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Abstract

Physical processes rely on the transmission of energy and information across scales. In the

last century, theoretical tools have been developed in the field of statistical physics to in-

fer macroscopic properties starting from a microscopic description of the system. However,

less attention has been devoted to the remodelling of microscopic degrees of freedom by

macroscopic feedback. In recent years, ideas from non-equilibrium physics have been applied

to characterise biological and artificial intelligence systems. These systems share in com-

mon their structure in discrete scales of organisation that perform specialised functions. To

correctly regulate these functions, the accurate transmission of information across scales is

crucial. In this thesis we study the role of macroscopic feedback in the remodelling of micro-

scopic degrees of freedom in two paradigmatic examples, one taken from the field of biology,

the self-organisation of specialisation and plasticity in a social wasp, and one from artificial

intelligence, the remodelling of deep neural networks in a stochastic many-particle system.

In the first part of this thesis we study how the primitively social wasp Polistes canadensis

simultaneously achieves robust specialization and rapid plasticity. Combining a unique exper-

imental strategy correlating time-resolved measurements across vastly different scales with

a theoretical approach, we characterise the re-establishment of the social steady state after

queen removal. We show that Polistes integrates antagonistic processes on multiple scales

to distinguish between extrinsic and intrinsic perturbations and thereby achieve both robust

specialisation and rapid plasticity. Furthermore, we show that the long-term stability of the

social structure relies on the regulation of transcriptional noise by dynamic DNA methylation.

In the second part of this thesis, we ask whether emergent collective interactions can be

used to remodel deep neural networks. To this end, we study a paradigmatic stochastic many-

particle model where the dynamics are defined by the reaction rates of single particles, given

by the output of distinct deep neural networks. The neural networks are in turn dynam-

ically remodelled using deep reinforcement learning depending on the previous history of

the system. In particular, we implement this model as a one dimensional stochastic lattice

gas. Our results show the formation of two groups of particles that move in opposite direc-

tions, diffusively at early times and ballistically over longer time-scales, with the transition

between these regimes corresponding to the time-scale of left/right symmetry breaking at



the level of individual particles. Over a hierarchy of characteristic time-scales these particles

develop emergent, increasingly complex interactions characterised by short-range repulsion

and long-range attraction. As a result, the system asymptotically converges to a regime char-

acterised by the presence of anti-ferromagnetic particle clusters. To conclude, we characterise

the impact of memory effects and demographic disorder on the dynamics.

Together, our results shed light on how non-equilibrium systems can employ macroscopic

feedback to regulate the propagation of fluctuations across scales.



Zusammenfassung

Physikalische Prozesse beruhen auf der Übertragung von Energie und Information über Ska-

len hinweg. Im letzten Jahrhundert wurden im Bereich der statistischen Physik theoretische

Instrumente entwickelt, um aus einer mikroskopischen Beschreibung des Systems auf ma-

kroskopische Eigenschaften zu schließen. Weniger Aufmerksamkeit wurde jedoch der Umge-

staltung mikroskopischer Freiheitsgrade durch makroskopische Rückkopplung gewidmet. In

den letzten Jahren wurden Ideen aus der Nichtgleichgewichtsphysik angewandt, um biologi-

sche und künstliche Intelligenzsysteme zu charakterisieren. Diesen Systemen ist gemeinsam,

dass sie auf diskreten Organisationsebenen strukturiert sind und spezialisierte Funktionen

ausführen. Um diese Funktionen korrekt zu regulieren, ist die genaue Übertragung von In-

formationen über Skalen hinweg entscheidend. In dieser Arbeit untersuchen wir die Rolle der

makroskopischen Rückkopplung bei der Umgestaltung mikroskopischer Freiheitsgrade an zwei

paradigmatischen Beispielen, einem aus dem Bereich der Biologie, der Selbstorganisation von

Spezialisierung und Plastizität in einer sozialen Wespe, und einem aus dem Bereich der künst-

lichen Intelligenz, der Umgestaltung von tiefen neuronalen Netzen in einem stochastischen

Vielteilchensystem.

Im ersten Teil dieser Arbeit untersuchen wir, wie die primitiv soziale Wespe Polistes ca-

nadensis gleichzeitig eine robuste Spezialisierung und schnelle Plastizität erreicht. Durch die

Kombination einer einzigartigen experimentellen Strategie, die zeitaufgelöste Messungen über

sehr unterschiedliche Skalen hinweg mit einem theoretischen Ansatz kombiniert, charakteri-

sieren wir die Wiederherstellung des sozialen Gleichgewichts nach dem Entfernen der Königin.

Wir zeigen, dass Polistes antagonistische Prozesse auf mehreren Ebenen integriert, um zwi-

schen extrinsischen und intrinsischen Störungen zu unterscheiden und dadurch sowohl eine

robuste Spezialisierung als auch eine schnelle Plastizität zu erreichen. Darüber hinaus zeigen

wir, dass die langfristige Stabilität der Sozialstruktur von der Regulierung des Transkripti-

onsrauschens durch dynamische DNA-Methylierung abhängt.

Im zweiten Teil dieser Arbeit stellen wir die Frage, ob emergente kollektive Interaktionen

genutzt werden können, um tiefe neuronale Netze umzugestalten. Zu diesem Zweck untersu-

chen wir ein paradigmatisches stochastisches Vielteilchenmodell, bei dem die Dynamik durch



die Reaktionsraten einzelner Teilchen definiert ist, die durch den Output verschiedener tiefer

neuronaler Netze gegeben sind. Die neuronalen Netze werden ihrerseits durch tiefes Ver-

stärkungslernen in Abhängigkeit von der Vorgeschichte des Systems dynamisch umgestaltet.

Insbesondere implementieren wir dieses Modell als ein eindimensionales stochastisches Git-

tergas. Unsere Ergebnisse zeigen, dass sich zwei Gruppen von Teilchen bilden, die sich in

entgegengesetzte Richtungen bewegen, und zwar diffus zu frühen Zeiten und ballistisch über

längere Zeitskalen, wobei der Übergang zwischen diesen beiden Regimen der Zeitskala des

Links/Rechts-Symmetriebrechens auf der Ebene der einzelnen Teilchen entspricht. Über ei-

ne Hierarchie charakteristischer Zeitskalen entwickeln diese Teilchen emergente, zunehmend

komplexe Wechselwirkungen, die durch kurzreichweitige Abstoßung und weitreichende An-

ziehung gekennzeichnet sind. Infolgedessen konvergiert das System asymptotisch zu einem

Zustand, der durch das Vorhandensein von antiferromagnetischen Teilchenclustern gekenn-

zeichnet ist. Abschließend charakterisieren wir die Auswirkungen von Gedächtniseffekten und

demografischer Unordnung auf die Dynamik.

Insgesamt werfen unsere Ergebnisse ein Licht darauf, wie Nichtgleichgewichtssysteme ma-

kroskopische Rückkopplungen nutzen können, um die Ausbreitung von Fluktuationen über

Skalen hinweg zu regulieren.
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1. Introduction

Denn kein Gedicht gilt dem Leser, kein Bild dem Beschauer, keine Symphonie der Hörerschaft.

Walter Benjamin - Die Aufgabe des Übersetzers (Illuminationen)

P hysical processes rely on the transmission of energy and information across scales. A

striking example is that of turbulent flows, where energy is transferred across a wide

range of spatial scales, a phenomenon known as energy cascade [1–3]. One of the longstanding

goals of physics has been to understand how macroscopic structures emerge as a result of

interactions between their fundamental microscopic components.

The field of statistical physics has witnessed during the last century the development

of powerful theories designed to provide answers to this question. For instance, one of the

cornerstones of modern physics, the Renormalization group (RG) [4–6], leverages the power

of scale transformations to obtain information about the large scale behaviour of systems

close to a critical point. In particular, fixed points of the RG flows define universality classes,

collections of models that, although they differ in their microscopic details, exhibit the same

properties in a scaling limit [7–9].

However, whereas research has traditionally focused on the emergence of macroscopic struc-

tures from microscopic constituents, the effect of macroscopic feedback on the remodelling

of microscopic degrees of freedom has received less attention. Furthermore, in recent years

research on non-equilibrium systems, in particular in the field of active matter [10–12], has

increased, fueled by experimental advances. Although these systems share in common their

constant consumption of energy at the microscopic scale, they do not have an unified theo-

retical description, hindering the study of their microscopic and macroscopic properties.

The goal of this thesis is to study the role of macroscopic feedback in the remodelling of

microscopic degrees of freedom in non-equilibrium systems, drawing lessons from the fields

of biology, in particular from social insects, and artificial intelligence. In this chapter we

introduce the biological and artificial systems that we consider in Chapter 2 and Chapter 3

and motivate why they are well suited to providing answers to this question.

1
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Cells in tissuesMesoscopic structuresMolecules

Active feedback

Emergence

Figure 1.1.: Cartoon illustrating the interplay between different levels of biological organisa-
tion.

1.1. Biological systems are organised in a discrete hierarchy of

spatial scales

Biological systems are paradigmatic examples of non-equilibrium active matter. They operate

far from thermal equilibrium, relying on a continuous influx of energy to form and maintain

complex structures that perform specialized functions. As Erwin Schrödinger aptly put it in

his seminal lecture “What is life” [13] more than one hundred years ago:

A living organism continually increases its entropy – or, as you may say, produces

positive entropy – and thus tends to approach the dangerous state of maximum

entropy, which is death. It can only keep aloof from it, i.e. alive, by continually

drawing from its environment negative entropy.

In order for biological systems to operate in such a noisy environment their dynamics have

to be tightly regulated, as the correct regulation of function is crucial for the survival of

the organism. The paramount importance of function in biology is reflected in one of the

main features of biological systems, the existence of discrete levels of organisation at different

spatial scales, associated to structures such as molecules, cells or tissues, that perform specific

functions. It is precisely the connection between structure and function what makes the study

of these structures a central question in biological research.

Therefore, in order to operate correctly, biological systems rely on accurate transmission

2
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Suprabasal
layer

Basal 
layer

Secretory cells Ciliated cells Basal stem cells

Basal cell
ablation

Figure 1.2.: Reprogramming of differentiated cells in the lung epithelium after ablation of
the basal stem cell layer. Adapted by permission from Springer Nature: Nature
(Dedifferentiation of committed epithelial cells into stem cells in vivo, Tata, P.R.
et al.), (2013) [15]

of information across different levels of biological organisation. As a result, the dynamics

at a single scale are regulated by intricate interactions across multiple spatial scales. For

instance, Figure 1.1 schematically represents the complex interplay between three levels of

this hierarchical structure: molecules that organise into cells, that in turn are structured into

tissues.

Although traditionally the focus of biophysical research has been on how biological systems

form and maintain complex structures in noisy environments, in recent years, the remodelling

of such structures after a perturbation has sparked experimental (Figure 1.2) and theoretical

interest [14–16]. However, robust specialization in a noisy environment and rapid plasticity

against perturbations cannot be simultaneously achieved relying on bistability alone, as in

that case the stability of the system against fluctuations mitigates the rapid reestablishment

of lost states [17–19].

In this thesis we study how this dilemma could be resolved using feedback across different

scales of spatial organisation. In particular, in the first part of this thesis we will study how

a social insect, a primitively social paper wasp, exploits interactions across multiple spatial

scales to simultaneously achieve robust specialisation and rapid phenotypic plasticity. In the

next section we will introduce the concept of phenotypic plasticity, laying the ground for the

work that will be presented in Chapter 2.

1.2. The regulation of biological function after perturbations relies

on phenotypic plasticity

Phenotypic plasticity is the ability of organisms to exhibit more than one phenotype from

a single genotype in response to environmental changes [20, 21]. A fundamental property

3
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a b

Figure 1.3.: a) Honeybee performing a waggle dance in front of a crowd of observer bees.
Adapted from [28]. b) Schematic description of honeybee movements during a
waggle dance. Adapted from [29].

for the survival of organisms under environmental stress, examples of phenotypic plasticity

can be found in both the animal and the plant kingdoms [22, 23]. Throughout this thesis

we differentiate phenotypic plasticity from developmental plasticity [24, 25], understood as

the ability of an organism to produce different phenotypes from a single genotype during

development depending on external signals.

In particular, phenotypic plasticity encompasses the plastic response of social organisms

against changes in social interactions [23, 26], thus playing a crucial role in the regulation

of the social structure. A fascinating example of phenotypic plasticity in social groups is

the regulation of caste, corresponding for instance to reproductive and non-reproductive

phenotypes, in colonies of social insects. Specifically, alterations in the structure of the society

can induce caste changes at the level of individual insects.

In the next section we provide a general introduction to phenotypic plasticity in social

insects. We refer the reader to the corresponding chapter for details about Polistes canadensis,

the primitively social wasp that we study in Chapter 2.

1.2.1. Phenotypic plasticity in social insects

Scientists have been fascinated by the behaviour of social insects for centuries. In the early

twentieth century, Karl Von Frisch decoded the complex dances (Figure 1.3) used by foraging

honeybees to communicate accurate positional information to other members of the colony

[27]. As a result of this discovery, Von Frisch would be awarded the Nobel Prize of Physiology

in 1973 together with Nikolaas Tinbergen and Konrad Lorenz for their studies of social

behavioural patterns in animals.

The bee dance exemplifies the central role played by social interactions in the regulation

4



1.2. The regulation of biological function after perturbations relies on phenotypic plasticity

Queen removal

Queen Queen

Figure 1.4.: Cartoon illustrating the queen replacement after queen removal in Polistes
canadensis wasps.

of the colony dynamics. In several cases these interactions lead to the emergence of collec-

tive properties, ranging from mechanical properties of insect aggregates [30, 31] to collective

dynamics at the behavioural level [32, 33].

The definition of social insects encompasses very different species, as reflected by the num-

ber of individuals that form part of a colony, spanning several orders of magnitude, ranging

from societies composed of a few individuals to others formed of tens of thousands. In par-

ticular, species of social insects are classified according to different sociality levels, ranging

from solitary to eusocial (fully social), reflecting the aspects in which they differ from fully

social groups. Particularly interesting for us are primitively social insects, a class that only

differs from eusocial insects in the fact that primitively social insects exhibit little or no mor-

phological differences between castes. In some species of primitively social insects phenotypic

plasticity manifests itself as the ability of single insects to change castes after receiving the

right environmental signal [34–36]. In particular, Polistes canadensis, a primitively social pa-

per wasp, exhibits caste changes between a non-reproductive and a reproductive phenotype

[35, 37]. After queen removal, non-reproductive Polistes workers can reprogram, altering their

gene expression profile and developing mature eggs, leading to the emergence of a new queen

(Figure 1.4). In the first part of this thesis we study how specialization and plasticity in

Polistes emerge from the interplay between macroscopic and microscopic processes.

1.2.2. Theoretical approaches to phenotypic plasticity

Theoretical and computational studies of phenotypic plasticity have mainly focused on the

steady-state or asymptotic properties of the system [38–40]. In these studies, the probability

of displaying a given phenotype depends on the current environmental condition that acts as

5
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a control parameter.

This approach presents two main shortcomings to describe the regulation of phenotypic

plasticity in social insects. First, although in these models the phenotype is a function of the

environmental condition, the environment is independent of the distribution of phenotypes

across the population. However, the environment that social insects are exposed to encom-

passes social interactions, that are modified when the social structure is perturbed. Therefore,

a theory of phenotypic plasticity in social insects must take into account the self-organised

nature of the environment. Secondly, in order for multiple phenotypes to be stable for the

same environmental signal, the fraction of these phenotypes in the population has to be con-

trolled. For instance, established colonies of Polistes candensis are composed of a single queen

and several workers, indicating that both phenotypes are stable in the steady state. However,

after queen removal a new queen emerges as a result of worker reprogramming, meaning that

the worker phenotype is no longer stable after queen removal.

Therefore, in order to understand the regulation of specialization and plasticity in Polistes

canadensis an approach that takes into consideration these two properties is needed. In

Chapter 2 we develop an approach that relies on a minimal description of the microscopic

dynamics of the system that reveals how the regulation of robust specialization and rapid

plasticity in Polistes canadensis results from antagonistic processes at the molecular and the

population scales.

The response of these insects to different perturbations relies on the interplay between

processes at different spatial scales. Controlling fluctuations and characterising the response

of the system against perturbations are central research topics in several fields, not only in

biology. For instance, in the field of artificial intelligence it is desired that systems are robust

against fluctuations in the input data and against changes in their internal structure. Inspired

by our findings, in the second part of this thesis we studied the role of macroscopic feedback

in the remodelling of artificial intelligence systems. In the reminder of this introduction we

define artificial intelligence and discuss how artificial neural networks can be used to study

the remodelling of microscopic degrees of freedom by macroscopic feedback in an artificial

intelligence system.

1.3. Robustness of artificial intelligence systems against noise

Artificial intelligence (AI) is a field of research devoted to the study of intelligent agents,

artificial systems that mimic human intelligence to maximize their probability of achieving a

certain goal. Nowadays, AI is a thriving field of research in theoretical and applied computer

6
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Deep Learning Representation
Learning

Machine
Learning

Artificial
Intelligence

Figure 1.5.: Venn diagram of the different subfields of artificial intelligence.

science, driven by the success of the theory of statistical machine learning and deep artificial

neural networks [41–43].

Since its inception as a field, AI methods have been successfully applied to solve problems

that could be defined using a list of rules, as demonstrated by IBM Deep-Blue defeating world

chess champion Garry Kasparov in 1997. However, AI algorithms did not perform well on

problems that are not relying on such a list of rules, such as image recognition.

A subfield of artificial intelligence (Figure 1.5), machine learning refers to methods that

infer probability distributions from data. In particular, we refer as representation learning to

a subset of machine learning techniques concerning the automatic extraction of features from

data, without requiring manual input. Not relying on hard-coded rules (Figure 1.6), machine

and representation learning algorithms have enjoyed success in problems where traditional

AI algorithms did not perform well, such as classification tasks [44–46].

In the last twenty years, machine learning algorithms have been applied to complex image

and voice recognition tasks, recommendation tasks and even autonomous driving, powered

by artificial deep neural networks. The field that studies algorithms based on artificial deep

neural networks is known as deep learning. However, despite its successes, the predictions

of deep learning models can be very sensitive to small perturbations of the input data [47],

also known as adversarial examples. Furthermore, machine learning models are affected by

catastrophic forgetting [48], a name that refers to the loss of accuracy on old patterns when

the system is trained on a new set.

In analogy to biological systems, structure (the network architecture) and function (the

response to a given set of input patterns) are closely related in artificial neural networks. In
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information from data. Adapted from [41].

order for the system to operate correctly, the connection between the two has to be tightly

regulated. In the second part of this thesis we explore the relationship between structure

and function in a system powered by artificial neural networks that is driven by macroscopic

feedback using reinforcement learning.

In the next section we introduce artificial neural networks and reinforcement learning as a

learning paradigm. As in Chapter 3 we provide an in-depth introduction to the deep learning

concepts and techniques relevant for this thesis, in this introduction we limit ourselves to

introducing artificial deep neural networks.

1.3.1. Deep neural networks can be dynamically remodelled after a perturbation

Inspired by the structure of the human brain, artificial neural networks are computing systems

composed of connected units. Each individual unit receives information from the rest of the

network, producing a signal as a result. The output of a unit is a non-linear function of the

weighted sum of its inputs. In particular, the output of unit i can be written as

yi = f

∑
j

wijxj + bi

 , (1.1)

where yi is the output of unit i, xj is the input to unit i from unit j, wij are the weights

connecting units i and j, bi is a constant representing the bias of unit i and f is a non-linear
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1.3. Robustness of artificial intelligence systems against noise

function, known as the activation function.

The power of artificial neural networks resides in their ability to be trained from data

to infer probability distributions. Specifically, training a neural network corresponds to con-

trolling its output by modifying its set of parameters θ = (w,~b), i.e. weights and biases. To

successfully train neural networks, their performance is evaluated by means of a loss function,

as for instance the cross-entropy [49, 50] between the empirical and the inferred distributions,

that is minimized during training.

Depending on how neural networks are trained, deep learning algorithms are divided in

three main classes: unsupervised learning, supervised learning and semi-supervised learning,

the class to which reinforcement learning belongs [51]. First, in unsupervised learning net-

works are trained using datasets that do not contain explicit information about any of the

data points. For this reason, unsupervised learning algorithms are typically used to extract

features from data [41–43]. On the other hand, supervised learning algorithms provide the

network with labelled data during the training process. As a result, a trained network learns

how to classify unlabelled samples taken from the same probability distribution [41–43].

In a reinforcement learning problem, networks learn from the past history of the system.

In particular, networks receive a reward based on their output and are trained to maximize

the cumulative reward. In many applications of reinforcement learning [52, 53], the network

represents an agent that interacts with an environment and the output of the network corre-

sponds to the actions that the agent can take. As a result of these actions, the environment

is modified and the agent receives a reward. In this situation, the network dynamically gen-

erates its own training dataset from experience, not requiring a curated set of examples for

training.

Therefore, artificial neural networks trained using reinforcement learning provide a suitable

setting to explore the interplay between microscopic and macroscopic degrees of freedom in

artificial intelligence. In particular, microscopic degrees of freedom correspond to the para-

metric degrees of freedom of neural networks. These are in turn remodelled during training

using reinforcement learning and a dataset that is self-generated by the networks themselves.

As the training dataset is created from the output of the neural networks, an effective feedback

loop is induced between the microscopic and the macroscopic scales.

In particular, in the second part of this thesis we study how macroscopic feedback remodels

microscopic degrees of freedom in a system composed of multiple neural networks trained by

reinforcement learning. The neural networks share the same environment, that is in turn

modified by their actions. As in reinforcement learning the environment determines the input

9
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of the neural networks, the dynamics of single networks depend on the dynamics of the rest

of the system. Therefore, such a system permits us to uncover the response of microscopic

degrees of freedom to macroscopic feedback.

In the next section we outline the structure of this thesis, detailing the contents of the

chapters that form part of this dissertation.

1.4. Outline of the thesis

In this thesis we study the remodelling of microscopic degrees of freedom by macroscopic

feedback in two non-equilibrium systems inspired by biology and artificial intelligence respec-

tively. The thesis is divided in two parts corresponding to these two fields of research.

In the first part of this thesis (Chapter 2) we characterise the interplay between macro-

scopic and microscopic degrees of freedom in the regulation of an insect colony. In particular,

we study how biological systems can simultaneously achieve robust specialization in noisy

environments whilst at the same time exhibiting rapid phenotypic plasticity after perturba-

tions. Using the primitively social paper wasp Polistes canadensis as a model system, we

combine a multiscale experimental approach with a theoretical description using methods

from the theory of stochastic processes and dynamical systems.

In the second part of this thesis (Chapter 3) we study, making use of deep learning tools,

a many-particle system with a large number of intrinsic variables to explicitly explore the

remodelling of microscopic degrees of freedom by macroscopic feedback. In particular, we

consider a stochastic many-body system where the dynamics are defined by the reaction

rates of individual particles that are in turn determined by deep neural networks trained using

reinforcement learning. The characterization of the macroscopic and microscopic dynamics

reveals the interplay between the two scales in this minimal model.

Lastly, we conclude in Chapter 4 with some general remarks and a brief discussion of future

research perspectives.
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2. Emergence of specialisation and plasticity

in a social insect

If I be waspish, best beware my sting.

William Shakespeare - The Taming of the Shrew

B iological systems have the remarkable capacity of building complex spatio-temporal

structures that are robust over long periods of time in noisy environments. The for-

mation of these structures is governed by processes taking place on vastly different spatial

scales, ranging from the molecular to the tissue or population-levels. Traditionally, the focus

of theoretical and experimental biophysical research has been centered on understanding the

underlying processes regulating the formation of complex structures [31, 54].

However, in recent years it has become clear that biological systems also have the remark-

able capacity to break up and rebuild these structures [15, 55, 56], efficiently restoring the

steady state of the system after a large perturbation. The regulation of specialisation and

plasticity in primitively social insects is an example of such behaviour.

In particular, colonies of social insects rely on the long-term specialisation of individuals

into distinct castes, such as queens and workers [24]. Although such phenotypes can be stable

over long periods of time, limited by the lifetime of these insects, in the face of environmental

noise individuals are nevertheless capable of being rapidly phenotypically reprogrammed:

Figure 2.1.: Nest of Polistes canadensis. Picture from Solenn Patalano.
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2. Emergence of specialisation and plasticity in a social insect

upon receipt of specific cues they undergo a transient phase in which an individual’s behaviour

normally associated with a specific caste is rapidly altered in order to perform a different task

from the one it performed initially (plasticity) [57–59].

In physical terms, the regulation of specialisation typically relies on the establishment of

distinct stable states (bistability) which is often mediated by positive feedback loops [18].

In bistable systems, transitions between stable phenotypic states require the crossing of a

potential or entropic barrier with a typical crossing time that depends exponentially in the

ratio between the energy difference between the two states ∆V and the noise strength η,

T ≈ e−∆V/η [17, 19]. Therefore, the same barrier that stabilises the system, mitigates against

the rapid reestablishment of a lost phenotype.

Nevertheless, this reasoning appears to contradict the rapid reprogramming observed in

plastic systems. Given that the specialised states are stable over long times, this sort of

mechanism would lead to reprogramming times much longer than empirically observed. How

is it then possible to simultaneously achieve robust specialisation and rapid plasticity against

specific environmental changes? As bistability alone cannot provide the answer to this ques-

tion, we hypothesised that in order to simultaneously achieve these two seemingly antagonistic

goals, feedback across different scales of biological organisation might give rise to additional

effective degrees of freedom which allow for plasticity while maintaining stable specialisation

in the steady state.

To test this hypothesis, we used a well-established model system of phenotypic plasticity,

the primitively social paper wasp Polistes canadensis (Figure 2.1). After the emergence of

the queen’s daughters (workers), a stable colony of paper wasps is established, with a single

reproductive queen and 8-30 non-reproductive workers (specialisation) [35, 37, 60–63]. These

insects display strong phenotypic plasticity, as reflected by the rapid reprogramming of the

remaining workers after queen death (or experimental queen removal). In particular, repro-

gramming was experimentally induced by our experimental collaborators by removing the

queen from stable nests and the relaxation dynamics of the system were tracked across mul-

tiple scales until the restoration of the steady state. One of the main advantages of choosing

Polistes as our model system is that it provides the unique opportunity of simultaneously

tracking the relaxation dynamics after such a perturbation back to the steady state across

multiple spatial scales, therefore allowing us to correlate measurements from the population

and the molecular scales at the level of single individuals. Based on these experiments, we

then set out to define a model that describes the population and molecular level processes

that regulate the reprogramming dynamics and that allows us to understand specialisation
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2.1. Experimental induction of the reprogramming process

and plasticity as an emergent property thereof. The details of the experimental strategy can

be found in Section 2.1.

The main synthesis of our experimental and theoretical approaches shows that Polistes

integrate processes on different layers of biological organisation to distinguish between intrin-

sic perturbations of molecular states, against which they are stable, and extrinsic cues like

queen removal affecting the society as a whole, against which they react plastically, therefore

simultaneously achieving rapid plasticity and robust specialisation. Specifically, the society

undergoes a saddle-node bifurcation governed by the population structure as a bifurcation

parameter, thereby simultaneously achieving bistability in the steady state and transient,

rapid convergence to the queen phenotype after colony-level perturbations.

Additionally, our theoretical model also predicts that such a society regulated by stochastic

interactions would not be stable over periods of time longer than the ratio between the char-

acteristic time scales of the population and molecular processes due to strong fluctuations.

To resolve this contradiction we proposed, supported by the experimental evidence, a hypo-

thetical mechanism operating at the molecular scale that leads to an exponential increase

in the queen turnover time following a reduction in gene expression variability, opening the

possibility of a novel role played by epigenetic modifications at the population scale.

This chapter is structured as follows: first, in Section 2.1 we introduce the multi-scale

experimental strategy. Then, in Section 2.2 and Section 2.3 we present the experimental

results that motivate our model and introduce its main elements. In Section 2.4 the model is

written in the form of a non-Markovian master equation that we then simulate in Section 2.5

to explore the phase space of the system. In order to understand the physical mechanism

underlying specialisation and plasticity in this system, in Section 2.6 and Section 2.7 we

derive a mean-field master equation from the full non-Markovian dynamics and use it to

represent a simplified phase portrait of the system that captures the correct structure of the

phase space. Afterwards, in Section 2.8 we compare model predictions and the experimental

measurements of several different observables. Finally, in Section 2.9 we study the stability

of the social order and propose a possible mechanism to stabilise such a society over long

periods of time. A summary of the results presented in this chapter can be found in [64].

2.1. Experimental induction of the reprogramming process

Experimental fieldwork was carried out by Solenn Patalano and her team during 3 expeditions

to the area of Punta Galeta, Colon in Panama between 2009 and 2012. We refer the interested

reader to the Methods section of [64] for more details about location and collection of the
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Figure 2.2.: Schematic depiction of the experimental strategy followed in the queen removal
experiments.

fieldwork samples.

The experimental approach that was followed is depicted in Figure 2.2. A total of N =

26 independent Polistes nests were monitored for a period of time of between three and

nine weeks until collection. Out of these 26 nests, 8 were collected unmanipulated (Control

phase). We empirically define five different phases, corresponding to the different stages of

the reprogramming process at which we collect all individuals for further treatment.

• Control (8 nests): Nests belonging to this phase are characterised by the presence of

a single, well-established queen and several workers.

• Eggless (7 nests): The Eggless phase is initiated by the simultaneous removal of the

queen and a single egg from a Control nest. All nests collected in this phase were

collected before a new egg layer had emerged.

• D1 (5 nests): Immediately after a new egg appears the Eggless phase was considered

to be over. During the following day, the identity of the new egg-layer was determined

based on behavioural observations of dominance behaviour.

• D4 (3 nests): Additional nests were collected between 4 and 5 days after the first egg

laying after queen removal had been detected.

• D14 (3 nests): A final 3 nests were collected two weeks after the first egg laying following

queen removal.

Insects were directly collected from the nests using forceps (Figure 2.3a), their heads cut off

and immediately placed in solution. Their bodies were conserved in an ethanol solution in

freezing temperatures before further analysis. In order to overcome by the destructive nature

of the molecular and anatomical measurements, this experimental strategy relies on implicitly

assuming the equality of the ensemble and time-averaged statistics.
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Figure 2.3.: a) Insect removal from a nest using forceps. Picture courtesy of Solenn Patalano.
b) Schematic of the multi-scale experimental approach.

This approach is unique because it permits us to track the relaxation dynamics of the sys-

tem back to the social steady state simultaneously across multiple spatial scales, as illustrated

by Figure 2.3. In particular, these measurements inform about three different spatial scales:

the population scale, the individual scale and the molecular scale. First, at the population

scale the measurements comprise video recordings of several nests, used for behavioural char-

acterization, and nest occupancy census. At the individual level anatomical measurements

such as the age or ovary size of individual insects were obtained. Lastly, at the molecular

level the transcriptome and methylome of the brain of single insects was sequenced by bulk

RNA sequencing and bisulfite sequencing respectively.

2.2. Characterization of molecular-level processes using genomics

One of the main layers of biological regulation, gene expression plays a primary role in the

regulation of behaviour and caste of Polistes wasps [35, 37, 65]. To quantify differences be-

tween queens and workers at the microscopic level we first identified molecular signatures

distinguishing reproductive from non-reproductive individuals. Drawing from previous re-

search on Polistes canadensis [37], we define as “queen genes” the subset of all differentially

expressed genes between reproductive and non-reproductive individuals in Control nests that

are expressed by reproductive individuals and not by non-reproductive ones (Figure 2.4a).

To elucidate the function of the queen genes, we conducted a gene ontology (GO) analysis

of the set of queen genes revealing that these are fundamental for reproductive purposes,

as reflected by enrichment of genes that correlate with ovary growth, metabolism and lipid

transport, such as Vitellogenin and Apolipophorin-3 [36, 66, 67].

To clarify the effect of queen removal and replacement on gene expression in workers
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we compared the transcriptomes of workers from Control and D4 nests, finding a total of

227 differentially expressed genes (Figure 2.4b) between the two phases. Queen genes are

overrepresented in the set of differentially expressed genes between Control and D4 nests

(p = 3.1 · 10−15, hypergeometric test), indicating their upregulation following queen removal.

Nevertheless, the dimensionality of the set of queen genes is too large to be amenable

to theoretical modelling. To identify possible collective components in the regulation of the

queen genes after queen removal we performed dimensionality reduction (Principal Compo-

nent Analysis - PCA) of the expression of queen genes across different individuals in Control

and D4 nests. The PCA analysis (Figure 2.5a) displays a shift in the transcriptomic profiles

of D4 insects towards those of established Control queens. Furthermore, a radar plot of the

normalized expression of the queen genes (Figure 2.5a) indicates that the upregulation of the

queen genes after queen removal is captured by a single principal component, supporting a

theoretical description in terms of a single effective degree of freedom representing the collec-

tive expression of this set of genes. In the following sections we set out to derive a minimal

theoretical description of the reprogramming dynamics, not assuming any non-linear effects

unless explicitly motivated by the data.

Finally, in order to quantify to which degree the transcriptome of D4 reproductive individu-

als resembles that of control queens, we calculated the correlation coefficient cqueen,w between

the transcriptional profiles of the control queens and single insects, defined as the average

between the correlation of the individual expression profiles with those of each of the control
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queens cqueen,w = (cq1,w + cq2,w)/2 (Figure 2.5b), where cqi,w denotes the Pearson correlation

coefficient between the transcriptome of a control queen Qi with i ∈ {1, 2} and a given insect

W ,

cqi,w = cov(Qi,W )
σQiσW

. (2.1)

Together, our findings provide evidence of a collective change in the expression of queen

genes of the remaining workers after queen removal, leading to the upregulation of queen

genes and an increase of the similarity of their transcriptomic profiles to those of Control

queens. Nevertheless, the loss of worker phenotypes is only transient, as reflected by the

transcriptomic profiles of insects collected at D14, similar (p=0.2, t-test) to those of Control

insects.

In the light of the experimental evidence, we set out to derive a biophysical description of

the nest dynamics where each insect i will be represented by a single scalar variable ni ∈ N,

representing the abundance of queen gene products. The evolution of the joint probability of

finding queen gene product abundances {n1, . . . , nN+1} across a population of N + 1 insects

at time t, denoted as P ({ni}, t), depends on processes acting on both the molecular and

population scales. Considering for the present only processes taking place at the molecular

scale, the simplest model describing the temporal evolution of the nest composition is given

by the following master equation

d

dt
P ({nk}, t) =

N+1∑
i=1

µ [P ({ni − 1}, t)− P ({ni}, t)] (2.2)

+ δ [(ni + 1)P ({ni + 1}, t)− niP ({ni}, t)] ,
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2. Emergence of specialisation and plasticity in a social insect

where the first two terms represent the production of new queen gene products with constant

rate µ and the remaining two terms their poissonian degradation with rate δ.

Within this description, the number of queen gene products in individual insects are sta-

tistically independent, leading to a steady state solution of Equation 2.2 given by an homo-

geneous population where queen gene expression abundances in every insect are obtained by

balancing the production and degradation terms, leading to a steady state number of queen

gene products n∗ = µ/δ. Therefore, a model considering only processes taking place at the

molecular level cannot explain the emergence of distinct phenotypes, corresponding to mul-

tiple fixed points of the microscopic dynamics, in the steady state. To break the symmetry

between the individuals after queen removal, and lead to the emergence of a single queen, a

collective process in the population scale is required.

2.3. Symmetry breaking of molecular states

Interactions between insects are crucial in the organisation of colonies of social insects, reg-

ulating processes such as the exchange of fluid (trophallaxis) or foraged material between

different insects. Due to their central role in the functioning of the society, they have been

the subject of numerous studies concerned with their quantification and classification [61,

68–70].

Therefore, to study whether there is a colony-level component in the regulation of repro-

gramming and phenotypic specialisation we quantified and classified interactions between

wasps. Specifically, we analysed over 17 hours of video recordings from 5 nests that had un-

dergone queen removal up to phase D4 (2 nests, 4 phases, 47 ± SD 22 min) and D14 (3 nests,

5 phases, 46 ± SD 21 min). To obtain these recordings, a HD video camera was placed in front

of 5 nests during the 2012 fieldwork and video recordings were made for at least 30 min during

active hours for each phase of the queen removal experiment. A total of 400 interactions from

80 different individuals were manually classified and quantified in 6 previously defined classes

[69, 70]. The six different classes in which interactions were classified are defined as follows:

• Dominance: Dominant behaviour in an aggressive interaction against another insect

(Figure 2.6).

• Subdominance: Subordinate behaviour in an aggressive interaction.

• Donor exchange: Donation of foraging material to another insect.

• Receiver exchange: Receipt of foraging material from another insect.
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Figure 2.6.: a) Example of an aggressive interaction between a queen and a worker. b) Ex-
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• Trophallaxis: Trophallactic exchanges of food or fluid between two insects.

• Antennae: Antennae mediated interactions.

We define fighting interactions (Figure 2.6) as those belonging to the dominance and sub-

dominance categories of the above list. Additionally, we refer to donor and receiver exchange

interactions as foraging interactions and to trophallactic and antennation interactions as

neutral.

In order to correlate the behaviour of single insects with their queen gene expression profiles,

we used ovary sizes at the time of collection as a proxy for the level of queen gene expression

of individual wasps, as, given that queen genes are associated with egg-laying individuals, the

expression of representative queen genes positively correlates with ovary size (Figure 2.7).

To quantify the total amount of interactions in a nest we defined the interaction rate per
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2. Emergence of specialisation and plasticity in a social insect

individual as

Irate = 1
T

∑
i

Ii , (2.3)

where Ii is the number of interactions of type i and T is the total time the individual was

present in the nest.

Figure 2.8a shows that there is an increase in the total interaction rate during reprogram-

ming largely due to a significant increase in the number of fighting interactions during the

initial stages of the reprogramming process.

In the following we will focus on how the rate of fighting interactions and the likelihood

of being dominant depend on the ovary sizes of the individuals involved in aggressive in-

teractions. With this in mind, we defined two measures for each individual (Equation 2.4,

Equation 2.5) that we termed fight index and dominance index to quantify, respectively, the

fraction of fighting and dominant interactions per unit of time,

Ifight = 1
T

D + S∑
i Ii

, (2.4)

Idominance = 1
T

D

D + S
, (2.5)

where as previously ∑ Ii denotes the sum over all interaction types, D and S are the number

of dominant/subdominant interactions and T is the total time the individual was present in

the nest.

We found that in Control nests individuals with developed ovaries engage in fight more often

than individuals with smaller eggs and successfully dominate their nestmates (Figure 2.8b-

c). After queen removal, the asymmetry between individuals is broken and all individuals,

irrespective of their ovary size, interact aggressively, in accordance with the collective up-

regulation of the queen genes after queen removal (Figure 2.4b). This asymmetry is restored

in the late phases of the reprogramming process (D14). The results show that ovary size

positively correlates with the interaction rate and the probability of being dominant, indi-

cating a relationship between queen gene expression and interaction rate. In the reminder of

this section we will devise a minimal functional form for the interaction kernel governing the

interactions between individual insects based on these experimental observations.

In order to build a physical model, we propose that these interactions have a repressive

effect in gene expression, in turn breaking the symmetry between individuals after queen

removal. This hypothesis is consistent with experimental observations of workers’ ovary sizes

regressing after being introduced in a nest with an established dominant queen [60]. In the

following, motivated by the quantification of the interactions (Figure 2.8), we derive a minimal
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interaction kernel that is consistent with the experimental findings and describes how two

given insects interact by determining the interaction rate and the dominance probability.

First, we start by decomposing the rate with which individual i is subject to a subdominant

interaction with individual j, Kij , as the total interaction rate between both, aij , times the

conditional probability bij that individual i is subdominant in such an interaction, Kij =

aijbij . To calculate aij we note that according to our video recordings, the interaction rate

of an individual insect increases with ovary size and therefore, with the expression level of

queen genes, ai ≡
∑
j 6=i aij ∝ ni. The pairwise interaction rate therefore is proportional to the

probability that both individuals interact in a given time interval, aiaj , times the probability

that this interaction involves individuals i and j, 2/[N(N − 1)], aij = 2aiaj/[N(N − 1)] ∝

2ninj/[N(N − 1)], such that we set aij = ωninj where ω is proportional to 2/[N(N − 1)].

To derive the conditional probability that individual i is subdominant, bij , we resort to

previous work showing that the outcome of an interaction is strongly determined by the

concentrations of Insect Juvenile Hormone (JH), a hormone crucial for ovary development [71]

that is strongly associated with reproductive phenotypes [72]. Indeed, in our video recording

of control nests we found that, in an interaction between two individuals the subdominant one

is with high probability the one with the smaller ovaries (Figure 2.8c). Given that ovary size is

a proxy for queen gene expression, we take the conditional probability of an individual being

subdominant to depend on the gene expression difference between two interacting individuals,

bij = b(nj − ni). If the individual with lower queen gene expression is always subdominant,

the conditional probability of i being the subdominant individual in an interaction between

i and j can be written as

b(nj − ni) = Θ(nj − ni) . (2.6)
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2. Emergence of specialisation and plasticity in a social insect

The total rate of subdominant interactions that individual i receives then takes the form

ω
∑
j 6=i

K(ni, nj) , (2.7)

with the interaction kernel K(ni, nj) defined as

K(ni, nj) = ninjΘ(nj − ni) . (2.8)

In order to derive the above form of the interaction kernel we have assumed that individual

insects can accurately measure gene expression levels of the insect they are interacting with.

A more realistic approach is to take into account that sensing of gene expression levels is

associated with an uncertainty. If this uncertainty is distributed following a normal distribu-

tion with zero mean and variance σ2, the probability of individual i being subdominant in

an interaction with individual j is

∫ ∞
−∞

1√
2πσ2

eη
2/2σ2

θ(nj − ni + η)dη = 1
2

[
1 + Erf

(
nj − ni√

2σ2

)]
, (2.9)

with the error function defined as Erf(x) =
∫ x

0 e
−y2

dy. Therefore, the interaction kernel for

noise-sensitive individuals reads

K(ni, nj) = ninj
2

[
1 + Erf

(
nj − ni√

2σ2

)]
, (2.10)

where σ2 determines how precisely an individual can measure gene expression of other indi-

viduals. The above expression is difficult to manipulate both numerically and analytically due

to the presence of the error function. It is, however, well approximated by another sigmoidal

function

K(ni, nj) = ninj
e−λ(ni−nj)

1 + e−λ(ni−nj)
, (2.11)

with λ = 2σ−1 denoting the sensing sensitivity.

Finally, once we have specified how individual insects interact, it remains to specify the

effect that these interactions have on queen gene expression. We model the effect of inter-

actions on gene expression through a binary variable qi ∈ {0, 1}, representing the activation

state of the queen genes. The dynamics of this variable are determined by the rate of subdom-

inant interactions, as we will detail in the following section where we combine the molecular

and population level processes described in the last two sections to obtain a mathematical

description of the dynamics of the system in the form of a master equation describing the
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Figure 2.9.: Cartoon representation of the model.

evolution of the joint probability of observing a certain nest composition P ({nk, qk}).

2.4. Master equation description of the multiscale dynamics

Motivated by the experimental observations, we set out to define the minimal model consistent

with the experimental findings. Schematically our model is illustrated by Figure 2.9. We

consider a nest composed of N + 1 individuals described by two degrees of freedom: the

number of queen gene products, nk, and the presence of queen gene repressive factors, qk.

Taken together, the stochastic dynamics describing the evolution of the nest composition

P ({nk, qk}) can be cast in the form of the following non-Markovian master equation

d

dt
P ({nk, qk}) =

N+1∑
i=1

{
µ(1− qi) [P ({ni − 1, qi})− P ({ni, qi})] (2.12)

+ δ [(ni + 1)P ({ni + 1, qi})− niP ({ni, qi})]

+ Γ(tinti )P ({ni, 1})(1− 2qi) + ω
∑
j 6=i

KijP ({ni, 0})(2qi − 1)
}
,

where the terms in the first line account for the stochastic production of queen gene products

with rate µ, the second line accounts for the poissonian degradation of these molecules with

rate δ and the final one accounts for the dynamics of the queen gene repressor molecules.

In particular, subdominant interactions with rate proportional to ωKij correspond to the

transition qj : 0 → 1, where Kij is the interaction kernel representing the probability of

individual i interacting in a dominant manner with individual j. On the other hand, queen

gene repressor molecules are stochastically degraded with a rate proportional to Γ(tinti ), where

Γ is a distribution that depends on the time elapsed since the last subdominant interaction.
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2. Emergence of specialisation and plasticity in a social insect

In the following, for simplicity we will consider the deterministic limit where queen gene

repressor molecules degrade instantly after a time tdecay. In this case, Γ(t) ∝ δ(t− tdecay).

Finally, to obtain a more compact description of the dynamics, we appropriately rescale

time and queen gene product concentrations obtaining the non-dimensional master equation

d

dτ
P ({rk, qk}) =

N+1∑
i=1

{
(1− qi) [P ({ri − ε, qi})− P ({ri, qi})] (2.13)

+ [(ri + ε)P ({ri + ε, qi})− riP ({ri, qi})]

+ Γ(τ inti )P ({ri, 1})(1− 2qi)

+ α
µ

δ

∑
j 6=i

K(ri, rj)P ({ri, 0})(2qi − 1)
}
,

where α = ω/δ is the interaction rate in units of the degradation time, the dimensionless

time τ = µ · t, rescaled queen gene expression levels rk = δnk/µ and ε = δ/µ. Equation 2.13

describes the non-dimensional dynamics of the joint probability distribution representing

a particular nest composition, which in turn can be simulated using stochastic sampling

algorithms [73] and used to predict the experimental observations. In the next section we will

numerically study the reprogramming dynamics of Equation 2.13 starting from a queenless

initial population and explore the phase space of the system as a function of the interaction

parameters.

2.5. Phase diagram of the system

Equation 2.13 provides the starting point to explore the behaviour of the system. We ran 1000

stochastic simulations of the master equation using Gillespie’s algorithm [73] and averaged

the results to obtain the distribution of queen gene expression P (r) across simulations. For

suitable combinations of the parameters, we found that the distribution of queen gene expres-

sion in the system reaches a bimodal steady state starting from unimodal initial conditions

(Figure 2.10a). The dynamics are initially characterized by a brief regime where all individ-

uals upregulate the queen genes, followed by the splitting of the distribution of queen gene

expression across the population, giving rise to a bimodal distribution that slowly converges

to the steady state where the two modes correspond, respectively, to the worker and queen

phenotypes.

In order to systematically quantify the effect that interaction parameters have on the steady

state of the dynamics we averaged the results of 50 stochastic simulations of a nest of N = 10

individuals starting from a queenless initial configuration, where gene expression across the
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Figure 2.10.: a) Evolution of the probability density of queen gene expression across the pop-
ulation after queen removal obtained by stochastic simulations for α = 0.2, λ =
10. b) Phase diagram as a function of the interaction rate α and the interaction
asymmetry λ.

population is distributed according to a Gaussian distribution of mean µ = 100 and standard

deviation σ = 15, for 900 combinations of the parameters (α, λ) logarithmmically distributed

in the ranges α ∈ [10−5, 102] and λ ∈ [10−3/2, 103], while keeping all other parameters fixed at

biologically plausible values (the values of the remaining parameters are given in Appendix A).

The phase diagram of the system as a function of the interaction rate α and the interaction

asymmetry λ, where the fraction of queens (defined as individuals with a gene expression

value larger than 80 % of the steady state value) plays the role of an order parameter, is

presented in Figure 2.10b.

The system exhibits three distinct regimes as a function of the interaction parameters. First,

for α � 1 we find a regime that we term ’reproductive’. In this region of the phase space

interactions between individuals are rare compared to the typical timescales of the molecular

processes required to upregulate the queen genes. Therefore, as interactions do not balance

the intrinsic molecular dynamics, we find that starting from an initial queenless configuration

the steady state of the system corresponds to a population composed of exclusively queen-like

individuals. On the other hand, in the region of the phase space characterised by large values

of α and small values of λ, interactions happen on a faster timescale than the molecular

processes but the subdominant individual is randomly chosen. In this regime that we term

’non-reproductive’ the effect of interactions prevents the upregulation of the queen genes

in individual wasps, meaning that the steady state corresponds to a distribution where all

individuals remain workers. Finally, in between these two regimes we find a large region

25



2. Emergence of specialisation and plasticity in a social insect

of the phase space where the steady state corresponds to a bimodal distribution of queen

gene expression across the population with the two modes of this distribution representing

the worker and queen phenotypes. We refer to this region of the phase space as the ’social’

regime. The relative weights of the two modes are controlled by the value of the interaction

parameters α and λ. Moreover, for a large section of this regime our model predicts the

existence of a single queen in the steady state, corresponding to the biologically relevant

section of the phase diagram and indicating that the system is robust against fluctuations

in the interaction parameters, not requiring any careful parameter tuning to operate in the

social regime. Our theoretical work in Section 2.7 reveals that the transition between the

specialised and the reproductive regimes corresponds to a saddle node bifurcation where the

population structure plays the role of control parameter.

In order to compare our theoretical results with the experimental data, we estimated the

interaction parameters α and λ from the empirical data presented in Figure 2.8. First, to

estimate the interaction rate, we calculated the number of aggresive interactions per indi-

vidual in a time interval of one day obtaining an estimate of 3.7 interactions per day. The

rescaled interaction rate α corresponds to this quantity measured in the units defined by the

degradation timescale δ−1 ≈ 12h. Therefore, we obtain αest ≈ 1.85.

Additionally, we counted the number of subdominant queen interactions to obtain a lower

bound for the interaction asymmetry parameter λ. Out of 17 interactions involving queens

in the control and late-commitment phases, we observed 0 interactions where the queen was

subdominant. Therefore, the maximum likelihood estimate for the error rate using the beta-

distribution as a (conjugate) prior is 1/17. Using the definition of the interaction kernel we

find an analytical expression for the error rate,

2
∫ 0

−∞
d∆r(1 + exp(−λ∆r))−1 = 2 ln 2/λ . (2.14)

Comparing with the maximum likelihood estimate we find a lower bound for the asymmetry

parameter λest ≈ 24 that we take to be the empirical estimate of λ.

In conclusion, our estimate of the interaction parameters (αest, λest) is given by (αest, λest) ≈

(1.85, 24). The empirical estimates of the interaction parameters are located inside the single

queen region of the phase diagram (Figure 2.10b) for a nest of size N = 10, indicating that

our model correctly predicts the presence of a single queen in the steady state nest for a

biologically relevant combination of parameters. Furthermore, the size of the single-queen

region of the phase diagram reflects that the model is robust against small changes in the

interaction parameters. Therefore, the presence of a single queen in the steady-state is an
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2.6. Mean-field master equation description of the nest dynamics

emergent property of the system arising from the interplay between antagonistic processes

across several scales of biological organisation. In the following sections we study how this

interplay also gives rise to the plastic response of the colony after queen removal.

2.6. Mean-field master equation description of the nest dynamics

Although the master equation approach derived in the previous section (Equation 2.13) can

accurately reproduce the reprogramming dynamics, it is nevertheless too complex to provide

an intuitive understanding of the physical mechanisms underlying specialisation and plasticity

in Polistes, as its high dimensionality and non-Markovianity render it unsuitable for analytical

treatment. In the following we derive an approximation of Equation 2.13 that still captures

correctly the structure of the phase space of the system while at the same time being more

amenable to analytical treatment. We refer to the result of this approximation as the mean-

field master equation. Thereafter, we will employ this continuum description in Section 2.7 to

explore the structure of the phase space as a function of the individual and collective degrees

of freedom.

In order to derive the mean-field master equation we start again from the master equation

describing the evolution of the joint probability distribution P ({rk, qk}, t) (Equation 2.13):

d

dτ
P ({rk, qk}) =

N+1∑
i=1

{
(1− qi) [P ({ri − ε, qi})− P ({ri, qi})]

+ [(ri + ε)P ({ri + ε, qi})− riP ({ri, qi})]

+ Γ(τ inti )P ({ri, 1})(1− 2qi)

+ α
µ

δ

∑
j 6=i

K(ri, rj)P ({ri, 0})(2qi − 1)
}
.

To begin, we perform a Hartree approximation [74, 75] in order to study the evolution of a

single individual, that we refer to as the ’tracer’, embedded in a nest with a given compo-

sition P
(
{ri, qi}Ni=1

)
. In this approach we consider the nest as a ’bath’ that determines the

fluctuations of the individual tracer dynamics. Mathematically, we write down the equation

determining the time-evolution of the probability of finding the tracer in the state (r, q) given
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Figure 2.11.: Definition of the trajectory dependent time τ(t). Dashed lines indicate the begin-
ning and the end of the repression of queen gene expression after a subdominant
interaction.

the nest composition, P (r, q) ≡ P (r, q|{ri, qi}). This equation reads

d

dτ
P (r, q) = (1− q) [P (r − ε, q)− P (r, q)]

+ [(r + ε)P (r + ε, q)− rP (r, q)]

+ Γ(τ iint)P (r, 1)(1− 2q) + α
µ

δ

N∑
j=1

K(r, rj)P (r, 0)(2q − 1) . (2.15)

To obtain a time evolution equation for the marginal probability P (r) we first need to inte-

grate out the queen gene repressors variable, q. To this end, we formally define a trajectory

dependent time (Figure 2.11) as

τ̃(t) =
∫ τ

0
dτ ′

∏
i∈I

f(τi − τ ′) , (2.16)

where {τi}i∈I is the set of times when an interaction, and hence a q : 0→ 1 transition, takes

place, and the function f(τi − τ) is defined as

f(τi − τ) =


0 τ ∈ [τi, τi + τdecay] ,

1 otherwise.
(2.17)

From this definition it follows that τ̃ increases in the same manner as τ if and only if q = 0

and is constant otherwise. The evolution of the system in the new time coordinate τ̃ thus

coincides with the evolution with respect to τ when q = 0 and its effect is collapsed to a single

time point when q = 1. This is equivalent to considering dynamics where q = 0 at all times

and where a suitably chosen number,M , of queen gene products are instantaneously degraded

at times τ ∈ {τi}i∈I . M is the typical number of molecules degraded in a time interval of

length τdecay, M ≈ r[1− exp (−τdecay)]. The master equation describing such dynamics takes
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2.6. Mean-field master equation description of the nest dynamics

the form

d

dτ̄
P (r) = [P (r − ε)− P (r)]

+ [(ε+ r)P (r + ε)− rP (r)]

+ α
µ

δ

N∑
j=1

[K(r +M, rj)P (r +M)−K(r, rj)P (r)] . (2.18)

Next, we consider time scales much longer than typical interaction times. To derive a

continuum description, we rescale the persistence time of the repressive factors τdecay in

such a way that the average number of degraded queen gene products after an interaction

M(τdecay) is, on average, equal to a queen gene product unit, ε. Simultaneously, we keep

the total effect of repressive interactions in a long time interval [τ1, τ2] on the concentration

of queen gene products,
∫ τ2
τ1
dτ̄ ′M(τ̄decay)∏i∈I δ(τ̄i − τ̄ ′), invariant. To this end, the above

constraint dictates a corresponding rescaling of the interaction rate, α. Intuitively, such a

coarse-graining operation corresponds to a homogeneous distribution of interaction events in

the time domain for sufficiently long time scales. As the total effect of interactions on long

time scales remains unchanged the structure of the phase portrait remains unchanged as well.

With this, we obtain

d

dτ̃
P (r) = [P (r − ε)− P (r)]

+ [(r + ε)P (r + ε)− rP (r)]

+ α′
N∑
j=1

[K(r + ε, rj)P (r + ε)−K(r, rj)P (r)] , (2.19)

where α′ ≈ αµM/δ is the rescaled interaction rate. The mean-field master equation is then

obtained by setting x = r/Ω, and performing a Kramers-Moyal expansion to the lowest order

[76]. Retaining the symbol r to represent queen gene expression for the sake of simplicity, we

find

∂τ̄r = α̃1(x) = 1− r − α̃
N∑
j=1

K(r, rj) , (2.20)

where

α̃1(r) = Ω−1
∫ ∞
−∞

dr′(r′ − r)W (r′|r) , (2.21)

is the first jump moment and α̃ = α′/Ω2. We henceforth refer to the dual version of Equa-

tion 2.20 describing the evolution of the probability density P (r, τ̄) as the mean field master
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2. Emergence of specialisation and plasticity in a social insect

equation,

∂τ̄P (r) + ∂r [(1− r)P (r)] = α̃∂r

P (r)
N∑
j=1

K(r, rj)

 . (2.22)

Equation 2.22 describes the evolution of the queen gene expression of a tracer individual

embedded in a finite population of N individuals with queen gene expression levels {rj}Nj=1.

In the next section, we neglect fluctuations arising from the finite size of the population by

taking the limit N → ∞ and derive a phase portrait description of the co-evolution of the

molecular and population degrees of freedom from the resulting evolution equation.

2.7. Continuum limit of the mean-field master equation and phase

portrait

In the previous section we have derived a partial differential equation describing the evolution

of the probability distribution of the queen gene expression levels in a single individual em-

bedded in a finite nest. In order to obtain a mean-field master equation suitable for analytical

treatment, we further simplify our description by taking the continuum limit of Equation 2.20

on the number of individuals, N →∞, obtaining the following equation for the time evolution

of queen gene expression levels in the ’tracer’ wasp,

∂tr = 1− r − α̃
∑
i6=j

K(r, rj) = 1− r − α̃
∫ ∞

0

N∑
j=1

K(r, r′)δ(r′ − rj) , (2.23)

1− r − α̃
∫ ∞

0

N∑
j=1

K(r, r′)δ(r′ − rj) −−−−→
N→∞

1− r − α̃
∫ ∞

0
K(r, r′)f(r′)dr′ , (2.24)

where the empirical distribution function f(r′) ≡ ∑
j δ(rj − r′) represents the fraction of

individuals in the nest having queen gene expression between r and r + dr, as well as the

time evolution of the population composition,

∂τ̄f(r) + ∂r [(1− r)f(r)] = α̃∂r

(
f(r)

∫ ∞
0

K(r, r′)f(r′)dr′
)
. (2.25)

These two equations represent the mean-field description of Equation 2.13 valid in the limit

of large populations and time scales, i.e. in the steady state. As we will discuss below, while

Equation 2.24 and Equation 2.25 are not suitable for quantitatively describing the repro-

gramming dynamics they nevertheless are capable of providing mathematical insight into the

mechanisms underlying the regulation of specialisation and plasticity. Interestingly, Equa-

tion 2.25 is conceptually similar to equations obtained in other biological contexts, such as
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2.7. Continuum limit of the mean-field master equation and phase portrait

quorum-sensing bacteria [77] or Mitogen competition by stem cells [78]. In this context, it

is also worth to note that in spatially structured systems specialisation can be achieved by

spatially separating different phenotypes, such as via the Turing mechanism, spinodal de-

composition, lateral inhibition or via external signalling gradients [18, 79]. If the spatially

homogeneous state is unstable such systems are naturally ’plastic’.

The dynamics described by Equation 2.24 and Equation 2.25 represent production and

degradation of queen gene products on the molecular scale coupled through a collision-like

functional that accounts for the effect of repressive interactions. The steady state of these

equations is reached when the molecular dynamics are balanced by the population-level feed-

back. In the following we will study how such a coupling gives rise to specialisation and

plasticity as emergent properties of the system.

To understand the relaxation dynamics to the steady state, and their stability, it is in-

structive to consider the co-evolution of the molecular scale, represented by the queen gene

expression level r, and the population scale, represented by the distribution f(r, t). In this

section we will illustrate the results of our analysis by means of a phase portrait of the

multi-scale dynamics. Although the limits we take, such as taking the mean-field limit, do

not accurately reflect the full biological complexity, our approximations are validated by

comparison to simulations of the full stochastic dynamics.

The starting point of our analysis are Equation 2.24 and Equation 2.25, describing the

individual and collective dynamics, respectively. Taken together, these equations describe the

co-evolution of the queen gene expression level of an individual and the population structure.

Stable fixed points of such dynamics represent possible phenotypes in the society, such as

queen and workers. We calculate these fixed points from the intersection of the nullclines of

the system. These nullclines are given by

0 = 1− r − α̃
∫ ∞
−∞

K(r, r′)f(r′)dr′ , (2.26)

∂r [(1− r)f(r, t)] = α̃∂r

(
f(r, t)

∫ ∞
−∞

K(r, r′)f(r′, t)dr′
)
. (2.27)

Equation 2.26 and Equation 2.27 provide the basis for understanding the steady state of the

system as a function of the population composition and the fixed points of the individual dy-

namics. Considering that the population composition is represented by a probability distribu-

tion, f , its functional nature complicates intuitive interpretations of the relaxation dynamics.

In order to obtain a more intuitive picture, we reduce the system to a two-dimensional system

describing the coupled evolution of r and the first moment of the population composition,
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2. Emergence of specialisation and plasticity in a social insect

〈r〉. The starting point of this approximation is Equation 2.24,

∂τ̃r = 1− r − α̃
∫ ∞

0
rr′Θ(r′ − r)f(r′)dr′ , (2.28)

describing the evolution of the molecular degree of freedom of a tracer individual. The integral

in the right hand side of the equation represents the effect of the interactions received by the

tracer individual. In the limit of long times compared with the typical interaction time scale,

t � α−1, the effect of interactions can be approximated by the overall effect of interacting

with an effective individual with gene expression level 〈r〉,

∂τ̃r ≈ 1− r − α̃r〈r〉Θ(〈r〉 − r) , (2.29)

where 〈r〉 =
∫∞
0 rf(r, t)dr. Further, by multiplying Equation 2.25 by r and integrating over

r, we obtain the time evolution of the first moment,

∂τ̃ 〈r〉 = 1− 〈r〉 − α̃
∫ ∞

0
dr

∫ ∞
0

dr′K(r, r′)f(r)f(r′) , (2.30)

where
∫∞
0 dr

∫∞
0 dr′K(r, r′)f(r)f(r′) is the total interaction rate at time t in the nest. To

close the system of equations we approximate
∫∞

0 dr
∫∞
0 dr′K(r, r′)f(r)f(r′) ≈ 〈r〉2/2 where

the factor 2 arises due to double counting of subdominant interactions. Finally, our reduced

system of equations reads

∂τ̃r ≈ 1− r − α̃r〈r〉Θ(〈r〉 − r) , (2.31)

∂τ̃ 〈r〉 ≈ 1− 〈r〉 − α̃〈r〉
2

2 . (2.32)

Equation 2.31 and Equation 2.32 form a two-dimensional system of equations that is amenable

for a bidimensional graphical representation in the form of a phase portrait (Figure 2.12).

The solutions of these equations in the steady state provide the fixed points of the dynamics.

For α̃ 6= 0 , we find in the steady state that

〈r〉0 =
√

2α̃+ 1− 1
α̃

. (2.33)

For α̃ = 0 Equation 2.31 and Equation 2.32 admit only one stable solution corresponding

to high queen gene expression levels, r0 = 1 (Figure 2.13). On the other hand, for α̃ > 0, we

find three solutions if

〈r〉 >
√

4α̃+ 1− 1
2α̃ , (2.34)

32



2.7. Continuum limit of the mean-field master equation and phase portrait

Po
pu

la
tio

n 
le

ve
l, 

<
r>

Molecular level, r

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.20.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Population 
steady state

Worker Queen

Intrinsic perturbations Extrinsic perturbations

Homogeneous 
population, r = <r>

Sample trajectory

Figure 2.12.: Phase portrait depicting the co-evolution of the population composition, rep-
resented by the average queen gene expression across the population 〈r〉, and
the microscopic degree of freedom, represented by the queen gene expression of
single insects r. Left: Unperturbed dynamics, center: effect of intrinsic pertur-
bations, right: effect of extrinsic perturbations.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Population level, <r> Population level, <r>

M
ol

ec
ul

ar
 le

ve
l, r

M
ol

ec
ul

ar
 le

ve
l, r

α = 0 α = 1

α = 10 α = 100

Figure 2.13.: Bifurcation diagram showing fixed points of Equation 2.31 as a function of 〈r〉 for
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of Equation Equation 2.32. For α̃ > 0 the dynamics undergo a saddle node
bifurcation with the population composition, 〈r〉, as a bifurcation parameter.
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2. Emergence of specialisation and plasticity in a social insect

Figure 2.14.: Phase portraits of Equation 2.31 and Equation 2.32 for different values of α̃.
Random trajectories are represented by gray lines and two trajectories originat-
ing around the point (0, 0) corresponding to a nest with only individuals lacking
queen gene expression are highlighted in red.
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2.7. Continuum limit of the mean-field master equation and phase portrait

Figure 2.15.: Phase portrait for different values of the interaction rate α̃. Highlighted in
red are two example trajectories with similar initial conditions. The result of
stochastic simulations is overlaid in blue.

which in the steady state is always fulfilled for α̃ > 0. These three solutions comprise two

stable branches, at r0 = 1 and r2 = 1/(1+ α̃〈r〉) and an unstable branch at r = 〈r〉. Formally,

the system therefore comprises a saddle node bifurcation with the population structure as

a bifurcation parameter, as it had been previously observed in other contexts [80]. Intrinsic

perturbations (Figure 2.12b), which do not change the value of 〈r〉, are therefore suppressed

by the bistable dynamics in the steady state. Substituting the population steady state, 〈r〉0
we obtain as intersections of the nullclines for α̃ > 0,

r′0 = 1 ,

r′1 =
√

2α̃+ 1− 1
α̃

, (2.35)

r′2 = 1√
2α̃+ 1

.

On the other hand, after an extrinsic perturbation like queen removal (Figure 2.12c) the

population structure becomes homogeneous and narrowly distributed around the separatrix

defined by r = 〈r〉 � 1. From these initial conditions, the dynamics evolve rapidly along

the separatrix. On this separatrix fluctuations can drive each individual either to the queen

or to the worker attractor, as reflected in the divergence of trajectories with similar initial

conditions shown in Figure 2.14.

The flow in the mean-field limit qualitatively represents the flow obtained from stochastic

simulations of Equation 2.13 using Gillespie’s algorithm [73], as shown in Figure 2.15. There-
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2. Emergence of specialisation and plasticity in a social insect

fore, while our calculations are strictly only valid in the limit of an infinite population size

and on long time scales, Equation 2.31 and Equation 2.32 accurately represent the qualitative

structure of the deterministic phase space of Equation 2.13.

2.8. Quantitative prediction of experimental observables

Inspired by the experimental observations, in previous sections we have derived a model

(Equation 2.13) that describes the evolution of the joint distribution of queen gene expression

and queen gene repressors and shown that it recapitulates some qualitative features of the

system as, for instance, reprogramming after queen removal (Figure 2.10a). In this section,

we set out to fix the parameters of the model and quantitatively predict several observables

of the experimental dynamics.

First, to derive a mathematical description that is less dependent on parameters describing

poorly understood molecular processes, such as the dynamics of queen gene repressors, we

derive an effective description of the time evolution of the marginal distribution of ovary sizes.

To this end, we derived a description based on ovary growth starting from the model derived

above. As ovary sizes are a mere downstream effect of the queen gene expression dynamics,

such an effective description should be structurally similar to the master equation describing

the time evolution of the marginal distribution of queen gene expression levels, Equation 2.18,

if the time scales are chosen appropriately.

Finally, starting from this description we computed the contribution of the fighting inter-

actions to the activity of the nest across the different phases of the experiment and compared

our theoretical predictions with the computational quantification of the activity from the

colony recordings.

2.8.1. Marginal distribution of ovary sizes

Ovary sizes are one of the defining phenotypical features of Polistes wasps, acting as a proxy

for queen gene expression, whose expression is directly correlated with ovary size (Figure 2.7a).

Additionally, only mature eggs, i.e. larger than 1.5 mm in size, can be laid by these insects

(Figure 2.7b). Motivated by these observations, and in order to predict the time evolution of

the probability of observing ovaries of size {ok} at time t, P ({ok}, t), we first assume that the

instantaneous rate of ovary growth is given by a function that depends on the expression level

of queen genes, g(nk), where the function g(n) summarises a cascade of molecular pathways

which are not understood in detail. We here make the simplest possible assumption about the

functional form of g(n), namely that it depends linearly on gene expression levels and that
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Figure 2.16.: a) Top: Theoretical prediction of ovary sizes for the different phases of the exper-
iment obtained from stochastic simulations. Bottom: Experimentally measured
ovary sizes for the different experimental phases. b) Number of egg-layers for
the different phases of the experiment. The solid line corresponds to the theoret-
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prediction for individual nests c) Global activity for the different phases of the
experiment. The dashed line corresponds to the theoretical prediction.
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detected by pixel changes (in white) between consecutive frames. c) Activity
over time for individual nests as a function of the recording time. d) Average
activity over time for the experimental phases (p-value, t-test). Dots represent
individual nests. Error bars correspond to SEM.

ovaries grow when the gene expression level exceeds a threshold, n0, and shrink otherwise.

Therefore, the rate of ovary growth takes the form g(n) ∝ n− n0. As eggs are laid once they

have reached a mature size, we impose a reflective boundary condition on oi at a size o0 which

we set to be the maximum ovary size observed in the experiment, o0 = 2.5mm. With this,

switching back to dimensional quantities, the time evolution of the conditional probability of

ovary sizes follows a master equation of the form

d

dt
P ({ok}, t|{nk, qk}) = g(nk)θ(nk − n0) [P ({ok − 1}, t|{nk, qk})− P ({ok}, t|{nk, qk})]

(2.36)

− g(nk)θ(n0 − nk) [P ({ok + 1}, t|{nk, qk})− P ({ok}, t|{nk, qk})] .

As in this model the expression level of queen genes is independent of ovary size, the joint

probability P ({nk, ok}, t) factorizes as P ({nk, ok}, t) = P ({ok}|{nk}, t)P ({nk}, t). Therefore,
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2.8. Quantitative prediction of experimental observables

the dynamics of the joint probability of {nk, ok, qk} are described by

d

dt
P ({nk, ok, qk}) =

N+1∑
i=1

{
µ(1− qi) [P ({ni − 1, oi, qi})− P ({ni, oi, qi})] (2.37)

+ δ [(ni + 1)P ({ni + 1, oi, qi})− niP ({ni, oi, qi})]

+ g(ni)θ(ni − n0) [P ({ni, oi − 1, qi})− P ({ni, oi, qi})]

− g(ni)θ(n0 − ni) [P ({ni, oi + 1, qi})− P ({ni, oi, qi})]

+ Γ(tinti )P ({ni, oi, 1})(1− 2qi)

+ ω
∑
j 6=i

K(ni, nj)P ({ni, oi, 0})(2qi − 1)
}
,

with g(n) denoting the rate of ovary growth for a given gene expression level n.

With the aim of comparing our simulation results to the experimental ovary dissection

data we first integrate out gene expression, yielding an equation describing the evolution of

ovary sizes. If the persistence time of the repressive effect of interactions plus the typical

production time of gene products is smaller than the typical time between two interactions,

individuals alternate periods of growing and shrinking of their ovaries with the duration of

these periods determined by the ratio between the typical interaction and persistence times

plus the queen gene production times. Taking this limit, the ovary growth rate only depends

on whether queen gene expression is above or below the threshold n0. For that purpose we

define a binary random variable,

si = Θ(ni − n0) , (2.38)

such that the ovary growth rate is proportional to 2si − 1.

The time evolution of the random variable si is linked to the dynamics of the queen gene

expression level ni, giving rise to an implicit time delay in the ovary equation. Specifically,

following an interaction, an individual with si = 1 needs a time toff to degrade enough gene

products and activate the pathways responsible for flipping the ovary growth state, si = 0.

On the other hand, if an individual with si = 0 does not engage in a subdominant interaction

during a time ton ≈ toff+tper, given by the sum of the persistence time of queen gene repressors

and the time needed to express queen genes beyond a level n0 and activate pathways related

to reproduction, it will again flip the ovary growth state, si = 1.

Finally, in order to obtain a description of the joint evolution of ovary sizes and growth

states P ({ok, sk}) we still need to specify how interaction probabilities depend on ovary sizes.

In the long time limit the ovary size of a given individual is determined by the sign of the

difference Tsi=1 − Tsi=0 where Tsi=j =
∫ t

0 dt
′θ(si − j) is the time that the ovary growth rate
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2. Emergence of specialisation and plasticity in a social insect

spends in the state j. In this limit, the instantaneous value of gene expression n at time t is

a good indicator of the sign of Tsi=1 − Tsi=0, and hence of ovary growth. Therefore, we can

rewrite the interaction kernel in terms of ovary size and obtain the effective master equation

governing the evolution of the marginal distribution of ovary sizes,

d

dt
P ({ok, sk}) =

N+1∑
i=1

{
g(si) [P ({oi − 1, si})− P ({oi, si})] (2.39)

+ δ(tinti − toff)P ({oi, 1})(1− 2si) + δ(tinti − ton)P ({oi, 0})(2si − 1)
}
,

where tinti is, as before, the time elapsed since the last subdominant interaction of individual

i. The dynamics of ovary growth state deterministically depend on the time since the last

subdominant interaction but these interactions are themselves stochastically distributed with

a rate that depends on the ovary size of the individuals involved in them. Equation 2.39

provides a description of the system at the ovary level that retains the foremost characteristics

present in the experimental data, i.e. the presence of multiple queens in the nest shortly after

reprogramming and the posterior relaxation towards an analogous state to the control, as

demonstrated by the results in Figure 2.16a-b. The existence of explicit time delays ton and

toff is responsible for the transient observation of multiple queens during reprogramming.

Specifically, such an overshoot arises if the value of toff is of similar magnitude as the time

scale associated with ovary growth.

2.8.2. Quantification of the activity stemming from fighting interactions

To quantify the activity levels of the colonies at different phases of the experiment we analyzed

video recordings of individual nests (Figure 2.17a). Specifically, we quantified pixel changes

between successive frames, using custom code and the computer vision library OpenCV (Fig-

ure 2.17b).

The time evolution of the global activity in a nest (Figure 2.17c-d) depends on a component

which is independent of the fighting interactions involved in the regulation of the reprogram-

ming process and on a component reflecting these interactions, being this component the only

one reflected by the model. We further note that the contribution of the component depend-

ing on fighting interactions is proportional to the total interaction rate. The total interaction

rate can be calculated from Equation 2.39 to be proportional to

∑
ij

oiojf(oi)f(oj) =
(∑

i

oif(oi)
)∑

j

ojf(oj)

 = 〈oi〉2 .
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2.9. Epigenetic regulation leads to an increase of the lifetime of the society

Parameter Value Justification

ω (Interaction rate) 3.7 day−1 Measurements from video
recordings.

τoff (Typical time between an
interaction and changes in
ovary growth)

2.5 days

We estimated this parameter
based on the observation of 2-
3 egg layers in the early com-
mitment phase.

or (Ovary growth rate) 0.25mmday−1

The first egg layer is observed
6 days after queen removal
with a size of mature eggs of
1.5 mm.

Table 2.1.: Summary of parameter values used for predicting experimental data.

where 〈oi〉 represents the average ovary size across the population.

The results of our analysis are presented in Figure 2.16c. To take into account the differ-

ent contributions to the global activity mentioned above, we added an offset value to the

theoretical prediction such that the empirical and theoretical values matched in the control

phase. Additionally, activity levels were normalized in order that the maximum of both curves

matched.

2.8.3. Estimation of interaction parameters and associated timescales

The model defined in Equation 2.39 includes several parameters. In this section we provide

justifications for the parameter values used to predict the experimental observables in Fig-

ure 2.16 and Figure 2.17. We have to exercise caution in interpreting these parameters in

literal biological terms, as in the derivation of the model, Equation 2.39, we did not assume

any non-linearities unless supported by experimental data. Such non-linearities, for example

in the relation between ovary growth and gene expression, naturally exist in any biological

system. We still expect, however, that the order of magnitude of parameters is not altered by

unknown non-linearities and can be estimated by independent observations from experiments

or the literature. The parameter values used for our predictions and their justifications are

summarised in Table 2.1 and Appendix A.

2.9. Epigenetic regulation leads to an increase of the lifetime of

the society by reducing gene expression variance

In previous sections we derived a continuum approach in the form of a PDE from a master

equation describing a stochastic system. Although the mean-field master equation (Equa-

tion 2.22) accurately captures the salient features of the phase space of the system, it never-
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Figure 2.18.: Stochastic trajectory of the master equation Equation 2.13 shows frequent queen
switching events.

theless neglects fluctuations caused by the small number of individuals present in each nest.

In this section we consider how the stability of the nest and the social order can be maintained

in the presence of strong fluctuations.

In Control nests, fighting interactions between the queen and workers are infrequent (Fig-

ure 2.8), happening on the same time scale as the molecular processes involved in gene

regulation. The number of individuals present on a nest being small, one would expect the

stochastic nature of the interactions to be a crucial factor in the dynamics of single nests.

In fact, stochastic fluctuations could lead to queen switching events where the queen role

changes between individuals but keeping the number of queens in the system constant. In-

deed, stochastic equations of the full master equation (Equation 2.13) show frequent queen

switching events (Figure 2.18).

In order to quantitatively understand how fluctuations affect the stability of the society

we begin by estimating the persistence time of the society given the typical time scales of

molecular and population level processes. To this end, we first calculate the probability that

any individual upregulates the queen genes in the time interval between two consecutive

interactions, and thereby destabilises the society, by producing a sufficient number of queen

gene products. If interaction events are statistically independent, the waiting time T between

consecutive interactions follows an exponential distribution, P (T ) = ωe−ωT . Denoting the

time scale of molecular processes (e.g. the time needed for an individual to upregulate the

queen genes) by Tδ, the probability that T is longer than Tδ is

P (T > Tδ) =
∫ ∞
Tδ

P (T )dT = e−ωTδ . (2.40)
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2.9. Epigenetic regulation leads to an increase of the lifetime of the society

Thus, the probability of a single worker being subject to a repressive interactions in a time

interval of length Tδ is 1−e−ωTδ . In a nest with N workers, the probability of all of them being

subject to a repressive interaction in a time interval Tδ then is
(
1− e−ωTδ

)N
. Conversely, the

probability that at least one worker is capable of upregulating its queen genes between two

consecutive interactions is

P = 1−
(
1− e−R

)N
, (2.41)

where R = ωTδ is a dimensionless parameter that represents the ratio between the molecular

and the interaction time scales. Finally, the number of interactions before an insect is capable

of upregulating its queen genes is distributed according to a geometric distribution with mean

1/P . Therefore, the persistence time of the society τ is

τ = ω−1
(
P−1 +R

)
. (2.42)

The theoretical prediction of Equation 2.42 indicates that in order to obtain a queen

turnover time consistent with the experimentally measured value of roughly 27.5 weeks [81]

the ratio between molecular and interaction time scales, R, must be larger or equal than 9

(Figure 2.20a). Given the experimental estimation of the time interval between two consec-

utive interactions, this would imply that gene expression states are stable for at least three

days in the absence of interactions. However, transcriptional queen signatures are already

established in Polistes three days after queen removal [65].

Furthermore, experimentally it is observed that the queen phenotype is stable over the

whole lifetime of the organism, as the only natural queen replacement mechanisms are queen

death or removal. Therefore, a mechanism that reduces fluctuations is required in order to

stabilize phenotypes over long periods of time.

Organisms have developed mechanisms that regulate gene expression without modifying

the nucleotides of the DNA sequence. These mechanisms and their study are known as epige-

netics [82]. In particular, the primary layer of epigenetic modifications is DNA methylation

[82, 83]. DNA methylation is a chemical modification of the DNA that predominantly affects

cytosines located next to a guanine (CpG) in the DNA sequence. When a cytosine is methy-

lated a methyl group is attached to it, altering the chemical activity of the corresponding

DNA fragment without modifying the sequence itself. DNA methylation can be experimen-

tally measured genome-wide using whole-genome Bisulfite sequencing [84], a technology that

modifies methylated cytosines leaving unmethylated bases unaltered, allowing for the detec-

tion of methylation marks.
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Figure 2.19.: Heatmaps of gene expression (left) and DNA methylation (right) levels of queen
genes. Genes are ordered based on hierarchical clustering of gene expression in
control nests. Individuals are ordered by their ovary size (small to large, left to
right) and queens are marked in bold.

In mammals, DNA methylation plays a crucial role during development [85–87], as the

removal of methylation marks of the parental genome is followed by the imprint of new

marks during the initial developmental stages, a process that has to be tightly regulated as

errors in the imprinting of new methylation marks have been associated with the appearance

of cancerous cells [88, 89]. Additionally, DNA methylation has been shown to influence gene

expression, including silencing undesired genes at different developmental stages [90, 91].

In recent years, the existence and the role of epigenetic mechanisms of genomic regulation

have been the focus of studies in social insects [92]. In particular, gene bodies are susceptible

to being methylated in Polistes canadensis, as reflected by the measured methylation levels

of the queen genes (Figure 2.19).

To understand how DNA methylation can suppress fluctuations that destabilise Polistes

societies we first studied the relationship between expression and methylation of all genes in

Polistes (Figure 2.20b). Our results reveal that, besides the existence of a positive correlation

between gene expression and methylation level, there is a correlation between gene variability

across individuals and the levels of DNA methylation of those genes (Figure 2.21a), with genes

that are methylated being less variable that those which are not. Motivated by this evidence,

we hypothesized that the regulation of gene expression by methylation marks could act as
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a stabilizing mechanism that increases the queen lifetime by decreasing transcriptional noise

and reducing gene expression variability across the population.

To test this hypothesis, we begin by considering the steady-state probability distribution

of queen gene expression values, P (r), in workers. In a population composed of N workers,

the probability of observing a new queen is equal to the probability that at least one worker

upregulates the queen genes. Assuming that the queen gene expression values in workers

are distributed according to P (r), the probability of observing a new queen is equal to the

probability of finding an insect with queen gene expression larger or equal to one,

p =
∫ ∞

1
P (r)dr . (2.43)

As per our previous calculation, Equation 2.42, the persistence time of the society then is

τ(σ) = ω−1
[ 1

1− (1− p)N +R

]
. (2.44)

The variance of P (r), σ2, is determined by an interplay between queen gene expression and

queen interactions. Our main conclusions from this analysis are independent of the details

of these processes. We here provide two examples to illustrate our results. If subdominant

interactions with the queen are statistically independent and happen at a rate independent of

queen gene expression levels in workers, then queen gene expression levels in workers follow

an exponential distribution, P (r) = exp(−ωr/µ), with µ and ω being the rate of queen gene

expression and interactions, respectively. With the variance given by σ2 = (µ/ω)2 we obtain

p = exp(−1/σ) and a persistence time of the society of

τ = ω−1
[ 1

1− (1− e−1/σ)N
+R

]
. (2.45)

In a more realistic setting corresponding to our model, the rate of repressive interactions

of a worker is proportional to its level of queen gene expression. In this case, in analogy to

stochastic growth processes with resetting, queen gene expression levels of workers follow a

truncated normal distribution [93],

P (r) =
√

2ω2

πµ2 e
− r

2ω2
2µ2 , (2.46)
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Figure 2.22.: a) Example of global demethylation. Every dot represents average methylation
across individuals in a genomic window containing 50 informative CpGs. Colour
reflects methylation level of the probe. b) Average of CpG methylation levels for
different genomic features across 8 individuals collected before (eggless phase)
and after (D4 phase) queen removal. Only windows containing 50 informative
CpG with at least 10 % average methylation in at least one phase are shown.
c) Fraction of significantly variable genes (p-value < 0.1, t-test) in Control and
D4 phases.

with variance σ2 = µ2/ω2. In this case we find that

τ = ω−1
(

1
1− (1− Erfc

[
(2σ2)−1/2])N +R

)
, (2.47)

where Erfc(x) = 1− Erf(x) is the complementary error function.

Our results (Figure 2.21b) indicate that a decrease of gene expression variability across

the population leads to an exponential increase of the lifetime of the society. Therefore, the

imprinting of methylation marks in the individual genomes can have a strong stabilising

effect at the population level, indicating a possible novel role for epigenetics mechanisms in

the formation and maintenance of primitive societies.

This conclusion is further supported by the demethylation of all genomic regions (Fig-

ure 2.22a-b) after queen removal, accompanied by an increase of the fraction of variable

genes (Figure 2.22c) during the reprogramming process.

A corollary of our theory is that the stabilization of larger societies would require a stronger

decrease in the inter-individual variance, corresponding to a larger average methylation level

of the genome. In order to test this prediction we did an inter-species comparison between

Polistes canadensis, Belonogaster juncea, a quasi-social species of wasps, as well as the data

from [92] (Figure 2.23). A quasi-social insect, Belonogaster wasps form small colonies where

different individuals exhibit the queen phenotype in a single generation [94]. Accordingly, we

found an overall lower methylation level in Belonogaster wasps compared to Polistes canaden-

sis (Figure 2.23a). This is corroborated by a positive correlation (Figure 2.23b) between global

levels of DNA methylation and queen replacement times and population sizes across several
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Figure 2.23.: a) Global level of DNA methylation measured by mass spectrometry in Polistes
canadensis and Belonogaster juncea control nests. Center line corresponds to
the median and lower and upper hinges to the 25th and 75th percentiles, re-
spectively. Only nests with at least 2 individuals collected are shown. b) Top:
Queen replacement times for different social insect species as a function of the
DNA methylation percentage of the genome. Bottom: Population size for dif-
ferent social insect species as a function of the DNA methylation percentage of
the genome. Color indicates the degree of sociality.

species of social insects. These results indicate that more complex social structures regulated

by stochastic interactions would require additional regulation from epigenetic processes in

order to be stable over long periods of time.

2.10. Conclusions

Through the combination of experimental and theoretical approaches we have shown that

Polistes uses antagonistic dynamics on different spatial scales to distinguish between intrin-

sic and extrinsic perturbations, being stable against the former and reacting plastically to

the latter. Owing to the unique experimental strategy (Figure 2.2), we could correlate obser-

vations ranging from the molecular to the population scales in order to build a theoretical

model that captured the most relevant features of the biological system and set out to study

its response to perturbations. Our results uncover how the remodelling of microscopic degrees

of freedom by macroscopic feedback gives rise to specialisation and plasticity in this primitive

society.

To study the effects of different perturbations to the society, colonies of Polistes canadensis

were studied in their natural habitat during field work expeditions in Panama. While studying

a social insect in its natural environment limits the use of molecular perturbation techniques

available in laboratories, it allowed us to perform behavioural perturbations under natural
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environmental fluctuations of Polistes nests, preserving their contribution to the dynamics of

the system.

An accurate theoretical description of the biological complexity of the processes regulating

the insect society would not allow gaining analytical insight into the response of the society

to perturbations. We therefore based our theoretical model on the minimal set of assump-

tions that followed directly from the experimental observations. Our theoretical work shows

that specialisation and plasticity in Polistes are emergent properties arising from the active

feedback between microscopic and macroscopic degrees of freedom. In particular, the possible

phenotypes of the system correspond to the fixed points of a dynamical system that under-

goes a bifurcation where the role of control parameter is played by the population structure

(Figure 2.12). As a consequence, after a pertubation of the population structure the balance

between the molecular and population terms of the dynamics is temporarily broken, result-

ing in the observed reprogramming dynamics. These analytical insights are corroborated by

the results of stochastic simulations of the full non-Markovian dynamics, that additionally

provide quantitative predictions of experimental observables. Our results show how societies

of primitively social insects can control how fluctuations propagate across scales of biological

organisation to perform specific functions.

Furthermore, we explored the effect of stochastic fluctuations in the system dynamics,

revealing that stable societies over long periods of time must rely on additional regulatory

process. Our results suggest that DNA methylation might play an unanticipated role in

regulating the stability of the society at the colony level (Figure 2.21). Correlating DNA

methylation measurements with gene expression, we discovered that methylated genes are

less variable than unmethylated genes. We predicted that this reduction in variability could

lead to an exponential increase of the lifetime of the society, introducing the possibility that

epigenetic modifications of individual genomes have a relevant effect at the population level.

In conclusion, our work demonstrates that correlated measurements across scales can give

qualitatively new insights into the mechanisms underlying self-organisation of biological sys-

tems. The approach developed here may be more widely applicable to other biological systems

of interest, leveraging the possibilities offered by the advent of new experimental and com-

putational techniques. In Chapter 4 we discuss in more detail future research lines motivated

by our work on this fascinating insect society.
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3. Driving stochastic lattice systems by

reinforcement learning

What is love except another name for the use of positive reinforcement?

B. F. Skinner - Walden Two

S ocial insects have provided a fertile ground to study the remodelling of microscopic de-

grees of freedom by macroscopic feedback in biological systems. In Chapter 2 we have

shown that primitively social paper wasps employ antagonistic processes at the molecular and

the population scales to control the propagation of fluctuations across spatial scales. The con-

trol of fluctuations and the response of the system against perturbations is a central research

question in several fields, not only in biology. For instance, in the field of artificial intelligence

it is desired that systems are robust against noise in the input signal and perturbations of

the system structure.

In this chapter we explore the interplay between microscopic and macroscopic degrees of

freedom in artificial intelligence systems. In particular, we define a many-particle stochastic

model, where the microscopic degrees of freedom of individual particles are remodelled as a

result of macroscopic feedback. Making use of tools of the field of deep learning, we represent

the microscopic degrees of freedom of single particles using deep neural networks that are

dynamically remodelled following stochastic learning dynamics. In this section we provide a

historical overview of reinforcement learning and motivate how the remodelling of microscopic

degrees of freedom by macroscopic feedback in artificial intelligence systems can be studied

through the combination of macroscopic stochastic dynamics and neural networks trained

using reinforcement learning.

One extraordinary feature of biological systems is the ability to detect environmental

changes and react to them accordingly, as exemplified by the evolution of species over long

time scales and by learning over the lifetime of a single individual.

Since long before the origins of scientific thought, learning, understood as the acquisition of

new behavioural patterns and knowledge over the lifetime of an individual, and the processes

governing it have drawn the attention of a great number of scholars, from Aristotle to Francis
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Bacon [95, 96]. Later on, with the advent of modern science, learning processes became one of

the central objects of studies of fields like psychology and neuroscience, focused respectively

at the behavioural and physiological aspects of these processes.

In particular, one of the most widely accepted learning paradigms is offered by behaviourism

[97, 98], a psychological school of though that understands learning as a process where be-

havioural patterns are reinforced or extinguished based on the response to those behaviours,

supported by strong experimental evidence [99, 100].

The power and influence of the ideas of behaviorism introduced above went beyond the

field of psychology, deeply impacting the development of theories of artificial learning, such

as statistical learning theory and machine learning (ML) in the decades of the 50s and 60s

[101]. In particular, a subfield of ML, the so called reinforcement learning (RL), draws direct

inspiration the ideas of behavioural psychology. In short, a RL algorithm iteratively learns

probability distributions over a certain action space that maximize a given reward function.

The reward function depends on the state of the system and the action taken. After every

time step, the state of the system is updated and the reward is computed. As a result of

the training dynamics, in analogy with behavioural psychology, actions leading to a higher

reward are reinforced whereas those leading to lower rewards are extinguished. The appeal

of RL compared to other disciplines of ML relies on the wealth of behavioural patterns that

can result from the maximization of simple reward functions [102].

An active field of research since its inception, the interest in RL has nevertheless sharply in-

creased in the last decade. The application of deep artificial neural networks to solve RL tasks

[103], also known as deep reinforcement learning, has led to an increase of performance in a

wide array of classical RL tasks, including game playing [52, 103, 104] or training autonomous

robots [105].

Deep reinforcement learning has not only revolutionized theoretical computer science. In

2018, AlphaZero [53], a game-playing engine powered by deep neural networks, made headlines

around the world as it was able to soundly defeat human players as well as the best engines

to date (Figure 3.1) in three board games as different as Chess, Shogi and Go. Furthermore,

AlphaZero learned to play the three games from self-play and did not rely in any heuristic

rules. A remarkable feat on its own, AlphaZero relied on the same network architecture

to play all three different games, therefore being much less specialized than the engines it

competed against. In the world of chess, the impact of AlphaZero and its aggressive play

has led the development of new opening ideas and long term strategic plans [106]. Top-level

players and amateurs alike now include the assistance of neural network based chess engines
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Figure 3.1.: Performance of AlphaZero in terms of win, draw and loss percentages against the
top engines in a) Chess, b) Shogi and c) Go. Adapted from [53]

in their training regimes, as they often provide different evaluations from those of traditional

engines based on heuristic rules, offering the player fresh, unexplored ways to play.

The recent introduction of deep learning techniques to study physical systems [42, 43, 107,

108] prompts the question of whether such advances can have a similar impact in physics.

The statistical physics community has devoted serious efforts to derive mechanistic interpre-

tations of deep learning [109–111] and to characterize the dynamics of these systems [112–

114]. Furthermore, in recent years the intimate connection between RL and optimal control

problems has also been leveraged to gain insight into this class of systems [115–118].

On the other hand, the intersection between deep learning and reinforcement learning

has not received the same attention from the physics community, although the successful

application of deep reinforcement learning to statistical physics problems defines this as a

promising line of research. In particular, deep reinforcement learning has been successfully

applied to a long studied non-equilibrium physics problem, the prediction of protein folding

from the sequence data, with the performance of the aptly named AlphaFold [119–121] above

any other available algorithm or theory.

In this chapter, we employ tools from deep learning to define a stochastic many-particle

model where we characterise how microscopic degrees of freedom are remodelled as a re-

sult of macroscopic feedback. In particular, we consider a system of N particles, each with

several associated intrinsic degrees of freedom (Figure 3.3), that we represent using deep

neural networks. The dynamics are defined by the reaction rates of individual particles, de-

termined by the output of the associated neural networks. Therefore, within this framework,
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Figure 3.2.: Illustration of the AlphaFold prediction process for a specific protein. Adapted by
permission from Springer Nature: Nature (Improved protein structure prediction
using potentials from deep learning, Senior, A.W. et al.), (2020) [119]

the microscopic variables correspond to the parameters of individual neural networks and the

macroscopic level is characterized by the particle dynamics. In order to couple the micro-

scopic and the macroscopic scales, the input of the neural networks is given by the state of a

neighbourhood of the corresponding particle and the neural network parameters are updated

using reinforcement learning based on the trajectory of the system.

Reinforcement learning provides a suitable learning paradigm to induce couplings between

particles resulting from the existence of a shared environment, as the dynamics of a single

particle modify the state of the neighbourhood of other particles. As a result, the reaction rates

of single particles depend on the dynamics of all other particles in the system and are updated

depending on the history of the dynamics. Specifically, Figure 3.4 schematically illustrates

the coupling between deep reinforcement learning and stochastic many-particle dynamics in

our system. The effective feedback between scales resulting from the interplay between the

macroscopic and the learning dynamics, makes this a well-suited system to characterise how

microscopic degrees of freedom are remodelled by macroscopic feedback.

This chapter is structured as follows: first, in Section 3.1 we introduce the required ML

concepts, focusing on RL, deep learning and deep reinforcement learning. Then, we intro-

duce our model and the specific details of its numerical implementation in Section 3.2. In

the following sections we quantify the resulting dynamics at the macroscopic (Section 3.3,

Section 3.4) and microscopic (Section 3.5) levels, corresponding to the trajectories of indi-

vidual particles and collective properties of the system and the neural networks structure,
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Figure 3.3.: Schematic description of the feedback between the macroscopic and microscopic
degrees of freedom in the system.

respectively. In Section 3.6 we characterise how the interplay between the microscopic and the

macroscopic dynamics gives rise to the emergence of complex interactions over time. Later,

we study how the dynamics are impacted by the introduction of memory (Section 3.7) and

disorder (Section 3.8). Finally, in Section 3.9 we conclude with some summarizing remarks.

3.1. An introduction to deep reinforcement learning

In this section we introduce the framework of deep reinforcement learning as the combina-

tion of reinforcement learning and deep learning, focusing on its mathematical foundations

and computational implementations. In addition, we detail the specific scheme that we later

implement in our numerical simulations.

3.1.1. Reinforcement learning

Reinforcement learning [51] refers to a class of machine learning methods where an agent is

trained to find the optimal policy (sequence of actions) that maximizes a reward function. In

layman terms, each action is associated with a reward and the algorithm is trained to find

the actions that result in the maximum return. Therefore, to characterize a RL task we need

to define an agent, the action set, the reward function and the environment the agent acts

upon.

The dynamics of such a task are defined in discrete time steps as follows: at each step the
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Figure 3.4.: Schematic depiction of the coupling between stochastic and learning dynamics
in the system.

Figure 3.5.: Elements of a reinforcement learning task. Adapted from https://www.
tensorflow.org/agents/tutorials/0_intro_rl.
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agent performs an action on the environment based on the previously received observation

from the environment and, as a result, receives a reward and the next observation from the

environment. In the following we mathematically define the policy, value and cumulative

reward functions and discuss how the optimization of the policy is typically achieved.

The policy function, denoted as π, determines the action taken by an agent when presented

with a particular observation of the environment. Policies can be either deterministic, where

the action at = π(st) is unequivocally determined given the current environmental state st,

or stochastic, describing the conditional probability of the agent selecting a particular action

given the state of the environment π(at|st). By randomly selecting the next action, stochastic

policies are less likely to get stuck in local minima of the loss landscape, what is known in the

reinforcement learning literature as the exploitation-exploration tradeoff [51]. In the following

we consider stochastic policies, as deterministic policies are a limit case of these.

In order to quantify and compare the performance of different policies, we define the state-

value function associated with the policy π as

Vπ(s) = E[R|st = s] , (3.1)

where R is the expected return that an agent would get if the system is in state s and the

agent follows policy π. The optimal policy π∗ is defined as the policy that maximizes the

expected return

π∗ = argmaxπVπ(s) . (3.2)

Although the state-value function is enough to define the optimal policy, in practice it is also

useful to define the state-action value function Qπ

Qπ(s, a) = E[R|st = s, at = a] , (3.3)

representing the expected return of an agent that first executes action a and then follows

the policy π. In several applications this allows for computing the optimal policy in an easier

way, taking advantage of Bellman’s optimality equation [122] to update the state-action value

function.

To complete the above definitions we need to define the return R associated to a given

policy. The return R is defined as the cumulative sum of discounted future rewards

R =
T∑
t=0

γtrt , (3.4)
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where rt is the reward obtained at time t and γ ∈ [0, 1] is the discount parameter. The discount

parameter measures the weight assigned to immediate compared to future rewards in the

updating of the policy. For γ = 0 only instantaneous rewards are relevant for the updating of

the policy whereas for γ = 1 all future rewards are weighted equally. In our deep RL framework

the sum in Equation 3.4 is taken over the length of an episode, corresponding to the time

interval between neural network updates. More details about our specific implementation are

given in Section 3.2.

Once all elements of a RL task have been defined, all that remains is optimizing the policy

function π. The large dimensionality of the action and state spaces in practical applications

renders analytical calculations of the optimal policy unfeasible. Therefore, one of the main

focuses of classical RL has been the development of algorithms that approximate the optimal

policy [123–126]. Nevertheless, the lack of generalization and scalability of classical methods

[51] makes them not suited for complex applications with large amounts of data. In connec-

tion to the recent advances in the application of artificial deep neural networks as function

approximators, in recent years deep reinforcement learning [52, 103] has emerged as a promis-

ing way of approaching RL tasks. The next section is devoted to introducing deep learning

and discussing its application to RL problems.

3.1.2. Deep learning and its application to reinforcement learning tasks

Deep learning [41] is a sub-field of machine learning characterized by the use of deep artificial

neural networks whose methods have been successfully applied in a broad range of problems,

including speech recognition, machine translation, bioinformatics or structural protein se-

quence analysis [127–132]. In this section we introduce the main component of deep learning,

deep neural networks, their role as function approximators and their use in RL tasks.

From a mathematical perspective, deep learning comprises a series of methods capable of

learning probability distributions from data [43]. Deep learning methods are traditionally

divided in three different categories (supervised, semi-supervised and unsupervised) depend-

ing on the probability distribution being learned. In particular, given data x, unsupervised

learning methods are concerned with approximating the probability distribution underlying

the data p(x), whereas supervised learning methods approximate a conditional probability

distribution p(x|y) given the data x and labels y.

The central component of any deep learning algorithm are deep (artificial) neural networks.

A deep neural network is an artificial neural network with hidden layers between the input

and the output layers (Figure 3.6). Depending on the connections between nodes and layers,
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OutputHidden layerInput

...

...

...

Figure 3.6.: Structure of a feed-forward neural network. Labels illustrate the calculation of
the output for units in the output layer.

and in order to exploit the symmetries of the task at hand, several types of artificial neural

networks have been defined, including convolutional neural networks (CNN) [133], recurrent

neural networks (RNN) [134] or feed-forward neural networks. The power of deep learning

and deep neural networks is based on the universal approximator property of deep neural

networks [135–137], referring to the fact that any arbitrary function can be approximated

using a suitably chosen deep neural network with non-linear activation functions.

In the following we consider only feed-forward neural networks, as this architecture will

correspond to the main building blocks of our model. This means that we consider networks

composed of an input layer, a finite number of hidden units and a final output layer where

the units of a given layer are connected only to the previous and following layers (Figure 3.6).

Feed-forward neural networks are characterized by their parameters, weights and biases θ =

(w,~b), and a non-linear activation function f that together determine the output of a unit as

a non-linear function of a linear combination of the inputs coming from the previous layer,

yi = f

∑
j

wijxj + bi

 , (3.5)

where the sum is performed over all units in the previous layer, wij is the weight that unit

i assigns to the input from unit j and bi corresponds to the bias of unit i. Common choices
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Figure 3.7.: Shapes of common non-linear activation functions: a) Tanh. b) Rectified linear
unit (ReLU). c) Exponential linear unit.

for the non-linear activation function are sigmoidal, rectified linear units (ReLU) or tanh

functions (Figure 3.7).

During training the parameters of the neural network are updated to minimize a suitably

chosen loss function, L(θ). We will discuss the choice of the loss function in Section 3.2, where

we define our reinforcement learning driven lattice gas. Next, we consider the optimization

of the loss function with respect to the parameters θ. One of the most commonly used opti-

mization methods is gradient descent, corresponding to updating the parameters according

to the negative gradient of the loss function, eventually reaching a local minimum of the loss

landscape. The simplest gradient descent update rule for the parameters can be written as

θt+1 = θt − η∇θL , (3.6)

where ∇θL is the gradient of the loss function with respect to the parameters θ and η is the

learning rate and controls the step size in the direction of the gradient.

Nevertheless, the use of classical gradient descent to train neural networks has a number

of shortcomings. As the size of the datasets and the number of parameters commonly used in

deep learning applications grows, computing the gradient of the loss landscape with respect

to the parameters becomes computationally very expensive [43]. Furthermore, deterministic

optimization algorithms like gradient descent can get stuck in a local minima of the loss

landscape depending on the initial conditions. In order to mitigate these shortcomings, neural

networks are trained using a combination of stochastic dynamics and backpropagation to

compute the gradient of the loss with respect to the parameters that we refer to as stochastic

gradient descent (SGD) [138, 139].

One of the most common ways to include stochasticity in the dynamics is stochastic gradient

descent with mini-batches, the method that we will implement in our numerical simulations.
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The idea behind stochastic gradient descent with mini-batches is to divide the dataset into

smaller subsets, referred to hereafter as mini-batches, and approximate the calculation of the

gradient by using only the mini-batch to compute the loss landscape. Formally, the gradient

descent equation (Equation 3.6) becomes

θt+1 = θt + η∇θL ≈ θt + η∇θLi , (3.7)

where Li is the minibatch loss function. Approximating the gradient of the loss function using

mini-batches can greatly speed up the calculations for large datasets, as in every training step

only a small subset of the dataset is used.

The continued search for improved performance and lower computational cost has led to

several versions of the original SGD with mini-batches method being proposed in the liter-

ature, including second order and/or momentum terms. In particular, to train our neural

networks we used a second order method that includes inertial terms (ADAM) [140]. Explic-

itly, the parameter update rule following a step of the ADAM algorithm is given by

mt = β1mt−1 − (1− β1)∇θL , (3.8)

st = β2st−1 − (1− β2)(∇θL)2 , (3.9)

θt+1 = θt − ηt
m̂t√
ŝt + ε

, (3.10)

where mt and st are the estimates of the first and second moments of the gradient, β1 and β2

the memory lifetime of the first and second moments, m̂t = mt/(1−β1), ŝt = st/(1−β2) their

unbiased corrections, ηt is the time-dependent learning rate and ε is a small regularization

constant introduced for the sake of numerical stability.

Finally, after having introduced the central elements of a deep learning algorithm, in the

following we discuss the application of deep learning tools to reinforcement learning tasks,

known as deep reinforcement learning. Deep reinforcement learning is based on the idea of

using deep neural networks to approximate elements of a reinforcement learning task, such

as the policy function π(at|st).

In particular, we decided to implement a numerical scheme that not only approximates

the policy but also the value function. We implemented an asynchronous actor-critic scheme

(A3C) [104] where two deep neural networks, referred to as actor and critic, are used to

estimate the policy and the value functions. The actor decides the actions of the agent while

the critic evaluates these decisions by approximating the value function. The information from

the two networks is then used to update and improve the predictions of the other network.
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In Section 3.2.1 we discuss the details of this deep reinforcement learning algorithm.

We refer the interested reader to [41] for an in-depth introduction to machine learning and

deep learning in particular. For an introduction to reinforcement learning we refer to [51].

Finally, approaches to ML from the point of view of statistical physics and applications of

ML to physical systems are discussed in [42, 43].

3.2. Deep reinforcement learning driven lattice gas

In the previous section we have introduced the required deep learning techniques to build a

many-particle non-equilibrium system capable of learning from its previous history. The goal

of this section is to build a minimal stochastic many-particle system where transition rates

are determined by deep neural networks trained using reinforcement learning. For the sake

of clarity, in the following we will focus on the case of Markovian dynamics.

We consider a system of N particles undergoing stochastic dynamics defined by the individ-

ual transition rates that are determined, at every step, by a deep neural network associated

to the corresponding particle. The input of neural network i is given by the occupancy of a

neighbourhood of the position of the associated particle Br(xi), where r is the radius of the

neighbourhood and xi the position of particle i. On the other hand, the output corresponds

to the probability of the different actions that the particle can take. The neural networks are

then updated using deep reinforcement learning to maximize the cumulative return. As the

input of neural network i depends on the position of all other N − 1 particles, particles are

coupled as a result of a shared environment. A schematic representation of the model can be

found in Figure 3.8.

A minimal implementation of this paradigm is given by a one-dimensional system of N

particles in a lattice of size L with periodic boundary conditions. In this case, the action

space of each particle is given by Z2, with the two elements of this field corresponding to the

two directions a particle can take.

The learning dynamics are implemented as individual actor-critic architectures (Section 3.2.1)

for each particle. The actor networks determine the reaction rates (probability of going left

or right) of each particle, effectively coupling the macroscopic and the learning dynamics. We

do not consider any additional interactions between particles, meaning that any collective

dynamics are an emergent property of the interactions induced by the reward function and

the shared environment.

For a given state of the actor networks, the macroscopic dynamics of the system can be
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Figure 3.8.: Cartoon of the implementation of a minimal stochastic many-particle system
where transition rates are determined by deep neural networks trained using
reinforcement learning.

cast in the form of a master equation,

∂tP ({xj}, t) =
∑
i

[f({xi}, θi)P ({xi − 1}, t) + (1− f({xi}, θi))P ({xi + 1}, t)− P ({xi}, t)] ,

(3.11)

where P ({xj}, t) is the joint probability of finding the particles at lattice position xj at time

t, P ({xi±1}, t) represents the probability of finding particle i at position xi±1, and the rate

of moving right f({xi}, θi), determined by the output of the actor neural network, depends

on the state of the system at time t and the set of neural network parameters θi = (wi,~bi).

Lastly, to determine the temporal evolution of the neural networks, it remains to specify

the reward function. In order to emphasize the role of macroscopic feedback in the dynamics

of the system, we chose a reward function that is maximized by a collective strategy in the

deterministic limit. Specifically, we defined the reward function as

ri(t) =


1 xi 6= xj , ∀j 6= i ,

−100 otherwise ,
(3.12)

where ri(t) represents the reward collected by particle i at time t. Our reward function

penalizes colliding particles with a large negative reward whilst rewarding the avoidance of

such events with a small positive reward. Nevertheless, reinforcement learning problems have

been shown to be robust against changes in the magnitude of the rewards [52, 53, 103], so we

expect our main results to be also robust against changes in the values assigned to positive

and negative rewards.
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3. Driving stochastic lattice systems by reinforcement learning

As the goal of reinforcement learning is to maximize the expected return, defined as the

discounted cumulative reward (Equation 3.4), our choice of the reward function corresponds

to training the particles to minimize the expected number of collisions. In the deterministic

limit of the dynamics, this reward function is maximized by a system in which all particles

move in the same direction with constant velocity. In the following sections we set out to

characterize the dynamics that emerge from the interplay between the macroscopic dynamics

and the optimization of the reward. In particular, we will define spatio-temporal fields to

describe the macroscopic dynamics and study their role in the remodelling of the microscopic

components of the system, corresponding to the weights and biases of the neural networks.

Before proceeding further, for the sake of clarity we identify the elements of a reinforcement

learning problem with the corresponding components of our model

• Agents: The actor networks assigned to individual particles.

• Environment: The configuration of the lattice at time t, described by the particle

positions xi.

• Actions: The action set is given by Z2, with the elements of this field corresponding

to the two directions a particle can take.

• Observations: The input of the neural networks of individual particles. Corresponds

to a neighbourhood centered at the particle position Br(xi).

• Rewards: Particles are penalized when colliding and rewarded otherwise.

3.2.1. Details of the numerical implementation

After having defined our theoretical model in the previous section, we next discuss the details

of its implementation in the form of numerical simulations. We implemented our model in

Python using MxNet [141], an open-source state-of-the-art deep learning library. MxNet offers

a flexible high-level computing environment ideally suited to the task at hand.

The stochastic dynamics described by Equation 3.11 are simulated using Gillespie’s algo-

rithm [73] with sequential updating for the length of an episode (corresponding to t = 20),

at the end of which the neural networks are updated using an inertial second order gradient

descent algorithm (ADAM, Equation 3.10) to optimize the loss function. The reaction rates

of each particle are determined by an actor-critic scheme composed of two feed-forward deep

neural networks with a single hidden layer with n = 5 units and tanh activation function.
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3.2. Deep reinforcement learning driven lattice gas

Explicitly, the reaction rates read

R = (f({xi}, θ1), 1− f({xi}, θ1), . . . , f({xi}, θN ), 1− f({xi}, θN )) , (3.13)

where f({xi}, θi) is the probability of particle i moving right given the current state of the

system and the neural networks. The size of the input layer is determined by the dimension-

ality of the partial observation of the state of the system that is provided to every particle.

In particular, in our simulations each particle has access to the occupation state of a neigh-

bourhood of size l = 5 centered at its position, corresponding to input layers of the same

size.

The system is initialized at t = 0 drawing the neural network parameters θ from a Gaussian

distribution N (µ = 0, σ = 0.04) and the initial positions of the particles from the set {i}Li=0

without replacement, thus ensuring non-overlapping initial positions. Simulations were then

run for a total time of T = 15000 episodes, at the end of which the state of the system

was sampled. Neural networks were trained using ADAM [140] with a learning rate η =

5 · 10−4. Additionally, networks were sampled more sparingly, their state being saved every

200 episodes.

Actor-Critic Algorithm

We implemented an asynchronous actor-critic algorithm to approximate the policy and the

value functions following [104]. Actor-critic algorithms are a classical [51] Reinforcement

learning approach where the actor is used to approximate the policy function whereas the

critic provides an estimate of the value function (Figure 3.9). In particular, we use neural

networks as function approximators for both the policy and the value functions.

This scheme is defined by the loss functions of the actor and the critic networks. The loss

of the actor corresponds to the difference between the expected return for a given policy and

the optimal value of the return predicted by the critic whereas the loss function of the critic

is the difference between the actual return and the predicted return. In compact notation the

update rule of the parameters (θ, θv) can be written as

∇θ′ log π(at|st, θ′)A(st, at, θ, θv) , (3.14)

where A(st, at, θ, θv) = ∑k−1
i=0 γ

irt+i+γkV (st+k, θv)−V (st, θv) is an estimate of the advantage

function [104], quantifying the difference between the estimated state-value and action-state

value functions. In the following sections we characterize the dynamics of the simulations at
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3. Driving stochastic lattice systems by reinforcement learning

Environment

Actor Critic

Figure 3.9.: Schematic representation of the basic architecture of an actor-critic algorithm.
The actor network approximates the policy function based on the observation
from the environment in addition to the approximation to the value function
provided by the critic.

the micro and macroscopic levels. Unless otherwise specified, all the results presented in the

upcoming sections correspond to systems of N = 80 particles in lattices of size L = 200.

3.3. Collective dynamics emerge as a result of interactions

induced by the shared environment

The stochastic model defined by Equation 3.11 in addition to the neural network dynamics

represents a system where particles are trained to maximize individual expected returns.

From the perspective of an optimization problem, the individual optimal strategies do not

need to result in the emergence of a collective state. Therefore, it is remarkable that the

system exhibits collective dynamics as a result of the implicit interactions induced by the

shared environment. In this section we qualitatively describe the dynamics of our numerical

simulations, simultaneously setting the ground for their rigorous quantification in upcoming

sections. To begin, we focus on the behaviour of the system for γ = 0, where γ is the discount

parameter (Equation 3.4).

First, in order to validate our approach, we calculate the average reward obtained by

the particles over time (Figure 3.10a). Starting from randomly chosen initial conditions, the

average reward evolves non-monotonically before reaching the steady-state value. The reward

peaks at t ≈ 2500 episodes and then decreases monotonically until the steady-state value is

reached. However, although the steady-state reward is not optimal, the improvement in the

steady-state average reward compared to the initial average reward reveals that particles

learn a strategy that performs better than diffusion as a result of macroscopic feedback.
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Figure 3.10.: a) Average reward over time for nine individual simulations b) Distribution
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different simulations.
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Figure 3.11.: Spatio-temporal evolution of the spatial velocity field v(x, t) for different nu-
merical simulations (columns).

The distribution of rewards in the steady state does not exhibit significant differences across

simulations (Figure 3.10b).

We first characterise the population level dynamics by the position and velocity of single

particles over time. Additionally, in order to quantify collective effects, we also define the

spatial velocity field representing the average velocity at each lattice position over time. We

define the trajectory xi of particle i as

xi := {xi(t)}Tt=0 , (3.15)

where xi(t) is the position of particle i at time t. The velocity vi(t) of particle i at time t is

defined as

vi(t) := xi(t)− xi(t− 1) , (3.16)
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3. Driving stochastic lattice systems by reinforcement learning

Figure 3.12.: Zoomed-in stochastic trajectories of the system for different numerical simula-
tions (columns) for early (top) and late times (center, bottom). Trajectories of
single representative particles are highlighted in black (top, center). Colors rep-
resent particles with negative (v∞ < 0) (blue) and positive (v∞ > 0) asymptotic
velocity (red).

and finally, we define the spatial velocity field v(x, t) as

v(x, t) := 1
N

N∑
i=1

vi(t)δx,xi(t) , (3.17)

where δ is the Kronecker delta function. In the following we study the evolution of these

quantities over time.

We first consider the evolution of the spatial velocity field v(x, t) (Figure 3.11). The results

show that the magnitude of the average velocity across the lattice remains small at all times.

Therefore, in the following we focus our analysis at the level of single particles in order to

discern how the individual dynamics are affected by the population-level feedback.
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Figure 3.13.: Temporal evolution of velocity distributions for different numerical simulations
(columns). Colors represent asymptotic directions of movement. The dashed line
indicates the transition time t1 ≈ 2500 between unimodal and bimodal velocity
distributions.

The trajectories of single particles (Figure 3.12) uncover the existence of two groups of

particles moving predominantly in one specific direction revealing that, although not at the

population level, the left/right symmetry is broken at the level of single particles.

The symmetry breaking at the particle level is also reflected in the distributions of indi-

vidual velocities vi(t) over time (Figure 3.13), showing that after the initial transient regime

the asymptotic velocity of single particles, vi∞, has a well defined sign, indicating that a given

particle asymptotically obtains a finite, constant average velocity.

Additionally, the system exhibits giant number fluctuations (Figure 3.14a), meaning that

the fluctuations in the number of particles ∆N in a region of size l grow faster with the

average number of particles N̄ in such a region than the equilibrium prediction, ∆N ∝
√
N̄ .

To elucidate whether there is a feedback mechanism involved in the formation of the two

groups of particles, we calculated the statistical properties of the number of particles belonging

to each of the groups and compared our results with the predictions of a random binomial

model with parameters N = 80 and p = 1/2 (Figure 3.14b). Our results reveal that, although

the average number of particles per group agrees with the prediction of the null model,

the variance of the number of particles belonging to each group is strongly reduced, σ2 =

Np(1 − p), as corroborated by an F-test for the comparison of the variances. Therefore,

this result in combination with the previous observations reveals the existence of a feedback

mechanism balancing the ratio of particles in the left and right moving groups.

Nevertheless, considering that individual particles are trained to minimize collisions this

strategy is rather counter-intuitive. Two groups of particles moving in opposite directions

in a periodic lattice are bound to collide at a rate proportional to their relative velocity

∆v = v+ − v−. Therefore, in the following we compare the performance of this strategy to

69



3. Driving stochastic lattice systems by reinforcement learning

0.5

1.0

3.0

5.0

0.3 1.0 3.0 10.0 30.0
N

∆N
a b

20

30

40

50

60

N
-

p = 0.008

BinomialSimulations

Figure 3.14.: a) Giant number fluctuations in the steady state (t > 14000). The dashed line
corresponds to ∆N̄ =

√
N̄ . b) Number of particles with positive asymptotic

velocity for simulated data and a binomial model with N = 80 and p = 1/2.
P-value corresponds to an F-test performed on the variances of the two distri-
butions.

the optimal strategy in the deterministic limit, corresponding to particles moving in the same

direction ∆v = 0.

For the purpose of this comparison, we consider a minimal stochastic model of N particles

moving with fixed velocity, i.e. following a deterministic strategy, in a one dimensional lattice

of size L and periodic boundary conditions and we study two limiting cases. We consider a

system composed by particles moving in the same direction (∆v = 0) and a system composed

of two subpopulations of N/2 particles with opposite velocities. The dynamics are simulated

using Gillespie’s algorithm [73] with constant, identical reaction rates for each particle, Tmax =

1000 and 105 different initial conditions randomly distributed across the lattice.

In order to test whether the stochasticity of the dynamics can destabilise the determin-

istic optimal strategy, we calculated the empirical distributions of collisions (Figure 3.15)

describing the probability of observing a total of N collisions during the simulation. No sig-

nificant differences were observed in the average collision probability between the two com-

pared scenarios, indicating that the stochasticity of the dynamics can indeed destabilise the

deterministic optimal strategy and lead to the emergence of non-trivial collective dynamics.

In summary, our results reveal left/right symmetry breaking at the level of individual

particles. Single particles move with a finite, constant asymptotic velocity for t > 2500,

as reflected by the stochastic trajectories and the dynamics of the velocity distributions.

Following the symmetry breaking, the system organises into two equally sized groups of

particles. The number of particles in each of two groups is highly regulated, uncovering the
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Figure 3.15.: a) Cartoon representing the two models under comparison. b) Empirical dis-
tribution of collision rates.

existence of a feedback mechanism regulating the ratio of particles with positive and negative

asymptotic velocity. Furthermore, we compared the counter-intuitive strategy followed by the

particles to a system where all particles move in the same direction. The collision probabilities

for the two strategies do not show any significant differences, revealing how stochastic effects

can lead to destabilisation of the deterministic optimal strategy.

In the following section we characterise the structure of the two groups at the macroscopic

level, focusing on both dynamical and steady-state properties.

3.4. Quantification of the dynamics at the macroscopic level

Our numerical results show that trained particles divide into two groups moving ballistically in

opposite directions. In the following, we set out to characterise the structure of these groups

and their dynamics. With this purpose in mind we define the mean-squared displacement

(MSD) as

MSD(∆t) = 1
N

1
T

T∑
∆t=0

N∑
i=1

(xi(t0)− xi(t0 + ∆t))2 , (3.18)

where xi(t) represents the position of particle i at time t.

The mean-squared displacement as a function of the lag time (Figure 3.16) reveals two dif-

ferent dynamical regimes. Before the characteristic time-scale of left/right symmetry breaking

(t1 ≈ 2500) the dynamics of individual particles are diffusive, as indicated by the linear scaling

of the mean-squared displacement MSD(τ) ∝ τ . On the other hand, particles moves ballis-

tically for t > t1, reflected in the scaling MSD(τ) ∝ τ2. Having characterised the dynamics

of individual particles, we then set out to investigate the left/right symmetry breaking by

quantifying the evolution of spatial observables of the dynamics.

First, we focus on the statistics of the distribution of particles across the lattice over time.
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We tested whether the spatial distribution of particles depends on the relative velocity of the

groups under consideration. In particular, we calculated the non-overlapping average nearest

neighbour distance (NND) as a function of time. This quantity measures the average distance

to the nearest occupied lattice site and is defined as

NND(t) = 1
N

∑
i

min
j,xi(t)6=xj(t)

|xi(t)− xj(t)| , (3.19)

where the sum is taken over all particles in the system and the minimum over particles moving

in the same or opposite directions.

The NND dynamics (Figure 3.17a) indicate that the average distance between particles

decreases over time, remaining smaller than expected by chance. Furthermore, Figure 3.17a

also shows that particles moving in opposite directions are on average closer than particles
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3.5. Characterization of the neural network dynamics

moving in the same direction.

In order to compare the steady-state statistical properties of particles moving in the same

and opposite directions, we compute the probability of lattice sites being occupied as a

function of the distance from a reference particle from the simulation data. To calculate this

quantity, we define the normalized centered density profiles as

ρ(x, t) = 1
N2

∑
i,j

δ(xj(t)−xi(t),x) , (3.20)

where the sum is performed over all particles, xi(t) is the position of particle i at time t and δ

represents the Kronecker delta function. The normalized centered density profile ρ(x) is non-

zero only for those values of x that correspond to the distance between a pair of particles. In

turn, the probability of neighbouring sites being occupied in the steady-state is given by the

time average of the normalized centered density profile

ρ̄(x) = 1
T

T∑
t=t0

ρ(x, t) . (3.21)

Additionally, we remove the contribution from the reference particles from the density

profiles in order to retain only the contributions to the occupancy probability coming from

distinct particles. The occupancy probabilities (Figure 3.17b) reveal that particles are in

closer proximity of particles moving in the opposite direction than of particles moving in the

same direction. Furthermore, the drop in the occupancy probability at ∆x = 0 indicates that

particles preferentially do not overlap, irrespective of their direction of movement.

Put together, our results show a decrease in the inter-particle distance over time, with

neighbouring sites being preferentially occupied by particles moving in the opposite direc-

tion. These findings reveal the emergence of spatial clusters, indicating that the density of

particles across the lattice does not remain constant. Additionally, the system exhibits anti-

ferromagnetic order, as shown by the occupancy probabilities (Figure 3.17b).

In the next section we will study how these findings are reflected at the microscopic level.

In particular we will quantify the temporal evolution of the neural network parameters and

the response of the networks to different inputs.

3.5. Characterization of the neural network dynamics

The microscopic scale of the system corresponds to the parameters of the neural networks,

representing the multiple degrees of freedom of each particle. These parameters, together
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Figure 3.18.: Actor networks early and late-time distributions of a) weights and b) biases.

with the activation function, define the mapping between the microscopic and macroscopic

scales (Equation 3.5). In this section we quantify the changes that these parameters undergo

over time and how that in turn is reflected in the output of the neural networks.

First, in order to evaluate the impact of learning on the structure of the actor networks

we compared the distribution of neural network parameters before and after t1 (Figure 3.13),

the transition time between unimodal and bimodal velocity distributions. The dynamics were

divided in two regimes that we termed early times (t < 2500) and late times (t > 7500),

corresponding to the learning phase and the asymptotic limit of the dynamics respectively.

Both weights (Figure 3.18a) and biases (Figure 3.18b) exhibit similar changes in their dis-

tribution across particles as a result of training, as reflected by the transition from a unimodal

distribution at early times to a multi-modal distribution at late times. However, whereas the

late-time weights distribution displays a mode centered at 0, the biases distribution does not,

the two modes of this distribution being located at non-zero values. The results indicate that

neural networks become more specialized after training, as reflected by the increase in the

heterogeneity of the parameter distribution.

The relationship between input and output and its dependence on the network parame-

ters is obscured by the complex architecture of the neural networks. However, it is precisely

the output of the neural networks what determines the temporal evolution of the system

and in turn leads to the remodelling of the neural networks. Accordingly, in order to under-

stand the functional effect of the changes in parameter distributions over time, we calculated

the temporal evolution of the output of the actor neural networks for several input signals,

corresponding to the probability of moving in one direction given an observation.

In order to systematically study the impact of different observation signals in the output of

single networks we calculated the two-dimensional UMAP representation of the probability

P (x→ x+1 | st) of having an instantaneous positive velocity for a total of 126 input signals,
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3.5. Characterization of the neural network dynamics

corresponding to all possible observations with by five or less particles. UMAP [142] is a non-

linear dimensionality reduction method that preserves neighbourhood relationships during the

low dimensional embedding. The algorithm takes the probability of having a positive velocity

given the environmental state for individual neural networks at specific time points as input

and returns the coordinates of the embedding in the two dimensional UMAP space. Although

the UMAP coordinates cannot be easily interpreted in terms of the original variables, the

algorithm conserves the topology of the original high-dimensional data and the results can

be interpreted by over-laying additional information to the UMAP representation. Therefore,

UMAP provides a suitable method for reducing the dimensionality of the observation space.

The two-dimensional UMAP representation (Figure 3.19) shows the emergence of two

groups of particles, corresponding to particles with positive and negative asymptotic ve-

locity, that do not exhibit significant differences in the instantaneous average reward across

the system. The results reveal a initial phase characterised by movements between discrete

clusters in UMAP space (Figure 3.19a), followed by the evolution in a single connected clus-

ter after t1. Additionally, the branches corresponding to particles with positive and negative

velocity (Figure 3.19) contain particles with both positive and negative biases (Figure 3.19d),

indicating that there is no connection between the asymptotic velocity of the network and

the average bias of the corresponding neural network. Trajectories of single particles provide

insight on the intra-cluster dynamics (Figure 3.19e) and do not exhibit significant differences

between simulations (Figure 3.19f).

We hypothesized that the observed symmetry-breaking could be the result of diverging

evaluations of the same observations during the learning phase. In order to test this hypothesis

we evaluated the expected instantaneous reward for all environments occupied with five or

less particles based on the actor networks output and projected the data using UMAP to

study its low dimensional structure.

As previously, the graphical representation of the UMAP embedding (Figure 3.20) shows

how particles progressively separate into two groups, reflecting the left/right symmetry break-

ing at the microscopic level. The dynamics are again characterised by an initial phase where

particles move between discrete clusters in UMAP space, followed by a regime where all parti-

cles move in a single connected cluster (Figure 3.20a). The lack of differences in the estimated

reward between the two groups (Figure 3.20c) indicates that the symmetry breaking does not

result from differential evaluation of the same observations during training. Additionally, the

composition of the branches corresponding to particles with positive and negative asymp-

totic velocity (Figure 3.20d) does not depend on the average bias of the corresponding neural

75



3. Driving stochastic lattice systems by reinforcement learning

a b

−10

−5

0

5

10

−10 0 10
UMAP1

U
M

AP
2

−800

−600

−400

−200

Reward

−10

−5

0

5

10

−10 0 10
UMAP1

U
M

AP
2

−0.1

0.0

0.1

−10

−5

0

5

10

−10 0 10
UMAP1

U
M

AP
2

Simulation
1

2

3

4

5

6

7

8

9

c d

e f

−10

−5

0

5

10

−10 0 10
UMAP1

U
M

AP
2

−10

−5

0

5

10

−10 0 10
UMAP1

U
M

AP
2

5000

10000

Time

−10

−5

0

5

10

−10 0 10
UMAP1

U
M

AP
2

Figure 3.19.: UMAP representation of the output of the actor neural networks for all observa-
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Figure 3.20.: UMAP representation of the expected instantaneous reward for all observations
with by five or less particles. Color indicates a) time (in units of episodes),
b) asymptotic velocity of individual particles, c) instantaneous average reward
across the system, d) mean bias of the individual neural networks, e) trajec-
tories of selected particles with v∞ < 0 (blue) and v∞ > 0 (red), f) different
realizations of the simulations.
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network and the trajectories of individual particles (Figure 3.20e) do not show significant

differences between simulations (Figure 3.20f).

Together, our results show how neural networks are dynamically remodelled over time.

First, we have shown that the distributions of weights and biases (Figure 3.18) become more

heterogeneous after the time-scale associated with the left-right symmetry breaking. Addi-

tionally, we have explored the input-output connection using a low-dimensional representation

of the output of the neural networks for a large set of observation signals. Our results (Fig-

ure 3.19) reveal the existence of two clusters in UMAP space, corresponding to particles with

positive and negative asymptotic velocity. The two clusters are composed of particles with

positive and negative biases, indicating that there is no connection between the average bias

of a neural network and the asymptotic velocity of the corresponding particle. Finally, we

quantified whether the left/right symmetry breaking was caused by differential evaluation of

the same environments during training. The results (Figure 3.20) reveal that there are no

significant differences in the evaluation of the expected reward during training for particles

with positive and negative asymptotic velocities.

In the next section we study the interplay between the microscopic and macroscopic levels

and show that it leads to the emergence of complex inter-particle interactions.

3.6. Emergence of complex interactions as a result of the interplay

between the macroscopic and the microscopic scales

One of the main features of deep reinforcement learning tasks compared to supervised or

unsupervised learning is the lack of a training data set, as the training data is dynamically

generated by the experiences of the agents during training. Therefore, correlations in the

dynamics of the system can have strong effects in the reward collection and, in turn, in

the remodelling of the neural networks. In the following, we explore whether and how the

interplay between macroscopic and microscopic processes gives rise to interactions between

particles.

In particular, we explicitly calculated the probability of moving with positive instantaneous

velocity P (x→ x+ 1 | st) for individual particles over time. The results (Figure 3.21) reveal

that particles dynamically adapt their response to different observations, in a process that

takes place over several time scales, as reflected by the evolution of P (x→ x+1 | st). Whereas

initially the probability of moving left or right is the same for all input signals, particles learn

to classify different observations, quickly reaching a stationary value for certain input signals
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whereas in other cases P (x→ x+ 1 | st) is continuously updated during the dynamics.

Figure 3.21 reveals the emergence of complex inter-particle interactions during the dynam-

ics. First, particles quickly learn to classify signals with left and right nearest neighbours based

on the difference between the number of left and right nearest neighbours (Figure 3.21a-c).

Therefore, the system develops short-range repulsive interactions for time-scales smaller than

the left-right symmetry breaking time-scale t1. Environments without nearest-neighbours are

classified more slowly (Figure 3.21b-d), as in this case no collision takes place after a single

stochastic step irrespective of the direction of movement. These environments are later on

classified depending on higher order features (Figure 3.21a-c), leading to the emergence of

attractive long-range interactions.

The analysis of the evolution of the output of individual neural networks reveals the emer-

gence of effective interactions. The character of these interactions is modified during the

dynamics, reflecting the existence of a hierarchy of timescales associated with the learning of

new features of the observation signal. Whereas features like the difference between the num-

ber of left and right nearest neighbours are quickly learned, other features are incorporated

more slowly into the interactions. Therefore, as a result of the interplay between the micro-

scopic and the macroscopic dynamics, the system exhibits short-range repulsive, long-range

attractive interactions in the asymptotic regime.

3.7. Increasing the discount parameter induces a transition

between asymptotic dynamical regimes

In previous sections we have characterized the dynamics of the system for γ = 0. The discount

γ (Equation 3.4) is one of the central parameters of any RL task, as it introduces correlations

in the calculation of the loss function. In fact, in practical applications with long-term goals

large discount factors (γ > 0.9) are commonly chosen [53, 105]. Although a finite discount

parameter can give rise to more complex dynamics, it also renders analytic descriptions of

the dynamics unfeasible. In this section, leveraging of our understanding of the γ = 0 case,

we explore the effects of a finite discount parameter in the dynamics of the system, focusing

our attention on the macroscopic scale.

First, to gain some intuition we qualitatively describe the macroscopic dynamics as in

Section 3.3. In particular, we calculated the spatio-temporal dynamics of the coarse-grained

velocity field v(x, t) (Figure 3.22), of the stochastic trajectories of individual particles xi

(Figure 3.23) and the distribution of velocities vi(t) across the population (Figure 3.24).
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Figure 3.21.: Temporal evolution of the average P (x → x + 1 | st) for all input signals st =
(x1, x2, x3, x4, x5) with a total of five particles for particles with v∞ < 0 (left)
and v∞ > 0 (right). Colors correspond to a) number of left neighbours b)
absolute value of the difference in the number of left and right nearest neighbours
c) absolute value of the difference in the number of left and right next nearest
neighbours.
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Figure 3.22.: Spatio-temporal evolution of the coarse-grained velocity field for different values
of the discount parameter γ.

Figure 3.23.: Zoomed-in stochastic trajectories of the system for different values of the dis-
count parameter γ (columns) for early (top) and late times (center, bottom).
Trajectories of single representative particles are highlighted in black (top, cen-
ter). Colors represent particles with v∞ < 0 (blue) and v∞ > 0 (red).
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Figure 3.24.: Temporal evolution of velocity distributions for different values of the discount
parameter γ. Colors represent particles with v∞ < 0 (blue) and v∞ > 0 (red) .

Although for small values of the discount parameter the results are qualitatively similar

to the γ = 0 case (Figure 3.22, Figure 3.23), exhibiting a cross-over between diffusive and

ballistic regimes and left/right symmetry breaking at the level of individual particles, for

larger values of the discount parameter the velocity of individual particles undergoes frequent

sign changes, as reflected by the stochastic trajectories (Figure 3.23) as well as the velocity

distributions (Figure 3.24).

These results point at the existence of two different asymptotic regimes as a function

of the discount parameter. On the one hand, for small values of the discount parameter

two stable equally-sized groups of particles with opposite signs of the asymptotic velocity

form whereas, on the other hand, for larger discount values there is no persistent left/right

symmetry breaking at the level of individual particles. In the next section we make use of

tools from the field of statistical physics, in particular autocorrelation functions, to explore

this change in the dynamics.

3.7.1. Autocorrelation functions of the individual velocities

A fundamental quantity in statistical physics [7], correlation functions describe the co-dependence

of two or more fields, providing information about the typical scales over which the fields of

interest are correlated. We define the two-point correlation function of fields X and Y as

CXY (s, t) = 〈X(s)Y (t)〉 − 〈X(s)〉〈Y (t)〉 . (3.22)

In particular, if the two fields X and Y are taken to be the same, we refer to the resulting

correlation function CXX as the autocorrelation function of the field X. Autocorrelation

functions describe the relationship between the values of a field at two different positions.

In order to study the transition between different asymptotic regimes as a function of the

discount parameter, we calculated the temporal autocorrelation functions of the velocities of
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3.7. Increasing the discount parameter induces a transition between asymptotic dynamical regimes

individual particles, defined as

Cvv(∆t) = 1
N

N∑
i=1
〈vi(t)vi(t+ ∆t)〉 − 〈vi(t)〉〈vi(t+ ∆t)〉 , (3.23)

where the brackets 〈·〉 denote time averages and we have assumed the stationarity of the

velocity distributions.

To quantify the dependence of the autocorrelations on the discount factor we ran simula-

tions increasing γ from 0 to 1 with a step size of 0.01. The resulting autocorrelation functions

are well described by an exponential decay as a function of the time lag ∆t (Figure 3.25a).

Fitting the correlation functions to an exponential function returns the autocorrelation time,

an estimate of the typical timescale over which individual velocities are correlated in the

system. In particular, we fit the correlation functions to the following functional form

C(∆t) ≈ e−∆t/τ , (3.24)

where τ is the autocorrelation time.

The results of our analysis are presented in Figure 3.25b, revealing a non-monotonic depen-

dence of the autocorrelation time on the discount factor. In particular, the autocorrelation

time as a function of the discount exhibits two local maxima located at γ ≈ 0.45 and γ = 1.

The second of these values corresponds to the regime where all future rewards are weighted

equally in the calculation of the expected return. In this limit the autocorrelation time of

the individual velocities is of the same order of magnitude as the total simulation time, indi-

cating that individual particles always move in the same direction. As all future rewards are

weighted equally, changes in the policy followed by individual particles have a large impact

in the cumulative reward, meaning that as a result the strategy followed by the particles is

persistent in time. On the other hand, for finite discount values the impact of changes in

the strategy of individual particles in the cumulative discounted reward decays over time

according to the discount factor. The first maxima of the autocorrelation time corresponds

to the transition between the two aforementioned asymptotic dynamical regimes. The non-

monotonic behaviour of the autocorrelation time around this point indicates a connection

between the relevant time-scales of the system: on the one hand the reward time-scale de-

fined by the discount factor and on the other the time-scale of experiences relevant for the

neural network remodelling, defined by the episode length.

In summary, in this section we have shown the intricate connection between the discount

parameter and the dynamics of the system, as revealed by the autocorrelation time of in-
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Figure 3.25.: a) Example fit of the velocity autocorrelation function to a decaying exponential
function e−∆t/τ for γ = 0.7. b) Autocorrelation time τ as a function of the
discount parameter.

dividual velocities, with finite discount factors effectively inducing extended interactions in

time.

3.8. Effect of demographic disorder on the collective dynamics

Hitherto we have focused our attention on a class of homogeneous systems where all agents

share a common reward function. Nevertheless, the presence of individuals with competing

goals can have a dramatic effect on the system dynamics and, in particular, on the optimal

strategy. In this section we explore the effects induced by the addition of demographic disorder

on the system dynamics.

Specifically, we include demographic disorder in our description of the system as a sec-

ond species of particles with the goal of minimizing, instead of maximizing, the cumulative

discounted reward (Equation 3.4). The instantaneous reward function is otherwise the same

for both species of particles, given by Equation 3.12. Therefore, the system is effectively

formed by two species of particles, one with the goal of minimizing the number of collisions

in which they are involved and one with the opposite goal. Additionally, for the purposes

of this section we considered particles associated to deep neural networks with three hid-

den layers composed of five units each. This architecture provides more robust results while

qualitatively not affecting the dynamics.

In the following we focus on the stochastic trajectories xi of single particles (Figure 3.26)
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and the spatio-temporal dynamics of both the density field ρ(x, t) (Figure 3.27), defined as

ρ(x, t) = 1
N

N∑
i=1

δ(xi(t),x) , (3.25)

where δ(x,y) is the Kronecker delta, and the coarse-grained velocity field v(x, t) (Figure 3.28)

to explore the behaviour of the system for different values of the discount parameter γ.

For large values of the discount parameter, the steady state corresponds to a phase of

homogeneous density where individual particles move ballistically. The dynamics are charac-

terised by the emergence of two groups of particles with well-defined asymptotic velocities,

indicating that the left/right symmetry is broken at the level of individual particles.

However, the dynamics of the system for small values of the discount parameter exhibit

strikingly different phenomenology. Specifically, we observe the formation of droplet-like struc-

tures (Figure 3.26) composed of a dense core of return-minimizing particles surrounded by a

dilute layer of return-maximizing particles.

Motivated by these observations we hypothesize that the formation of aggregates for small

values of the discount parameter is related to the temporal correlations induced by a finite

discount factor. For small values of the discount parameter particles only the immediate

surroundings of a particle are taken into consideration in the calculation of the discounted

cumulative reward. Therefore, being in close proximity of collision-seeking particles could

prove to be an effective strategy for collision-avoiding particles to maximize the information

provided by the environment and minimize the likelihood of colliding.

3.9. Conclusions

In this chapter we have explored how the coupling between microscopic and macroscopic

degrees of freedom induced by a shared environment can give rise to collective behaviour in

a stochastic many-particle system where the dynamics are defined by deep neural networks

trained using reinforcement learning (Figure 3.3). In particular, we have focused on a one

dimensional stochastic lattice gas as our minimal model.

We have shown that interacting lattice systems driven by reinforcement learning exhibit

non trivial collective behaviour, as reflected by the left/right symmetry breaking at the level

of individual particles in the steady state (Figure 3.12). Indeed, we observe that in the steady

state particles form two equally sized groups corresponding to the two possible signs of their

asymptotic velocities. The formation of these groups relies on a feedback mechanism, as

indicated by the observed reduction in the variance of the number of particles in the groups

85



3. Driving stochastic lattice systems by reinforcement learning

Figure 3.26.: Zoomed-in stochastic trajectories of the disordered system for early (top, cen-
ter) and late regimes (bottom) and different values of the discount parameter
γ. Color (center) corresponds to collision-seeking (red) and collision-avoiding
(blue) particles.
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Figure 3.27.: Spatio-temporal evolution of the normalized density field ρ(x, t) for different
values of the discount parameter γ for the disordered system.

Figure 3.28.: Spatio-temporal evolution of the absolute value of the coarse-grained velocity
field for different values of the discount parameter γ for the disordered system.
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compared to a null model (Figure 3.14). This counter-intuitive strategy is the result of the

stochastic dynamics destabilizing the deterministic optimal strategy ∆v = 0.

At the macroscopic level we observed that the distance between particles decreases over

time without overlapping, as reflected by the nearest neighbour distance as well as by the

normalized density histograms in the steady state (Figure 3.17).

Moreover, the temporal evolution of the neural network parameters reveals that the net-

works undergo severe remodelling during the learning phase, as reflected by the trajectories

of individual particles in UMAP space, where particles cluster in two groups based on the

sign of their asymptotic velocity (Figure 3.19, Figure 3.20).

To complete our discussion, we studied the correlation between the macroscopic and the

microscopic degrees of freedom, showing how the emergence of short-range attractive, long-

range repulsive interactions is a result of the interplay between these two scales, as illustrated

by the temporal evolution of the output probabilities of the neural networks for different input

signals (Figure 3.21).

Whereas the results discussed above refer to a homogeneous system without memory, we

also studied the impact of memory effects and demographic disorder in the dynamics of

the system. In particular, memory effects, controlled by the discount parameter γ, induce

a transition between two different asymptotic dynamical regimes as this parameter is mod-

ified, resulting on a steady state that depends on the weight assigned to future compared

to immediate rewards (Figure 3.23). Specifically, for small values of the discount parameter

the system exhibits an asymptotic dynamical regime characterized by left/right symmetry

breaking at the level of individual particles, whereas for larger values of the discount, the

asymptotic dynamics exhibit frequent changes in the predominant direction of movement of

the particles.

Furthermore, the existence of a transition between different asymptotic dynamical regimes

is supported by the temporal autocorrelation functions of the individual velocities that decay

exponentially over time for all values of the discount parameter, with corresponding auto-

correlation times that depend non-monotonically on the discount parameter, peaking at an

intermediate value of γ ≈ 0.45 (Figure 3.25).

Lastly, we have shown that the introduction of demographic disorder in the system can

lead to the formation of complex spatial structures that are stable over long periods of time.

In particular, we introduced demographic disorder in the form of a second species of particles

with the goal of minimizing, instead of maximizing, the expected cumulative discounted

reward. As a result, we observed for small values of the discount parameter the emergence
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of tubular structures formed by a dense core of minimizing particles surrounded by a dilute

layer of maximizing particles (Figure 3.26). We hypothesized that this behaviour could result

from short-range information propagation for small values of the discount parameter.

In conclusion, our work demonstrates that reinforcement learning is a suitable, promising

learning paradigm to study the emergence of collective phenomena in adaptive stochastic

many-body systems. In Chapter 4 we discuss how this proof-of-concept work directly leads

to exciting research possibilities and how they could be implemented in a practical setting.
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La sabiduría nos llega cuando ya no nos sirve de nada.

Gabriel García Márquez - El amor en los tiempos del cólera

N atural phenomena span an enormous range of spatio-temporal scales, from the ultra-

fast dynamics of the fundamental constituents of matter to the slow evolution of the

structure of our universe. The dynamics of physical systems result from the feedback between

processes taking place at these different levels of organisation. In this thesis we have stud-

ied the interplay between macroscopic and microscopic degrees of freedom in two different

contexts, a biological and an artificial one, corresponding to the two chapters of this disserta-

tion. In the following we summarize the main conclusions of this thesis and discuss possible

directions of future research.

In the first part of this thesis (Chapter 2) we studied how a biological system, the primitively

social wasp Polistes canadensis (Figure 2.1), can simultaneously achieve robust specialisation

in the presence of noise and display strong phenotypic plasticity after queen removal using a

combination of a multiscale experimental approach with a theoretical description of the sys-

tem motivated by the experimental evidence. Remarkably, our unique experimental approach

allowed us to correlate molecular, anatomical and behavioural measurements at the level of

single insects (Figure 2.3).

In order to rigorously understand the mechanism underlying the regulation of specialization

and plasticity in Polistes, we built a minimal theoretical description of the stochastic dynamics

of the system using a master equation formalism. For the sake of simplicity, we did not

assume any non-linear effects unless explicitly required by the empirical observations. The

master equation formalism provides a description of the system dynamics that makes accurate

predictions of the temporal evolution of experimental observables such as the number of egg

layers over time or the distribution of ovary sizes across the population (Figure 2.16).

To understand the structure of the phase space and the response of the system to pertur-

bations we derived a mean-field master equation in the continuum limit that retains the main

features of the full model and represented the coevolution of the population and molecular

degrees of freedom as a phase portrait (Figure 2.12). Our findings reveal that specialization

91



4. Conclusions and future perspectives

and plasticity are emergent properties resulting from antagonistic interactions at the pop-

ulation and the molecular scales. Additionally, we showed that the system is stable against

intrinsic perturbations, that do not modify the population composition, while remaining plas-

tic against extrinsic perturbations. In particular, the system undergoes a functional saddle

node bifurcation where the role of control parameter is played by the population structure

itself.

Finally, we studied how stochastic fluctuations can destabilise the social structure. Our

calculations indicate that a small society regulated exclusively by stochastic interactions with

a rate comparable to the time needed to upregulate the queen genes should not be stable

over long periods of time. Therefore, we concluded that for the society to be stable over

long periods of time additional layers of molecular regulation that stabilize individual gene

expression profiles are needed. We hypothesized that DNA methylation, an epigenetic DNA

modification, could stabilise the social structure by decreasing gene expression variability

across the population and showed that this fact would lead to an exponential increase in the

lifetime of the society (Figure 2.21).

Our approach highlights the crucial role of multiscale regulation in biological systems. In

order to understand the dynamics of the system, the combination of integrative behavioural,

physiological and molecular measurements and an interdisciplinary approach is required. In

the following paragraphs we discuss future research directions inspired by this work.

Although our theoretical description relies on the interplay between processes at different

spatial scales, it only accurately describes the dynamics of the system during the time scale

associated with the reprogramming process. In fact, a description of the nest dynamics over

longer time scales must take into account birth and death of insects. It has been empirically

observed that over longer periods of time the number of insects in the nest grows due to the

birth of new workers, leading to a state characterized by the presence of a large number of

workers and a single queen. In this state, workers do not engage in subdominant interactions

with the queen often enough, giving rise to the emergence of a second queen-like individual

that destabilises the colony. In the last phase of this process the two queen-like individuals

try to establish themselves as dominant, leading to the splitting of the nest into two groups.

An interesting extension of this project would be to characterize this dynamical instability,

extending our theoretical description to account for processes happening at longer time scales.

Additionally, in this project we have developed a mean-field theory, neglecting any spatial

dependence of the interaction kernel. However, the role of spatial structures and local inter-

actions is crucial in the regulation of other biological systems such as tissues. In collaboration
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with an intern, Misha Gupta, we have started developing a spatial model where individuals

diffuse in space and locally interact according to the same interaction kernel. Preliminary re-

sults indicate that such a system exhibits a patterned steady-state for suitable combinations

of the parameters. Our aim is to uncover the connection between patterning and functional

bifurcations in this context, as it has already been recently explored in other active matter

systems [80].

Finally, the insights gained from this project are not limited to the study of social insects.

Our approach also anticipates future experimental developments. Research on cellular aggre-

gates, such as tissues or organoids, currently lacks technologies that simultaneously probe

the dynamics at multiple levels of biological organisation, albeit the existence of such tech-

nologies, such as RNA sequencing or lineage tracing, at single scales [143–146]. Given the

current interest in the development of multiomics technologies, we believe our approach can

also prove useful in the study of the dynamics of such systems.

In the second part of the thesis (Chapter 3) we have studied how macroscopic feedback

can remodel microscopic degrees of freedom in an artificial system. Additionally, we were

interested in understanding how this remodelling could lead to the emergence of collective

behaviour. In particular, to simulate the active remodelling of microscopic degrees of freedom

in a dynamic environment we have developed an approach that combines stochastic dynamics

with deep reinforcement learning. We consider a many-particle system where the reaction

rates that define the stochastic dynamics of each particle are calculated using neural networks

that are updated using reinforcement learning (Figure 3.3). For the sake of clarity, we have

focused on a 1D lattice system where particles are trained to maximize a reward function

that penalizes collisions.

Our results reveal the existence of a steady-state characterized by the presence of two groups

of particles with positive and negative asymptotic velocities (Figure 3.13) whose formation

relies on an active feedback, as indicated by the reduction of the variance of the number of

particles in each of the two groups compared with a null model (Figure 3.14). The particle

dynamics exhibit a cross-over between early diffusive and late ballistic regimes (Figure 3.16),

that corresponds to the emergence of a non-zero average velocity.

Additionally, we showed that the average nearest neighbour distance decreases monotoni-

cally over time (Figure 3.17) as a result of the development of interactions that are attractive

over long distances and become repulsive over short distances. The counter-intuitive steady-

state dynamics can be rationalized as a result of stochastic fluctuations destabilising the

deterministic optimal strategy.
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The left/right symmetry breaking at the level of individual particles in the steady-state is

also reflected at the microscopic level, represented by the structure of the neural networks that

determine the individual reaction rates, as indicated by a low dimensional representation of

the neural network parameters that shows the microscopic divergence of the neural networks

of particles with positive and negative asymptotic velocity (Figure 3.19).

Finally, we explored the impact of memory and demographic disorder in the dynamics

of the system. Remarkably, memory effects, resulting from a non-zero discount parameter,

give rise to a transition between two different asymptotic dynamical regimes (Figure 3.23).

Whereas for small values of the discount parameter the sign of the asymptotic velocity of

individual particles is well defined, for larger values of the discount parameter the velocity of

individual particles changes sign over time, with the transition happening for a value of the

discount parameter of approximately γ ≈ 0.45. The existence of the two regimes is reflected

in the non-monotonic behaviour of the autocorrelation time of single velocities, that exhibits

a local maximum at the transition point (Figure 3.25).

In order to study the effects of demographic disorder in the dynamics of the system we

introduced a second species of collision-seeking particles. In this case, for small values of the

discount parameter, the dynamics lead to the formation of structures composed by a dense

core of collision-seeking particles surrounded by a dilute region of collision-avoiding particles

that are stable over long times (Figure 3.26).

In conclusion, we leveraged recent developments in the field of artificial intelligence to

establish a minimal model to study the remodelling of microscopic degrees of freedom as a

result of macroscopic feedback that could prove useful for both the physics and the computer

science communities. In the following paragraphs we discuss future research directions inspired

by this work.

In this thesis we have focused on studying the dynamics of a one dimensional non-equilibrium

system. Therefore, one possible extension of our work would be to study the dependence of the

phenomenology that we observed with the dimensionality of the system. In two-dimensional

equilibrium systems a central result of statistical mechanics, the Mermin-Wagner theorem

[147], states that the spontaneous symmetry breaking of a continuous symmetry is not pos-

sible. However, in the non-equilibrium case continuous symmetries can be spontaneously

broken giving rise to an ordered phase with a continuous order parameter [148–150]. In col-

laboration of Onurcan Bektas, we are implementing 2D stochastic simulations simulations to

explore whether reinforcement learning and collision avoidance can lead to the emergence of

an ordered phase.
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Although here we have focused on a system with explicit spatial dependence, our approach

does not rely on it to induce interactions, allowing us to realistically model systems with a

large number of microscopic degrees of freedom. Machine learning provides a practical way of

representing large number of degrees of freedom without neglecting their intrinsic complexity

that can be used to model a wealth of physical systems by adequately defining the reward

function. Our approach based on reinforcement learning also has the appeal of simplicity, as

rich dynamics can result from simple reward functions.

Our results reveal the fundamental role played by macroscopic feedback in the stabilization

of microscopic states both in nature and in silico. We hope that the new possibilities offered

by our results at both the experimental and theoretical levels will keep sparkling interest in

these fascinating systems for a long time.
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A. Numerical simulations of the master

equations

In order to obtain approximate solutions of the master equations of Chapter 2 for a popu-

lation of N individuals, we performed kinetic Monte Carlo simulations following Gillespie’s

algorithm [73]. We implemented this algorithm in Julia using custom code. Out of the dif-

ferent possible reactions - production of a new gene product, degradation of gene products,

interactions, degradation of the queen gene repressors or ovary development - one was ran-

domly selected with probability proportional to the overall rate of the respective process.

These rates can be written in vector form as

R =
(
µ, δni, αK(ni, nj), δ(tiint − tper), g(ni)

)
(A.1)

After a process has been selected the simulation time t is increase by an amount ∆t drawn

from an exponential distribution of parameter λ given by the inverse sum of the overall rates

λ−1 =
∑
i

µ+ δni +
∑
j

K(ni, nj) + δ(tiint − tper) + g(ni)

 (A.2)

Finally, the state of the system is updated based on the selected reaction and the process is

repeated until the maximum allotted time tmax has been exceeded.

The following parameters were used for all the simulations µ = 500, δ = 1, n0 = 250,

λ = 10, tper = 1 unless otherwise specified. Additionally, the ovary growth rate was chosen

so that ovaries were mature in 6 days, as observed experimentally.

Below we provide a pseudocode or our implementation of the Gillespie stochastic simulation

algorithm
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A. Numerical simulations of the master equations

Algorithm 1 Gillespie algorithm
1: while t < tmax do
2: Calculate rates R =

(
µ, δni, αK(ni, nj), δ(tiint − tper), g(ni)

)
3: λ−1 = ∑

i

(
µ+ δni +∑

jK(ni, nj) + δ(tiint − tper) + g(ni)
)

4: ∆t ∼ Exp(λ)
5: t→ t+ ∆t
6: Select reaction rk with probabilities given by R
7: Update (ni, oi) according to rk
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