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Abstract

Complex deformations of simple epithelia play a fundamental role during the morphogen-

esis of humans and animals. The shape of an epithelium is determined by the balance

of mechanical stresses generated inside the cells and external mechanical forces. To shed

light on this interplay of 3D shape and mechanics we develop and introduce the 3D Vertex

Model for simple epithelia. In this model the epithelial shape is characterised by an apical

and basal network of 3D vertices determining the corresponding cell outlines. Mechanical

stresses are assumed to arise from the volume control of cells, as well as from tensions that

act along apical, basal and lateral interfaces between cells and along their apical and basal

surfaces. In addition, external mechanical forces, such as compression and the attachment

of the tissue to an underlying basement membrane, are taken into account.

We thus show how the shape of epithelia, ranging from squamous to columnar, depends

on the external forces and the active tensions generated inside the cells, and we identify

different buckling regimes of epithelia subjected to external compression. Starting from

the 3D Vertex Model we derive elastic moduli of epithelia, and relate the model to a coarse

grained continuum theory where epithelia are represented as thin elastic sheets. After

discussing flat epithelia we study the equilibrium shapes of spherical epithelia surrounding

a compressible fluid. These mechanical models for epithelial deformations in 3D are then

applied to study two important processes in the morphogenesis of the fruit fly Drosophila.

By combing physical modelling and biological experiments, we demonstrate that cyst for-

mation in the imaginal wing disc epithelium is mechanically driven by increased tensions

along the apical and lateral interfaces between differently fated cells. Using the newly devel-

oped theoretical framework we verify that the observed cyst shapes result from a buckling

of clones due to the compression exerted by the contractile boundary. Cyst formation is a

general response to interrupted transcriptional expression and signalling patterns, and we

argue that increased interface contractility around misspecified clones constitutes a novel

error correction mechanism through the extrusion of small aberrant clones from the tissue.

In the last part of the thesis we present a new minimal mechanical for ventral furrow for-

mation. Making use of the 3D Vertex Model and the corresponding continuum theory, we

show that mesodermal constriction is sufficient to initiate the furrowing. We argue that

this new perspective on ventral furrow formation can help elucidate recent experimental

findings, which cannot be explained by means of established mechanical models.

We conclude this thesis by offering an outlook into possible future applications of the

developed methods towards a better understanding of 3D epithelial mechanics.





Kurzzusammenfassung

Die mechanische Verformung von einlagigen Epithelien in komplexe Organe spielt eine

wichtige Rolle in der Entwicklung von der befruchteten Eizelle zum ausgewachsenen Indi-

viduum bei Menschen und Tieren. In der vorliegenden Arbeit entwickeln und analysieren

wir neue Modelle und Ansätze, um das komplexe Zusammenspiel von Form und Mechanik

von Epithelien in Raum und Zeit zu verstehen.

Wir entwickeln ein neuartiges 3D Vertex Modell, das Epithelien durch Netzwerke von

apikalen und basalen Vertices beschreibt, die Schnittstellen zwischen drei oder mehr be-

nachbarten Zellen repräsentieren. Der Zellinnendruck und durch den Aktin-Kortex erzeugte

Spannungen entlang von Zelloberflächen führen im Zusammenspiel mit Kräften, die von

außen auf das Gewebe wirken, zur Verformung des Gewebes. Anhand unseres Modells

zeigen wir auf, wie die vielfältigen Formen von Platten- bis Zylinderepithelien von den

aktiv erzeugten Spannungen in den Zellen und externen Kräften abhängen.

Im Anschluss stellen wir eine kontinuierliche Theorie für die Mechanik von einlagigen

Epithelien vor, und nutzen das 3D Vertex Modell um die charakterisierenden effektiven

Elastitizätsmodule eines Epithels in Abhängigkeit von den zellulären Kräften herzuleiten.

Schließlich wenden wir die entwickelten Theorien zur Erforschung zweier wichtiger Prozesse

in der Morphogenese der Fruchtfliege Drosophila melanogaster an.

Wir zeigen, dass die Entstehung von Zysten in den Imaginalscheiben der Fruchtfliegenlarve

auf mechanischen Spannungen beruht, die entlang der Grenzflächen zwischen genetisch

unterschiedlichen Zellgruppen erzeugt werden. Wir demonstrieren in Theorie und Ex-

periment, dass dieser Effekt einen mechanischen Korrekturmechanismus für Epithelien

darstellt, da er zum Ausschluss von fehlerhaften differenzierten Zellen aus dem Gewebe

führen kann, und so dazu beiträgt die Homogenität gesunder Gewebe zu erhalten.

Im letzten Teil der Dissertation präsentieren wir einen neuen physikalischen Mechanismus,

der der Invagination der Mesoderm in den ersten Stadien der Entwicklung von Drosophila

zugrunde liegt. Durch die Anwendung des 3D Vertex Modells und der entsprechenden

Kontinuumstheorie für die Mechanik von Epithelien zeigen wir, dass die Kontraktion der

Mesoderm und die Krümmung des Embryo eine wichtige Rolle spielen, um diesen ersten

Schritt der Gastrulation einzuleiten. Unsere Forschung eröffnet neue Perspektiven im Hin-

blick auf den Prozess der Gastrulation, und wirft Licht auf experimentelle Erkenntnisse,

die im Rahmen der zahlreichen bestehenden Modelle nicht erklärt werden konnten.

Ein Ausblick auf die vielfältigen Anwendungsmöglichkeiten der im Rahmen der Promotion

entwickelten Methoden schließt die vorliegende Arbeit ab.
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CHAPTER 1

Introduction

1.1 Motivation and overview

Cells are the smallest independently self-replicating functional building blocks of any or-

ganism, and each adult human consists of as many as ∼ 4× 1013 cells [1]. The emergence

of the observed complexity and diverse behaviours at the level of an organism from the ge-

netic information stored in the DNA inside a fertilised egg is astonishing. This autonomous

developmental process, termed morphogenesis, has a multitude of steps involving orches-

trated growth, deformation and reorganisation of cells. It is driven by mechanical stresses

generated inside the cells, which are regulated by chemical signalling and mechanical cues

imposed by the environment. A major part of morphogenesis involves the deformation,

flow and reorganisation of 2D sheets of cells, called simple epithelia.

The aim of present thesis is to understand the complex shape changes of epithelial tissues

during morphogenesis. Note that the underlying biochemical processes, while playing an

important role in generating and regulating the mechanical effects, are not the focus of

this thesis. The central theme is instead the interplay between the mechanical stresses

generated inside the cells and the shape of the epithelia. To characterise the epithelial

shape we introduce a new 3D Vertex Model for the mechanics of simple epithelia that takes

into account the full 3D structure of the tissue. After studying the resulting equilibrium

shapes of cells in flat and spherical epithelia, we derive an effective continuum theory that

represents the epithelium as a thin elastic sheet with bulk, shear and bending modulus.

Then we bridge the scales between the two approaches by establishing the relationships

between the respective mechanical parameters.

In the remainder of the thesis make use of the advantages of the 3D Vertex Model and

the corresponding coarse-grained continuum theory to understand two morphogenetic pro-

cesses in the development of the fruit fly Drosophila melanogaster : the cyst formation in

the wing imaginal disc, and the ventral furrow formation in the early stages of gastrulation.

In Sections 1.2 and 1.3 of the present chapter we introduce the biological system,

Drosophila melanogaster, that serves as the model organism in this thesis. We then dis-

cuss the basics of simple epithelia and of cell mechanics that are prerequisites for the

construction of the 3D Vertex Model of epithelial mechanics in Section 1.4. A descrip-
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tion of existing vertex models and continuum theories for epithelial mechanics follows in

Section 1.5.

In Chapter 2 we introduce the 3D Vertex Model for epithelial mechanics, and derive

coarse grained mechanical properties on the level of the tissue that emerge from cellular

mechanics. In Chapter 3 we then apply the model to the Drosophila wing imaginal

disc and show how a mechanical boundary effect around misspecified cells leads either to

the formation of cysts, or the extrusion of small cell clusters. In Chapter 4 we study

the process of mesoderm invagination at the beginning of gastrulation, and suggest a new

perspective on its mechanical drivers. We conclude the thesis by summarising our main

findings and suggesting further directions of research.

1.2 The fruit fly Drosophila melanogaster

In addition to providing a generic theoretical framework for epithelial mechanics in 3D,

the biological focus of this thesis will be the mechanics of developmental processes in the

embryogenesis of Drosophila melanogaster (in the following referred to as Drosophila). The

present section gives a brief overview of the fruit fly species and its developmental process.

While being unaware of the paramount importance of the Drosophila in research, most

people are frequently confronted with this cosmopolitan insect in their daily life; often it

can be found hoovering over a glass of wine on a warm summer evening, or populating a

bowl of fruits in search for yeast, its primary food. It belongs to the taxonomic order of

dipterans, like the common house fly and the blowfly, but it is smaller and weighs about

1mg. The male of the fly, shown in Fig. 1.1a, is smaller than the female and has a black

abdomen, which resulted in the name addition ’melanogaster ’.

The fruit fly has been studied intensively since the beginning of the 20th century, after

it was brought to the attention of the general scientific community by the genetic studies

of Thomas Morgan Hunt in 1910 [2, 3]. Fig. 1.1b shows an illustration of one of his early

crossing experiments. Ever since Drosophila has gained importance as a model organism

to study morphogenesis, cell biology, genetical pathways and tissue mechanics, to name

just a few. It was soon found that all higher organisms use similar genetic systems, and

although the morphology of, for instance, humans and the fruit fly is very different many

processes on the level of cells and tissues are surprisingly similar.

The advantages of using fruit flies in experiments are manifold: they are easy to maintain,

have a short generation time of about 10 days at room temperature in which they produce a

large number of progenies, and it is easy to distinguish males and females which facilitates
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genetic crossing. Also, it was found that the redundancy of genes in the fruit fly is much

smaller compared to genetic redundancy in mammals, which makes it significantly easier

to identify the function of genes [4]. In a big collective effort, the fruit fly’s entire genome

of about 13,600 genes has been sequenced and a variety of tools of genetical manipulation

has been designed, making Drosophila a very attractive model to study developmental

processes [5].

(a) The adult fruit fly Drosophila (b) Early crossing experiments by TH Morgan [3].

Figure 1.1: The morphogenesis and genetics of the fruit fly Drosophila melanogaster
have been studied since the beginning of the 20th century, following the seminal research
of Thomas Hunt Morgan.

Embryonic development

The morphogenesis of Drosophila, as outlined in Fig. 1.2a, is the sequence of morphological

events by which the fertilised egg develops into a fully-grown adult fly. After fertilisation

of the oocyte the embryo undergoes 12 to 13 rounds of rapid DNA replications until

approximately 5,000 to 6,000 nuclei are dispersed in the so called blastocoel, which is

filled with the fluid yolk. By the end of the 8th round of replication most nuclei have

migrated to the surface surrounding the embryo. Approximately after the 13th round of

nuclear division, cellularisation takes place and a cell membrane is established around the

single nuclei, dividing the cytoplasm from the yolk. At this stage the embryo is called

blastula and the cells form a simple epithelium, called blastoderm, that surrounds the

blastocoel. Shortly after completion of cellularisation, the process of gastrulation sets

in, during which the simple blastula is transformed into a trilaminar gastrula in which

the three germ layers endoderm, mesoderm and ectoderm are separated. Gastrulation

happens through a well coordinated sequence of morphological deformations, including
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ventral furrow formation, germ-band extension and endoderm invagination [6]. Ventral

furrow formation and its mechanical drivers will be discussed in more depth in Chapter 4.

After completion of gastrulation the embryo hatches from the surrounding cuticle as a

larva. At this developmental stage the progenitors of all external body parts of the fly

are embedded inside the larva as imaginal discs as shown in Fig. 1.2b. These imaginal

discs are simple epithelia (cf. Section 1.3) that initially consist of as few as 20 cells

and grow 1000-fold, while undergoing complex deformations during the larval and pupal

development. About 10 days after the egg lay the young Drosophila concludes its embryonic

development and starts its adult life as a full functioning insect.
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(a) Drosophila morphogenesis from a fertilised egg to the
adult fly (from [7]).

(b) Imaginal discs of Drosophila during its larval stage develop into the the
corresponding external body part of the insect (adapted from [7]).

Figure 1.2: The development of Drosophila from a fertilised egg into the full-grown insect
in the course of 10 days, in a sequence of highly coordinated morphogenetic events.
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1.3 Epithelial tissues

A tissue is defined to be a group of cells of common origin that forms a separate entity

inside an organism and carries out specific functions. Tissues are classified into four major

classes with common features and functionality: connective tissues, muscle tissues, nerve

tissues and finally epithelial tissues, which are of special importance for this thesis. Cells in

epithelial tissues are arranged in a two dimensional array and coupled to their neighbouring

epithelial cells by adhesion molecules along their so called lateral cell surfaces (Fig. 1.3).

Epithelial cells have a well-maintained apical-basal polarity that is established through

differences in protein distribution along the cell membrane. This apical-basal polarity

allows for distinct mechanical features of the cells’ apical and basal surfaces. Basally

the cells secrete a layer of cross-linked structure proteins, such as Collagen IV, Lamin

and Perlican, called basement membrane or extracellular matrix (ECM), which will be

discussed in Section 1.4.

1 apical cortex

2 adherens junctions 

3 lateral cortex

4 basal cortex

5 ECM / basement 
membrane

1

2

3

4
5

Figure 1.3: An illustration of cells in a typical simple epithelium. The cells are laterally
coupled to their neighbours by adhesion proteins, which are especially prominent along the
apical adherens junctions. The cells have an apical, basal and lateral actin cortex and are
basally bound by integrins to a basement membrane.

Two types of epithelia can be distinguished depending on their connection to the underlying

ECM: epithelia are called simple, if each cell is in direct contact with the underlying

basement membrane (Fig. 1.4), or stratified if instead the cells in the epithelium are

organised into layers. The focus of this thesis is on simple epithelia, and therefore in

the following ’simple epithelium’ and ’epithelium’ will be used interchangeably. Simple

epithelia have crucial functions both in morphogenesis and in the later adult life of all

animals, where they line the cavities and surfaces of blood vessels and organs throughout

the body. During embryogenesis many complex organs such as the heart in mammals [8]

and the wing in Drosophila develop from a simple epithelium consisting of less than 50

cells. In adult animals, epithelia are mostly found in organs where secretion, absorption
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and filtration occur, because these processes are facilitated by the structure of the epithelia

[9].

Simple epithelia are found in a variety of shapes and are classified depending on their

cells’ aspect ratio - one can distinguish squamous epithelia (found in lungs, heart, blood

vessels), cuboidal epithelia (found in kidney and glands) and columnar epithelia (found in

bronchi, uterus, bladder, intestines). It is also this range of different shapes that allows

epithelial tissues to account for a broad range of functionality, such as protection, secretion,

absorption, filtration and sensing [9]. Possible mechanisms by which epithelia are able to

control their shape are discussed in Section 2.2.3.

(a) Squamous
(lung, heart, blood vessels)

(b) Cuboidal
(kidneys, glands)

(c) Columnar
(bronchi, bladder, intestines)

Figure 1.4: Simple epithelia can be classified by their aspect ratio, which allows them
to fulfil a variety of functions in higher animals [9]. All images are adapted from http:

//cnx.org/content/col11496/1.6/

.

http://cnx.org/content/col11496/1.6/
http://cnx.org/content/col11496/1.6/
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1.4 Prerequisites of cell and epithelial mechanics

The mechanics of simple epithelia has fascinated scientists for more than a century, which is

partly due to their apparently simple 2D arrangement and regular features. In the famous

book ”On Growth and Form” in the early 20th century, D’Arcy Wentworth Thompson ex-

plained how tensions generated inside epithelia can explain the hexagonal packing of cells

[10], and since that time many great contributions have been made towards the understand-

ing of the 2D arrangement of cells in epithelia [11, 12]. To understand the deformations

of epithelia from a mechanical point of view one needs to take into account how cells are

mechanically coupled to each other and their environment, which tensions are actively

generated inside the cells and which external forces are applied onto the epithelium.

In the present section we review some key aspects of cell and epithelial mechanics that will

form the basis of the 3D Vertex Model introduced later on.

Tension generation inside the cell cortex

The cell cortex, or actin cytoskeleton, in animal cells is a thin, cross linked layer of actin

filaments directly underneath the plasma membrane. Myosin motors actively generate

tensions inside the meshwork under the consumption of chemical energy stored in adenosine

triphosphate, by sliding actin filaments with respect to each other [13, 14]. The structure

of the cortex, its dynamics and how tensions are generated have been scrutinised in the

past decades and while great advances have been made, many details still remain poorly

understood.

The cortex thickness is estimated to range in thickness from ∼100 nm in Dictyostelium

discoideum to ∼190 nm in HeLa cells [15, 16]. The structure of the cortex is complex and

highly dynamic, as its constituents are undergoing constant turnover on timescales ranging

from a few seconds to minutes. There exists a plethora of actin binding proteins that

couple actin to other actin filaments, to the membrane and membrane binding proteins,

and to other cytoskeletal structures, such as microtubules and intermediate filaments [17].

In many epithelial cells the cortex is thicker along the apical cell surfaces, but it is also

covering the cells’ lateral and basal surfaces.

Through micropipette aspiration and atomic force microscopy, the cortical tensions have

been estimated to be in the range of ∼30 pN/µm in blood granulocytes [18, 19], through

∼300-400 pN/µm in fibroblasts [20, 21] to 1500-4000 pN/µm in Dictyostelium [22, 23].

Due to the coupling of the cortex to the cell membrane and neighbouring cells the tensions

generated inside the cortex can lead to the deformation of the cells and the surrounding
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tissue. Therefore, the cell cortex plays an important role in stabilising the cells’ shape, but

also in cell motility and cell division.

Contrac le

Expansile

Thickness
∼ 50 nm – 1 μm

Cor cal
tension

T T

Polymeriza on,
depolymeriza on 
and turn-over

Crosslinkers

υ υ→

→

→

→υ
υ

Figure 1.5: The actin cortex is made of actin filaments that are coupled by cross linkers.
Myosin II motors shear the filaments with respect to each other and generate an effective
tension T inside the cortex. Because the cortex is tightly coupled to the cell membrane, it
plays a significant role in cell mechanics and cell shape changes. Image adopted from [14].

Volume conservation in cells

It has been shown in various experimental studies for different tissues and organisms that

cells are very well able to maintain a constant volume, even if they are exposed to me-

chanical stresses [24, 25, 26]. It is however not well understood how this volume regulation

is achieved. One discussed possibility is that the cell membrane, which is a selectively

permeable phospholipid bilayer surrounding the cell volume, regulates the in- and out-flux

of water by the generation of osmotic stress and can thereby act as a control mechanism [].

In addition, the crowding of cells by cell organelles and elastic structures confined inside

the cells, such as the nucleus or microtubuli, could also contribute to an effective volume

conservation of the cells through steric hindrance.

The basement membrane

The basement membrane is a specialised form of ECM and lies as a dense sheet-like struc-

ture of 50-100 nm in thickness underneath the basal surface of epithelia [27] (see also

schematics in Fig. 1.3). It is a network of extracellular molecules secreted by epithelial

cells that provides them with mechanical and biochemical support. Among all of its con-

stituents Collagen IV is the most abundant as it comprises about 50% of the proteins of the
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basement membrane [27], thus providing it with its main structural features [28]. Integrins

are transmembrane proteins that play a crucial role in binding the basement membrane

to the epithelium, as they link the Collagen to the actin cytoskeleton inside the cells [29,

30]. Several studies found that disturbing integrin activity or cleaving ECM components

leads to significant deformations of the wing imaginal disc [31, 28, 32], suggesting a crucial

mechanical role of the basement membrane during the fly’s development.
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1.5 Mechanical models of simple epithelia

In physical terms, cells and biological tissues are best described as complex, active mate-

rials. In living systems chemically stored energy can be transformed into active tensions,

leading to motion and deformation inside the system. Interesting phenomena in these ma-

terials are happening on length scales ranging from a few nanometer (DNA transcription)

to several centimetres (muscle contraction) and meters (information transport through

axons), and on time scales ranging from a few microseconds (protein folding) to years

(ageing). Consequently no unified model is applicable to the whole range of phenomena

involving living matter, but instead the appropriate model has to be chosen or tailored

depending on the question being asked.

Simple epithelia, introduced in Section 1.3, are an important example of a complex living

material. They are composed of cells of different types, which themselves are made of a

plethora of complex cell organelles. Simple epithelia can actively and autonomously deform

due to active tensions, which are generated inside the cells under constant hydrolysation

of adenosine triphosphate, as explained in Section 1.4. The field of epithelial mechanics

aims to understand the fundamental principles of epithelial deformations on the length

scales of cells, which is why it is reasonable to assume that the sub-cellular mechanical

details can be submerged into effective parameters on the length scales equal or larger

than the typical size of cells.

Existing models of epithelial mechanics can be classified according to the chosen geomet-

rical description and their underlying mechanical assumptions into the following groups:

vertex models, continuous models, cellular Potts models, immersed boundary models,

spheroid models, sub-cellular element models and more. The following Sections 1.5.1

and 1.5.2 give a brief overview of the definitions, properties and previous applications of

vertex models and continuum models for epithelial mechanics, respectively.

1.5.1 Vertex models for epithelial mechanics

Vertex models for tissue mechanics have been around for a long time, and have been

successfully applied to study a variety of developmental processes [33, 34, 35]. In the

present section we give an overview of the geometrical and mechanical representation of

epithelia in vertex models, and illustrate some of their applications. For an overview for

studies that used the model and the corresponding applications please refer to the table

A.1 in the appendix.

In existing vertex models, epithelia are described by a network of vertices that define the
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(a) 2D apical vertex model [35] (b) 3D apical vertex model [45]

Figure 1.6: Apical vertex models describe the tissue through the network of apical cell
shapes. In 2D models, the apical surfaces are confined in a plane, whereas in 3D models
the apical tissue surface is not necessarily flat and described by a 2D manifold in 3D space.
The images are adapted from the respective publications.

polygonal apical cell surfaces. In the following these models will be referred to as ’apical

vertex models, in order to differentiate them from models that also take into account the

basal geometry of the tissue. Whereas in the original studies the tissue surface was confined

in a 2D plane [35, 36, 37, 38, 39, 40, 41, 42, 43, 44], recent models represent the apical tissue

surface by a 2D manifold in 3D space to study non-planar tissue configurations [45, 46, 47].

In addition to vertex positions also the topology of the network plays a crucial role and

is allowed to change over time by means of cell division, cell extrusion and cell-neighbour

exchange [35].

Forces in vertex models are acting to displace the vertices, and cell shape changes are due

to movements of the vertices and topological changes of the cell network. The forces derive

from an effective mechanical work function, which is a function of the vertex positions and

the network topology. The detailed form of the work function depends on the underlying

assumptions regarding the mechanical stresses generated inside the cells, and the forces

acting onto the tissue.

In the model introduced by Farhadifar and colleagues in [35], cells are assumed to exhibit

an elasticity of their apical areas, resulting from the volume elasticity of the cells and a

constant cell height. Also line tensions acting along the apical bonds connecting the cells

have been taken into account, together with a perimeter elasticity experienced by the cells.

The resulting work function was consequently defined as:

E =
∑
α

Kα

2
(Aα − A(0)

α )2 +
∑
<i,j>

Λijlij +
∑
α

Γα
2
P 2
α, (1.1)

where Kα denotes the 2D bulk modulus of cell α, Aα denotes its current area, A
(0)
α denotes
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its preferred area, Pα denotes its current apical perimeter and Γα denotes its perimeter

elasticity; the line tension acting along bond < i, j > with length lij is given by Λij.

Later models allowed a dependency of the mechanical parameters on additional fields

such as the protein distribution inside the cells [38, 43]. In the 3D version of the apical

vertex model by Murisic et al. [46], an additional bending term was introduced to penalise

local curvature of the tissue.

Once the tissue’s effective work function W is defined, the force Fi acting on vertex i

with position Xi is given by the derivative of the work function with respect to vertex

movements:

Fi = −∂W
∂Xi

. (1.2)

A tissue configuration is a stable mechanical equilibrium if the forces on all vertices vanish,

and any small deviation from the configuration results in a restoring force. Therefore

mechanical equilibria correspond to local minima of the energy function W .

Two fundamentally different approaches to simulate the dynamics of epithelia have been

implemented in vertex models. In the quasi-static approach, the network dynamics arise

from variations over time in the mechanical parameters describing the tissue. The tissue

is assumed to relax instantly to the ’closest’ mechanical equilibrium after each incremental

change of the mechanical properties, which thereby set the dynamics. The relaxation to

the closest mechanical equilibrium can be efficiently implemented using high-dimensional

minimisation methods, like the gradient or the conjugate gradient method. Note that

the definition of ’closest’ depends on the method used to identify the subsequent minima,

and in specific cases different methods might lead to different dynamics. For a brief ac-

count of advantages and shortcomings of the quasistatic approximation please refer to the

dissertation of D. Staple [48].

In the second approach to vertex dynamics, the vertices are assumed to experience an

effective friction force depending on their velocity that has to be balanced by the current

force acting on the vertex due to unbalanced tensions. In this approach inertial forces are

assumed to be negligible. For vertex i, experiencing a friction ηi, the force balance equation

then reads:

ηi
dXi

dt
= Fi. (1.3)

This first order differential system can be solved numerically for a given initial tissue

configuration, using for instance a Runge-Kutta scheme. Previously the friction coefficient

ηi has been considered to be constant and to represent a simple drag force for a vertex
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being pulled through a viscous medium, but in general it could also depend on the tissue

state as suggested in [48], in which case ηi could also be a matrix. This method could

specifically take into account the viscous dissipation resulting from deformations of the

different elements of the tissue, such as bond lengths and surface areas.

Several variations of the original vertex model have been derived from the presented design

principles, to address different research questions. The 2D versions have been applied to

flat epithelia to study different aspects of the in-plane shape of the cells as a function of

the mechanical stresses. They have been successfully applied with minor modifications to

study cell packing [35, 39], cell sorting [37, 44], system size control [40, 42], cell migration

[41], wound healing [36], tissue patterning [43] and the interplay between cell polarity and

tissue mechanics [38]. These phenomenons have been studied in various organisms, such

as the fruit fly, mouse, zebrafish and frog. Fig. 1.7 shows images of simulation results of

the 2D apical vertex model from a selection of the aforementioned publications. Osterfield

and colleagues were the first to propose the extension of the 2D vertex model to study the

morphogenesis of the respiratory appendages on eggshells of Drosophila, Fig. 1.8a. They

account for out of plane deformations of epithelia [45] by representing them as triangulated

2D manifolds in 3D, but used the same work function as 1.1. The purely theoretical study

[46] used a 3D version of the apical vertex model to analyse the buckling behaviour of an

apical surface subjected to compression (Fig. 1.8b). Monier et al. used a 3D apical vertex

model in [47] to study the epithelial folding of the developing leg disc in Drosophila. The

leg disc epithelium was described by the apical network of cell shapes. Instead the cells

were assigned an effective volume elasticity that replaced the area elasticity introduced in

[35] (Fig. 1.8c).

Underlying assumptions and limitations of apical vertex models

All apical vertex models described above necessarily make the simplification that the ep-

ithelial geometry can be effectively described through the apical network of cells. The

basis of this assumption is that the basal tissue shape does not play a role in the studied

system, or, alternatively, can be effectively adsorbed in the apical representation. While

this approximation is valid in the case of flat epithelia, where the apical and basal cell

network are very similar, it is not in general the case for deformed, non-planar epithelia.

It has been shown in recent experiments that significant contractile stresses are also acting

along the basal cell surfaces and along lateral cell interfaces that can lead to significant

tensions acting outside the apical plane of the tissue. For instance, differences in apical

and basal tensions can lead to the generation of local torques which cannot be accounted

for by the purely apical description of epithelia. Furthermore, in most apical vertex models
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(a) Cell shape distribution [35] (b) Tissue patterning [43]

(c) Interface mechanics [44] (d) Planar cell polarity [38]

Figure 1.7: Images showing 2D apical vertex model simulation results from studies of
various phenomena in developing epithelia in different organisms. The images are adapted
from the respective publications.

the assumption is made that the cells experience an elasticity of the apical cell surfaces,

resulting from the volume elasticity of cells and a fixed height of the tissue. Yet, what sets

the height of the tissue in the first place, and how the effective area elasticity relates to the

cells’ mechanical properties lies outside the explanatory powers of the existing frameworks.

While apical vertex models are therefore well suited models to explain the 2D arrangement

of cells in planar epithelial tissues, a different model is required to describe complex 3D

epithelial deformations. Furthermore, also in the case of flat epithelia existing models do

not give account for the full 3D cell shapes, and the origin of the preferred cell area and

cell height.

To research these open questions we develop in present thesis a new mechanical model of

epithelial mechanics, which accounts for both the apical and the basal shapes of the cells:

the 3D Vertex Model.
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(a) Appendage formation [45] (b) Tissue buckling [46] (c) Fold formation [47]

Figure 1.8: Apical vertex models in 3D have been applied to study out-of-plane defor-
mation of epithelia in different developmental contexts. The images are adapted from the
respective publications.

1.5.2 Continuum models

Whereas simple epithelia in vertex models are modelled to consist of discrete cellular units,

in continuum approaches they are regarded as continuous materials. These descriptions do

not depend on the exact shape of the cells in the epithelium, and they are valid only on

length scales larger than the typical length scale of cells. The idea to represent a tissue as

a continuum material dates back to Malcolm S. Steinberg and colleagues, who described a

cellular aggregate as a visco-elastic fluid in a series of publications in the early 1960s [49,

50, 51]. In these studies the Differential adhesion hypothesis was put forward, stating that

the sorting of different cell types can be understood as the unmixing of two liquids with

different surface tensions, similar to the separation of oil in water. Although these ideas

were initially developed to explain properties of bulk tissues, similar ideas have been applied

to simple epithelia in order to explain the straightening of the compartment boundaries in

the imaginal wing disc of Drosophila [52, 44, 37]. Depending on the tissue properties and

on the time-scales considered, tissues in continuous models have been described as purely

elastic, purely viscous or as visco-elastic materials. Whereas Steinberg and coworkers

successfully modelled aggregates of cells as viscous or visco-elastic fluids [51], cells organised

into epithelia are coupled more strongly through adhesion molecules and can often be

described more accurately as elastic or visco-elastic materials. More recently, theories of

complex active visco-elastic fluids have been developed, which have been applied in 2D to

study biological materials and tissues [53, 54, 55, 56, 52, 57].

1.5.3 Bridging the scales between vertex and continuum models

Continuum models and vertex models can be regarded as complementary in several aspects

and the simultaneous use of the two frameworks can provide several advantages as we will
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highlight in this section.

In continuum models the underlying microscopic parameters are submerged into coarse-

grained parameters featuring in the constitutive equations. If the epithelium is represented

as a thin elastic sheet, the relevant mechanical parameters describe the response of the tis-

sue to in-plane deformations, namely its bulk and the shear moduli, its preferred curvature

and its response to bending deformations, namely the bending modulus. Different un-

derlying microscopic models can give rise to identical continuum representations, which

makes the continuum approach less dependent on the microscopic model. Depending on

the experimental system, it might be possible to mechanically probe the coarse grained

mechanical parameters, for instance by exposing the tissue to bulk and shear deformations

and measure the response. However, how the coarse grained mechanical parameters de-

pend on the stresses generated inside the cells is not immediately clear. Continuum models

of mechanical systems have the advantage that they can be solved analytically in generic

limits. They can be used for instance to predict buckling behaviour of epithelia, and to

estimate the deformations of epithelia resulting from small mechanical perturbations. This

analytical approach can therefore serve as a tool to identify key parameters that play a

crucial role in the specifically studied process. Due to their construction continuum models

cannot account for the detailed shapes of the epithelium and the cells, since they are valid

only on the length scale of several cells. Furthermore, obtaining solutions of the continuum

equations to obtain equilibrium epithelial shapes far from the linear regime of perturba-

tions is analytically very challenging, and can normally only be achieved through advanced

numerical routines.

Vertex models of tissue mechanics often feature a greater number of parameters than

continuum models, but they directly reflect stresses generated on the level of the cells.

These tensions can be inferred experimentally by locally probing the cell properties, for

instance through laser ablation experiments or by measuring local concentrations of motor-

molecules. The bigger number of mechanical parameters and degrees of freedom often

makes vertex models less generic and more complicated to treat than continuum models.

However, there exist powerful computational frameworks that allow to solve the consti-

tutive equations for the dynamical behaviour and the equilibrium tissue shapes even for

strong perturbations away from homogeneous tissue shapes. The obtained results also take

into account non-linearities of the system, which can be much harder to study in continuum

frameworks. Furthermore vertex models can account for more details of cell shapes and

local deformations, which can then be directly compared to experimental observations.

Both discussed approaches have therefore complimentary advantages, which makes their

combination a powerful tool to study and understand the mechanics of complex morpho-
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genetic events. The connection between vertex model simulations and a continuum theory

has been made by Staple et al. in [39] where the authors derived the effective coarse

grained shear and bulk modulus of a model tissue as a function of the apical area and

perimeter elasticity in the 2D apical vertex model. In [46] Murisic and coauthors derived

the effective bending modulus of the tissue from their apical 3D vertex model. They then

analysed theoretically the buckling behaviour of a tissue under compression in simulations

and in their continuum theory and showed that both approaches yield the same results.

In present thesis we show the correspondence between microscopic parameters of the

3D Vertex Model and a continuum approach of epithelial deformations. Then we go be-

yond this theoretical approach and combine the developed tools to study two concrete

processes in the morphogenesis of Drosophila. The continuum model is used to identify

key features that account for the qualitative behaviour of the studied mechanisms and to

develop a physical intuition of the influence of the coarse grained parameters. 3D Vertex

Model simulations are then used to obtain the resulting detailed tissue shapes, which are

quantitatively matched with the experimental observations. At each step we show that

the continuum theory and the 3D Vertex Model simulations yield the same results in the

limits of the continuum calculations, thereby demonstrating the consistency of the two

approaches.



CHAPTER 2

3D description of epithelial mechanics

The complex 3D shapes of epithelia are determined by the interplay of pressures and

tensions generated inside the cells, and by external forces that are exerted onto the tissue.

We argued in Section 1.5.1 that the existing vertex models of epithelial mechanics, while

yielding a good description of many flat epithelia, are not suited to account for many

complex 3D morphogenetic processes. In the present chapter a new 3D Vertex Model for

epithelial mechanics is introduced and analysed, which also takes into account stresses that

are not generated inside the apical cell surfaces. Thereby we aim to provide a new tool

for the effective study of morphological events that involve the complex deformations of

simple epithelia in three dimensions.

The introduction of the 3D Vertex Model in Section 2.1 is organised into three parts fo-

cussing on the different aspects of geometry, the mechanical work function and topological

changes. After defining the model, we derive the effective bulk modulus, shear modulus

and bending modulus of flat homogeneous epithelia in Section 2.2.1. Then we show how

epithelial equilibrium height and cell density is controlled by tensions generated inside the

cells, and external tensions. External tensions can lead to the buckling of flat epithelia,

which we will study in Section 2.2.4. After focussing on flat homogeneous epithelia we

move on to spherical epithelia surrounding a compressible liquid in Section 2.3, and study

their equilibrium properties both analytically and by means of 3D Vertex Model simula-

tions. In Section 2.4, the final part of the chapter, we show the consistency of the 3D

Vertex Model simulations with the coarse graining approach by comparing the analytically

predicted and the numerically obtained mechanical moduli and tissue properties.

2.1 A 3D Vertex Model for epithelial mechanics

In this section we introduce the mechanical hypotheses and geometrical formulation of

the 3D Vertex Model and important details of its implementation, such as topological

transitions and the identification of equilibrium tissue shapes. We start by describing the

geometrical representation of the epithelial cells through apical and basal vertices in 2.1.1.

Then the effective mechanical work function of the model is introduced in 2.1.2, and it

is shown forces and equilibrium configurations can be obtained from the work funcion.
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Finally we introduce of topological transitions and show how cell division, T1 transition

and cell extrusion are taken into account in the framework of the 3D Vertex Model.

2.1.1 The 3D Vertex Model representation of simple epithelia

Simple epithelia in the 3D Vertex model are represented by a set V of vertices marking

the common apical and basal points of three or more cells. The assumption is made that

two cells are adjacent basally if they are adjacent apically, hence enforcing that the apical

and basal networks of vertices and bonds have the same topology (Fig. 2.1a). Therefore

the tissue is completely described by the topology of the apical network together with the

apical and basal vertex positions, called Xi
a and Xi

b respectively for each vertex i ∈ V .

Each edge of the network corresponds to a cell-cell interface, describing common apical,

lateral and basal contacts between cells. Straight lines between apical positions of adjacent

vertices represent the apical cell outlines, and the same holds respectively for their basal

counterparts. Lateral bonds are lines connecting the apical and basal positions of each

vertex. Each cell α is represented by a set of Mα vertices as shown in Fig. 2.1b. The

apical network

basal network

(a) Tissues are modelled by an apical and basal
network of cells with the same topology.

(b) Cell α is represented by a set of vertices
1, .., 6 and their apical and basal positions.

Figure 2.1: The representation of epithelial cells in the 3D Vertex Model through networks
of apical and basal vertices that represent the intersection of three or more cells.

apical surface of cell α is given by the surface enclosed by the vertex positions (Xα,i
a )M

α

i=1 ,

and the corresponding basal surface by (Xα,i
b )M

α

i=1 . Any lateral surface i, j ∈ V common

to two cells, is defined by the surface enclosed by the apical and basal vertex positions
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(Xi
a → Xi

b → Xj
b → Xj

a).

Because positions of vertices constituting a surface are not enforced to be coplanar, the

Figure 2.2: All surfaces confining cells in the 3D Vertex Model are triangulated, and are
defined by the triangles connecting their vertices and the centre of mass of their circum-
ference given in Eq. 2.1.

surfaces enclosing the cell have to be defined. Let k be an apical, basal or lateral surface

with its contour line defined by the path through the Nk vertex positions (Xk(1) → Xk(2) →
... → Xk(Nk) → Xk(Nk+1) = Xk(1)). The associated centre of mass Ck of surface k is then

defined as the centre of mass of the contour line

Ck =

∑Nk

i=1 |Xk(i) −Xk(i+1)|X
k(i)+Xk(i+1)

2∑Nk

i=1 |Xk(i) −Xk(i+1)|
. (2.1)

The centre of mass Ck is used to generate a triangulation of the interface k, by joining the

centre to all vertices belonging to the interface as shown in Fig. 2.2. A cell α that is given

by Mα vertices, is therefore a polyhedron which is fully enclosed by 6 Mα triangular faces,

of which Mα triangles each form the apical and the basal cell surface and 4 Mα triangles

form the cell’s lateral interface that connect it to other cells.

Geometrically the tissue consists of 4 different structures with different dimensions: a

set of vertices V (corresponding to apical and basal points of intersection of three or

more cells), a set of lines L (corresponding to bonds between cells), a set of surfaces S
(corresponding to apical and basal cell surfaces, and lateral cell interfaces) and a set of

polyhedrons C (corresponding to cell volume). The relevant geometrical quantities of the

tissue are therefore the positions of the vertices, the lengths of the lines, the areas of the

surfaces and the volumes of the polyhedrons, which can all be derived from the positions

of the vertices.
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2.1.2 Work function and resulting forces

In the 3D Vertex Model forces act to displace vertices in the model epithelium. These forces

are derived from a virtual work, based on the tensions generated inside the epithelium and

external mechanical constraints, which have been described in Section 1.4. For clarity

the differential virtual work δW is therefore written as the sum of the work exerted within

the epithelium δWi and outside the epithelium δWe:

δW = δWi + δWe. (2.2)

In the following we discuss the detailed form of the internal and external work contributions.

Internal forces

The differential of the internal virtual work reads

δWi =
∑
α∈C

−PαδV α +
∑
k∈S

T kδAk +
∑
λ∈L

Λλδlλ, (2.3)

where, as described above, C is the list of all cells, S is the list of all surfaces and L is the

list of all bonds in the tissue. The volume of cell α, the surface area of interface k and the

length of the bond λ are respectively given by V α, Ak, and lλ. Pα denotes the pressure

acting in cell α, T k denotes the surface tension on interface k, and Λλ denotes the line

tension acting on the line λ. Note that all mechanical parameters can be functions of the

current state of the tissue.

Surface tensions T k are thought to arise from the active actomyosin cortical cytoskeleton,

where contractility of myosin molecular motors in the surface actin network leads to the

establishment of a surface tension (Fig. 2.3a, Section 1.4). We assume that surface

tensions act throughout the apical and basal cell surfaces, as well as along the lateral

cell interfaces and that they are homogeneous on all triangles of each of these interfaces.

Note that the tensions need not be independent of the current area of the surface, but the

surfaces could exhibit elastic properties where the tension depends explicitly on the area

of the surface (i.e. T k = T k(Ak)). Line tensions are thought to arise from actin cables

forming along the apical and basal perimeter of cells (Fig. 2.3b).

Cells are assumed to be able to maintain a preferred volume, as described in Section 1.4.

We make an expansion of the cells’ pressure around the preferred volume and only take
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into account the linear contribution:

Pα = −Kα(V α − V α
0 ), (2.4)

where V α
0 is the preferred cell volume of cell α and the proportionality constant Kα is its

bulk elastic modulus (Fig. 2.3c).

All considered internal differential work functions δWi in this thesis can be derived from

an actual work function Wi by:

δWi =
∑
α∈C

∂Wi

∂V α
δV α +

∑
k∈S

∂Wi

∂Ak
δAk +

∑
λ∈L

∂Wi

∂lλ
δlλ, (2.5)

and the pressure Pα, surface tensions T k, and line tensions Λλ are consequently defined

by:

Pα = −∂Wi

∂V α
(2.6)

T k =
∂Wi

∂Ak
(2.7)

Λλ =
∂Wi

∂lλ
. (2.8)

In the case of constant line and surface tensions along all lines and surfaces, and a cell

pressure given through Eq. 2.4, integrating the differential work function yields the internal

work function:

Wi =
∑
α∈C

Kα

2
(V α − V α

0 )2 +
∑
k∈S

T kAk +
∑
λ∈L

Λλlλ. (2.9)

External forces acting on the epithelium

In addition to the internally generated tensions we take into account two sources of external

force: an external in-plane surface tension acting on the area of the tissue (Fig. 2.3e) and

a term representing constrains imposed by attachment to and constraints imposed by the

ECM (Fig. 2.3d). The external variation of the virtual work then reads

δWe =
∑
i∈V

kizibδz
i
b − TextδAtot, (2.10)

where the shortest euclidean distance of the basal position of vertex i to the ECM is

denoted zib, and the total tissue surface area is denoted Atot. The spring modulus ki
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Figure 2.3: The differential mechanical work function of the tissue includes cell pressure,
surface and line tensions acting along the cell outlines, an elastic attachment to the under-
lying ECM and the compression of the tissue. All mechanical parameters can be function
of the current state of the tissue, which for instance allows for elastic behaviour of cell
surfaces.

represents elastic bonds attaching the tissue to the extracellular matrix, and it is non-zero

only for basal vertices as the apical tissue does not form connections to the ECM.

Analogously to the internal differential work function, also the external differential work

function δWe can be integrated to yield a work function We which is defined by:

δWe =
∑
i∈V

∂We

∂zib
δzib +

∂We

∂Atot
δAtot. (2.11)

Thus, for the case of constant external tension Text the integrated external work function

reads:

We =
∑
i∈V

ki

2
(zib)

2 − TextAtot. (2.12)

Resulting forces acting on vertices

Summing up all internal and external contributions give rise to a total differential form of

the work function, which is shown together with a schematic in Figure (2.3). The forces
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Fi
a and Fi

b acting on the apical and basal positions of vertex i ∈ V are defined through the

infinitesimal change of the mechanical work under vertex displacement:

Fi
a = − δW

δXi
a

(2.13)

Fi
b = − δW

δXi
b

. (2.14)

Apical vertices experience forces due to surface tensions of the adjacent apical cell surfaces

and lateral interfaces, due to line tensions of the connected bonds and due to volume

pressure of the adjacent cells. Basal vertices in addition are also subject to forces due to

the ECM attachment.

If the work function can be integrated, the forces can be obtained through differentiation

of this internal work:

Fi
a = − ∂W

∂Xi
a

(2.15)

Fi
b = − ∂W

∂Xi
b

. (2.16)

Note that the centres of mass of the surfaces are not taken as degrees of freedom (cf. Eq.

2.1), but have to be considered in the calculation of the forces acting on the single vertices.

To clarify this, we note that the virtual work introduced in Eq. 2.2 is a function of the

positions of the vertices and centres of mass, δW̄ ({Xi}, {Ck}). As the centres of mass

depend on vertex positions through Eq. 2.1, the virtual work in Eq. 2.15 can be obtained

from

δW ({Xi}) = δW̄ ({Xi}, {Ck(Xi)}), (2.17)

and the whole expression for the force on any vertex i reads

Fi = − δW̄
δXi
−

M∑
k=1

δW̄

δCk

∂Ck

∂Xi
, (2.18)

where the sum is taken over all surfaces k. Note that ∂Ck/∂Xi 6= 0 only if the vertex i is

a part of surface k.

Mechanical equilibria in the 3D Vertex Model

Let again {Xi} be the state of the tissue in the 3D Vertex Model, describing the vertex

positions and the tissue topology. This state corresponds to a mechanical equilibrium state
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if the sum of the internal and external forces acting on all vertices balance

Fi
a({Xi}) = Fi

b({Xi}) = 0 ∀i ∈ V . (2.19)

If the differential mechanical work function is derived from a mechanical work function,

which is always the case in this thesis, any equilibrium state E corresponds to a local

extremum of the integrated work function W . A mechanical equilibrium is stable if it

corresponds to a minimum of the work function and unstable otherwise. In simulations

the equilibrium configurations can therefore be obtained by the minimisation of the work

function W with respect to the position of the vertices.

2.1.3 Topological transitions

In addition to changes in the position of the vertices, we also allow for simultaneous topo-

logical transitions of the apical and basal networks. These topological changes accounted

for in the model, namely T1 transitions and cell division, are described in this subsection.

Note that, while not required for this thesis, also cell extrusions can be implemented in the

model to account for apoptotic or mechanically driven removal of cells from the epithelium.

T1 transitions

T1 transitions are topological transitions that represent the exchange of cell neighbours.

T1 transitions occur through the shrinkage of the interface in between two cells and the

expansion of a new interface between two cells which were previously not in contact.

We impose here that T1 topological transitions must occur both on the apical and the basal

side, such that both networks maintain the same topology. In the implementation of the

3D Vertex Model, a T1 transition occurs if the apical and the basal length of an edge e

fall under the threshold length lT1 and the forces acting on the vertices of the edge tend

to further reduce the apical and basal length of the edge (Fig. S4A). In the exemplary

illustration the edge e, common to cells 2 and 4, is then replaced by a single fourfold

vertex. This new vertex can be replaced by a new bond, connecting the cells 2 and 4

which were previously unconnected. To decide if this topological transition is performed, a

hypothetic new bond e1,3 is introduced between the two cells 1 and 3, with the direction of

the apical/basal edge obtained by connecting the apical/basal cell centres of the other two

cells. The apical and basal cell centres of cell α are denoted Mα
a and Mα

b respectively. We

denote F2
a and F4

a the forces acting on the apical vertices of the hypothetic edge e which

are part of cell 2 and 4, and F2
b and F4

b the respective forces on the basal vertices. The
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cell 1
cell 2

cell 3
cell 4

cell 1

cell 2

cell 3

cell 4

cell 1

cell 2

cell 3

cell 4

cell 1
cell 2

cell 3

cell 4

cell 1

cell 2

cell 3

cell 4

cell 4

cell 3

cell 1

cell 2

Figure 2.4: If the apical and basal length of an edge e, named la and lb, are shorter than
the threshold lT1 this edge gets removed from the tissue, resulting in a new 4-fold vertex
(step 1). This vertex can then be replaced in two topologically distinct ways by a new
edge, and the energetically more favourable replacement will take place and give rise to a
new edge e∗ with apical and basal lengths lnew

a and lnew
b (step 2).

separating forces for the hypothetic edge e1,3 are given by the projection of the force on

the opening direction:

f 1,3
a = (F2

a − F4
a) ·

M2
a −M4

a

|M2
a −M4

a|
(2.20)

f 1,3
b = (F2

b − F4
b) ·

M2
a −M4

a

|M2
a −M4

a|
(2.21)

f 1,3 = f 1,3
a + f 1,3

b . (2.22)

The hypothetic edge e1,3 is allowed to open if both apical and basal opening forces are

positive f 1,3
a > 0, f 1,3

b > 0. The newly established edge is assigned the initial apical and

basal lengths lnew
a and lnew

b . The topology remains unchanged and the fourfold vertex is
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conserved if the formation of the new edge is unfavourable.

Cell divisions

In cell divisions one cell is replaced by two daughter cells that inherit the mother cell’s

mechanical properties. The division of a cell is implemented by placing two new additional

vertices n1 and n2 on two distinct edges of the cell’s circumference (shown in Fig. 2.5).

These vertices, with apical positions Xn1
a and Xn2

a , and basal positions Xn1
b and Xn2

b , split

both two edges into two new edges each, and are then connected by a new edge < n1, n2 >

that divides the cell α into two daughter cells α1 and α2. The choice on which edges to place

the two new vertices could be random, or made on the basis of geometrical arguments or

mechanical arguments and depends on the underlying model of cell division. For instance

one could perform the division perpendicular to the axis of elongation or just choose a

random orientation of the axis of cell division.

Figure 2.5: Cell α is divided into two daughter cells α1 and α2, by the placement of two
new vertices n1 and n2 on the circumference of the cell and the consequent establishment
of a new edge between the two vertices.



2.1 A 3D Vertex Model for epithelial mechanics 29

2.1.4 Boundary conditions

In the framework of the 3D Vertex Model, tissues can be modelled that are subjected

to very different boundary conditions. These include periodic boundary conditions, free

boundary conditions, and non-periodic tissues without a free boundary that are topologi-

cally equivalent to a sphere. Examples of the three cases are shown in Fig. 2.6.

Note that if a tissue is periodic in one direction of space in the model and in simulations,

it needs not necessarily be periodic in a second direction of space. This way we can also

account for tissues shaped like infinite tubes, which are periodic only along the elongation

of the tubes (simulations not shown). In the case of periodic boundary conditions, the

size of the periodic box adds an additional degree of freedom which needs to be accounted

for in the identification of the forces and the mechanical equilibrium configurations. The

details will be explained in the following subsection.

Periodic boundary conditions

In the case of periodic boundary conditions the vertex positions are constrained to remain

inside a periodic box in x− and y−direction and are unconstrained to move in z−direction,

i.e. X ∈ ([0, Lx], [0, Ly],R) and the size of the periodic box Lx×Ly adds additional degrees

of freedom. The positions of all vertices in the box are affinely rescaled when the lengths

Lx and Ly are modified: under a change of tissue size Lx → Lx+δLx, Ly → Ly +δLy every

vertex position X changes according to

X→


Lx+δLx
Lx

0 0

0 Ly+δLy
Ly

0

0 0 1

X. (2.23)

For the tissue to be in mechanical equilibrium the forces on the system size also have to

be balanced, giving rise to two additional force balance equations:

δW

δLx
=
δWint(Lx, Ly)

δLx
− TextLy = 0 (2.24)

δW

δLy
=
δWint(Lx, Ly)

δLy
− TextLx = 0. (2.25)

Analytical expressions for the forces on the periodic box are derived in Appendix B.1.2.



30 2. 3D description of epithelial mechanics

(a) Spherical topology (b) Free boundaries (c) Periodic box

Figure 2.6: Three different boundary conditions in the 3D Vertex Model. In (c) the tissue
is confined in a periodic box, whereas in (a) and (b) the tissues are free to extend in all
directions.

2.1.5 Minimising the work function

The identification of configurations of tissues in mechanical equilibrium can be done either

by solving the system of ODE using a standard solver, or by minimising the work function

using optimisation tools. The simulations studied in this thesis were done by means of

minimisation methods, which are described in this section.

Mechanical equilibria of epithelial shapes for given mechanical properties are been ob-

tained by initiating the tissue to a starting configuration (see Appendix B.1.3) and con-

sequently iterating the tissue shape until it corresponds to a local minimum of the work

function. For a fixed tissue topology this minimisation has been implemented by means of

the Polak-Ribiére conjugate gradient algorithm [58]. The algorithm starts with a first step,

in which the work function is minimised along its current gradient using Brent’s method.

In the following steps the work is then always minimised along the conjugate gradient of

the previous step. The algorithm terminates and the tissue is assumed to have reached a

local minimum, once the norm of the gradient of the work function is smaller than a pre-

set threshold, or once the work done between successive points is lower than a predefined
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(a) Minimisation of a flat periodic tissue, in a periodic box with box sizes Lx and Ly.

(b) Minimisation of an epithelium tissue on a sphere - note that the system size is not an
additional parameter, but the size of the sphere is set only by the position of the vertices.

Figure 2.7: Initial configuration and equilibrium configuration of a periodic and a spher-
ical tissue. The equilibrium is found by minimising the work function with respect to
vertex positions and tissue topology. If the tissue is periodic the work is also minimised
with respect to the size of the periodic box.

threshold. Once the work has been minimised with respect to vertex positions, the tissue

is allowed to undergo T1 transitions as described in Fig. 2.4. After all allowed T1 tran-

sitions have taken place the work function is again minimised. The tissue is mechanically

equilibrated once all forces vanish and there are no more T1 transitions possible. The suc-

cession of tissue states in the course of the minimisation can be seen as a pseudo-dynamics

of the relaxation process, but for the analysis of the real dynamical properties of the tissue

deformation the introduction of a viscous friction would be required. In this thesis we are

only studying properties of mechanically equilibrated shapes of tissues. Whether a tissue

is in equilibrium does not depend on the detailed structure of the friction, and therefore

friction is not discussed in detail here. Note however that the choice of the dynamics or the

chosen minimisation algorithm might influence the local minimum that is reached from a

certain initial tissue configuration.

In Appendix B.1.3 it is described how random and ordered configurations of periodic

tissues have been derived in this thesis as starting configurations simulations. Fig. 2.7

shows two such initial random configurations of epithelia which were obtained by Voronoi



32 2. 3D description of epithelial mechanics

tessellations around randomly placed points in a plane and on a sphere. The images on

the right show the mechanical equilibrium configurations of the corresponding epithelium

that were obtained by minimising the work function with respect to vertex positions and

with respect to the tissue topology. In the flat case shown in Fig. 2.7b, the work function

has also been minimised with respect to the size of the periodic box.

2.1.6 The limit of the Apical 3D Vertex Model

The Apical 3D Vertex Model is a limit of the full 3D Vertex Model, where the tissue

is completely described by the geometry of the apical tissue surface, and corresponds

therefore to the 3D apical vertex models discussed in Section 1.5.1. The model is used

in this thesis to represent tissues where all tensions are generated in the apical plane of

the tissue, and the basal geometry of the cells does not play a role. This assumption

is reasonable for tissues, where the cells are not completely closed or are not able to

control their volume. Consequently the cells cannot generate a volume pressure but instead

experience an apical area elasticity. All forces are acting on the apical vertices, and the

work function is completely determined by the apical vertex positions:

W 2D =
∑
α∈C

K2D
α

2
(Aα − A0

α)2 +
∑
λ∈L

Λλlλ + TextA
tot. (2.26)

Cells are denoted by α, and their apical area Aα is assumed to behave elastically around

their preferred area A0
α with area elasticity K2D

α . Lines λ have a length lλ and experi-

ence a tension Λλ. This mechanical model has been used in Chapter 4 as a model for

the Drosophila blastula, and describes for instance an epithelium where the cells are not

completely closed or where all forces are generated along the apical cell surfaces.
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2.2 Coarse grained properties of hexagonally packed

epithelia

2.2.1 A coarse grained description of flat epithelia

In the following we will describe a planar epithelium as a 2D elastic material and derive

its coarse grained mechanical properties such as the generated tension and the bulk and

shear modulus as a function of the mechanical parameters of the 3D Vertex Model.

If a tissue is in mechanical equilibrium all internally generated stresses σ0
ij are balanced by

external tensions σeij:

σ0
ij = σeij. (2.27)

The stress generated inside the tissue depends on the locally averaged in-plane deformation

tensor of the cells u0
ij and the initial tissue height h0. The stress response of the tissue to

deviations from the initial in-plane deformation u0
ij → u0

ij + δuij is used to characterise the

mechanical tissue properties.

The change in the exerted stress described by the 2D stress tensor σij − σ0
ij = δσij relates

to the 2D deformation tensor δuij according to Hooke’s Law for isotropic materials:

δσij = 2µ(δuij) + λ(δull)δij. (2.28)

The two material parameters λ and µ, respectively, are the so called first and second Lamé

parameter. The strain tensor can be split into the sum of a diagonal matrix and its traceless

part, representing separately the change in average cell area and the change in average cell

elongation:

δuij =
1

2
(δull)δij +

(
(δuij)−

1

2
(δull)δij

)
(2.29)

=
1

2
(δull)δij + (δM̃ij). (2.30)

Then the stress can be rewritten

δσij = 2µ(δM̃ij) + (λ+ µ)(δull)δij, (2.31)

where µ represents the tissues shear modulus and the bulk modulus is consequently given

by K = λ + µ. If the tissue is under isotropic external stresses σeij = Textδij, also the
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internal stresses have to be isotropic in equilibrium and the cells are in average in an

isotropic shape that is described by the cell density ρ denoting the number of cells per unit

area. The internally generated isotropic tension ζ only depends on this cell density:

σ0
ij = ζ(ρ)δij. (2.32)

From Eq. 2.27 follows that the equilibrium cell density ρ0 is defined by ζ(ρ0) = Text, and

the resulting stresses for small deformations around the equilibrium cell density read

σij = ζ(ρ0)δij + 2µ(δM̃ij) +K(δull)δij. (2.33)

A pure bulk deformation Bij(u) of the tissue with scaling factor u is defined through

δuij = Bij(u) = uδij. (2.34)

A pure shear deformation is a deformation under which the area of the cells is conserved

but the cells are stretched. The pure shear deformation Sij(ε) with shearing factor ε can

be written as

δuij = Sij(ε) =

(
ε 0

0 (1 + ε)−1 − 1

)
(2.35)

=

(
ε 0

0 −ε+O(ε2)

)
. (2.36)

Using these definitions the bulk and shear modulus can then be obtained by separately

considering pure bulk and shear deformations and obtaining the tissue’s response for small

deformations u and ε. For an isotropic material the elastic moduli read:

K = lim
u→0

∂σxx
∂u

= lim
u→0

∂σyy
∂u

(2.37)

µ = lim
ε→0

1

2

∂σxx
∂ε

= lim
ε→0
−1

2

∂σyy
∂ε

. (2.38)

2.2.2 Coarse grained mechanical material properties of epithelia

In the following we will derive the coarse grained elastic moduli of an epithelium and the

effective tension it exerts on its surrounding, starting from the mechanical stresses consid-

ered in the 3D Vertex Model. We assume that the cells are mechanically homogeneous and

arranged in a regular hexagonal packing. The tissue is enclosed in a periodic box aligned
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along the x- and y-axis with respective extensions Lx and Ly, and it is described by the

in-plane shape of the cells through the cell elongation tensor uij, and the cell height h.

The chosen parametrisation of the flat periodic cell arrangement is shown in Fig. 2.8.

Figure 2.8: The regular hexagonal tissue is parametrised by the cells’ in-plane extension
lx and ly, as well as by the tissue height h, it is periodic and consists of nx × ny cells.

The epithelium consists of nx cells along the x-direction and ny cells along the y-direction.

The apical and basal surfaces of the cells are identical hexagons and are described by their

in-plane extensions lx and ly, and the cells’ apical to basal distance is given by their height

h. The epithelium Ω has a total volume of Lx × Ly × h and the 2D cell density reads

ρ = (nxny)/(LxLy). All cells are assumed to be equal in their apical and basal surface

areas (Aa = Ab = A), in their lateral interface areas Al, their perimeters (Pa = Pb = P )

and their volume V . These geometrical quantities are given in terms of the parametrisation

(lx, ly, h) in Appendix B.2.1.

Active tension generated by a homogenous piece of flat tissue

If all cells α in a piece of tissue Ω have the same apical surface tension Ta, basal surface

tension Tb, lateral surface tension Tl, apical line tension Λa, basal line tension Λb, preferred

volume V0 and volume elasticity K3D, the work function of a piece of tissue Ω can be

rewritten by:

WΩ =
∑
α∈Ω

(K3D

2
(V α − V0)2 + TaA

α
a + TbA

α
b +

Tl
2
Aαl +

Λa

2
Pα
a +

Λb

2
Pα
a

)
− TextLxLy

(2.39)

= nxny

(K3D

2
(Ah− V0)2 + TsA+

Tl
2
Al +

Λs

2
Ps

)
− TextnxnyA, (2.40)
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where we introduced the sum of the apical and basal surface tensions Ts = Ta + Tb and

line tensions Λs = Λa + Λb.

We assume that the forces acting on the cell height h are balanced and consequently

∂W

∂h
= 0, (2.41)

which couples the tissue height to the cell density ρ:

h(ρ) = V0ρ− 31/4
√

2
Tl
K3D

ρ3/2. (2.42)

Note that h(ρ) < 0 for ρ >
(

V0K3D

31/4
√

2Tl

)2

, implying that beyond this critical cell density the

cells collapse to zero volume. In the limit of infinite cellular bulk modulus K3D → ∞ the

height will vary to ensure that the cells are always at their preferred volume.

The active tension exerted by a piece of tissue with cell density ρ and cell height h reads:

ζ(ρ, h) ≡ ∂W

∂ρ−1
(ρ, h) (2.43)

= Ts +
31/4

√
2

√
ρ(Λs + Tlh) +K3Dh

2(
1

ρ
− V0

h
). (2.44)

Now we assume that the cell height is equilibrated and impose relation 2.42, to find the

following tension exerted by a piece of tissue, which only depends on the average cell

density:

ζ(ρ) = Ts +
31/4

√
2

√
ρ(Λs − TlV0ρ) +

√
3
T 2
l

K3D

ρ2 (2.45)

Force balance requires that internal tensions are balanced by the external tension and for

the equilibrium cell density ρ0 it reads:

ζ(ρ0, h(ρ0)) = Text. (2.46)

Eq. 2.46 will be used in Section 2.2.3 to derive the equilibrium aspect ratios of flat

epithelia. The graphs in Fig. 2.9 show how the active tension exerted by the tissue

depends on the cell density. For infinite bulk modulus (K3D → ∞) there exists a unique

cell density ρ∗ where the tension exerted by the tissue is zero; for a cell density above the

threshold the tissue exerts compressive stresses, whereas the tissue is tensile for lower cell

densities (Fig. 2.9a). If the cell volume is not constrained, the behaviour becomes more



2.2 Coarse grained properties of hexagonally packed epithelia 37

(a) Constrained cell volume (b) Finite volume elasticity

Figure 2.9: Normalised isotropic tension ζ/Tl generated in the hexagonally packed tension

as a function of the normalised cell density ρV
2/3

0

complex and a second (unstable) equilibrium configuration ρc arises. The resulting force

balance conditions and equilibrium cell densities for given external tensions will be studied

in Section 2.2.3.

Bulk and shear modulus

The bulk modulus of a tissue describes its resistance to the change in cell density, whereas

its shear modulus describes its resistance to shear deformations at constant cell density

(cf. Section 2.2.1). To obtain these quantities we again assume that the cell height h is

always equilibrated and therefore h can be replaced by the expression given in Eq. 2.42.

Then the stresses in x− and y− direction as a function of the cell sizes read respectively:

σxx(lx, ly) = Ts +
1

ly

(
Λs −

√
3

2

TlV0

l2x

)
(2.47)

σyy(lx, ly) = Ts +
1

lx

(√
3

2
Λs −

TlV0

l2y

)
. (2.48)

A pure bulk deformation corresponds to an isotropic expansion in x− and y−direction,

and for the parametrisation given in Fig. 2.8 it is equivalent to an isotropic rescaling of

the cells lx → lx(1 + u), ly → ly(1 + u), as shown in Fig. 2.10a. The 2D bulk modulus of

the tissue according to Eq. 2.37 is given by

K =
31/4

23/2

√
ρ(3ρTlV0 − Λs)− 2

√
3
T 2
l

K3D

ρ2 . (2.49)
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The pure 2D shear deformation of a tissue is equivalent to the rescaling lx → (1 + ε)lx and

ly → (1 − ε)ly, as is shown in Fig. 2.10b. Using definition Eq. 2.38 we find the following

expression for the 2D shear modulus of the hexagonally packed tissue:

µ =
31/4

23/2

√
ρ (Λs + TlV0ρ)−

√
3

2

T 2
l

K3D

ρ2 (2.50)

In Section 2.4.1 we obtain the numerical values of the shear modulus in simulations for

the hexagonally packed and for the disordered tissue, and compare them to the analytical

prediction given above.

(a) Pure bulk deformation with scaling factor u. Note that the scaling induces a change in tissue
height.

(b) Pure shear deformation with shearing factor ε

Figure 2.10: Bulk and shear deformations of a regular, hexagonally packed tissue.



2.2 Coarse grained properties of hexagonally packed epithelia 39

Bending modulus and preferred curvature

In the previous sections we analysed the properties of flat epithelia, assuming them to be

periodic and hexagonally packed. In this section we maintain the focus on hexagonally

packed tissues, but will allow for the tissue to curve. This way we derive the effective

bending modulus of the epithelial tissues, as well as their preferred curvature arising from

differences in the apical and basal tensions.

The work function for a piece of tissue Ω is given in Eq. 2.39. If again all cells are

assumed to have the same shape, the corresponding energy density w = WΩρ/NΩ can be

written:

w = ρ

(
K3D

2
(V − V 0)2 + T aAa + T bAb +

T l

2
Al +

Λa

2
P a +

Λb

2
P b

)
. (2.51)

with NΩ the number of cells within the piece of tissue Ω. We restrict ourselves to cells with

apical and basal surfaces being regular hexagons as shown in Fig. 2.11. The energy density

w(h,Ra, Rb) can then be reexpressed in terms of the cell height h and apical and basal radii

Ra and Rb. The apical, basal and lateral surface areas, apical and basal perimeters and cell

volume can indeed be related to h, Ra, Rb through the relations given in Appendix B.2.2.

We consider the limit K3D → ∞ where the cell volume V is constrained to be equal to

the reference volume V0. The energy density w(ρ, C, V0) can then be written in terms of

the cell density ρ, the total tissue curvature C and the reference volume V0 through the

following change of variables (Fig. 2.11):

ρ =
4

(
√
Aa +

√
Ab)2

=
8

3
√

3(Ra +Rb)2
(2.52)

C =
4(Rb −Ra)

(Ra +Rb)h
(2.53)

V0 =

√
3

2
h
(
R2
a +R2

b +RaRb

)
. (2.54)

For small curvature C, the energy density w can be expanded in powers of curvature:

w(ρ, C, V0) ' w0(ρ, V0)− κC0C +
κ

2
C2, (2.55)

where the bending modulus of the tissue κ and the preferred curvature C0 are functions of

ρ, V0 and the tissue line and surface tensions. The effective bending modulus of the tissue
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κ is therefore given by

κ =
∂2w

∂C2

∣∣∣∣
C=0

(2.56)

κ =
T a + T b

8
V 2

0 ρ
2 +

√
2

8 · 33/4
TlV0
√
ρ
(√

3− V 2
0 ρ

3
)

(2.57)

and the preferred curvature of the tissue reads

C0 =
V0 ρ

2κ

(
(Ta − Tb) +

31/4

√
2

√
ρ(Λa − Λb)

)
(2.58)

Note that κ can become negative for sufficiently large ρ, in which case the cells prefer

to wedge and the flat tissue shape ceases to be a stable equilibrium anymore even in the

case of identical apical and basal tensions. In Sections 2.4.2 and 2.4.3 we determine the

preferred curvature and the bending modulus of the cells in simulations and compare the

results to the expressions given above.

Figure 2.11: A flat and a curved simple epithelium, shown in 3D and in cross section.
The cells are described by their apical and basal radii Ra and Rb and their height. The
local curvature is given by C = 4

h
Rb−Ra
Ra+Rb

.
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2.2.3 Cell shape control in flat epithelia

In this section we discuss the equilibrium shapes of a mechanically homogeneous, hexag-

onally packed tissue under isotropic external tension, which are determined by the force

balance Eq. 2.45. The epithelium is enforced to be flat, and therefore only the sum of the

apical and basal tension matters (Ts = Ta+Tb,Λs = Λa+Λb). It is characterised completely

by its cell height h and cell density ρ, and we introduce the dimensionless aspect ratio of

the cells β = h
√
ρ describing the cell shape. If β ' 1, the cells are cuboidal whereas β � 1

corresponds to a columnar cell shape, and β � 1 to squamous cells (Fig. 2.12c). For a

given cell density ρc the force acting on the cell density is given by

fρ(ρc) = −∂W
∂ρ
|ρc . (2.59)

Assuming that the height h is equilibrated, which is enforced by condition 2.42, and using

the work function 2.9, the expression simplifies to

fρ(ρc) =
√

3
T 2
l

K3D

+
Ts − Text

ρ2
c

+
31/4

√
2

Λs

ρ
3/2
c

− 31/4

√
2

TlV0√
ρc
. (2.60)

If we assume a friction that acts on the cell density ρ with a friction coefficient α(ρ) > 0,

we obtain the dynamical equation for the change of the cell density over time

α(ρc)
dρ

dt
|ρc = fρ(ρc). (2.61)

A stable equilibrium ρ0 of the dynamical system is characterised by

fρ(ρ0) = 0 and (∂ρfρ)(ρ0) < 0. (2.62)

Limit of infinite bulk modulus

If the bulk modulus dominates (K3D → ∞) and the cells have a constrained cell volume,

the equilibria and their stability depend on two normalised parameters: the difference

of internal and external surface tension (Text − Ts)/Tl, and the normalised line tensions,

Λs/(TlV
1/3

0 ) respectively. The corresponding parameter space shown in Fig. 2.12a disso-

ciates into three qualitatively distinct regions:

1. Text ≤ Ts - blue region

one stable equilibrium (ρ0, h0)
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2. Text ∈ [Ts, Ts +
√

2

3 4√3

Λs
3√V0

) - yellow region

in addition to the stable equilibrium (ρ0, h0), there exist initial cell densities for which

the tissue stretches to infinity (ρ→ 0, h→ 0)

3. Text ≥ Ts +
√

2

3 4√3

Λs
3√V0

- green region

the tissue stretches to infinity (ρ→ 0, h→ 0) regardless of the initial cell density

In the case of additional zero line tensions Λs = 0, an equilibrium only exists if Text < Ts
and the corresponding equilibrium aspect ratio is the ratio of the external and the internal

tensions:

β0 =

√
2

31/4

Ts − Text
Tl

. (2.63)

If on the other hand Text = Ts the epithelium’s equilibrium aspect ratio is given by

β0 =

(
Λs

TlV
1/3

0

)3/2

. (2.64)

In Fig. 2.12b the equilibrium cell density ρ0 is plotted for fixed line tension as function of

the externally applied tension.

Limit of zero line tensions

Now we consider the case of an epithelium with zero line tensions Λs = 0 and finite

bulk modulus K3D < ∞, which leaves the two dimensionless parameters describing the

volume elasticity K3D/(TlV
4/3

0 ) and the difference of external and internal surface tensions

(Text−Ts)/Tl. Fig. 2.13a shows the phase space of equilibrium tissue shapes as a function

of these two normalised parameters. There exist three qualitatively distinct parameter

regions:

1. Text < Ts − 9
√

3
1024

(K3D)3V 4
0

T 2
l

- green region

the cells collapse to a point (h→ 0, ρ→ 0)

2. Text ∈ [Ts − 9
√

3
1024

(K3D)3V 4
0

T 2
l

, Ts) - yellow region

in addition to a stable equilibrium (ρ0, h0), there exist initial cell densities for which

the cells collapse to a point (h→ 0, ρ→ 0)

3. Text > Ts - blue region

depending on the initial cell density the tissue stretches to infinity (ρ → 0) or the

cells collapse to a point (h→ 0, ρ→ 0)
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stable
equilibrium

stable equilibrium or
in�nite stretching

in�nite stretching

(a) Phase space of equilibria for con-
strained volume (no free parameters).

(b) Equilibrium cell density as a function of the ex-

ternal tension for fixed line tension, for Λs = TlV
1/3

0

(c) Plot of the cells’ aspect ratio as a function of the ratio of lateral surface tension Tl and total
surface tension Ts = Ta+Tb in the absence of external tension, for infinite bulk modulus and zero
line tensions (Eq. 2.63). If the lateral surface tension is weak the cells take a columnar shape,
and if it is high they become squamous.

Figure 2.12: If the cells volume is fixed the equilibrium cell shapes are a function of the
external tension exerted on the tissue and the line tensions generated in the cells. If the
external tension weaker than the apical and basal surface tensions, the tissue will always
converge to a unique equilibrium shape.

In the absence of line tension the epithelium therefore only has a stable equilibrium shape

for Text ∈ [Ts− 9
√

3
1024

(K3D)3V 4
0

T 2
l

, Ts). The dependency of the equilibrium cell density ρ0 on the

external tensions Text in these limits is shown in Fig. 2.13b.

Fig. 2.12c shows how the cells’ aspect ratio depends on the forces generated along the
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apical surfaces of the cells, if the cells have a fixed volume and line tensions are zero.

stretching or
collapse

collapse

equilibrium 
or collapse

(a) Full phase space of equilibria for
zero line tension.

(b) Equilibrium cell density as a function of the ex-

ternal tension for Tl = K3DV
4/3

0 .

Figure 2.13: Equilibrium shapes of a hexagonally packed epithelium with zero line ten-
sions Λs = 0
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2.2.4 Stability of flat epithelia subject to external tension or

compression

In this section we study the stability of flat epithelia that are attached by springs to an

underlying ECM and subjected to external compression. We focus on the limit of infinite

bulk modulus K3D → ∞, and thus the remaining relevant parameters are the sum of the

apical and basal surface tensions Ts and the line tension Λs, the lateral surface tension

Tl, the preferred cell volume V0, the external tension Text and the attachment stiffness of

the vertices kv. After normalisation with units of length V
1/3

0 and energy this leaves four

dimensionless parameters that can be varied independently.

To discuss the stability of the flat tissue we proceed as follows: we use a continuum theory

of epithelial tissues to derive a stability criterion of an epithelium under compression, which

depends on the effective bending modulus and attachment stiffness. These coarse grained

mechanical parameters are then reexpressed with 3D Vertex Model parameters as derived

in Section 2.2.2, to derive the tissue’s stability as a function of the tensions generated

inside the cells.

In Chapter 3 we develop a continuum description of epithelia as a thin elastic sheet

with a bending modulus κ that is attached to the underlying ECM with an attachment

stiffness k and under an effective tension ζ. In Section 3.2.2 we show that the following

criterion ensures the stability for a homogeneous tissue:

κq4 + ζq2 + k > 0 (2.65)

where q are Fourier modes describing the deformation and q = |q|. In the limit of an

infinite epithelium the criterion for a tissue to be stable becomes

ζ > −2
√
κ(ρ)k(ρ), (2.66)

which puts an upper bound on the compression a tissue can experience before it starts to

buckle. The coupling to the ECM in the 3D Vertex Model is represented by springs with

spring constant kv. In a regular hexagonal packing there are six vertices per cell, each

of them being shared between three neighbouring cells, which gives rise to the following

coarse grained parameter k of ECM attachment:

k =
6

3

kv
Aα

= 2kvρ. (2.67)

In Eq. 2.57 we gave the effective bending modulus κ of the epithelium and showed that it



46 2. 3D description of epithelial mechanics

can be negative for certain choices of mechanical parameters, in which case the cells start

to wedge spontaneously. Therefore another criterion for the flat tissue to be stable reads:

κ(ρ0) =
T s

8
V 2

0 ρ
2
0 +

√
2

8 · 33/4
TlV0
√
ρ0

(√
3− V 2

0 ρ
3
0

)
> 0 (2.68)

The equilibrium cell density ρ0 depends on the external tension Text, which thereby also

controls the bending modulus. If this criterion is fulfilled, the stability of the epithelium

with respect to buckling is ensured by:

Text > −2
√
κ(ρ0)k(ρ0) (2.69)

This shows that a nonzero attachment stiffness to the ECM is required to ensure the

stability of an infinite tissue under compression.

Furthermore, we showed in section 2.2.3, that a stable equilibrium cell density only exists

under the condition

Text < Ts +

√
2

3 4
√

3

Λs

3
√
V0

. (2.70)

Taken together, the criteria 2.68, 2.69 and 2.70 ensure the existence and the stability of

the flat equilibrium shape. The Figs. 2.14a-2.14c show stability diagrams of flat epithelia

for different sets of mechanical parameters, as a function of the normalised external tension

Text/Tl. These parameter spaces have up to four distinct regimes configurations, depending

on the stability criteria that are violated. In the white region the tissue is stretched to

infinite size, since criterion 2.70 is violated. In the green region of the parameter space,

all criteria 2.68-2.70 are fulfilled and there exists a stable flat configuration - a typical

configuration is shown in the right column in Fig. 2.14d. In the beige region the tissue has a

positive bending modulus at equilibrium cell density, but it buckles due to the compression.

The tissue start to undergo long wavelength undulations as shown in the second column in

Fig. 2.14d. In the blue region the tissue is even further compressed, the bending modulus

becomes negative and the cells wedge spontaneously. The undulations in this case occur

on the length scale of cells, as shown in the first column of Fig. 2.14d. Fig. 2.14c shows

the stability phase plot of the tissue as a function of the external compression Text and the

line tension Λs for fixed k/Tl = 0.1 and (Ta + Tb)/Tl = 1. In Section 2.4.5 we determine

the stability of a hexagonal packed tissue in simulations numerically and show that the

analytical predicted buckling transitions closely match the ones in simulations.
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0.3

0.4

(a) Λs = 0, Ts = 1
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0.1

0.2

0.3

0.4

(b) Λs/(TlV
1/3

0 ) = 2.2, Ts = 1

- 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5 2.0
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0.5

1.0

1.5

2.0

2.5
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(c) kv/Tl = 0.1, Ts/Tl = 1

(d) Exemplary tissue shapes for the three distinct regions of the parameter space.

Figure 2.14: Stability of a flat tissue under compression. Figures 2.14a - 2.14c show
phase plots for different fixed parameters which are given below the respective figure, and
Fig. 2.14d shows examples of the different regions in 3D Vertex Model simulations.
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2.2.5 Coarse grained material properties of epithelia in the Api-

cal 3D Vertex Model

In this section the generated tensions, the bulk and shear modulus and the equilibrium

shapes of homogeneous, hexagonally packed epithelium in the Apical 3D Vertex Model are

derived. As defined in Section 2.1.6 cells in this purely apical model have zero volume

elasticity, no basal and lateral tensions, but do experience apical surface elasticity. The

internal work function for a tissue consisting of N identical cells reads accordingly:

W = N

(
K2D

2
(A− A0)2 +

Λ

2
P

)
. (2.71)

where each cell has the apical area A and perimeter P , all line tensions are given by Λ and

the area elasticity is set by the preferred area A0 and the cellular bulk modulus K2D.

The tension generated by such a tissue, and its bulk and shear modulus can be derived

analogously to Section 2.2.2. In this section only the respective expressions will be given,

and for the details of the calculations and illustrations please refer to Appendix B.2.3.

The isotropic tension, the bulk modulus and the shear modulus of the tissue read:

ζ(ρ) = K2D

(
1

ρ
− A0

)
+

31/4

√
2

Λ
√
ρ

K(ρ) =
K2D

ρ
− 31/4

23/2
Λ
√
ρ

µ(ρ) =
31/4

23/2
Λ
√
ρ

(2.72)

(2.73)

(2.74)

An equilibrium cell density ρ0 is defined by Text = ζ(ρ0) and only exists if the tissue is

under sufficiently strong tension

Text >
37/6

25/2
(K2DΛ2)1/3 −K2DA0, (2.75)

and otherwise the tissue collapses towards an infinite cell density. The corresponding phase

space for the existence of an equilibrium cell density in terms of the only two dimensionless

parameters Text/(K2DA0) and Λ/(K2DA
3/2
0 ) is shown in the Appendix in Fig. B.4.

The given results are used to relate Apical 3D Vertex Model simulations and the emergent

continuum theory in Chapter 4.
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2.3 Simple epithelia on a sphere

In the previous sections we focussed on the analysis of the mechanical properties and sta-

bility of flat tissues. In what follows, we study the properties of an epithelium surrounding

a cavity, which is filled with a compressible fluid. The cavity has a volume V y, a preferred

volume V y
0 and the pressure generated by the fluid is given by P y = Ky(V y

0 − V y). An

illustration is shown in Fig. 2.15.

The effective internal work function of an epithelium (given in Eq. 2.9), and the external

contribution We coming from the pressure generated inside the circular cavity, read as a

sum over all cells C:

We =
Ky

2
(V y − V y

0 )2 (2.76)

Wi =
α∑(Kc

2
(V α − V0)2 + TaA

α
a + TbA

α
b +

Tl
2
Aαl +

Λa

2
Pα
a +

Λb

2
Pα
b

)
(2.77)

W = Wi +We, (2.78)

where K3D denotes the bulk modulus and V0 the reference volume of all cells, Ta and Tb
denote the apical and basal surface tensions, Λa and Λb denote the apical and basal line

tensions. Aαa and Aαb denote the apical and basal cell surfaces, and Pα
a and Pα

b denote the

respective perimeters of cell α.

Let the radius of the sphere be R and the tissue be made of Nc cells: then the curvature of

the tissue is small on the length scale of cells, if
√
ρR� 1. Since

√
ρR ∼

√
Nc this is true for

large cell numbers, in which the local equilibrium tissue shapes can be close to a hexagonal

packing of cells. In this limit of large cell numbers the apical and basal cell surfaces of

the cells can consequently be approximated by identical regular hexagons. Therefore, the

only degrees of freedom left are the height of the tissue h and the radius of the sphere

R, as shown schematically in Fig. 2.15a. Furthermore we assume that the cell height

relaxes quickly compared to the tissue radius, which gives an explicit relation h = h(R)

and makes the sphere’s radius R the only degree of freedom in the following considerations.

Henceforth the equilibrium sphere radius Req is determined by force balance

dWi

dR

∣∣
Req

= −dWe

dR

∣∣
Req
. (2.79)

This equation can be solved numerically to obtain the unique equilibrium radius of the

sphere and the resulting equilibrium height of the cells as a function of the mechanical

parameters and the number of cells forming the tissue.

In Section 2.2.2 we obtained the tissue’s effective surface tension γ, bending modulus κ
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and preferred curvature C0 by expanding the work function around its equilibrium in area

and curvature. The application of this continuum approach yields the expansion of the

internal work function:

dWi

dR
' ∂Wi

∂A

dA

dR
+
∂Wi

∂C

dC

dR
(2.80)

' γ
dA

dR
+ κ(C − C0)A

dC

dR
. (2.81)

By rewriting the force balance condition 2.79 one obtains the following approximate crite-

rion for the equilibrium tissue radius Req:

P (Req) '
2γ(Req)

Req

+
2κ(Req)

R2
eq

(Req −
2

Req

), (2.82)

where γ, κ and C0 depend on the cell density (cf. Section 2.2.2) and are therefore

functions of R. Relation 2.82 hence shows how the law of Laplace has to be corrected in

order to account for the additional bending stiffness and the preferred curvature of the

tissue.

In Section 2.4.6 we show for different sets of parameters how the radius of the sphere

depends on the difference and the sum in apical and basal tensions in the epithelium, and

compare the analytical predictions to the results obtained in 3D Vertex Model simulations.

(a) Cross section and parametrisation. (b) 3D view on the epithelium.

Figure 2.15: A full 3D epithelium packed on a sphere. The mean radius of the tissue is
R and the average height of the cells is h.
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Spherical epithelia in the Apical 3D Vertex Model

Now we study the case of a Apical 3D Vertex Model epithelium confined on a sphere,

analogously to the previous study of full 3D epithelia. The tissue surrounds a weakly

compressible fluid that exerts a pressure onto the epithelium, and if the tissue is under

tension the spherical equilibrium shape can be parameterised by the radius of the sphere

R. An illustration for such a tissue made of 5000 cells is shown in Fig. 2.16, and its work

function which is a sum of the internal work given in Eq. 2.26 and the contribution from

the compressible fluid reads

W =
∑
α

(K2D

2
(Aα − A0)2 +

Λ

2
Pα
)

+
Ky

2
(V y − V y

0 )2. (2.83)

The enclosed fluid has the volume V y, a reference volume V y
0 and an effective bulk modulus

Ky. All cells have the same preferred apical area A0 and area elasticity K2D, and all lines

experience the tension Λ. The area and perimeter of cell α are given by Aα and Pα respec-

tively.All cells are approximated to have the same regular hexagonal shape, which makes

the work a function of the sphere’s radius only. Force balance equations for the equilibrium

radius Req gives rise to the Law of Laplace, where the surface tension ζ generated by the

tissue has to be balanced by the fluid pressure P y:

ζ(ρ(Req)) =
P y(Req)Req

2
. (2.84)

The isotropic tension generated by the tissue ζ(ρ) was given in Eq. B.26. In Section 2.4.6

we compare equilibrium radii obtained from simulations and from Eq. 2.84 for different

mechanical parameter sets.

(a) Tissue cross section. (b) 3D view of the epithelium.

Figure 2.16: An epithelium in the Apical 3D Vertex Model made of 5000 cells packed on
a sphere, with R being the radius of the epithelium.
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2.4 Numerical study of mechanically homogeneous tis-

sues

The focus of the previous sections were equilibrium shapes, tissue stability and emergent

coarse grained mechanical properties of tissues as a function of the tensions generated in-

side the tissue. In present section the same parameters will be measured numerically in

simulations, and compared to the analytical predictions. This serves as a consistency check

for the simulations and the continuum model, and shows that the applied coarse graining

and the approximations were appropriate.

2.4.1 Shear and bulk moduli

Eq. 2.49 gives the effective bulk modulus of an epithelium represented in the 3D Vertex

Model, which was derived by assuming a regular hexagonal packing of the cells. In this

section we obtain the bulk modulus numerically in simulations for different mechanical

parameters, and compare the results for regular and disordered starting configurations

of epithelia to the analytical predictions. To quantify the bulk modulus in simulations,

the tissue was relaxed to its equilibrium shape from 1) randomly obtained and 2) regular

starting configurations. Then the periodic box was isotropically scaled by (Lx, Ly) →
(uLx, uLy), which is shown for the case of a regular packing in Fig. 2.10a. The size of the

periodic box was fixed, and the energy was minimised with respect to the vertex positions.

Finally change in the stresses imposed by the tissue on the periodic box δσxx and δσyy were

obtained as described in Appendix B.1.2 and the numerical bulk modulus was calculated

for small u through:

K =
1

4u
(δσxx + δσyy) . (2.85)

Fig. 2.17 shows a plot of the numerically obtained bulk moduli of ordered and disordered

tissues for varying lateral surface tension Tl and external tension Text. The graphs show

the very good agreement between analytical prediction of the bulk modulus derived from

assuming a hexagonal packing, and the numerically obtained bulk modulus. In the case of

the regular hexagonal packing, the relative difference is negligible and within the numerical

precision, but also in the case of the disordered tissue the maximal relative difference

between simulations and predictions was still less than 1%. These results suggest that the

analytically derived bulk modulus is a very good approximation even for unordered tissues.
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(a) Regular hexagonal tissue
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(b) Randomly initialised tissue

Figure 2.17: Numerically obtained bulk modulus K2D in simulations for varying external
tension Text and lateral surface tension Tl, starting from an initially hexagonally packed
tissue and a disordered tissue made of 256 cell. The results compare very well to the
analytical prediction given in Eq. 2.49, which was obtained for a hexagonally packed
tissue. Remaining parameters are given in B.1(A) for the left plots, and in (B) for the
right plots).

As described in Section 2.2.2, the shear modulus describes the linear response an ep-

ithelium to a shear deformation. In simulations it was measured directly by rescaling the

periodic by a shear deformation ε box as shown in Section 2.10b, relaxing the epithelium

to the equilibrium vertex positions for fixed system size and measuring the resulting change

in stresses δσxx and δσyy along the boundaries of the periodic box. Then the corresponding

mean shear modulus µ was obtained through

µ =
1

2ε
(δσxx − δσyy) , (2.86)

for an infinitesimal scaling factor ε. This way we obtained the numerical shear moduli for
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regular and hexagonal tissues consisting of 16 × 16 cells and compared the values to the

analytical prediction given in Eq. 2.50. The graphs in Fig. 2.18 show the shear modulus

obtained analytically and in simulations for varying external tension Text and for varying

lateral surface tension Tl.

In the case of the regular hexagonal packing the relative maximal difference between an-

alytical predictions and simulations was on the order of 10−5, well within the limits of

numerical precision. This shows the consistency of the analytical derivation of the shear

modulus of a hexagonally packed tissue and the implementation of the simulation tool.

The shear modulus for relaxed tissues which started from a disordered configuration was

found to be constantly higher than the predicted shear modulus for a regular tissue, but

as in the numerical estimate for the bulk modulus also here the maximal error was smaller

than 1%, indicating that the given expression for the purely hexagonal tissue is also a good

approximation of the shear modulus of disordered tissues.
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Figure 2.18: Numerically derived shear moduli in simulations for varying external tension
Text and lateral surface tension Tl, starting from an initially hexagonally packed tissue and
a disordered tissue made of 256 cells. The results compare very well to the analytical pre-
diction given in Eq. 2.50, which was obtained for a hexagonally packed tissue. Remaining
parameters are given in B.1(C) (left plots) and (D) (right plots).
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2.4.2 Preferred curvature

The analytical calculations in Section 2.2.2 predicted a spontaneous curvature C0 of the

epithelium (given in Eq. 2.58) that result from differences in the apical and the basal

tensions.

We tested the predictions in simulations by removing the periodic boundary conditions

and analysing the equilibrium shape of the cells as a function of the difference in surface

tensions Ta − Tb and of the line tensions Λa − Λb. In the case of hexagonal cells, the total

local curvature as a function of the apical and basal areas, Aαa and Aαb respectively, and

the cell height hα can be written

Cα =
4

hα

√
Aαa −

√
Aαa√

Aαa +
√
Aαb

, (2.87)

which is used in the following as an approximation of the cells’ curvature in simulations.

The resulting curvature of a single hexagonal cell as a function of differences in apical and

basal tensions are shown in the plots in Fig. 2.19. We found a good agreement between

simulations and the predicted curvature 2.58 for small differences in apical and basal ten-

sions, whereas increasing nonlinearities lead to increasing deviation between prediction and

simulations for larger tension differences.
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Figure 2.19: Effective tissue curvature as a function of difference in apical and basal
line and surface tensions, compared to the prediction 2.58 obtained by the linear theory.
Remaining parameters are given in B.1(E) for the left plot, and in (F) for the right plot.
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2.4.3 Bending modulus

In Section 2.2.2 we analytically obtained the bending modulus of hexagonal cells, and in

this section we compare this value to the numerically obtained bending modulus from 3D

Vertex Model simulations. The bending modulus of a cell in simulations can be numeri-

cally obtained by measuring the mechanical response to the application of an infinitesimal

curvature of a cell. The obtained normalised bending moduli are shown in Fig. 2.20 for

varying lateral surface tension in Fig. 2.20a and for varying apical and basal line tension

in Fig. 2.20b.

The analytical predictions and the results from simulations match very well in the numeri-

cal limits, as shown in Fig. 2.20. The graphs show also the transition point κ = 0, beyond

which the symmetric cells become internally unstable and take spontaneously a wedged

shape, for the case of κ < 0.
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Figure 2.20: Normalised bending modulus κ obtained in simulations as a function of the
mechanical parameters, compared to analytical predictions. Remaining parameters are
given in B.1(G) for the graph in 2.20a and in (H) for the graph in 2.20b.
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2.4.4 Equilibrium aspect ratios

In this section we compare equilibrium shapes of flat epithelia in the 3D Vertex Model

to the analytical predictions given in Section 2.2.3. Simulations were run starting from

two periodic tissues made of 256 cells of which one was regularly packed, and the other

was created by a 2D Voronoi tessellation as described in Appendix B.1.3. In Fig. 2.21

the resulting average cell densities and cell heights are shown together with the analytical

prediction for varying total line and surface tensions. In the case of the regular hexagonal

packing, the maximal relative difference between analytical predictions and simulations

was on the order of 10−7, meaning that the analytical and numerical predictions match

very well in the limit of the numerical precision. In the case where tissues were randomly

initialised tessellation, they did not converge to a perfectly hexagonally packed equilibrium

shape but a slightly unordered equilibrium shape. One example of an equilibrium tissue

configuration obtained from a random initial tissue configuration is shown in the right

column of Fig. 2.21. Also in the case of the imperfect packing the simulated equilibrium

cell shapes were close to the analytically predicted values.
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Figure 2.21: Normalised height and cell density of equilibrium tissue shapes in 3D Vertex
Model simulations, as a function of the sum of the apical and basal surface and line tensions,
Ts = Ta+Tb and Λs = Λa+Λb respectively. The simulations were run starting from a regular
packing (left column) and from an irregular packing (right) and show a good agreement of
simulations and analytical predictions. Remaining parameters are given in B.1(I) for the
upper plots, and in (J) for the lower plots.
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2.4.5 Epithelial buckling in simulations

In Section 2.2.4 we analysed the stability of a hexagonally packed epithelium under

external compression and showed that there exist two fundamentally different regions of

instability. In one region of instability the intrinsic bending modulus of the cells became

negative κ < 0, and in the one the tissue buckled to reduce its total area on the cost of

local bending despite the positive bending modulus. In this section we will numerically test

the stability of a tissue in simulations depending on the normalised attachment stiffness

kv/(TlV
−2/3

0 ) and the external tension Text/Tl, and compare the results to the analytical

predictions. Simulations were run starting from a tissue consisting of 32 × 32 = 1024

cells. The tissue was relaxed to its equilibrium cell density, a small Gaussian noise was

applied to all vertex positions and then the tissue was relaxed to the next equilibrium.

To identify buckling, the variance of the z-coordinates of all apical vertices was used as

a measure for the deviation of the tissue from the flat shape. For decreasing negative

tension Text (i.e. for increasing compression) a sharp transition occurred in the deviation

from the flat tissue shape when the variance jumped from the order of 10−5V
2/3

0 to being

greater than 10−3V
2/3

0 which corresponds to a slight curvature of the tissue. Therefore, in

simulations a tissue was classified as ’buckled’ if this variance was greater than 10−3V
2/3

0

and stable otherwise. The results are shown in Fig. 2.22, which at the same time shows the

analytically obtained buckling threshold taking into account the finite size of the periodic

tissue. To take into account the finite size of the tissue the analytical criterion (given in

2.66) has been applied for all allowed modes q ∈ {(i 2π
Lx
, j 2π

Lx
)|i, j = 1, 2, ...} with q = |q|,

and Lx and Ly, with Lx > Ly are the sizes of the periodic box:

κ > 0 and (2.88)

κq4 + ζq2 + k > 0 (2.89)

Fig. 2.22 shows the good agreement between the analytical prediction and the buckling

transition observed in simulations. An exemplary simulation result for a stable tissue is

shown in the third column of Fig. 2.14d; the second row of the same figure shows a typical

example for a slightly buckled tissue.
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Figure 2.22: Stability diagram of a hexagonally packed tissue of 32× 32 = 1024 cells in
simulation under external compression as a function of the normalised attachment stiffness
kv/(TlV

−2/3
0 ) and external tension Text/Tl. The remaining mechanical parameters are spec-

ified in B.1(K). The comparison to the analytical predictions of buckling of a thin sheet
attached to the underlying substrate with the same coarse grained elastic properties show
a great agreement of the two approaches.

2.4.6 Spherical epithelia

In Section 2.3 we introduced the spherical arrangement of an epithelium confined on a

sphere, with pressure acting on the basal side of the tissue facing the cavity. Here we

present equilibrium tissue shapes obtained in 3D Vertex Model simulations for varying

mechanical parameters and we compare the results to the analytical approximations given

in Section 2.3. To show the influence of the difference between apical and basal surface

tensions on the equilibrium radius of the resulting sphere, we fix all other parameters and

vary only the relative difference in surface tension Ta−Tb
Ta+Tb

at fixed total surface tensions

Ta + Tb. The total tension generated in the tissue remains constant, but the difference in

apical and basal tensions induces a non-zero preferred curvature of the tissue, which in

turn is reflected in a difference of the tissue radii.

In Fig. 2.23 we show the tissue radius obtained in simulations, together with the predictions

derived in Section 2.3. The simulations were started from a random tissue configuration

of 2000 cells on a sphere, which was generated as explained in Appendix B.1.3 and then

relaxed to the equilibrium shape. It is noteworthy that in all shown simulations the overall

tissue shape remained close to a sphere, justifying the description of the geometry by the

tissue radius R only. The normalisation constant R0 was chosen to be the preferred radius
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of the cavity, i.e. R0 =
(

3
4π
V y

0

)1/3
.

The analytical prediction I was obtained by numerically solving the full force balance

Eq. 2.79 for R, and analytical prediction II was obtained by solving the linearised version

using the preferred curvature and the bending modulus given in Eq. 2.82. The curves show

that an increase in total surface tension Ta + Tb decreases the preferred radius. Also they

demonstrate that an increase in apical surface tension relatively to the basal surface tension

induces a preferred curvature opposite to the curvature of the sphere and hence tends to

decrease the curvature of the tissue. The good agreement between the obtained equilibrium

shapes and the solution of force balance equation 2.79 justify the approximations made in

the coarse grained theory.
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Figure 2.23: Simulations of a 3D tissue surrounding a compressible volume, where the
normalised equilibrium radii of the epithelium is plotted as a function of the difference
Ta−Tb
Ta+Tb

in apical and basal tensions generated inside the tissue for fixed total surface tensions
Ta +Tb. The analytical predictions I and II have been derived from the numerical solution
of the force balance Eq. 2.79, and the linearised theory 2.82, respectively. The remaining
mechanical parameters are specified in the appendix in B.3.2.
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The Apical 3D Vertex Model on a sphere

Here we simulate the equilibrium shapes of a tissue in the Apical 3D Vertex Model (c.f.

section 2.1.6) surrounding a compressible fluid, and compare them to the analytical con-

siderations discussed in Section 2.3. An analytical prediction for the tissue’s radius can

be obtained by numerically solving the analytical force balance equation 2.84 for R, which

makes the assumption of a regular hexagonal packing of cells on the sphere. Mechanical

parameters are the compressibility of the volume surrounded by the sphere, which is de-

scribed by the preferred volume V y
0 (with preferred radius Ry

0 = 3
√

3/(4π)V y
0 )) and the bulk

elasticity Ky. All bonds experience a tension Λ and the cells exhibit a volume elasticity

K2D around their preferred area A0, and the respective work function is given in Eq. 2.83.

Simulations were run starting from a random packing of 5,000 cells on a sphere and relaxed

to the next equilibrium for the given set of parameters. The resulting equilibrium radius

of the sphere in simulations is plotted in Fig. 2.24. These plots show the good match

between the results of the coarse grained theory and simulations, confirming that also the

simulated tissue obeys the Law of Laplace.

This test taken together with all previously discussed tests in Section 2.4 indicate a very

good quantitative agreement between the introduced coarse grained theory and the results

obtained in 3D Vertex Model simulations.
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Figure 2.24: Normalised equilibrium radius of a 5000 cell epithelium in the Apical 3D
Vertex Model, as a function of the preferred cell area A0 and the line tension Λ. The results
have been obtained in simulations in the 3D Vertex Model and analytically from Eq. 2.84
by assuming a hexagonal packing. The remaining mechanical parameters are specified in
the appendix in B.3.2.
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2.5 Summary

In present chapter we introduced a novel 3D Vertex Model for simple epithelia where cells

are represented as laterally connected polyhedrons, and the tissue is completely described

by apical and basal networks of vertices in 3D. Mechanically we took into account active

tensions acting along all lines and surfaces of the tissue, and volume elasticity of the cells.

We showed how epithelia can be basally coupled to a basement membrane, and external

tensions can be applied on the tissue to account for possible constraints imposed by the

environment. We then derived how the tissue’s aspect ratio depends on the mechanical

tissue parameters. Thereby we present a possible mechanism for cells to control their

shape, which allows them to transit between columnar, cuboidal and squamous shapes by

regulating the active tensions along different interfaces.

We then showed how to map the 3D Vertex Model to a continuum theory, where the

tissue is represented by a 2D thin elastic sheet with bulk modulus, shear modulus, bending

modulus and preferred curvature. Assuming a hexagonal packing we then derived all these

coarse grained mechanical properties as a function of the mechanical stresses generated in-

side the cells. To confirm the validity of the coarse graining we tested analytical predictions

in simulations, by numerically probing the tissues around their mechanical equilibria. We

found a very good agreement between predictions and simulations even in the case of topo-

logically disordered tissues, showing the consistency of the 3D Vertex Model simulations

and the continuum theory in the studied limits.

We derived analytical stability criteria for flat tissues under compression, and found two

interesting regimes where the tissue’s equilibrium shapes are not flat. In one case, the tissue

has a positive bending modulus and buckles due to the applied compression, giving rise to

a buckling on long length scales. Interestingly, we also identified a second regime where

the cells intrinsically lose their stability and individually undergo a transition towards a

wedge shape. Again simulations confirmed the analytical predictions. Finally we studied

the case of simple epithelia confined on a sphere surrounding a compressible fluid. We

showed how equilibrium tissue shapes in this setup depend on the mechanical parameters,

and a comparison of analytical predictions and simulations showed a match within high

accuracy.

The 3D Vertex Model together with the introduced continuous framework provide a

powerful tool to understand the shapes of epithelia as a consequence of the forces generated

inside and acting onto the tissue. We will use the two approaches and their interplay in

the Chapters 3 and 4 to gain a deeper understanding of two fundamental morphogenetic

processes.



CHAPTER 3

Cyst Formation in the wing imaginal

disc of Drosophila

Epithelial cysts are clusters of cells that bulge out and eventually form a closed cavity

underneath the epithelium. In humans, 85% of cancers are of epithelial origin and human

epithelial tumours are often characterised by the presence of cysts, which have been pro-

posed to progress into metastatic stages of cancer [59, 60, 61, 62, 63]. While the presence

of cysts has severe consequences for epithelial tissue function, the cellular and physical

mechanisms that promote the emergence of these structures are poorly understood. In the

following chapter we combine experiments and physical modelling of epithelial mechanics

to elucidate the mechanical drivers of cyst formation in the Drosophila imaginal wing disc.

The work presented in this chapter been done in close collaboration with Christina

Bielmeier and Anne Classen from the Ludwig-Maximilians-Universität München and all

experimental images shown in the chapter have been acquired by members of the Classen

group. The results are published in [64].

We start by discussing the experimental observations obtained by our collaborators in

Section 3.1. We show that the formation of cysts in the wing imaginal disc is a very

general response to fate misspecification of patches of cells inside the epithelium (3.1.1).

Then we demonstrate that also small wildtype clones can be induced to form cysts (3.1.2),

that actin accumulates at the smoothening interface between differently fated cells (3.1.3

& 3.1.4), and that the shape of the clone depends on the number of misspecified cells in

the clone (3.1.4).

Based on these observations we suggest a mechanism that drives cyst formation by a

contractile boundary compressing misspecified clones, and we use a combination of 3D

Vertex Model simulations and the continuum theory to study the detailed implications

of the contractile boundary mechanism. Using a continuum theory for simple epithelia

we show that cyst formation can be understood as a buckling instability of misspecified

clones that experience size dependent compression due to the boundary contraction (3.2.2).

The conclusion that cyst formation should be restricted to an intermediate clone size was

confirmed in experiments. Then we use 3D Vertex Model simulations to go beyond the

linear stability analysis, and show that the experimental measurements of clone shapes as
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a function of the clone size can be explained by a three-fold increase in apical line and

lateral surface tension around misspecified clones (3.2.3). In Section 3.2.4 we relate the

parameters of the 3D Vertex Model and the continuum model, and show the predictive

consistency of the two models.

Simulations in the 3D Vertex Model suggested that the pressure exerted by the contractile

boundary would also lead to the apical extrusion of small clones. And indeed, a statistical

analysis revealed that small clones are removed from the tissue early after they are induced

to take a different fate (3.3.1). Therefore we show how the contractile boundary mechanism

could act as a potential tumour suppression mechanism by removing cells and small patches

of cells expressing misspecified or even cancerous transcription factors (3.3.2).

3.1 The biology of cyst formation

One of the best studied epithelial tissues is the wing imaginal disc in the Drosophila larva,

which develops into the full grown wing of the adult fly (cf. Section 1.2). As shown in

Fig. 3.1, the wing disc is a two-sided simple epithelium that is topologically equivalent

to a sphere. One side of the epithelium consists of elongated, columnar cells whereas the

other side is the so called peripodial membrane and consists of stretched out, squamous

cells. In this chapter we will focus on the columnar pouch region of the epithelium, which

is divided by folds from the neighbouring hinge region as shown in Fig. 3.1.

Figure 3.1: The wing imaginal disc of the Drosophila and its structure. Images show
actin staining and have been taken by C. Bielmeier.
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3.1.1 Cell fate misspecification and cyst formation

Posterior sex combs (Psc) and Suppressor of zeste 2 (Su(z)2 ) are redundantly acting

tumour suppressor genes in the Drosophila wing disc. They encode Polycomb proteins,

which epigenetically silence cell-fate-specifying transcription factors during development

and restrain proliferation by repressing JAK/STAT and Notch signaling. Our collaborators

used a mitotic recombination system (FLP/FRT) coupled to a heat-shock promoter, to

trigger the mosaic repression of both Psc and Su(z)2 (in short Psc-Su(z)2 ) in randomly

distributed cells of the imaginal wing disc, by a temporal temperature increase of the

fly larvas to 37◦ C. The misspecified cells (i.e. the cells without Psc-Su(z)2 expression)

were additionally labelled by GFP, and their number was determined by the length of the

heat-shock. We found that 30 h after mitotic recombination, clones where Psc-Su(z)2 was

repressed retracted from the apical surface of wing imaginal discs and by 54 h almost all

clones formed cyst-like structures locating to the basal side of the epithelium (Fig. 3.2).

By 102 h, many Psc-Su(z)2 clones completely resolved contacts with wild type cells and

gave rise to persistent, proliferating cysts encapsulating an apical lumen (data not shown).

The transcription factor Psc-Su(z)2 represses a variety of other cell fate specifying tran-

scription factors, such as forkhead (fkh), lozenge (lz ) and Abdominal-B (AbdB). The over-

expression of any of these genes alone in patches of cells led to the formation of cysts. We

wanted to test whether cysts are specific to transcription factors silenced by Psc/Su(z)2, or

to cell-fate misspecification in general. Through extensive genetical experiments, our col-

laborators revealed that cyst formation in imaginal discs represents a very general response

to cell fate misspecification or perturbed signalling pathways and is driven by differences

between misspecified cells and surrounding wild type cells. Table 3.1 summarises all

transcription factors and signaling pathways which have been found to give rise to cysts

if misexpressed (in the case of transcription factors) or impaired (in the case of signaling

pathways).

Whereas for instance Psc-Su(z)2 is homogeneously expressed throughout in the wing

disc, some transcription factors, such as homothorax (hth) or vestigial (vg), display a

typical expression pattern. While the repression of Psc-Su(z)2 led to the formation of cysts

everywhere in the wing disc, the overexpression of hth and vg led to the position-dependent

formation of cysts in regions where their expression is normally low (data shown in [64]).

Similarly, the perturbation of signalling pathways induced cyst formation depending on

the local endogenous activation of the signalling pathway (Fig. 3.3).

Collectively, these observations emphasise that cyst formation in imaginal discs repre-

sents a surprisingly general response to cell-fate misspecification and is driven by relative

fate differences between misspecified and surrounding wild-type cells
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Figure 3.2: The genes Psc-Su(z)2 and forkhead (fkh) are not normally expressed in the
wing disc, and overexpression leads to the formation of cysts regardless of the clone’s initial
position (A,B). The clones start out from a flat state (C,C’,G,G’) and successively retract
from the apical surface of the tissue, forming cysts in the course of the next 30 to 100 hours
(D-E,H-I).

Figure 3.3: Aberrantly induced Hh signalling (through ci) and of JAK-STAT signaling
(through hop) led to the formation of cysts only in regions, where the signalling pathways
are not endogenously active.
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TF/signaling pathway position dependent tissue tested in

Psc-Su(z)2 No WID this study, [65, 66]

eyeless No WID this study

forkhead No WID, EID this study

Abdominal-B No WID,EID this study

lozenge No WID this study

Ultrabithorax No WID, EID this study

homothorax Yes WID this study, [67, 68]

vestigial Yes WID, EID this study, [67, 69, 70]

Ras Yes WID this study, [61, 71, 72]

wg signaling (arm) Yes WID this study, [70, 73]

Hh signaling (ci) Yes WID this study, [72]

Dpp signaling (tkv) Yes WID this study, [74, 75, 70]

JAK-STAT signaling (hop) Yes WID this study

Table 3.1: Overview of transcription factors or signaling pathways, which were found to
give rise to cysts if overexpressed or impaired, showing the generality of cystic phenotypes
as response to clonal misregulation. The first column shows the misexpressed transcription
factors (TF) and the compromised signaling pathways, which were found to give rise to
cysts. The second column indicates if the clonal phenotype depends on the position in the
disc. In all cases of positional dependency the transcription factor is normally expressed
in a pattern inside the disc, or the endogeneous activation of the signaling pathway varies
across the disc, and the disruption of these pattern led to the formation of cysts. The
’tissue’ column indicates if cyst formation was observed in the wing imaginal disc (WID),
the eye imaginal disc (EID), or both. The last column indicates in which studies cyst-like
phenotypes have been observed; the table also includes studies in which we noticed cyst-
related clone phenotypes that were not described as cysts in the study itself, such as round
clones, smooth clones, apical retraction or invagination. Note that the overview might not
be complete but includes only studies that came to our attention.

3.1.2 Inverse cysts

To observe cell-autonomous shape changes in misspecified cells more directly, our collabo-

rators generated wing discs where the majority of cells ectopically expressed the cell fate

specifying transcription factors, by increasing the duration of the heat shock. While, for

instance, fkh-expressing cells retained their columnar shape early after the heat shock,

Fig. 3.4A shows that instead the remaining small clusters of wild type cells retracted from

the apical surface and formed cysts. Cyst formation of small wild-type clones was also

induced by tissue wide overexpression of AbdB, Ubx or ey (Fig. 3.4B). Similarly, broad

activation of the Shh/Hh-signalling pathway also gave rise to wild type cysts, however,



68 3. Cyst Formation in the wing imaginal disc of Drosophila

only in the posterior compartment where Shh/Hh-signalling is normally low. These obser-

vations indicate that cyst formation is not driven cell-autonomously by misspecified cells,

but is driven instead by locally generated forces arising due to the apposition of differently

fated cell populations.

Figure 3.4: If most of the cells in the imaginal wing disc ectopically express transcription
factors, such as fkh or ey, the wild type clones surrounded by misspecified cells bulge out
and form (inverse) cysts.

3.1.3 Actin accumulation at clone boundaries

Following the previous observations we hypothesised that cysts form through a mechanism

acting at the interface between misspecified cell and wild type cell (MWI), where the dif-

ference between the cells can be read out. Our collaborators thus performed an extensive

analysis of adhesion and cytoskeletal markers at cellular interfaces during cyst formation.

At early stages of cyst formation, levels of cell adhesion or cell polarity markers at inter-

faces between fkh-expressing or Psc-Su(z)2 mutant cells were not consistently different to

interfaces between wild type cells. We did, however, find that actin enriched at apical sur-

faces in invaginating misspecified cells as well as in invaginating wild type cells, likely as a

result of apical constriction during early stages of cyst formation (compare Figures 3.2H

and 3.4).

We next focused on the microscopical properties of the interfaces between two differently

fated cell populations and compared them to the interfaces between wild-type and mutant

cells. Fig. 3.5b shows that at early and late stages of cyst formation, the average actin

intensity between wild-type cells and between fkh-expressing cells is similar. Previous
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studies have described apical actin cable formation around misspecified cell populations

[76, 37, 77]. In agreement with these observations, Figs. 3.5a and 3.5b show that actin

levels at MWI adherens junctions of fkh-expressing clones were in average increased by

30%, even when a subpopulation of clones had not yet undergone invagination at 30 h after

clone induction. Importantly, we found that in addition, filamentous actin was enriched

by 40% at the entire basolateral MWI interface. We observed a similar enrichment of actin

at the basolateral MWI of ey-expressing clones. Fig. 3.5b also shows that increased actin

enrichment at the MWI persisted until the late stages of cyst formation (54 h after clone

induction) when cysts were fully invaginated. Importantly, actin also enriched at MWI

interfaces when wild type cells formed cysts (data not shown). From these observation

we drew the conclusion that actin enrichment at the MWI, rather than cell-autonomous

changes in misspecified or wild type cells, is a defining feature of early and late stages of cyst

formation. Note that the resolution of a confocal microscope did not allow to distinguish, if

the increase in actin intensity at the MWI was due to an increase in actin inside the cortices

of the wildtype cells, the cortices of misspecified cells or to similar extents in both cortices.

(a) Actin accumulation at lateral and
apical MWIs. (b) Quantification revealed significant increase

Figure 3.5: Lateral and apical regions of MWI are significantly enriched in actin compared
to the interfaces between the cells of same type. In the late stages of cyst formation (54
hours after the heat-shock), the intensity of actin at interfaces between misspecified cells
(mis/mis) is also increased, whereas it is comparable to the wild type interfaces (wt/wt)
at the early stages of cyst formation.
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3.1.4 Clone shape quantifications

Misspecified clones are circular

Concurrent with enrichment in contractile components, we observed significant changes

to the shape of interfaces between misspecified and wild type cells. We observed the

smoothening of apical interfaces at the level of adherens junction between misspecified cells

and wild type cells. While this shortening of common adherens junction between differently

fated cells has been described in [78, 79, 73], and a general increase in apical smoothness

of misspecified cell populations was quantified in [80], we observed that misspecified clones

specifically exhibited smoothing and minimisation of basolateral interface contact area

(Fig. 3.6). To quantify the smoothness of clonal interfaces we defined a measure C for the

basal circularity, which relates the basal area A and circumference P of a clone:

C = 4π
Area

Perimeter2 . (3.1)

For a basally perfectly circular clone this measure gives C = 1, and it decreases for increas-

ing deviation from the round shape. Fig. 3.6 shows that the basolateral clone circularity

increases from 0.32 in wild type clones to 0.76 in fkh-expressing clones already early after

clone induction. We detected a similar increase in basolateral circularity for clones of wild

type cells surrounded by misspecified cells. These results suggest that contractile changes

to both apical and basolateral MWI surfaces result in minimisation of the entire lateral

contact area between wild type and misspecified cells.

increased
interface
contractility

misspeci�ed cells
actin cortex

Figure 3.6: Small clones surrounded by cells with a different fate showed a significatn
increase in circularity of their basal interface compared to the circularity of GFP-marked
wild type clones.
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Clone deformation and cyst formation depends on clone size

To study how the clone shape depends on the number of cells in the clone, we quantified

the shapes of 79 fkh-expressing clones ranging in size from 2 to 120 cells at early stages

of cyst formation. In two perpendicular cross-sections of each clone we measured apical

and basal clone width wa and wb, as well as apical and basal deformation away from the

apical and basal surface of the surrounding tissue, ua and ub (Fig. 3.7a). As shown in

Fig. 3.7, apical indentation ua and basal deformation ub are maximal for intermediate

clone sizes (Nc ∼ 70 cells), and minimal for either small or very large clones. Similarly, the

relative difference between apical and basal widths wa and wb was maximal for intermediate

clone sizes, which corresponds to strongly wedge-shaped cysts (Fig. 3.7). The data shows

that small and large clones do not undergo strong apical and basal deformations but still

experience MWI smoothing.

(a) Parametrisation of the cyst shape
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Figure 3.7: Clonal shapes as a function of the number of cells in the clone. The graphs
show the binned averages and the standard error of the mean. Whereas clones of interme-
diate size show a distinct formation of cysts, small and large clones barely invaginate.
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3.2 The mechanics of cyst formation

3.2.1 The boundary contraction mechanism

The mechanical origins of cyst formation are not yet well established, but different mecha-

nisms have been proposed to be the drivers. The formation of cyst-like structures in homo-

geneous epithelia was proposed to result from epithelial growth in a confined space and the

consequent buckling of the tissue [81, 82]. To test if increased rates of cell proliferation are

necessary for cyst initiation our collaborators reduced proliferation inside the misspecified

clones (by interfering with the growth-promoting function of the Hippo/Salvador/Warts

pathway). These experiments showed that cysts still formed when proliferation was im-

peded, indicating that the out-of-plane deformation of Psc-Su(z)2 mutant clones is not a

result of spatial constraints imposed on proliferating Psc-Su(z)2 cells by surrounding wild

type cells.

Monier and colleagues showed in [47] that epithelial folding in the Drosophila imaginal leg

disc is driven by forces generated in apoptotic cells. However, the additional overexpression

of apoptosis-inhibitors (p35, dIAP1 ) did also not prevent the clones from forming cysts,

suggesting that apoptosis is not required for the formation of cysts.

Dahmann and colleagues hypothesised in [70, 83] that a cell-autonomous shape change in

the misspecified cells, from columnar to cuboidal, could be responsible for the formation

of cysts. Therefore, we aimed to understand if cyst formation can be understood as a

cell-autonomous process reflecting altered mechanical cell properties resulting from ectopic

target gene activation. Whereas this effect could indeed explain cyst formation, one would

expect that it cannot account for the invagination of wildtype cells in the inverse experi-

ments following a long heat shock as shown in Section 3.1.2. To test this hypothesis, our

collaborators artificially induced a bulk effect by overexpressing Rho-Kinase mosaically in

patches of cells, and found that indeed small clones formed cyst-like structures. However,

if small wild type clones were surrounded by misspecified cells the wild type cells did not

invaginate but tower over the misspecified cells (data shown in [64]).

In the previous sections we gave different experimentally supported arguments that the

MWI experiences an increased contractility along its apical bonds and lateral surfaces. We

showed that Actin, Myosin and Moesin are increasingly recruited to the MWI (3.1.3), which

correlates well with the increase of their baso-lateral smoothness (3.1.4). Furthermore we

showed that also wildtype clones surrounded by misspecified were induced to form cysts,

suggesting a mechanism that acts mainly at the MWI, as opposed to a cell-autonomous

mechanism where mechanical properties of the misspecified cells are changed.
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Consequently, the mechanism we propose for the formation of cysts is that the increase

in contractile machinery at the apical and lateral interfaces between differently fated cells

leads to an increase in contractile tension. This tension induces a compression of the mis-

specified clone and the consequent buckling and cyst formation. If this boundary effect is

sufficient to induce the formation of cysts, from symmetry arguments it follows immediately

that it can also recapitulate the formation of inverse cysts.

In the next sections we will use 3D Vertex Model simulations and the continuum theory

introduced in Chapter 2 to show conceptually and quantitatively how the contractile

boundary effect can induce the formation of cysts in the observed range of clone sizes.

3.2.2 Cysts are buckled clones

In the previous section we suggested that the formation of cysts is driven by a mechanical

boundary effect acting along the interfaces between cells of different fate. In this section

we use the continuum theory introduced in Section 2.2.1 to qualitatively show why this

boundary mechanism leads to the predominant deformation of intermediately sized clones,

which was experimentally quantified in Section 3.1.4.

In a nutshell, this dependency of clone shape and clone size is due to two size dependent

effects which are illustrated in Fig. 3.8.

clone size

(a) The pressure exerted by the contractile
boundary clone decreases with increasing clone
size, as predicted by the law of Laplace.

clone size

co
m
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(b) The critical boundary pressure that is re-
quired to buckle a clamped clone decreases
with increasing clone size.

Figure 3.8: The stability of clones subjected to a contractile boundary is determined
by two opposing size-dependent contributions. While the compression due to the bound-
ary contraction decreases with increasing clone size, the pressure required to induce the
buckling increases, hence allowing for different regions of stability.

First, the pressure Pb exerted on the clone by the contractile boundary with tension Λ
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decreases with increasing clone size R following the law of Laplace and we find:

Pb =
Λ

R
. (3.2)

Therefore large clones do not feel sufficient boundary compression, and will not be induced

to buckle (Fig. 3.8a). The second effect is the size dependency of the buckling pressure of

clamped elastic plate: the bigger the piece of material with clamped boundaries, the weaker

the required buckling pressure. Therefore, in this simplified view there exist two antithetic

contributions that together determine the buckling thresholds of the clone (Fig. 3.8).

In the following sections we will study the buckling transitions of a 2D elastic material

subject to a contractile boundary and derive the regions of instability that correspond to

the regions of cyst formation in the biological experiments.

Parametrisation and free energy

The epithelium is modelled as a thin elastic layer under compression, which is coupled by

elastic links to an underlying solid substrate. Its shape is geometrically represented by the

position of the mid-plane through the tissue given by a function h(x, y), that describes the

tissue’s z-position in the Monge gauge parametrisation:

X = x ex + y ey + h(x, y)ez. (3.3)

A sketch of the parametrisation is shown in Fig. 3.9.

100 µm

Figure 3.9: The tissue is represented by its mid plane in the Monge gauge. Then an
extended free Helfrich energy F of the tissue shapes is defined, which takes into account
the bending stiffness, external tension and the ECM attachment.

The tissue has a bending rigidity κ which penalises deviation of the local curvature C

from the preferred curvature C0. In addition, an elastic material with elastic modulus k
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is assumed to connect the tissue to the underlying ECM, represented as a flat surface at

position h = 0, as shown in Fig. 3.9. The corresponding mechanical work for a region of

tissue S then reads

W =

∫
S

(
κ

2
C2 − κC0C + w0(ρ) +

k

2
h2

)
dA, (3.4)

where C = 1
R1

+ 1
R2

with R1 and R2 the two principal radii the mean curvature, ρ is the cell

density, and w0 is the mechanical energy density at zero curvature. In the limit of weak

bending |∇h| � 1, the work function reads up to the second order in height deviation

W ≈ W0 +

∫
S

(
γ

(∇h)2

2
+
κ

2
(∆h)2 − κC0∆h+

k

2
h2

)
dxdy (3.5)

where we have introduced the surface tension γ = d(ρ−1w0)/d(ρ−1).

The stability of a flat, homogeneous tissue under compression

In this section we use the continuum model of an epithelium introduced above, to obtain

the buckling threshold for a flat, homogeneous tissue under compression.Introducing an

effective friction coefficient α > 0, the dynamical equation for the tissue height can be

derived by taking the functional derivative of Equation 3.5 with respect to the height

function h(., .), which represents the tissue in the Monge gauge:

α∂th(x, t) = −κ∆2h(x, t) + γ∆h− kh(x, t) (3.6)

with ∆ = ∂2
x + ∂2

y the Laplacian operator. If the tissue is periodic on Ω = [0, Lx]× [0, Ly],

the Fourier transform of h(x, t) on Ω is defined as:

h̃(q, t) =

∫
Ω

h(x, t)ei〈q,x〉dx (3.7)

for q ∈ Ω̃ = {2πi
Lx

: i = 1, 2, ...} × {2πj
Ly

: j = 1, 2, ...}. Note that in general, as the tissue

is made of discrete cells, the discrete modes in Ω̃ are furthermore restricted by the length

scale of the cells, but the effect can be neglected for tissues with large numbers of cells.

For |q| = q, the dynamic equation (3.6) can be written in Fourier space:

α∂th̃(q, t) = (−κq4 − γq2 − k)h̃(q, t), (3.8)
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and consequently the criterion for mode q to be stable is

κq4 + γq2 + k > 0. (3.9)

In the limit of an infinite tissue with Lx → ∞ and Ly → ∞ the excitement for all q (i.e.

for all q > 0) is allowed, such that an infinite tissue is stable only if the compression does

not exceed γ∗ which is given by

γ∗ = −2
√
κk. (3.10)

If the tissue is compressed (i.e. γ > 0) and the compression exceeds γ∗ > γ, the infinite flat

tissue ceases to be stable and buckles. This implies that a large tissue under compression is

never stable, unless the tissue is connected to the ECM with a nonzero attachment stiffness

k > 0. Using this formalism, the stability of an epithelium represented in the 3D Vertex

Model with an external compression has been derived in Section 2.2.4 as a function of

the microscopic parameters.

A clamped circular tissue region subjected to a contractile boundary

Now we consider a stable tissue under a global tension γ0, that is we require γ0 > −2
√
κk

according to Eq. 3.10. A circular region of the tissue is surrounded by a contractile

boundary exerting a line tension Λ, as shown in Fig. 3.10.

The resulting compression γc of the circular region with radius R is the sum of the external

compression acting on the tissue and the compression due to the boundary effect:

γc = γ0 −
Λ

R
. (3.11)

Now the mechanical properties of the tissue and the clones are set, and we study the

stability of the clones as a function of the mechanical parameters and the clone size.

The clone is represented by a circular region of tissue, which is clamped at its boundary

and the dynamic equation for the shape of the tissue region is given by Eq. 3.6 with

γ = γc. In Appendix C.1 we derive an exact stability criterion for clones as a function of

the mechanical parameters and clone size. Fig. 3.10 shows a resulting phase plot of stability

of a clone for varying clone radius R and applied boundary tension Λ. Furthermore, we

obtain asymptotical expressions for the lower bound and the upper bound of buckling,
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Rmin and Rmax respectively, for small ECM attachment stiffness:

Rmin = j2
11κ/Λ (3.12)

Rmax =
Λ

γ0 + 2
√
kκ
, (3.13)

with j11 ≈ 3.832 the first root of the Bessel function J1. Our theory therefore approximately

predicts buckling of flat clones of radius R, only if Rmin < R < Rmax. This is well

in agreement with the experimental observations shown in Fig. 3.7, because the theory

predicts correctly that buckling occurs only on an intermediate clone size range, whereas

small and large clones remain stable despite the compression of the contractile boundary.

This supports the idea that the formation of cysts can be understood as the buckling of

a piece of flat tissue due to the compression generated by a contractile boundary around

misspecified clones.

buckling instability

Line tension
at boundary

radius

Figure 3.10: Stability of a circular clone with radius R, surrounded by a contractile
boundary with line tension Λ. The blue region shows the unstable regime where the clones
buckle. Rmin and Rmax denote the asymptotical critical radii of clone of buckling for small
attachment stiffness k.
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3.2.3 Cyst formation in the 3D Vertex Model

We showed in the previous section that cyst formation can be understood qualitatively as

the buckling of a clamped circular piece of tissue compressed by a contractile boundary.

While this analysis showed that clone formation should be restricted to clones of interme-

diate size, it could only predict the onset of the instability but not the final clone shape

resulting from the contractile boundary mechanism. In this section we use 3D Vertex Model

simulations to study the equilibrium shapes of compressed clones, and to identify param-

eter regimes that quantitatively replicate the experimentally observed size-shape relation

of cysts, which was shown in Section 3.1.4.

The wing disc epithelium is represented using the full 3D Vertex Model of simple epithelia,

which was introduced and studied in Chapter 2. We start by estimating mechanical

parameters of the homogeneous wildtype tissue, by taking into consideration the shape of

the wildtype epithelium and we use an experimental setup where the ECM is removed, to

estimate the level of compression exerted by the ECM. Then we study the response of clones

of different sizes to the contractile boundary effect, in order to match the simulations to

the quantifications shown in Fig. 3.7. Thereby we numerically show within the framework

of our model that a 3-fold increase in apical line tension and lateral surface tension along

the MWI is sufficient to quantitatively capture the observed cyst shapes in experiments.

Constraints on model parameters of the wild type tissue

To represent the wing imaginal disc in the 3D Vertex Model, a number of mechanical

parameters have to be determined. If we assume that the cells volume is always constant

at V 0, this leaves eight free parameters: the preferred cell volume V0, the apical, basal and

lateral surface tensions (Ta, Tb and Tl respectively), the apical and basal line tensions (Λa

and Λb respectively), the external compression (Text) and the stiffness of the attachment

to the ECM (kv). Normalisation leaves six independent mechanical parameters to describe

the mechanics of ths wild type tissue. In the following we will show how the replication

of aspect ratios of wild type tissues in simulations adds two additional constraints on

the mechanical parameters, leaving four free mechanical parameters that can be varied

independently.

By measuring the average heights and apical areas of cell, we determined the average wild

type aspect ratio of the wild type pouch to be βwt ' 16.2. The ECM possibly exerts an

external tension Text on the tissue, and to estimate this tension the relaxation of the tissue

after the removal of the ECM was analysed. Fig. 3.11 shows how the treatment of the

wing discs with collagenase led to significant ECM removal. In about 10 minutes after the
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removal, the pouch flattened significantly and the cells changed their aspect ratio (table in

Fig. (3.11) without significantly changing their volume. These measurements are in good

agreement with the values given by Pastor-Pareja and colleagues in [28]. Assuming that

collagenase application only removes the external mechanical constraints imposed by the

ECM and does not alter the mechanical properties of the cells, the wing disc expansion

following ECM removal indicates that in the wildtype case the ECM exerts compressive

stresses onto the epithelium. We showed in Section 2.2.2 how in the 3D Vertex Model
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Figure 3.11: Application of collagenase led to the dissolution of the ECM, and to the
consequent expansion of the tissue. The tissues’ aspect ratios before and after treatment
allow to infer information about the mechanical parameters of the wildtype tissue and the
level of compression exerted by the ECM.

the tension generated by a tissue depends on its mechanical parameters and its cell density

(Eq. 2.45). For the tissue to be in mechanical equilibrium this tension has to be balanced

by the external tension exerted onto the tissue. If the cells’ volume is fixed at V0 the tissue’s

aspect ratio is related to its cell density by ρ = (β/V0)2/3. Denoting Twtext the compression

due to the ECM, and T collext the remaining compression after collagenase treatment and

removal of the ECM, the following two constraints enforce the right aspect ratios of the

mechanically equilibrated tissue:

Twtext = ζ((βwt/V0)2/3) (3.14)

T collext = ζ((βcoll/V0)2/3). (3.15)

Replacing the experimental values of βwt and βcoll in equalities 3.14 and 3.15, and assuming

that T collext = 0 imposes two algebraic constraints on the model parameters that ensure that

the wildtype tissue in simulations has the same aspect ratios as in experiments. These

constraints will be used in the following section
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Contractile bulk versus contractile boundary effect

In Section 3.2.1 we gave general arguments why the contractile boundary effect could

induce the formation of cysts and inverse cysts, whereas the contractile bulk mechanism

fails to account for the invagination of wildtype cells. To test this hypothesis, we used

mechanical tissue parameters fulfilling the relations 3.14 and 3.15 above to recapitulate the

wildtype tissue shape, and simulated separately the influence of the bulk and the boundary

effects on a patch of 20 cells. Mutant clones have been accounted for in simulations by

introducing a set of cells different from wild type cells. An initial clone consisting of

N mutant cells is created by assigning mutant properties to the N cells closest to an

arbitrarily selected point in the relaxed homogeneous tissue; one initial clone configuration

is exemplarily shown in Fig. 3.12A.

To account for the boundary effect the apical line and lateral surface tensions between

the two different cell types have been increased, whereas all other mechanical properties

of the mutant cells remain unchanged. In the cell autonomous bulk effect, on the other

hand, only the lateral surface tensions of the misspecified cells have been increased.

The patch of cells shown in Fig. 3.12A shows an initial equilibrium tissue configuration

where all cells are mechanically identical. Fig.s 3.12B&C show the deformation of small

wildtype and mutant clones induced by the contractile bulk effect, that is by a threefold

increase in lateral tension in all mutant cells. The figure shows that small clones indent

apically and form cyst-like structures, resulting from the lateral constriction of cells in-

side the clone. However, if a patch of wildtype cells is surrounded by misspecified cells

that experience the same increased lateral contractility, it will not invaginate and form a

cyst, but surmount the surrounding mutant tissue (Fig. 3.12C). These results have been

confirmed by the Rho-Kinase experiments discussed in Section 3.2.1. Our simulations

therefore demonstrate that the bulk effect alone cannot simultaneously account for both,

the formation of cysts and of inverse cysts. However, we found in simulations that the con-

tractile boundary effect with threefold increased tensions at the lateral and apical MWIs

as shown in Figs. 3.12D&E, can lead to the apical indentation of both, misspecified and

wildtype clones.
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Figure 3.12: Equilibrium tissue shapes for the contractile bulk and the contractile bound-
ary effect. A 3-fold increase in lateral contractility inside the misspecified cells leads to
the formation of cysts (B) but fails to explain the occurrence of inverse cysts (C). A 3-fold
increase in interface contractility between misspecified and wild type cells can account both
for the formation of cysts and the formation of inverse cysts (D and E).

A 3-fold increase in tension recapitulates the observed cyst shapes

We will now use the 3D Vertex Model to show that the contractile boundary mechanism

can also account quantitatively for the details of the clone shapes as a function of the clone

size, which were quantified in Fig. 3.7. As discussed above, there are four free mechanical

parameters in the 3D Vertex Model simulations that can be varied independently while

replicating the aspect ratios of wild type epithelium (Eqs. 3.14 and 3.15). In addition, two

mechanical parameters are required to describe the strength of the boundary effect acting

along the MWIs, namely the increase in apical line tension and the increase in lateral surface

tension. This leaves six free parameters to fit the four experimental curves of the apical

and basal indentations and widths, shown in 3.7. We performed an extensive parameter

search to identify these parameters, which is described in more detail in Appendix C.1.1.

The set of parameters given in Table 3.2 was found to give rise to equilibrium shapes

that closely resemble the experimental data, and the comparison of the respective curves in
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simulations and in experiments is shown in Fig. 3.7. The quantitative agreement between

description parameter value
cell volume V0/l

3
0 1

lateral surface tension Tl/Tl 1.0
lateral surface tension around clone T cl /Tl 3.0

apical surface tension Ta/Tl 3.1
basal surface tension Tb/Tl 6.95
external compression Text/Tl -4.2

apical line tension Λa/(l0Tl) 0.18
apical line tension around clone Λc

a/(l0Tl) 0.53
basal line tension Λb/(l0Tl) 0.18

stiffness of ECM attachment kv/Tl 5.0

Table 3.2: List of parameters obtained from comparison of the vertex model to clone
shape measurements as a function of clone size.

all four curves over the whole range of quantified clone shapes shows how accurately cyst

formation can be captured in the 3D Vertex Model. In Fig. 3.13c exemplary images of

cysts of different sizes are shown for both experiments and simulations. Note, that to

replicate the resulting deformations in simulations, the apical surface and line tensions had

to be chosen smaller than the basal tensions, indicating that mechanical stresses generated

along the basal tissue surface play an important role in determining the shape of epithelia.

To study the dependency of the deformations on the choice of parameters and to hence-

forth highlight the mechanical key drivers behind the deformations, simulations were run

where only single parameters deviated from the preferred set of parameters given in Ta-

ble 3.2. The resulting deformations as a function of the number of cells in the clone are

shown in Fig. C.1.
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Figure 3.13: Comparison of the deformations of clones (parameterised as described in
Fig. 3.7a) in experiments and the corresponding deformations in 3D Vertex Model simu-
lations with the optimal parameter set and three-fold increase in tension around the clone.
The bars indicate the standard error of the mean of 15 simulations starting from different
initial conditions.
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3.2.4 Relating the coarse grained theory and the 3D Vertex

Model

In Section 3.2.2 we showed, how the contractile boundary in a continuous theory can

qualitatively explain cyst formation as the buckling of intermediately sized circular clones

due to a contractile boundary. Then we used the 3D Vertex Model simulation framework

in Section 3.2.3 to show that an increase of the interface tension by a factor 3 can

quantitatively account for the observed cyst shapes over the analysed range of clone sizes.

In this section we will make the connection between the two modelling approaches and

show that for the mechanical parameters used in the 3D Vertex Model also the continuous

theory predicts a buckling in the observed range between 3 and 106 cells.

In Section 2.2.2 we derived how the microscopic mechanical parameters of homogeneous

epithelia in the 3D Vertex Model relate to the in-plane tension γ0 generated by the tissue,

to the tissue’s bending modulus κ, and to the effective attachment stiffness k:

γ0 = Ta + Tb +
31/4

√
2

√
ρ0(Λa + Λb − Tlh) +K3Dh

2
0(

1

ρ0

− V0

h0

) (3.16)

κ =
Ta + Tb

8
V 2

0 ρ
2
0 +

√
2

8 · 33/4
TlV0
√
ρ0

(√
3− V 2

0 ρ
3
0

)
(3.17)

k =
6

3

kv
Aα

= 2kvρ. (3.18)

The effective additional tension generated by the excess of apical line tension Λc
a and lateral

surface tension T cl around the clone reads

Λ = Λc
a + hT cl . (3.19)

Using these four relations, the corresponding normalised coarse grained mechanical param-

eters for the set of 3D Vertex Model parameters we used to simulate cyst formation (given

in Table 3.2) can be obtained:

κ/(Tll
2
0) ' 0.34 (3.20)

γ0/Tl ' −4.2 (3.21)

k/
(
Tl/l

2
0

)
' 64.0 (3.22)

Λ/(β2/3l0 Tl + Λa) ' 2.0. (3.23)

The number of cells N in a circular clone and its radius R are related through the cell
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density ρ:

N = R2πρ. (3.24)

By using the experimental value of the aspect ratio of cells β = h
√
ρ ≈ 16.2, we find the

2D cell density ρ for a given fixed cellular volume V0 to be ρ = (β/V0)2/3.

After connecting all the parameters and variables, the continuum theory can be used

to derive approximate critical buckling radii for the performed simulations by using the

expressions given in section 3.2.2 and replacing the continuum theory parameters by the

effective parameters obtained from the 3D Vertex Model parameters.

Fig. 3.14 shows the phase diagram of buckling instability for a clone clamped at its

boundary, with the parameters obtained above. For the increase in line tension corre-

sponding to a 3-fold increase in apical line tension and lateral surface tension, the linear

theory predicts a range of buckling between 3 cells and 106 cells. This is in good agree-

ment with the range of cyst formation observed in simulations, as shown in Fig. 3.13.

Note however that the boundary conditions used in this calculation are not identical to the

conditions in 3D Vertex Model simulations where the clone is embedded in a deformable

tissue.

buckling instability

predicted buckling for

3-fold tension increase at MWI

2.4 cells < N < 106.3 cells

Line tension
at boundary

1) 2) 3)

1) 2) 3)

Figure 3.14: Phase plot of clone buckling, for the effective coarse grained parameters
derived from optimal set of parameters in simulations. For a three-fold increase in line
tension, the continuous theory predicts a buckling of clones containing between ∼ 3 and ∼
106 cells. This is in good agreement with the region of strongest deformation in simulations
and in experiments shown in Fig. 3.13.
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3.3 The function of the contractile boundary mecha-

nism

After identifying the contractile boundary mechanism to be the driver of cyst formation

in the wing disc epithelium, we wondered if its existence serves a function, which could

represent an evolutionary advantage and explain its existence. In Section 3.3.1 we show

how the contractile boundary mechanism can lead to the extrusion of small misspecified

clones, and we give experimental evidence that these extrusions of small clones happen

frequently in the imaginal wing disc. These results suggest that the mechanism could act

as a mechanical control that helps maintaining the tissue integrity through the extrusion

of misspecified cells, which could otherwise disrupt the delicate epithelial structure. Para-

doxically, the formation of disrupting cysts is caused by a failure of the same mechanism

to eliminate small-sized cell clusters. In Section 3.3.2 we finally show that the contrac-

tile boundary mechanism also occurs as a response to a mutation in the potent oncogene

RasV12, which has a human homologue that plays an important role in many cancers.

These findings suggest an important role of the contractile boundary effect in epithelial

cancers.

3.3.1 Loss of small misspecified clones

Experimental images and simulations showed that small clones do not form cysts, but

experience a significant apical constriction (Fig. 3.13). This apical shrinkage resembles

initial stages of cell extrusion events that occur during clearing of apoptotic cells from

epithelial tissues or during live cell extrusion initiated by cell crowding [84, 85, 86, 47].

When apically constricted, the cells lose their main adhesion to the surrounding tissue and

are consequently removed from the tissue towards the basal side. Our observations therefore

suggest that interface contractility may specifically drive elimination of single misspecified

cells or small clusters of misspecified cells by promoting apical surface constriction and,

potentially, a subsequent basal extrusion.

To test if size-dependent elimination of misspecified cell clusters indeed occurred in the

imaginal wing disc, we quantified the distribution of clone sizes and compared clone num-

bers with wild type phenotype to clones that aberrantly expressed the transcription factor

fkh. To control the variability in experimental conditions, our collaborators used the Tie-

Dye technique to generate clones marked by RFP and wild type clones marked by GFP

inside the same wing imaginal disc. In these experiments we quantified clones marked

with RFP, that could have four different genotypes: clones with wild type genotype, clones
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expressing fkh, clones expressing the apoptosis inhibitor dIAP1, or clones expressing both,

fkh and dIAP1. Images of the experiments are shown in Fig. 3.15a, and in Fig. 3.15 we

show how the number of clones of different sizes marked with GFP compares to the number

of clones marked with RFP in these 4 distinct experimental setups.

We found that the frequency of RFP and GFP expressing clones is very similar 30 hours

after the heat-shock, if the RFP clones have wild type phenotype. However, the additional

expression of fkh reduced the number of RFP clones significantly compared to the number

of GFP clones. The expression of the apoptosis inhibitor dIAP1 alone in RFP clones did

not significantly alter the intrinsic frequency of RFP clones to GFP clones, but also it did

not reduce the loss of small clones if combined with fkh.

The number of fkh clones containing less than 3 cells was reduced by more than 30%, even

if addition the cells expressed the inhibitor of apoptosis dIAP1. However, expression of

dIAP1 significantly rescued the statistical distribution of large clones sizes back to wild

type levels indicating that apoptosis in larger clones is strongly reduced (Fig. 3.15b).

Therefore dIAP1 -expression suppressed apoptosis less effectively in single fkh-expressing

cells if compared to larger clones. Combined, these experiments suggest that small fkh-

expressing cell clusters are specifically subjected to strong apoptotic stimuli, which cannot

be counteracted by limiting dIAP1 levels.

We hypothesised that if apoptosis in small misspecified cell clusters is specific to MWI

contractility, then apoptosis must also be induced in small wild type cell clusters encircled

by misspecified cells. We thus examined wild type clones at early stages after induction

of large domains of fkh-expressing cells. We indeed observed frequent Dcp-1 activation,

which is a marker for apoptotic cells, in small wild type cell clusters. Similarly, when we

examined wing discs that ectopically expressed ey, we found that apoptosis is repeatedly

activated in small wild type cell clones. Combined, these results strongly suggest that

MWI contractility may drive cell elimination by specifically inducing apoptosis in small

clusters of MWI-encircled cells, following the initial strong apical constriction.

3.3.2 Cyst formation and cancer

The Ras family is a class of related proteins which are ubiquitously expressed in all cell

lineages and organs, and which are involved in transmitting signals within cells. Because

these signals result in cell growth and division, overactive Ras signaling can ultimately lead

to cancer. The Ras genes in humans are the most common oncogenes in human cancer, and

mutations that permanently activate Ras are found in 20% to 25% of all human tumours

and in up to 90% in certain types of cancer (e.g. pancreatic cancer). It has been shown in

[71] that clones overexpressing oncogenic Ras (RasV12 ) experienced significant interface
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(a) Tie-DYE experiments allow to compare frequencies of GFP and RFP clones, and show that
the expression of fkh in addition to RFP leads to a significant loss of clones expressing RFP in
the pouch, compared to GFP-wildtype clones (images on the left). The number of small clones
was still significantly reduced, even if in addition the apoptosis inhibitor dIAP1 was expressed
(images on the right).
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(b) Mean and SEM of number of RFP clones of different sizes, counted in N ≥ 10 imaginal wing
discs 30 hours after a 10 min heat-shock. Small clones expressing fkh are significantly reduced in
comparison to wild type clone numbers. Additional expression of the apoptosis inhibitor dIAP1
in fkh-expressing clones can not prevent the loss of small clones, but it recovers the reduction of
bigger clones.

Figure 3.15: Small clones expressing the transcription factor fkh are lost due to the
increased contractility at the MWI. Also the additional inhibition of apoptosis through
dIAP1 did not rescue the number of small fkh-expressing clones.

reduction, and we therefore set out to understand if also this smoothening could be driven

by increased MWI contractility.

Indeed, our collaborators found that small RasV12 -expressing clones formed basally ex-

truding cysts in peripheral domains of the wing disc (Fig. 3.16a). Furthermore, they

could show that wild type cell patches surrounded by RasV12 -expressing cells undergo

interface smoothening and cyst formation. Following the previous reasoning, these obser-

vations suggest that oncogenic Ras promotes cyst formation by inducing increased contrac-

tility along the MWI. While we rarely observed apoptosis in wild type GFP-expressing or

RasV12 -transformed cells, we found apoptotic pathways are frequently activated in small
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wild type cell clusters surrounded by RasV12 -expressing cells (Fig. 3.16b). Apoptosis

in wild type cells occurs almost exclusively in the disc periphery, where also RasV12 -

induced MWI-effects are strongest. Combined, these results reinforce the conclusion that

MWI contractility is induced by apposition of cell populations with different fates and that

MWI contractility drives cell elimination by activation of apoptosis in small, encircled cell

clusters. Based on the presented results, we suggest that the potent human oncogene Ras

elicits MWI contractility which leads to cystic deformation of Ras-clones. Indeed, several

studies describe altered interface actin dynamics of RasV12 transformed cells in MDCK

monolayers [87, 88, 89, 90].

Strikingly, cystic deformations have also been observed in mouse models of colon cancer

upon deregulation of Wnt/APC and TGFβ-signaling [59, 60, 91, 63]). Our work suggests

that disruption of Shh/Hh, JAK/STAT, TGFβ/Dpp and Wnt/Wg patterning fields causes

cyst formation. These observations emphasise that epithelial cysts may be an early hall-

mark of tissue disruption in cancer driven by mutagenic changes to differentiation state.

Because cysts survive abscission from the surrounding tissue, their formation may promote

displacement of cells into new micro-environments and may precede emergence of invasive

cell behaviours.

(a) Short heat-shock. (b) Long heat-shock + apoptosis marker.

Figure 3.16: Small clones expressing the potent oncogene Ras formed cysts in the periph-
ery of the wing disc (a), whereas they were not significantly different from wild type clusters
in the centre of the wing disc. Strikingly, the regions of cyst formation also correspond
to the regions where wild type cells surrounded by Ras-expressing cells are undergoing
apoptosis (b), indicating that also here the contractile boundary effect at the MWI leads
to the elimination of constricted clones.
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3.4 Summary

We showed that the formation of epithelial cysts in Drosophila imaginal discs is a general

response to ectopic expression of transcription factors that specify cell fate. Increased actin

accumulation at the interface between differently fated cells precedes the extrusion of small

cell clusters, while leading to the bulging out and cystic deformations of intermediate cell

clusters. Large misspecified clones only experience interface smoothing.

Based on these observations we suggested a novel mechanism, which is based on an

increase in contractility along the apical and lateral interfaces between cells of different

fate. We used a generic continuous theory of epithelial sheets, to show that the process of

cyst formation can be understood from two simple physical effects that control a buckling

instability of surrounded clones: the law of Laplace and the resistance of the tissue to

bending. By describing cyst formation as flat clones undergoing a buckling instability,

we were able to show why cyst formation is restricted to clones of intermediate sizes. By

replicating cyst formation in 3D Vertex Model simulations, we could furthermore show that

a 3-fold increase in apical line tension and lateral surface tension at the MWI captures very

well the cyst shapes observed in experiments.

Previous studies have highlighted the importance of increased tension at apical adherens

junction interfaces and their role in interface morphology [44, 92, 37, 77]. However, cellular

forces and deformations associated with interface mechanics in three dimensions have not

been explored. Here we showed for the first time that in addition to apical adherens junc-

tion, increased actomyosin contractility at basolateral interfaces is extensively regulated

and that taking this 3rd dimension of cellular forces into account has crucial consequences

for our understanding of 3D tissue morphology. Our experiments and simulations suggest

that increased interface contractility induces a repertoire of tissue deformation including

cell extrusion and tissue invagination, in addition to interface smoothing. Our simulations

showed that an increase in both lateral surface tension and apical line tension by a factor

3 is required to account for these deformations. This increase is similar to the increase

in line tensions of a factor 2.5 that has been estimated to act at the interface between

developmentally specified compartments [37].

The experimentally observed cyst displayed strong deformations of the apical tissue sur-

faces compared to the basal surfaces. The 3D Vertex Model simulations only captured this

behaviour correctly under the assumption, that the tensions generated along the apical

tissue surfaces are smaller than the tensions generated basally. While previous studies

focussed on the influence of the apically generated line and surface tensions on epithelial

shape, our results suggest that forces generated along the basal surfaces of cells might even
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be stronger and therefore crucial to understand complex epithelial deformation.

Finally we showed how an increase in interface contractility at the MWI can act as

surveillance mechanism by excluding small misspecified clones, but can also drive disease-

promoting disruption of epithelial integrity by deforming misspecified cell clusters into

cysts. We speculated that interface contractility could have a broader function in driving

morphogenesis at the interface between differently fated cells during development.

Our results provide a novel perspective on the morphogenetic mechanisms arising from

cell fate heterogeneities within epithelial tissues. It will be interesting to investigate if the

cellular mechanisms that drive contractile changes at the interface to misspecified cells and

those that drive contractility at the interface between differently specified compartments

are alike. Similarly, many developmental invagination processes are driven by cell fate

specification of intermediate sized cell clusters and offer therefore an opportunity to under-

stand similarities and differences between morphogenetic behaviours driven by apposition

of differently fated cells in development or disease.
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CHAPTER 4

Ventral furrow formation through

sagittal contraction

4.1 Introduction

In the following chapter we introduce and study a new mechanical driver to play a crucial

role in the process of ventral furrow formation at the beginning of the gastrulation process

of the fruit fly. This work has been done in collaboration with Matteo Rauzi from the

European Molecular Biology Laboratory, Heidelberg.

The morphological event of Gastrulation is a fundamental early step in the development of

any Drosophila fruit fly, which was briefly outlined in Section 1.2. Before being reshaped

by gastrulation the undeveloped organism, called blastula, is merely an ellipsoidal array of

cells surrounding a liquid, without distinct indications pointing to the final shape of the

organism. During gastrulation, the progenitor cells of the gut and its appendages (the

endoderm), and the progenitors of the organs between gut and outer body wall, such as

muscles, blood and heart (the mesoderm) translocate away from the surface of the embryo

towards the interior. The cells remaining on the outside of the embryo (the ectoderm) will

later outline the body as epidermis and give rise to the nervous system.

Therefore, in some respects gastrulation is the most fundamental morphological transfor-

mation, as it leads to the separation of the three germ layers (endoderm, mesoderm and

ectoderm) and hence lays out the basic body plan of the adult organism. The words of

Lewis Wolpert neatly emphasise the importance of the process: ”It is not birth, marriage,

or death, but gastrulation, which is truly the most important time in your life.” (cited

in [93]). The first step of gastrulation is the ventral furrow formation during which the

mesoderm gets internalised into the blastula, and in this chapter we set out to study this

process and put forward a new mechanism that is driving it.

In Sections 4.1.1 the experimental system is introduced, and the characteristics of

ventral furrow formation are discussed in detail. Section 4.1.2 gives an overview of

existing mechanical models of ventral furrow formation. We suggest that a new model of

ventral furrow formation is needed in light of recent observations.

Based on these observations we present a novel mechanical model of ventral furrow forma-
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tion: the sagittal contraction mechanism (4.2). We use the 3D Vertex Model to simulate a

yolk-filled blastula, and show that the proposed mechanism can account for the formation

of a significant furrow (4.2.1). Then we demonstrate how to represent the spherical blastula

and the sagittal contraction mechanism in the continuum model of epithelial mechanics

(4.2.2). By solving for the shape of the epithelium, we hence show that also the continuous

theory predicts the formation of a ventral furrow, and we use this analytical approach to

identify the mechanical key parameters of the process. We finally show that the com-

plementary approaches agree very well in the respective limits of small deformations, by

comparing the predictions of 3D Vertex Model simulations and of the continuum theory

(4.2.3). Finally we give an outlook and suggest further directions to explore in terms of

experiments and physical modelling (4.3).

4.1.1 The nuts and bolts of mesoderm invagination

The Drosophila embryo at the onset of gastrulation, illustrated in Fig. 4.1, consists of

roughly 6000 cells forming the columnar epithelium blastoderm that encloses a fluid-filled

cavity called blastocoel. The cells’ apical surfaces face the outside of the embryo, whereas

the basal sides face the blastocoel. The apical tissue surface is surrounded by the vitelline

membrane made of stiff, interlinked protein fibres that forms a hard shell around the

embryo and does not deform significantly during the whole process of gastrulation [94].

Our quantification showed that the blastula can be approximately described by an ellipsoid

with a long axis of ∼ 245 µm in length, and two short axes of roughly identical lengths of

90µm as shown in Fig. 4.1. The position of the poles, and of the dorsal and ventral tissues

is illustrated in Fig. 4.1. The progenitor cells of the mesoderm, the mesoderm primordium

(which will be called simply mesoderm from now on) is a ∼22-cell-wide band of cells on

the ventral side of the blastoderm that encompasses about 19% of the embryo’s central

dorsal-ventral cross section ([94], Fig. 4.1).

At the onset of gastrulation the ventral epithelium progresses into an inward-fold called

ventral furrow which consequently deepens and moves inside the epithelium, until finally

the adjacent tissues of the mesoderm touch each other and seal off the internalised meso-

dermal tube. Fig. 4.2 shows how during this folding the ventral-most cells deform from

a columnar to a wedge-like shape, and the mesodermal cells undergo a transient length-

ening before they return to roughly their initial aspect ratios. The invagination occurs

very rapidly in the time course of about 20 minutes, and throughout the whole process the

tissue maintains its structure of an epithelial monolayer, the cells do not divide and they

do not undergo topological transitions.

While most of the existing insights in the mechanical origins of ventral furrow formation
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Figure 4.1: The yolk in the blastocoel is surrounded by a simple epithelium, called
blastoderm. The sagittal cross section shows the two distinct poles of the blastoderm:
the anterior pole (A) and the posterior pole (P). The mesodermal tissue along the ventral
region of the blastoderm undergoes invagination during ventral furrow formation. The
blastula is completely surrounded by a stiff structure consisting of protein fibres called
vitelline membrane (experimental images reproduced courtesy to Matteo Rauzi)

have been obtained through the analysis of the shape changes observed in the dorsal-ventral

section through the blastula, new experimental methods, allow for the live imaging of the

complete embryo during the duration of gastrulation [97]. The upper image in Fig. 4.3

shows a sagittal cross section through the central embryo at an advanced stage of ventral

furrow formation, and underneath the corresponding dorsal-ventral sections are exhibited.

Notably, the section of the imaging plane and the mesoderm forms a straight line, which

is marked by the dotted white line in the figure.

Laser cutting experiments described by Martin and colleagues suggested that the whole

blastoderm is under tension, since ablations of the tissue induced tissue wide epithelial

tears [98]. This tension generated by the epithelium must be balanced by fluid pressure

exerted by the yolk. In the same paper they showed furthermore that the mesodermal cells

undergo waves of apical constriction on the time scale of ∼ 1 minute and that they are

under stronger tension than the cells outside the mesoderm (Fig. 4.2B).
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Figure 4.2: A) Four stages of ventral furrow formation shown in the dorsal-ventral section
through the centre of the blastula, where cell membranes and nuclei are labelled. In the
time course of ∼20 min the mesoderm progresses into an inward fold, which deepens and
moves inside the epithelium. The images have been taken by Maria Leptin and colleagues
and were published in [95]. B) Martin et al. showed in [96] that during ventral furrow
formation the cells inside the mesoderm increase their contractility and undergo a series of
apical constrictions in the course of which they significantly decrease their apical surface
area.

He and colleagues demonstrated in [99] that initial furrow formation occurs even if cel-

lularisation was inhibited, suggesting that forces generated inside the apical surface of the

tissue are sufficient to drive the formation of a furrow While therefore not required for

initial furrow formation, the cell closure and influence of tensions generated on other than

apical cell surfaces is very likely to play an important role in the remaining gastrulation

process.
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Figure 4.3: The top image shows a sagittal cross section through the blastula during the
process of ventral furrow formation; the bottom images show the corresponding dorsal-
ventral sections through different positions of that same blastula. Labelled in white is
the membrane. The mesoderm straightens in the beginning of ventral furrow formations,
and then the mesodermal midline moves in an orchestrated manner into the blastula. All
images are replicated with courtesy to Matteo Rauzi.
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4.1.2 Mechanical models of ventral furrow formation

Early attempts to understand the mechanical origins of mesoderm invagination date back

to Odell and Oster in 1981, where they proposed a purse string mechanism of mesoderm

invagination [100]. Following this pioneering work a number of other mechanical models

with different assumptions and conclusions have been proposed. The following section will

give a short overview of the current literature. For a more comprehensive study of existing

models please refer to the review by Rauzi and colleagues [94].

Figure 4.4: Overview of the existing mechanical models of mesoderm invagination. Illus-
tration modified from [94].

As suggested in [94], the existing models of ventral furrow formation can be divided into

two classes depending on the way they impose the deformations of the mesodermal cells.

In the shape-prescribing models, the shapes of the mesodermal cells is imposed and the
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resulting deformations of the blastoderm is obtained [101, 102, 103]. Since these models do

not discuss the mechanical drivers of the process, which will want to study in this chapter,

we will not further describe these approaches here.

Force-prescribing models, on the other hand, take into account the tensions generated

inside the tissue, and the cellular deformations are understood as the results of forces

acting inside cells and onto the epithelium [100, 104, 105, 106]. In the seminal paper by

Odell et al. [100], the epithelium was represented as a 2D excitable visco-elastic medium.

There they showed that a wave of apical constriction of cells propagating through the tissue,

together with volume conservation of cells can drive ventral furrow formation. However,

while the ideas that were put forward were revolutionary, such a wave of constrictions has

not been observed in experiments [94]. After this original demonstration that collective

apical constriction of mesodermal cells is sufficient to create a ventral furrow, most of the

subsequent physical models focussed on the details of this apical contraction mechanism in

the dorsal ventral plane, by using different models such as finite element models and vertex

models [101, 102, 107, 103, 108, 109]. All these mechanisms are based on the idea that the

mesodermal cells generate a torque in the dorso-ventral cross section, which leads to the

subsequent curvature of the cells. However, the furrow formation in acellular embryos [99]

suggests that forces generated inside the apical cell surfaces are sufficient for furrowing,

and that in fact the torque is not required. The focus of the models on the dorso-ventral

sections did not allow these models to investigate the role of apical constriction of the cells

in the sagittal direction on the formation of the furrow, and to explain the synchronised

formation of the furrow in different dorso-ventral sections.

In 2012, Hocevar Brezavscek and colleagues explored a different approach: they suggested

a minimal mechanism, where furrow formation results from a buckling transition of a

compressed tissue consisting of identical cells [110]. While the proposed idea is original, it

had been shown by Martin et al. in [98] that the blastoderm is under tension rather than

compression, which is not compatible with the idea of buckling.
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4.2 The sagittal contraction mechanism

In Section 4.1.1 we presented the previous experimental results, which showed that the

blastoderm at the onset of gastrulation is under tension [98], that the mesoderm straight-

ens along the sagittal cross section (experiments by Matteo Rauzi, shown in Fig. 4.3) and

that ventral furrow formation also takes place when cellularisation is inhibited [99]. Com-

bined, these observations suggest that the existing models do not capture all main aspects

of ventral furrow formation, and/or that the assumptions of the models are not fulfilled in

the actual biological system. In this thesis we aim to help closing these gaps by introduc-

ing a new minimal mechanism for the ventral furrow formation: the sagittal contraction

mechanism. We show that this new mechanism leads to the formation of a furrow while

at the same time it is in good agreement with the latest experimental observations.

We propose the new mechanism of sagittal contraction is, where ventral furrow formation

is driven, or at least enhanced, by the contraction of the mesoderm along the sagittal

direction. Due to the curvature of the mesoderm along the sagittal section of the blastula

the contraction will generate forces normal to the blastula in the dorsal-ventral sections of

the tissue and trigger the indentation. The furrow forms because the increase in tension

leads to a straightening of the mesoderm in the sagittal section, which corresponds to a

furrow formation if the process is observed in the dorsal-ventral cross section, as shown in

Fig. 4.5.

Figure 4.5: An increase in the mesodermal tension leads to a straightening of the meso-
derm in the sagittal section of the tissue. This flattening in turn leads to an invagination
along the dorsal-ventral cross section of the tissue.

The increase in tension generated along the apical surface of the mesodermal cells has

been described by Martin and colleagues in [96], and it leads to a force acting to decrease

both the width and the length of the mesodermal tissue. Note that if the cells are able to
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maintain their volume and the apical tension in the mesodermal cells is stronger than the

basal tension, a torque in the stripe will be generated. While the torque could enhance

the formation of the furrow, it seems not to be crucial since it has been shown that the

initiation of furrow formation also works if cellularisation has been corrupted [99].

We will show in the following sections how an increased apical tension in the mesodermal

cells alone can trigger the formation of a furrow, even in the absence of tensions generated

along lateral and basal cell bodies. The mechanism accounts for the observed straightening

of the mesoderm along the sagittal section, and it works even if the tissue is under tension.

To put the proposed sagittal contraction mechanism to the test, we model the blastula as

a spherical tissue in which a stripe of the tissue (representing the mesoderm) experiences

increased contractility. The spherical approximation of the shape has the advantage of

being analytically tractable while still capturing the main features of the shape and the

process.

By simulating the apical epithelial tissue surface only in the Apical 3D Vertex Model,

we demonstrate in Section 4.2.1 that an increase in apical tension inside a stripe of cells

along the sphere indeed leads to the formation of a ventral furrow. In 4.2.2, we use the

continuum theory of simple epithelia introduced in 2 to describe the epithelium as a thin

elastic sheet with bulk and shear modulus surrounding a compressible yolk. Using a linear

theory we hence show that the response to an increase in tension inside a stripe will induce

the formation of a furrow, and that the depth of the furrow is set by the ratio of the tissue’s

bulk and shear modulus. In Section 4.2.3 we use the established relationship between

the parameters of the continuum model and the 3D Vertex Model, and show that both

theories predict identical deformations for small perturbations away from a homogeneous

tension of the tissue.
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4.2.1 Sagittal contraction in the Apical 3D Vertex Model

Since it was found that ventral furrow formation happens even if cellularisation has been

impaired and consequently all forces are generated apically, we use the Apical 3D Vertex

Model (cf. Section 2.1.6) to represent the blastoderm at the onset of gastrulation. Here

we do not take into account the constraints imposed through the vitelline membrane, to

first understand the principles of how the sagittal contraction deforms the tissue. This

approach has the further advantage that we can compare the resulting deformations to

the analytically obtained deformations in the continuum theory in Section 4.2.3. How to

include the effects of the vitelline membrane, and to account for the ellipsoidal tissue shape

in simulations is discussed in D.2. The blastoderm is assumed to surround a compressible

fluid representing the yolk (cf. Section 2.3) and is under tension, which is why the

equilibrium shape of the mechanically homogeneous blastoderm is a sphere. The work

function of the tissue therefore reads

W =
∑
α∈C

(
K2D
α

2
(Aα − A0

α)2 + Λα
Pα
2

)
+
Ky

2
(V 0

y − Vy)2, (4.1)

where the sum is over all cells α with apical area Aα and perimeter Pα, preferred area A0
α,

area elasticity K2D
α and apical line tension Λα. The yolk has a volume Vy and behaves

elastically with bulk elasticity Ky around its preferred volume V 0
y . Note that we assume

that a bond between two cells experiences the mean line tensions generated by these cells.

The epithelium is now taken to consist of two different cell types with distinct mechanical

properties: mesodermal and non-mesodermal cells. The mechanical description of the

epithelium includes a total of eight free non-normalised parameters, which are given in

Table 4.1: two parameters for the constraints imposed by the weakly compressible yolk,

one parameter for the apical line tension inside each cell type, and two parameters for

the area elasticity for each cell type. Normalisation of the parameters, i.e. making them

non-dimensional, reduces the number of free independent parameters to six.

After defining the system we use 3D Vertex Model simulations to study how the initially

homogeneous and spherical tissue deforms due to an increase in tension inside the meso-

derm. We therefore start from a tissue shown in Fig. 4.6 and study the response of the

overall tissue shape to an increase in line tension inside this stripe. We introduce the quan-

tity δΛ to characterise the increase in line tension in the mesoderm, that is ΛM = Λ + δΛ.

Fig. 4.7 shows the resulting tissue shapes for varying line tension Λ outside the mesoderm

and the relative increase in line tension inside the stripe δΛ/Λ. By these simulations we

demonstrate that the sagittal contraction mechanism with a twofold increase in line tension
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description parameter normalisation
volume yolk V 0

y V 0
y /(l

0)3 = 1
bulk modulus yolk Ky Ky/((l

0)2K2D)
preferred cell area A0 A0/(l0)2

apical area elasticity K2D K2D/K2D = 1
apical line tension Λ Λ/(K2D(l0)2)
preferred cell area (mesoderm) A0

M A0
M/(l

0)2

apical area elasticity (mesoderm) K2D
M K2D

M /K2D

apical line tension (mesoderm) ΛM ΛM/(K
2D(l0)2)

Table 4.1: List of mechanical parameters and their normalisation, for furrow formation
in the Apical 3D Vertex Model. Two parameters describe external forces from the com-
pressible yolk, and three parameters each describe the mechanical properties of cells inside
and outside the mesoderm.

Figure 4.6: An equilibrated spherical blastula in Apical 3D Vertex Model simulations,
consisting of 2000 mechanically homogeneous cells with the distinct stripe of the pre-
mesodermal cells shown in purple.

inside the mesoderm is sufficient for the formation of a significant furrow even, if the rest if

the tissue is under tension. Note, that this folding does not rely on torques being created

specifically inside the cells, which could be achieved through differences in apical and

basal tensions as we showed in Section 2.2.2. The furrow forms rather due to the shape

anisotropy of the contracting stripe, the curvature of the blastula and the resistance of the

surrounding tissue to in-plane deformations.
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Figure 4.7: Simulations of a spherical blastula consisting of 2000 cells with a ventral stripe
subjected to an increased contractility. Λ denotes the line tension generated outside the
mesoderm and δΛ/Λ denotes the relative difference in active tension between mesodermal
and non-mesodermal cells. The equilibrium solutions show qualitatively that the proposed
mechanism of sagittal contraction can account for the initiation of furrow formation. Also,
the final results show a strong dependency of the final shape on the generated line tensions.
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4.2.2 A continuum model for sagittal contraction

Deformations of a sphere in the regime of low tension perturbations

In the previous section we showed in Apical 3D Vertex Model simulations that an increase

in line tension in a stripe of cells representing the mesoderm leads to the formation of a

significant furrow. In this section we apply the continuous theory introduced in Chapter 2

to a spherical tissue surrounding a compressible fluid, and show analytically how an increase

in tension in a stripe of the tissue induces the formation of a furrow.

In Section 2.2.5 we demonstrated that an epithelium in the Apical 3D Vertex Model

can be effectively described as a thin elastic plate, with zero bending modulus and bulk

and shear moduli that depend on the cellular mechanical parameters. The behaviour

of a tissue made of mechanically homogeneous cells in a spherical tissue surrounding a

compressible fluid was analysed in Section 2.3. We now additionally include the effect

of the contracting mesoderm by increasing the active tension inside a stripe of the tissue,

and study the resulting deformation of the epithelial shape.

The local deformations of the tissue on the sphere away from the initial homogeneous state

are captured in the strain tensor uij, while the corresponding stress tensor σij describes the

stresses induced by the strain. We furthermore introduce an active isotropic field of stress

ζ generated locally inside the tissue, which accounts for both the stress on the surface

at zero deformation and the perturbation of the stress which leads to deformations. In

the case of weak deformations, the relationship between stress and strain is given by the

following generalisation of Hooke’s Law:

σij = Kullδij + 2µũij + ζδij, (4.2)

where ull and ũij are respectively the trace and the traceless part of the strain tensor u,

δij is the Kronecker symbol, ζ represents an isotropic active tension, and K and µ are the

bulk and shear moduli, respectively.

In the following we parameterise the sphere with the two angles (θ, φ) ∈ [0, 2π] × [0, π],

where the transformation to the Euclidean space is given by:

x = R cos θ sinφ (4.3)

y = R sin θ sinφ (4.4)

z = R cos θ. (4.5)

Small deformations away from the sphere can be described by making the radius R a
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function of the angles R(θ, φ) = R0 + δR(θ, φ). In this parametrisation the active isotropic

tensions on the sphere are described by ζ(θ, φ) = ζ0 + δζ(θ, φ), where ζ0 is the initial

homogeneous tension and δζ(θ, φ) represents an inhomogeneous perturbation. Now we

will analytically obtain the deformations of the tissue away from the spherical shape that

result from small relative perturbations in the tension δζ(θ, φ)/ζ0 � 1.

For this purpose it is convenient to represent the perturbation δζ(θ, φ) in the basis of

spherical harmonics. Any continuous scalar field f(θ, φ) on the sphere can be decomposed

into spherical harmonics by:

f(θ, φ) =
∞∑
n=0

n∑
m=−n

fnmYnm(θ, φ) (4.6)

where fnm are the coefficients of the decomposition of the function f(θ, φ) in the basis of

spherical harmonics. The respective basis Ynm(θ, φ) is defined in Appendix D.1.4.

We show in Appendix D.1.4, how this decomposition can be used in Eq. 4.2 to derive the

coefficients of the relative radial deformation (δR/R0)nm away from the equilibrium radius

R0 in the spherical harmonics space in terms of the coefficients of the applied perturbation

(δζ/ζ0)nm:

(δR/R0)00 = − 1
K
ζ0

+ 2π
KyR4

0

ζ0
− 1

(δζ/ζ0)00

(δR/R0)1m = 0

(δR/R0)nm =
−2

K
µ
n(n+ 1) + 2K

ζ0
+ n(n+ 1)− 2

(δζ/ζ0)nm for n > 1

(4.7a)

(4.7b)

(4.7c)

These expressions reveal the role of the three coarse grained parameters K, µ and ζ0 in

the out-of-plane deformation δR/R0 of the spherical tissue resulting from the perturbation

of the homogeneous tension. The important normalised mechanical parameters governing

the deformation are K/µ and K/ζ0, and an increase in these parameters leads to a decrease

in the deformation for fixed relative perturbations of the in-plane tension. In the limit of

dominating 2D bulk modulus of the epithelium K/µ � 1, K/ζ0 � 1 the sphere does not

deform, whereas the deformation is strongest if the bulk modulus is dominated by the
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initial tension ζ0 and the shear modulus µ:

lim
K/µ,K/ζ0→∞

(δR/R0)nm = 0 for n > 1 (4.8)

lim
K/µ,K/ζ0→0

(δR/R0)nm =
−2

n(n+ 1)− 2
(δζ/ζ0)nm for n > 1 (4.9)

Note that the influence of the ratio of bulk and shear modulus K/µ increases for higher

modes n� 1 since then the prefactor n(n+ 1) dominates the strength of the deformation.

Numerical solution of furrow formation in the linear theory

The previous calculations allow to obtain the resulting deformation of a tissue for given

small perturbations in tension δζ/ζ0. To represent the sagittal contraction mechanism,

the blastula is now assumed to be under constant tension ζ0 everywhere other than in the

mesoderm where it is set to ζ0 + δζ for constant δζ. Let χM(θ, φ) be the characteristic

function of the mesoderm, which is one in the region of the mesoderm and zero otherwise

and thereby completely describes the position of the mesoderm. If the tension is only

increased in the mesoderm, the global tension at the onset of ventral furrow formation can

be written:

ζ(θ, φ) = ζ0 + δζχM(θ, φ). (4.10)

Figure 4.8: Initial tension
distribution on surface.

We define the mesoderm to have a shape that covers ∼20% of

the circle in the dorsal-ventral mid section and ∼41% of the

circle in the sagittal midsection. The resulting perturbation

in tension is shown in Fig. 4.8. By defining the shape of

the mesoderm, the bulk and shear moduli (µ and K) and the

tension ζ0 of the tissue, the deformations for small tension

perturbations can be obtained through the expressions given

above. First the tension perturbations δζχM(θ, φ) have to

be represented in the space of spherical harmonics, then the

corresponding spherical coefficients of the radial deformations

δR/R0 are obtained through Eqs. 4.7a-4.7c, and finally the

deformations are transformed back and plotted in Euclidean

space.

The resulting deformations as a function of the tension in-

crease δζ/ζ0 are shown for varying ratios of bulk and shear

moduli in Fig. 4.9. The results show consistent with the earlier simulations, that also
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in the continuum theory an increase in tension inside a stripe of the tissue can trigger

the deformation of the sphere and create a furrow along the stripe of increased tension.

The extent of furrowing depends on the increase in mesodermal tension, but also on the

relative strength of the shear modulus compared to the bulk modulus. Note however,

that the results obtained from the continuous calculations are valid only for small tension

perturbations δζ/ζ0, i.e. in the linear regime, and for larger tensions higher order effects

would need to be taken into account. Furthermore, the representation of the perturbation

function into spherical harmonics has been done to the 40th degree and on a discrete mesh,

which is why the shown results necessarily include small numerical errors.

A comparison of Figs. 4.9 to the equilibrium configurations obtained for the equivalent

setup in the Apical 3D Vertex Model, shown in Fig. 4.7, show that both theoretical

approaches predict the formation of a significant furrow arising only from an increase of

tension inside a stripe of the tissue. These findings suggest that the sagittal contraction

mechanism can indeed play an important role in the formation of the ventral furrow in the

early gastrulation of Drosophila.

The analytical approach introduced in this chapter helped to identify the crucial coarse

grained mechanical parameters that govern the strength of the deformation arising from

an increase in tension inside a stripe of the tissue. The relevant normalised parameters are

namely the ratios between the bulk modulus and the shear modulus K/µ and the ratio

between the bulk modulus and the generated tension K/ζ0. Our results suggest that the

furrow formation is strongest, when both these normalised parameters are small and the

cells’ bulk modulus is dominated by their shear modulus and the tensions generated inside

the tissue.

It remains to be determined how well the results of the continuous and the discrete model

can be mapped onto each other, which will be the subject of the following section.
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Figure 4.9: Analytical predictions for the deformations of the sphere for varying relative
increase in tension in the stripe (shown in Fig. 4.8), and varying bulk and shear modulus.
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4.2.3 Bridging the scales between the continuous and the dis-

crete model

In Section 2.2.5 we derived how the coarse grained tension and elastic moduli of an

epithelium represented in the Apical 3D Vertex Model depend on the stresses generated

inside the cells. The effective active tension ζ, shear modulus µ and bulk modulus K, were

given as a function the local cell density ρ by:

ζ = K2D(
1

ρ
− A0) +

√
3

2

√
ρΛ (4.11)

µ =
31/4

23/2

√
ρΛ (4.12)

K = K2D/ρ− 31/4

23/2

√
ρΛ, (4.13)

where K2D characterises the elasticity of the cells around their preferred area A0, and Λ

the line tensions acting along the apical junctions. Now we proceed to compare resulting

deformations due to small perturbations in the mesodermal tension in Apical 3D Vertex

Model simulations (4.2.1) and in the corresponding continuum model (4.2.2). These com-

parisons provide another strong check for the consistency of the discrete and the continuum

model, as well as for the correctness of the presented analytical calculations and the 3D

Vertex Model simulations.

Comparison of simulations and analytical predictions mode by mode

To perform a mode-wise comparison of the deformations in simulations to the analytical

predictions given in Eqs. 4.7a-4.7c, we randomly initiated homogeneous spherical tissues

in the Apical 3D Vertex Model, as described in B.1.3, and relaxed them to a regular cell

packing on a sphere. Then we perturbed the homogeneous tension ζ0 by a single spherical

harmonic δζ(θ, φ) = δζpYnm(θ, φ) with δζp/ζ0 � 1, by locally changing the line tension of

the bonds depending on their position. After relaxing the tissue shape to the nearest equi-

librium, we studied the resulting deformations in simulations by decomposing the relaxed

shape in spherical harmonics. Figure 4.10a shows an example of the spatial perturbation

of the tension by the spherical harmonic (3, 2), i.e. δζ(θ, φ) = 0.002Y3,2(θ, φ)ζ0, and the

plot of the resulting deformation of the equilibrium shape δR(θ, φ) in Apical 3D Vertex

Model simulations is given in Fig. 4.10.

We obtained the response of the equilibrium shape in Apical 3D Vertex Model simula-

tions resulting from the spherical harmonic perturbations of tensions δζpYnm (n ≤ 4) for
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(a) Perturbation of bond tensions in 3D Vertex
Model simulations by the spherical harmonic
(3, 2), such that δζ = 0.002× Y3,2ζ0
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(b) Radial displacement of vertices away from
the equilibrium sphere in simulations resulting
from tension perturbation shown on the left

Figure 4.10: Spherical harmonic perturbation δζ/ζ0 of the tension (left) and the resulting
equilibrium deformations in Apical 3D Vertex Model simulations with 6,000 cells (right).
Perturbations in pure spherical harmonics allow for a mode-wise comparison of the sim-
ulations and the analytical theory, by which we demonstrate the consistency of the two
frameworks. The detailed parameters of the shown simulation are given in D.1.6.

several tissues with different cell numbers and mechanical parameters. By relating the

coarse grained mechanical parameters to the microscopic parameters in 3D Vertex Model

simulations, and using the relations 4.7a-4.7c we then obtained the analytically predicted

deformation for the respective parameter sets and compared them to the actual deforma-

tions in simulations. Two mode-wise comparisons of simulations and linear theory are

shown in Appendix D.1.6.

We found that the relative difference of the deformations in 3D Vertex Model simulations

and the analytical prediction was consequently less than 8% for all studied parameter

regimes and modes, and in average close to 3%. These observed differences might be

due to a variety of reasons. First, the analytical calculations hold true only in the limit

of infinitely small cells, which is not the case in simulations and leads to discretisation

errors. Secondly, the equilibrated mechanically homogeneous spherical tissues are not

completely homogeneous, but have a number of topological defects where the assumption of

a hexagonal packing breaks down. Therefore the local coarse grained mechanical properties

K, µ and ζ0, which are based on the assumption of the hexagonal packing, inhibit spatial

heterogeneities that are not taken into account in the analytical calculations. The same

holds for the perturbation of the line tensions, which lead to small spatial perturbations of

the shear modulus µ. Finally, in simulations we also measure higher order effects on the

equilibrium shape, which are not taken into account in the analytical calculations, which

only hold true in the linear regime of infinitesimal small perturbations.
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Taking into account these inherent limitations of the comparison, the 3% difference

between analytical results and the complex simulations in the Apical 3D Vertex Model for

different tissue sizes, mechanical parameters and all studied modes indicates a very good

agreement between the analytical calculations and simulations. To account also for the

deformations caused by an increase in tension inside a stripe of the mesoderm, like in the

sagittal contraction mechanism, we compare the analytical and simulation results for this

setup in Appendix D.2. There we show that also in this case the observed deformations

in Apical 3D Vertex Model simulations are close to the analytical predictions. These

comparisons once more confirm the good agreement between the two frameworks.
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4.3 Outlook

After showing that the proposed minimal mechanism of sagittal contraction can qualita-

tively account for the formation of a furrow, it will be very interesting to analyse if the

proposed mechanism can also account for the details of the process of furrow formation

observed in experiments. To that end the cellular flows and deformations in both simu-

lations and experiments can be compared, in order to identify a parameter regime where

experiments and simulations match. To achieve this correspondence it might be required

to account for constraints imposed by the vitelline membrane. Details of how the vitelline

membrane can be included in 3D Vertex Model simulations are given in Appendix D.2.

As stated above, the sagittal contraction mechanism constitutes a minimal model of

ventral furrow formation and while it can explain the onset of furrow formation even in the

acellular embryo it might not be sufficient to explain the whole furrowing in the wildtype

embryos, because other important contributions have been neglected. If for instance, cells

are able to control their volume, an increase in apical tension in the mesoderm would also

lead to the generation of a torque inside the mesodermal cells favouring the formation of

a furrow. Also, it was observed in experiments that the basal surfaces of the mesodermal

cells are depleted of Myosin II during the first steps of ventral furrow formation, which

could generate an additional talk enhancing the formation of a furrow. Using 3D Vertex

Model simulations, it will be interesting to study how the combination of both effects, i.e.

the contraction in the sagittal section and the generated torque in the ventral direction,

will influence the formation of the furrow. Active torques generated inside the tissue could

also be included in the continuous theory of epithelial mechanics discussed in this chapter.

This extension could allow the application of the continuous model to other phenomena of

epithelial deformation such as fold formation, which are not purely relying on apical force

generation, and again the analytical predictions could be compared to simulations of full

epithelia in the 3D Vertex Model.

Another promising branch of future research includes experiments where the Drosophila

embryo is modified, to test predictions derived from the sagittal contraction model. In

one potential experiment one could try to flatten the mesoderm along the sagittal section

(by squeezing the embryo), which should inhibit the formation of the furrow if the sagittal

contraction mechanism is a necessary driver of furrow formation. In another possible

experimental setup the mesoderm is locally stitched to the vitelline membrane before the

onset of gastrulation, the tissue shapes can be compared to simulations in the 3D Vertex

Model where also the position of a set of cells has been fixed. The sagittal contraction

model would suggest that this leads to a significant reduction of furrow formation.
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4.4 Summary

In this chapter we presented the sagittal contraction mechanism, and suggested that it plays

an important role in the formation the ventral furrow in the gastrulation of Drosophila. The

underlying idea of the mechanism is the following: a stripe of cells along the sagittal section

of the blastoderm, namely the mesoderm, experiences an increased contractility along their

apical surfaces and this contraction in the sagittal section leads to the formation of a furrow

in the ventral section of the embryo.

Using Apical 3D Vertex Model simulations we showed that a 2-fold increase of line tension

in the mesoderm can account for the formation of a significant furrow, suggesting that

our model represents a possible minimal mechanism for the initiation of ventral furrow

formation. Using a continuum model where the epithelium is represented by a thin shell

on a sphere with elastic bulk and shear moduli, we showed analytically that an increase

in active tension inside a stripe along the sphere can lead to the formation of a furrow

along the stripe. The strength of the deformation is mainly determined by the ratio

between the tissue’s shear and bulk modulus: the larger this ratio becomes, the stronger

the tissue is deformed and the deeper the resulting furrow. A comparison of the two

approaches showed quantitatively that both models predict the same deformation for a

given perturbation in tension, underlining the consistency of the two frameworks. Whereas

the continuum framework helped to identify the key mechanical parameter, the 3D Vertex

Model framework was used to identify equilibrium tissue configurations far from the regime

of linear tension perturbations. Furthermore, the 3D Vertex Model can be used to simulate

more complex tissue geometries and for instance to take into account constraints imposed

by the vitelline membrane, or the influence of more than two cell types.

The discussed mechanism of sagittal contraction purely relies on tensions generated along

the apical surfaces of the cells, it also leads to furrow formation if the blastoderm is

under tension and it leads to the straightening of the mesoderm in the sagittal section.

Thereby it can account for several recent experimental findings that were not considered

in previous models, and provides new perspectives on the mechanical drivers of ventral

furrow formation.

The combination of the Apical 3D Vertex Model and the emerging continuum theory

provides a set of tools, which can be used in the future to gain an even better understanding

of the details of gastrulation process. Possible ways to pursue this aim have been presented

in the Outlook section 4.3 of this chapter.



CHAPTER 5

Conclusions

5.1 Two complementary approaches to 3D epithelial

mechanics

In present thesis we introduced and combined two approaches to study the interplay be-

tween the mechanical stresses generated inside cells and the complex 3D shape of simple

epithelia: a 3D Vertex Model and a continuum model for epithelial mechanics. Both mod-

els have different complementary advantages as we discussed in Section 1.5.3, and in

this thesis we showed how to make use of them to research the shapes, properties and

morphogenetic deformations of simple epithelia.

The 3D Vertex Model describes the epithelial shape through networks of apical and basal

vertices, which in turn define discrete bonds, surfaces and cells. In the continuum model

the epithelium is described as a thin sheet and represented by the position of the tissue

mid-plane as a 2D manifold in 3D space. Effective work functions have been introduced in

both models representing the underlying mechanical assumptions. In the 3D Vertex Model

the mechanical work function depends on the position of vertices, the length of bonds, the

area of surfaces and the volume of cells. The respective work contributions result from a

spring like attachment of the vertices (representing coupling to the basement membrane),

line and surface tensions (representing the contractility of the acting cortex) and volume

pressure (representing cell volume control). In the continuum model the work function

depends on the in-plane deformation of the tissue through a bulk and shear modulus, the

distance to an underlying material through a spring-like potential and the curvature of the

mid-plane through a preferred curvature and bending modulus. Forces in the 3D Vertex

Model are derived from differentiating the mechanical work function with respect to vertex

positions, whereas in the continuum description force densities are given by the functional

derivative of the work function with respect to the local tissue shape.

Then we combined the two approaches through a mapping between their mechanical

parameters, hence showing how coarse grained mechanical parameters of epithelia in the

continuum model depend on the locally generated active stresses inside the cells in the

3D Vertex Model. Assuming a hexagonal packing of cells we derived the corresponding

mechanical parameters in the continuum theory, namely the effective tension, shear mod-
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ulus, bulk modulus, bending modulus and preferred curvature, as functions of the cell

density, the stresses generated inside the cells and the external forces. A numerical study

using the 3D Vertex Model showed that the obtained coarse grained parameters are valid

approximations of the elastic properties, both in ordered and in disordered tissues.

In the remainder of the thesis we applied the two methods to derive properties of flat and

spherical epithelia, and to get a deeper understanding of two processes in the morphogenesis

of the model system Drosophila melanogaster : cyst formation in the wing imaginal disc

and ventral furrow formation at the onset of gastrulation.

5.2 Applications

5.2.1 Shapes and stability of simple epithelia

Starting from the 3D Vertex Model we first analysed how the aspect ratio of cells in flat

epithelia depends on the distribution of tensions generated inside the cells and on the

external forces. Thereby we showed how cells can control their shapes by adapting their

relative lateral surface tensions compared to the tensions generated apically and basally.

Then we used the continuum model to study the influence of external compression on the

stability of flat epithelia. We found that a flat epithelium under compression can lose

its stability in two ways: in 1) cells obtain a negative bending modulus which gives rise

to short wave length undulations, whereas in 2) the bending modulus remains positive

and the tissue undergoes buckling on long wave lengths to decrease its total surface area.

The analytical predictions were verified quantitatively in 3D Vertex Model simulations,

indicating the consistency of the two approaches in the studied limits.

Then we used both approaches to derive equilibrium shapes of spherical epithelia sur-

rounding a compressible fluid. We hence showed how the radius of the sphere and the

height of the cells depend on the total tension generated inside the epithelium, but also

on the difference between the apical and basal tensions. A comparison of the analytical

predictions from the continuum theory and 3D Vertex Model simulations again yielded a

very good agreement between the two methods.

5.2.2 Cyst formation

We then proceeded to apply the 3D Vertex Model and the continuum theory to study the

formation of epithelial cysts in the wing imaginal disc in a collaboration with Christina

Bielmeier and Anne Classen. We found that cysts, clusters of epithelial cells that bulge out
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from the epithelium, are a general response to aberrant expression of cell fate specifying

transcription factors in patches of cells. By combining experiments and physical modelling,

we showed that cyst formation is mechanically driven by an increased contractility around

misspecified clones. In the framework of the continuum model, cyst formation can be un-

derstood as the buckling of a clamped, circular piece of tissue under compression following

the law of Laplace. We hence showed that the formation of cysts should be restricted to

an intermediate range of clone sizes, which was confirmed through quantifications of clone

shapes in experiments. Then we went beyond the linear stability analysis by using 3D

Vertex Model simulations and demonstrated that a three-fold increase in lateral surface

tension and apical line tension around the clones accounts also quantitatively for the cyst

shapes observed in experiments. We then verified that the regions of cyst formation in sim-

ulations concur well with buckling regions in the continuum theory for the corresponding

set of coarse grained parameters.

Simulations showed that the boundary effect leads to a strong apical constriction of small

clones, which was often observed to precede cellular extrusion. The consequent hypothesis

that small clones are extruded from the tissue was confirmed by a statistical analysis

of clone size distributions in experiments. Therefore we suggested that the discovered

boundary mechanism could act as a potential error correction mechanism to maintain

epithelial integrity, by mechanically extruding misspecified cells or clones from the tissue.

5.2.3 Ventral furrow formation by a sagittal contraction mecha-

nism

We finally studied the ventral furrow formation initiating the gastrulation of Drosophila

in a collaboration with Matteo Rauzi. During ventral furrow formation a region of the

blastoderm, the mesoderm, undergoes apical constriction and subsequently forms a furrow

and invaginates into the blastula. As a new minimal model for ventral furrow formation we

suggest the sagittal contraction mechanism, where ventral furrow formation is driven by the

constriction of the mesoderm along its curved sagittal cross section. This mechanism does

not rely on the generation of local torques in the mesoderm and leads to a straightening

of the mesoderm along the sagittal cross section, which is both in good agreement with

recent experimental observations. By 3D Vertex Model simulations we showed that the

proposed mechanism can indeed trigger the formation of a significant ventral furrow along

the constricting mesoderm on a spherical blastula. Using the continuum theory we then

demonstrated that the strength of the deformation of the sphere for a small increase in

tension inside the mesoderm depends mainly on the ratio between the tissue’s bulk and
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shear modulus. This prediction was quantitatively verified by numerical experiments in

the 3D Vertex Model, and the comparison to the analytical predictions.

We therefore showed that the sagittal contraction mechanism constitutes a minimal model

to drive the formation of a ventral furrow, and suggested that this previously neglected

mechanism plays an important role as a driver of the process. Our findings can help elu-

cidate why ventral furrow formation even occurs even if cellularisation has been inhibited,

and explain the flattening of the mesoderm in the course of the process along the sagittal

cross section. Finally we discussed possible directions of future research into the mechan-

ics of the gastrulation process in Drosophila that involve modelling, experiments and the

combination of both.

5.3 Outlook

In this thesis we developed a framework to study the mechanics of simple epithelia that

combines the computational advantages of a 3D Vertex Model with the generic features

and analytical approachability of a continuum theory. In future research, these models

can be further analysed and adapted, their mechanical assumptions can be tested in more

detail, and due to their generality they can be applied to shed light on the relation between

mechanics and shape of simple epithelia.

Starting from the mechanical assumptions of the 3D Vertex Model, we derived expressions

for the shape of cells in flat and spherical epithelia and for the coarse grained mechanical

tissue properties, as a function of the stresses generated on the level of cells and external

forces. Experimental measurements of the distribution of active stresses inside cells could

be used to make predictions about the cell shapes and the coarse grained mechanical

properties of the tissue. These predictions could then be compared to the actual cell

shapes, and to the measurable coarse grained mechanical tissue parameters (obtained for

instance in [26]). This way experiments can help to verify, or correct, the mechanical

assumptions made in the construction of the models.

Importantly, in addition to the already discussed phenomena, the general frameworks for

epithelial mechanics introduced in this thesis can be applied to a variety of fascinating

phenomena in morphogenesis that involve the deformation of simple epithelia. A glimpse

at the development of wing imaginal disc of Drosophila reveals that even in this intensely

studied system, the mechanical drivers of many morphogenetic events are not well under-

stood. Newly developed (live) imaging techniques and experimental methods, together

with the mechanical modelling techniques discussed in this thesis can help to shed light on

these phenomena. In a collaboration with Liyuan Sui and Christian Dahmann (TU Dres-
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den) we combine 3D Vertex Model simulations with biological experiments to elucidate the

role of novel mechanisms in the formation of folds between the hinge and the pouch region.

In this research we confirm once more the importance of basally and laterally generated

active tensions inside epithelial cells, which play an important role in the 3D Vertex Model

and have rarely been discusses in previous studies. In another collaboration with Maria

del Carmen Diaz de la Loza and Barry Thompson (The Francis Crick Institute) we apply

the introduced frameworks to study the forces that drive the expansion of the imaginal

wing disc shortly after pouch eversion.

At first sight, understanding the development of a fruit fly’s wing might not seem relevant

for medical research. However, we suggest that our fundamental research helps to reveal

general relationships between the forces generated inside and applied onto epithelial cells

and the 3D shape of simple epithelia, which can be applied to elucidate the origins of

other developmental and disease-related epithelial deformations that have not be addressed

previously.

For instance, the research on cyst formation in Drosophila presented in this thesis, brought

to light a potential mechanism of how epithelia can mechanically remove misspecified (and

cancerous) cells and hence maintain their genetical integrity. Future studies could focus on

the potential role of this stress-based repair mechanism in adult tissues. Furthermore, cysts

play an important role in the etiology of many human diseases, such as cancer where they

have been proposed to play a role in metastasis [59, 60, 61, 62, 63, 111, 112], polycystic

kidney disease [113] and polycystic ovary syndrome [114]. The mechanical drivers of cyst

formation in these contexts could be very similar to the formation of cysts in the wing

imaginal discs. Further studies of diseases that give rise to cyst-like-structures, could build

on our research of cyst formation in flies, to gain important insights into their possible

mechanical origins and might finally help to improve the diagnosis and treatment.

In a collaboration with Hendrik Messal and Axel Behrens (The Francis Crick Institute) we

explored in a similar direction of research by studying the initial steps of pancreatic cancer

in mice. We combine 3D Vertex Model simulations with in-vitro and in-vivo experiments

to estimate the mechanical changes that occur in cancerous cells, and to analyse their

influence on the cylindrical shape of the surrounding pancreatic epithelium.

The field of epithelial mechanics is a very versatile ground of research with many open

questions and interesting applications. Through this thesis we hope to contribute to it

through a combination of novel computational and analytical modelling approaches, and

we hope that it will find further applications to shed more light on the complex mechanics

of simple epithelia in 3D.
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APPENDIX A

Introduction

A.1 List of vertex models for epithelial mechanics

Table A.1 contains a list of previously published studies that used vertex models to

describe epithelial mechanics, sorted by the year of publication. The second column

denotes the type of the vertex models and if vertex positions in the models are in 2D or in

3D. Apical vertex models were discussed in more detail in Section 1.5.1, whereas lateral

vertex models were introduced in 4.1.2. The abbreviations IWD, PWD and ILD represent

the imaginal wing disc, imaginal pupal disc and imaginal leg disc of the Drosophila

embryo, respectively.

Study Model type Phenomenon Organism

Farhadifar et al. [35] 2D apical cell packing Drosophila IWD

Nagai et al. [36] 2D apical wound healing Xenopus

Landsberg et al. [37] 2D apical compartment boundaries Drosophila IWD

Aigouy et al. [38] 2D apical planar cell polarity Drosophila IWD

Staple et al. [39] 2D apical cell packing Drosophila IWD

Wartlick et al. [40] 2D apical tissue size control Drosophila IWD

Trichas et al. [41] 2D apical cell migration, rosettes Mouse

Aegerter-Wilmsen et al. [42] 2D apical tissue size control Drosophila IWD

Salbreux et al. [43] 2D apical retina patterning zebrafish

Aliee et al. [44] 2D apical compartment boundaries Drosophila IWD

Osterfield et al. [45] 3D apical appendage formation Drosophila egg

Murisic et al. [46] 3D apical tissue buckling None

Monier et al. [47] 3D apical fold formation Drosophila ILD

Odell et al. [100] 2D lateral gastrulation, tube formation Drosophila

Munoz et al. [101] 2D lateral gastrulation Drosophila

Brezavscek et al. [110] 2D lateral gastrulation Drosophila

Rauzi et al. [109] 2D lateral gastrulation Drosophila

Table A.1: List of previously published vertex models for epithelial mechanics.
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APPENDIX B

The 3D Vertex Model

B.1 The implementation

B.1.1 Obtaining the cell volume and surface areas from the ver-

tex positions

In the 3D Vertex Model a cell’s geometry is defined by a set of apical, basal and lateral

triangles, that by construction completely define the cell’s volume. A cell α which is

enclosed by Mα apical and basal vertices, has an apical and a basal surface consisting of

Mα triangles each. The apical and the basal surface areas Aaα and Abα are the sum of the

areas of the corresponding triangles. The area of a triangle ∆ that is given by the by the

convex hull of its corner points X∆1 ,X∆1 ,X∆1 , reads:

A∆ =
1

2
||(X∆1 −X∆2)× (X∆1 −X∆3)||, (B.1)

with ’×’ denoting the crossproduct of two vectors. Furthermore the cell has Mα lateral

surfaces connecting it to its neighbours, each consisting of 4 triangles. The lateral area Al
is the sum of the areas of the 4Mα lateral triangles. The apical and basal perimeter, P a

α

and P b
α respectively, are defined to be the lengths of the apical and the basal circumference.

In order to calculate the volume of cell α it is crucial to take into consideration the

orientation of each triangle of the surface towards the cell’s inside. A triangle ∆α
n =

(Xα
n,1,X

α
n,2,X

α
n,3) is defined to be oriented counterclockwise towards cell α, if an infinitesi-

mal movement along Vα
n =
−−−−−→
Xα
n,1X

α
n,2 ×

−−−−−→
Xn,1Xn,3 leads into the cell volume, and otherwise

it is oriented clockwise. Following this logic we can define an orientation function O for

each triangle towards the cell α:

O(∆α
n) =

1 if ∆α
n is oriented clockwise towards cell α

−1 else.
(B.2)

The outer surface of each cell α is made of 6Mα triangles (four for each edge are contributing

to the lateral surfaces, and two to the cell’s apical and basal basal surface), numbered
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∆α
1 , ...,∆

α
6Mα

. Then the volume of cell α is given by:

Vα =
6Mα∑
i=1

1

6
<
−−−−−→
Xα
i,1X

α
i,2 ×

−−−−−→
Xα
i,1X

α
i,3,X

α
i,1 > O(∆α

i ) (B.3)

where by ’< ., . >’ we denote the scalar product of the Euclidean vector space. Note that

VTetra(X1,X2,X3) =
1

6
<
−−−→
X1X2 ×

−−−→
X1X3,X1 > (B.4)

is the signed volume of the tetrahedron defined between the triangle (X1,X2,X3) and the

origin. The validity of the algorithm can be shown by the application of the theorem of

Gauß to the characteristic function of the polyhedron, where the integral over the volume

is first replaced by the integral of the normal along the surface, which then can be replaced

by the summation over the triangles of the surface. For details of the derivation please

refer for instance to [116].

B.1.2 Forces acting on the periodic box

We can give analytical expressions for the tensions exerted on the periodic boundaries by

using the basic geometrical constituents of the tissue: lines, triangles and tetrahedrons.

Let ∆ ∈ T be a triangular surface part of the tissue, given by the convex hull of its corner

points X∆1 ,X∆2 ,X∆3 . The normal of triangle ∆ is given by the cross product

N∆ = (X∆1 −X∆2)× (X∆1 −X∆3), (B.5)

and the direction of line l by:

dl = Xl1 −Xl2 . (B.6)

The tension on line l is denoted by Λl, the surface tension on triangle ∆ by T∆ and the

volume and pressure of cell α again by Vα and Pα. Then the force exerted on the periodic

boundaries reads:

FLx =
∂W

∂Lx
=

1

Lx

(∑
α∈T

PαVα +
∑
∆∈T

T∆

N2
∆,y +N2

∆,z

||N∆||
+
∑
l∈L

Λl

d2
l,x

|dl|

)
− TextLy (B.7)

FLy =
∂W

∂Ly
=

1

Ly

(∑
α∈T

PαVα +
∑
∆∈T

T∆

N2
∆,x +N2

∆,z

||N∆||
+
∑
l∈L

Λl

d2
l,y

|dl|

)
− TextLx (B.8)
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The corresponding tensions acting on the periodic box can be derived by dividing the forces

by the box size:

ζxx = − 1

Ly

δW

δLx
, ζyy = − 1

Lx

δW

δLy
. (B.9)

B.1.3 Initial tissue configurations

The study of equilibrium shapes of tissues in simulations requires the creation of initial tis-

sue configurations, which are then relaxed to determine the equilibrium. Here we describe

how different types of starting conditions for epithelia in simulations have been created

for the use of this thesis. We used three different ways to create initial conditions: in the

first one, the apical and basal sides of the tissue are assumed to have a regular hexagonal

packing of cells. The apical and basal x− y−position of each vertex are identical, and the

difference in z−positions establishes the initial tissue height. The size of the periodic box

has to match the periodicity of the regular hexagonal packing. This regular configuration

can then also be used to create irregularly packed tissue by continuously enforcing cell di-

visions of randomly chosen cells, and then relax the tissue to the next equilibrium. These

regular hexagonal packings can also be randomised by performing random cell divisions,

let the tissue relax and repeat the process until the desired tissue size is reached. Random

initial tissue configurations can also be created by calculating a 2D Voronoi tessellation of

randomly distributed points in a periodic box of size L0
x×L0

y. Apical and basal vertices are

then again assigned the same x− and y−coordinates, but different z−coordinates. Tissues

that are randomly generated in this way tend to be highly irregular and therefore far from

an equilibrium solution. An example of such an initial condition and the relaxed tissue

after minimising the work function with respect to vertex position, size of the periodic box

and tissue topology are shown in Fig. 2.7. To also account for epithelial tissues with a

spherical topology that for instance surround a cavity, we propose and provide two methods

to create initial configurations for them. Both methods are based on the positioning of the

apical cell centres on the sphere with radius Ra, and then defining the cells by the Voronoi

tessellation on the surface of the sphere. The basal vertex positions are the projection of

the apical vertex positions onto the sphere with radius Rb. If the apical surface of the

tissue is to face the outside, the apical radius has to be chosen bigger than the basal one

Ra > Rb and likewise Rb > Ra if the apical cell surfaces are facing the cavity.

Two ways have been used to initially distribute the apical cell centres on the sphere that

give rise to a random and a regular initial configuration, which are exemplarily shown in

Fig. B.1. In B.1d the points are distributed randomly on the sphere which gave rise to a
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highly disordered initial tissue. To distribute cell midpoints as regular as possible on the

sphere, we implemented an EQ sphere algorithm approach in Matlab, which is based on

the method proposed in [117]. In this case the initial topology of the tissue is already close

to a hexagonal packing and therefore it is closer to an equilibrium configuration than the

random packing. An example of such an initial configuration is shown in Fig. B.1d.

(a) Periodic hexagonal packing, made of
32x32 regular hexagonal tissue

(b) Random tissue configuration of 1000
cells created by a 2D Voronoi tessellation
around randomly distributed points.

(c) Regular configuration of 5000 cells, gen-
erated by using an EQ partition method.

(d) Random tissue configuration of 2000
cells created by a Voronoi tessellation on a
sphere around randomly distributed points.

Figure B.1: Creation of initial configurations of ordered and disordered tissues, both for
periodic flat and spherical tissues.
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B.2 Mechanical Properties

B.2.1 Geometrical quantities of regular hexagonal tissues

The epithelium consists of nx cells along the x-direction and ny cells along the y-direction.

The apical and basal surfaces of the cells are identical hexagons with height h, and are

described by their in-plane extensions lx and ly. The tissue has a total volume of Lx×Ly×h
and the cell density is denoted by ρ = nxny/LxLy. All cells have identical apical and basal

areas A, lateral surface area Al, equal apical and basal perimeter p and volume V , which

in the terms of the parametrisation (lx, ly, h) are given by:

A = lxly (B.10)

Al = 2(lx +

√
3

2
ly)h (B.11)

P = 2(lx +

√
3

2
ly) (B.12)

V = lxlyh (B.13)

B.2.2 Parametrisation of curved tissues

If a regular hexagonal cell is described by its height h, and its apical and basal radii, Ra

and Rb, as shown in Fig. 2.11, the apical, basal and lateral surface areas, apical and basal

perimeters and cell volume are given respectively through the following relations:

Aa =
3
√

3

2
R2
a (B.14)

Ab =
3
√

3

2
R2
b (B.15)

Al = 3 (Ra +Rb)

√
h2 +

3

4
(Ra −Rb)2 (B.16)

Pa = 6Ra (B.17)

Pb = 6Rb (B.18)

V =

√
3

2
h
(
R2
a +R2

b +RaRb

)
. (B.19)
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B.2.3 Mechanical properties of epithelia in the Apical 3D Vertex

Model

In A-Model epithelia, introduced in Section 2.1.6, cells have zero volume elasticity, no

basal and lateral tensions, but experience apical surface elasticity. These tissues are effec-

tively 2D manifolds defined by the positions of the apical vertices, since the work function

WA which was given in Equation 2.26 does not depend on the position of the basal vertices.

Each cell α is assumed to have a preferred area A0
α, and the apical surface tension Tα as a

function of the cell area Aα reads:

Tα(Aα) = K2D
α (Aα − A0

α). (B.20)

Let Λα be the line tension acting on the cell’s perimeter Pα; then the total internal work

of the tissue can be written:

WA
i =

∑
α

(
K2D
α

2
(Aα − A0

α)2 +
Λα

2
Pα

)
. (B.21)

We start the analysis by restricting to mechanically homogeneous tissues, where all cells

have the same mechanical properties (K2D
α = K2D, A0

α = A0,Λα = Λ,Λα = Λ for all α),

and the regular hexagonal packing is a stable equilibrium. The tissue is aligned along the

x and y-axis and consists of nx cells in x-direction and ny cells along y-direction, with

corresponding extensions lx and ly. Furthermore we require that all angles in the tissue

are 120◦, which is enforced by the force balance condition for the case of non-zero line

tension. The parametrisation is similar to the one chosen in Section 2.2.2 and sketched

in Fig. B.2. The apical area A and perimeter P of all cells are henceforth given by:

A = lxly, P = lx +

√
3

2
ly. (B.22)

With this the internal work for the tissue reads

WA
i = nxny

(
K2D

2
(
Lx
nx

Ly
ny
− A0)2 +

Λ

2
(
Lx
nx

+

√
3

2

Ly
ny

)

)
(B.23)

We study the tissue’s mechanical properties around the equilibrium cell density ρ0, and

derive the generated tension as well as the effective shear and bulk moduli. Note that if

all mechanical forces are acting along apical tissue surfaces there is no cost in bending the

tissue, which results in a zero bending modulus.
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Figure B.2: Apical configuration of nx × ny cells, in a hexagonal packing with periodic
boundary conditions. The configuration is uniquely described by their extensions lx and
ly.

Tension generated inside the tissue.

The tensions generated inside the tissue acting on the periodic box are given by

σxx = − 1

Ly

∂Wint

∂Lx
= K2D(

LxLy
nxny

− A0) +
1

2

ny
Ly

Λ (B.24)

σyy = − 1

Lx

∂Wint

∂Ly
= K2D(

LxLy
nxny

− A0) +

√
3

4

nx
Lx

Λ. (B.25)

If the external tension is isotropic, the hexagons are regular and the tissue is completely

described by its cell density ρ. Then the tension as a function of the cell density reads:

ζ = K2D(
1

ρ
− A0) +

31/4

2
√

2
Λ
√
ρ. (B.26)

For the tissue to be in equilibrium the internal tension has to be balanced by the external

tension Text that is acting on the epithelium, giving rise to the following force balance

condition

ζ(ρ0) = Text. (B.27)
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Bulk and shear modulus

As explained in Section 2.2.2, the bulk modulus is a coarse grained property of a 2D

material that describes the elastic response of the material to an infinitesimal bulk defor-

mation. Similarly, the shear modulus characterises the response to a shear deformation,

which preserves the total area but shears the tissue. Both types of deformations are illus-

trated for a Type II tissue in Fig. B.3. The precise definition of bulk and shear modulus

(a) Bulk deformation with scaling factor u.

(b) Shear deformation with scaling factor ε.

Figure B.3: Shear and bulk deformation of a flat tissue.

are given in Section 2.2.2, and also the derivation of the expressions is analogous to the

case of the Type I tissues. Therefore we just give the results here. The bulk modulus of a

tissue with equilibrium cell density ρ0 reads:

K =
K2D

ρ0

− 31/4

23/2
Λ
√
ρ0. (B.28)
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The bulk modulus increases with increasing surface elasticity, and is negatively correlated

with the line tensions generated by the cells. The corresponding shear modulus reads

µ =
31/4

23/2

√
Λ
√
ρ0, (B.29)

meaning that line tensions are required for the tissue to have a non-zero shear modulus,

and that the area elasticity does not influence the shear modulus explicitly, which is a

consequence of the area conserving property of the shear deformation. Note however that

for fixed external tension the variation of the area elasticity will lead to a change in cell

density and consequently will alter the shear modulus.

Equilibrium cell density of epithelia in the Apical 3D Vertex Model

For completeness we will now derive the equilibrium cell density of an A-Model tissue

under external tension. In equilibrium at the cell density ρ0, the external and the internal

tensions have to balance, which is ensured by the force balance Equation B.27:

Text = K2D(
1

ρ0

− A0) +
31/4

2
√

2
Λ
√
ρ0 (B.30)

The tissue has an equilibrium cell density only under the following condition:

Text >
37/6

25/2
(K2DΛ2)1/3 −K2DA0. (B.31)

The corresponding phase space for the existence of an equilibrium cell density in terms of

the only dimensionless parameters Text/(K2DA0) and Λ/(K2DA
3/2
0 ) is shown in Fig. B.4).

In the presence of positive line tensions Λ > 0 there will always exist an upper bound of

the cell density beyond which the tissue will collapse to a single point.
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- 1 0 1 2
0

1

2

3

4

Figure B.4: Existence of a stable equilibrium cell density as a function of the only
dimensionless quantities Text/(K2DA0) and Λ/(K2DA

3/2
0 ).
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B.3 Mechanical parameters in 3D Vertex Model sim-

ulations

Throughout the thesis many simulations have been run using the 3D Vertex Model. The

corresponding parameter set are referenced at the respective positions in the text and

specified in the following section.

B.3.1 Simulation parameters for 3D Vertex Model simulations

of homogeneous, planar tissues

# Section & Figure Ta Tb Λa Λb Tl V 0 K3D Text k

A 2.4.1, Fig. 2.17 5 5 10 10 1 25980 0.01 V 0

B 2.4.1, Fig. 2.17 5 5 10 10 V 25980 0.01 0 0

C 2.4.1, Fig. 2.18 5 5 10 10 1 25980 0.01 V 0

D 2.4.1, Fig. 2.18 5 5 10 10 V 25980 0.01 0 0

E 2.4.2, Fig. 2.19 2 2 V V 1 25980 0.01 0 0

F 2.4.2, Fig. 2.19 V V 10 10 1 25980 0.01 0 0

G 2.4.3, Fig. 2.20a 2 2 10 10 V 25980 0.01 0 0

H 2.4.3, Fig. 2.20b 2 2 V V 1 25980 0.01 0 0

I 2.4.4, Fig. 2.21 V V 0 0 1 25980 0.01 0 0

J 2.4.4, Fig. 2.21 0 0 V V 1 25980 0.01 0 0

K 2.4.5, Fig. 2.22 0.5 0.5 0 0 1 25980 0.01 V V

Table B.1: The mechanical parameters denote the apical and basal surface tensions (Ta
and Tb) and line tensions (Λa and Λb), the lateral surface tension (Tl), the preferred cell
volume (V 0) and the cells’ volume elasticity (K3D). The external compression is given by
Text and the attachment stiffness to the vitelline membrane by k. If one or more parameter
is varied in the set of simulations shown in the main text of the thesis, it is replaced by V.

B.3.2 Simulation parameters for simulations of homogeneous,

spherical epithelia

The following parameter set has been used to simulate a epithelium on a sphere in 2.4.6,

to compare simulation results to analytical predictions. The results of the simulations are

shown in Fig. 2.23.

• respective apical and surface tensions Ta and Tb are specified in the graph
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• lateral surface tension Tl = 1

• line tensions Λa = Λb = 0

• preferred cell volume V 0 = 25980

• cell bulk modulus K3D = 10−3

• basally volume, of basally enclosed cavity V 0
y = 257553800

• volume elasticity of enclosed volume: Ky = 10−10

The following set of mechanical parameters has been used to simulate an Apical 3D Vertex

Model epithelium on a sphere in 2.4.6. The results are shown in Fig. 2.24.

• preferred volume of sphere: V 0
y = 4/3πR3

0 = 14137170

• volume elasticity of sphere: Ky = 10−6

• area elasticity of cells K2D = 5

• the respective cell area A0 and apical line tension Λ are specified in the graph



APPENDIX C

Cyst Formation

C.1 Buckling instability of a spherical clone under

compression

Here we derive the stability of a flat rotational symmetric clone with radius R that is

clamped at its boundaries subjected to a compression γc. The constitutive dynamical

equation is given by:

α∂th(x, t) = −κ∆2h(x, t) + γ∆h− kh(x, t) (C.1)

Let now r denote the radial coordinate of the rotational symmetric clone. The clamped

boundary conditions are enforced by requiring

h(R) = 0 (C.2)

∂rh(R) = 0. (C.3)

Introducing the Laplace transform of the height function h̃(r, s)

h̃(r, s) =

∫ ∞
−∞

h(r, t)estdt, (C.4)

Eq. C.1 can be rewritten

−κ∆2
rh̃(r) + γc∆rh̃(r)− (k + αs)h̃(r) = 0, (C.5)

where ∆r is the Laplacian in polar coordinates with rotational symmetry

∆r =
∂2

∂r2
+

1

R0

∂

∂r
. (C.6)

The solution of Eq. C.5 reads

h̃(r, s) = AJ0(λ+(αs)r) +BJ0(λ−(αs)r) + CY0(χ+(αs)r) +DY0(χ−(αs)r), (C.7)
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where we have introduced 4 unknown constants A, B, C, D which have to be specified by

the boundary conditions; J0(x) and Y0(x) are Bessel functions of the first and second type.

Because Y0(x) diverges for x→ 0 and the height function must stay finite for r → 0 we can

infer C = D = 0. The two inverse length scales λ±(s) > 0 are solutions of the polynomial

equation

κλ4
± + γcλ

2
± + (k + αs) = 0, (C.8)

which can be obtained from the relations

∆rJ0(λr) = −λ2J0(λr) (C.9)

∆rY0(λr) = −λ2Y0(λr). (C.10)

Solving Eq. C.8, we find the following expressions for λ+ and λ−:

λ±(s, R) =

√
−γc(R)

2κ
±
√
γc(R)2

4κ2
− k + αs

κ
. (C.11)

Imposing the boundary conditions (C.2)-(C.3) then results in the following two relations

AJ0(λ+R) +BJ0(λ−R) = 0 (C.12)

Aλ+J1(λ+R) +Bλ−J1(λ−R) = 0, (C.13)

which have a non-zero solution for A and B provided that

F (s) = λ−J0(λ+ R)J1(λ−R)− λ+J0(λ−R)J1(λ+R) = 0 (C.14)

where in addition the trivial solution λ+ = λ− can be discarded as it leads to a zero

deformation. Eq. C.14 yields the solution for the rates of growth of perturbations of the

shape of the circular region. Stability of the circular tissue region requires that all these

solutions verify Re(s) < 0. The stability threshold of the clone can be found by solving the

equation F (0) = 0. In Supplementary Figures S8(E-F), we solve this equation numerically

to obtain a phase diagram as a function of R and Λ/γ0.

We now give analytical expressions for the boundaries of the stability diagram in simple

limits. We first note that in the limit of a large tissue region R→∞, the stability criterion

converges to the stability threshold of an infinite tissue, γc > −2
√
κk (Eq. 3.10). As a
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result, for large R the circular tissue region is unstable for

R <
Λ

γ0 + 2
√
kκ
. (C.15)

Subsequently we find the stability line in the limit where there is no elastic attachment to

the ECM, k = 0. The stability threshold then reads simply

J1

(√
−γc
κ
R

)
= 0, (C.16)

which has solution only for γc < 0, as the region is always stable for γc > 0. Denoting

j11 ' 3.832 the first zero of the Bessel function J1 and using Eq. 3.11, the condition for

the circular region to be unstable can be rewritten

γ0R
2 − ΛR + j2

11κ < 0 (C.17)

such that the sizes of unstable circular region are given for k = 0 by

Λ

2γ0

−

√(
Λ

2γ0

)2

− j2
11κ

γ0

< R <
Λ

2γ0

+

√(
Λ

2γ0

)2

− j2
11κ

γ0

for γ0 > 0 (C.18)

R >
j2

11κ

Λ
for γ0 = 0 (C.19)

R >
Λ

2γ0

+

√(
Λ

2γ0

)2

− j11
2κ

γ0

for γ0 < 0. (C.20)

The lower limit for all values of γ0 is R > j2
11κ/Λ for large Λ �

√
κ|γ0|. An upper limit

to stability exists only for positive tension γ0 > 0; for negative tension γ0 < 0 an infinite

tissue is unstable, such that for R→∞ the circular region is always unstable when k = 0.

The asymptotic stability criterion C.15 indicates however that for k > 0 and γ0 < 0, a

region of large stable tissue sizes arises at large R when the attaching spring elasticity is

large enough, k > γ2
0/(4κ). In Fig. 3.10 we show the phase space of the buckling region

of a clone as the function of the boundary contraction and the clone size.

C.1.1 Details of the parameter search

To account for the dependence of the final clone shape on the initial tissue configuration,

the minimisation process was run for 15 random initial configurations of 2000 cells for each

parameter set and each clone size. Then the same measurements of clone shape were done
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as in experiments and the results were compared.

In the 3D Vertex Model description of both the wild type tissue and the boundary effect

there are 8 free mechanical parameters that had to be determined - they are given with

their normalisation in Table 3.2.

The two constraints, given in Equations 3.14 and 3.14, enforce the right aspect ratios of

the wild type tissue and reduce the number of free mechanical parameters to 6. Then a

parameter search was performed by varying independently each of these free six parameters.

For each set of tested parameters, 60 simulations with 30 cyst sizes and 15 different initial

tissue configurations were run and for every mechanical equilibrium in simulations the same

quantities describing the shape of the cysts as in the experimental quantification, shown in

Fig. 3.7a, have been extracted and the respective averages and standard deviations were

calculated. These curves were generated for ∼ 200 different parameter sets. The set of

parameters that resembles the experimental data the most closely is given in Table 3.2.

C.1.2 Parameter variation for cyst simulations in the 3D Vertex

Model

In Section 3.2.3 we presented a set of parameter of the 3D Vertex Model, for which the

equilibrium tissue shapes nicely capture the properties of the clone size dependency of cyst

shapes observed in experiments. To test the sensitivity of the deformations in simulations

with respect to changes in single parameters, we individually varied parameters around the

parameters fitted to experimental observations.

The mechanical parameters for each set of simulations are the same as in Table 3.2,

except for indicated parameter changes and values marked by an asterisk in equations

below. Graphs show mean and standard error of the mean of 15 simulations per

clone size. Graphs illustrate experimental (dotted line) and simulated (continuous

line) deformation of apical (red) or basal (blue) cyst surfaces with respect to clone

size. Parameters ua, ub, wa and wb are illustrated in Fig. 3.7a, and normalised with

the height h of the surrounding tissue. The results are shown in Fig. C.1 and in the

following we will give the respective parameter changes and comment briefly on the results.

(A) Original parameter set as given in Table 3.2 with a 3-fold increase in apical

line and lateral surface tension at the MWI.

(B) Simulations of contractile bulk effect with 3-fold increased lateral surface tension in

misspecified cells only. Large clones are strongly deformed by such a perturbation, in

disagreement with experimental observations.
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(Tmut−mut,∗l = 3Tl, T
c,∗
l = 2Tl)

(C) Simulations with increased apical line and lateral surface tensions at the MWI by a

factor of 2. The clone deformation is weaker than observed in experiments.

(T c,∗l = 2Tl, Λc,∗
a = 2Λa)

(D) Simulations with increased apical line and lateral surface tensions at the MWI by a

factor of 4. The clone deformation is larger than observed in experiments.

(T c,∗l = 4Tl, Λc,∗
a = 4Λa)

(E-F) Simulations with 3 and 10 fold increased apical line tension alone at the MWI, and

no increase in lateral surface tension. Experimentally observed apical indentation is not

recapitulated in these conditions. This suggests that the contribution of contractility at

basolateral interfaces is necessary to describe the observed clone shapes.

(E: T c,∗l = Tl, Λc,∗
a = 3Λa;

F : T c,∗l = Tl, Λc,∗
a = 10Λa)

(G) Simulations with 3-fold increase in lateral surface tension at the MWI, and no

increase in apical line tension. Experimentally observed apical indentation and apicobasal

asymmetry is not recapitulated in these conditions.This indicates that the additional

symmetry breaking by the increase in apical line tension at the MWI is required to explain

the observed deformations.

(T c,∗l = 3Tl, Λc,∗
a = Λa)

(H) Simulations with increased stiffness of attachment to the ECM. With increasing

attachment stiffness the apical and basal surfaces deform less.

(k∗ = 2k)
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E 3-fold contractility increase: apical MWI only

G 3-fold contractility increase: lateral MWI only H Increased ECM stiffness

F 10-fold contractility increase: apical MWI only
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Figure C.1: The variation of single parameters around the set given in 3.2 shows their
individual influence on the shapes of the cysts.



APPENDIX D

Ventral furrow formation through

sagittal contraction

D.1 Solving the stress equation on a sphere

The derivations in this section have been originally carried out by Guillaume Salbreux and

are taken from his notes. Here we study a thin elastic sheet whose reference state has a

spherical shape. The elastic material has a 2D bulk modulus K and 2D shear modulus

µ. The inner volume of the sphere exerts a pressure P on the two-dimensional elastic

sheet, while the outside pressure is set to 0. We derive here the deformations of the tissue

resulting from perturbations in active tensions generated in the sheet.

As prerequisites we start by deriving important quantities of the differential geometry for

a slightly deformed sphere.

D.1.1 Differential geometry of the sphere

We choose the spherical coordinates (θ, φ), with the three associated vectors

ur = sin θ cosφux + sinφ sin θuy + cos θuz (D.1)

uθ = cos θ cosφux + cosφ sin θuy − sin θuz (D.2)

uφ = − sinφux + cosφuy (D.3)

We consider a slightly deformed sphere perturbed around the radius R0. A position X on

the sphere is located at coordinates θ, φ, such that

X(θ, φ) = [R0 + δR(θ, φ)] ur. (D.4)

The tangent vectors to the deformed sphere are

eθ = ∂θX = (R0 + δR)uθ + ∂θδRur (D.5)

eφ = ∂φX = (R0 + δR) sin θuφ + ∂φδRur (D.6)
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The normal vector reads

n =
1√

1 + (∂θδR
R0

)2 + (
∂φδR

R sin θ
)2

[
ur −

∂θδR

R0

uθ −
∂φδR

R0 sin θ
uφ

]
, (D.7)

and to lowest order in δR
R0

n ≈ ur −
∂θδR

R0

uθ −
∂φδR

R0 sin θ
uφ. (D.8)

The associated metric on the deformed reads

gij = R2
0

(
(1 + δR

R0
)2 + (∂θδR

R0
)2 ∂θδR∂φδR

R2
0

∂θδR∂φδR

R2
0

(1 + δR
R0

)2 sin2 θ + (
∂φδR

R0
)2

)
, (D.9)

which to lowest order in δR
R0

becomes

gij ≈ R2
0

(
1 + 2 δR

R0
0

0 sin2 θ(1 + 2 δR
R0

)

)
, gij ≈ R

1

R2

(
1− 2 δR

R0
0

0 1
sin2 θ

(1− 2 δR
R0

)

)
(D.10)

and the infinitesimal area element is given by
√
gdθdφ = R2

0(1 + 2 δR
R0

) sin θdθdφ.

We also introduce the Levi-civita tensor on the sphere

εij =

(
0 1

−1 0

)
(D.11)

The curvature tensor reads to first order in δR
R0

Cij = −(∂iej).n ≈ −R0

(
−1− δR

R0
+

∂2θδR

R0
− cos θ∂φδR

R0 sin θ
+

∂θ∂φδR

R0

− cos θ∂φδR

R sin θ
+

∂θ∂φδR

R0
−(1 + δR

R0
) sin2 θ + cos θ sin θ ∂θδR

R0
+

∂2φδR

R0

)

or

Ci
j ≈ − 1

R0

 −1 + δR
R0

+
∂2θδR

R0

1
sin2 θ

(
− cot θ

∂φδR

R0
+

∂θ∂φδR

R0

)
− cot θ

∂φδR

R0
+

∂θ∂φδR

R0
−1 + δR

R0
+ cot θ ∂θδR

R0
+

∂2φδR

R sin2 θ

 (D.12)

The covariant derivative ∇i of a vector field u is defined by the tangential portion of the
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usual derivative

∇iu =

(
∂ui

∂xj
+ ukΓijk

)
ei, (D.13)

where the Christoffel symbol Γ is defined by

gklΓ
k
ij =

1

2

(
∂gjl
∂xi

+
∂gli
∂xj
− ∂gij
∂xl

)
. (D.14)

Note that ∇ig
kl = 0 and ∇iε

kl = 0.

Finally, we denote Ã the traceless part of a tensor A, defined by Ãij = Aij− 1
n
δijAll where

n denotes the dimension of A.

D.1.2 Constitutive equations and force balance

The total deformation vector of the sphere u, has both a tangential and normal contribu-

tion:

u = uiei + unn (D.15)

The covariant constitutive equation for an active elastic material reads

σij = 2µũij +Kul
lgij + ζij (D.16)

where the elastic deformation tensor uij reads

uij =
1

2
(∇iuj +∇jui) + unCk

kgij (D.17)

and the tensor ζij corresponds to the active stress generated in the material.

The tangential and normal force balance equations on the sphere read respectively

∇iσ
ij = 0 (D.18)

σijCij = ∆P (D.19)

D.1.3 Solving the force balance equations

We start from an undeformed sphere with radius R0, which is subjected to an isotropic

active tension ζ0. The pressure inside the sphere is denoted P0. The force balance equation
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then reduces to:

P0 =
2ζ0

R0

. (D.20)

We now study deformations away from the undeformed sphere. The normal deformation

tensor un the corresponds to δR defined in Eq. D.4. The active stress tensor is taken here

isotropic, ζij = ζgij. The deformations, elastic tensions and active tensions following the

deformation are described by

R = R0 + δR (D.21)

P = P0 + δP (D.22)

σij = σij0 + δσij (D.23)

ζ = ζ0 + δζ. (D.24)

The resulting tensions read to linear order in (ui, δR):

δσij ' 2µũij +Kul
lgij + δζgij (D.25)

= δσeij + δζgij. (D.26)

with ũij the traceless part of the planar deformation tensor u, and δσeij the elastic stress.

The tangential force balance equation D.18 can be decomposed into two scalar equations

by contraction with the covariant derivatives:

∇i∇jσ
ij = 0 (D.27)

εj
k∇k∇iσ

ij = 0. (D.28)

Using this development to linear order, these two equations can be rewritten...

The normal force balance equation D.19 can be rewritten

ζ0δCk
k +

1

R0

δσk
k = δP, (D.29)
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D.1.4 Spherical harmonics

Scalar spherical harmonics

The spherical harmonics expansion of a scalar field f on a sphere reads

f(θ, φ) =
∞∑
n=0

n∑
m=−n

fnmYnm(θ, φ) (D.30)

Note that in the following we will use the shorthand notation
∑∞

n=0

∑n
m=−n ≡

∑
n,m.

The spherical harmonics

Ynm(θ, φ) = αnmPn(cos θ)eimφ (D.31)

are eigenfunctions of the Laplace equation on the sphere:

∇i∇iYnm = −n(n+ 1)Ynm (D.32)

where the Laplace operator reads

∇i∇if = ∂2
θf + cot θ∂θf +

1

sin2 θ
∂2
φf. (D.33)

αnm are normalisation coefficients, given by

αnm =

√
2n+ 1

4π

(n−m)!

(n+m)!
(D.34)

such that the orthonormality condition∫ θ=π

θ=0

∫ φ=2π

φ=0

YnmYn′m′
∗ sin θdθdφ = δnn′δmm′ (D.35)

is fulfilled.

Vectorial spherical harmonics

A vectorial field can represented in spherical harmonics, by considering it to be the gradient

field of a scalar field, and thus it can be obtained by differentiating a field of scalar spherical

harmonics [118]. For vectors one can define s1
nm ≡ ∂iYnmei, with ei the tangent vectors of
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the undeformed sphere:

s1
nm = ∂θYnmeθ + ∂φYnmeφ (D.36)

= αnm
[
∂θ(Pn(cos θ))eimφeθ + αnmimPn(cos θ)eimφeφ

]
(D.37)

= αnm∂θ(Pn(cos θ))eimφeθ + αnm
1

sin2 θ
imPn(cos θ)eimφeφ (D.38)

= αnm∂θ(Pn(cos θ))eimφuθ + αnmim
1

sin θ
Pn(cos θ)eimφuφ (D.39)

and s2
nm ≡ n× s1

nm:

s2
nm = αnm

1

sin θ
imPn(cos θ)eimφeθ − αnm sin θ∂θ(Pn(cos θ))eimφeφ (D.40)

= αnm
1

sin θ
imPn(cos θ)eimφeθ − αnm

1

sin θ
∂θ(Pn(cos θ))eimφeφ (D.41)

= αnmim
1

sin θ
Pn(cos θ)eimφuθ − αnm∂θPn(cos θ)eimφuφ. (D.42)

Tensorial spherical harmonics

To obtain tensorial spherical harmonics, two traceless tensors S
(n,m)
1 and S

(n,m)
2 can be

constructed [119]:

S
(n,m)
1

ij
=
[
∇i∇j − 1

2
∇k∇k

]
Ynm (D.43)

S
(n,m)
2

ij
= 1

2

[
εik∇j∇k + εjk∇i∇k

]
Ynm. (D.44)

By making use of the eigenfunction property (Eq. D.32) one can show that the following

identities hold:

∇i∇jS
(n,m)
1 i

j =
n(n+ 1)

2
[n(n+ 1)− 2]Ynm (D.45)

εj
k∇k∇iS

(n,m)
1 i

j = 0 (D.46)

∇i∇jS
(n,m)
2 i

j = 0 (D.47)

εj
k∇k∇iS

(n,m)
2 i

j =
n(n+ 1)

2
[n(n+ 1)− 2]Ynm. (D.48)
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D.1.5 Deformations resulting from small perturbations in the

active tension

The stress tensor

The deformation field is a vector field on the sphere, which can be decomposed in vectorial

spherical harmonics:

u =
∑
n,m

[
Anms1

nm +Bnms2
nm

]
(D.49)

Using this notation together with the relations D.43-D.48, the elastic stress tensor, given

in Eq. D.25, becomes

δσeij = µ(∇iuj +∇jui −∇ku
kgij) +K(∇ku

k +
δR

R0

)gij

=
∑
n,m

Anm
[
2µ∇i∇jYnm + (K − µ)∇k∇kYnmg

ij
]

+Bnm

[
µεjk∇i∇kY + εik∇j∇kYnm + (K − µ)∇kε

kl∇lYnmg
ij
]

+K
δRnm

R0

Ynmg
ij

=
∑
n,m

Anm
[
2µ∇i∇jYnm + (K − µ)∇k∇kYnmg

ij
]

+Bnm

[
µ(εjk∇i∇kYnm + εik∇j∇kYnm)

]
+K

δRnm

R0

Ynmg
ij

=
∑
n,m

K(
δRnm

R0

− Anmn(n+ 1))Ynmg
ij + 2µAnm

[
∇i∇jYnm −

1

2
∇k∇kYnmg

ij

]
+2µBnm

εjk∇i∇kYnm + εik∇j∇kYnm
2

The isotropic perturbation of the active stress, which can be decomposed into the homoge-

neous contribution ζ0 and the perturbation δζ, reads if represented in spherical harmonics:

ζ ij(θ, φ) = (ζ0 + δζ(θ, φ)) gij =

(
ζ0 +

∑
n,m

δζnmYnm(θ, φ)

)
gij
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Force balance

The force balance equations D.29-D.28 can then be used together with the relations D.45-

D.48, to obtain relations relating coefficients of the deformation and active stress in the

spherical harmonics expansion:

−n(n+ 1)K
δRnm

R0

+ AnmK(n(n+ 1))2 + Anm2µ
n(n+ 1)

2
(n(n+ 1)− 2)− δζnmn(n+ 1) = 0

Bnmµ
n(n+ 1)

2
(n(n+ 1)− 2) = 0

2K(
δRnm

R0

− n(n+ 1)Anm) = R0δPnm − 2δζnm + ζ0(2− n(n+ 1))
δRnm

R0

.

These equations can be solved for Rnm, Anm and Bnm to obtain the resulting deformations

for a given perturbation ζnm.

For the zeroth mode n = m = 0 the deformation corresponds to a change in radius:

δR00

R0

= − 1
K
ζ0

+ 2π
KyR4

0

ζ0
− 1

δζ00

ζ0

(D.50)

A00 =
1− 2π

KyR4
0

ζ0

2 µ
ζ0

(K
ζ0

+ 2π
KyR4

0

ζ0
− 1)

δζ00

ζ0

(D.51)

B00 = 0 (D.52)

The first modes n = 1 leads only to a translation of the sphere, and the resulting defor-

mations consequently read

δR00

R0

= 0 (D.53)

A1m =
δζ1m

2K
, (D.54)

and for modes n > 1 one finds the following in-plane and radial deformations

δRnm

R0

=
−2

K
µ
n(n+ 1) + 2K

ζ0
+ n(n+ 1)− 2

δζnm
ζ0

(D.55)

Anm =
ζ0

Kn(n+ 1) + 2Kµ
ζ0

+ (n(n+ 1)− 2)µ

δζnm
ζ0

(D.56)

B00 = 0. (D.57)
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D.1.6 Mode-wise comparison of Apical 3D Vertex Simulations

and analytical calculations

In section 4.2.3 we discuss how to compare the analytically obtained spherical deforma-

tions to equilibrium shapes obtained in Apical 3D Vertex Model simulations, by perturbing

the homogeneous tension with pure spherical harmonics. Here we give the resulting de-

formations for two tissues consisting of 6,000 cells, to show the good match between the

continuous and the 3D Vertex Model framework. The tables below show the values for

the ratio between the spherical harmonics coefficients of the relative deformation and the

relative perturbations in tension (δR/R0)nm / (δR/δ0)nm obtained, both from simulations

and from analytical predictions given in Eqs. 4.7a-4.7c.

The mechanical parameters for the results shown in table 4.10 have been chosen as follows:

V 0
y = 875958700 (D.58)

Ky = 10−6 (D.59)

Λ = 12000 (D.60)

Ka = 1 (D.61)

A0
a = 575.959. (D.62)

The resulting coarse grained mechanical parameters of the equilibrated tissue made of 6,000

cells with mean radius R0 = 593.307 read

ζ0 = 593.28 (D.63)

K = 531.879 (D.64)

µ = 205.608. (D.65)

For a perturbation δζ(φ, θ) = 0.002ζ0Ynm(φ, θ) around the homogeneous tension ζ0, the

resulting deformations are shown in the following table together with the predictions from

the analytical theory given in Eqs. 4.7a-4.7c.

Table D.1: Comparison of the quantity (δR/R0)nm / (δR/δ0)nm for modes n,m ≤ 4
obtained from simulations and from analytical calculations with the mechanical parameters
given above.
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n/m 0 1 2 3 4 analytical predictions

0 -6.9 e-05 -7.4e-05

1 3.8e-06 2.06 e-06 0

2 -0.089 -0.091 -0.093 -0.094

3 -0.045 -0.045 -0.047 -0.049 -0.047

4 -0.027 -0.027 -0.028 -0.028 -0.029 -0.028

As additional test we repeated the test with a different set of mechanical parameters as

follows:

V 0
y = 875958700 (D.66)

Ky = 10−6 (D.67)

Λ = 15000 (D.68)

Ka = 1 (D.69)

A0
a = 575.959. (D.70)

The resulting coarse grained mechanical parameters of the equilibrated tissue made of 6,000

cells with mean radius R0 = 593.0 read

ζ0 = 680.96 (D.71)

K = 479.792 (D.72)

µ = 257.111. (D.73)

Also for this equilibrium setup we studied the deformations of the epithelium resulting

from a perturbation of the homogeneous tension ζ0 by δζ(φ, θ) = 0.002ζ0Ynm(φ, θ) for

modes n, n ≤ 4. The resulting normalised deformations are given in the following table

together with the predictions from the analytical theory derived above and given in Eqs.

4.7a-4.7c.
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Table D.2: Comparison of the quantity (δR/R0)nm / (δR/δ0)nm for modes n,m ≤ 4
obtained from simulations and from analytical calculations with the mechanical parameters
given above.

n/m 0 1 2 3 4 analytical predictions

0 -9.1e-05 -8.7e-05

1 1.4e-05 2.0e-05 0

2 -0.115 -0.114 -0.129 -0.120

3 -0.054 -0.060 -0.057 -0.063 -0.059

4 -0.035 -0.034 -0.035 -0.035 -0.037 -0.035

Both tables D.1 and D.2 show a good agreement between the analytical solution

and the simulation results over all studied modes of perturbations. The average errors lie

well within a 5% margin, and the possible reasons for these deviations are discussed in

section 4.2.3.

Comparison of deformations in simulations and analytical predictions for sagit-

tal contraction mechanism

After showing the good agreement of the deformations between simulations and analytical

results for spherical harmonic perturbations in tension mode by mode, we next simulated

an epithelium consisting of 10,000 cells in the Apical 3D Vertex Model and studied the

deformation resulting from an increase in tension along a stripe of the tissue. As in 4.6 all

cells inside a rectangular stripe along the surface of the sphere were defined as mesodermal

cells. For the continuum calculations, the equivalent region has been defined to be the

mesoderm on a discretised sphere as described in 4.2.2. Both initial configurations of the

tissue and the region of the mesoderm are shown in Fig. D.1a. We then defined a measure

of the deviation of the tissue’s shape from a perfect sphere, to compare the results of

the two theories. We therefore chose the spherical presentation where the distance of the

epithelium from its midpoint is given as a function of the angles R(θ, φ), and defined the

measure of deformation D per unit increase in tension inside the stripe:

D =
∂
(

std(R(θ, φ))/ < R(φ, ζ) >
)

∂(δζ/ζ0)
. (D.74)

< R(θ, φ) > and std(R(θ, φ)) are the mean and standard deviation of the distance of all

cellular midpoints in the Apical 3D Vertex Model, and of the discrete points from the
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simulations linear SH calculation

(a) Initial configurations (b) Parametrisation.

Figure D.1: a) To compare simulations and continuous calculations, equivalent initial
configurations of the blastula have been created made of 10,000 cells in simulations and of
40,000 grid points on a sphere for the spherical harmonics calculation. b) A parametrisation
of the blastula in spherical coordinates R(θ, φ) = R0 + δR(θ, φ) was used.

centre of the epithelium in the continuous theory. Note that this measure was found to be

better suited for the comparison, since it is less dependent on local inhomogeneities than

for instance measuring the maximal and the minimal distance of points from the midpoint

of the sphere. The resulting deviations obtained in both models for varying K/µ are shown

in Fig. D.2.

The graph shows clearly that in the studied range of parameters, both models predict the

same response of the tissue shape to an increase in tension, for corresponding mechanical

parameters. From these findings we conclude that the models are equivalent in the studied

regime of weak perturbations, and that the continuum model can be seen as the limit of

the 3D Vertex Model simulations. The initial deformations of the tissue do not depend on

the detailed shape of the cells, but can be predicted only by knowing the coarse grained

shape and the cell densities.
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linear SH calculation

Figure D.2: Deformations resulting from small increase in tension in the mesoderm
obtained in 3D Vertex Model simulations of blastula and by using linear response theory.
The deformation of the tissue is measured by the standard deviation of the vertex distances
(in simulations) or grid points (in the linear theory) from the tissue midpoint, and presented
as a function of the ratio of bulk and shear modulus.

D.2 The vitelline membrane in the 3D Vertex Model

In order to quantitatively model the details of the process it is required to take into

account the mechanical constraints imposed by the vitelline membrane on the blastula.

The vitelline membrane is represented by a 2D manifold, which is an ellipsoid centred at

the Cartesian origin and the axes of the ellipsoid are aligned with the axes of the Cartesian

coordinate system. The length of the corresponding half-axes are given by LM
x , LM

y and

LM
z and the vitelline membrane is defined by the equation

M = {(x, y, z) :

(
x

LM
x

)2

+

(
y

LM
y

)2

+

(
z

LM
z

)2

= 1}. (D.75)

A point (x, y, z) that is not part of M lies in the interior of the vitelline membrane if

(x/Lx)
2 + (y/Ly)

2 + (z/Lz)
2 < 1 and outside otherwise.

With this definition the vitelline membrane can be taken into account by writing the
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mechanical work function of the epithelium as follows:

W =
∑
α∈C

(
K2D
α

2
(Aα − A0

α)2 +
Λα

2
Pα

)
+
∑
v∈V

(1− δMv )
kM

2
(dMv )2 +

Ky

2
(Vy − V 0

y )2 (D.76)

where δMv = 1 only if the vertex v lies in the interior of the vitelline membrane, and dMv
denotes the shortest cartesian distance of v to M. The mechanical parameter kM is the

spring constant of the spring like force experienced by the vertices once they leave the

interior of the vitelline membrane. The ellipsoidal vitelline membrane is required in the

model to account for the non-spherical shape of the tissue if the tissue is considered to

be spatially homogeneous. The volume elasticity of the blastocoel is represented by the

preferred volume V 0
y and the volume elasticity Ky. An example of a homogeneous tissue

under tension surrounding the blastocoel and confined inside the vitelline membrane is

shown in Fig. D.3.

Figure D.3: The blastoderm in the 3D Vertex Model is a 2D manifold enclosing the
blastocoel which exerts a pressure onto the tissue. All forces are assumed to act in the
apical surface of the tissue. The vitelline membrane surrounding the tissue is represented
by an ellipsoid with short axes LM

x and LM
y , and long axis LM

z , which exerts a springlike
force upon penetration by the vertices.
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