.05 to 0.5 and simulate annealing for the given noise
strength. In Fig. 4.4 E, we plot the converged frequency géjens P;) for simulations of an-
nealing with different noise strength. The converged valug’) increases linearly with noise
strength. We conclude that the disordered geometry of thidgnating tissue represents a local
minimum of the energy function. Because the global minimamoase | is a perfect hexago-
nal lattice, the energy function would bias fluctuations timdp the initially irregular network
closer to the hexagonal ground state. Our simulations shatritroducing fluctuations in line
tension (which could correspond to fluctuations in adheaiwh contractility in real tissues) is
sufficient to drive remodeling.
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4.2.2 Shear Flow

The second mechanism that affects tissue packing geonsestyeiar flow. To generate shear
flow in tissues, we use different boundary conditions thagsarsed in growth simulations. We
introduce no-slip boundary conditions by fixing the positaf vertices on the lower and upper
parts of the simulating box. We also fix,, the length of the simulating box in thedirection.
This is different from growth simulations, where we minimihe energy function with respect
to box sizesL, andL,, i.e. we impose no external forces on the boundaries. Herseleet
vertices in the middle of the tissue such that their conngdiionds make a horizontal line (red
line in Fig. 4.5 A). We then impose a small displacement taé¢heertices in the middle of the
network, relaxing other vertices while keeping the positd vertices on the boundary and in
the middle fixed.

One difficulty in generating shear flow on tissues is the exis¢ of soft elastic modes asso-
ciated with large-scale shear deformations. We use thewolly algorithm to generate shear
flows, which has three main steps; by repeating these stepanvgenerate continuous flow of
the tissue. We first increase slightly theosition of the middle vertices. We then minimize
the energy function using the conjugate gradient methoiddusgher precision than in other
simulations). During this step, we only minimize the enefgyction with respect to the po-
sition of vertices, while preventing any topological resrgements (we prevent T1 transitions
from happening). We then search for those bonds that aréesttban a threshold, impose a
T1 transition on those vertices, and relax the network ugiegonjugate gradient method. We
repeat this last step until no T1 transitions happen. We ithenease the position of the middle
vertices slightly and repeat these steps. We show in FigA4liree time steps of the shear
flow of a grown tissue, marking a few cells in the tissue wittiedent colors to illustrate their
movements.

In Fig. 4.5 B we plot ther component of the velocity field in the tissué,, (averaged over
the = direction) as a function of. The velocity is maximum in the middle of the tissue and
decreases linearly to zero towards the boundary. Smalkis reported foy = 0 andy = L,
are artifacts due to binning. During the shear flow, the pagkif the tissue changes dramati-
cally. The number of hexagons increases while the numbehefo-sided cells decreases. We
show three time points of tissue flow in Fig. 4.5 C where eadhiseolored according to its
neighbor number (for color codes see Fig. 4.4). As the caldch in the shear direction, T1
transitions happen, which increases the number of hexad®desquantify the proportions of
n-sided cells in the tissue and plot them as a function of skiegus,V, in Fig. 4.5 D. Similar
to the annealing case, the percentage of pentagons dexeabeonverges to a value similar
to the percentage of heptagons, which again indicates Heasiiled cells and seven-sided cells
appear as pairs during tissue flow. This is evident in the hamel in Fig. 4.5 C. Note that there
Is a transition from shear flow to shear banding dependindhemtagnitude of the increment
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Figure 4.5: Shear flow in the vertex model. (A) Three time points of sheaw ih the vertex
model. Vertices lying on the red line in the middle of the wissnove to the left
with constant velocity using no-slip boundary condition ewrFcells are colored
differently to illustrate the flow. (B) Packing geometry bkttissue for three time
points of tissue flow (color codes as D). (C) Average of theomponent of the
velocity, V., over thex direction as a function of normalized coordinate. (D)
Frequency of different polygon classes as a function of rséieg, N.
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in thex position of the middle vertices during each step. We do natysshear banding in this
thesis.

4.3 Theory of Planar Cell Polarity

As we discuss in Sec. 1.3, planar cell polarity (PCP) is auidsvel phenomenon that coordi-
nates cell behavior in epithelia. A particular example air@r cell polarity at work is revealed
in the orientation pattern of hairs, which form on the wingloé fruit fly Drosophila. Planar
polarity is established by a molecular organization theltides asymmetric distribution of PCP
proteins within cells. The distribution of these proteingigiven cell determines of the polarity
of neighboring cells. At the end of wing development, a siiepiattern of PCP orientational
order is established. Here we present a coarse-grainedputasctof cell polarity and discuss
how such a cell-size model can result in large range orden®PCP distribution. We also
discuss how a polarized tissue responds to various defamnsatuch as shear flow.

4.3.1 Planar Polarity in the Vertex Model
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Figure 4.6: Schematic of PCP proteins within the vertex model. (A) Thellef proximal or
distal proteins on each side of a cell boundary betweenweréad j is denoted
by o andcrﬁ.. (B) Example of PCP configuration for a randomly packed ¢alu
network.

The vertex model that we described in Chap. 2 could predickipg geometry and tissue
morphology, but contains no information about planar pplaf cells. To explain cell polarity
dynamics and tissue mechanics consistently and within cogehwe add a PCP subsystem
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to the vertex model. Here we coarse-grained our PCP modeldifferent proteins that are
involved in planar polarization of cells, such that we onfnsider two type of interacting
proteins. We name these two interacting proteins as “praKiand “distal” proteins. In this
coarse-grained description of the PCP system each bondeéetwertex; and j is assigned
two variableso?: and aﬂ, wherea and 3 are indices of the two cells sharing the boundary
(1,7) (see Fig. 4 6 A). These variables;, describe the level of PCP proteins on either side of a
boundary and can take values betwednand1. Positive values of;; correspond to high levels
of proximal proteins (shown by blue in Fig. 4.6 A and B) Whllegatlve values correspond to
the presence of distal proteins (shown by red in Fig. 4.6 ABnhdProximal and distal PCP
proteins form complexes in cells that interact differerattyoss cell boundaries and within the
cell. These complexes attract each other across cell baesdahile each locally inhibits the
presence of the other within a cell.

These effects can be mimicked by an energy function for thie &Gtem

E({o%}) leam o — Ja Z oo, (4.1)
(3,5,k)

where J; and.J; are interaction parameters. The first term in Eq. 4.1 dessribteraction of
PCP proteins across cell boundaries, separating eddisd 5. The sum is taken over all cell
boundaries(i, j). For positive values of/; the energy is minimal when proximal and distal
proteins interact (proximal and distal proteins accunautat different sides of a boundary).
The second term, with positivé, describes inhibition of proximal and distal proteins with
cell «; the sum is over all pair&;jk) of adjacent bondsij) and(jk), implying that inhibition
can reach to neighboring bonds. In Fig. 4.6 B, we show an ekaafmlistribution of proximal
and distal proteins in a randomly packed network. We comngwle additional constraints for
the variablesr;:

(I) equal amounts of proximal and distal proteins are foumeach cell.

(I) these amounts do not change with time.
These two constraints can be fulfilled using Lagrange migtip. These constraints are mathe-
matically given by

() — > of=

(3,7;0)

(I1) — 2(03)2:0, (4.2)

(i,5;0)
where(' is a constant and the summatignj; «) is over all bondss, j) of cell . Using these
additional constraints, we define the energy functidoy; })

F({o&}) = E({o5}) ZAO‘ > o ZAO‘ > ((e8)? -0, (4.3)

(i,5;) (N HeY)
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where\{ and\$ are the Lagrange multipliers and the summation; «) is over all bondsi, j)
of cell «. Using such an energy function, we can define a set of dynamuiatens for the PCP
level of each cell bond e OF (o)

o o5

dt] = —ka%J, (4.4
wherek, = 1/7.J; is a kinetic coefficient and is the relaxation time for proximal and distal
proteins. To fulfill the additional constraint (that the P@&Rel of each bond is limited to
[—1,1]), we introduce a new variablg’;, such thay; = cos(¢g;/2). We can then write the

dynamic equations in Eq. 4.4 for the new variablgs

4.3.2 Origin of Large-Scale Polarity

Before studying the dynamics of the PCP model, we need toelebncepts to analyze the
pattern of PCP proteins in tissues. For a given distribugbproximal and distal proteins
inside each cell, we define a polarity veciy, for that cell, whereP;* and P, thez andy
components of the vector are defined as

1 2w
Pax:ﬁ/o U(@)COS@d@
1 2w

The PCP distributiong(6), is the level of proximal and distal proteins on cell bounesuat
the angle) with respect to the: axis. In our model, the PCP distribution is constant oveheac
boundary and we can do the integration in Eq. 4.5 analysicall

1 2T
= — o(8) cos 0do
2\/5/0 ©)
1 Bi
= —2\/3 %aij /eij cos 6db

1 . :
= 53 % oi;(sin 0, — sin 0;5)

2%

1 a
Pg = ﬁ % Uij (COS Hl-j — COS ij), (46)

whered;; is the angle between vertéxand its neighboy. We define the orientation correlation
function

1 Rn+AR

A\ P, Psi(|Ra — Rp| — )
a,B

4.7)
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Figure 4.7: Large-scale polarity. (A) Network of hexagonal packing36fcells with a ran-
domly distributed proximal and distal proteins. The arrelew the direction from
the proximal to the distal sides of cells. (B) EquilibratedAPconfiguration of A.
(C) Spatial correlation function of cell polaritg;(R,,), for the networks shown in
A and B. (D) Randomly distributed PCP configuration for a retwof 400 cells
in hexagonal packing. For plotting purpose, we only showpblarity vector of
cells. (E) Equilibrated PCP configuration of D, in which feefelcts remain in the
network after the equilibration. (F) The correlation funatof cell polarity for the
networks shown in D and E.

with the normalization factor
Rn+AR
N, = A\ 6(|Ra — R — V). (4.8)
B o,

We bin cells according to their center-center distance2nd= nA R denotes bin boundaries
andAR is bin size.R,, andR ; indicate the position of the center of celisand3, respectively,
and the sum is over all pairs of cells in the network. In théofeing sections we choose bin
sizeAR as the average cell diameter in the tissue.

To study the behavior of the PCP model described in Sec.,Ax& Isolve numerically the
dynamic equations for the PCP variabl¢s;; }, for a hexagonal network packing. We use a
fourth-order Runge-Kutta method to solve the dynamic eqoatgiven by Eq. 4.3, with in-
teraction parameterg, /J, = 2 and relaxation time = 1. We use a random distribution of
proximal and distal proteins as our initial PCP configumatibor small lattices, the PCP system
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equilibrated toward a state where the polarity arrows ot#iks point in the same direction and
long range order appears in the network. Since there is rierped direction for the polarity of
the network, the final direction of the polarity arrows isdam and pointing in one of the six-
fold symmetric directions specified by the hexagonal neftwdém Figs. 4.7 A and B we show
an example of initial and equilibrated states for a lattit&®cells, respectively. In Fig. 4.7
C we plot the correlation functio@'(R,,) for the initial and equilibrated pattern of PCP . For
the initial PCP pattern (chosen randomly) the correlatigrction is almost zero, while for the
equilibrated state the correlation function reaches itsimam.

During equilibration of the PCP system for larger networkdapty defects appear in the
network that are stable for long time scales; the systenapptd in a local minimum, which
requires large fluctuations to pass the barrier towards lttgagminimum. These defects de-
stroy the long range order in the system. In Figs. 4.7 D andessivaw an example of initial and
long time equilibrated PCP system for a hexagonally pacletdark of400 cells, respectively
(to show defects in the network more clearly, we only showpiblarity arrows of cells and not
cell boundaries). We also plot the correlation funct@r,,) for the initial and equilibrated
PCP system in Fig. 4.7 F. The correlation is high for smallasises, while it decreases over
large distances due to the presence of defects.
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Figure 4.8: Large-scale PCP order in growing tissues. (A) Part of a grissgue in presence
of PCP proteins. Arrow indicate the direction of polaritycedls. (B) Small portion
of the tissue in (A). (C) Correlation function of cell polyrior a growing network
as a function of cell-cell distance normalized to bin sigg/ AR, for three stages
of tissue growth. The total number of cell$¢, is indicated.

Thus far we cannot generate polarized tissues of arbitiagystarting with a random dis-
tribution of PCP proteins and relaxing the system towardnir@mum. The fact that the PCP
system in networks with a small number of cells relaxes spuusly to its global minimum
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suggests that we can add one more cell to this small polaronketay cell division and then
relax the new PCP configuration, while maintains long-ramigier. Even if the polarity of the
new cell is different from the global polarity of the tisswije to neighbor interactions they
will align their polarity with the global direction of thessue polarity. Repeating this process,
we can generate arbitrary large polarized tissues. In F§jA4we show an example of such
a polarized grown tissue. In Fig. 4.8 B, we show a smallericecif the network together
with distribution of proximal and distal proteins on eacmto We plot the correlation func-
tion C'(R,,) for different cell numberV. for a growing tissue in Fig. 4.8 C. For increasing cell
number,N¢, the shape of the correlation function remains similar amalitptively converges
to one, indicating that the polarity is essentially presdrduring growth.

4.3.3 Reorientation of Polarity by Shear
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Figure 4.9: Polarity reorientation due to shear flow. (A)-(C) Three tipwnts of shear flow
of a polarized network. (A) is the initial polarity configti@n. Vertices located
on the top blue boundary are fixed and vertices laying on twedaed boundary
move to the left with constant velocity. Due to the shear flpalarity vector of
cells reorients towards the flow direction. (D) Average angfi polarity vector of
cells over ther direction as a function of normalizedcoordinate for simulations
shown in A and C.

In Sec. 4.2.2, we proposed a method to generate shear flove ivetbex model. Later, in
Sec. 4.3.2 we proposed a mechanism to generate long rangreadridCP pattern by growing
a small polar network using repeated cell division. We noweer how a polarized tissue
behaves under shear flow. To simulate shear flow of these petaorks, we should consider
separation of time scales for the PCP relaxation and theslcaple relaxation. Cell shape relax-
ation happens at about several minutes, while PCP relaxatne is about several hours; here
we assume that cell shape relaxes instantaneously duedlgoedurbations compared to PCP
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relaxation. Therefore for a time stéy, we solve the dynamic equations for the PCP variables
and then impose a shear step as described in Sec. 4.2.2 tiene is not changed during the
later step.

In Fig. 4.9 A-C, we show part of the network for three time gsiaf tissue flow, where the
polarity of cells is indicated by arrows. Here, we only shaslilsswhose centers are located
above the middle line. Vertices lying on the upper blue baupare fixed and vertices locating
on the lower red boundary move to the left with a constantamsio Note that Fig. 4.9 A
represents the initial condition at= 0. Also note that we have imposed periodic boundary
conditions for the PCP variables in bathandy directions. Due to the shear flow, the polarity
vector of cells reorient, while the global polarity ordepigserved. In Fig. 4.9 D, we show the
average of the polarity angfewith respect to the direction, as a function of the normalized
coordinatey/L,. The polarity of those cells that are close to the boundatiés/L,, = 0.5 and
1) is affected strongly by the boundary conditions and doseaemrient effectively due to the
flow. However, for the cells located between these two bodeslahe polarity vectors converge
to a well-defined steady sate value. We conclude that sheacéo reorient the polarity vector
of cells to a specific orientation with respect to the shewaation.

4.3.4 Hydrodynamic Description of Tissue Polarity

The fact that the polarity vector of cells reorient duringahflow of the network and reaches
a steady state value, suggests that we can use a multi-pgateah and describe the dynam-
ics of polarity order for larger scales. This behavior of BX@P model in shear flow, is well
known in liquid crystal physics asematodynamics. A nematic flow is very similar to normal
liquid flow with a difference that the orientational motiohtbe molecules are coupled to their
translational motions. Here we consider two mechanismisdéia change the orientation of
nematic molecules during flow: vorticity and shear. Voti@an clearly rotate the orientation
of the molecules, however, the influence of shear comporfehedlow on orientation of the
molecules is less obvious. This later effect of flow on theeuolar orientation is characterized
in liquid crystal physics by a phenomenological coefficierthat couples the orientation of
molecules with shear [76].

Here, we develop a simple model to describe polarity retaitean of cells in shear flow. The
dynamics of the polarity vector of a cep, is given by

OtPa = —VVapP3 — WaDgs (4.9)

wherev,s = (0,v3 + 0pva)/2 is the strain rate tensor anglg = (0,v3 — J3v4)/2 iS the

vorticity of the velocity fieldv. We sum over repeating indices. FHof > 1, there is a critical
angled, between the velocity direction and the polarity directiboalls. This angle is given by
cos(26y) = 1/v. Thus far from the boundaries, the polarity vector of cedlsd to lie precisely
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at this angle. In the vicinity of the boundaries, since th@apty vectors of cells must adjust
to the boundary conditions, their orientation changes. |Fok 1, the polarity vector of cells
are very strongly deformed. We found in Sec. 4.3.3, that thady state angle of the polarity
vector isf, ~ /6, which implies that thes ~ 2.

4.4 Summary

There are many developmental processes that affect tisape and morphology in the absence
of growth. Two examples of such processes have been studithdsi chapter: convergent-
extension and hexagonal repacking. Convergent-extemsimostly studied in embryos, such
as the embryo of the fruit flyprosophila. During convergent-extension the shape of the tis-
sue changes dramatically; it narrows in one direction argheds in the other direction by
a factor of about two. This process is governed internally #rere is no external force on
the boundaries of the tissue. In this chapter, we proposedtechanisms that can generate
convergent-extension. In the first mechanism, we imposerdrisitions in the tissue; a ran-
domly selected cell boundary is forced to shrink continlptesa four-fold vertex and expand
in the opposite direction. We found that the shear rate ofiiseie depends on the orientation
of cell bonds that go under T1 transitions. For the situati@t selected bonds are randomly
oriented, the shear rate is zero, however, for the case tiatonds with certain orientation
are selected for T1 transitions, the shear rate is positivéhe second mechanism, we study
how cell division without growth generates internal shd@dris process is different from what
described in Sec. 3.1; the preferred area of the diving oslédhot increase before division and
the two daughter cells will have half of the preferred arethefmother cell. After one round
of cell division without growth, the total area of the tisseenains unchanged. We show that,
similar to the previous case, oriented cell division withgrowth generates strong convergent-
extension and also affect the packing geometry of the né&twibhre percentage of hexagons
increases to- 60% during this process.

During development of thBrosophilawing, the packing geometry of the tissue changes dra-
matically. The percentage of hexagons in the tissue inessas- 80%. Here, we studied two
mechanisms that can change the hexagonal packing of agtigisantly. The first mechanism
is based on annealing of the grown tissue by changing adhesidifferent bonds stochas-
tically. This can result in fluctuation of cell boundariesor Ehose networks with hexagonal
ground state, these fluctuations are biased by the energyimation toward the hexagonal
packing. The percentage of hexagons increases duringrtfée$s by a factor of two. We also
studied how the packing geometry of the tissue changesgishiear flow. We impose shear
flow in the vertex model by selecting a set of vertices thabfhe a line and displace them with
constant velocity while relaxing the other vertices in tie¢éwork. Here, we use no-slip bound-
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ary condition which is different from the boundary conditsoused for the growth algorithm.
This generates a shear flow with a linear velocity profile teahaximum in the center. The
percentage of hexagons increases during this process 0.

It is proven experimentally that both convergent-extemsiod hexagonal repacking of tis-
sues, require organization of a set of molecules that adseaapmmetrically in the cells. Cells
then become polar in the plane of the tissue due to this asymendéstribution of molecules,
and the polarity of each cell is also aligned with a globat¢diion in the tissue. In this chapter,
we developed a theory for the planar cell polarity which unigs two interacting molecules.
We introduce an energy function to mimic their interactiowbich has two terms: The first
term describes preferential sorting of these moleculelkarcells, and the second term mimics
their interactions across the cell boundaries. We showegdstarting with a small network and
random distribution of these molecules, they assemble thathglobal order appears in the
tissue, however, for larger networks defects of cell pofappear. We introduced a method to
generate long range order in arbitrary large networks ugiaggrowth algorithm described in
Sec. 3.1. We start with few polar cells and growth the netvwaykepeated cell division. The
initial order preserves during growth.

We then study how these polar networks behave under sheaMleviound that the polarity
vector of cells reorients, while the general global ordgsrsserved. The angle of the polarity
vectors converges to a well-defined steady state value. sTigigests that our PCP system to-
gether with the vertex model behaves similar to a liquid aiysnder shear flow. We introduced
a general coarse-grained model for the polarity of cellscis governed by two mechanisms:
vorticity and shear. Although vorticity can reorient patarvector of cells, the shear might
influence the orientation of polarity vectors differentle introduce a phenomenological coef-
ficient describing the coupling between shear and orietaif the polarity vector of cells and
give a quantification.






5 Compartment Boundaries:
Interfaces in Epithelia

Figure 5.1: Anterior-Posterior compartment boundary. (A) Large saakege of the wing disc
marked for engrailed-lacZ reporter activity (red) to idgnthe posterior compart-
ment. Anterior compartmentis shown to the left. (B) Smattma of the wing disc
near the anterior-posterior compartment boundary. Thepaotment boundary is
straight on both small and large scales (Provided by K. Lbeds

As we discussed in Sec. 1.4, the wing disc of the fruitDisosophila is subdivided into
anterior and posterior compartments. Cells in these cameaits remain unmixed during de-
velopment and are separated by a sharp and straight bourfashown in Fig 5.1 A and B,
the compartment boundary is straight on both the largeesoad also on the scale of individual
cells. Signals produce by cells at the compartment bouaslaen result in the local expression
of secreted proteins that organize, at long-range, gromthpatterning of tissues. Sharp and
straight interfaces between compartments are crucialté&tilezing the position of such orga-
nizers, and therefore for the precise regulation of tissow/thh. Maintaining these boundaries
in proliferating tissues requires mechanisms to counterat rearrangements caused by cell
division; however, the details of such mechanisms remattean In this chapter, we will study
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a mechanism that can generate sharp interfaces betweerelmpulations in proliferating
tissues. We will show that increased bond tension alongdhgartment boundary is sufficient
to prevent mixing of the two cell populations. We will shovaththis mechanism is robust in
establishment and maintenance of a sharp boundary on th&z®elength scale, however the
overall large-scale shape of the boundary is not well cdetto We will quantify the shape
and morphology of the boundary for difference tensions gline compartment boundary and
compare them in detalil.

5.1 Two-Population Tissue Growth

N=36 N=1152 N=4608

Figure 5.2: Two-population tissue growth. We show three time points gf@wth simula-
tion for a two-population cell network. The initial netwocknsists of36 cells in
hexagonal packing divided into two equal compartmentsciviare label blue for
anterior (A) cells and red for posterior (P) cells . As theuis grows, the two cell
populations mix with each other. For plotting purpose eaatepbis rescaled.

To study compartment boundaries in proliferating tissaeshown in Fig. 5.2, we choose to
label cell populations in our simulations of the vertex modlée will refer to the two resulting
populations as ‘A’ and ‘P’, and to their dividing interface ‘@wompartment boundary”. When
a cell divides in this framework, the two daughter cellsiattae same linage (A or P) as the
mother cell. For simplicity, we assign indices to cells adaag to their distance from the
compartment boundary. Cells that share a boundary with tiiner @opulation are named; A
and R and cells that share a boundary with @r P,) cells are named A(or P).

We can imagine a situation where these two cell populatiewe ldifferent cell mechanics
and cell adhesion, and where the tension along the compatrtmoendary might be different
from the tension on the other bonds. Here, we simulate twmadion tissue growth for the
situation that the tension along the compartment boundayy, is the same as the tension on
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other bondsin the tissud (» = A) and two cell types have the same parameter values. Starting
with 36 cells in hexagonal packind § cells of each type) we grow the tissue u@td00 cells.

We use parameter values corresponding to case | in SecA3-30.12, I' = 0.04). In Fig. 5.2,

we show three time points\y = 36, No = 1152 and N = 4608). For this situation the
two growing cell populations progressively intermingletiagy grow in size, and the interface
becomes more and more irregular. Even islands of cell typebeafound (surrounded by the
other cell type). Note that due to periodic boundary condgiwe must have two compartment
boundaries in our simulations. These two boundaries arayalwdentical in our simulations
and the tension on both boundaries are the same.

5.2 Differential Adhesion in Two-Population Growth

A

Figure 5.3: Two-population tissue growth such that cell mechanicsffemint for the two com-
partments. (A) The parameter values in the anterior comzant (blue) are =
—0.12, T = 0.08) and in the posterior compartment afe<£ 0.12, T' = 0.04). (B)
The parameter values in the anterior compartment (blue)\are 0.24, T' = 0.02)
and the parameter values in the posterior compartment ikasitme posterior com-
partmentin A. In both A and B, the tension along the compantrbeundary is the
sum of the tension in the A and P compartments.

It is proposed in early960s [77]-[79], by Steinberg that difference in cell adhesi@tvzeen
two cell populations can result in cell sorting. This idedai®r generalized by Dahmann and
Basler [80] to explain formation of compartment boundaimethe Drosophila wing disc. This
differential adhesion hypothesis might refer to differemnén bond tension, as well as differ-
ences in perimeter contractility of cells. We do not knariori if cells in the anterior and
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posterior compartments of the wing disc have similar adimesr contractility. We therefore
simulate tissue growth for situations that the two compartts have different cell adhesion
and perimeter contractility. In these simulations, allcbElonging to the A compartment have
similar line tension A and perimeter contractilityl;, which are different from the parameter
values of cells in the P compartment. Here for simplicity,agssume that the tension along the
compartment boundary is the sum of the tensions in the A arahartments.

Among many possibilities discussed in [98], we show two saskn both cases, we as-
sume that the line tension and perimeter contractility @Rrcompartment (red compartment in
Fig. 5.3 A and B), are the same as case | discussed im3-3{.12, ' = 0.04). In Fig. 5.3 A
and B, we show simulations of two-population tissue growithsthat the parameter values in
the anterior compartment aré & —0.12, T' = 0.08) and (\ = 0.24, T = 0.02), respectively.

In both cases, differences in adhesion and contractilityetis do not result in formation of a
sharp boundary between these two populations. Even foreitensl case, island of one type
forms and cell sorting neither in small-length scales ndaige-length scales emerges in these
simulations. Based on these two examples and more detaildebs in [98], we conclude that
although differential adhesion between two cell populatioan result in cell sorting in some
situations, in our simulations of two-population tissuewgth, this mechanism can not prevent
cell intermingling.

5.3 Increased Interfacial Tension Results in Cell
Sorting

As we showed in Sec. 5.1, for two-population tissue growtlenghall cells are identical and

the tension on the compartment boundary is the same as the lmthds in the tissue, these
two populations (spatially separated at the beginning ofvgft) mix together due to cell re-

arrangements. We also discussed in Sec. 5.2 situationththawo populations have different

mechanical properties such as different adhesion and pairaontractility. This also results in

intermingling of cells during growth. Here we introduce mple mechanism that results in cell
sorting during two-population tissue growth. Similar tacS8.1, we assume that the anterior
and posterior cells have similar mechanical propertiedgvhe tension along the compartment
boundary is higher than the other bonds. This tension isactenized byA = A4p/A, which

is the relative tension along the compartment boundary wsipect to the other bonds in the
tissue.

We start from initial conditions with two population$§ cells of each type) in hexagonal
packing and grow the tissue for a few generations, varyirfgpm two to five. In Fig. 5.4,
we show the grown networks for different values)ofIncreasing the tension along the com-
partment boundary by a factor of two is sufficient to estébdsd maintain a boundary be-
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Figure 5.4: Compartment boundaries in growing tissues. Grown tissti&s000 cells where
the A and P compartments have the same cell mechanics antbtisi®n (\ =
0.12, ' = 0.04). Then tension along the compartment boundary is increfised
each caseX = A4p/A). Increased line tension along the compartment boundary
can result in cell sorting as the boundary becomes straigbtenigher tensions
(larger)). The boundary is colored in white.

tween two cell populations. However, increasing the tamsiong the compartment boundary
to higher values can generate straighter boundary. Forabec= 5, this generates almost
straight boundary, however, the boundary fluctuates orelaogles. Note that decreasing the
tension along the compartment boundary clearly resultslimtixing; the two cell populations
tend to expand their region of contact. Also note that ingireathe tension along the com-
partment boundary has effect on cell morphology near thentbany; the angle between two
adjacent compartment cell boundaries is higher than thee deween two adjacent A/A or
P/P cell boundaries, which i0°. In [98], we studied two-population growth with increased
tension along the compartment boundary for other choicgsacdmeter values\( I'). We
found that for the same increment in the tension along thepestment boundary, the boundary
is straighter for situations that the shear modulus of thevowk is lower. We conclude that in-
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creased tension along the compartment boundary is a rolaettanism that can generate sharp
and straight boundaries.

5.4 Shape and Roughness of Interfaces in Developing

Tissues
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Figure 5.5: (A) Schematic of quantification of roughness for the compartt boundaries.
The compartment boundary is divided in equal intervals Regions of overhangs
(red part) in the compartment boundary are replaced by #&sownd bypassing the
overhang (dotted line). (B) Roughness of the compartmemttdaries. Normalized
roughness of the compartment boundary to the average bogthlev/(L;;), as a
function of normalize distancé/(L;;) for different tensions along the compart-
ment boundary) = Aap/A.

We introduced in the previous section, a mechanism that emergte interfaces in two-
population tissue growth. To study the shape and morphalbthese boundaries, we quantified
the roughness of the compartment boundary. We measureughness of an interface by the
variancew? as a function of the distande along the interface axis over which the variance is
determined. The shape of the interface is defined as a sénestex positionR,; = (z;, v;),
with i = 0, ..., M, along the compartment boundary that are connected bygktriaonds. The
axisRyR; of the compartment boundary is the line connecting the eimtgB,, andR,;. The
piecewise linear boundary line is discretized in equalriratis A L along the axiR(R;. This
defines the orthogonal distandgsfrom the axis at the discretization points. Hére- 1 - - - N
where N, is the number of discretization points. For averaging lerige= NAL, the height
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variance is
No—N+1
9 1

N-1
N TN Z <%Z(hk+i_h_k)2>a (5.1)
i=0

whereh;, = (ZZN:_Ol hi+i)/N is the average height at the segment of lengtktarting with
discretization point.. The value ofw as a function ofL. characterizes interface roughness.
Note that for situations with an overhang in the shape of ttimegartment boundary, we replace
the overhang by a single bond bypassing the overhang. InbF3gA, we plot the roughness
of the compartment boundary for the mechanism describecem S3 in a log-log plot for
different values of the relative tension, along the comparit boundaryh = Asp/A. Our
data suggests that the roughness scales asuu,L", wheren is the roughness exponent. For
A > 2, the roughness exponent is similar for different valuegnéion along the compartment
boundary { ~ 0.7), however,uw, is different. For increasing tensioy w, decreases, which
indicates that the boundary becomes straighter.

5.5 Summary

In this chapter we introduce a mechanism that can prevelninedahg in two-population tissue
growth. For the condition that all cells are mechanicallntical, stochastic cell division results
in mixing of these two populations. However, if the tensiéong the compartment boundary
increases with respect to the other bonds in the tissue, seit out during growth and a sharp
interface forms. Higher tension along the compartment dagnresults in the formation of a
straighter boundary. We characterized the shape of the aament boundaries by measuring
the roughness of the boundary. We observed that the rougboates as power-law with respect
to the length of segments of the compartment boundary. Agghdhis mechanism can generate
straight compartment boundary at small-length scalesamelscales the shape of the bound-
ary fluctuates. This suggest that other mechanisms arevingoin shaping the compartment
boundaries in developing tissues.






6 Comparison Between Theory and
Experiment

In the previous chapters we have developed a vertex modeltly £ell mechanics and
cell adhesion. We introduced a growth algorithm and we shiothiat repeated cell division
generates a specific pattern of cells. The stationary pagtenerated by this method depends
on the biophysical parameters of the model. We introducedsets of numbers to characterize
these patterns. These numbers, which count the frequerttyr@a variability of different
classes of polygons, show significant differences for satioihs with different parameters
andl. This indicates that comparing these numbers with ones ume@sn experiments may
help us to quantify biophysical parameters of tissues usiagnethods introduced in App. E to
guantify cell packing geometries in experimental images.

In this chapter we will compare experiments with our thaoettresults. We first will com-
pare cell packing between experiment and simulations andiweetermine a parameter re-
gion in our phase diagram for which the packing geometry wiusated tissues is similar to
ones observed in therosophila wing disc. We then will compare the area variability of cells
in experiment and theory, showing that there is a smalleéoregvhich has an overlap with
the packing region, such that the cell morphology is sinitaexperiments and simulations.
Finally, we will compare displacements of vertices due sefaablation of cell boundaries, and
we will show that the agreement between theory and expetsrsrimited to a very small
region in the phase diagram (which has an overlap with thera®o regions). Case I, which is
discussed in previous chapters, lies in the overlap of glbres.

Having developed such a quantitative method to measurenaghanics in tissues, we will
test our hypothesis about increased tension along the atmmgra boundary. We will first
guantify cell mechanics in the anterior and posterior catmpants of the wing disc. We then
will quantify the tension along the anterior-posterior gartment boundary, and show that
the tension along the boundary is greater by a factor of foan the other boundaries in the
network. We will finally simulate clone cells in proliferagj tissues and show that, similar to
the experiments, the cells will remain cohesive during ghow
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Figure 6.1: Comparison of cell packing and tissue morphology betweenrthand experi-
mental measurements of the wing disc. (A), (B) and (C) Red hag stationary
distributions of neighbor numbers,. The green bars in each panel indicate the ex-
perimentally determined distribution of neighbor numbettsie wing disc. (D), (E)
and (F) Average areas of different polygon classes noretlia the average area
of cells in the network(A,,) /(A), for cases |, Il, and Il (red lines). These lines are
compared to the experimentally determined values for timg\disc (green lines).

2 -#- Simulation

As we discussed in Sec. 3.2, repeated cell division gereediserder in cell packing that
leads to the formation of specific patterns of cells. We shibineSec. 3.3 that these patterns
are significantly different for different sets of biophyaliparameters; namely line tension and
perimeter contractility. We simulate tissue growth forelichoices of\ andT (case I:A =
0.12, T = 0.04, case I:A = 0,T = 0.1 and case A = —0.85, " = 0.1). Each pattern is
then characterized by two set of numbeF; the fraction ofn-sided cells andA,,) /(A), the
average area of-sided cells normalized to the average area of all celld. sbalpe and packing
geometry are different in these three cases and the qudntti@racteristic numbers show the
differences clearly. This suggests that by comparing tieegaof P, and (A,,)/(A) for each
case with values measured in an epithelia (such as the wargodithe fruit fly Drosophila),
we can estimate biophysical parameters of the tissue. Totigata/ely describe cell packing
geometry in the wing disc, we analyze@38 cells from different confocal images of living
wing discs expressing E-cadherin-GFP by using an autonmatage-processing algorithm to
outline the network of apical junctions. From this netwonle identify individual cells, cell
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boundaries, and three and four-fold vertices. We define afftidd vertex as a region of contact
between four cells, the size of which does not exceed theageewridth of cell boundaries in the
image. This cutoff corresponds 2opixels — approximatelg0% of the average cell-boundary
length. We use this information to determine the fractiorcelfs with different numbers of
neighbors. In Fig. 6.1 A-C these data are shown by green langside the values obtained
by simulations. Comparing the experimental values for tivgvdisc of Drosophila and the
simulation values for cases I-11l, we conclude that casedl lliirhave almost the same packing
geometry as the wing disc, but that case Il has a clearlyrdiffiedistribution ofn-sided cells
compared to experiment. In case I, the frequency of sirgicklls is half of the observed one
in experiments, and the frequency of three-sided and céltsnine or more neighbors is much
higher than experimental measurements.

We also calculate the average areanedided cells, normalized to the average area of all
cells for the wing disc epithelium. In the wing disc, averagd areas increase with neighbor
number (see Fig. 6.1 D-F, green lines). The average areaxafjbaal cells is slightly larger
than the average area of cells in the epitheliugs{). The average area of five-sided cells
is 82% of the average area of all cells and that of seven sided &ll360%. Area variation,
as a simple measure of tissue morphology, shows clear elites in experiment from those
obtained by simulations in cases Il and Ill. In case Ill, eetas apparently do not correlate at
all with neighbor number, unlike those of the real tissuecdse Il the average areas vary more
strongly with side number than observed in experiment. @$¢hthree cases, case | produces
morphologies and packing geometries closest to that ofdhiissue.

We now wonder which parameter regions in our phase diagrarergie packing geometry
and tissue morphologies similar to the wing disc. To do this,first perform growth sim-
ulations for different sets of parameters (black dots in. BiQ) to generate stable network
configurations. For each pair of parameter values we cdétiie converged values of the frac-
tion P, for different class of polygons, as well as the normalizezharariationf A,,) /(A). We
guantify the differences between theoretical and experialeesults by the quantities» and
A 4. The difference between the experimentally observed heighumber distributiorP;*?
and the one obtained by simulatioR$™ is characterized by the sum of the squared deviations,
Ap = > (Ps™ — Pe*P)?, The red region in Fig. 6.2 indicates those parameter vdhres
whichAp < 0.004 ~ 0.1(A 100 — Apin), Which A,,;,, and A, denote the minimal and max-
imal values ofAp found in our simulations. Similarly, the difference betweasxperimentally
determined average areasm$ided cells and those obtained in simulatioAg§™) is quantified
by Ay =Y 07 J((Asim) /(Asimy — (AerP) /(A°*P))2. The blue region in Fig. 6.2 corresponds to
A4 < 0.07. Those parameter values that lie in the overlap of the blde@shregions in Fig. 6.2
generate similar tissue morphology and cell packing to timgisc of the fruit flyDrosophila.
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Figure 6.2: Parameter regions matching observed tissue propertiepeRies of cell packing
for different values of the parameteksandT (line tension and contractility). Simu-
lations of tissue growth were performed for different pagsen values (black dots).

In the red outlined region, the distributid?y of n-sided cells in simulations is sim-
ilar to the one observed in the wing diskdfosophila. In the blue outlined region,
the relative areas of-sided cells match those observed in experiments. Congparin
simulations of laser ablation with experiments, we find ditative agreement in
the green outlined region. The yellow dot indicates case I.

6.2 Displacements Upon Laser Ablation

To investigate the interplay of forces acting at the junwionetwork of epithelial cells in the
wing disc of Drosophila, we perturb the stable network by ablating a section of idizl
cell boundaries with a UV laser beam (focused on a spot.®fum diameter in the plane
of epithelial junctions). A single cell-boundary was cutdahe resulting movements of the
network, visualized with E-cadherin-GFP, were observeer ®everal minutes (see Fig. 6.3
A). In response to the cut, E-cadherin-GFP fluorescencepkesaed from the center of the
cut cell boundary, and the vertices at both ends moved frain hitial positions, increasing
their distance from the cut point. Subsequently, the vestielaxed to new stable positions.
The distance between the vertices at the ends of the cutibonehsed ad — dy = d;(1 —
exp(—t/7)) for whichd, +d; is the final distance andgj, is the initial distance between vertices.
In Fig. 6.3 B, the change in distande— d, as a function of time is shown (average ogér
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Figure 6.3: Laser ablation of cell boundaries in the wing disc. (A) Sengbnfocal images of a
GFP-E-cadherin-expressing wing disc during a laser-ainl@&xperiment. The first
image shows the epithelial network before the cut, and therseone shows the
same network 20 s after the cut. The red cross in the first image of (A) indisate
site of ablation. (B) Change in distan@ée- d, between vertices at the ends of the
ablated bond as a function of time, averaged @ueexperiments. (C) A sequence
of cropped images of the ablated region, separate2blsy The time in seconds is
indicated; scale bars representim.

experiments). The relaxation timevaried betweeri3 and94 s for different experiments. In
Fig. 6.3 C, a sequence of cropped images near the ablatimmreghown to illustrate how the
distance between vertices increases after ablation.

We discussed in Sec. 3.6 that, due to removal of a cell boyndartices surrounding the
cut-bond move in an anisotropic manner. To quantify thearopy of the displacements, we
measure the normalized combined area changes and norchedin&bined perimeter changes
of the two cells sharing the cut-bond. Due to uncertaintyxipegiment about the effect of laser
ablation on the contractility of the two cells sharing thé-band, we introduced two scenarios
to mimic laser ablation in simulations. In scenario |, weusss that laser ablation only results
in removal of the cut-bond and the contractility of the cdtceemains unaffected. In scenario
II, we assume both the tension of the cut-bond and the pegimaentractility of the cells sharing
the cut-bond is affected by the ablation. We also discuss&ec. 6.1 that for parameter values
corresponding to case | the growth algorithm generategpeeking geometries similar to the
wing disc epithelium. We ask wether the parameter valuggsponding to case | can generate
the same type of movements as ones observed in experimewbhactdscenario can mimic best
the ablation experiment. We quantify the combined areagdsmand the combined perimeter
changes of the cut cells in experiments and plot them in Figa6.a function of normalized
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Figure 6.4: (A and C) Changes in the combined are®rd.; of cells adjacent to an ablated
bond, relative to twice the average cell agdal), are plotted as a function of the
relative increase in the distance between the verticeseoftt-bondA/.,./(L;;).
(B and D) Relative change of the perimet®r.../2(L) of the cells adjacent to
the cut-bond;(L) is the average cell perimeter. In (A)-(D), red dots show ltssu
from 20 experiments and gray dots show the results of simulatiotis aviferent
parameter values for laser ablation.

bond length changes (red dots) together with the data fa cégray dots) for two different
scenarios. It is evident that scenario Il (which assumels tha tension in the cut boundary and
the contractility of the two cells adjacent to the cut-boffeéced by ablation), can mimic the
experimentally observed anisotropic movements due to &sdation.

We are wondering if the vertex model can reproduce not ordydisplacement of vertices
of the two cells sharing the cut-bond, but in general theldgment field of all vertices in
the tissue due to ablation of a cell boundary. To quantifydisplacement of vertices in the
field of cells surrounding the cut site, we used a polar coatéi system in which denotes
the radial distance from the cut point afidenotes the angle with respect to the orientation of
the cut boundary. The angle of the cut boundary thus correfptod = 0 andn. For each
vertex, we determined the radial and tangential componBntand D, of the displacement
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vectorsD (see Fig 6.5 A). As shown in Fig 6.5 A, we group vertices witffedent colors
according to their normalized distance from the cut center r/(L;;). We first measure the
displacement®, and Dy of vertices before ablation (far < 7 < 8) to quantify the level of
fluctuations and plot them in Fig. 6.5 B and Fig. D.1, respeetyi We then quantify the position
of vertices before and after ablation when they relax torthew positions and determine the
displacementd, and D,. They are plotted in Fig. 6.5 C and Fig. D.1 (colors as in Fi§. 6
A). The radial displacemen®, depends on the angterelative to the orientation of the cut
boundary. Displacements are maximal for vertices lyingnglthe cut-bond axis. The radial
displacement®, of those vertices lying in a direction perpendicular to tbelwoundary (i.e.,
neard = = /2 or 3w /2) were small and did not exceed background noise. Radialatisments
decreased quickly for increasing distamdeom the cut-bond. At distances beyond six average
edge lengths, they only marginally exceeded the backgroars# (compare the top and bottom
panels in Fig. 6.5 C). Tangential displacemebiswere smaller and decreased more quickly
with increasing distance from the cut site (see Fig. D.1).

We then simulate laser ablation using scenario Il for patamalues corresponding to case
I, calculating radial displacements of vertices at différdistances from the bond with respect
to the polar anglé, and comparing them to observed displacements. Like tlzezare perime-
ter changes, the radial and tangential displacements t€&siD,. and Dy in the surrounding
network were quantitatively reproduced by our simulati@usnpare Fig. 6.5 C and D; Fig. D.1
A and B). As in the experimental data, maximal/@f occur at angle8 andr, whereas maxima
of Dy occur at3w/4 and7x/4 (Fig. 6.5 D; Fig. D.1 B). For radial displacements, the mag-
nitude of maximal average displacements, as well as thaites¢c agreed quantitatively with
those found in experiments, decreasing by similar amourgs ©imilar distances. For tangen-
tial displacements, agreement was also good. Note, hoyteegfor small- the average of the
amplitudes differs by a factor of two. More experimentaladpbints would be necessary for
determining whether this difference is significant or not.

We showed in Sec. 3.6 that for the case that the parametdis tésue are slightly different
from case I(A = 0.12,T = 0.02), the laser ablation simulations result in significantlyfefiént
values ofAA.,;, andAL.,;. We conclude that the laser ablation simulation is very isgago
the physical parameters of the model. To study the rangerahpeter values in our phase space
that can generate the same type of movements due to las@oalala ones observed in exper-
iment, we simulate laser ablation for all parameter valuneBig. 6.2. To compare the result
of simulations and experiment, we fit a straight line to theedwined variation of normalized
area changé\ A, as a function of normalized bond-length increase,;/(L;;). We quantify
the difference that is between experiment and simulatiod\py it is the absolute difference
between the slopes of the fit. For scenario | (see Fig. 3.8 &)wle only set to zero the line
tensionA,; of the cut boundary, there is no agreement between experamersimulations for
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Figure 6.5: (A) Schematic representation of positions and displacésnguring a laser ablation experiment.
The direction of the cut boundary is indicated by a dashedkblime. The position of a vertex
before ablation is described by its radial distandeom the cut point and its anglewith respect
o the cut-bond orientation. The movement of the vertex frianmitial position to its new position
after the cut is described by its displacement ve&orThis vector can be decomposed in radial
and tangential component. and Dy. Vertices are grouped in concentric rings according torthei
normalized distance from the cut point= r/(L;;) relative to the average bond lendth;;) . (B)
Experimental radial displacement of vertices before laddation. (C) Radial displacements.
of vertices normalized to the average bond lendtly) observed ir20 laser ablation experiments
shown as a function of. The colors correspond to the distance ranges. Black dais the
average displacements determined by grouping verticeimdf 7/6 radians. (D) Normalized
radial displacements obtained A simulations of bond ablation with a network corresponding t

case |, scenario .



6.3 Morphology of Compartment Boundaries 81

any (A, T'). Removal of both line tension of the cut boundary and thereatility of adjacent
cells sharing the cut boundary is necessary for achieviagifative agreement between simu-
lations and experiments (scenario Il). The green regiorign -2 corresponds ta; < 0.07,
with an additional constraint that average perimeter chasgositive.
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Figure 6.6: Laser ablation of compartment boundaries. (A) Images ofaBkerin-GFP ex-
pressing wing discs before and after single cell bonds welaed. Cells of the
posterior compartment are labeled by another marker (G#Rsger the control
of engrailed-GAL4) to distinguish from anterior cells. (Bhange in distance be-
tween vertices at the ends of ablated cell bonds (normaiaza average cell bond
length in the tissue)(d — dy)/(L;;), as a function of time for bonds between cells
of the population indicated. #A, refers to cell bonds between Al cells and their
anterior cell neighbors. Mean and standard error of the rmeaishown. Number
of experiments were: A/R, = 24; AIA, n = 24; PIP,n = 18; A1/A2, n = 16.

Quantification of tension along the anterior-posterior conpartment boundary

We showed in Sec. 5.3 that increased tension along the camgratrboundary can result in
establishment and maintenance of sharp interfaces betweesell populations in growing tis-
sues. We also showed that using the laser ablation techwig@an precisely quantify tensions
in the tissue. To test whether the tension on the anteristepior compartment boundary in the
wing disc is different from other bonds in the tissue, we peried laser ablation experiments
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for bonds along the compartment boundary. Single cell barede cut and the displacement of
vertices of neighboring cells, visualized by E-cadherigRswere recorded over several min-
utes. The posterior compartment was visualized by exprgsgher proteins (GFP-gpi under
control of the engrailed gene using the GAL4/UAS system).

In Fig. 6.6 A, we show the network of cells before and afteatibh for bonds that are shared
between A/A cells, P/P cells and A/P cells (bonds along tmepaotment boundary). We high-
light boundaries of the two cells sharing the cut-bond intestaind the cut bond in red. For
A/A and P/P cuts, the displacements is anisotropic, howierek/P cuts it generates stronger
anisotropic movements of the vertices surrounding thébouad. The displacements of the two
vertices of the cut-bond were analyzed. The rate and exfevgrtex displacement was in-
distinguishable for ablation of bonds between A/A cells &8 cells located away from the
anterior-posterior compartment boundary (see Fig. 6.6nB and blue lines). By contrast, ab-
lation of the bonds between adjacent anterior and posteglts gave rise to significantly larger
displacements (see Fig. 6.6 B, red lines). To test whetleainttreased line tension is localized
along the A/P compartment boundary or whether there exisir@ complex pattern of tension
in the tissue, we performed laser ablation for boundariesden A/A, cells, shown in Fig. 6.6
B (green line). There is no significant difference betweemA cuts and the normal A/A and
P/P cuts. These results indicate strongly that the antpasterior compartment boundary is
under more tension than normal bonds in the tissue, andHisatigher tension is only present
along the compartment boundary.

We introduced a dimensionless parametet A 4p/A in Sec. 5.3 that is the ratio of the ten-
sion along the anterior-posterior compartment boundatiygdension of all bonds in the tissue
(here bonds in the anterior and posterior compartmentsthaveame tension). To quantify the
value of X in experiment, we calculate the displacements of vertioeanding the cut-bond
before and after ablation, as done in Sec. 6.2. We only cen$iimbse vertices with distances
from the cut site less than two times the average bond lefigth »/(L;;) < 2). In Fig. 6.7
A, B and C, we plot the radial component of the displacemefd fiermalized to the average
bond length in tissue (see Sec. 6.2 for details) as a fundidhe angle with respect to the
cut-bond for A/A, A/P and P/P cuts, respectively (red ddis; daverage of the scatter is shown
by black dots). Laser cuts of the compartment boundarieslglgenerate greater anisotropic
movements of the vertices surrounding the cut-bond. In &ig.D-F we show the normal-
ized radial displacement), /(L;;), for simulations of the A/P compartment boundary for three
cases:A = 1, 4 and7, respectively. The cask = 1 is identical to A/A and P/P cuts in the
wing disc. For\ = 7 the anisotropy of the movements is much stronger than thsdrabd in
the wing disc. However) = 4 generates anisotropic movements in good agreement to move-
ments observed in ablation of the A/P compartment boundatfie wing disc, and we thus
conclude that the tension along the compartment boundamgrieased four times compared to



6.3 Morphology of Compartment Boundaries

83

2>

)

2 | A/Acell bond 2 | A=1
23151 23150
2 . g
s 1 | ose . 5 1 | .
g —~ . . N % —~ L L2 o
75_'031 051 - v - E‘E 0.5 ;:' , . o adis . "
B PRI IR - 2 N I RS 3 ¢ 7PN I -l N
s Té 0L A% lol0. BELA 2 SO z Té 0 .7 e 3.‘.‘-.3&..".::‘ I b W leeee
< . . < ° o
5 5-0.5L 35 5-0.5] .
< o < o
m e —1 1 1 1 ) M e _1 1 1 1 )
0 /2 1 3m/2 2% 0 /2 7 3m/2 2%
Angle relative to ablated bond O Angle relative to ablated bond O
B2s5; E 25
5 | A/P cell bond | A=4
=2 15] =215t . .
ng 1 L - R §Qk 1 :;i‘ -3~ (. .%-:
= ° .o ] ® o A .
2505k o R 2305k oy
2N ‘:” . 0 o 2 N 1 -e vo o }’- R g oty
S50 [ g T T2 o gl abetT g
< . < o e
S §-0.5 §5-05 'Y =.'
< o < o
M= . . . , R L . . .
0 /2 T 3m/2 2n /2 s 3m/2 2%
Angle relative to ablated bond O Angle relative to ablated bond &
Cas. F 25
2 | P/Pcell bond 9 bah=T7 s .
- = - = . g .
2215 215K gt e
S 1|, . 5a 1y A
22905Le: = . . .. 2905 < &
& g J‘. '.b o ‘0 .“f .® o.‘: ‘.'. ',n :. & g ’ ot : - 2 3 j@
S35 0 | . o R TR TSE 0 e -
= g . . . LN = Cé TILeN " “i #¥oo
5 5-0.5L 35 g-0.5 . .
[SER=] SEK=]
2 —1 1 1 1 ) M —1 1 1 1 J
0 /2 T 3n/2 27 0 /2 7 3n/2 271

Angle relative to ablated bond ¥

Angle relative to ablated bond &

Figure 6.7: Anisotropic displacement upon laser ablation for the catmpant boundary. (A),
(B) and (C) Radial displacement of vertices due to lasertmpiaof cell bonds,
normalized to the average bond lengih,/(L;;), as a function of the angle with
respect to the cut-bond for bonds shared between two antslis, A/A, an ante-
rior and a posterior cells, A/P, and two posterior cells, RéBpectively. (D), (E)
and (F) Radial displacement of vertices normalized to trexaye bond length in
laser ablation simulations of the compartment boundaryferA ,p/A = 1, 4 and
7 as a function of the angle with respect to cut-bond. The btk indicate the
average. Only vertices that their distance from the cutsitess than two times the
average bond length are plotted.
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the tension of other bonds in the tissue.
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Figure 6.8: Roughness of the compartment boundary. (A) Roughness afitegior-posterior
compartment boundary for four different experiments. Therage is shown in
black. (B) Comparison of the roughness of the compartmeuanhtiary between
experiment and simulation for = 4.

We now wonder if increased tension along the compartmemdeny by a factor of four is
sufficient to generate an interface with the same morphodsgynes observed in experiments.
In Sec. 5.4, we introduced a method to quantify the roughaedshape of compartment bound-
aries. We processed four wing discs and extract the shape ahterior-posterior compartment
boundaries throughout the tissue. In Fig. 6.8 A, we show tickhvof the compartment bound-
ary normalized to the average bond lengify,(L;;), as a function of the normalized length
along the boundary,/(L;;), for each wing disc. We show the average of the normalizethwid
for these four discs in black. The morphology of the antepiosterior compartment boundary
is highly reproducible among these discs. In Fig. 6.8 B, wenstihhe roughness of the compart-
ment boundary in simulations of = 4 together with the average of the roughness of anterior-
posterior compartment boundary in tBeosophila wing disc. At small scales (the length of
few cell bonds), the roughness of the anterior-posteriongartment boundary is remarkably
similar to the roughness obtained in the simulationsXfer 4. However, for larger scales, the
anterior-posterior compartment boundary is more straigtitan the simulated one far= 4;
even it is straighter than simulationsof= 7, where the tension along the compartment bound-
ary is increased by a factor of seven. Our results, thenatelithat a four-fold increase in cell
bond tension along the compartment boundary, can largelyuat for the sorting of the cells
at the anterior-posterior compartment boundary and d@tesithe small length-scale behav-
ior. Additional mechanisms might operate to improve thaigtrtness of this boundary at large
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scales.

6.4 Cell Clones in Growing Tissues

Case | Case 111

Figure 6.9: Example of clone cells in growing networks for case | andiiicase I, clone cells
remain contiguous during growth, in contrast to clone dellsase Ill, where they
disperse and are invaded by unrelated cells.

A clone of cells is generated in biology by modifying a singédl at an early stage of devel-
opment such that it expresses a certain fluorescent mojeghile all other cells in the tissue
are not able to produce this specific molecule. These masairke not diffusible to other cells
and therefore they only transfer to daughter cells of a aalirig this molecule, through cell
division. In the wing disc it is shown that clones of cells dx disperse from each other during
proliferation [89]-[90]. T1 transition is the most impontamechanism that can disperse clone
cells. The fact that clone cells are not dispersed in the-tyiie¢ wing disc suggests that T1
transitions do not happen very frequently.

We now wonder if the parameter values that we find for case ¢.($8) can predict this
experimental observation. We also wonder if our model mtsdiisperse clones for case lll,
where the model parameters are such that the network islJignd the rate of T1 transitions
is higher compared to case |. We perform growth simulationgéses | and Il during which
we keep track of the identity of cells that originate from agfic cell in the initial hexagonal
network. We color these cells in Fig. 6.9 red. In simulatiohsase |, few T1 transitions occur
as the network grows3{ transitions perl00 cell divisions), and clones remain cohesive. In
contrast, in the case of a soft tissue (case IH)f; T1 transitions occur per00 cell divisions,
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clones are invaded by unrelated cells (see Fig. 6.9). Tlygesis that the tendency for clones
to remain contiguous during proliferation is a consequerigghysical cellular properties.

6.5 Summary

We introduced in Sec. 3.3, three cases with distinct celpetend packing geometries. These
cases correspond to different set of parameter valuesatiagcthat cell shape and packing ge-
ometry is determined by biophysical properties of cellshis chapter, we used our theoretical
results to quantify tension and perimeter contractilitgells in theDrosophila wing disc. We
compared the packing geometry of these three cases withudaified packing of the wing
disc and we found that, caseA & 0.12, T = 0.04) and case lll § = —0.85, T' = 0.1) gener-
ate similar packing geometries. However, comparing tha a@aeiability of polygon classes of
these cases with experiments, we found that only case | gisecellular morphologies sim-
ilar to the wing disc. We conclude that of these three casdyg,aase | generates similar cell
shape and packing geometries to the ones observed in thedvgingTo study how cell shape
and packing geometry are influenced by the physical paramet¢he model and find regions
of parameter values corresponding to the wing disc, we Byaieally change these parame-
ter values and performed growth simulations. For each setaafel parameters we compare
neighbor number distribution between experiment and stian and we find that for those
parameter values lie in the red region in Fig. 6.2, the pargeometry is similar in simulations
and experiment. From this analysis , we conclude that theilaliion of neighbor numbers
does depend on physical parameters, but there is an exteggled that is consistent with ex-
periments. Comparing area variability in simulations axglegiment, we find that only a subset
of parameter choices is consistent with the cell shapes atwdbrk morphologies observed in
the proliferating wing disc, which is outlined in blue in Fi§.2. Area variability constrains
parameter values corresponding to the wing disc more thigihlner number distribution.

We have performed laser-ablation experiments of cell batied to study the force bal-
ances described by our vertex model and to independentyrdete parameter values. Laser-
induced cutting of cell junctions causes the vertices &ieeiend to move apart. This results
in anisotropic displacements of vertices in the surrougdiatwork; displacements are maxi-
mal for those vertices lying along the axis of the cut bondm@aring these experiments to
simulations shows that only a small range of parametersefgoeitlined region of Fig. 6.2),
which includes those of case I, is consistent with the olexermovements. We conclude that
laser-ablation experiments constrain parameter valugesgmonding to the wing disc the most
among the other measurements. Moreover, we showed tha¢dakwnodel can well reproduce
displacements of all vertices in the tissue. We comparediggdacement field in experiment
and simulations of case | and we found that our theoreticllte match well with the exper-
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imental displacements. We also showed that simulationasafrlablation can be mimicked by
removing both the tension in the ablated boundary and thiadility of the two cells adjacent
to the cut boundary.

We introduced a mechanism in Chap. 5 to establish a compartoeeindary between two
cell populations in growing tissue, by increasing the belhd tension along the compartment
boundary. We examined this hypothesis in experiment foltiterior-posterior compartment
boundary in the wing disc using laser ablation. We perforatadtion for bonds that are shared
between two anterior cells, two posterior cells as well &libnds shared between an ante
rior and posterior cells. We found that the tension is indeedeased along the compartment
boundary. To quantify the tension along the compartmenhtary, we compared the displace-
ment field of vertices surrounding the cut bond in experinggd simulations. We found that
ablation of the compartment boundary generates more anjmoimovements compared to the
ablation of other bonds, and we found that simulations wittreased tension by a factor of
four along the compartment boundary can well reproduce is@atements observed in ex-
periment. We then compared the shape and morphology of tee@nposterior compartment
boundary with the ones generated in simulations for fold-floacrease tension along the com-
partment boundary. We found that on small scales, our moelemtes remarkably similar
morphologies to experiment, however, on larger lengthesctne anterior-posterior compart-
ment boundary is straighter than our simulations. We calecthat other mechanisms are also
involved in establishment of the compartment boundary afidence largely the overall shape
of the boundary.






7  Conclusions and Outlook

Most species develop from a fertilized egg cell and duringetiment, different organs with
variety of shape, size and functionality form. Mechanisha tontrol shape and morphology
of different organs are still not clear. For the past decduietogist identified complex networks
of signaling molecules that are involved in developmenigsies. However, the response of
cells to such a signaling network is only limited to procasseach as cell division, cell death,
cell growth, cell migration and cell shape changes. Thesshar@sms are tightly controlled by
cell mechanics and cell adhesion, which requires carefiglysdf cell mechanics in tissues.

In this thesis, we developed a framework to study cell meidsaand cell interactions in
two-dimensional tissues, so called epithelia. Epithal&lls are connected to each other via
adhesive molecules and establish a junctional adherenoriemear their apical region. In
order to describe such a network, we used a vertex model, ichvadach cell is approximated
by a polygon (vertices connected by straight bonds). Sietlesbhape relaxes much faster than
other developmental processes such as cell division andezgrangement, on time scales
shorter than cell division time scale and longer than dedlge relaxation, the junctional network
Is stable and the total force on each vertex is zero. The $onee consider here can in our
simple description be represented by an energy functiom.e@ergy function has three terms
regarding area elasticity, perimeter contractility ant-cell adhesion. We studied the ground
state properties of the model and we showed that dependinghgsical parameters of the
model, there is a phase transition from solid hexagonal ortwo soft networks, where the
ground state is degenerate.

We introduced a cell division algorithm in our vertex modesed on quasistatic changes of
cell properties. This algorithm has two main steps: (i) Avgrg phase of the dividing cell that
the preferred area of the cell is doubled in a few steps whitermzing the energy after each
increment. (ii) By the end of this growing phase, we introglacnew boundary at a random
angle passing through the cell center. Repeating this psoae can grow the tissue starting
from a small number of cells up to an arbitrary size. Cell pagkjenerated by this algorithm are
characterized according to the fraction and average aréé@fent polygon classes. We found
that depending on model parameters, distinct patternslisf emerge with different packing
geometries and morphologies. We studied phase transitorggowing networks, which are



90

far from equilibrium and we found that there is a transitioonf solid to soft networks, for
which the transition line falls on the line that we found fbetground state phase transition.
During growth, local stresses are induced in the networktdweell division that result in cell
shape changes as well as junctional remodeling. We studiecdtte dynamics of junctional
remodeling in growing networks is affected by cell mecharaad we found that the rate of
junctional remodeling increases for decreasing line tamsvhile the rate of cell death increases
for increasing line tension.

We also studied the displacement field of vertices due td f[p@adurbations such as removal
of cell boundaries. We showed that this results in anisatrovement of vertices around the
removed boundary. Vertices in the direction of the cut bormd@s outward, however, vertices
perpendicular to the cut bond moves slightly inward. We istitivo scenarios for removal of
a cell boundary. In the first scenario, we only remove theitensf the boundary leaving the
two cells next to the boundary otherwise unaffected. In #eoBrd scenario, we remove both
the tension on the boundary and also the perimeter codifyacti the two cells adjacent to
the cut boundary. We found that the second scenario gesagegater anisotropy than the first
one. We also studied how mechanical parameters of the tingglg affect the displacements
due to removal of a cell boundary. We found that slight changehe parameter values of the
model generates significantly different displacementsirgiahe cut bond, which shows that
this analysis is quite sensitive to cell mechanics and ciileaion in tissues and can be used as
a probe to quantify precisely forces in the tissues.

Many developmental processes occur in absence of cellialvishat affect tissue shape
and morphology. Two examples of such processes have baiadtn this thesis: convergent-
extension and hexagonal repacking. During convergemrsxin the shape of the tissue changes
dramatically; it narrows in one direction and expands indtieer direction by a factor of about
two, which is governed internally. We studied two mechasishat can generate internal shear
in grown networks: junctional remodeling and cell divisiithout growth. The later process
is different from what described in our growth simulatiotige preferred area of the diving cell
dose not increase before division and the two daughterwéllsave half of the preferred area
of the mother cell. We found that to shear the network effetyj the junctional remodeling
should be oriented. We also found that one round of oriergéédloubling without growth gen-
erates internal shear in the tissue. During repacking,ifspadty in the Drosophila wing, the
packing geometry of the tissue changes dramatically angeheentage of hexagons increases
by a factor of two. We studied two mechanisms that can restiekagonal packing: annealing
and shear flow. Both mechanisms occur during developmereddtosophila wing. We in-
troduced annealing in the vertex model by randomly chantfiiegadhesion of cell boundaries,
while relaxing the network. This can result in fluctuatiorcefl boundaries. For those networks
with hexagonal ground state, these fluctuations are biagdkebenergy minimization toward



91

the hexagonal packing. We found that the percentage of lbesazan increase to 80% during
annealing. We also introduced shear flow in the vertex mogl@hiposing shear on vertices lie
in the middle of the network, while relaxing the other vezc Shear flow also influences the
packing geometry of the network and the hexagonality irsgedo~ 70%.

Processes such as convergent-extension and repackingrarelled by a network of inter-
acting proteins that are involved in planar polarizatiotisgues. Planar cell polarity is a tissue-
level phenomenon that coordinates cell behavior in epéghBlanar polarity is established by a
molecular organization that includes an asymmetric distron of these proteins within cells.
The distribution of these proteins in a given cell determiokthe polarity of neighboring cells.
We developed a model to study planar cell polarity in the extndf vertex model. Our model
includes two type of molecules that interact across celhblanies and inhibit each other within
cells. We showed that starting from a random distributiotheke molecules in cells, for small
networks long-range polarity order emerges, however fgelanetworks defects of planar po-
larity appear. We found that if we grow a small polarized reythe initial polarity preserves
during growth and we can generate a network of arbitrarysite long-range order. We then
studied how these polar networks behave under shear flowoMvielfthat the polarity vector of
cells reorients, while the general global order is prestare the angle of the polarity vectors
converges to a well-defined steady state value. This beha¥mur model is similar to liquid
crystal physics We developed a general coarse-grained Ifmdiéne polarity of cells which
is governed by two mechanisms: vorticity and shear. Althowgrticity can reorient polarity
vector of cells, the shear might influence the orientatiopalérity vectors differently. We in-
troduce a phenomenological coefficient describing the lbogbetween shear and orientation
of the polarity vector of cells and give a quantification.

Finally we compare our theoretical results with the experntal ones to quantify for the
first time cell mechanics and cell adhesion in tissues sucthesving disc of the fruit fly
Drosophila. To study how cell shape and packing geometry are influengetihdo physical
parameters of the model and find regions of parameter vabressponding to the wing disc,
we systematically change these parameter values and pexdogrowth simulations. For each
set of model parameters we compare neighbor number distnbbetween experiment and
simulation and we find that for those parameter values liehenred region in Fig. 6.2, the
packing geometry is similar in simulations and experiméirom this analysis , we conclude
that the distribution of neighbor numbers does depend osipalyparameters, but there is an
extended region that is consistent with experiments. Coimparea variability in simulations
and experiment, we find that only a subset of parameter chagceonsistent with the cell
shapes and network morphologies observed in the prolifgrating disc, which is outlined in
blue in Fig. 6.2. Area variability constrains parametemesl corresponding to the wing disc
more than neighbor number distribution. We also have perorlaser-ablation experiments of
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cell boundaries to study the force balances described byestex model and to independently
determine parameter values. Comparing these experimesisulations shows that only a
small range of parameters (green outlined region of Fig. 8\ conclude that laser-ablation
experiments constrain parameter values correspondinigetaving disc the most among the
other measurements.

Using these techniques, we studied mechanisms that resdtablishment and maintenance
of compartment boundaries between two cell populationgirelbping epithelia. For the con-
dition that all cells are mechanically identical, stoci@asell division results in mixing of these
two populations. However, if the tension along the comparthiboundary increases with re-
spect to the other bonds in the tissue, cells sort out duniogytthp and a sharp interface forms.
Higher tension along the compartment boundary resultsaridhmation of a straighter bound-
ary. We examined this hypothesis in experiment for the ant@osterior compartment bound-
ary in the wing disc using laser ablation. We performed anhator bonds that are shared
between two anterior cells, two posterior cells as well aslibnds shared between an anterior
and posterior cells. We found that the tension is indeeceased by a factor of four along the
compartment boundary. We then compared the shape and nhoggtad the anterior-posterior
compartment boundary with the ones generated in simukafimnfour-fold increase tension
along the compartment boundary. We found that on small scale model generates remark-
ably similar morphologies to experiment, however, on latgegth-scales the anterior-posterior
compartment boundary is straighter than our simulations.

Our vertex model can be used as a basis for further invegtigabn how networks of sig-
naling molecules control cell mechanics and consequemidy $§hape, size and morphology of
tissues. In this thesis, we introduced a model to descriegplpolarization of tissues, how-
ever we did not discuss how these molecules that are invatvéidsue polarity control cell
mechanics or cell division. There are evidences that plapdarity proteins tightly control
tissue properties [83], such as packing geometry of tisggs cell division orientation [82],
cell migration [84] and convergent-extension [85]-[8]isIrecently proposed that cell packing
geometry influences planar cell polarity signaling andgutar cell packing results in misori-
entation of polarity [88]. The detailed mechanisms of theiseesses are poorly understood.
In future, we can use the vertex model together with our plaoéarity model to study these
mechanisms in details.

We showed theoretically and experimentally that the anitgrosterior compartment bound-
ary is under higher tension compared to the other boundartes tissue. However, our further
analysis on the morphology and shape of the compartmentdaoyrshowed that the anterior-
posterior compartment boundary in the wing disc is stragtitan the ones in simulations. This
indicates that although four-times increase in the tenalong the compartment boundary is
sufficient to generate small-length scale morphologygtlaee other mechanisms that influence
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the overall shape of the compartment boundary. These mischsuare completely unknown.
Moreover, establishment of the dorsal-ventral compartribeandary is still not clear [89]-[91].
It is worthwhile to test whether the tension along the devgailtral compartment boundary is
increased using laser ablation techniques and how thisngparable to the tension along the
anterior-posterior compartment boundary.

Finally our vertex model can be extended to study more caad developmental pro-
cesses such as “cell competition” [92]-[95]. Cell competitis a type of short-range cell-cell
interaction described iDrosophila, in which cells expressing different levels of a particular
protein are able to discriminate between their relativelewof that protein in such a way that
one of the cells disappears from the tissue, whereas the mthenly survives but also prolif-
erates to fill the space left by the disappearing cells. Tlis fivst discovered in experiments in
which the division rate of wing cells was altered by using Manmutations [92]. The Minute
mutations inDrosophila produce a dominant growth defect and result from inactigatnuta-
tions in one of many different ribosomal proteins. Cells loaggous for a Minute mutation
cannot manufacture proteins and therefore die; this is nettd cell competition, but rather
cell-autonomous apoptosis. However, cell competitiona@sur when cells heterozygaou®r
a Minute mutation, which are viable, are found next to wilgd cells. When flies contain-
ing Minute heterozygous cells together with wild-type s&lere created, Minute heterozygous
cells disappeared by apoptosis because of the presenceaifirsting wild-type cells, despite
the fact that they would have been viable on their own.

A cell is homozygous for a particular gene when identicadla# of the gene are present on both homologous

chromosomes.
2A cell is heterozygous for a particular gene when two différalleles occupy the gene’s position on the

homologous chromosomes.






A  Conjugate Gradient Mehod

iteration i

steepest descent method, iteration i+1

conjugate gradient method, iteration i+1

Figure A.1: Simple comparison between steepest descent method andjatmgradient. In
the steepest descent method, we only move slightly in thesfgdirection of
gradient of the function in each iteration; However in c@gte gradient method
we move more efficiently in each iteration using conjugatemes.

The simplest method of minimizing a functiofix) with N independent variables (=
(x1,---,2zn)) knowing the gradient of the function is the Steepest Desoethod. In this
method, we start from an initial poind, and in each iteration, we move along the direction
—V f until we are close enough to the solution. Although the stsedescent method has
the advantage of numerical stability, but it performs mamal$ steps in going down a long,
narrow valley, even if the valley is a perfect quadratic fahat makes this method inefficient
from computational point of view. We therefore need to usesaensophisticated method such
as Conjugate Gradient method that includes two basic stbding an orthogonal vector to
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the direction of search for minimum and then move in a dioechearly perpendicular to this
vector The conjugate gradient method is an algorithm fomiln@erical solution of particular
systems of linear equations, namely those whose matrixnarsstric and positive definite.
The conjugate gradient method is an iterative method, sanitlhe applied to sparse systems
which are too large to be handled by direct methods such &8hbkesky decomposition. Such
systems arise regularly when numerically solving partifiécential equations. The conjugate
gradient method can also be used to solve unconstrainediaption problems such as energy
minimization. This difference between steepest descettiodeand conjugate gradient method
is illustrated in Fig. A.1.

In any iterative minimization method, the new position ofighles at step, is updated such
that

xt =x'+ \h, (A.1)

where); is a scalar parameter amd is the position of the variables at stepThe directionh’

is the search direction towards the minimum. For the steaf@scent method this direction is
given by the negative of the gradient of the functihh= —V f(x). However, for the conjugate
gradient method, this direction is given via a simple reicurs

h'tt = —V f(x"*!) + v;h'. (A.2)

There are two slightly different ways of definitiongf the first definition was given by Fletcher

and Reeves [96] _ _
V).V ()

.= _ 7 A3

TN ) a3

wherex’ = (zi,--- ,z%). Later, Polak and Ribiere [97] introduced a new definitionfp
(V) = V(). V) A

h V(). f(x)

For certain type of energy functions, the Polak-Ribier@atgm is less efficient than Fletcher-
Reeves algorithm. The conjugate gradient method is vewjietdificompared to steepest descent
method, however for some type of energy functionals it somext can step so far into a very
strong repulsive energy range where the gradient on thig poalmost infinite.
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Cell Packing Geometry

Table B1. Polygon Class Distributions
Py Py P Py P; Py > Py | (n)
Case | 0.11 |11.29|32.10|28.39|16.79| 7.31 | 4.02 |5.90
Case ll 8.21 |21.63|24.39|16.18| 10.92| 6.63 | 12.05| 5.95
Case lll 0.05 | 15.73|40.62|29.20| 11.25| 2.70 | 0.45 |5.46
Wingdisc | 1.0 £ | 6.78+ | 34.614 38.284 14.284; 2.174+| 0.06+ | 5.51
0.77 | 4.18 4.06 6.29 3.36 1.76 0.24
Table B2. Area Variation
(As)/(A) | (/A [ (A)/(A) | (Aa/(A) | (An0/{A) [ (4s)/(A)
Case | 0.05 0.42 0.80 1.08 1.30 1.47
Case ll 0.03 0.20 0.65 1.21 1.73 2.06
Case lll 1.0 1.0 1.0 1.0 1.0 1.0
Wing disc| 0.42+0.14 | 0.56 +0.02 | 0.82 +0.01 | 1.08 +£0.01 | 1.36 + 0.02 | 1.52 + 0.05
Table B3. Number of T1 and T2 Transitions
T1 Transition per 100 Divisions T2 Transition per 100 Divisions
Case | 37 12
Case ll 16 3
Case lll 146 0




C Numerical Analysis of Phase
Transitions in Tissue Growth
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Figure C.1: Numerical analysis of phase transitions for growing tissusogarithmic plot of
the converged value of the order parameter as a functientbé threshold for the
conjugate gradient minimization method. This is plotteddifferent values of\
andl’ = 0.05.
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Figure D.1: (A and B) Tangential displacemeni of vertices relative to the average bond lengith;) as a
function of the anglé indicated in Fig. 6.5 A. Vertices at different distancesrihe ablation point
are shown in the colors used in Fig. 6.5 A. Black dots show tieeaaye displacement for vertices
at different angles, grouped in bins ©f6 radians. (A) shows tangential displacements observed

in 20 different experiments. (B) shows tangential displacemebtained in thé0 simulations of

bond removal, for which the radial displacements are shovig. 6.5 B.




E Processing Epithelial Images

Original image Removed background Blurred image

Figure E.1: Filtered epithelial images. (A) Confocal microscopy imagethe Drosophila
wing disc (provided by [3]). This is an input of the image pesing software.
(B) Processed image after removing the background fromtigenal image. (C)
Processed image after enhancing the contrast and slighinigju

In most cases epithelial images that are captured by confoicaoscopy require a series
of filtering steps before further analysis. In these imagggsically a membrane protein is
marked with florescent molecules to detect cell boundaresexample of such an image is
shown in Fig. E.1, first panel. We use MATLAB for image-pragieg and we always refer
to the related functions in MATLAB, however similar funati® exist for other programming
languages. We do not explain the details of these functidhe. first step for processing the
image is to subtract the background noise. To estimate ttleggbaund noise, we first use the
IMOPEN() function. We can then use the function IMSUBTRACL(remove the background
noise. The next step after removing the background noisessliance the contrast of the image
using the ADAPTHISTEQ() function. This function uses castrlimited adaptive histogram
equalization. It selects small regions in the image and mednéhe contrast within that region.
These small regions are then combined to each other usimgdnilinterpolation to eliminate
the artificially induced boundaries.
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One important step before extracting the junctional nettwadrcells is to slightly blur the
image. Blurring might reduce details of the image but thisrigcial for further processing
for the following reason. In the confocal images of epithletiells, we use florescent proteins
that are reach in the adheren junctional network to idetfyboundaries. These proteins are
not uniformly distributed and there are regions along celiriaries that the intensity drops
abruptly. To identify a cell in the tissue, we require to @¢tbe region that is bounded by the
boundaries of that cell. These regions of low intensity gloell boundaries can generate errors
in our cell detection algorithm and slight blurring fills #eegaps effectively. If we blur strongly,
we might destroy the image very much and one should use pbbp@ing parameters for each
image. We use the function IMFILTER() to blur the image bywwwing a Gaussian filter.

To extract the junctional network of cells from these filttienages, we assign to those
pixels with intensity higher than a threshold, a value of,ared to the others a value of zero.
This threshold is different for each image. After removihgge objects in the image that
are smaller than a certain size, which correspond to vesederying florescent molecules in
tissues, we segment the image into cells. The goal of segitn@mis to simplify and change
the representation of an image into something that is mo@nimgful and easier to analyze.
For this reason we use a “watershed” algorithm, which is amgenprocessing segmentation
algorithm that splits an image into areas based on the tggabthe image. In this algorithm,
we first identify the enclosed region of each cell and labeirtll1, 2,3, - - - , N¢), whereN¢ is
the total number of cells in the image. We then increase b af these regions, analogous to
filling them with water, until two neighboring cells meet abarder of one pixel width. These
borders are then labeled “zero”, and are taken as the juradtieetwork of cells. In Fig. E.2 A,
we show the watershed segmentation of the epithelial imagersin Fig. E.1, in which each
cell is colored differently.

Extracting the junctional network of cells, we can deterertine position of vertices in these
networks. We define a vertex as the center 8f>a 3 pixel box that contains more than two
different cell labels. If the box has three different cebidés, the corresponding vertex is three-
fold and if it contains four different labels, the vertex @uf-fold. Note that we replace two
three-fold vertices that are closer than 20% of the averagel bkength by a four-fold vertex.
We show in Fig. E.2 B the junctional network of cells as greeed, representing three-fold and
four-fold vertices by red and blue dots, respectively. Kmmnthe position of vertices, we can
determine the number of vertices of each cell and quantéypticking geometry of cells in the
images. In Fig. E.2 C, we show the packing geometry of celthénprocessed image, where
each cell is colored according to its neighbor number (theramde is indicated in Fig. E.2 C).
Note that cells on the border of the image are not countechioptirpose of statistics, and are
colored in black irrespective of their neighbor number.

We can also quantify area, perimeter and elongation of ¢etlshe processed watershed
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Figure E.2: Processed epithelial images. (A) Watershed segmentdtibie processed image.
Each cell is colored differently. (B) The junctional netiasf cells and vertices
determined from the watershed segmented image. Threeafadour-fold ver-
tices are shown by red and blue dots, respectively. (C) Rgakometry of cells
in the processed image. Each cell is colored according toeikghbor number.
(D) Quantified cell elongation in the processed image. Thagdtion of cells is
shown by red lines passing through the cell center. The lheagt direction of
lines correspond to the magnitude and axis of cell elongataspectively.
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image. Cell area and cell perimeter are simply the numbeixefgenclosed by cell boundaries
and the number of boundary pixels of that cell, respectivehowing the position of boundary
pixels of a cell, we can quantify cell elongation calculgtantraceless, symmetric stretch tensor
of cell « as

Sy 5§
S = S I E.l
whereSy and S are defined as
. 1
ST = T Zcos 20,
1
S5 =1 > " sin 26;. (E.2)

The sum in Eq. E.2 is over all pixels of cellandé is the angle of pixel with respect to the:
axis. A, is the total number of pixels in cell. The eigenvalue and eigenvector of the stretch
tensor gives us the magnitude and axis of the stretch of theespectively. In Fig. E.2 D, we
show cell stretch as a red bar passing through the cell center
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