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Abstract

Biological matter is driven far from thermodynamic equilibrium by active processes on
the molecular scale. These processes are usually driven by the chemical reaction of a
fuel and generate spontaneous movements and mechanical stresses in the system, even
in the absence of external forces or torques. Moreover these active stresses effectively
fluidify the material. The cell cytoskeleton, suspensions of swimming microorganisms or
tissues are prominent examples of active fluids.

Active processes in biological systems often exhibit chiral asymmetries. Examples are
the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of
the beat of cilia and flagella as well as the helical trajectories of many biological micro-
swimmers. Moreover, large scale chiral flows have been observed in the cell cortex of
C. elegans and Xenopus embryos.

Active force generation induces force and torque dipoles in the material. If all forces
are internal the total force and torque vanish as required by the conservation of mo-
mentum and angular momentum. The density of force dipoles is an active stress in the
material. In addition, active chiral processes allow for the existence of active torque
dipoles which enter the conservation of angular momentum and generate an active an-
tisymmetric stress and active angular momentum fluxes.

We developed a generic description of active fluids that takes into account active chi-
ral processes and explicitly keeps track of spin and orbital angular momentum densities.
We derived constitutive equations for an active chiral fluid based on identifying the en-
tropy production rate from the rate of change of the free energy and linearly expanding
thermodynamic fluxes in terms of thermodynamic forces.

We identified four elementary chiral motors that correspond to localized distributions
of chiral force and torque dipoles that differ by their symmetry and produce different
chiral fluid flows and intrinsic rotation fields.

We employ our theory to analyze different active chiral processes. We first show
that chiral flows can occur spontaneously in an active fluid even in the absence of chiral
processes. For this we investigate the Taylor-Couette motor, that is an active fluid
confined between two concentric cylinders. For sufficiently high active stresses the fluid
generates spontaneous rotations of the two cylinders with respect to each other thus
breaking the chiral symmetry of the system spontaneously.

We then investigate cases where active chiral processes on the molecular scale break
the chiral symmetry of the whole system. We show that chiral flows occur in films of



chiral motors and derive a generic theory for thin films of active fluids. We discuss our
results in the context of carpets of beating cilia or E. coli swimming close to a surface.

Finally, we discuss chiral flows that are observed in the cellular cortex of the nematode
C. elegans at the one cell stage. Two distinct chiral flow events are observed. The first
chiral flow event (i) is a screw like chiral rotation of the two cell halves with respect
to each other and occurs around 15min after fertilization. This event coincides with
the establishment of cortical cell polarity. The second chiral flow event (ii) is a chiral
rotation of the entire cell cortex around the anterior posterior axis of the whole cell
and occurs around 30min after fertilization. Measuring densities of molecular motors
during episode (i) we fit the flow patterns observed using only two fit parameters: the
hydrodynamic length and cortical chirality. The flows during (ii) can be understood
assuming an increase of the hydrodynamic length. We hypothesize that the cell actively
regulates the cortical viscosity and the friction of the cortex with the eggshell and cytosol.

We show that active chiral processes in soft biological matter give rise to interesting
new physics and are essential to understand the material properties of many biological
systems, such as the cell cortex.
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Chapter 1

Introduction

The body plan of most animals and many plants breaks left-right symmetry in a way
that is conserved between individuals of the same species. A prominent example is our
own human anatomy, with the heart on the left of the body mid-plane in all but one in
ten-thousand individuals [1–5].

The physiological functions of this chirality are diverse. Consistent chirality within
one organism helps facing the packing problem of fitting organs into a confined space.
Consistent chirality between different individuals of the same species can be important
when they interact [2]. One example is the mating of snails that is physically awkward
between individuals of different chirality, i.e. with their houses on different sides [6].
Even a conserved chirality between organisms of different species can be advantageous.
For instance the jaws of some snail eating snakes are chiral. Their chirality is adapted
to the chirality of their preys shells [7].

Unlike the establishment of the anterior-posterior axis a and the dorsal-ventral axis
b, which can occur independently, breakage of left-right symmetry requires taking into
account the two preexisting axes. A mechanism is required to perform a right handed
crossproduct, such that the left-right vector l = a × b reliably distinguishes left from
right [1–3]. Since a priori the laws of physics do not distinguish between left and right
a preexisting cue is required to consistently define the cross product operator ×.

First signatures of chiral symmetry breaking are observed in individual cells. For
instance the cell cortex of the one-cell stage Xenopus embryo displays chiral cortical
flows [8, 9] and neurites crawl on chiral paths in in vitro experiments [10]. Therefore
it has been hypothesized that individual cells have access to a molecular symmetry-cue
in the form of a structurally chiral F -molecule [1]. The collective behavior of these F -
molecules and molecular motors could give rise to flows that break left-right symmetry
on cellular and multi cellular scales.

In fact, most biomolecules are chiral [5]. In vitro experiments provide examples which
show that the chirality of biomolecules can be used to generate chiral motion [11, 12].
Similar mechanisms are exploited by biological structures in living organisms and are at
the basis of the chiral beat of cilia [5, 13–16] and chiral flows in the cytoskeleton [8, 9].
Many pattern forming events in biological systems are governed by active chiral pro-
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10 1.1. The cytoskeleton

cesses. For example, it has been shown that the rotating beat of cilia, which drives
chiral hydrodynamic flows, is at the basis of left-right symmetry breaking in vertebrate
animals [17–19]. The interactions of motors and filaments drive movements and intra-
cellular flows [20,21] which can have chiral asymmetries [8, 11,12,16].

In the framework of this thesis, we develop a generic theory for fluids in which active
chiral stresses and angular momentum fluxes are generated by the presence of molecular
scale torque and force dipoles. We identify four elementary chiral motors that correspond
to localized distributions of chiral force and torque dipoles that differ by their symmetry
and produce different chiral fluid flows and intrinsic rotation fields. Our derivation is an
extension of earlier work on liquid crystals [23–29] and active fluids [30–35].

We discuss our theory in the context of chiral micro-swimmers close to a surface
and the cytoskeleton. To distinguish chiral flows generated by the intrinsic chirality of
these structures from flows that spontaneously break chiral symmetry, we also provide an
example for such a spontaneous chiral symmetry breaking in a Taylor-Couette geometry
[36].

We start by introducing the cytoskeleton, as one paradigmatic example for an active
chiral fluid [37]. Specifically we introduce one cytoskeletal structure, the cell cortex,
which is a thin layer of helical actin filaments and molecular motors that resides under
the cell membrane of eukaryotic cells, focusing on the cell cortex of C. elegans , which
shows chiral motion. We also mention other examples of biological fluids that are active
and chiral: (i) a fluid driven by beating chiral cilia; (ii) a suspension of flagellated
bacteria, such as E. coli. We then give an overview of the concepts of non-equilibrium
thermodynamics, which will provide the starting points for our derivation of a theory of
active chiral fluids in chapter 2. Finally we outline the structure of the present work.

1.1 The cytoskeleton

Cells actively control and modify their own mechanical properties. The structure that
enables them to do so is the cytoskeleton [5,14,38]. The cytoskeleton is instrumental in
determining cell shape [39]. It is essential for cell locomotion and cell division [38, 40].
It is involved in the separation of chromosomes, the placement and formation of the
cleavage furrow, and many other vital cellular processes. Its role is to provide the cell
with a highly dynamic scaffolding that allows it to function as a mechanical entity that
can rapidly adapt to achieve different tasks [1, 5, 14].

1.1.1 Main constituents of the cytoskeleton

The cytoskeleton is made up of filamentous polymers, molecular motors that exert forces
between the filaments, crosslinking proteins that tie the filaments into a meshwork and
a manifold of associated proteins that coordinate the actions of the various players in
space and time. We now introduce its most important components.



Chapter 1. Introduction 11

Filamentous proteins

Filamentous proteins provide the backbone of the cytoskeleton. Three families of cy-
toskeletal filamentous proteins - actins, tubulins and intermediate filaments - exist [5].

Figure 1.1: Sketch of an actin filament. The arrows indicate chemical reaction rates.

Monomeric actin, or G-actin is a globular protein that is ubiquitous in the cell
and has an ATP binding site [41, 42]. It polymerizes into helical F-actin filaments, see
Fig. 1.1. The actin filament is made up of two proto-filaments, that wind around each
other. The pitch of the helix is approximately 37 nm, the diameter of the filament is
around 7 nm. The persistence length of filamentous actin is around 17 microns [43,44].
Actin filaments are structurally polar, in the sense that new monomers preferentially
bind to the plus end of the filament and unbind from the minus end. Actin filaments
undergo tread-milling [45], that is regulated by the consumption of ATP. Actin plays
prominent roles in the changing and maintaining cell shape, in cell motility [46] and cell
division [47].

Figure 1.2: Sketch of a (N-S) 13-3 microtubule.The arrows indicate chemical reaction
rates.

The second important filament forming proteins are tubulins [5, 48]. The two pro-
teins, α- and β-tubulin associate to form a structurally polar α− β dimer, that is about
4nm long [49]. The dimers bind end to end. The resulting alternating α- and β-tubulin
monomers, are called microfilaments. Microfilaments are structurally polar. N parallel
protofilaments bind to form a tubular lattice [48]. Laterally the binding occurs prefer-
entially between monomers of the same type. The lateral binding is slightly offset along
the axis of the protofilament. Thus the arangement of monomers on the microtubule
forms a helix with helix start number S, measured in monomer lengths. Lattices with
8 ≤ N ≤ 17 and 2 ≤ S ≤ 4 exist and are collectively referred to as microtubules, see Fig.
1.2. Microtubules with S = 3 have an additional distinguishing feature, the seam. The
seam is the pair of adjacent micro-filaments that unlike the others laterally binds such
that monomers of the same type are adjacent. The most common microtubule is the (N-
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Figure 1.3: Schematic of a molecular scale force dipole (a), and a molecular scale torque
dipole (b). Molecular motors (myosin, black and white) walk of filaments (actin, red).
Black arrows denote the direction of motion of the motor-heads. In (a) green straight
arrows denote forces. In (b) green curved arrows denote torques exerted on the fluid.

S) 13-3 type sketched in figure 1.2. Its radius is about 25nm. The persistence length of
microtubule is around 1.4± 0.3 mm, which is much larger than the typical cell sizes and
makes it stiffest of the cytoskeletal filaments [44]. One important role of microtubules
is to act as pathways for intracellular transport [5]. They are also involved in many
other processes such as the centering of the mitotic spindle [50–52]. Most importantly
microtubules are structurally chiral [48].

An other structure formed by proteins of the tubulin family are microtubule doublets.
In microtubule doublets a complete A-microtubule of 13 proto-filaments binds to an
incomplete B-microtubule consisting of ten protofilaments [15]. These structures are
essential in building the axoneme that resides at the core of beating cilia and flagella.

Besides microtubule and actin filaments, many cell types also produce other filament
forming proteins. Many different such intermediate filaments filaments exist. Their
function is often associated to providing mechanical stability [5].
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Motor proteins

While filamentous proteins provide a strong yet flexible and dynamical scaffolding, motor
proteins generate forces by coupling ATP hydrolysis to conformational changes [1,5,14].
Molecular motors are categorized in three super-families, that are distinguished by the
type of filaments which they bind to. Myosins are actin associated motors, while
kinesins and dyneins operate on microtubules [5, 38].

The tasks of molecular motors are diverse [53]. Some are involved in cargo trans-
port [54], others role it is to serve as force generators, and enable contraction of large
structures such as myofibrils found in muscle-cells [5, 38].

Motor proteins exert forces on cytoskeletal filaments. Since all forces are internal to
the system, they are balanced by equal but opposite counter-forces in the way required
by Newtons second laws. Thus molecular motors can not generate unbalanced forces
but only force dipoles. As an example consider a myosin mini-filament acting between
two anti-parallel actin filaments, see Fig. 1.3 (a). Myosins are directed motors that
walk towards the plus end of the filaments. In this way they exert a pulling force on
the filaments. The pulling force exerted on the first filament is equal and opposite
to the pulling force exerted on the second filament. Densities of such force dipoles
correspond to active stresses in the system [30, 31]. Not only do motor proteins exert
forces on cytoskeletal filaments, they also can exert torques. It has been shown that
myosin motors attached to a glass cover slip induce rotations on actin filaments in a
sliding essay [11]. The sense of rotation has been linked to the helicity of the actin
filament itself [12]. Like the forces that act in the cytoskeleton, all torques are internal
to the system and thus have to be balanced by equal but opposite counter-torques. As
a consequence no torque monopoles are possible. However torque dipoles exist. One
example for a possible torque dipole is shown in Fig. 1.3 (b). A myosin mini-filament
is attached to two antiparallel actin filaments. While the motor walks towards the plus
ends of both filaments it also infers a rotation to the filaments. In this way it generates a
torque dipole in the fluid. In chapter 4 we will show that densities of torque dipoles and
chiral force dipoles correspond to active angular momentum fluxes and antisymmetric
stresses in the system, respectively.

Associated proteins

The majority of known cytoskeletal proteins are not filamentous proteins or motors.
They are to numerous and diverse to discuss in detail here. Here we just review some
of the most important functions these proteins can fulfill and refer to [5, 41] for a more
complete overview.

Nucleators help to provide a nucleation point for forming filaments. Capping pro-
teins bind to the ends of filaments. Their role can be to stabilize the filaments growth.
Severing proteins cut filaments. Sequestering molecules help with the recycling
of monomers of filamentous proteins. Sidebinding proteins serve as molecular rulers
for measuring the lengths of filaments. Crosslinking and bundling proteins, connect
filaments with each other, organizing them into a structured network. Linkers link fil-
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100μm
One cell stage embryo

Figure 1.4: Microscope picture of Caenorhabditis elegans, by M. Leaver (used with
permission). We marked the one cell stage embryo that is visible inside the gonad of the
worm.

aments of different kinds. Regulators inhibit or facilitate the action of other proteins.
Note that individual proteins can belong to several of these categories.

1.1.2 Chiral motion of cytoskeletal structures

Cytoskeletal filaments are organized into complex networks by associated proteins, and
set under active stress by molecular motors [55]. Under sufficiently high active stresses
the inert state of such cytoskeletal networks becomes unstable and spontaneous motion
is generated [16,36,56]. Examples cytoskeletal structures that display large scale motion
under the effect of molecular motors are, amongst many others, the C. elegans cell cortex
and beating cilia. We will introduce these structures now.

The cell cortex of the C. elegans embryo

The nematode (roundworm) Caenorhabditis elegans represented in Fig. 1.4, is a pop-
ular model organism since its introduction in 1974 by Sidney Brenner [57–59]. The
adult C. elegans is about 1mm long and transparent. Two sexes, one male and one
hermaphrodite exist. The ratio of males to hermaphrodites is around one in two-hundred,
if the growth conditions are favorable. The generation time of C. elegans is around four
days. It is transparent and its development is highly stereotyped. Specifically the cell
fate of all somatic cells is conserved between individuals and has been mapped out for
all 959 and 1029 somatic cells of the adult male and hermaphrodite, respectively. The
genome of C. elegans has been sequenced [59]. An important tool that researchers in
C. elegans have at their disposal is RNA interference, which has been developed in C. el-
egans and was awarded the Nobel price in 2006 [60]. By this method it is possible to
suppress the expression of targeted proteins and thus essay for their role in the cell in
loss of function experiments [61].

The one cell stage C. elegans embryo, see Fig. 1.4, can be extracted from the worm
and imaged. It is a single cell enveloped by a rigid eggshell, see 1.5 (a). The cell cortex
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(a) (b)

Figure 1.5: Sketch of the C. elegans one cell stage embryo (a). The cell cortex main con-
stituent are myosin motors and actin filaments that form an entangled network (b). The
myosin motors set the network under stress hydrolyzing adenosinetriphosphate (ATP)
to adenosinediphosphate (ADP) on inorganic phosphate (Pi).

is a thin layer of cross-linked filamentous actin, and myosin motor proteins directly
beneath the cell membrane. The motor proteins in the cortex exert force and torque
dipoles between the actin filaments, see Fig. 1.3 and Fig. 1.5 (b). Densities of force
dipoles and torque are active stresses and angular momentum fluxes, and provide the
cell cortex with a tendency to actively contract [55]. This contractility of the cortex has
been measured and quantified using laser ablation experiments [21]. The cell cortex is
a dynamic structure that undergoes constant turnover. Cytoskeletal filaments assemble
and disassemble, molecular motors and cross-linkers bind and unbind. In C. elegans was
estimated to be on the order of 30 seconds experimentally [21]. One consequence of
this permanent turnover is that elastic stresses in the cortical meshwork relax on time
scales comparable to the turnover time. On longer time scales the cortex can thus be
considered a viscous fluid.

The cell cortex is involved in many important cellular functions, such as shape change,
cell division [1, 5, 14, 21, 40, 62]. The cortex of the one cell stage C. elegans embryo is
particularly interesting to study, since it divides asymmetrically [63, 64]. During asym-
metric cell division a single mother cell divides into two daughter cells of different cell
fate [1, 5, 65]. This process allows an organism to develop from a single embryonic stem
cell into a complex structured organism in which different cells assume different roles.
In C. elegans the fertilized zygote P0 divides in a bigger AB-cell, that will give rise to
somatic cells only, and the smaller P1 cell. The P1, remains stem cell like. It later
undergoes four more rounds of asymmetric division, and finally gives rise to the germ
line cell P4 [59, 63].

Asymmetric cell division requires breaking the symmetry between the two daughter
cells. In the C. elegans zygote the symmetry is initially broken by the entry point of
the sperm. This event starts a cascade of protein reactions which provide a trigger



16 1.1. The cytoskeleton

Flagellum

Cilium

Figure 1.6: (a) Schematical representation of the ventral node of the mouse (adapted
from Fig. 10 in [22]) and (b) a carpet of rotating cilia where black arrows indicate the
sense of rotation. V, D, A, P, R, L denote the ventral, dorsal, anterior, posterior, right
and left side of the organism, respectively. Cilia tilted towards the posterior drive a
leftward fluid flow (blue arrows). (c) Cross-section of a flagellum and cilium, and their
axoneme. Adapted from N. Hirokawa et al., Cell 125, 33-45 (2006).

to start pattern forming process in the cell cortex, leading to an anterior (A) half of
the cell which is biochemically different from its the posterior (P ) [66]. Specifically,
this cascade of events involves regulation of the activity of motor proteins, generating
spacial gradients of active stress. Spacial imbalances in active stress give rise to long
ranged flows [21] wich help translating the initial symmetry breaking cue into a pattern
of proteins on the cell cortex [66] by a reaction diffusion advection process [62]. These
cortical flows are chiral. Thus the C. elegans cell cortex is an active chiral fluid. We will
discuss these chiral cortical flows in detail in chapter 6.

Flows driven by cilia

A second example for active chiral cytoskeletal structures are cilia and flagella. Cilia
and flagella are whip like appendages of cells, that can actively generate motion thanks
to a structure at their chore, the axoneme. The axoneme consists of nine microtubule
doublets, that are arranged on a circle in a chiral fashion, see Fig.1.6 (c). Dynein motors
exert forces between the microtubule doublets and generate motion [5, 14, 16]. Many
different beating patterns of cilia exist, which in general are chiral and often exhibit
rotating movements, as is the case for the cilia that govern the left-right symmetry
breaking of organisms [19,67].

Tissues with motile cilia are ubiquitous in biology. For instance they are found in
the vertebrate lungs [68, 69], brains [70] and kidneys, where there role is to pump fluid.
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Figure 1.7: (a) Schematic representation of a swimming bacterium with rotating flag-
ella. (b) Chiral motor consisting of two counter-rotating spheres at distance d. Arrows
indicate senses of rotation.

Ciliated tissue also have an important role during the development of organisms [1–3].
For instance, in developing mice carpets of chiraly beating cilia are involved in the
left-right symmetry breaking of the whole organism [17–19, 71, 72]. The embryo, which
already has broken anterior-posterior and dorsal-ventral symmetry at this point, forms
a flat cavity called the ventral node, see Fig. 1.6 (a). The ventral side of the node is
covered with chiraly beating cilia, that are tilted towards the posterior. This arrangement
generates a leftward fluid flow, see Fig. 1.6 (b), that triggers the left right symmetry
breaking of the entire organism. Such carpets of chiral motors can be described as active
chiral fluids, and will be discussed in chapter 5.

1.2 Other examples of active fluids

Many biological micro-swimmers are chiral. One example is the bacterium E. coli that
derives its motility from chirally rotating flagella [14], see Fig. 1.7 (a). It is thus struc-
turally similar to two counter-rotating spheres, i.e. a nematic chiral motor, see Fig.1.7
(b). One consequence of this is that it swims on curved trajectories, when close to a
surface [14,73]. Other microorganisms, such as Paramecium or Volvox possess carpets of
cilia on their outer surface, which are used for self-propulsion along helical trajectories
in a fluid [14].

Suspensions of such chiral swimmers can thus be considered an active chiral fluid.
Recently, the collective behavior of swimming E. coli bacteria on solid surfaces was
studied [74]. The E. coli were placed on a solid agar surface [74], where they produced a
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thin fluid layer that promotes their motility. Some bacteria attach to the surface while
others swim in the film. The bacteria which were attached to the surface also exerted
torques on the solid substrate. Large scale chiral flow patterns were reported as a result
of bacterial activity [74]. The bacterial suspension therefore represents an internally
driven active chiral film supported by a surface. We will discuss this in more detail in
chapter 5.

One further example of a rotating biological motors is F1-F0-ATP-Synthases. This
structure, consisting of two subunits that are in contact across a membrane is involved
in the production of ATP. It has however also be observed to hydrolyze ATP work
as a motor [75]. A membrane with many such motors can thus be considered a two-
dimensional active chiral fluid. The hydrodynamic interaction between the motors has
been shown to lead to the formation of non-equilibrium patterns [76].

Outside the realm of biology collections of chiral particles on a vibrating surface have
attracted some interest [77]. These systems are especially interesting for their conceptual
simplicity.

1.3 Hydrodynamic theories of active fluids

In the previous section we introduced several examples of active chiral fluids. While the
microscopic mechanisms at work in these systems are very different from each other, in
the hydrodynamic limit, i.e. on large length and long time-scales the generic properties
of active fluids are described by generic equations. Hydrodynamic modes are the result
of conservation laws and of broken continuous symmetries [26, 27, 78]. Hydrodynamic
equations can be obtained systematically by first identifying conjugate pairs of thermo-
dynamic fluxes and forces. Constitutive material relations can be expressed by writing
all linear coupling terms permitted by symmetry, respecting the Onsager reciprocity re-
lations [26, 32, 33]. Note that similar approaches have also been used to describe bird
flocks [79–81], swarms of hydrodynamically interacting swimmers [30,31], active nematic
fluids [82–85], or active solids [86–88]. In all these approaches, the complexities of the
microscopic interactions are captured in a small number of phenomenological coefficients,
that can be measured, or determined from microscopic models. Several approaches that
model active fluids as suspensions of rods crosslinked by motor molecules have been
proposed [82, 83, 89–91]. We now briefly outline the important concepts that underlie
our approach to hydrodynamic theories for active fluids. We first discuss the concept
of coarse grained theories and how to form the continuum limit, then we introduce the
assumption of local equilibrium, the Onsager reciprocity theorem and Curies dissymme-
try principle. Finally we discuss the constitutive equations that have been obtained for
achiral viscous active gels in [32–34].

1.3.1 Coarse graining

Consider a fluid consisting of a large number N of particles at with masses m(i) and posi-
tions x(i), and velocities v(i). Describing the dynamics of such a fluid on the microscopic
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scale requires to keep track of 6N -degrees of freedom, which is of coarse impracticable.
Instead we coarse grain our description of the fluid by dividing it into small volumina
V , and defining coarse grained variables. For instance the mass density ρ in a volume
V of fluid is given by,

ρ =
M

V
=

1

V

∑
x(i)∈V

m(i) , (1.1)

where the total mass of the volume element in

M =
∑

x(i)∈V

m(i) . (1.2)

We can then define a center of mass velocity of the volume element

v =
1

M

∑
x(i)∈V

m(i)v(i) . (1.3)

and a momentum density

g = ρv . (1.4)

The flux of momentum into the volume V is given by the stress tensor σtotαβ, which obeys,∫
∂V

σtotαβdSβ = ∂t

∫
V

dx3g . (1.5)

Here, the boundary of the considered volume V of fluid is written as ∂V . The stress
tensor has the dimension of a force per area, and describes the force that acts along a
virtual cutline through the material. The first index of the tensor denotes the direction
along which the virtual force acts, while the second index refers to the direction of the
virtual cutline. Equation (1.5) is nothing but the force balance equation of the volume
element V .

1.3.2 The continuum limit

In the way we introduced the coarse grained variables in equations 1.1, 1.3 and 1.4 they
are strictly speaking functions of the coarse graining volume V . To obtain a continuous
theory we go to the limit where the coarse graining volumina are small and V → 0. In
the continuum limit the coarse grained variables can be written as continuous functions
of space. Such that for instance,

ρ = ρ(r) . (1.6)

where r is a position vector.

It is the aim of any hydrodynamic theory to derive dynamic equations for ρ(r), v(r)
and the other continuous coarse grained variables that exist in complex fluids, such as
local order parameters or continuous broken symmetries.



20 1.3. Hydrodynamic theories of active fluids

1.3.3 Slow variables and local equilibrium

In order to apply thermodynamic principles to derive a hydrodynamic theory for active
fluids, we make one essential assumption, which is the assumption of local equilibrium.
Explicitly, we assume that each volume element V of the fluid is in thermodynamic
equilibrium, but out of equilibrium with neighboring volume elements. Most of the
6N -degrees of freedom relax towards a thermal distribution that is set by only a few
slow variables on time scales that are fast compared to the time evolution of the slow
variables. In general the slow variables are given by conserved quantities, continuous
broken symmetries, and order parameters close to a phase transition.

Under the assumption of local equilibrium it is possible to locally define a free energy
density f , that depends only on the slow variables. The free energy of a volume V of
fluid is then defined as

F =

∫
V

fdx3 . (1.7)

It is thus also possible to define an entropy of the volume V using that

S =
1

T
(U − F ) , (1.8)

where U is the internal energy and T is the temperature. If the system is globally out
of equilibrium entropy will be produced until the global equilibrium state, the state of
highest entropy, is reached. The entropy production rate Θ̇ can be derived from 1.8,
systematically as we shall show 2. In fact the entropy production rate can be used
to systematically derive constitutive material equations for the fluid using the Onsager
reciprocity theorem and Curie’s dissymmetry principle.

1.3.4 Onsager reciprocity theorem

The entropy S is maximal at equilibrium. The entropy production rate for a system out
of equilibrium is always positive,

Θ̇ ≥ 0 . (1.9)

In general, the entropy production rate can be expressed as a sum of products of ther-
modynamic fluxes J (i) and forces X(i) such that

Θ̇ =
∑
i

J (i)X(i) , (1.10)

where J (i) and X(i) vanish at equilibrium. Close to equilibrium the thermodynamic
fluxes J (i) can be expressed as linear functions of the thermodynamic forces X(i), i.e.

J (i) = αijX
(j) , (1.11)

and thus

Θ̇ = αijX
(i)X(j) . (1.12)
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The equations (1.11) are the constitutive equations of the material and αij are phe-
nomenological coefficients that capture the fluids material properties.

The second law of thermodynamics (1.9) imposes conditions on the coefficients of
the matrix αij , that are known as the Onsager reciprocity principles. It has to be
ensured that the entropy production rate stays positive if the directions of all microscopic
velocities are reversed, an operation commonly termed time-reversal. Thus it can be
shown that αij = αji if X(i) and X(j) have the same behavior under time reversal, and
that αij = −αji if X(i) and X(j) have different behavior under time reversal [26].

Note that the Onsager reciprocity theorem only holds close to equilibrium, further
away non-linear terms start to play a role.

1.3.5 The Curie dissymmetry principle

The possible phenomenological coefficients αij are further constrained by the symmetries
of the system. The Curie dissymmetry principle states that a physical effect can not
have a dissymmetry absent from its physical cause [26]. Thus in an isotropic fluid
only isotropic couplings between thermodynamic fluxes and forces are possible. In a
system with polar symmetry, polar couplings are also possible. In the chiral fluids, we
investigate here the couplings between thermodynamic fluxes and forces can also lack
inversion symmetry, and the constitutive equation need not be invariant towards the
transformation r → −r, where r is a position vector. As we will show this broken
symmetry allows for interesting new physics, and new active terms in the constitutive
equations.

1.3.6 Constitutive equations of active polar gels

Following the principles outlined in this section, constitutive equations for active gels
have been derived in [32–35]. For an incompressible single component active viscous gel
the thermodynamic fluxes have been identified. They are: (i) the symmetric part of the
deviatoric stress,

σαβ = σtotαβ − σ
tot,a
αβ − ρvαvβ + Pδαβ, (1.13)

where σtot,aαβ is the antisymmetric part of the total stress tensor and P = −σtotγγ is the
pressure ; (ii): the co-rotational derivative of the polarity vector

Dpα
Dt

= ∂tpα + vγ∂γpα +
1

2
(∂αvβ − ∂βvα) pβ , (1.14)

and (iii): the rate r of hydrolysis of a chemical fuel. The thermodynamic force are given
by (a): the symmetric strain rate tensor

uαβ =
1

2
(∂αvβ + ∂βvα) , (1.15)

which describes local strain deformations in the fluid; (b): the polar distortion field

hα = − δF
δpα

, (1.16)
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which is the conjugated field to the polarity field p, that drives it towards its equilibrium
configuration; and (c): the difference in chemical potential between a fuel molecule and
its reaction products ∆µ. Material constitutive equations have been obtained by linearly
expanding thermodynamic fluxes in terms of thermodynamic force,

σαβ = 2ηuαβ +
ν1

2
(pαhβ + pβhα) + ζpαpβ∆µ+ ζ ′pγpγδαβ∆µ , (1.17)

Dpα
Dt

=
1

γ
hα + λ1pα∆µ− ν1pβuαβ , (1.18)

r = Λ∆µ+ λ1pαhα + ζpαpβuαβ + ζ ′pαpαuββ . (1.19)

Similar equations can be obtained by alternative methods such as the Poisson bracket
approach [28, 29]. Here η, ν1, γ, ζ, ζ ′, λ1 and Λ are the phenomenological coefficients,
that correspond to the αij in Eq. (1.11). Their values are specific to the fluid considered
and can be measured in experiment or determined from microscopic models.

1.4 Overview of this work

The aim of this thesis is to develop a theory for active chiral fluids and discuss its im-
plication to biological systems. Specifically we show that active chiral fluids can spon-
taneously generate fluid flows that break chiral symmetry. In contrast to spontaneous
symmetry breaking that can exist in inversion symmetric active fluids, the chirality of
flows in active chiral flow is set by the chirality of their constituents. The structure of
this thesis is as follows. In chapter 2 we derive a generic theory of active chiral fluids
based on symmetry considerations and conservation laws only and obtain the most gen-
eral set of equations that describe an active chiral fluid. We discuss how the Navier
Stokes eauation and preexisting hydrodynamic theories for inversion-symmetric active
fluids can be obtained from our theory. We then move on to discuss different examples
of active processes within the theoretical frameworks obtained in 2. In chapter 3 we
discuss spontaneous flows generated in an inversion-symmetric fluid confined between
two cylinders. These flows break chiral symmetry spontaneously, making the two cylin-
ders rotate with respect to each other. This system, which we call the Taylor-Couette
motor provides an example of an active chiral process, that does not require microscopic
chirality. In chapter 4, we show how distributions of chiral torque and force dipoles in a
fluid can give rise to the active chiral terms that we identified in chapter 2. We calculate
the flow and rotation field, around localized distributions of such dipoles, that differ
by their symmetry, which we call elementary motors. In chapter 5 we discuss films of
chiral fluids. We show that an active chiral fluid confined between two surfaces generates
spontaneous large scale flows by an active chiral boundary layer effect. Motivated by
this observation we develop a generic theory for thin films of chiral active fluid. The
coupling of the chiral bulk equations to the surface via frictional terms, generates new
interesting effects that we discuss in the context of chiral swimmers adhering to a surface
and carpets of beating cilia. Finally, in chapter 6 we discuss flows in the cell cortex of
the one-cell stage embryo of the nematode worm C. elegans . We show that these flows
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are chiral, and apply our theory to extract material properties of the cell cortex from
experimental movies. Finally in chapter 7 we give a summary of our results and indicate
possible directions for future research.
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Chapter 2

Generic theory of active chiral
fluids

In this chapter we derive the hydrodynamic theory for active chiral fluids, based on con-
servation laws and symmetry arguments alone. For simplicity, we consider an isothermal
system at a fixed temperature T . Our derivation closely follows the logic outlined in
Refs [25–27,32,33]. However unlike these references, we explicitly consider a spin angular
momentum degree of freedom, which will reveal to be crucial in order to describe active
chiral systems. The role of spin angular momentum was discussed in the frameworks of
passive fluids in Ref [29]. Here we extend these ideas to active systems.

2.1 Conserved quantities

Mass, momentum and angular momentum, as well as energy are conserved quantities.
This, of coarse remains valid in fluids. Here, we consider a fluid consisting of a large
number N of particles at with masses m(i) and positions x(i), and particle velocities v(i).
We explicitely state the conservation laws in small volume elements V of fluid, and show
how they lead to continuity equations for densities of conserved the quantities.

2.1.1 Mass conservation

The mass of a volume V of fluid is given by

M =
∑

x(i)∈V

m(i) , (2.1)

and is a conserved quantity. Thus it can only change a mass flux across the boundary
of the volume V . We introduce the mass density

ρ =
M

V
, (2.2)

25
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and the center of mass velocity

v =
1

M

∑
x(i)∈V

m(i)v(i) . (2.3)

In the continuum limit where ρ = ρ(r) and v = v(r). the conservation of mass can be
expressed by the continuity equation

∂tρ = −∂α(ρvα) . (2.4)

Here and below greek indices assume the values x, y, z, which correspond to the three
spatial dimensions. We adopt Einsteins summation convention over repeated indices.

2.1.2 Particle number conservation

The fluid we consider consists of K different species of particles, with k(i) being the
species of the i-th particle. The volume V of fluid thus contains

Nk =
∑

x(i)∈V

δk(i)k , (2.5)

particles of species k, and we can define particle number densities nk = Nk/V . The mass
density can then be written as

ρ =
∑
k

nkmk . (2.6)

In the continuum limit the particle number densities obey continuity equations

∂tnk = −∂αJkα +Rk . (2.7)

The flux of particles of species k, Jk can be split into a convective part nkvα and a
deviatoric particle mass flux jk,

Jkα = nkvα +
jkα
mk

. (2.8)

By definition
∑
i
jkα = 0. The source terms Ri in Eq. (2.7) account for chemical reactions

between the components of the fluid. Conservation of mass (2.4) requires that∑
k

mkRk = 0 , (2.9)

which is Lavoisiers principle that no mass is created or lost in chemical reactions.
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2.1.3 Momentum

The total momentum in the volume V is

G =
∑

x(i)∈V

m(i)v(i) , (2.10)

conserved in the absence of external forces. The momentum density is given by g =
ρv = G/V . In the continuum limit it obeys the continuity equation

∂tgα = ∂βσ
tot
αβ + fextα . (2.11)

The total stress tensor σtotαβ contains all momentum density fluxes. The force density f ext

contains all external momentum density sources. The total stress tensor can be split

Figure 2.1: Sketch of the different components of the stress tensor. The arrows indicate
the forces that a volume element (represented as a square) would exerts on its neighbors.

into three parts as displayed in Fig. 2.1, such that

σtotαβ = σ̃totαβ + σtot,aαβ − Pδαβ . (2.12)

Here P = −σtotγγ is the pressure, see Fig. 2.1 (a) and σ̃totαβ = (σtotαβ +σtotβα)/2+Pδαβ/3 is the

symmetric traceless shear stress , see Fig. 2.1 (b). Finally σtot,aαβ = (σtotαβ − σtotβα)/2 is the
antisymmetric part of the stress, see Fig. 2.1 (c). While the antisymmetric stress is zero
in simple fluids, in complex fluids the antisymmetric stress can be finite. To understand
its role it is instructive to consider angular momentum conservation.

2.1.4 Angular momentum

The total angular momentum of a volume V of fluid is given by,

Ltotαβ =
∑

x(i)∈V

m(i)
(
x(i)
α v

(i)
β − x

(i)
β v

(i)
α

)
, (2.13)
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and can be split into a orbital and a spin contribution,

Ltotαβ = M (rαvβ − rβvα) + Lαβ , (2.14)

where

r =
1

M

∑
x(i)∈V

m(i)x(i) , (2.15)

is the center of mass position of the volume element and

Lαβ = Ltotαβ −M (rαvβ − rβvα)

=
∑

x(i)∈V

I
(i)
αβγµΩ(i)

γµ , (2.16)

is its spin angular momentum. Here we have introduced the spin rotation rate Ω
(i)
αβ which

fulfills,

Ω
(i)
αβ = 2 (δαγδβµ − δβγδαµ)

(
r(i)
γ − rγ

)(
v(i)
µ − vµ

)
(2.17)

and the particle moment of inertia

I
(i)
αβγµ = 2m(i)(r(i) − r)2 (δαγδβµ − δβγδαµ) . (2.18)

We can now define a moment the inertia density of the volume element V as,

Iαβγδ =
1

V

∑
x(i)∈V

I
(i)
αβγδ (2.19)

and its effective intrinsic rotation rate,

Ωαβ = I−1
αβνδ

∑
x(i)∈V

I
(i)
νδγµΩ(i)

γµ , (2.20)

where
I−1
αβνµIα′β′ν′µ′ = δαα′δββ′δγγ′δµµ′ . (2.21)

Note that here we do not consider single particle spins. The spin angular momentum Lαβ
is entirely generated by the translational motion of particles within the volume element
V .

The total angular momentum Ltotαβ is a conserved quantity. The total angular mo-

mentum density ltotαβ = Ltotαβ/V thus obeys a continuity equation in the continuum limit

∂tl
tot
αβ = ∂γM

tot
αβγ + τ extαβ + rαf

ext
β − rβfextα . (2.22)

Here, M tot
αβγ is the total angular momentum flux and τ extαβ is the externally applied bulk

torque. The total angular momentum density consists of an orbital angular momentum
density rαgβ − rβgα and a spin angular momentum density lαβ = Lαβ/V = ltotαβ −
(rαgβ − rβgα) which obeys

lαβ = IαβγδΩγδ . (2.23)
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The flux of spin angular momentum is given by

Mπ
αβγ = M tot

αβγ −Mσ
αβγ , (2.24)

where Mσ
αβγ = rασ

tot
βγ − rβσtotαγ is the orbital angular momentum flux. Note that, while

ltotαβ and its flux M tot
αβγ are explicitly coordinate system dependent, the spin angular

momentum density lαβ and the spin angular momentum flux Mπ
αβγ are not. In the

spatially homogeneous system they therefore have no gradients. From Eqs. (2.11) and
(2.22) we obtain continuity equations for the spin and the orbital angular momentum
densities,

∂t (rαgβ − rβgα)− ∂γMσ
αβγ = 2σtot,aαβ + rαf

ext
β − rβfextα , (2.25)

∂tlαβ − ∂γMπ
αβγ = −2σtot,aαβ + τ extαβ . (2.26)

Eqs. (2.26 ) and (2.25) are coupled by the antisymmetric stress, which describes the con-
version between spin and orbital angular momentum [26]. Note that the antisymmetric
tensors Ωαβ and lαβ can be equivalently represented by axial vectors, Ωα = εαβγΩβγ/2
and lα = εαβγlβγ/2, where lα = IαβΩβ with Iαβ = εαδγεβµνIδγµν , where εαβγ is the
Levi-Civita symbol, which is the pseudo-tensor that is antisymmetric with respect to
any permutation of indices and εxyz = 1. In the following we will use both notations
interchangeably.

2.1.5 Energy conservation and entropy production

The total internal energy U of the fluid is a conserved quantity. It obeys

U̇ = Ẇ −
∫
∂V

dSαJ
(U)
α , (2.27)

where W is work and J(U) is the flux of internal energy. Dots denote time derivatives.
The power Ẇ is given by,

Ẇ =

∫
V

dx3

(
1

2
Ωαβτ

ext
αβ + vαf

ext
α

)
, (2.28)

where 1
2Ωαβτ

ext
αβ is the power density exerted by external bulk torques and vαf

ext
α is the

the power density exerted by external bulk forces.
The internal energy is related to the free energy F of the system via the relation

F = U − TS , (2.29)

where S is the entropy. Since here we consider an isothermal system Ṫ = 0. The entropy
S however changes with time according to the equation,

Ṡ = Θ̇−
∫
∂V

dSαJ
(S)
α , (2.30)



30 2.2. Continuously broken symmetries

where Θ̇ is the entropy production rate and J(S) is the entropy flux. In a system out of
equilibrium entropy is constantly produced and the rate of entropy production is given
by

T Θ̇ = −Ḟ + Ẇ +

∫
∂V

dSαJ
(F )
α , (2.31)

where
J(F) = J(U) − TJ(S) . (2.32)

This relation will later allow us to identify the thermodynamic fluxes and forces of the
system to obtain constitutive material equations.

2.2 Continuously broken symmetries

In complex fluids the constituent molecules can be anisotropic. For instance swimming
bacteria have a well defined front and back, and so do actin filaments in the cytoskeleton.
If particles locally align this gives rise to continuously broken symmetries. In suspensions
of swimming bacteria, the symmetry can be broken by swarms of bacteria aligning
their direction of motion . In the cytoskeleton symmetry can be locally broken when
cytoskeletal filaments arrange or bundle. For this reason we now consider that each of
the 6N particles of our fluid has an orientation vector p(i).

Figure 2.2: Continuous broken symmetries: The arrows denote the microscopic orienta-
tions p(i) of particles. The system is in an isotropic state in (a), in a nematic state in
(b) and in a polar state in (c).

2.2.1 Polar and nematic order

The fluid is said be locally ordered if the local distribution of p(i) has non-vanishing
moments. The first moment of the local distribution of particle orientations is the
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polarity vector

p =
∑

x(i)∈V

p(i)/
∑

x(i)∈V

. (2.33)

The vector p local if particles are locally aligned and parallel, see Fig. 2.2 (c). It is zero
in an isotropic solution, see Fig. 2.2 (a), or if the if the particles are aligned but anti-
parallel, see Fig. 2.2 (b). Such a nematic alignment is captured by the second moment
of the distribution which is the nematic order tensor,

Qαβ =
∑

x(i)∈V

(
p(i)
α p

(i)
β −

1

3
p(i)
γ p

(i)
γ δαβ

)
/
∑

x(i)∈V

= nαnβ −
1

3
δαβnγnγ . (2.34)

The nematic tensor Q can be represented via the director n without loss of generality.
In the discussion that follows, we focus on the polarity vector p. It can however be
generaliyed to the nematic vector n when considering, that in nematic fluids only terms
that are invariant with respect to the transformation n → −n can appear. Higher
moments of the filament distribution are usually ignored.

2.2.2 Distortion free energy

Figure 2.3: Modes of distortion of a nematic liquid crystal: (a) splay distortion; (b) twist
distortion; (c) bend distortion.

The free energy density f0, associated with the polarity field, is called the distortion
free energy and

f0 = f0(pα, ∂βpα) . (2.35)
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In general, f0 is a function of the vector field p and its spacial derivatives. A generic
expression for f0 can be obtained by writing all terms allowed by symmetry up to second
order in spacial derivatives [27]. One finds

f0 = K1(∂αpα + k0)2 +K2(pαεαβγ∂βpγ + q0)2 +K3(εαβγεγδµpβ∂δpµ)2 + λ(pγpγ − 1)2 ,
(2.36)

which is the Frank free energy. The distortion free energy Eq. (2.36) depends on six
phenomenological coefficients that describe the properties of the polarity field. K1 is the
splay modulus, K2 the twist modulus and K3 the bend modulus. These three modes of
deformations are sketched in Fig. 2.3. The coefficients k0 and q0 describe the spontaneous
splay and twist of the material. Note that spontaneous bend is generally forbidden
by symmetry. Furthermore spontaneous splay can only exist in polar fluids since the
corresponding term is not symmetric with respect to the transformation p→ −p. Finally
spontaneous twist is a property that is unique to chiral fluids, since the corresponding
term changes sign with respect to mirroring at the origin of the coordinate system, i.e.
x→ −x, y → −y and z → −z. The coefficient λ penalizes the amplitude fluctuations of
p.

2.2.3 The polar distortion field

If the polarity field is locally displaced from its equilibrium direction the distortion free
energy F0 =

∫
dx3f0(pα, ∂βpα) changes like

δF0 =

∫
dx3

(
∂f0

∂pα
δpα +

∂f0

∂(∂βpα)
δ∂βpα

)
=

∫
dx3

(
−hαδpα + ∂β

(
∂f0

∂(∂βpα)
δpα

))
.

(2.37)

Here we have introduced the conjugate variable to the polarity vector, the polar distor-
tion field

hα = − ∂f0

∂pα
+ ∂γ

∂f0

∂∂γpα
. (2.38)

For this reason a complex fluid, unlike a simple fluid, can carry torques. Under infinites-
imal rotations defined by the pseudo-vector δθα, with δpα = εαβγδθβpγ equation 2.37
reads

δF0 = −
∫
V

dx3εαβγpβhγδθα −
∫
∂V

dSβ
1

2
M e
αγβεαγδδθδ . (2.39)

We identify the angular momentum flux carried by the polarization field as

M e
αβγ =

∂f0

∂(∂γpβ)
pα −

∂f0

∂(∂γpα)
pβ . (2.40)

To illustrate the importance of the angular momentum flux M e
αβγ we turn to a simple

example: the twisted nematic.
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Figure 2.4: Sketches of a twisted nematic (left) and the magical spiral (right).

2.2.4 The twisted nematic

Consider a nematic fluid confined between two parallel plates in the xy plane at z = 0
and z = d as shown in the left panel of Fig. 2.4 (left). The boundary conditions are such
that p(0) = êx and p(d) = êy. The vector p is confined to the xy-plane and its length
fixed to one, such that px = cosψ and py = sinψ. The distortion free energy is then

f0 = K2(∇ψ)2 , (2.41)

where we choose q0 = 0 such that the material has no spontaneous twist, for simplicity.
The fluid between the two plates is in equilibrium when h = 0. With the boundary
conditions we find,

ψ(z) =
π

2d
z . (2.42)

It follows immediately that a constant angular momentum flux

M e
xyz = 2K2∂zψ = K2

π

d
6= 0 , (2.43)

flows through the system. A constant torque needs to be applied between the two plates
to maintain this steady state. This example illustrates that in contrast to Newtonian
fluids, complex fluids can carry torques.

2.3 The hydrostatic stress

The total stress tensor can be divided in a hydrostatic and a dynamic contribution. The
fluid we consider is in local equilibrium, such that locally the microscopic degrees of
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freedom relax rapidly towards a distribution that is set by a few slow variables. The
hydrostatic stress is the contribution to the total stress that is generated by microscopic
degrees of freedom for given values of the slow variables. The hydrostatic stress can
be non-vanishing even in equilibrium . In a simple fluid it is given by the hydrostatic
pressure. In complex fluids it is given by the Ericksen stress [23, 24, 27, 34]. We now
derive an expression for the hydrostatic stress.

2.3.1 Derivation of the Ericksen stress

If the system is in local equilibrium, the free energy density f(gα, lα, pα, ∂βpα, ni) is well
defined. The free energy of a volume V of fluid is given by

F =

∫
V

dx3f(gα, lα, pα, ∂βpα, ni) =

∫
V

dx3

(
gγgγ
2ρ

+
I−1
γδ

2
lγlδ + f0(pα, ∂βpα) + µini

)
.

(2.44)
We define the chemical potential, µtoti = ∂F/∂ni, and the polar distortion field htot =
−δF/δp. Note that µtoti and htot are different from the equilibrium chemical potential µi
and the equilibrium distortion field h = −δF0/δp by kinetic contributions. We obtain
an expression for infinitesimal variations of the free energy,

δF =

∫
∂V

[
fuαδαβ +

∂f0

∂(∂βpγ)
δpγ

]
dSβ +

∫
V

dx3
[
vαδgα + Ωαδlα − htotα δpα + µtoti δni

]
,(2.45)

where vector u describes an infinitesimal displacement of the boundary. Now consider
the transformation where δgα = −uγ∂γgα and alike for δpα , δlα and δni. This is
the transformation, where the values of all hydrodynamic fields are convected with the
deformation field u. Then δF reads,

δF =

∫
∂V

{
(f − niµtoti − gγvγ − lγΩγ)δαβ −

∂f

∂(∂βpγ)
∂αpγ

}
uαdSβ

+

∫
V

dx3uγ
(
gα∂γvα + lα∂γΩα + htotα ∂γpα + ni∂γµ

tot
i

)
+

∫
V

dx3
(
µtoti ni + gαvα + lγΩγ

)
∂γuγ . (2.46)

We identify the hydrostatic stress from the surface term as

σeαβ = (f − niµtoti − gγvγ − lγΩγ)δαβ −
∂f

∂(∂βpγ)
∂αpγ . (2.47)

The hydrostatic stress tensor σeαβ is known from the liquid crystal literature as the
Ericksen stress and is a generalization of the hydrostatic pressure [23,24,27,34].
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2.3.2 Properties of the hydrostatic stress

The hydrostatic stress has some interesting properties that follow from the translational
and rotational invariance of the fluid. The system is translation invariant. Therefore
the variation with constant u does not change the free energy and δF = 0. This yields
the Gibbs-Duhem relation,

∂βσ
e
αβ = −gγ∂αvγ − lγ∂αΩγ − htotγ ∂αpγ − ni∂αµtoti , (2.48)

which couples gradients of the Ericksen stress to gradients of the other intensive variables.

Moreover the free energy is invariant towards rotations. A rotation by an infinitesimal
angle θ is the transformation where, uα = εαβγθβrγ , δpα = −uγ∂γpα + εαβγθβpγ , δlα =
−uγ∂γlα + εαβγθβlγ , δgα = −uγ∂γgα + εαβγθβgγ , δni = 0 and δF = 0. This imposes a
condition on the antisymmetric part of the Ericksen stress σe,a,

σe,aαβ =
1

2

{
∂γM

e
αβγ + (htotα pβ − htotβ pα)− (Ωαlβ − Ωβlα)

}
. (2.49)

Interestingly in a complex fluid the antisymmetric stress be non-vanishing even in equi-
librium. Comparing Eq. (2.49) expression to the torque balance Eq. (2.22), we see that
the antisymmetric stress can exert a torque on the boundary even in equilibrium. This
observation is best understood when considering the example of the magical spiral [27].

2.3.3 The magical spiral

Consider a complex fluid confined between two cylinders of radius R− and R+ oriented
along the z-axis as shown in the right panel of Fig. 2.4. The polarity vector is confined
to the xy-plane and normalized to one, such that p = cosψ êr + sinψ êθ in cylindrical
coordinates. Furthermore for simplicity the polarity field shall be be rotationally sym-
metric and isotropic in the z direction, and K1 = K3 = K. The polar distortion field is
given by

h⊥ = K
1

r
∂r(r∂rψ) , (2.50)

with h⊥ = (prhθ − pθhr). Consider the boundary conditions ψ(R−) = 0 (the polarity
field is normal to the wall of the inner cylinder) and ψ(R+) = π

2 (the polarity field is
parallel to the wall of the outer cylinder). In equilibrium where h⊥ = 0 we then find

ψ(r) =
π

2

ln r − lnR−
lnR+ − lnR−

. (2.51)

An angular momentum flux through this configuration is induced by the polarity field
and exerts a net torque on the system walls,

2π∫
0

dθrM e
rθr = π2K [ln (R+)− ln (R−)] . (2.52)
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If this was the only torque acting in the system the magical spiral would be a perpetuum
mobile, which is of coarse impossible. In fact, the torque exerted on the boundary by
the antisymmetric part of the hydrostatic stress exactly cancels the torque exerted by
the polarization field as can be seen directly from Eq. (2.49). This example shows the
critical importance of considering the anisotropic part of the hydrostatic stress properly
when considering complex fluid [27]. We will discuss a generalization of the magical
spiral to active systems in chapter 3.

This concludes our discussion of the hydrostatic properties of complex fluids. We
next discuss its dynamics.

2.4 Hydrodynamics of active fluids

We now derive equations of motion for the slow variables. For this purpose, we first ob-
tain constitutive equations for the complex fluid by identifying the thermodynamic fluxes
and forces from the rate of entropy production Θ̇. Close to equilibrium the thermody-
namic fluxes are linear functions of the thermodynamic forces. We obtain constitutive
equations by writing down all terms allowed by symmetry respecting the Onsager reci-
procity principle. We then combine the constitutive relations, the hydrostatic properties
of the fluid and the conservation laws of the system to obtain dynamic equations. We
start by deriving the entropy production rate.

2.4.1 Entropy production rate

We consider a variation of the free energy where δF = Ḟ δt, uγ = vγδt, δgα = ∂tgαδt,
δlα = ∂tlαδt, δpα = ∂tpαδt, and δni = ∂tn

iδt, and find

Ḟ =

∫
∂V

[
fvαδαβ +

∂f0

∂(∂βpγ)
∂tpγ

]
dSβ

+

∫
V

dx3

[
vα∂tgα +

1

2
Ωαβ∂tlαβ − htotα ∂tpα + µtoti ∂tni

]
. (2.53)

In order to identify the entropy production rate we need to identify the parts of Ḟ that
stem from free energy fluxes, the part comes from external work, and the part that is the
proper entropy production rate. To guide us, we will use the invariance of the entropy
production rate to changes of coordinate system, i.e. that it is invariant to translations
and rotations. To recast the expression for Ḟ in the appropriate form we start by using
the force balance Eq (2.11), the Gibbs-Duhem relation Eq. (2.48) and performing a
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partial integration, this can be rewritten as,

Ḟ =

∫
∂V

[
fvαδαβ +

∂f0

∂(∂βpγ)
∂tpγ +

{
σtotαβ − σeαβ − (niµ

tot
i + Ωγlγ)δαβ

}
vα

]
dSβ

+

∫
V

dx3
[
vαf

ext
α − (σtotαβ − σeαβ + gαvβ − niµtoti δαβ)∂βvα

+
1

2
Ωαβ(∂tlαβ + ∂γ(lαβvγ)) − htotα

d

dt
pα + µtoti

d

dt
ni

]
. (2.54)

We split the stress tensor in its symmetric its and antisymmetric part and write

(σtotαβ − σeαβ)∂βvα =
{
σtotαβ − σ

tot,a
αβ − (σeαβ − σ

e,a
αβ )
}
uαβ

−(σtot,aαβ − σ
e,a
αβ )ωαβ , (2.55)

where we introduced the strain rate uαβ = 1
2 (∂αvβ + ∂βvα) and the vorticity ωαβ =

1
2 (∂αvβ − ∂βvα). The torque balance (2.22) together with Eq. (2.49) reads

∂tlαβ + ∂γ(lαβvγ) = ∂γ
{
M tot
αβγ −M e

αβγ − (rασ
tot
βγ − rβσtotαγ ) + lαβvγ

}
−2(σtot,aαβ − σ

e,a
αβ )− (htotα pβ − htotβ pα)

+(Ωαlβ − Ωβlα) + τ extαβ . (2.56)

The particle number conservation Eq. (2.7) can be rewritten as

µi,tot(∂tn
i + ∂α(nivα)) = −∂α

(
jiα
µi,tot

mi

)
+ jiα∂α

µi,tot

mi
+ µi,totRi . (2.57)



38 2.4. Hydrodynamics of active fluids

By definition
k∑
i=1

ji = 0. We therefore introduce µ̄i = µtot,imk−µtot,kmi

mimk . Using that

ΩαΩαβlβ = 0 by construction we find

Ḟ =

∫
∂V

[
fvαδαβ +

∂f0

∂(∂βpγ)
∂tpγ + (σtotαβ − σeαβ − (niµ

tot
i + Ωγlγ)δαβ)vα

+
1

2
Ωαδ

{
M tot
αβγ −M e

αβγ − (rασ
tot
βγ − rβσtotαγ ) + lαβvγ

}
− jiβ

µtoti
mi

]
dSβ

+

∫
V

dx3

(
1

2
Ωαβτ

ext
αβ + vαf

ext
α

)

+

∫
V

dx3
[
−
{
σtotαβ − σ

tot,a
αβ − (σeαβ − σ

e,a
αβ ) + gαvβ

}
uαβ −

(
σtot,aαβ − σ

e,a
αβ

)
(Ωαβ − ωαβ)

− 1

2

{
M tot
αβγ −M e

αβγ − (rασ
tot
βγ − rβσtotαγ ) + lαβvγ

}
∂γΩαβ − htotα

(
d

dt
pα + Ωαβpβ

)
+

k−1∑
i=1

jiα∂αµ̄i +Riµ
tot
i

]
,

(2.58)

Equation (2.58) is the Gallilei invariant way of writing the change of free energy Ḟ . Since
we know the expression for the external power,

Ẇ =

∫
V

dx3

(
1

2
Ωαβτ

ext
αβ + vαf

ext
α

)
, (2.59)

we can unambiguously identify the free energy flux over the boundaries J(F )

−J (F )
β = fvαδαβ +

∂f0

∂(∂βpγ)
∂tpγ + (σtotαβ − σeαβ − (niµ

tot
i + Ωγlγ)δαβ)vα

+
1

2
Ωαδ

{
M tot
αβγ −M e

αβγ − (rασ
tot
βγ − rβσtotαγ ) + lαβvγ

}
− jiβ

µtoti
mi

,(2.60)

and the entropy production rate,

T Θ̇ =

∫
dx3

{
σαβuαβ + σaαβ(Ωαβ − ωαβ)− 1

2
Mαβγ∂γΩαβ

+ htotα
D

Dt
pα −

k−1∑
i=1

jiα∂αµ̄i − µtoti Ri

}
. (2.61)

Here

σαβ = σtotαβ − σeαβ − σaαβ + gαvβ (2.62)
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is the symmetric part of the deviatoric stress,

σaαβ = σtot,aαβ − σ
e,a
αβ (2.63)

is the antisymmetric part of the deviatoric stress,

Mαβγ = Mπ
αβγ −M e

αβγ + vγlαβ (2.64)

is the deviatoric internal angular momentum density flux, and

D

Dt
pα =

d

dt
pα + Ωαβpβ (2.65)

is the co-rotational time derivative of the p-field.

The constitutive equation of the complex fluid can be obtained by linearly expanding
the thermodynamic fluxes in terms of thermodynamic forces.

2.4.2 Constitutive relations of an active chiral fluid.

For simplicity, we assume a three component fluid made of the gel, the fuel molecules
and their reaction products. If the concentrations of fuel and reaction products are
kept constant by contact with an external buffer ji = 0 and µtoti Ri can be rewritten as
r∆µ, where r = Rproduct = −Rfuel and ∆µ = µ̄fuel − µ̄product. The fluid is kept out of
equilibrium by the consumption of a chemical fuel that is hydrolyzed at a rate r. The
chemical energy difference between the fuel and its reaction products is denoted ∆µ. In
the main text we assume a constant local supply of fuel molecules and that the reaction
products are constantly evacuated such that ∆µ is a constant. The entropy production
associated to the consumption of fuel is r∆µ/T . The entropy production rate simplifies
to,

T Θ̇ =

∫
dx3

{
σαβuαβ + σaαβ(Ωαβ − ωαβ) +

1

2
Mαβγ∂γΩαβ + htotα

D

Dt
pα + r∆µ

}
.

(2.66)

Equation (2.66) leads us to identify the following thermodynamic fluxes and forces. The
thermodynamic fluxes are the deviatoric shear stress σαβ, the deviatoric antisymmetric
stress, σaαβ, the deviatoric angular momentum density flux, Mαβγ the co-rotational time
derivative of the p-field, Dpα/Dt and the rate of fuel consumption r. The thermody-
namic forces are the symmetric strain rate uαβ, the rotational strain rate Ωαβ − ωαβ,
the polar distortion field htot and the free energy difference between fuel molecules and
their reaction products ∆µ.

We obtain constitutive equations by expanding the thermodynamic fluxes as linear
functions of the thermodynamic forces, respecting the symmetries of the system and
Onsager reciprocity principle. Here, we include all terms allowed by symmetry up to
second order p. Because of chiral asymmetry, the tensor εαβγ can be used to create
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couplings. For simplicity, we ignore anisotropic viscous terms and passive chiral terms,
which are not the focus of this work. The constitutive equations then read:

σαβ = 2ηuαβ +
ν1

2

(
pαh

tot
β + pβh

tot
α

)
+ ν̄pγh

tot
γ δαβ + ζ̄δαβ∆µ

+ζpαpβ∆µ , (2.67)

σaαβ = 2η′ (Ωαβ − ωαβ) +
ν2

2

(
htotα pβ − htotβ pα

)
+ ζ̃∆µεαβγpγ , (2.68)

Mαβγ = κ0∂γΩαβ + ζ1εαβγ∆µ+ ζ2∆µεαβδpδpγ + ζ3∆µ(εαγδpδpβ − εβγδpδpα)

+ζ4∆µ(δαγpβ − δβγpα) , (2.69)

Dpα
Dt

=
1

γ
htotα + λ1pα∆µ− ν1pβuαβ − ν̄uββpα − ν2 (Ωαβ − ωαβ) pβ , (2.70)

r = Λ∆µ+ λ1pαh
tot
α + ζ̄uαα + ζpαpβuαβ + ζ̃ (Ωαβ − ωαβ) εαβγpγ

+
ζ1

2
εαβγ∂γΩαβ +

ζ2

2
εαβδpδpγ∂γΩαβ +

ζ3

2
(εαγδpδpβ − εβγδpδpα)∂γΩαβ

+
ζ4

2
(δαγpβ − δβγpα)∂γΩαβ . (2.71)

We have introduced the viscosities η, η′ and γ. The coefficients ν1, ν̄, and ν2 describe the
coupling between the polarity vector and velocity gradients. The coeffient κ0 accounts for
dissipative angular momentum fluxes generated by gradients of local rotation rates Ωαβ.
The coefficient λ1 describes magnitude changes of the vector p due to active processes.
The coefficient ζ̄ describes the isotropic active stresses, ζ the anisotropic active stress
and ζ̃ the active antisymmetric stress. Active antisymmetric stresses and active angular
momentum fluxes appear as a result of the action of active chiral processes in the fluid.
These contributions are described by the coefficients ζ1, ζ2, ζ3, ζ4 and ζ̃ which describe
the strength and densities of isotropic, nematic rod , nematic ring, polar chiral, and
polar ring motors respectively, that we will discuss in chapter 4.

2.4.3 Equations of motion

Knowing the constitutive equations, we can write down the equations of motion of the
fluid. The first equation of motion is given by the force balance,

∂tgα = ∂β
(
σαβ + σaαβ + σeαβ − gαvβ

)
+ fextα . (2.72)

The second equation of motion is the angular momentum balance,

∂tlαβ = ∂γ (Mαβγ − vγlαβ)− 2σaαβ − (hαpβ − hβpα) + (Ωαlβ − Ωβlα) + τ extαβ . (2.73)

They are completed by the dynamic equation of motion for the polarity equation (2.70)
and the mass continuity equation (2.4).

2.5 Simpler fluids as limiting cases of the generic theory

In this section we discuss two limiting cases of the generic theory we developed. The
first limit we discuss is that of a Newtonian fluid, where we show how to recover the
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Navier Stokes equation. Then we discuss how to recover the limit of older theories for
active fluids, that did not consider a local spin degree of freedom.

2.5.1 The Newtonian fluid

The constitutive equations for the Newtonian fluid are

σαβ = 2ηuαβ , (2.74)

σaαβ = 2η′ (Ωαβ − ωαβ) , (2.75)

Mαβγ = κ0∂γΩαβ . (2.76)

The equations of motion (2.72) and (2.73) then read

∂tgα + ∂β(vβgα) = 2η∂βuαβ + 2η′∂β (Ωαβ − ωαβ)− ∂αP (2.77)

and

∂tlαβ + ∂γ(vγlαβ) = κ0∂
2
γΩαβ − 4η′ (Ωαβ − ωαβ) , (2.78)

respectively, where we used the fact that the moment of inertia tensor is diagonal for
the Newtonian fluid. Moreover the fluid is incompressible, such that

∂αvα = 0 . (2.79)

If we finally use lαβ = IΩαβ,

dgα
dt

= η∂2
γvα − ∂αP +

κ0

4η′

(
∂2
γ −

I

κ0

d

dt

)[
dgα
dt
− (η + η′)∂2

γvα + ∂αP

]
(2.80)

Equation (2.80) is the Navier Stokes equation with some additional higher order correc-
tion terms that are proportional to κ0/η

′, which has the dimension of a length squared,
and is thus set by some molecular scale length of the system. In the limit where the
molecular length scale l =

√
κ0/η′ tends to zero, Eq. (2.80) converges to the well known

form of the the Navier-Stokes equation.

2.5.2 Active fluids without spin degree of freedom

We now discuss how to recover earlier theories for active fluids do not explicitly consider
the spin degree of freedom of the angular momentum [27, 32–34]. These older theo-
ries for active fluids where derived under the assumption that there are no dissipative
contribution to the angular momentum flux [27], i.e.

Mαβγ = 0 , (2.81)

and thus

Mπ
αβγ = M e

αβγ . (2.82)
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The torque balance Eq.(2.22) then reads

σtot,aαβ =
1

2
∂γM

e
αβγ . (2.83)

Using the Eq. (2.49) for the antisymmetric part of the Erickson stress one finds that

σaαβ = σtot,aαβ − σ
e,a
αβ = −1

2
(hαpβ − hβpα) . (2.84)

The entropy production rate Eq. (2.66) then simplifies to

T Θ̇ =

∫
V

dx3

(
σαβuαβ +

D̃pα

D̃t
hα + r∆µ

)
, (2.85)

where
D̃pα

D̃t
= ∂tpα + vγ∂γpα + ωαβpβ . (2.86)

Interestingly the intrinsic rotation rate Ωαβ drops out of Eq. (2.85). From Eq. (2.85) we
identify the thermodynamic fluxes σαβ, D̃pα/D̃t, and r as well as the respective corre-
sponding thermodynamic forces uαβ, hα, and ∆µ, of the simplified theory. Expanding
the fluxes in terms of the forces, respecting the symmetries of the system and the On-
sager reciprocity principle, we obtain the generic constitutive equations of the active
polar fluid [33]:

2ηuαβ = σαβ −
ν1

2
(pαhβ + pβhα)− ν̄1pγhγδαβ + ζ̄δαβ∆µ+ ζpαpβ∆µ

+ζ ′pγpγδαβ∆µ , (2.87)

Dpα
Dt

=
1

γ
hα + λ1pα∆µ− ν1pβuαβ − ν̄1uββpα , (2.88)

r = Λ∆µ+ λ1pαhα + ζ̄uαα + ζpαpβuαβ + ζ ′pαpαuββ . (2.89)

The same simplified constitutive equations Eqns (2.67)-(2.71) can also be obtained by
making appropriate choices for the phenomenological coefficients in the more general
constitutive equations (2.67) to (2.71).

2.6 Summary

In the present chapter we derived a generic theory for active fluids. In contrast to earlier
theories for active fluids we explicitly consider a spin degree of freedom. Similar work
had been considered earlier in liquid crystals [24,28], here we extend it to active systems.

Our derivation is based on conservation laws and symmetry arguments only, and is
independent of any assumption on the microscopic mechanisms in the fluid and is thus
generic. This approach allowed us to systematically identify active contributions to the
angular momentum flux and the antisymmetric stress, that were previously unknown.
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We discussed how previously known theories for fluids emerge from the theoretical
framework that we presented here, as simple limiting cases. Notably we explained how
to recover the Navier-Stokes equation and how to recover older theories of active fluids
without spin degrees of freedom. In previous work on active fluids the key assumption
was that there are no dissipative contributions to the angular momentum flux. This as-
sumption obviously breaks down in fluids where active chiral processes generate torque
dipoles in the fluid on microscopic scales, and directly generate dissipative angular mo-
mentum fluxes.
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Chapter 3

The Taylor-Couette motor:
Spontaneous chiral symmetry
breaking

In the last chapter we derived generic theory for active fluids. Here and in the following,
we use this theory to discuss active chiral processes. In the present chapter we discuss
an example for the complex rheological properties of active fluids, showing how chiral
motion can be generated by a spontaneous symmetry breaking process, in a fluid that
is not chiral. We consider a fluid that obeys the constitutive equation derived in Sec.
2.5.2 in a Taylor Couette geometry.

The results of the present chapter have been obtained in close collaboration with
Marc Neef and professor Karsten Kruse from the university of Saarbrücken, and have
been published here [36]. The text closely follows reference [36].

3.1 Taylor-Couette geometry

In the Taylor-Couette geometry a fluid is confined between two impermeable concentric
cylinders of radii R+ and R−, as shown in Fig. 3.1 (a).

In the classical Taylor Couette setup the two cylinders are rotated by applying an
external torque, and the resulting flow fields are studied. A large number of instabil-
ities of such externally driven flows are known, some of which have been analyzed in
remarkable detail [92]. In this context, complex fluids such as ferrofluids in the presence
of a magnetic field or visco-elastic fluids have also been considered. For the latter, no-
tably, finite-amplitude instabilities of linearly stable states have been found even at low
Reynolds numbers if elastic stresses decay sufficiently slowly [93,94].

Here we study an active fluid in the Taylor-Couette geometry. We will discuss sit-
uations where the two cylinders are either stationary or rotate relative to each other
at a rate ∆ω. At low Reynolds number we can choose to keep the inner cylinder fixed
without loss of generality. We only consider cases that are invariant with respect to
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a) b)

Figure 3.1: Schematic illustration of the Taylor-Couette geometry. a) Fluid between
two coaxial cylinders with radii R− and R+. The system is invariant under translations
along and rotations around the z-axis. b) Planar cut perpendicular to the z-axis. The
polarization vector p and the polarization angle ψ with p = (cosψ, sinψ) are shown.

rotations around and translations along the cylinders’ long axes. Furthermore, the fluid
is incompressible, which together with the symmetry constraints we impose leads to
vr = 0. Finally, the fluid we consider has a local polarity p. We only consider cases
where the vector p is confined to the r − θ plane. Furthermore, since the magnitude
of p is not a hydrodynamic variable, we only consider the orientation dynamics of the
polarity vector. The orientational dynamics is captured by choosing p2 = 1. Therefore,
the polarity p can be expressed in terms of the polarization angle ψ such that pr = cosψ
and pθ = sinψ, see Fig. 3.1 (b).

3.2 Boundary forces and torques

The Taylor-Couette system permits to apply a torque Γ+ = −Γ− per unit axial length
on the outer and inner cylinder surfaces, respectively, such that the total torque Γ+ +Γ−

on the surface vanishes.
We only consider situations where the total external force and torque applied on the

system is zero and where external bulk forces and torques vanish, i.e. fextα = 0 and
τ extαβ = 0. In this case, external forces σtotαγdSγ and torques

dΓαβ = dSγM
tot
αβγ (3.1)

can still act locally on the boundary ∂V at a surface element dSγ pointing outward.
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Vanishing external force and torque imply
∫
∂V σ

tot
αγdSγ = 0 and∫

∂V

dΓαβ =

∫
∂V

dSγM
tot
αβγ = 0 . (3.2)

Note that even if the total flux M tot
αβγ vanishes at the boundary, the contributions due

to Mαβγ and σtotαβ can be nonzero according to Eq. (2.22). Using Eq. (3.1) we find an
expression for the torque Γ− applied to the outer cylinder,

Γ− = −
2π∫
0

dθ rM tot
θrr(r, θ) , (3.3)

which is independent of r for R− ≤ r ≤ R+ because of angular momentum conservation.
Using Eqs. (2.22) and (2.87), this implies

Γ− =

∫ 2π

0
dθ r2

(
σθr +

1

2
(hrpθ − hθpr)

)
. (3.4)

3.3 Equation of motion and boundary conditions

We now present the equations of motion governing the system in polar coordinates. The
only non-vanishing component of the strain rate tensor is uθr. From Eq. (2.87) we obtain

2ηuθr = σθr −
ν1

2

(
h⊥ cos 2ψ + h‖ sin 2ψ

)
+
ζ

2
∆µ sin 2ψ , (3.5)

where h|| = h ·p and h⊥ = hrpθ−hθpr. Projecting Eq. (2.88) onto the directions parallel
and perpendicular to the polarization vector yields

1

γ
h‖ = ν1uθr sin 2ψ − λ1∆µ (3.6)

∂tψ =
1

γ
h⊥ − uθr(ν1 cos 2ψ − 1) . (3.7)

The parallel component of the distortion field h‖ = p ·h acts as a Lagrange multiplier to
impose the constraint p2 = 1. The perpendicular component h⊥ is the torque exerted
by the polarization field and is given by the expression h⊥ = −δF/δψ. The force balance
Eq. (2.11) becomes

∂r

(
σθr +

h⊥
2

)
+

2σθr
r

+
h⊥
r

= 0 , (3.8)

where we have neglected inertial terms. Integration of Eq. (3.8) yields,

σθr =
Γ−

2πr2
− 1

2
h⊥ . (3.9)
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where the integration constant Γ− is the torque applied between the cylinder as can be
seen by comparing Eq. (3.9) and Eq. (3.4). Combining Eqs. (3.5)-(3.7) and (3.9) we
obtain the equation of motion for the polarization field:

∂tψ =

[
1

γ
+

(ν2
1 cos2 2ψ − 1)

4η + ν2
1γ(sin 2ψ)2

]
h⊥ −

(
ζ̃∆µ sin 2ψ +

Γ−

2πr2

)
ν1 cos 2ψ − 1

2η +
ν21γ

2 (sin 2ψ)2
,

(3.10)
where ζ̃ = 1

2 (ζ + γν1λ1). For given polarity field ψ(r) we can determine the flow field
vθ by integrating Eq. (3.5).

The boundary conditions that we consider are the following. We prescribe the po-
larization angle ψ = ψ0 at both cylinder surfaces at R− and R+. We impose no-slip
boundary conditions for the velocity of the fluid at both cylinders. At the fixed inner
cylinder, this implies vθ(R−) = 0, at the outer cylinder vθ(R+) = ∆ωR+. At the outer
cylinder we have the choice of two ensembles: (i) prescribed torque Γ+ = −Γ− or (ii)
prescribed rotation rate ∆ω. We will discuss both cases.

3.4 Equilibrium steady states

In equilibrium, all thermodynamic fluxes and forces vanish. In particular, h⊥ = 0 and
∆µ = 0. In addition, equilibrium requires that Γ− = 0 and that no movements occur,
vθ = 0. The polarization field ψ of an equilibrium steady state is obtained by solving
the equation h⊥ = 0, with the specified boundary conditions. Choosing the standard
Landau-de Gennes form for the free energy of the polarization field,

Fp = 2π

∫
dr r

{
K

2

(
1

r

d

dr
r cosψ

)2

+
K + δK

2

(
1

r

d

dr
r sinψ

)2
}

, (3.11)

we have

h⊥ = −δFp
δψ

= (K + δK cos2(Ψ))

(
Ψ′′ +

Ψ′

r

)
− δK

2
sin(2Ψ)

(
1

r2
+ Ψ′

2
)

, (3.12)

where primes indicate derivatives with respect to r. In this expression K is the splay
elastic modulus and K + δK is the bend elastic modulus. If the boundary condition are
chosen accordingly equilibrium steady states with a constant ψ(r) = ψ0 exist for certain
values of ψ0. These special solutions are ”asters” with ψ0 = 0 or π and ”vortices” with
ψ0 = ±π/2.

3.5 Non-equilibrium steady states

We now discuss how the equilibrium situation is changed as ∆µ becomes nonzero. We
start by analyzing the stability of the symmetric aster and vortex states with the bound-
ary condition (i) prescribed torque Γ− = 0.
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No external torque at the outer surface

We write ψ(r, t) = ψ0 + δψ(r, t) with δψ = 0 at both boundaries. The time evolution
described by Eqs. (3.10) can be linearized around a steady state with ψ = ψ0. For aster
solutions, i.e. ψ0 = 0 we find,

∂tδψ(r, t) = (K + δK)

(
1

γ
+
ν2

1 − 1

4η

)(
δψ′′(r, t) +

δψ′(r, t)

r

)
− δK

(
1

γ
+
ν2

1 − 1

4η

)
δψ(r, t)

r2
− ζ̃∆µ

ν1 − 1

η
δψ(r, t) . (3.13)

Using the separation Ansatz δψ(r, t) = δψ(r) est, we can solve for δψ(r)

δψ(r) = C1 Jn (k r) + C2 Yn (k r) , (3.14)

where Jn and Yn are Bessel-Functions of the first kind with n2 = δK/(K + δK) and

k2 = − 2 (ν1 − 1) ζ̃ ∆µ+ 4 η s(
4 η/γ + (ν2

1 − 1)
)

(K + δK)
. (3.15)

Asters are stable if the real parts of all growth exponents s are negative. The possible
values ki of k with i ∈ N are restricted by the boundary conditions δψ(R−) = δψ(R+) =
0. Explicitly, the values ki satisfy the equation

Yn(kiR+)Jn(kiR−)− Jn(kiR+)Yn(kiR−) = 0 . (3.16)

We find that k2
i and the corresponding values of s are real. By setting s = 0 in Eq. (3.15),

we can thus determine a critical value ζ̃∆µc for the activity, such that asters are unstable
if ζ̃∆µ < ζ̃∆µc. Explicitly,

ζ̃∆µc = −k2
min

(
4 η + γ(ν2

1 − 1)
)

2γ (ν1 − 1)
(K + δK) , (3.17)

where k2
min = min{k2

i }. Following the same logic it is also possible to determine the
stability of vortices. We find that the activity threshold for the stability of vortices is

ζ̃∆µc = −l2min

(
4 η + γ(ν2

1 − 1)
)

2γ(ν1 + 1)
K , (3.18)

where l2min is the smallest l2 satisfying Ym(lR+)Jm(lR−) − Jm(lR+)Ym(lR−) = 0 with
m2 = −δK/K. The limit R− → 0 corresponds to point defects that where studied in
Ref. [33]. Note that our results differ slightly since the sign of the antisymmetric part of
the deviatory stress was chosen incorrectly in Ref. [33].

Our predictions on the stability of asters and vortices are in perfect agreement with
numerical solutions of the Eq. (3.10). We obtain the bifurcation diagram of the Taylor-
Couette motor for Γ− = 0 that we display in Figure 3.2 for vortices with ψ0 = ±π/2.
The numerical solution allows us to investigate the behavior of the system beyond the
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instability. We determine stable steady states with spontaneous fluid flow and rotat-
ing outer cylinder which emerge at the bifurcation. The direction of this rotation is
determined by a spontaneous symmetry breaking. Therefore two stable branches exist
in the bifurcation diagram. Moving further away from the bifurcation point, additional
unstable steady states appear. These states correspond to the next higher values of l2

and have been determined by numerical solutions of the equation for the steady state,
see Fig. 3.2.
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Figure 3.2: Bifurcation diagram for an active polar fluid confined between two coaxial
cylinders with the vortex boundary conditions, ψ(R−) = ψ(R+) = π/2 as a function of
the dimensionless activity ζ∆µ = R2

+ζ̃∆µ/K. No torque is applied to the outer cylinder
Γ− = 0. The non-equilibrium steady states are characterized by the angular velocity
of the outer cylinder ∆ω = ηvθ(R+)R+/K. For ζ∆µ > ζ∆µc = −20.13, the system
exhibits spontaneous flows and rotation. For increasing values of −ζ∆µ further unstable
steady states exist with an increasing number of nodes in the polarization angle (dashed
lines). The profiles of polarization ψ and dimensionless flow velocity v̄ = are shown in
the insets for a stable (above, ζ∆µ = −100) and unstable (below, ζ∆µ = −107) solution
as a function of r̄ = r/R−. Parameter values are R = R−/R+ = 0.1, η/γ = 2, ν1 = 2,
and δK = 0.

3.5.1 The stalled system

The emergence of spontaneous rotations indicates that the system can act as a rotatory
motor.
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Figure 3.3: Bifurcation diagram for the system shown in Fig. 3.2 but with stall boundary
conditions ∆̄ω = 0. The non-equilibrium steady states are characterized by their torque
Γ̄ = Γ−/(2π)K. Full lines indicate stable, dashed lines unstable solutions. Insets present
a stable solution for ζ∆µ = −50 and an unstable solution for ζ∆µ = −120. All other
parameters are chosen as in Figure 3.2

The stall torque can be determined by imposing ∆ω = 0. The stability of stalled
steady states can be determined by the method described above, however the torque
Γ− becomes time-dependent when the system is linearly perturbed. For the stationary
vortex solution with ψ0 = ±π/2, we again find an instability at a critical value ζ∆µc at
which spontaneous flows occur. These solutions with ∆ω = 0 are characterized by non-
vanishing torques Γ−. The symmetry is again broken spontaneously. The bifurcation
diagram is shown in Fig. 3.3.

3.5.2 Relation between rotation rate and applied torque

We determine the relation between applied torque Γ− and rotation rate ∆ω by nu-
merically determining stationary solutions of Eqs. (3.5) and (3.7). In the passive case
ζ̃∆µ = 0, the rotation rate ∆ω is always proportional to the torque, ∆ω ∝ Γ− and
vanishes for Γ− = 0. Our results for finite ζ̃∆µ are displayed in Fig. 3.4. For suffi-
ciently small ζ̃∆µ, the rotation rate ∆ω increases monotonically as a function of Γ−,
see Fig. 3.4(a). For ζ̃∆µ = ζ̃∆µc ' −20.134 a critical point appears. As a consequence,
three solutions coexist for ζ̃∆µ < ζ̃∆µc, two of which are stable (solid lines) and one
is unstable (dashed line), see Fig. 3.4(b). As a consequence, the rotation rate exhibits
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Figure 3.4: Relationship between rotation rate and applied torque of the Taylor-Couette
motor with vortex-boundary conditions for different values of the dimensionless active
stress ζ ∆µ. Full lines indicate stable, dotted lines unstable steady states. Parameter
values are ζ ∆µ = −20.134 (a), ζ ∆µ = −22 (b), ζ ∆µ = −100 (c), and ζ ∆µ = −150
(d). Other parameters are η/γ = 2, ν1 = 2, and δK = 0.

discontinuous changes as a function of torque and hysteresis occurs. If ζ̃∆µ is decreased
further, a more complex set of branches of unstable steady states emerges, see Fig. 3.4 (c)
and (d). In all cases there are two stable branches and a regime of hysteresis. Note, that
the stable branches always have positive slope, while the slope of unstable branches can
have either sign. This relation between torque and rotation rate is very similar to the
properties of the force-velocity relation of symmetric collections of molecular motors [95].

3.5.3 Variation of the boundary conditions of the polarization field

Changing the polarization angle ψ0 leads in general to a non-symmetric motor which
has a spontaneous rotation rate even in the absence of a torque. In Fig. 3.5, we show
the the steady state rotation rate ∆ω for Γ− = 0 as a function of the polarization angle
ψ0 at the boundaries for different values of the active stress. This figure shows that the
system rotates spontaneously except for ψ0 = 0 and vortices π/2. As the magnitude of
the active stress is increased, unstable branches appear and the rotation rate exhibits
discontinuous changes and hysteresis. The instability of the vortex (ψ0 = π/2) with the
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Figure 3.5: Dimensionless rotation rate ∆̄ω as a function of the polarization angle ψ = 0
at the boundaries in the absence of an external torque and for different values of the
active stress ζ∆µ = −10 (a), ζ∆µ = −50 (b), and ζ∆µ = −150 (c). Other parameters
are η/γ = 2, ν1 = 2, and δK = 0. Stable states are shown as solid lines, unstable states
by dashed lines.

aster (ψ0 = 0) still stable is apparent in Fig. 3.5 (b). Similarly Fig. 3.5 (c) reveals the
subsequent emergence of additional unstable branches as well as the instability of the
vortex at ψ0 = π/2.

3.6 A possible experimental realization

To give an idea of the possibility for an experimental realization of the Taylor Coutte, we
now estimate critical stresses and the achievable forces and torques for realistic parameter
values.

In a Taylor-Couette system with an outer radius R+ = 5mm and an inner radius
R− = 1mm, the critical active stress would be on the order of 10−6 Pa, and thus the
system should start to rotate even at very small active stresses. The order of magnitude
of the stall torque can be obtained from Γ ∼ |ζ̃∆µ|R2

+, see Eq. (3.4) and Fig. 3.3.
Using again R+ ' 5mm and ζ∆µ ' 103Pa, we estimate a stall torque per unit length
Γ ' 25 10−3N. To estimate the corresponding rotation rate ∆ω ∼ urθ, we note that
it scales as ∆ω ∼ |ζ̃∆µ|/η, see Eq. (3.5), and Fig. 3.2. The viscosity η of an actin
gel can be estimated as η ' Eτ , where E is the gel elastic modulus and τ denotes the
characteristic visco-elastic relaxation time. The elastic modulus of a passive actin gel
scales as E ' kBTLpλ

−4, where Lp is the persistence length of actin filaments and λ
is the mesh-size of the gel. For kBT ' 4pN nm, Lp ' 17µm, and λ ' 100nm [96], we
estimate E ' 103Pa, which is consistent with measurements for actin gels under various
conditions [97–99]. Using τ ' 30s [100], we obtain η ' 104Pa s. For ζ∆µ ' 103Pa, we
estimate a rotation rate of about ∆ω '0.1 s−1.

The Taylor-Couette motor could be realized at small scales with radii of several µm
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using micro-fabrication techniques [101]. This leads to a stall torque of the order of
several nN and, since the rotation rate is rather insensitive to the system size again
to rotation rates of the order of 0.1s−1. Note, that when the system size approaches
the mesh site of the acto-myosin gel, the hydrodynamic limit will no longer provide an
accurate approximation. Note also that a symmetric system would only rotate if the
characteristic length ξ is smaller than the system size. However, even in micrometer
sized systems, we expect many of the general features and the scaling relations to still
hold. Thus, the Taylor-Couette motor described here is a promising candidate for the
construction of artificial rotational micro-motors.

3.7 Summary

In this chapter, we analyzed the dynamics of an achiral active polar fluid confined in the
Taylor-Couette geometry between two coaxial cylinders. This system is especially inter-
esting since it shows chiral motion through a spontaneous symmetry breaking process.

The active stress can induce spontaneous circular flows, which drive the rotation of
the outer cylinder relative to the inner cylinder even in the absence of an externally ap-
plied torque. If the polarization angle at the boundary is either parallel or perpendicular
to the cylinder wall, relative motion between the two cylinders occurs by spontaneous
symmetry breaking if the contractile active stress exceeds a critical value. Beyond this
instability two steady states with opposite rotation rate coexist. For any other bound-
ary condition imposed on the polarization, rotation in the absence of torque occurs for
non-zero active stress If an external torque is applied between the two cylinders, the sys-
tem behaves as a rotary motor that can perform mechanical work. In the special cases
where the polarization is parallel or perpendicular to the boundary, this motor only
works beyond the instability and can act in both senses of rotation. We find dynamic
transitions between states of different rotation rates and hysteresis. We sketch possible
experimental realizations of the Taylor Couette motor. On larger scales this system
might be interesting to experimentally explore the rheological properties of active fluids.
On micro-scales it is a promising candidate for the creation of rotational micro-motors.
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Elementary chiral motors

The active terms in the constitutive Eqs (2.67)-(2.71) result from the action of molecular
scale force and torque dipoles in the fluid. Densities of such dipoles correspond to active
stresses and angular momentum fluxes. In the present chapter we will show that localized
distributions of dipoles give rise to the new active terms in Eqs (2.67)-(2.71). We will
first list the different torque and chiral force dipole that can be constructed, see Fig 4.1
(left column). We then identify the five elementary motors, see Fig 4.1 (right column),
which correspond to localized distributions of force and torque dipoles with different
symmetries. Four of these elementary motors are chiral. The fifth, although originating
from microscopically chiral processes, is not. We will show that different elementary
motors generate flow and rotation fields that differ by their symmetry.

4.1 Chiral force and torque dipoles

In the absence of external forces any microscopic process that generates a force must
generate an equal but opposite counterforce as well. This is the nothing but Newtons
second law. Thus active processes on the microscopic scale can not generate forces, but
only force dipoles. An example of a microscopic process that generates a force dipole is
a myosin minifilament pulling two actin filaments towards each other, see Fig. 1.3 (a).

For the same reason microscopic processes can not generate torque monopoles but
only torque dipoles. An example of a process generating a torque dipole on the micro-
scopic scale is shown in Fig. 1.3 (b). Myosin motors do not only infer a translational
motion to the filaments they act on, but also make them rotate [11], thus generating
a torque dipole. Another example for a torque dipole is the bacterium E. coli, which
consist of rotating flagella, and a counter-rotating cell body, see Fig. 1.7.

4.1.1 Torque dipoles

A torque dipole ταβ consists of two identical torque monopoles of with torque ±qαβ that
are separated by a distance d along the unit vector p(i). The torque this object exerts
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(iii)

(a) (b)
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(c)
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Dipoles Elementary motors

Figure 4.1: Schematic representation of chiral torque and force dipoles as well as elemen-
tary motors. We distinguish two types of torque dipoles, (i) and (ii), and introduce a
chiral force dipole paired with torque monopole to balance torques (iii). Here gray arrows
indicate torques. Their sense of rotation is indicated by curved black arrows. Forces are
indicated by blue arrows. The dipoles (i-iii) can be used to create the elementary motors
(a-e) of higher symmetry. For details see text.
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on the fluid is

ταβ = qαβ

[
δ(r(i) − dp(i)/2)− δ(r(i) + dp(i)/2)

]
(4.1)

' −qαβdp(i)
γ ∂γδ(r

(i)) , (4.2)

where r(i) is the position of the dipole. Comparing this result to the torque balance
equation Eq. (2.22) we see that the torque dipole corresponds to an active angular
momentum flux

Mact
αβγ = qαβdp

(i)
γ ∂γδ((r

(i)) , (4.3)

that obeys

∂γM
act
αβγ = ταβ . (4.4)

We distinguish two types of torque dipoles that differ by their symmetry. The torque
dipole of type (i) is a torque dipoles in which the axis of the torque monopoles is parallel
to the vector p(i), (see Fig 4.1 (i)). The torque dipole of type (ii) is a torque dipole in
which the axis of the torque monopoles is orthogonal to the vector p(i), (see Fig 4.1 (ii)).

In a torque dipole of type (i)

qαβ = qεαβγp
(i)
γ . (4.5)

This corresponds to an angular momentum flux,

Mact
αβγ = qdεαβδp

(i)
δ p

(i)
γ ∂γδ(r

(i)) . (4.6)

In a torque dipole of type (ii)

qαβ = qεαβγtγ , (4.7)

where the unit vector t is orthogonal to p(i),

p(i) · t = 0 . (4.8)

The angular momentum flux generated by this object is given by

Mact
αβγ = qdεαβδtδp

(i)
γ δ(r

(i)) . (4.9)

A general torque dipole can be represented as a linear superposition of torque dipoles
of type (i) and torque dipoles of type (ii). We now turn to chiral force dipoles.

4.1.2 Chiral force dipoles

A force dipole consist of two opposing force monopoles ±ϕα separated by a distance d
along the unit vector p(i). It exerts a force

fα = ϕα(δ(r(i) + p(i)/2)− δ(r(i) − p(i)/2)) ' ∂γ(ϕαdγ) , (4.10)
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on the fluid that surrounds it. This dipole can be interpreted as an active contribution
to the stress tensor with

σactαβ =
d

2

(
ϕαp

(i)
β + ϕβp

(i)
α

)
, (4.11)

and

σact,aαβ =
d

2

(
ϕαp

(i)
β − ϕβp

(i)
α

)
. (4.12)

Force dipoles in which the vector ϕ is parallel to the vector p(i), generate symmetric
stresses only. Such force dipoles have been discussed extensively in the past [30, 31, 88].
On the other hand if ϕ is not parallel to the vector p(i) an antisymmetric stress is also
generated. The torque of the force dipole has to be offset by a torque monopole, such
that the total torque the object exerts on the fluid,

ταβ = (ϕαr
(i)
β −ϕβr

(i)
α )
(
δ(r(i) + dp(i)/2)− δ(r(i) − dp(i)/2)

)
+ qαβδ(r

(i)) = 0 , (4.13)

vanishes. Here

qαβ = −(r
(i)
β ϕα − r(i)

α ϕβ) . (4.14)

We call the dipole with ϕ is orthogonal to the vector p(i), the chiral force dipole or dipole
of type (iii), see Fig 4.1 (iii) The dipole (iii) is a mixed dipole since it consists of two
force and one torque monopole.

4.2 Elementary chiral motors

The constitutive equations for the active chiral fluid (2.67) - (2.71) contain several active
terms. We now show that all of these are generated by localized distributions of chiral
force dipoles (iii) and torque dipoles (i, ii). We call such local distributions of dipoles
elementary chiral motors. We identify five different elementary chiral motors that differ
by their symmetry. Four of these are chiral. We now discuss them one by one, show how
they are generated and discuss the flow and rotation fields they create.

4.2.1 Isotropic chiral motors

The first active term which we discuss is the one parametrized by the coefficient ζ1 in
Eq. (5.3), which corresponds to an isotropic chiral motor. The structure of this motor
is sketched in Fig 4.1 (a).

The isotropic chiral motor is generated by a distribution of torque dipoles of type (i)
or (ii) whose orientation vectors p(i) point in all directions with equal likelihood. Con-
sider a collection N of identical torque dipoles of type (i) at positions r(i). Collectively
they generate an angular momentum flux

Mact
αβγ(r) = qεαβδ

∑
i

p
(i)
δ p

(i)
γ ∂γδ(r− r(i)) . (4.15)
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Since the microscopic orientations of the torque dipoles are isotropically distributed we
find

Mact
αβγ(r) = ζ1∆µ(r)εαβγ , (4.16)

where ζ1∆µ(r) = qdn(r)/3 and n(r) is the local density of torque dipoles. This corre-
sponds to the isotropic active chiral term in Eq (5.3). A localized distribution n(r) = δ(r)
corresponds to the the isotropic chiral elementary motor, see Fig. 4.1 (a).

We now consider a single elementary isotropic chiral motor that exerts an angu-
lar momentum flux Mact

αβγ = ζ1εαβγ∆µ0δ(r) and is embedded in an otherwise passive,
Newtonian fluid. The stresses and angular momentum fluxes in the fluid are given by

σαβ = 2ηuαβ , (4.17)

σaαβ = 2η′(Ωαβ − ωαβ) , (4.18)

Mαβγ = κ0∂γΩαβ + ζ1∆µ0εαβγδ(r) . (4.19)

We consider no flow boundary conditions at infinity. Using the force balance (2.11) the
torque balance (2.22) and the incompressibility condition ∂γvγ = 0, we find the equations
of motion for no flows at infinity

2η∂2
γvα =

κ0

2η′
(η + η′)∂4

γvα (4.20)

0 = κ0∂
2
γΩαβ + ζ1∆µ0εαβγ∂γδ(r)− 4η′(Ωαβ − ωαβ) . (4.21)

Because ζ1 does not enter in Eq. (4.20), the velocity field vanishes everywhere, vα =
0. From Eq (4.21) we find that the intrinsic rotation rate obeys an inhomogeneous
Helmholtz equation,

Ωαβ −
κ0

4η′
∂2
γΩαβ =

ζ1∆µ0

4η′
εαβγ∂γδ(r) . (4.22)

In spherical coordinates the intrinsic rotation field Ωαβ is thus given by Ωrθ = Ωrϕ = 0
and

Ωθϕ = −ζ1∆µ0

4πκ0
e−2|r|/`

(
2

|r|`
+

1

|r|2

)
, (4.23)

which decays on the length ` = (κ0/η
′)1/2. Note that in the near field, for r � `, the

intrinsic rotation rate Ωαβ is different from the vorticity ωαβ = 0 of the flow and that it
vanishes for `� r. Moreover we numerically solve for the intrinsic rotation field using a
fast Fourier transform with periodic boundary conditions in a periodic box. The result
is displayed in Fig. 4.2.

4.2.2 Nematic chiral rod

We next discuss the active angular momentum flux parametrized by the coefficient ζ2

in Eq. (5.3). The corresponding elementary motor is the chiral rod, see Fig. 4.1 (b).
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Figure 4.2: Isotropic chiral motor: Difference of intrinsic rotation rate and vorticity in 3d
(a) and as a cut through the xz plane (b). Cones and arrows represent εαβγ (Ωβγ − ωβγ)
in (a) and (b), respectively. Surfaces (a) and lines (b) represent equal magnitudes of
Ω− ω. The black scale-bar indicates the length `. The parameters are η/η′ = 1. The
size of the periodic box is 26`.

This object is generated by a distribution of torque dipoles of type (i) if all dipoles are
aligned along the unit vector p. Eq. (4.15) then becomes

Mact
αβγ(r) = ζ2∆µ(r)εαβδpδpγ , (4.24)

where ζ2∆µ = qdn(r) and n(r) is the density of dipoles.
The stresses and angular momentum fluxes induced by an isolated chiral rod motor

in an otherwise passive Newtonian fluid are given by

σαβ = 2ηuαβ , (4.25)

σaαβ = 2η′(Ωαβ − ωαβ) , (4.26)

Mαβγ = κ0∂γΩαβ + ζ2∆µ0εαβδpδpγδ(r) . (4.27)

Using boundary condition of no flows at infinity the equations of motion read

2η∂2
γvα = −∂β∂γ {ζ2∆µ0εαβδpδpγδ(r)}+

κ0

2η′
(η + η′)∂4

γvα (4.28)

0 = κ0∂
2
γΩαβ + ζ2∆µ0∂γ(εαβδpδpγδ(r))− 4η′(Ωαβ − ωαβ) . (4.29)

The velocity field can be determined numerically by solving Eqns (5.4) and (5.5)
using a periodic box and spatial Fourier transformations is displayed in Fig. 4.3 (a) and
(b). The chiral rod motor induces a velocity field consisting of two opposing vortices in
front and behind the motor. At the position r = 0 the velocity field vanishes, implying
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that the motor does not move. The far field can be obtained analytically and is given
by

vα '
ζ2∆µ0

4πη

p · r
|r|5

εαβγrβpγ , (4.30)

for r � `. This is the same as the far field of two counter-rotating spheres, separated
along the vector p by a small distance.

The chiral rod motor generates an intrinsic rotation field Ωαβ. The far field of Ωαβ

is given by Ωαβ = ωαβ, where ωαβ is the vorticity of the velocity field give in Eq. (4.30).
Fig. 4.3 (c) and (d) displays Ωαβ −ωαβ of the chiral rod. This difference is finite only in
the near field.

4.2.3 Nematic chiral ring

The active angular momentum flux parametrized by the coefficient ζ3 in Eq. (5.3)
corresponds to the active chiral ring motor sketched in Fig. 4.1 (c). This term can be
generated by a distribution of torque dipoles of type (i). Consider a distribution of the
torque dipoles confined to the plane defined by its normal vector p, such that p ·p(i) = 0.
The angular momentum flux (4.15) then becomes

Mact
αβγ(r) = ζ3∆µ(r)(εαδγpδpβ − εβδγpδpα) , (4.31)

where ζ3∆µ = qdn(r). The stresses and angular momentum fluxes induced by a single
nematic ring motor in an otherwise passive Newtonian fluid are given by

σαβ = 2ηuαβ , (4.32)

σaαβ = 2η′(Ωαβ − ωαβ) , (4.33)

Mαβγ = κ∂γΩαβ + ζ3∆µ0(εαγδpδpβ − εβγδpδpα)δ(r) , (4.34)

and the equations of motion read,

2η∂2
γvα = −∂β∂γ {ζ3∆µ0εαβδpδpγδ(r)}+

κ0

2η′
(η + η′)∂4

γvα (4.35)

0 = κ0∂
2
γΩαβ + ζ3∆µ0∂γ(εαγδpδpβ − εβγδpδpα)δ(r))− 4η′(Ωαβ − ωαβ) . .(4.36)

Interestingly the active term ζ3 enters the equation of motion for the velocity field
Eq. (4.35) in exactly the same way ζ2 entered Eq. (4.28). The velocity fields of the
nematic ring is therefore exactly the same as the one generated by the nematic rod, see
Fig 4.3 (a,b).

However, the intrinsic rotation rate generated by the nematic ring is different from
the one of the chiral nematic rod. The far field of Ωαβ is given by Ωαβ = ωαβ, where ωαβ
is the vorticity of the velocity field give in Eq. (4.30). Fig. 4.3 (e,f) displays Ωαβ − ωαβ.
This difference is finite only in the near field.
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Figure 4.3: Flow v and rotation field Ω− ω of the nematic elementary motors (Fig. 4.1
(b) and (c)). Both elementary motors share the same velocity v shown in (a) and (b).
Velocity vectors as well as surfaces of constant |v| are indicated in (a). The flow in the
xz-plane for y = 0 is shown in (b). The rotation fields differ for both elementary motors.
The rotation field of the chiral rod is shown in (c) and (d). The rotation field of the
chiral ring is shown in (e) and (f). The rotation vectors Ω − ω are indicated as cones
and surfaces of constant magnitude are indicated in (c) and (e). Cross sections in the
xz-plane at y = 0 are shown in (d) and (f). The black scale bar indicates the length `.
The parameters are η/η′ = 1. The size of the periodic box is 26`.
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4.2.4 Polar chiral motor

The antisymmetric stress parametrized by the coefficient ζ̃ corresponds to the polar
chiral elementary motor, see Fig 4.1 (e). It is generated by a distributions of dipoles of
type (iii), see Fig 4.1 (iii).

A distribution of dipoles of type (iii) that the vector p(i) × ϕ is parallel to a unit
vector p generates an active antisymmetric stress

σa,actαβ = ζ̃∆µεαβγpγ , (4.37)

where ζ̃∆µ = n(r)/2. The stresses and angular momentum fluxes induced by a single
polar chiral motor in an otherwise passive Newtonian fluid are given by

σαβ = 2ηuαβ , (4.38)

σaαβ = 2η′(Ωαβ − ωαβ) + ζ̃∆µ0εαβγpγδ(r) , (4.39)

Mαβγ = κ∂γΩαβ . (4.40)

The equations of motion therefore read,

2η∂2
γvα =

κ0

2η′

(
(η + η′)∂4

γvα + ζ̃∆µ0εαβγpγ∂
2
δ∂βδ(r)

)
, (4.41)

0 = κ0∂
2
γΩαβ − 4η′(Ωαβ − ωαβ)− 2ζ̃∆µ0εαβγpγδ(r) . (4.42)

Integrating Eq. (4.41) for no flows at infinity yields

vα −
κ0

4Φ
∂2
γvα =

ζ̃∆µ0

2η
εαβγpγ∂βδ(r) , (4.43)

where Φ = ηη′/(η+η′) is the harmonic mean of the viscosity and the rotational viscosity.
We find the velocity field

vα = − ζ̃∆µ0

2πη

Φ

κ0

(
1

r3
+

Φ

κ0

1

r2

)
e−|r|/`εαβγpγrβ . (4.44)

We also determine it numerically, see Fig 4.4 (a,b). The polar motor generates an
intrinsic rotation field

Ωαβ =
ζ̃∆µ0

2πκ0|r|
εαβγpγe

−2|r|/` − 4

`2

∫
e−2|r−r′|/` ωαβ

|r− r′|
dr′ . (4.45)

The velocity field v and the intrinsic rotation rate Ωαβ both decay on the length scale
`, see (4.43) and (4.45). Therefore the polar chiral motor has no farfield. Note that
Ωαβ = ωαβ = 0 for r � `. Interestingly, Ωαβ 6= ωαβ in the near field for r � `, i.e. the
rate of intrinsic rotation differs from the vorticity of the flow, see Fig 4.4 (c,d).
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Figure 4.4: Polar chiral motor: Velocity fields (a,b) and difference of intrinsic rotation
rate and vorticity (c,d) in 3d (a,c) and as a cut through the xz plane (b,d). Cones and
arrows represent εαβγ (Ωβγ − ωβγ) in (a,c) and (b,d), respectively. Surfaces (a,c) and
lines (b,d) represent equal magnitudes. The black scale-bar indicates the length `. The
parameters are η/η′ = 1. The size of the periodic box is 26`.
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4.2.5 Polar ring

The angular momentum flux parametrized by the coefficient ζ4 in Eq. (5.3) corresponds
to the active polar ring motor sketched in Fig 4.1 (d). Unlike the other elementary
motors we discussed this motor is not chiral. It is however generated by chiral processes
on the microscopic scale. Consider an ensemble of torque dipoles of type (ii) that are
distributed such that on average all t · p = 0 and p(i) · p = 0 , where the vector p is
a macroscopic polarity vector. The angular momentum flux this distribution of dipoles
generates is given by

Mact
αβγ = ζ4∆µ (δαγpβ − δβγpα) , (4.46)

with ζ4∆µ = qdn(r)/2. The stresses and angular momentum fluxes induced by a local-
ized patch of polar ring motors in an otherwise passive Newtonian fluid are then given
by

σαβ = 2ηuαβ , (4.47)

σaαβ = 2η′(Ωαβ − ωαβ) , (4.48)

Mαβγ = κ0∂γΩαβ + ζ4∆µ0 (δαγpβ − δβγpα) δ(r) . (4.49)

The equations of motion therefore read,

2η∂2
γvα = −ζ4∆µ0

{
∂α∂β(δ(r)pβ)− ∂2

γ(δ(r)pα)
}

+
κ0

2η′
(η + η′)∂4

γvα , (4.50)

0 = κ0∂
2
γΩαβ + ζ4∆µ0∂γ (δ(r)(δαγpβ − δβγpα))− 4η′(Ωαβ − ωαβ) .(4.51)

We determine the velocity field and the intrinsic rotation field of the polar ring motor
numerically. The velocity field is displayed in Fig. 4.5 (a,b). The motor generates a
velocity field v that does not vanish in the limit of small r. This implies that the polar
ring motor is a swimmer that propels itself in the direction set by the vector p. The
polar ring motor generates a velocity far field in the limit `→ 0 that can be determined
analytically,

vα '
ζ4∆µ0

8πη

(
3rα
|r|5

r · p− pα
1

|r|3

)
. (4.52)

The polar ring motor also generates intrinsic rotations. The field of intrinsic rotations
Ωαβ 6= ωαβ in the near field r � ` and becomes equal to the vorticity in the far-field,
r � `, see Fig. 4.5 (c,d).

4.3 Summary

We have shown that the active terms in the constitutive equations (2.67)-(2.71) cor-
respond to distributions of chiral torque and force dipoles on the molecular scale in
the fluid. We listed the different types of chiral force and torque dipoles that can be
constructed.

We identified five types of elementary chiral motors, that correspond to localized
distributions of torque and force dipoles in the fluid. Four of these elementary motors
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Figure 4.5: Polar chiral motor: Velocity fields (a,b) and difference of intrinsic rotation
rate and vorticity (c,d) in 3d (a,c) and as a cut through the xz plane (b,d). Cones and
arrows represent εαβγ (Ωβγ − ωβγ) in (a,c) and (b,d), respectively. Surfaces (a,c) and
lines (b,d) represent equal magnitudes. The black scale-bar indicates the length `. The
parameters are η/η′ = 1. The size of the periodic box is 26`.
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are chiral, one is not, although it is generated by microscopically chiral objects. The five
elementary chiral motors we identify are (a) isotropic chiral motors; (b) chiral rods; (c)
chiral rings ; (d) the polar ring and (e) polar chiral motors and differ by their symmetries.

Isotropic motors generate a field of local intrinsic rotations but no flow field. This
rotation field decays on the length scale `.

Chiral rods and rings both have nematic symmetry. They generate the same hydro-
dynamic far field with a velocity that decays as v ∼ |r|−3. The intrinsic rotation fields
differ at short distances but become both equal to the vorticity of v in the far field.

The polar chiral motor does not generate a hydrodynamic far field but both a flow
and a intrinsic rotation field at short distances.

We also show that the polar ring motor (d) that is not chiral. The polar ring motor
is a swimmer since the velocity field at the position of the swimmer is non-vanishing.
The polar ring generates a hydrodynamic far field.
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Chapter 5

Active chiral films

Active chiral processes are typically observed on surfaces or at interfaces. Key examples
are carpets of beating cilia driving hydrodynamic flows parallel to the surface on which
they are attached [13,14] and rotating motors on a surface [75,76,102].

In the present chapter we discuss the interesting interactions of chiral motors and
surfaces. We first discuss an example where an active chiral fluid confined between two
surfaces gives rise to large scale chiral flows via a chiral boundary layer. To generalize
this result, we develop theory for a thin films of fluid with chiral motors. Most results of
the present chapter have been obtained in close collaboration with the diploma student
Maria Strempel, and have been published here [103].

5.1 An active chiral fluid between two plates

To highlight the interesting rheological properties that can emerge in an active chiral
fluids close to a surface, we now consider an active chiral fluid confined between two
solid surfaces in the xy plane at distance d, see Fig. 5.1 (a). We choose no-slip boundary
conditions on both surfaces. Furthermore we impose vanishing rotation field, Ωαβ = 0
on both surfaces. We assume the lower surface at z = 0 to be immobile, v(z = 0) = 0.
The upper surface moves at velocity ∆v in y direction, v(z = d) = ∆vêy. We choose the
direction of the polarity p on both surfaces to point parallel to the surface in x-direction.
The polarity field is governed by a free energy functional that is minimized if the polarity
p is locally aligned and we impose the constraint |p| = 1. The constitutive equations of
the gel are

σαβ = 2ηuαβ , (5.1)

σaαβ = 2η′ (Ωαβ − ωαβ) + ζ̃∆µεαβγpγ , (5.2)

Mαβγ = κ0∂γΩαβ + ζ1εαβγ∆µ+ ζ2∆µεαβδpδpγ

+ζ3∆µ(εαγδpδpβ − εβγδpδpα) + ζ4∆µ(δαγpβ − δβγpβ) . (5.3)

69
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In the low Reynolds number limit where inertial terms can be neglected, the dynamic
equations read

(η + η′)∂2
γvα + 2η′∂βΩαβ + ζ̃∂β(∆µεαβγpγ) = ∂αP̄ , (5.4)

κ0∂
2
γΩαβ + ζ1εαβγ∂γ∆µ+ ζ2∂γ(εαβδpδpγ∆µ) + ζ3∂γ (∆µ(εαγδpδpβ − εβγδpδpα))

+ ζ4∂γ (∆µ(δαγpβ − δβγpα))− 4η′(Ωαβ − ωαβ)− 2ζ̃εαβγpγ∆µ = 0 . (5.5)

Here, the hydrostatic pressure P̄ plays the role of a Lagrange multiplier. Taking the
divergence of Eq. (5.4) we find ∂2

γP̄ = 0. Therefore the pressure P̄ = const if no external
pressure gradients are applied. From equations (5.4) and (5.5) we obtain a differential
equation for the flow field,

2η∂2
γvα = −∂β∂γ {(ζ2 + ζ3)εαβδpδpγ∆µ} − ζ4

{
∂α∂β(∆µpβ)− ∂2

γ(∆µpα)
}

+
κ0

2η′

(
(η + η′)∂4

γvα + ζ̃εαβγpγ∂
2
δ∂β∆µ

)
. (5.6)

We first assume p = êx also in the volume. Using Eqns. (5.4) and (5.5) we then find
Ωxz = Ωxy = 0 and vx = vz = 0. The velocity vy and the intrinsic rotation rate Ωyz

obey
(η + η′)∂2

zvy + 2η′∂zΩyz = 0 , (5.7)

(κ0∂
2
z − 4η′)Ωyz − 2η′∂zvy − 2ζ̃∆µ = 0 . (5.8)

The dynamics of the polarity p is given by

∂tpα =
1

γ
htotα − vγ∂γpα − Ωαβpβ . (5.9)

For constant p = êx, htot = 0 and thus p is stationary. The active fluid exerts a wall
shear stress,

σtotyz |z=d =
{

(η + η′)∂zvy + ζ̃∆µ
}
|z=d (5.10)

Fig. 5.1 (b) shows the profiles of velocity vy and intrinsic rotation rate Ωzy obtained by
numerical solution of Eqns (5.4) and (5.5) as a function of z/d for two immobile plates,
∆v = 0.

For the boundary condition σtotyz |z=d = 0, i.e. no shear stress between the plates,
the plates move relative to each other, i.e. ∆v 6= 0. The flow profile for this boundary
condition is displayed in Fig. 5.1 (d). The system acts as a motor because ∆v depends
linearly on the shear stress imposed. The resulting stress-velocity relationships for dif-
ferent values of ζ̃∆µ are displayed in Fig. 5.1 (b). Note that it is polar chiral term ζ̃
that generates this relative motion of the plates. Interestingly even though an individual
polar chiral motor does not generate a far field (see section 4.2.4), homogeneous distri-
butions of such motors create relative flows at large separation. These flows are created
in a thin boundary layer. The stress between the plates does not depend on d for `� d.

This example shows that interesting physical effects can appear in an active chiral
fluid close to a surface by an active chiral boundary layer.
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Figure 5.1: Chiral shear flows generated by active chiral processes with a constant polar-
ity vector, enclosed between two surfaces of distance d. (a) Schematic representation of
the system. (b) Velocity difference ∆vy between upper and lower plate as a function of
external shear stress σextzy , applied to the surfaces for difference values of the parameter

ζ̃∆µ. (c) Profile of velocity vy and rotation rate Ωyz as function of position z between
the plates for fixed plates, ∆v = 0. (d) Profile of velocity vy and rotation rate Ωyz as
function of position z between the plates for σextzy = 0. Parameter values are ζ̃∆µ = 1,
η/η′ = 1 and `/d = 0.1.
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5.2 Generic theory for thin active films

We now develop a generic theory for thin films of active fluids with chiral motors. In
contrast to the example in the previous section we want to treat the boundary conditions
on the film in a generalized way, describing them by a small set of phenomenological
coefficients. We achieve this, by integrating the force and torque balance equations over
the thickness of thin film. We express the boundary terms, which describe the interaction
of the thin film with the surfaces, by writing all terms allowed by symmetry. The price
we pay, is that we no longer resolve the internal structure of the film explicitly.

5.2.1 Properties of the thin film

A thin film is a layer of fluid whose thin dimension h is much smaller than its extension
L in the other two directions. In the following we will constrain ourselves to planar
geometries and choose the thin dimension in Cartesian coordinates to be the z-direction
for simplicity, see Fig. 5.2. However, all arguments that follow can be generalized to
curved spaces. The thin film is constituted of a gel with the constitutive equations

σαβ = 2ηuαβ + ζ̄∆µδij + ζ ′r∆µpipj , (5.11)

σaαβ = 2η′ (Ωαβ − ωαβ) + ζ̃∆µεαβγpγ , (5.12)

Mαβγ = κ0∂γΩαβ + ζ1εαβγ∆µ+ ζ2∆µεαβδpδpγ

+ζ3∆µ(εαγδpδpβ − εβγδpδpα) + ζ4∆µ(δαγpβ − δβγpβ) . (5.13)

The thin film is a quasi-2D structure, and its dynamics can be described in terms of
averages over the thickness of the film. In the case of the fluids we are interested in
these quantities are the averaged velocity

v̄ =
1

h

h∫
0

vdz , (5.14)

and the averaged intrinsic rotation rate

Ω̄αβ =
1

h

h∫
0

Ωαβdz . (5.15)

Here and in the following bars denote averages over the film thickness. To obtain equa-
tions of motion for these averaged quantities, we discuss the force and the torque balance
in thin films.
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Figure 5.2: Schematics of a thin fluid film of height h that contains chiral motors. Motors
are torque dipoles that consist of counter-rotating spheres, one of which is attached to
the surface. The other rotates as indicated by the arrows. The average motor direction
is described by the vector p̄ which is tilted at an angle θ in y-direction.

5.2.2 Force balance of the thin film

We obtain the force balance equation for a thin film by integrating Eq. (2.11) over the
thickness h of the film,

0 =
1

h

h∫
0

dz∂βσ
tot
iβ = ∂j σ̄

tot
ij +

1

h
σtotiz |h0 , (5.16)

and

0 =
1

h

h∫
0

dz∂βσ
tot
zβ = ∂j σ̄

tot
zj +

1

h
σtotzz |h0 . (5.17)

Here and in the following roman indices denote the in-film directions x and y, while greek
indices denote all three spacial directions. For boundary terms we adopt the notation,

σtotiz |h0 ≡ σtotiz (z = h)− σtotiz (z = 0) . (5.18)

The 2D force balance equations (5.16) and (5.17) consist of two parts each: (i) an in
film flux; (ii) a boundary term that summarizes the interactions between the thin film
and its support.

We now discuss Eq. (5.16) which is the force balance in the in-film directions . The
flux term of Eq. (5.16) depends on the film tension σ̄totij . An expression for the tension
can be obtained by averaging the bulk constitutive Eqns. (5.11) and (5.12). We find

σ̄totij = 2ηūij + 2η′Ω̄ij − 2η′ω̄ij + ζ̄∆̄µδij + ζ ′∆̄µpipj + ζ̃∆̄µεijzpz − δijP̄ . (5.19)
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For simplicity we have assumed that the vector p is constant over the thickness the film.
Releasing this constraint changes the relative magnitude of the different active stresses
but does not create new terms. The hydrostatic tension in the film P̄ can be found by
considering that

σ̄totzz = −2η∂iv̄i + ζ∆̄µ+ ζ ′∆̄µpzpz − P̄ = −P ext . (5.20)

Here we used the incompressibility condition and P ext is the external pressure. Inserting
Eq. (5.20) in Eq. (5.19) we find

σ̄totij = 2η(ūij + ∂kv̄kδij) + 2η′Ω̄ij − 2η′ω̄ij + ζ ′∆̄µ(pipj − p2
zδij)

+ ζ̃∆̄µεijzpz − δijP ext . (5.21)

The boundary term of Eq. (5.16) 1
hσ

tot
iz |h0 expresses the friction forces between the film

and its support. From the constitutive equations we find,

1

h
σtotiz |h0 =

1

h

[
2ηuiz + 2η′Ωiz − 2η′ωiz + ζ ′∆̄µpipz

]h
0

' ξf v̄i − ξΩΩ̄iz + ζglide∆̄µpi. (5.22)

In Eq. (5.22) we introduced the coefficient ξf that describes friction forces due to
the center mass flows of the thin film with respect to the substrate. The coefficient
ξΩ parametrizes forces produced by intrinsic rotations. The active coefficient ζglide

parametrizes the effects of motors pulling on the surface along the polarity vector p,
and might be relevant to the description of gliding essays [112].

5.2.3 Torque balance of the thin film

Following the same procedure as for the force balance, we now obtain a 2D torque balance
by averaging Eq. (2.22) over the thickness of the film,

0 = −2σ̄aij + ∂kM̄ijk +
1

h
Mijz|h0 (5.23)

0 = −2σ̄aiz + ∂kM̄izk +
1

h
Mizz|h0 . (5.24)

Eqns. (5.23) and (5.24) both consist of (i) a flux in the film M̄αβk, (ii) a boundary term
1
hMαβz|h0 that describes frictional torques at between the film and its support and (iii) a
source term σ̄aαβ that describes the conversion of orbital to spin angular momentum in
the film. We start by discussing Eq. (5.23). The flux term in Eq. (5.23) can be obtained
from the constitutive equations and reads,

M̄ijk = κ∂kΩ̄ij + ζ2∆̄µεijzpzpk

+ζ3∆̄µ (εikzpzpj − εjkzpzpi) + ζ4∆̄µ (δikpkpj − δjkpkpi) . (5.25)

The source term in Eq. (5.23) is can be obtained by averaging Eq. (5.12) over the
thickness of the film and reads

σ̄aij = 2η′(Ω̄ij − ω̄ij) + ζ̃∆̄µεijzpz . (5.26)
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Like in the case of the torque balance, we assume that p is constant over the thickness
of the film for simplicity. The boundary term of Eq. (5.23) is

1

h
Mijz|h0 =

1

h
[κ∂zΩij + ζ1∆µεijz + ζ2∆µεijzpzpz + ζ3∆µ(εizkpkpj − εjzkpkpi)]

' ξrΩij + ζ̄1∆̄µεijz + ζ̄2∆̄µεijzpzpz + ζ̄3∆̄µ(εizkpkpj − εjzkpkpi) , (5.27)

where we introduced the rotational friction with the surface ξr and the active coefficients
ζ̄1, ζ̄2 and ζ̄3 that parametrize active angular momentum exchanging processes angular
momentum between the surface and the film.

We now discuss the iz direction of the torque balance Eq. (5.24). The source term
reads

σ̄aiz = 2η′(Ω̄iz − ω̄iz) + ζ̃∆̄µεizjpj . (5.28)

To obtain an expression for the averaged vorticity ω̄iz =
(
∂iv̄z − v̄i|h0/h

)
/2 ' −v̄i|h0/(2h),

we use ∂ivz � ∂zvi, valid in thin films. Also, since in thin films the shear stress is
approximately constant throughout

σextiz ' σ̄iz =
1

h
(η + η′)vi|h0 + 2η′Ωiz + ζ ′∆̄µpipz + ζ̃∆̄µεizjpj , (5.29)

and we find the expression

1

h
vi|h0 = − 1

(η + η′)

(
2η′Ωiz + ζ ′∆̄µpipz + ζ̃∆̄µεizjpj − σextiz

)
, (5.30)

which in turn allows us to determine the averaged vorticity in the film. Thus, in the
absence of external shear stresses, i.e. σextij = 0,

σ̄aiz =

(
1− η′

η + η′

)(
2η′Ω̄iz + ζ̃∆̄µεizjpj

)
− η′

η + η′
ζ ′∆̄µpipz . (5.31)

The flux term of Eq. (5.24) is given by

M̄izk = κ∂kΩ̄iz + ζ1∆̄µεizk + ζ2∆̄µεizjpjpk

+ζ3∆̄µ (εikzpzpz − εzkjpjpi) + ζ4∆̄µ (δikpkpz − pzpz) . (5.32)

Finally the boundary term is

1

h
Mizz|h0 =

1

h
[κ∂zΩiz + ζ2∆µεizjpjpz + ζ3∆µ(εizkpkpz)]

' ξrΩiz + ζ̄2∆̄µεizjpjpz + ζ̄3∆̄µεizkpkpz (5.33)

This completes our discussion of the torque balance in the thin film, and we are now
ready to write down the equations of motion of the system.
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5.2.4 Equations of motion of the thin film

Compiling the results from the previous section, we find the equations of motion of the
thin film to be

∂j

(
2η(ūij + ∂kv̄kδij) + 2η′Ω̄ij − 2η′ω̄ij + ζ ′∆̄µ(pipj − p2

zδij) + ζ̃∆̄µεijzpz

)
+ ξf v̄i − ξΩΩ̄iz + ζglide∆̄µpi = 0 , (5.34)

κ∂2
kΩ̄ij + ∂k

[
ζ2∆̄µεijzpzpk + ζ3∆̄µ (εikzpzpj − εjkzpzpi) + ζ4∆̄µ (δikpkpj − δjkpkpi)

]
− 2(2η′(Ω̄ij − ω̄ij) + ζ̃∆̄µεijzpz) = ξrΩij + ζ̄1∆̄µεijz + ζ̄2∆̄µεijzpzpz

+ ζ̄3∆̄µ(εizkpkpj − εjzkpkpi) , (5.35)

κ∂2
kΩ̄iz + ∂k

[
ζ1∆̄µεizk + ζ2∆̄µεizjpjpk + ζ3∆̄µ (εikzpzpz − εzkjpjpi) + ζ4∆̄µ (δikpkpz − pzpz)

]
− 2

(
1− η′

η + η′

)(
2η′Ω̄iz + ζ̃∆̄µεizjpj

)
+ 2

η′

η + η′
ζ ′∆̄µpipz

= ξrΩiz + ζ̄2∆̄µεizjpjpz + ζ̄3∆̄µεizkpkpz ,

(5.36)

We next discuss some of the behaviors that emerge from these equations of motion in
the context of carpets of chiral motors.

5.3 Fluid flows driven by carpets of chiral motors

Motivated by rotating cilia or bacteria attached to a surface, we consider a thin active film
containing chiral motors that are aligned along the vector p = (cosϕ sin θ, sinϕ sin θ, cos θ).
Here we have introduced the angle θ which describes the average tilt with respect to the
surface normal vector and the angle ϕ which specifies the tilt direction with respect to
the x-axis. For this discussion we constrain ourselves to simple nematic chiral motors,
that are inspired by the structure of swimming E. Coli bacteria, see Fig. 1.7. For this
case the coefficients ζ ′ = ζ̄ = ζ̃ = ζ3 = ζ4 = ζglide = 0 Thus the equations of motion are
greatly simplified and become

∂j
(
2η(ūij + ∂kv̄kδij) + 2η′Ω̄ij − 2η′ω̄ij

)
= ξf v̄i − ξΩΩ̄iz (5.37)

κ∂2
kΩ̄ij + ∂kζ2∆̄µεijzpzpk − 2(2η′(Ω̄ij − ω̄ij) = ξrΩij + ζ̄1∆̄µεijz + ζ̄2∆̄µεijzpzpz (5.38)

κ∂2
kΩ̄iz + ∂kζ2∆̄µεizjpjpk + ∂kζ1∆̄µεizk − 2

(
1− η′

η + η′

)(
2η′Ω̄iz

)
= ξrΩiz + ζ̄2∆̄µεizjpjpz

(5.39)

We first consider a homogeneous distribution of motors in an infinite system where
all spatial derivatives vanish.
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Figure 5.3: Flow fields (vectors) generated by a circular patch of chiral motors (blue).
a) Average motor axis p̄ is perpendicular to the surface, i.e. θ = 0. b) Average motor
axis p̄ tilted at angle θ = π/4 in y-direction. Flow fields were determined numerically
in a square box of size L with periodic boundary conditions. Parameter values are
η′ = η = h2κ = h2ξf = −hξΩ = ξr, ζ1 = −hζ̄1 = 10ζ ′ = −10hζ̄ ′, L = 20h.

5.3.1 Homogeneous distribution of motors

In the case of a homogeneous distribution of motors on the surface Eq. (5.37) reads
v̄i = (ξΩ/ξf )Ω̄iz. Using Eq. (5.39) we find

v̄i =
ξΩ

¯ζ2∆µ

ξf

εizjpjpz
ξr + 4ηη′/(η + η′)

. (5.40)

A flow with a velocity |v̄| ∝ sin(2θ) is generated. The flow direction is perpendicu-
lar to the direction of tilt with respect to the surface normal vector. This case de-
scribes the collective generation of flow by carpets of cilia on a surface [18, 19, 67].
Note that ξΩ and therefore also the generated flow vanish in films that are symmet-
ric with respect to z → h− z. Ciliary carpets do have this asymmetry and can therefore
generate flows [19]. Furthermore, we find from Eq. (5.38) an intrinsic rotation rate
Ω̄xy = ( ¯ζ2∆µ cos2 θ + ζ̄1∆̄µ)/(4η′ + ξr) generated by the rotating motors with vorticity
ω̄xy = 0 in the hydrodynamic flow field.

5.3.2 A patch of chiral motors

As a second example we consider a circular patch of radius R that contains active
motors. This is described by position dependent coefficients ¯ζ2∆µ(r) = ¯ζ2∆µΘ(R− |r|)
and by similar expressions for ζ̄1, ζ2 and ζ1, where Θ(r) is the Heaviside function. We
numerically solve Eqs. (5.37), (5.38) and (5.39) with periodic boundary conditions for
boxsize L = 4R using Fourier transforms, see Fig. 5.3. The velocity field for a tilt angle
θ = 0 is displayed in Fig. 5.3 (a). The patch generates a chiral flow field driven by
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the intrinsic rotations Ω̄xy. The stream lines are concentric circles. The flow velocity
is maximal at the edge of the patch and decays exponentially outside. There is no net
transport across the patch. If the motors are tilted with θ 6= 0 along the y axis, a net
transport in x direction across the patch with velocity proportional to sin(2θ) appears
in addition to the circular flow, see Fig. 4.3 (b).

5.4 Summary

We started the chapter with an example for the complex rheological behavior of a chiral
fluid in the presence of boundaries. We investigated the flows that an active chiral fluid
between to parallel plates creates. Even though individual polar chiral motors do not
generate a hydrodynamic far field, a collection at sufficient density gives rise to flows at
large distance from a surface which is induced by a boundary layer of thickness `. As a
result, an active chiral fluid with polar order confined between two plates can generate
spontaneous relative motion of the plates and shear stresses between the plates. The
direction of the motion ∆v is proportional to p×n, where n is the vector normal to the
plate. We have shown that the stresses on the plates are linear in the density of chiral
motors and does for `� d not depend on the distance between plates.

We then generalized this result and developed a coarse grained description for thin
active films in with active chiral processes.

We discussed our theory in the context of carpets of chiral beating cilia and bacteria
attached to a surface. Specifically, we have shown that homogeneous distributions of
chiral motors attached to a surface and tilted with respect to the surface normal vector,
generate directed flows over large distances in the direction perpendicular to the tilt
direction. The velocity of this net flow is maximal for tilt angles of θ = 45◦. This result
accounts for the generation of net flows and left-right symmetry breaking by carpets
of cilia in the mouse ventral node [17–19] and Kupffer’s vesicle in zebrafish [71]. Note
that in both cases a tilt angle with respect to the surface normal can be defined [67].
Interestingly, reported tilt angles vary between 30◦ and 50◦ [72], which is close to the
angle of maximum transport velocity. Moreover in the case of finite patches of chiral
motors, intrinsic rotation rates drive chiral flows along the edge of the patch. This
phenomenon was reported in recent experiments on bacterial films on solid surfaces [74].

Our theory highlights the role of the intrinsic rotation field Ωαβ for active chiral pro-
cesses. In particular we find net flows without vorticity generated by intrinsic rotations
in a homogeneous system, see Eq. (5.40). Note that in passive bulk fluids Ωαβ converges
to the flow vorticity after a relaxation time that in general is short [29].

Our work shows that the hydrodynamic flow velocity v and the intrinsic rotation
rate Ωαβ in active chiral films are coupled by the active processes and by the boundary
conditions. This can give rise to complex flow patterns generated by carpets of chiral
motors.

Another example of a thin film with chiral motors is the cell cortex of the one-cell
stage embryo of the nematode worm C. elegans. Discussing this system is the content
of the next chapter.



Chapter 6

The cell cortex is an active chiral
fluid

In this chapter we discuss cortical flows in the cell cortex of the one cell stage embryo
of the nematode worm Caenorhabditis elegans, (see Fig. 1.4). We present a theory that
describes the cortex as an active chiral fluid, and compare theoretical predictions for
cortical flows with experimental data.

The cortical flows in the C. elegans embryo are interesting for two reasons: (i) they are
involved in the symmetry breaking process that enables the cell to divide asymmetrically,
and plays an important role in the development of the whole organism [21, 65, 66]; (ii)
they provide a simple setup that allows to test theoretical predictions on the rheology
of active chiral fluids, against experimental data in a quantitative way.

The work in this chapter is an extension of earlier work on the C. elegans cell cortex
published in [21], but unlike earlier work includes active chiral effects.

6.1 The C. elegans cell cortex

The cell cortex is a thin layer of filamentous proteins (actin) and molecular motors
(non-muscle myosin II) directly beneath the cell membrane, see Fig. 6.1. The C. ele-
gans embryo divides asymmetrically. This asymmetry between the anterior (A) and the
posterior (P) is reflected in the material properties of the cortex [21, 66]. Specifically
the concentration of myosin motors in the cell cortex shows gradients along the AP-axis.
The embryo is however azimuthally symmetric. In the following we call the thin dimen-
sion of the cell cortex z, and the direction along the AP-axis x and the one orthogonal
to it y, see Fig. 6.1.

Cortical actin filaments are believed nucleate at the cell membrane, and disassemble
on the cytoplasmic side of the cortex [5,104]. They grow almost parallel to the membrane
and form an entangled network. Thus, the cortex has a broken symmetry in the thin
dimension, but is isotropic within the cortical layer, see Fig. 6.1 (b) and (c), such that
p = êz. Myosin motors set the network under stress [55].

79
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Figure 6.1: Schematic representation of the structure of the cell cortex. (a): The C. el-
egans cell cortex is a thin film of actin and molecular motors underlying the cell mem-
brane. Immediately after fertilization it breaks the symmetry between anterior (A) and
posterior (P). (b): Actin filament orientations (black arrows) are randomly distributed
within the cortical plane (xy). (c): The symmetry is broken in the thin dimension since
filaments nucleate at the membrane (arrow tail) and disassemble (arrow head) at the
cytosolic side of the cortex.
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The cortex is a highly dynamic structure. Actin filaments undergo tread-milling [45]
and the motor molecules bind and unbind dynamically. The typical turnover time of the
cell cortex in a wild type C. elegans embryo is estimated to be on the order of 30s [21].
Thus on time scales longer than this, the cortex is an active viscous fluid.

6.2 Measuring cortical flows

We measure cortical flows and concentration of myosin motors, closely following the
experimental protocol outlined in [21]. We now summarize the techniques used.

6.2.1 Imaging and measurement scheme

A one-cell stage embryo of C. elegans is plated between two cover slips, and slightly
compressed such that it is locally flattened, as illustrated in Fig. 6.2. The motor protein
myosin II is tagged with Green Fluorescent Protein (GFP). The fluorescence intensity
in the cortical layer is imaged at regular intervals using a confocal microscope. In this
way a fluorescence movie is obtained. We evaluate the movies under the assumptions
that:

• The fluorescence intensity is proportional to the local density of active myosin mo-
tors, such that the movies recorded are direct measurements of the instantaneous
myosin distributions.

• The dynamics of the myosin distribution is dominated by advection on the time
scale between two consecutive frames of the movie. We can therefore extract the
center of mass flows of the cortical material through Particle Image Velocimetry
(PIV) [105] of the myosin fluorescence images.

• The C. elegans embryo is azimuthaly symmetric. Deviations of the velocity vectors
along the y-direction are due to fluctuations of the myosin density and average to
zero.

We extract two key informations from the movie. The first is the instantaneous concen-
tration of molecular motors. The second is the instantaneous flow velocity of the cell
cortex.

Myosin density measurement

The density of cortical myosin is proportional to the measured fluorescence intensity. We
exploit the azimuthal symmetry of the C. elegans embryo to obtain the profile of myosin
density along the AP-axis. For each movie, we define the largest rectangular box that is
entirely inside the embryo and oriented along the AP-axis. The box is then divided into
equal sized bins along the AP-axis, see Fig. 6.3 (a). The integrated fluorescence intensity
I in each bin is obtained by summing the fluorescence intensity values for each pixel in
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Figure 6.2: Schematic illustration of the imaging scheme [21]. The embryo is mounted
between two cover slips. The cortex is imaged in the flat elliptical region of the egg that
is pressed against the lower cover slip. A fluorescence movie is obtained in this way.
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each bin. The integrated fluorescence intensity I is a measure for the active tension T
in the cell cortex, such that

T = αI , (6.1)

where α is an unknown proportionality constant, that relates fluorescence intensity to
active tension. Note that α is a property of the imaging system, and could in principle
be determined by careful calibration.

Flow velocity measurement

We measure velocities of the cortical flows using PIV [105]. The PIV method works as
follows.

Let Pn(x, y) denote the intensity value of the pixel at point (x, y) in the n-th frame
of the movie. We first choose a template box of d × d pixels that is centered around
the position (x, y) in the n-th frame. We then numerically evaluate the normalized
cross-correlation function Xn(x, y,∆x,∆y), that measures the similarity between the
template box and a box of equal size centered around (x+∆x, y+∆y) in the subsequent
frame. Here ∆x and ∆y are displacements and the normalized cross-correlation function
is given by

Xn(x, y,∆x,∆y) =

x+d∑
x′=x−d

y+d∑
y′=y−d

{[
Pn(x′, y′)− P̄n(x, y)

] [
Pn+1(∆x+ x′,∆y + y′)− P̄n+1(x+ ∆x, y + ∆y)

]}
√
σ2
n(x, y)σ2

n+1(x+ ∆x, y + ∆y)2
,

(6.2)

where

P̄n(x, y) =

(
1

2d+ 1

)2 x+d∑
x′=x−d

y+d∑
y′=y−d

Pn(x′, y′) , (6.3)

and

σ2
n(x, y) =

(
1

2d+ 1

)2 x+d∑
x′=x−d

y+d∑
y′=y−d

P 2
n(x′, y′)− P̄ (x, y)2 . (6.4)

We then search for the displacements ∆x = ∆x0 and ∆y = ∆y0 that maximize the
normalized cross-correlation function Xn(x, y,∆x,∆y). This can be done to sub-pixel
accuracy using an interpolation scheme based on fast Fourier transforms [106]. The
instantaneous velocity at time n and position (x, y) is then given by

v̄x =
k

τ
∆x0 , (6.5)

v̄x =
k

τ
∆y0 , (6.6)

where τ is the time between two subsequent frames and k is the size of a pixel.
We obtain binned averages of the velocities using the bins shown in Fig. 6.3 (a) and

obtain velocity profiles along the AP-axis.
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6.2.2 Cortical flows in the one cell stage embryo

Between fertilization and the first cell division several episodes of cortical flows occur.
In the frameworks of this thesis we investigate two of them: (i) cortical retraction, which
occurs around 15 min post fertilization and (ii) cortical rotation which occurs around 30
minutes post fertilization, shortly before the cell divides. Both of these flows are chiral
and their chirality is conserved between different individuals. The chiral symmetry
breaking in (i) and (ii) is thus clearly not spontaneous. This distinguishes the flows in
the cell cortex of C.elegans qualitatively from the spontaneous symmetry breaking flows
in the Taylor Couette motor that we discussed in chapter 3.

Cortical retraction

Around 15 minutes post-fertilization strong cortical flows occur, which are involved in
the establishment of the anterior-posterior axis of the embryo [21, 66]. We quantify the
myosin density and the flow velocities, see Fig. 6.3. The flow is predominantly oriented
along the AP-axis, and goes from the posterior towards the anterior. The AP-component
of the flow velocity vx peaks at a velocity of |vx| ' 5µm/min, see Fig. 6.3 (c).

The azimuthal flow component vy is slower and peaks at around |vy| ' 2µm/min,
see Fig. 6.3 (d). The flow switches its direction at the boundary between the posterior
and the anterior half of the embryo. The azimuthal flow has a well defined chirality.
When viewed from the anterior pole of the embryo, the anterior half of the cell performs
a clockwise rotation. Similarly, when viewed from the posterior pole of the embryo,
the posterior half of the cell performs a clockwise rotation. This chirality is conserved
between embryos. We can therefore rule out that the chiral symmetry is broken spon-
taneously.

The function of this twisting motion during cortical retraction is unclear. However,
at later stages during the C. elegans development, cells perform similar chiral twisting
motions during cell division. These twisting motion has been linked to the LR-symmetry
breaking of the entire organism [107]. A similar mechanism seems to be at work during
the LR-symmetry breaking of snails [108].

Cortical rotation

Around 30 minutes after fertilization, shortly before the embryo undergoes cell division
the whole cell cortex rotates around the AP-axis by several tens of degrees. During the
flow episode of cortical rotation the AP-flow velocity vx ' 0µm/min is negligible. The
azimuthal flow velocity vy is peaks at |vy| ' 20µm/min. This is substantially faster
than the flows during cortical retraction. In wild-type animals the rotation is always
right handed with respect to the AP-axis. Thus the symmetry is clearly not broken by
spontaneous symmetry breaking mechanisms, but must be broken by a symmetry cue
that is internal to the cell cortex. The exact quantification of the cortical rotation flows
is still ongoing work, we thus do not include the preliminary data in this thesis.

The function of the cortical rotation is unclear. RNAi experiments show that worms
deficient in some proteins, do not show the rotation, while cell division is still successful.
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Figure 6.3: Measured flow velocities and myosin density profile during cortical retrac-
tion: (a): Image of one embryo. The x direction is chosen to from anterior (A) to
posterior (P), the y direction is the azimuthal one. The total length of the embryo is L.
Semitransparent lines indicate the binning we use for averaging the measurements. The
white scale bar indicates 5 µm ; (b): myosin density profile along the AP-axis in arbi-
trary units; (c): x-velocity profile along the AP-axis in µm per minute; (d): y-velocity
profile along the AP-axis in µm per minute. The data has been obtained by averaging
over N = 10 wild type embryos over a time interval of 100 seconds, at 30% cortical
retraction. The error-bars indicate 95% confidence intervals.
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However there are no viability studies on these worms and it is unknown if they develop
into healthy adults [109]. For us the cortical rotation is interesting since it reveals some
of the underlying mechanical properties of the cell cortex.

6.3 Hydrodynamic description of the cell cortex

We now derive equations of motion for the cell cortex. The derivation closely follows
the steps outlined chapter 5. However, since the intrinsic rotation rate Ωαβ in the cell
cortex, can not be measured directly, we simplify the theory from chapter 5 in such a
way, that we do not need to refer to the intrinsic rotation rate explicitly. This is possible
because the length scale ` =

√
η′/κ0, on which the intrinsic rotation rate Ωαβ differs

from the vorticity ωαβ, is much smaller than the characteristic length of the flows we
are interested in. We start by discussing the constitutive equations for the cortical bulk
material.

6.3.1 Constitutive equations

We consider the cell cortex as a chiral active fluid with the constitutive equations

σαβ = 2ηuαβ + ζ̄∆µδαβ + ζ∆µ(pαpβ − δαβ) , (6.7)

σaαβ = 2η′(Ωαβ − ωαβ) + ζ̃∆µεαβγpγ , (6.8)

Mαβγ = κ∂γΩαβ + ζ0∆µεαβγ + ζ1∆µεαβνpνpγ , (6.9)

where p = êz is a local anisotropy of the material, that is given by the local average of
actin filament orientations, see Fig. 6.1.

6.3.2 Equations of motion

To obtain equations of motion for the cortical material, we use the constitutive equations
(6.7-6.9) together with the force balance Eq. (2.11) and the torque balance Eq. (2.22)
at low Reynolds number. Since p = êz is constant the hydrostatic stress simplifies to
the hydrostatic pressure and σeαβ = Pδαβ. Moreover there are no hydrostatic fluxes
of angular momentum M e

αβγ = 0. The 3D torque and force balances for the cortical
material read,

(η + η′)∂2
γvα + 2η′∂βΩαβ + ∂α(ζ̄∆µ− ζ∆µ+ P ) + ∂β(ζ∆µpαpβ + ζ̃∆µεαβγpγ) = 0 ,

(6.10)

κ∂2
γΩαβ + ∂γ(ζ0∆µεαβγ + ζ1∆µεαβνpνpγ) = 2η′(Ωαβ − ωαβ) + ζ̃∆µεαβγpγ ,

(6.11)
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where we used that the fluid is incompressible, i.e. that ∂γvγ = 0. After a little algebra
we obtain a fourth order differential equation for the velocity v,

0 = η∂2
γvα + ∂α(ζ̄∆µ− ζ∆µ+ P ) + ∂β [ζ∆µpαpβ + ∂γ(ζ1∆µεαβνpνpγ)]

− κ

2η′
∂2
ν

[
(η + η′)∂2

γvα + ∂α(ζ̄ − ζ∆µ+ P ) + ∂β(ζ∆µpαpβ + ζ̃∆µεαβγpγ)
]

.

(6.12)

The length scale ` =
√
κ/η′ is the length on which the intrinsic rotation rate Ωαβ decays

to the vorticity ωαβ and is set by some molecular lengths in the system. An upper
bound for an estimate to ` is the thickness d of the cell cortex, which is of the order of
1µm. Later will show that the characteristic range of flows in the cell cortex is much
longer then this. Thus, for simplicity from we consider the limit of ` =

√
κ/η′ → 0.

The theory that we obtain only applies on length scales larger then `. The equation of
motion becomes,

0 = η∂2
γvα + ∂α(ζ̄∆µ− ζ∆µ+ P ) + ∂β [ζ∆µpαpβ + ∂γ(ζ1∆µεαβνpνpγ)] . (6.13)

Since we know that p points in the z direction and we are only interested in velocities
in the in-film directions we can simplify this even further to,

0 = η∂2
γvi + ∂i(ζ̄∆µ− ζ∆µ+ P ) + ∂j∂z(ζ1∆µεijzp

2
z) , (6.14)

where roman indices only indicate the in film directions x and y. The cell cortex is a
thin film. That means that its extension L the in film directions is much larger than its
thickness d. In thin films

σtotzz ≈ P ext , (6.15)

where P ext is the external pressure. In the following we choose P ext = 0, which we can
do without loss of generality since we are not interested in the description of flows driven
by externally applied pressure gradients. Equation (6.15) expression, together with the
constitutive equation for the stress Eq. (6.7) yields,

η∂zvz + ζ̄∆µ− ζ∆µ+ P + ζ∆µp2
z = 0 . (6.16)

Using the incompressibility of the fluid ∂γvγ = 0 we find,

η∂ivi − ζ̄∆µ+ ζ∆µ− P − ζ∆µp2
z = 0 . (6.17)

The equation of motion of the fluid can thus be expressed without referring to the
hydrostatic pressure. Finally average the equation of motion over the thickness of the
film. We introduce the averaged velocity

v̄i =
1

d

d∫
0

dzvi , (6.18)
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and the active cortical tension

T =
1

d

d∫
0

dzζ∆µ . (6.19)

The cortical equation of motion in terms of v̄i and T read

0 = η∂2
j v̄i + η∂i∂j v̄j − p2

z∂iT + ∂j
1

d
(ζ1∆µεijzp

2
z)|d0 +

1

d
η∂zvi|d0 . (6.20)

We express the boundary terms by,

1

d
η∂zvi|d0 = −γv̄i (6.21)

and
1

d
(ζ1∆µεijzp

2
z)|d0 = −cεijT , (6.22)

where εij = εijz. Here we have introduced the friction coefficient γ and the dimensionless
proportionality factor c, that quantifies the relative strength of active chiral and active
contractile processes. Finally, using that p2

z = 1, we write the 2D equation of motion of
the cell cortex,

η∂2
j v̄i + η∂i∂j v̄j − γv̄i = ∂j (δijT + cεijT ) . (6.23)

Since the cell cortex is azimuthal symmetric Eq. (6.23) decouples into two different

Figure 6.4: Sketch of the equations of motion of the cell cortex. The activity of the cell
cortex provides it with the tendency to actively contract (blue arrows) and rotate with
respect to the cytosol (red arrows).

equations for the x and the y direction,

2η∂2
xv̄x − γv̄x = ∂xT

η∂2
xv̄y − γv̄y = −c∂xT . (6.24)
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Note, that in writing Eqs. (6.24) we implicitly assumed that the cortical viscosity η and
the chirality index c do not depend on space. The active cortical tension T drives cortical
flows that are resisted by viscous dissipative processes quantified by η and frictional dis-
sipation quantified by γ. The relative magnitude of contractile and rotational processes
is encoded in the chirality index c, see Fig. 6.4.

The active cortical tension T and the velocity of the cortex v̄ can be measured. We
next discuss how compare equations (6.24) to experimental results to obtain measure-
ments of the material properties of the cell cortex.

6.3.3 Material properties of the cell cortex

While our experiments do not permit to directly measure forces, we can determine
some important material properties of the cell cortex using our theory. These material
properties are the hydrodynamic length l =

√
2η/γ and the chirality index c. The

hydrodynamic length l is a measure of the distance over which local contractions of
the cell cortex propagate. The dimensionless chirality index c quantifies the relative
importance of active contractile and active chiral processes. We discuss how we can
obtain estimators for c and l using the velocity and tension profiles determined from
experiment, assuming that the cell cortex is well described by Eqs. (6.24).

The first and second moment of Eqs. (6.24) are given by

2η [∂xv̄x] |x1x0 − γ
x1∫
x0

v̄xdx = T |x1x0 (6.25)

η [∂xv̄y] |x1x0 − γ
x1∫
x0

v̄ydx = −cT |x1x0 (6.26)

2η [x∂xv̄x − v̄x] |x1x0 − γ
x1∫
x0

xv̄xdx = (xT )|x1x0 −
x1∫
x0

Tdx (6.27)

η [x∂xv̄y − v̄y] |x1x0 − γ
x1∫
x0

xv̄ydx = −c

(xT )|x1x0 −
x1∫
x0

Tdx

 (6.28)

These expressions can be solved for l =
√

2η/γ, and we obtain an estimator for the
hydrodynamic length, that depends on the measured tension profile, and the measured
AP-velocity v̄x,

l '

√√√√√√√√√
T |x1x0

x1∫
x0

xv̄xdx−

(
(xT )|x1x0 −

x1∫
x0

Tdx

)
x1∫
x0

v̄xdx

T |x1x0 [x∂xv̄x − v̄x] |x1x0 −

(
(xT )|x1x0 −

x1∫
x0

Tdx

)
[∂xv̄x] |x1x0

. (6.29)
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In the same way we obtain a second estimator for the hydrodynamic length, that depends
on the measured tension profile, and the measured AP-velocity v̄y,

l '
√

2

√√√√√√√√√
T |x1x0

x1∫
x0

xv̄ydx−

(
(xT )|x1x0 −

x1∫
x0

Tdx

)
x1∫
x0

v̄ydx

T |x1x0 [x∂xv̄y − v̄y] |x1x0 −

(
(xT )|x1x0 −

x1∫
x0

Tdx

)
[∂xv̄y] |x1x0

. (6.30)

Finally we also determine an estimate for the chirality index c

c ' −
2l2 [∂xv̄x] |x1x0 − 2

x1∫
x0

v̄xdx

l2 [∂xv̄y] |x1x0 −
x1∫
x0

v̄ydx

. (6.31)

This shows that assuming Eqs. (6.24) capture the essential feature of cortical flows it is
possible to estimate the hydrodynamic length l and the chirality index c, directly from the
measured data. The approach sketched in this section seems appealing since only ratios
of active tension appear in Eqs. (6.29) to (6.31), and thus the unknown proportionality
constant α that links the measured fluorescence intensity to the active stress, drops out
of the calculations. It requires however performing derivatives on measured data, which
in practice is imprecise on noisy data. We will introduce an alternative approach to
determining the material properties of the cell cortex that is robust against noise in the
next section where we discuss flows in C. elegans cell cortex.

6.4 Cortical flows: comparing theory and experiment

To test the cortical equations of motion (6.24) that we derived, we now check if they
can capture the flow behaviors observed during (i) cortical retraction and (ii) cortical
rotation.

6.4.1 Flows during cortical retraction

We measured profiles of active tension T and the velocity profile along the AP-axis
during cortical retraction, see Fig. 6.3. To compare our theory to experiment, we nu-
merically solve Eqns (6.24) using the two extreme points of the measured velocity profile
as boundary conditions. Equations (6.24) depend on three free parameters, the hydro-
dynamic length l, the chirality index c, and the constant α that relates the measured
fluorescence intensity to the active tension. We adjust these parameters by performing
a least square fit of the solutions to Eqns (6.24) to the measured velocity profile. In
this way we obtain values for the hydrodynamic length l and and the chirality index c
numerically. We obtain error estimates for l and c and α from the Hessian of the residual
of the least square fit with respect to the fit parameters.
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x/L x/L

(a) (b)

Figure 6.5: Velocities during cortical retraction. Theoretical prediction (solid lines) and
experimental measurement (dots). The Myosin fluorescence intensity is shown in blue
(dots and dashed line). In (a) we use only the x-velocity data to fit the theoretical flow
profile to the experimental one. In (b) only the y-velocity data is used. The errorbars
indicate 95% confidence intervals on the experimental data.

To check for consistency we do the fitting in two different ways: (i) we fit the x and
y data separately using two independent two-parameter fits for l and α, and l and cα,
respectively; (ii) we perform a single three parameter fit for l, α and c. The best fit
curves for method (i), using only the x or y data are shown in Fig. 6.5 (a) and (b),
respectively. The fits obtained with strategy (ii) are shown in Fig. 6.6.

Both methods (i) and (ii) produce good agreement between the theoretical flow profile
and the measured data. Moreover, they allow us to measure the material properties of
the cell cortex.

The estimates for the hydrodynamic length we obtain from method (i) using the
x-data is l/L = 0.34± 0.05, where L is the length of the embryo. The error estimate we
use is the standard deviation. From (i) using the y-data we find l/L = 0.38±0.26. From
method (ii) we obtain l/L = 0.33± 0.09. The three hydrodynamic length estimates are
within each others errorbars and are thus consistent. The much larger standard deviation
of method (i) using the y-data can be understood when remembering, that the peak
velocity of the azimuthal flows during cortical retraction is much slower than the peak
velocity of the x directed flows, while the absolute error in the velocity measurements
remains the same. For this reason the relative measurement error on the y-velocities is
larger, which is reflected in the larger error on the hydrodynamic length estimate.

Furthermore we obtain values for the chirality index c. Using method (i) we find
c = 0.52 ± 0.56, while with method (ii) we obtain c = 0.47 ± 0.43. Both estimates
are consistent, although subject to a large relative error. None the less, this result
emphasizes the importance of active chiral processes in the cell cortex.
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x/L

Figure 6.6: Velocities during cortical retraction. Theoretical prediction (solid lines) and
experimental measurement (dots). The Myosin fluorescence intensity is shown in blue
(dots and dashed line). One common fit using both x and y data has been performed.
the x velocities are shown in red. The y-velocities in green. The errorbars indicate 95%
confidence intervals on the experimental data.



Chapter 6. The cell cortex is an active chiral fluid 93

(a) (b)

T T

Vy
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x/L x/L

Figure 6.7: Velocity profile in the azimuthal direction (green) solved for the same myosin
distribution (blue dashed line) for two different hydrodynamic length. (a): l = 0.33L
and (b): l = 3.3L.

6.4.2 Flows during cortical rotation

Shortly before the first cell division, the cell cortex performs a strong rotation around
the AP-axis. Unlike the screw like twisting motion that is observed during cortical
retraction, this motion is unidirectional, i. e. vy has no sign-flip all along the x axis.

To understand how the equations of motion (6.23) can give rise to two behaviors that
are so fundamentally different, we solve Eqs. (6.23) for the y velocities, using different
values of for the hydrodynamic length l, imposing the active tension that is measured
during the cortical retraction episode, see Fig. 6.7. We impose no flux boundary con-
ditions on vy. These are motivated, by the fact that the azimuthal symmetry of the
embryo imposes a vanishing derivative of vy at the poles.

For a small hydrodynamic length l = 0.33L, (Fig. 6.7 (a)) we find the screw like twist
seen during cortical retraction. For large hydrodynamic length l = 3.3L (Fig. 6.7 (b)),
we find a uniform rotation of the cell cortex as the one observed in C. elegans prior cell
division. Thus we hypothesize that the cell cortex actively up-regulates its hydrodynamic
length prior cell division. While this hypothesis is in agreement with the observation
that other cells round up prior cell division [110], it needs experimental verification.

6.5 Summary

In the present chapter we proposed a simplified version of the theory for thin active films
developed in chapter 5, to describe flows in the cell cortex of the one cell stage embryo
of the nematode worm C. elegans. The main difference between the simplified theory
and the full description in chapter 5 is that the simplified theory for the cell cortex does
not refer to the intrinsic rotation rate. The advantage of this is that the theory only
depends on quantities that we directly measure. The price we pay is that the simplified
theory is hydrodynamic and does not capture phenomena on length scales shorter than
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√
κ/η′ ≈ 1µm.
From the theoretical description two material properties of the cell cortex emerge.

The first one is the hydrodynamic length l =
√

2η/γ. The hydrodynamic length quanti-
fies the distance over which the effects of local contractions decay. The second material
property is the dimensionless chirality index c which quantifies the relative importance
of active contractile effects and active chiral processes.

We use our theory to describe two episodes of cortical flows: (i) flows during cortical
retraction; and (ii) flows during the cortical rotation prior cell division. To validate our
theoretical description of the cell cortex we show that velocity data measured during (i)
can be fit using the theoretical description, using the measured active tension as an input.
The fit depends on the two material properties of the cell cortex, the hydrodynamic
length l and the chirality index c.

We measure the hydrodynamic length l of the cell cortex and the chirality index c.
We find l ≈ 1/3L, where L is the length of the worm. Moreover we find c ≈ 0.5, which
points to the importance of chiral phenomena in the cell cortex.

During the flow episode (ii), the cell cortex preforms a strong chiral rotation around
the AP-axis of the cell. We hypothesize that during (ii) the hydrodynamic length is
actively up-regulated. We show that increasing the hydrodynamic length compared to
the values that we measured during (i) reproduces the strong uniform rotation of the
cell cortex around the AP-axis that is observed in experiments.



Chapter 7

Summary and Outlook

In this chapter we give an overview of our findings, discuss the implications of our results
and point towards possible directions for future research.

In chapter 2 we developed a generic theory for fluids in which active chiral processes
take place. The main difference between the theory we present here, and earlier theories
for active fluids [32–34] is that we allow for non-equilibrium contribution to the anti-
symmetric stress and the spin angular momentum flux. This can be done by explicitly
considering a spin angular momentum degree of freedom of local volume elements of the
fluid, and is a generalization of earlier work in passive liquid crystals [24, 29] to active
systems. We identify novel active terms that generate active antisymmetric stresses and
active angular momentum fluxes. The generic theory for active chiral fluids includes
terms are not hydrodynamic. Specifically, we consider an intrinsic rotation rate Ωαβ of
local volume elements which decays to the vorticity ωαβ on short time and length scales
in a passive fluid [29]. We show how to obtain the Navier Stokes equation as a limiting
case of the generic theory. Moreover we show how to recover earlier theories for active
fluids that do not consider non-equilibrium spin angular momentum fluxes.

The theory in chapter 2 only considers the viscous limit of active chiral fluids. Re-
cently systematic approaches to treat visco-elastic active fluids have been developed [35].
However, they do not account for active chiral processes in the fluid. The interplay of
elastic time scales with active chiral processes is very likely to lead to interesting new
physics. Developing a theory that incorporates viscoelasticity and active chiral processes
would therefore be interesting. Moreover the theory we present here does not include
noise. Approaches to incorporate equilibrium and non-equilibrium fluctuations into the
frameworks of active fluid theories have been forwarded [111]. It would be interesting to
see how these approaches can be extended to active chiral fluids.

In chapter 3 we investigated the rheological properties of an active fluid without chiral
processes in a Taylor-Couette geometry. We showed that chiral symmetry can be broken
spontaneously for high enough active stresses and rotating steady states emerge even
in the absence of external forces and torques. The system can work against external
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torques and is thus a motor. We characterized its motor properties and plot torque-
angular velocity diagrams. Moreover we discuss possible experimental realizations of
the Taylor Couette motor.

The Taylor Couette motor described in 3 could be realized experimentally using actin
gels with myosin motors in small Taylor Couette rheometers and might also be a suit-
able candidate for the construction of a rotational micro-motor. It could be fabricated
using the microfabrication techniques described in [101]. From a theoretical perspective
it would be interesting to extend the stability analysis which we performed to states
with broken rotational symmetry. New states, similar to Taylor vortices in the classical
Taylor-Couette system, might appear.

In chapter 4 we presented a more detailed overview on the microscopic origins of
the active chiral terms in the generic theory. We introduced microscopic chiral force
and torque dipoles and have shown that they can generate active stresses and angular
momentum fluxes. We have shown that distributions of chiral force and torque dipoles
generate the active terms in the constitutive equations propsoed in chapter 2. We cal-
culated the flow and rotation fields around five elementary motors, which are the higher
symmetric objects that can be created by distributions of microscopic torque and force
dipoles.

The work in chapter 4 opens up several possibilities for further studies. Here we
investigate the flow fields generated by individual elementary motors. However the in-
teraction of several such object might lead to interesting effects. Specifically, in recent
years the flow fields generated by interacting microswimmers of the pusher and puller
types, i.e. non-chiral force dipoles, have been studied intensively for their swarming
properties and as candidates for micromixing devices [113,114]. The elementary motors
that we introduce here expand the realm of possible flow fields that can be generated by
simple microscopic motors and would be interesting to study on this behalf.

In chapter 5 we discussed the interaction of chiral fluids and boundaries. We showed
that a suspension of chiral swimmers between to plates will generate hydrodynamic
flows, even though the flow fields of the individual swimmers are not long ranged, via
a boundary effect and exert a wall shear stress that is independent of the distance
between the plates. We then developed a generic theory for thin films of fluid with chiral
processes. We discussed the theory we obtain in the context of bacterial suspensions and
carpets of beating cilia. We show that cilia which are tilted with respect to the surface
they are attached to can drive a fluid flow in a direction orthogonal to the cilia tilt
direction even if the distribution of cilia is homogeneous. If their distribution is not
homogeneous additional flows driven by the interplay between the intrinsic rotation rate
and the surface emerge. These results are in qualitative agreement with experimental
observations [19,74].

The work in chapter 5 could expanded in several directions. The collective behavior
of suspensions of chiral particles between boundaries that we predict opens up to further
studies. From a theoretical point of view it would also be interesting to expand our stud-
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ies to multiple component fluid, to include concentration gradients of active swimmers.
A phase diagram of possible flow behaviors could be systematically explored and would
be informative when discussing the swarming behavior os micro-swimmers in confined
spaces. Our prediction of chiral shear flows in chiral swimmers between two plates can be
experimentally tested. For instance, a dense suspension of E. coli aligned in a gradient
of chemical attractant might generate the chiral shear flows that we predict.

Moreover, the generic theory for active chiral fluids could also be expanded. Here, we
discuss the theory only with respect to chiral active processes. It is however also possible
to treat gliding essays and other non chiral processes occurring in thin films using the
same framework. It would be interesting to extend the approach we are taking here to a
fluid with several components and obtain a phase diagram of gliding essays, which has
been shown experimentally to feature very complex pattern formation depending on the
concentrations of molecular motors and filamentous proteins [112]. Moreover, it would
be interesting expand the theory to study metachronal waves.

Finally, in chapter 6 we developed a theory for the cell cortex of the C. elegans embryo
in the one-cell stage that includes active chiral processes. The theory is a simplified
version of the generic theory for thin films presented in chapter 5. The main difference
between the simplified theory and the one in chapter 5 is that we eliminate intrinsic
rotation rates from the equations of motion by going to the hydrodynamic limit in the
simplified theory. This theory reproduces the flows observed in the cell cortex during
cortical retraction. We obtain two fit parameters from fitting the experimental data.
The first is the hydrodynamic length, which is the length over which local contractions
in the cell cortex decay. It is on the order of one third of the embryos length, which is
in good agreement with earlier findings [21]. The second is the ratio between of active
chiral stress and active contractile stress. This ratio turn out to be one the order of one
half in the C. elegans embryo. Thus we conclude that chiral processes can not be ignored
in the description of the cell cortex. This is also confirmed by experimental observation
of strong chiral cortical flows at a later stage of the embryos development, shortly before
the embryo undergoes cell division for the first time. We forward a hypothesis on the
origin of this strong cortical rotation, stating that the embryos hydrodynamic length
increases prior to cell division which is reminiscent of the stiffening and rounding up
observed in other cell types shortly before cell division [110].

The work in chapter 6 can be extended in several ways. First and foremost our hy-
pothesis on the origin of cortical rotation needs to be experimentally verified. Secondly,
the approach we take to describe the cell cortex allows to characterize it in terms of
collective material properties, namely the hydrodynamic length and the ratio between
active chiral motion and active contractility. This enables us to check for the influ-
ence of different proteins on the collective behavior of the cell cortex, by performing
loss of function experiments using RNAi. While a lot is known on the properties of
many cortical proteins from in-vitro experiments, it has so far been difficult to judge
their role in the cell cortex in in-vivo experiments. Our approach might allow us to
get more insight in this respect and enable us to quantify the influence of different pro-
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teins on the mechanical properties of the cortex. Finally, in our analysis we used the
azimuthal symmetry of the C. elegans embryo, for simplicity. This constraint might be
lifted, allowing for an even deeper understanding of the cell cortex as a mechanical entity.

The work presented in this thesis shows that active chiral processes in soft biological
matter are a field of research that is interesting both for the novel physics that can
be found, as well as for their relevance to biological processes, such as the left right
symmetry breaking of developing organisms. Here we provide the basic tools needed to
approach many these problems and discuss some possible applications. We show that
the physics of many biological systems, such as the C. elegans cell cortex, can not be
fully understood without considering active chiral processes.
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