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Abstract
Epigenetics comprises chemical modifications of the DNA and the proteins that the DNA

is wrapped around them. These modifications play key roles in establishing and maintain-
ing cellular identity throughout development and adulthood. In recent years, it has become
increasingly clear that these actions are more dynamic than initially believed. The alter-
ation of cellular identities during regeneration, ageing, and the formation of tumors is closely
linked to systematic changes in epigenetic modifiers. The emergence of cutting-edge single-
cell sequencing technologies has enabled thorough explorations of biological processes with
high molecular precision. Nevertheless, the regulation of cellular behavior is intricately tied
to collective processes occurring in both spatial and temporal dimensions, operating on the
mesoscopic and macroscopic scales. However, these larger scales cannot be straightforwardly
deduced from microscopic measurements along the DNA sequence [1]. Consequently, the
findings obtained from sequencing experiments stay at the descriptive level until they are
coupled with methodologies capable of discerning collective degrees of freedom. Here, using
statistical physics tools and sequencing technologies, we study the collective processes un-
derlying epigenetic dynamics in cells that change their identity over time. Specifically, we
investigate collective epigenetic processes during ageing and the reprogramming of cells after
injury.
In the first part of this thesis, we study the mechanistic basis of epigenetic modifications
during ageing. Despite the accuracy of machine learning models in predicting the biological
age based on epigenetic DNA methylation marks, these tools do not inform about the mech-
anistic basis of epigenetic ageing. We show that epigenetic ageing is reflected in systematic
and collective changes in DNA methylation marks during ageing, which manifests in the
stereotypical behavior of two-point correlation functions. We devise a stochastic theory that
comprises competition of antagonistic enzymes at the boundaries of genomic regions with
atypically high content of cytosine-guanine pairs. We systematically coarse-grain this theory
to derive a macroscopic description in terms of a phase-field theory. This model predicts the
changes in two-point correlation functions during ageing and explains diverse observations
in the field of epigenetic ageing.
In the second part of this thesis, we study the collective epigenetic processes during the
regeneration of the liver after injury. In particular, we study the interplay between DNA
methylation and the accessibility of chromatin and show the necessity for emergent memory
of past injuries in the system. This memory is achieved by considering an effective projection
between different scales of epigenetic modifications.
In total, in this thesis, we derived theoretical descriptions of epigenetic processes that have so
far only been studied descriptively. We showed that both epigenetic alterations during ageing
and during reprogramming rely on an interplay between collective biochemical processes and
the geometry of the DNA. With this work, we show how linear DNA sequencing can inform



about collective epigenetic processes in space and time.



Zusammenfassung
Die Epigenetik umfasst chemische Veränderungen der DNA und der Proteine, um die

die DNA gewickelt ist. Diese Veränderungen spielen eine Schlüsselrolle bei der Schaffung
und Erhaltung der zellulären Identität während der Entwicklung und im Erwachsenenalter.
In den letzten Jahren wurde immer deutlicher, dass diese Vorgänge dynamischer sind als
ursprünglich angenommen. Die Veränderung der zellulären Identität während der Regenera-
tion, der Alterung und der Entstehung von Tumoren ist eng mit systematischen Veränderun-
gen der epigenetischen Modifikatoren verbunden. Das Aufkommen modernster Einzelzell-
Sequenzierungstechnologien hat eine gründliche Erforschung biologischer Prozesse mit hoher
molekularer Präzision ermöglicht. Dennoch ist die Regulierung des zellulären Verhaltens
eng mit kollektiven Prozessen verbunden, die sowohl in räumlicher als auch in zeitlicher
Hinsicht auf mesoskopischer und makroskopischer Ebene ablaufen. Diese grös̈eren Skalen
lassen sich jedoch nicht ohne Weiteres aus mikroskopischen Messungen entlang der DNA-
Sequenz ableiten [1]. Daher bleiben die Erkenntnisse aus Sequenzierungsexperimenten so
lange deskriptiv, bis sie mit Methoden zur Identifizierung kollektiver Freiheitsgrade kom-
biniert werden. In dieser Arbeit kombinieren wir Werkzeuge aus der statistischen Physik
und Sequenzierungstechnologien, um die kollektiven Prozesse zu untersuchen, die der epi-
genetischen Dynamik in Zellen zugrunde liegen, die ihre Identität im Laufe der Zeit ändern.
Konkret untersuchen wir kollektive epigenetische kollektive epigenetische Prozesse während
der Alterung und der Reprogrammierung von Zellen nach Verletzungen.
Im ersten Teil dieser Arbeit untersuchen wir die mechanistischen Grundlagen der epigenetis-
chen Veränderungen während des Alterns. Obwohl Modelle des maschinellen Lernens das
biologische Alter auf der Grundlage von epigenetischen DNA-Methylierungsmarkierungen
genau vorhersagen können, geben diese Werkzeuge keine Auskunft über die mechanistische
Grundlage der epigenetischen Alterung. Wir zeigen, dass sich die epigenetische Alterung in
systematischen und kollektiven Veränderungen der DNA-Methylierungsmarkierungen während
des Alterns widerspiegelt, was sich in einem stereotypen Verhalten der Zweipunkt Korrela-
tionsfunktionen zeigt. Wir entwickeln eine stochastische Theorie, die den Wettbewerb an-
tagonistischer Enzyme an den Grenzen von Genomregionen mit atypisch hohem Gehalt an
Cytosin-Guanin-Paaren umfasst. Wir vergröbern diese Theorie systematisch und leiten da-
raus eine makroskopische Beschreibung in Form einer Phasenfeldtheorie abzuleiten. Dieses
Modell sagt die Veränderungen der Zweipunkt Korrelationsfunktionen während der Alterung
voraus und erklärt verschiedene Beobachtungen auf dem Gebiet der epigenetischen Alterung.
Im zweiten Teil dieser Arbeit untersuchen wir die kollektiven epigenetischen Prozesse während
der Regeneration der Leber nach einer Verletzung. Insbesondere untersuchen wir das Zusam-
menspiel zwischen der DNA-Methylierung und der Zugänglichkeit des Chromatins und zeigen
die Notwendigkeit eines emergenten Gedächtnisses für vergangene Verletzungen im System.
Dieses Gedächtnis wird durch die Berücksichtigung einer effektiven Projektion zwischen ver-
schiedenen Skalen epigenetischer Modifikationen erreicht.
Insgesamt haben wir in dieser Arbeit theoretische Beschreibungen von epigenetischen Prozessen



abgeleitet, die bisher nur deskriptiv untersucht worden sind. Wir haben gezeigt, dass sowohl
epigenetische Veränderungen während der Alterung als auch während der Reprogrammierung
auf einem Zusammenspiel zwischen kollektiven biochemischen Prozessen und der Geometrie
der DNA beruhen. Mit dieser Arbeit zeigen wir, wie lineare DNA-Sequenzierung über kollek-
tive epigenetische Prozesse in Raum und Zeit informieren kann.
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Chapter 1
Introduction

“What is your secret?” the traveler asked.
“I am the Tree of Life.” it replied, “and my fruit grants immortality. Eat of it, and
you shall never age, never die.”

– Rumi, Masnavi

The desire to prolong life has been a recurring topic in human history, illustrated by the
age-old story ”The Epic of Gilgamesh.” Although the quest for understanding life and con-
quering death has not always been based on scientific principles, scientists recognize it as a
complex issue encompassing various fields, such as mathematics, physics, and biology [2–5].
Some of the questions to be tackled include how cells organize themselves into tissues and
organs, how they make decisions in noisy environments, how aging occurs, and whether it
can be reversed and at what cost. We need an in-depth understanding of cell fate regulation
to interpret development, post-injury regeneration, aging, and diseases like cancer. However,
due to the vast number of factors that affect cell behavior, we should narrow our focus to the
molecular level, where existing technology can observe at the smallest scale [6]. Gene expres-
sion has traditionally been the main area of focus when studying molecular regulation [7],
but recent advances in single-cell biology have allowed scientists to investigate further. These
new studies investigate other regulations, including the dynamic changes in DNA folding,
modifications in protein complexes encircling DNA, and chemical alterations to DNA. Col-
lectively, these additional layers of regulation are known as epigenetics [8].
Recent advancements in single-cell biology have provided researchers with unprecedented
molecular information regarding the mechanisms underlying cell fate regulation [9]. Due to
advancements in technology, we can now acquire data on gene expression, DNA epigenetic
modifications, and chromatin organization at the level of individual loci and from single cells
within living organisms. Moreover, single-cell multi-omics sequencing allows researchers to
examine various regulatory layers within the same cell [10, 11]. These breakthroughs have
allowed us to gain valuable insights into molecular behavior and identity of the cells, such
that single-cell genomics was named the scientific breakthrough of the year 2018 by Science.



Chapter 1: Introduction

However, it is important to recognize that biological function cannot be solely explained
by the molecular processes taking place within individual cells. The emergent (collective)
states, which result from interactions between molecular processes occurring at multiple lay-
ers, ultimately determine cellular function. Furthermore, identifying and interpreting spe-
cific regulatory processes on the molecular level requires a thorough understanding of how
macroscopic processes emerge on the cellular and tissue scale. The current challenge lies in
integrating precise quantitative data at the microscopic scale with the macroscopic processes
that rule cellular and tissue function. To draw a parallel from physics, this concept is similar
to comprehending collective phenomena, like high-temperature superconductivity, through
an understanding of the governing processes at the atomic level [11]. The emergence of new
collective properties in the macroscopic realm from the dynamics of the microscopic vari-
ables is the topic of statistical physics that provides a probabilistic connection between the
two regimes. Another essential concept is the energy requirement for biological systems to
construct and uphold intricate spatiotemporal structures [12], known as the systems outside
of equilibrium. To describe systems out of equilibrium, physicists primarily employ either
Langevin or master equations based on the specific nature of the problem. Langevin equa-
tions elucidate the stochastic dynamics of a field, providing a simplified representation of
microscopic variables. In contrast, master equations describe the temporal and spatial alter-
ations in a probability distribution. The description of Langevin equations can be expanded
using Fokker-Planck equations, which mirror the probability distribution of the field like the
master equation. The crucial distinction between these approaches is that master equations
accommodate discrete changes in variables, whereas Fokker-Planck equations operate con-
tinuously [1, 11].
Nevertheless, advances in artificial intelligence (AI), may have a better performance in the
analysis of a big data set, such as the the output of the sequencing experiments [13]. AI,
however, is descriptive and lacks a general conceptual framework for bridging the gap be-
tween microscopic and macroscopic scales. To gain insight into cellular behavior mechanisms
and find effective cures, we need a mechanistic approach to decipher biological processes.
In this thesis, we take an interdisciplinary approach and combine novel analysis of sequenc-
ing experiments and statistical physics to interpret collective processes underlying cellular
behavior during biological ageing and regeneration after injury. In the following part of this
chapter, we first describe the biology of epigenetics and their dynamic changes throughout
life, which serves as a fundamental mechanism underlying cell behavior. Then, we will give a
detailed description of current technologies in genomics. We will also discuss some theoretical
background we applied in the next chapters. Finally, we will introduce the main research
goals in this thesis.
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1.1 Epigenetics

1.1 Epigenetics

While every cell in our body possesses the same DNA sequence, they have different func-
tionality. The process by which a stem cell, the precursor cell responsible for generating all
differentiated cell types in the body, decides to commit to a specific cellular lineage over an-
other is dictated by the intricate interplay of multiple regulatory layers. Epigenetics is related
to phenotypic states not written into the genes but inherited as gene expression patterns in-
fluenced by environmental factors. [14]. Epigenetic processes involve a range of mechanisms,
including alterations in chromatin structure, chemical modifications of histones, and DNA
methylation [1,15]. In this thesis, our primary focus lies in examining DNA methylation and
histone methylation, which represent a key facet within the realm of epigenetic modifications.
Epigenetics is a dynamic process that occurs throughout one’s lifespan and can be altered at
various time scales. In a short time scale (a few days), epigenetic changes occur immediately
after fertilization during early development, in primordial germ cells during later develop-
ment, and during erythropoiesis, which is the formation of red blood cells [16, 17]. These
modifications also take place during the reprogramming process after injury. In addition to
these rapid alterations, epigenetic modifications can also occur over a long time scale and
play a crucial role in the ageing process. In the second chapter of this thesis, we will delve
into the topic of epigenetic changes that occur during biological ageing. Following that, in
the third chapter, our focus will shift to exploring the epigenetic modifications that the liver
undergoes during the regeneration process after injury. Before diving into these topics, we
first introduce DNA methylation and histone modification, which we will be studying and
analyzing in the upcoming chapters.

1.1.1 DNA methylation

DNA methylation (DNAm) is a process that alters the structure of nucleic acids in DNA.
In mammals, it primarily affects the cytosine (C) base when it is next to a guanine (G).
This specific base pair is known as CpG, with the ”p” representing the phosphorous between
cytosine and guanine. When a methyl group binds to this cytosine, it will be methylated.
This cytosine will be called 5-methylcytosine (5mC), and the process is associated with gene
repression1. The establishment of new DNA methylation marks is driven by a class of methyl
transferase enzymes, DNMT3a, DNMT3b, and DNMT3l, and their maintenance after repli-
cation during cell division relies on DNMT1. In particular, DNMT3a/b plays an active role
in modifying the epigenetic status of CpGs, converting them into methylated cytosines, and
DNMT3l serves to recruit DNMT3a/b [18–21].
Additionally, DNA methylation is a reversible process through mechanisms known as demethy-
lation. DNA demethylation might occur passively due to the lack of DNMT1 and the cor-
responding lack of DNA methylation maintenance during replication or actively via the

1Switching off the genes, the DNA units containing information needed to specify physical and biological traits.

3
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Figure 1.1: Illustration of two major epigenetic mechanisms (i) DNA methylation occurs
when methyl groups tag DNA and repress (through the effect of DNMT3) or activate
(through the effect of TET) genes. Removing the effect of methylation (demethylation)
happens in different steps, which have been shown in the cycle at the right. (ii) Nucleosome
or histone modification occurs when the binding of epigenetic factors (methylation, ubiqui-
tination, phosphorylation, acetylation) to histone tails alters the extent to which DNA is
wrapped around histones and the availability of genes in the DNA to be activated.

conversion of 5mC to 5hmC through the effect of the Ten-eleven translocation(TET) family
of enzymes through oxidizing the methyl group. 5hmC can undergo additional oxidation and
eventually turn an unmodified cytosine. [18–21], see Fig.1.1. Most CpG methylation occurs
mainly in intergenic regions, repetitive elements, and gene bodies. In contrast, regions of
the genome with high CpG density (known as CpG islands or CGIs), which colocalize with
gene promoters, are unmethylated [22]; and CpG sites located in regions just outside CGIs
(termed shores and shelves) or in distal regulatory elements, notably enhancers, exhibit the
highest variability in DNA methylation [23].
DNA methylation is initially imposed during early development to ensure that differentiated
cells remain lineage-restricted. During the development process, significant changes occur in
the levels of DNA methylation both globally and locally. Specifically, embryonic cells acquire
DNA methylation marks from both the father and mother after fertilization. However, in
the initial days of mouse embryo development, these marks are erased and followed by a
new round of DNA methylation. This results in a substantial increase in the overall level
of DNA methylation, going from around 20% to approximately 80% [1]. This alteration in
DNA methylation occurs before embryonic cells make their initial developmental decisions
and play a crucial role in shaping their destiny. Furthermore, any disturbances in methyla-
tion patterns, such as DNMT3 mutations, can prove fatal for the embryo, and in adulthood,
they serve as significant indicators for the onset of cancer. The existing DNA methylation
pattern that is established during development can undergo modifications during different
occasions in response to environmental changes, such as ageing and tissue regeneration. We
will discuss ageing-associated changes in DNA methylation in chapter 2 with more detail.

4



1.1 Epigenetics

Figure 1.2: Illustration of a bivalent CpG island. H3K4me3 usually affects the center of
the CpG islands, while H3K27me3 usually affects the shores in the case of bivalent CGI.

1.1.2 Histone modification

The DNA molecule is organized into chromatin. The basic building block of chromatin is the
nucleosome, consisting of 147 base pairs of DNA wrapped around an octamer composed of
two of each core histone protein (H2A, H2B, H3, and H4). [24]. In addition, the epigenetic
modifications also occur at the level of individual histones. These modifications include ly-
sine acetylation, methylation, ubiquitination, sumoylation, arginine methylation, as well as
phosphorylation of serine and threonine residues. [25, 26]. While histone acetylation typi-
cally correlates with gene activation, the effects of histone methylation vary depending on
the specific residue modified, being associated with either activation or repression. [27]. Hi-
stone methylation on lysine or arginine residues has been described to be associated with
gene activation; for example, histone H3 lysine 4 (H3K4), histone H3 lysine 36 (H3K36),
histone H3 lysine 79 (H3K79), histone 4 arginine 3 (H4R3), histone 4 arginine 17(H3R17); or
with gene repression, including histone H3 lysine 9 (H3K9), histone H3 lysine 27 (H3K27),
histone H4 lysine 20 (H4K20), and histone 3 arginine 8 (H3R8) [24, 26, 28]. H3K4me3 and
H3K27me3 are two of the most extensively studied histone modifications. Whereas H3K4me3
is characteristic of active promoters associated with the Trithorax group (TrxG), H3K27me3
is associated with transcriptional repression via the polycomb complex group (PcG). Because
TrxG and PcG proteins act antagonistically to regulate the activated and repressed states
of gene expression, H3K4me3 and H3K27me3 were thought to be mutually exclusive. But
this assumption was challenged by the discovery of bivalent genomic regions characterized
by the simultaneous presence of H3K4me3 and H3K27me3 (Fig.1.2), which can be found
predominantly at CpG islands in embryonic stem cells (ESCs) [27, 29]. Almost all native
CGIs in mouse ESCs are non-methylated at the DNA level and coincide with high levels of
H3K4me3, which is often seen as the signature histone mark of CGIs [30]. About one-third
of the H3K4me3-marked CGIs in mouse ES cells also carry H3K27me3 and are therefore
defined as bivalent [31].

During ageing process, upon regeneration, or due to cancers, chromatin status, including
variation in histone levels, exchange of histone variants, histone modifications, and nucleo-
some occupancy, is dynamically modified. Chapter 2 will discuss histone modification changes

5



Chapter 1: Introduction

during ageing, focusing on histone methylation.

1.2 DNA sequencing experiments

We introduced methylation as a primary layer of epigenetic modifications that dynamically
regulate cellular behavior. Here, we will discuss how one can detect these marks through
Bisulfite sequencing experiments (BS-Seq). Furthermore, we introduce the Chromatin-
immunoprecipitation sequencing experiment (ChIP-seq) as a tool one can use to study the
binding sites associated with chromatin modifications as another crucial layer of epigenetic
modifications.

1.2.1 Bisulfite sequencing experiment

Bisulfite sequencing experiment (BS-Seq) is known as a gold-standard method for the de-
tection of DNA methylation as it provides a quantitative and efficient approach to identify
5-methylcytosine at single base-pair resolution [32]. BS-Seq protocol can also be shared and
parallelized as a powerful tool between many sequencing experiments to investigate regulatory
relationships on top of chemical modifications such as profiling the chromatin accessibility
[33]. In this method, sodium bisulfite is used as a chemical treatment for DNA after its
extraction from the nucleus and then sequenced and amplified via polymerase chain reaction
(PCR). Following bisulfite treatment, cytosines that are unmethylated undergo deamina-
tion, converting into uracils, which are subsequently transformed into thymidines. However,
methylated cytosines resist deamination and are recognized as cytosines during sequenc-
ing [34]. The position of methylated cytosines can be discerned by comparing sequences
before and after treatment. This involves aligning the treated and untreated sequences and
mapping each fragment back to its location along the DNA sequence. [35]. The last step con-
tains a significant amount of bioinformatics. Starting from raw FastQ files (the outcome of a
sequencing facility), the quality of the sequenced reads must be determined, and low-quality
reads should be removed using TrimGalore software. Then, the trimmed reads are aligned to
the reference genome using Bismark. In the end, biological duplicated reads are merged, and
the methylation marks will be extracted for unique mapped reads and will be ready for fur-
ther analysis [36]. Each introduced step contains biological variability and technical noises;
hence, advanced pipelines are necessary to derive accurate quantitative predictions from se-
quencing experiments. Furthermore, modern sequencing technologies generate substantial
data volumes demanding that raw analysis be time-consuming. The time and computation
cost depend on sequencing parameters like read length, genome size, duplicated content,
and alignment parameters [37]. In Chapter 3, we will briefly provide some results of the
preliminary analysis of raw data while working on the liver regeneration data set.

In general, bisulfite sequencing experiments can be conducted in two types: bulk and
single-cell sequencing. In bulk experiments, methylation information comes from the average

6



1.2 DNA sequencing experiments

Figure 1.3: Sketch of the bisulfite sequencing experiments, adapted by permission from [38],
(License Number 5659270261727).

methylation status of many copies of a particular fragment driven from many samples. Yet,
single-cell sequencing has the capability to detect the methylated cytosines on individual
DNA strands, see Fig 1.3.

Note that these sequencing experiments are static. To study the dynamic and track the
changes in methylation information during aging, regeneration, or development, one needs
to do a time course sequencing experiment by simply repeating the sequencing experiment
at different time points.

1.2.2 Chromatin-immunoprecipitation sequencing

Chromatin-immunoprecipitation sequencing (ChIP-seq) is the most widely used technique
for analyzing protein interactions with DNA. In this sequencing technique, cells are cross-
linked, fragmented, and immunoprecipitated with an antibody specific to the target protein
and then will be aligned to a reference genome. The corresponding computational analysis

7
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Figure 1.4: Sketch of ChIP-sequencing experiments, adapted from [39]

depends on detecting ”peaks”, regions of the genome where multiple reads align that indicate
protein binding enrichment. However, difficult computational challenges will be posed in
identifying peaks due to irregular noise and bias on various levels, which are caused by
biological variability, a variety of domains, and the experiment environment. Although many
peak-calling methods have been developed, the current computational tools still require, in
some cases, human manual inspection, such as determining if fewer high-quality peaks are
preferred over lower-quality peaks [40].

1.3 Theoretical background

In this section, we discuss the key theoretical concepts from statistical physics that we have
applied to genomics in this thesis. Statistical physics offers efficient conceptual and compu-
tational approaches to describe complex mechanisms by focusing on essential features and
disregarding irrelevant details, a process known as coarse-graining. We begin by introduc-
ing the concept of phase field, which we apply in Chapter 2, and is categorized within the
realm of coarse-grained approaches. Later, we briefly explore the concepts of Markovian
and non-Markovian dynamics, highlighting how memory becomes necessary to describe the
relationship between fast and slow degrees of freedom in a coarse-grained system which we
use in Chapter 3.

8



1.3 Theoretical background

1.3.1 The phase field approach

The phase field theories are continuum theories that describe a system by using a set of
order parameters, denoted as φ(r⃗, t). These parameters represent the local state/phase of
the system and are normalized between 0 and 1. While the term ”phase” typically refers to
atomic order in physical systems, in this thesis, we define a phase as a genomic compartment
with a distinct functionality pertaining to transcriptional activation or silencing.
Once we have characterized the system’s state, our interest lies in understanding how these
states change over time. The evolution equations of the order parameter can be derived
through either explicit coarse-graining of microscopic models (the bottom-up approach, dis-
cussed in Chapter 2) or through top-down considerations (applied in Chapter 3), where an
expansion in powers of φ and its spatial and temporal derivatives is included in the evolu-
tion equation. In both cases, the interaction between different system compartments may
lead the system to demix and build phases of different compositions to lower the system’s
free energy, F ≡ F [φ, ∇φ]. In this regard, it has been proven that phase field theories are
powerful tools for visualizing the development of microstructures without the need to track
individual interfaces [41, 42]. Specifically, in Chapter 2, we will see how the interaction be-
tween two antagonistic epigenetic modifiers regulates the interface between different genomic
regions, and using phase field principles, we relate these regulations to the age biological age
differences.

1.3.2 On the memory effect and generalized Langevin equation

Biological systems are complex structures that contain interactions between several compo-
nents influenced by various factors, many of which are not known. When studying such a
complex many-body system, it is often a pragmatic choice to describe a process of interest
in terms of the evolution of a small set of relevant observable (usually called reaction coor-
dinates), which capture the main features of the process [43]. However, the relation between
the reaction coordinates and the microscopic variables is rarely trivial. The investigation of
such relations has been extensively discussed for many decades. It started with Langevin’s
work [44] and was followed by resourceful theoretical studies. Specifically, the development of
projection operator techniques and the Mori-Zwanzig formalism as an extension of Langevin’s
work has revealed that the equations governing the dynamics of coarse-grained variables and
reaction coordinates must inherently display non-locality in time [45, 46]. This means that
one typically deals with the coupling of non-completely time-separated variables, namely
the ”fast” microscopic degrees of freedom and the ”slow” reaction coordinate variables. The
consequence of this is known as non-Markovian or memory effects. Briefly, in a Markovian
process, the future behavior of the system is determined solely by its present state, and any
information from the past is irrelevant. In contrast, in a non-Markovian process, the future
behavior of the system depends not only on its present state but also on its past history.
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Chapter 1: Introduction

Figure 1.5: Schematic visualization of the projectors (blue arrows) in the space of the
observables.

Here, following [47], we introduce the generalized Langevin equation and how memory
emerges as the consequence of the projection technique. To begin with, consider the time
evolution of a general phase-space observable φt as,

dφt

dt
= iLφt. (1.1)

where iL is the Liouvillian operator. This equation has a formal solution as φt = eiLtφ0.
In the Mori-Zwanzig formalism, a common practice involves defining a stationary projection
operator, which is utilized to partition the dynamics into a parallel (slow) component and
an orthogonal (fast) component [48]. Assuming we have a projection operator P 2 = P ,
and Q = 1 − P , as it is demonstrated in Fig. 1.5, and using the inner product property,
we define the operation of the projection operator on any function of phase space X as
PX = ⟨φ∗X⟩⟨|φ|2⟩−1

φ .
Following splitting the dynamic into the projected part P and orthogonal part Q, one can

rewrite Eq.1.1 as,

dφt

dt
= eiLt[P + Q]iLφ0,

dφt

dt
= eiLtPiφ0 +

∫ t

0
dτeiLτ PiLQeiLQ(t−τ)iLφ0 + QeiLQtiLφ0.

(1.2)

By specifying the definition of projection operator and renaming variables here, one can
simplify the Eq.1.2 as the famous generalized Langevin equation (GLE),

dφt

dt
= ωφt +

∫ t

0
dτK(t − τ)φτ + Ft. (1.3)

where the first term accounts for the parallel contribution that is local in time. The second
term is, however, non-local in time and can be called a friction term with the memory kernel
K. The last term Ft refers to the fast variable is the orthogonal contribution to φ.
In a more complex version of the Eq.1.3, the memory kernel varies over time, denoted as
K(t, τ), and the corresponding dynamic named non-stationary generalized Langevin. The
nonstationarity, often referred to as stretched relaxation, is observed in materials such as
quenching spin glasses and polymer melts with viscoelastic properties [49,50]. However, the
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origin of this peculiar memory behavior remains elusive at the microscopic level [51]. In order
to apply the Mori-Zwanzig formalism to the nonstationary GLE, it is necessary to take into
account a time-dependent projection operator Pt. This operator should satisfy the condition
PtP

′
t = Pt, and all the preceding steps need to be rewritten accordingly. Pt can also be

understood as an operator that projects onto the fixed vector φ, and the orientation of the
projection changes over time [48].
In Chapter 3, where we explore the relationship between DNA structure and changes in
epigenetic modifications during liver regeneration, despite the numerous variables involved,
we describe our system effectively by projecting the fast epigenetic degrees of freedom onto
the reaction coordinate variable, DNA structure. This is achieved using the Mori-Zwanzig
formalism. To further understand this system, we study the perturbation caused by adding
poison to the liver, which activates the regeneration process. We also consider changes in
the amount of poison (injury) in the liver during the regeneration process equivalent to the
changes in the projection operator with time, indicating a non-stationary memory kernel.
Afterward, we explain in detail how to use perturbation techniques to solve such a dynamic
and measure the corresponding statistical characteristics like correlation functions.

1.4 Research goal and overview of the thesis

Understanding the mechanistic basis of temporal changes in DNA methylation and their
interplay with other epigenetic modifications, such as alteration in chromatin structure, is
essential for comprehending the processes responsible for development, regeneration, and
aging, as well as diseases occurring due to the irregular regulation of these processes. Se-
quencing technologies provide detailed and complex descriptions of molecular processes gov-
erning cellular fate across various stages of life. However, the descriptive nature of these
insights persists until complemented by methods capable of identifying collective degrees of
freedom that arise from microscopic interactions. In this thesis, using a combination of novel
sequencing technologies and statistical physics, we studied collective behavior underlying cel-
lular regulation during aging and in the regeneration of the liver after injuries.
Specifically, in Chapter 2, we investigate the relationship between changes in DNA methy-
lation over time and biological age, showing that biological age can be predicted based
on collective processes at the boundaries between genomic regions with different densities
of cytosine-guanine pairs. We also develop a biophysical model to predict the evolution
of DNA methylation patterns during aging using an interactive two-component phase field
model. While our study is focused on bulk sequencing experiments, we explore its potential
application to single-cell datasets to determine if biological aging can be inferred from the
behavior of individual cells.
In Chapter 3, we shift our focus to rapid epigenetic alterations that occur during liver re-
generation. We will expound on how liver cells retain a memory of injury repair occurrences
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Chapter 1: Introduction

through a significant modification in the interplay between epigenetic marks and DNA topol-
ogy.
In Chapter 4, we summarize our findings, and we propose potential future research inspired
by the insights gained.
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Chapter 2
Collective epigenetic processes
during ageing

2.1 Introduction

Ageing is a complex biological process characterized by a buildup of deleterious molecular
changes that result in a gradual decline of the function of various organs and systems and
ultimately lead to death. There is no commonly accepted singular mechanism underlying
the ageing process [53], and different genetic and non-genetic factors can affect ageing. Fur-
thermore, the ageing process is not solely determined by the amount of time that has passed.
While chronological age measures the time that has elapsed, it is not the most accurate in-
dicator of the ageing process. In fact, biological age may provide a better representation of
true ageing as it takes into account individual differences in the ageing process. So far, nine
tentative cellular and molecular hallmarks of ageing have been found that act together as
determinants of age-related phenotypes; these include genomic instability, telomere attrition,
epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing, mitochondrial dys-
function, cellular senescence, stem cell exhaustion, and altered intercellular communication
(see [52] for a detailed description of each factor). However, a notable factor that stands
out among others is the presence of epigenetic changes, as these changes are strongly linked
to one’s biological age [54–56], see Fig.2.1. In this chapter, we will pursue understanding
biological ageing by focusing on epigenetic modifications during ageing.

2.1.1 Epigenetic processes in ageing

Despite longstanding interest in investigating the aging process and epigenetics separately,
the field of aging epigenetics has only recently experienced a notable upswing because of
advancements in sequencing technologies [24]. During ageing, there is a continuous change
in epigenetic modifications of the DNA and chromatin structure, which gives rise to multiple
age-related diseases [57]. This ranges from changes in DNA methylation and histone modi-
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Figure 2.1: The scheme enumerates the hallmarks of ageing, adapted from [52](with licence
CC-BY-ND).

fications to modes of modulating environmental factors 1 like polycomb complex group that
affect epigenetic processes, as well as cross-talk between different epigenetic modifiers, which
we are going to discuss in detail below:

DNA methylation in ageing

In 1973, Vanyushin et al. [58] were the pioneers in documenting age-related global variations
in 5-methylcytosine (5mC) in rats. Since then, an extensive body of literature has unveiled
genome-wide and systematic DNA methylation alterations associated with aging across var-
ious species. These changes can either manifest independently of tissue or be confined to
specific tissues or cell types. [54–56, 59]. Moreover, several studies revealed that identical
twins, which arise from the same single cell and share almost all of their genetic variants,
are not entirely similar and experience phenotypic discordances for many traits from birth
weight to age-related diseases [23,60]. These studies did not find any clear pattern of DNAm
divergence, likely due to the study design, small sample size, and limited genomic coverage.
The loci that showed divergence within one twin pair did not overlap with the loci that
showed divergence in another twin pair. Therefore, the authors coined the term ”epigenetic
drift” to describe the random nature of age-related DNAm changes within twin pairs. This
may be due to a global decrease in methylation comes with successive cell divisions [23].
In general, changes in DNA methylation contain either loss of DNAm (hypomethylation)
at sites that are normally methylated or DNAm gains (hypermethylation) at sites that are
usually unmethylated [24]. Global loss of methylation or hypomethylation of ageing cells and

1These are the modifications that do not change the genetic information.
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tissues has been documented in numerous studies and plays a major role in ageing [61]. Dif-
ferent mechanisms, such as genomic instability and a decline in DNMT1, may be related to
a decrease in methylation status during ageing; however, the main cause of this phenomena
is not known. DNA hypomethylation is also observed in many chronic age-related diseases,
such as cancer, atherosclerosis, alzheimer, autoimmunity, and macular degeneration [62,63].
Besides genomic hypomethylation, regional DNA hypermethylation is also important for bi-
ological ageing. Age-related hypermethylation has been estimated to be involved in colon
cancer and other tissues such as the breast, kidney, and lung. [24, 64]. One of the impor-
tant drivers of changes in DNAm during ageing is mutation in DNA methyltransferase 3a
(DNMT3a), which has been associated with clonal hematopoiesis of indeterminate potential
(CHIP) in ageing individuals. Somatic DNMT3a mutations arise in hematopoietic stem cells
(HSCs) many years before the potential cancer development (malignancies). While common
in hematologic malignances and CH, DNMT3a mutations are essentially absent from ageing
skin and esophagus as well as associated malignancies; instead, in TP53 (a tumor suppressor
protein) and NOTCH (a signaling pathway important for cell-cell communication), muta-
tions dominate, indicating context specificity of the advantage conferred by mutations [65].
In principle, DNMT3a can harbor a wide range of mutations at varying frequencies with
distinct predicted consequences to enzymatic function, such as R635G and R736H at the
position of the DNA substrate and R771Q at the tetramer interface on DNMT3a, to name a
few. Considering different CpG densities along the DNA, some of these mutations enhance,
and some diminish, the activity of DNMT3a compared to the wild type (WT), which then
leads to diverse levels of methylations [66]. Although DNMT3a mutations are one of the
common drivers of age-related clonal hematopoiesis, in which specific HSC clones dominate
blood, because these mutations are tissue-biased, it’s impossible to consider them as a uni-
versal age-driven factor in multiple tissues. Therefore, One needs to be extra cautious and
consider various other factors while studying ageing models.

Histone modifications in ageing

Chromatin status undergoes dynamic changes during ageing process, including variations in
histone levels, exchange of histone variants, modifications of histones, and shifts in nucleo-
some occupancy. Comparative chromatin analysis of young and old cells through ChIP-seq
analysis 1 revealed the ageing-associated changes in histone marks and the alteration in their
interplay with DNA methylation [67,68]. Being aware of the different possible histone mod-
ifications we introduced in Chapter 1, we will narrow our focus on changes in H3K4me3
and H3K27me3 histone modifications as two important players in ageing process. Studies
on old hematopoietic stem cells exhibited a significant increase in the number of H3k4me3
peaks from ChIP-seq analysis, many of which were considerably broader with age; more
than half of all H3K4me3 peaks expanded, and only a few of them shrank, which suggests

1To comprehend the functioning of this analysis, refer to chapter 1.
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A CB

Figure 2.2: Relation of DNA Methylation and Chromatin Marks. (A) Average density
profiles for H3K4me3 and H3K27me3 around TSSs. (B) Heatmaps showing the signal differ-
ence of H3K27me3 and H3K4me3 between KO and control cells surrounding TSSs analyzed
in seven clusters based on their different binding properties. Green, decreased; yellow, in-
creased signal intensity, compared to WT control. (C) Aggregating the density of DNA
methylation along with the density of other chromatin marks within annotated CpG islands
(CGIs). Figures A, B are adapted from [71], and C is adapted from [72].

that some previously unexpressed transcripts are activated [67]. It has also been found that
there is a strong inverse correlation between DNA methylation and H3K4me3 levels during
ageing [69,70].
H3k27me3 is also likely to be actively modified during ageing. H3K27me3 designate tran-
scriptional silencing, which is produced by polycomb repressive complex-2 (PRC2) and is
maintained by PRC1. However, the results of studies on several models, including worms,
flies, and fish, showed that the link between H3K27me3 levels and ageing is complex, and
it is possible that depending on the specific loci and cells, different H3K27me3 regulators
through different catalytic activities of PRCs subunits influence lifespan. Thus, ageing may
be associated with both an increase and decrease in H3K27me3 [68]. In the same study by
Sun et al. [67], it has been shown that although H3K27me3 shows similar peak counts with
age, at the level of transcription, the genes that are enriched for the category of membrane
protein lose H3K27me3, while the genes that are enriched for glycoprotein and cell adhesion
gain H3K27me3.

Cross-talk between DNA methylation and histone modifications

It has been found that the complementary and competitive behavior in the binding of DNA
methylation enzymes and methylation modifiers on histone modifications have a mutual ef-
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Figure 2.3: Schematic describes the interplay between different epigenetic modifiers at
bivalent CpG islands (CGI). H3K4me3 affects the island’s center, while H3k27me3 affects
the shores, and both repress the methyltransferase (DNMT3). PRC2, in interaction with
H3K27me3, regulates the shores.

fect on each other. Gu et al. studied the cross-talk between the binding of DNMT3a/TET1
enzymes and histone methylation modifiers in and outside of the bivalent regions1 in mouse
embryonic stem cell (ESCs) [71]. They found that the deletion of Tet1 increases DNMT3a1
binding capacity at and around regions with wild-type TET1 binding. However, deletion of
Dnmt3a has a minor effect on TET1 binding on chromatin, indicating that TET1 could serve
as an anchor protein to establish boundaries for DNMT3a binding in order to limit DNA
methylation and to establish boundaries. Nevertheless, genes encoding DNA methyltrans-
ferases (Dnmts) as a group decrease during ageing. Concomitantly, genes encoding Tet1 and
Tet3 DNA demethylation proteins are also decreased. Consistent with the reduction of Tet
gene expression, 5-hydroxymethyl cytosine (5hmC) decreases with age.
It has also been shown that DNMT3a binding negatively correlates with the extent of
H3K4me3 levels. However, loss of TET1 has little effect on the H3K4me3 levels. Loss
of DNMT3a and/or TET1 also leads to diminished H3K27me3 levels, especially at the re-
gions with intermediary levels of methylation and to a greater extent in Dnmt3a KO, see
Fig.2.2. The interplay between DNMT3a and TET1 may also poise the expression of bi-
valent genes largely via PRC2-mediated H3K27me3 modification, which is critical for the
repression of developmental genes. In this concept and as explained above, loss of DNMT3a
diminishes H3K27me3 but extends H3K4me3 [67, 71], and that TET1 is also required for
chromatin binding of EZH2 in mouse ESCs which is a core component of PCR2 and produce
H3K27me3 [73], Fig. 2.3. Following the reduction of TET, PCR2 will also be depleted, which
may ease the local increase of DNMT3A binding inside CpG islands (CGIs) [74]. However,
the PRC2 modification is very slow in comparison to the histone and DNA modifiers [75].
We hypothesize that the shores at bivalent CpG islands are regulated by the slow depletion
of the polycomb complex, which is a potential cue for methylation ageing. We will explain
this concept more comprehensively later in Sec.2.2.3.

1The regions that contain both active and repressive modifiers, see Sec. 1.1.2 for more detail.
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2.1.2 DNA methylation ageing clocks

In the previous section, we introduced DNA methylation as a promising biomarker of ageing.
In accord with DNA methylation being a dynamic modification, here we want to discuss
whether it is possible to predict the progression of ageing based on a sequencing experiment.
Horvath [76] was one of the pioneers that tackled this question using multivariate machine
learning models to assay genome-scale temporal changes of DNA methylation marks and
predict biological age. Using machine learning techniques, he identified collections of indi-
vidual CpGs whose aggregate methylation status is highly correlated to chronological age
in humans, and thus, they can be used as age estimators. Shortly after that, similar DNA
methylation age estimators have been reported for mice [77,78] and extended to many other
mammalian species [79–81]. Because of the high accuracy of these models, DNA methylation
age estimators are often called as methylation ageing clocks [56]. We do not enter into the
technical details of different machine learning age-estimators as it is beyond the scope of
this thesis, but we discuss them here only briefly. Methylation ageing clocks are large linear
machine learning models fitted to sequencing data,

Age ∼ β1m1 + β2m2 + ... + βnmn. (2.1)

where mi is the DNA methylation state at position i along the genome, and each site has its
own associated weight βi, which indicates the amount that age changes in response to the
changes in methylation values. Using regression analysis, such as ElasticNet, the associated
weights can be learned, and it can be understood which sites are more relevant for age
prediction. To this end, one needs to optimize the following cost function through the
preferred regression algorithms,

β̂ = ||Age − m⃗ · β⃗||2 + λ1||β⃗|| + λ2||β⃗||2. (2.2)

If λ2 = 0 and λ1 = λ, it is Ridge regression, and if λ1 = 0 and λ2 = λ, it is LASSO [82].
Regularisation selects features by decreasing the weights of least informative CpGs with age
to 0. That is in spite of the fact that this model, in principle, contains all CpG sites, which
can be approximately 28 million sites throughout the mammalian genome; in the end, a few
hundred highly informative CpGs are sufficient for age prediction. These sites are named
clock sites. A graphical explanation of how these methylation clocks work can also be found
in Fig. 2.4.

It is also possible to make universal mammalian clocks using a single model similar to
Eq. 2.2, that demonstrate accurate predictions of chronological age across different species
[83]. To this end, various tissues have been examined, encompassing blood, liver, kidney,
muscle, skin, and the brain, including multiple regions such as cortex, hippocampus, and
hypothalamus; see Fig. 2.5.

Note that for most of the reported methylation ageing clocks so far, the utilized methylation
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Figure 2.4: Illustration of DNA methylation ageing clocks: (A) Depicts the age-related
methylation trajectory of eight individual CpGs, divided into four with negative coefficients
(blue) and four with positive coefficients (red). The colors reflect the rate of change with age,
with darker shades indicating faster rates and stronger weights in the epigenetic clock. (B)
Displays the methylation values of these eight clock CpGs (columns) in three individuals of
different chronological ages (rows). The shading of the filled circles represents the fractional
methylation (ranging from 0.0 to 1.0). The box color signifies the coefficient of change over
age (slope of the line, top). In each colored box, the numerical product of the methylation
value and its corresponding coefficient is presented. The summation of these products,
combined with the intercept learned during the construction of the clock, results in an
epigenetic age approximation that corresponds closely with chronological age. Figures are
adapted from [82].
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Figure 2.5: Universal clock: Every point on the graph corresponds to a tissue sample
identified by the mammalian species index. For example, 1 denoting primates, 2 indicating
elephants, 3 representing cetaceans, and so on. Figure is adapted from [83].

values at each site in Eq. 2.1 are usually acquired from bulk sequencing experiments, as
explained earlier in the first chapter. In fact, having a higher coverage in an experiment
would increase the accuracy of the predictions. However, having model’s inputs from single-
cell experiments would be challenging, as the intrinsically sparse and binarized methylation
profiles of individual cells precluded the assessment of ageing in single-cell data [84]. In
section 2.2.4, We will discuss the analysis of single-cell ageing in more detail. In particular,
we will discuss the results of our collaboration with Ferdinand von Meyenn’s group at ETH,
Wolf Reik’s group (Babraham Institute and AltosLabs), and Oliver Stegles division (DKFZ
and EMBL Heidelberg), where we investigated the long-standing question as to whether
DNA methylation age is also measurable in single cells and whether these measurements are
biologically relevant.

2.1.3 Research questions and overview of this chapter

So far, we have discussed how epigenetic modifications can be a valuable indicator of the
ageing process. We also learned that one needs to consider the interplay between different
modifiers to clearly understand the different alterations these modifications may face during
ageing. Additionally, the alterations of these modifications are tightly correlated to biological
age, and machine learning models can predict biological age by tracking these modifications.
However, machine learning ageing models are, in general, purely descriptive and have lots
of parameters. The mechanistic basis underlying these methylation clocks is indeed poorly
understood despite the fact they are quite accurate and are able to predict biological age
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and time of death with an uncertainty of three to four years [76, 85]. Besides, the field has
advanced beyond questioning the feasibility of developing DNA methylation aging clocks to
exploring the reasons behind the potential of DNA methylation contribution to biological
ageing. [56]. Probably one of the most interesting prospects of understanding the ageing
mechanism is that it can be useful for identifying or validating anti-ageing interventions. To
this end, we designate this chapter to answer the question: What is the mechanistic basis
underlying DNA methylation during ageing? Using a combination of tools from statistical
physics, we show that biological age can be predicted as a result of collective processes in
the boundaries between genomic regions with different densities of CpGs. We first explicitly
study epigenetic ageing using balk sequencing experiments, and later in this chapter, we will
study single-cell ageing.

2.2 Results

2.2.1 Sequencing experiment

We started our analysis with bulk sequencing experiments, which have higher coverage and
lower technical noise compared to single-cell sequencing experiments. We utilize a DNA
methylation sequencing data set of mouse blood cells taken at various ages, as previously
published by Petkovich et al. (2017). In this experiment, in order to examine the overall
changes in the DNA methylome on a global scale, the authors used a modified form of re-
duced representation bisulfite sequencing (RRBS)1 to analyze DNA methylation from the
whole blood of 141 male C57BL/6 mice. These mice ranged in age from 3 to 35 months and
were divided into 16 age groups. Within each individual sample, they detected between 3.9
and 13.0 million CpG sites, with over 1.9 million sites being present in all samples. As a
result, their RRBS method effectively covered a significant portion of the DNA methylome in
the blood of mice, allowing us to examine how it changes with age. In Fig. 2.6, we present the
results obtained from conventional bulk bisulfite sequencing data. For each sample/replicate,
we have the start and end position on the chromosome, percentage of methylation, age and
other corresponding information. Usually, instead of methylation, we get information about
the number of number of methylated and non-methylated CpGs. Note that due to techni-
cal errors in the sequencing experiment, we may get misinformation about certain cytosines
from the corresponding table. Thus, it is typically important to conduct thorough quality
control before proceeding with further analysis. Regarding quality control, it is advisable
to retain samples that exhibit substantial coverage, efficient mapping, and a low number of

1A bisulfite-based method that focuses on CG-rich regions of the genome, in order to decrease the necessary
sequencing while encompassing most promoters and other important genomic areas.
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Figure 2.6: Illustration of the data from Petkovich et al., we used for this study. In the
table, we show typical information one gets from sequencing experiments.

CHH methylated sites (where H is any base except G).1 In Fig.2.7, we present a subset of
data that displays the overall measurement of DNA methylation across a wide genomic area
and at various ages. Methylation marks, however, are affected by different factors in specific
regions, like CpG density, transcription, and histone modifications. Consequently, the rep-
resentation of methylation densities may not offer meaningful insights because it averages
across distinctly functional genomic regions. Although this map (Fig. 2.7) would be suffi-
cient for machine learning models, we here do not want to treat each CpG individually and
track their changes over time like in machine learning models. Instead, we here hypothesize
that DNA methylation ageing is a result of a collective process, and to understand the DNA
methylation ageing process, one needs to study changes in the interaction between different
CpGs. To test this hypothesis, we need to quantify the collective dynamics of DNA methy-
lation states through statistical measurements like two-point correlation functions, which we
elaborate on in detail in the next section.

2.2.2 DNA methylation ageing as a collective epigenetic process

As we discussed earlier, and in order to examine our hypothesis that DNA methylation ageing
is a result of a collective epigenetic process, we calculated connected two-point correlation
functions. These functions help us observe variations in the relative arrangement of DNA

1We didn’t apply any explicit quality control for the data set from Petkovich et al., as it was trimmed before
publication. However, for the analysis of ageing single-cell data set, which we discuss later in this chapter, and
for the liver regeneration data set in the chapter3, we developed computational pipelines, which entail quality
control, normalization, overlapping of reads with genomic annotations, and propagation of uncertainties as
well as the computation of statistical summaries.
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Figure 2.7: Methylation density during a 32-month time-course sequencing experiment for
chromosome 1 and on a broad genomic region. For visualization, the genome is re-scaled
into bins with 100,000 base pairs.

methylation marks during ageing. Connected correlation functions are defined as,

C(j) = ⟨mimi+j⟩ − ⟨mi⟩⟨mi+j⟩, (2.3)

where i and i + j are the genomic positions of CpG sites, and mi and mi+j are the corre-
sponding DNA methylation values. The averages are performed over all pairs of CpGs that
are a distance of j base pairs apart and over all samples. We find a clear, genome-wide
ageing signal by calculating this two-point correlation function over the Petkovich data set
we introduced above; see Fig. 2.8. However, we need to quantify these systematic changes
in two-point correlations over time. In order to achieve this, we focus on a measure that
indicates only uncorrelated changes during ageing. We consider multiplicative changes as
the primary indicators of ageing; see Appendix A for a detailed consideration.
Therefore, the ratios of correlations at a given distance, d, and consecutive time points as a
measure to quantify the changes in correlation function becomes,

C(d, t′)
C(d, t0) = A(t′, t0). (2.4)
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Figure 2.8: Connected two-point correlation functions across the genome between DNA
methylation marks at different ages for mouse blood cells, which shows a clear ageing signal
(Data from Petkovich et.al).

where A(t′, t0) is a function of the new age and the initial one. By computing these correlation
ratios with respect to the first age sampled in the experiment, Petkovich et. al, the systematic
genome-wide ageing signal we observed in Fig.2.8 becomes more detectable in Fig. 2.9.
Specifically, we observe a loss of correlations for distances smaller than roughly 400 bp and
larger than 1000 bp while correlations increase over time around a characteristic distance of
500 bp.

An important inquiry is whether this behavior is prevalent across the genome or if it is
limited to specific genomic regions. This query may seem peculiar from a physics standpoint.
This is because when calculating correlation functions or other statistical measurements in a
spin system, the direction along the spin domain is not a concern, and it is typically assumed
that the system exhibits translational symmetry. However, this assumption no longer holds
for genomic regions. This is due to the heterogeneous nature of the genome and the presence
of distinct functionally relevant regions, which are mapped in DNA annotations. DNA
annotation serve to identify the location and function of genes and other regions of the genome
that are relevant for understanding the biological context, such as gene bodies, promoters
(the regions of the genome where transcription of the gene is initiated), TSSs ( transcription
start sites), and CPG islands (CGIs, regions that are more dense in terms of having CpGs).
Hence, to reveal the genomic origin of these ageing patterns from multiplicative changes in
correlations, we analyze the correlation ratio separately for different genomic annotations
classified by the density of CpGs. As mentioned earlier, the genome is not uniform, and
certain areas called CpG islands have a higher concentration of CpGs while others are less
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Figure 2.9: Characteristic behavior of genome-wide multiplicative changes in connected
two-point correlation functions as quantified in correlation ratios, Eq.2.4 (Data from
Petkovich, et.al). There is a striking increase in the correlations around 500 bps.
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Figure 2.10: (A) CpG islands have a higher concentration of CpGs along the genome, and
the average length of this regain is 1000 bps. (B) The increase in correlations observed at
a 500bp distance is unique to regions characterized by high CpG density, known as CpG
islands (CGIs). The distance of 500bp can be understood as the average distance between
sites within a CpG island and its boundary. Correlations decrease over time in regions with
low CpG density (CpG-poor regions), but genomic proximity does not influence this decay.
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Figure 2.11: Position of the peak in multiplicative changes of correlations scales with the
size of CpG islands, which indicates that an increase in correlations at a distance of 500bp is
associated with DNA methylation dynamics in the boundaries of CpG islands. The position
of this peak aligns with the half-length scale of each group of CpG islands with different
lengths (500, 1000, 1500, 2000), as indicated by the vertical line for better observation.

dense. In the following section, we explore the connection between CpG islands and the
ageing process and how it affects the striking patterns in the correlation ratios.

Role of CpG islands in ageing

CpG islands (CGIs) or CpG-rich regions have an average length of 1000 bps. These regions
are primarily found in the vicinity of gene promoters, which are the regions responsible for
initiating gene expression. Therefore, unlike the rest of the genome where CpGs are highly
methylated, CGIs tend to be lowly methylated. By filtering the genome based on the density
of CpGs, that is, splitting the genome into CpG islands and the rest of the genome (open
sea), and calculating the correlation ratios for each region separately, we find that the gain of
correlations at a distance of 500bp is specific to CpG rich regions where correlation increases,
to a lesser degree, also for distances smaller than 500bp. In contrast, correlations in CpG
poor regions decay over time unrelated to the genomic distance, Fig. 2.10. 500bp can also be
interpreted as the average distance of sites inside a CpG island to the boundary is 500bp. We,
therefore, hypothesized that the increase in correlations at a distance of 500bp is associated
with DNA methylation dynamics in the boundaries of CpG islands (shores). To prove this
hypothesis, we conducted a numerical experiment in which we calculated the correlation
ratios for different groups of CGIs distinguished by their average length. As depicted in
Fig.2.11, we observe that the position of the peak in multiplicative changes in correlations
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Figure 2.12: Generic changes in DNA methylation correlations across tissue. A clear
trend of ageing and a characteristic gain of correlation (bump) around 500 bps is evident
(indicated by the vertical lines). Data is collected from Stubbs et al. [86], except for blood
from Petkovich et al.

scales linearly with the size of CpG islands, which supports our hypothesis. However, one
may be cautious about these results, thinking they embedded some cell type or tissue-specific
property. To investigate this issue, we apply our analysis to DNA methylation sequencing
experiments from a broad range of mouse tissues published by Stubbs et al. [86]. We find
that the stereotypical behavior in changes of the two-point correlation function is not specific
only to blood cells with which we stated our analysis. Rather, it is a generic behavior that
characterizes ageing in a broad range of tissues, see Fig.2.12. This shows that the dynamic of
DNA methylation at the boundaries of CpG islands plays a role in DNA methylation ageing.
We now investigate the mechanism governing these changes more precisely. As discussed
earlier in this chapter, the interplay between DNA and histone modification is an essential
mutual effect that one must consider when studying epigenetic alterations. To check the
impact of histone modifiers on CGI methylation, we filter CGIs based on the presence of
H3K4me3, which mostly can be found at the center of CGIs and is associated with gene
activation. Detection of the histone modifiers like H3K4me3 is possible through a Chip seq
experiment as introduced in Sec. 1.4. We also tested for the presence of H3K27me3, which is
associated with gene repression but can be found at the bivalent CpG islands, as introduced
before. Fig. 2.13 shows the result of our correlation ratio analysis for these different groups
of CGIs. It is evident that the ageing signal which appears in the characteristic peak of
correlation ratios is specific to the bivalent CGI. Combining what we learned from the general
ChIp-seq analysis of histone modifiers and our genuine observations about CGI alteration
during ageing, we take quantitative steps toward making a biophysical ageing model in the
next section.
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Chapter 2: Collective epigenetic processes during ageing

Figure 2.13: Correlation ratios for three groups of CpG islands based on the enrichment of
H3k4me3 and H3k27me3. Ageing signals are specific to bivalent CGIs, where one can find
both of these modifiers together.

2.2.3 Towards a biophysical mechanism of DNA methylation ageing

As we learned in the previous section, collective dynamics occurring at the boundaries of CpG
islands, which encompass both active histone modifiers (H3K4me3) and repressive modifiers
(H3K27me3), are linked to the characteristic alterations in two-point correlation functions
of methylation marks. In section 2.1.1, we also found that active modifiers predominantly
occupy CpG islands, while repressive modifiers are predominant outside of these regions.
However, in the transitional border areas between CpG-rich and CpG-poor regions, there
is an enrichment of both active and repressive enzymes, indicating competition for binding
between the proteins depositing them in these regions. Now, we want to investigate if this
potential competition would be ever tilted during ageing. Therefore, we measure changes in
the length of lowly methylated regions from the Petkovich et al. data set. The reason is that
lowly methylated regions are linked to CpG islands and the areas bordering these islands.
To determine the size of the methylated region linked to each CpG island, we employ an
algorithm in R that calculates the methylation values and the total length of the region
that exhibits lower methylation levels compared to the average within that region. This
algorithm encompasses the CpG islands as well as the shores defined to be the regions of 5
kbps 1 size adjacent to both sides of the CpG islands. From this, we find that the size of
the lowly methylated region increases with time; see Fig.2.14, blue line. Furthermore, we
measure the changes in DNA methylation status inside the CpG islands; see Fig.2.14, red line.
From this figure, determining the competition’s winner may not be simple, as the growth
of the lowly methylated region is associated with an increase in DNA methylation levels in
that region. This is an interesting observation that is, at first sight, paradoxical. However,
the potential depletion of the PRC2 group, as we discussed earlier in section 2.1.1, gives
a potential molecular mechanism for this outcome. It suggests that the decrease in PRC2
would lead to a reduction in H3K27me3 levels [73], possibly due to a decrease in binding
affinity and ineffective recruitment of the enzyme to the DNA, that consequently modifies the
shores, see Fig. 2.3. Additionally, because of the decrease in H3K27me3, DNMT3A would

15 kilo base pairs = 5000 base pairs
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Figure 2.14: During ageing, expansion of the lowly methylated region goes along with an
increase of methylation in this region.

Figure 2.15: Microscopic model that accounts for the exchange dynamics and interactions
between different histone modifiers. These interactions are long-ranged due to the chromatin
structure in three dimensional space.

have an easier time binding to the CGI [74]. Overall, the competition between H3K4me3
and H3K27me3 during ageing may lean in favor of H3K4me3, which we are going to explore
later in this section.

Before we continue with the definition of the model, it is important to recapitulate the
main points discussed in this chapter. A basic biophysical model of DNA methylation ageing
should fulfill three essential criteria:

• It should explain the consistent patterns observed in the relative changes of methylation
marks that are found in correlation ratios.

• The model should apply to a wide range of tissues and cells without bias to any specific
type.

• Additionally, the model should account for the expansion of regions with low levels of
methylation, as well as the acquisition of methylation within these regions.

To continue with the definition of the model, we begin by considering a one-dimensional
lattice model comprising binary state variables. Each site in the lattice corresponds to a nu-
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Chapter 2: Collective epigenetic processes during ageing

cleosome along the DNA strand, which either carries an H3k27me3 or H3K4me3 mark. We
assign indices to the lattice sites using the notation i = 1, ..., N , and the overall configuration
of the lattice is represented by the set of all variables, σ = {s1, ..., si, ...sN }. In this notation,
the variable si = 1 signifies that a repressive modifier, denoted as ”r” or H3K27me3, occupies
lattice site i, while si = 0 indicates that an active modifier, represented as ”a” or H3K4me3,
occupies the site. Moreover, the interplay between two modifiers at sites i and j is repre-
sented by an interaction energy Jij . We use Jaa

ij as the interaction energy between two ”a”
modifiers separated by a distance |i − j|, where we specified it for a long-range interaction as
Jaa

ij = Jaa
0

|i−j|d+λ . Here, Jaa
0 is a constant coefficient that sets the strength of the interaction.

The value of d is 1, which indicates the dimension of the model, and considering previous
studies [87, 88], λ falls within the range of 0 < λ < 1, that will allow using a mean-field
approximation in this 1d model, as we applied later in this section 1. Similarly, the inter-
actions between two ”r” modifiers are denoted as Jrr

ij , and those between an ”ar” pair are
written as Jar

ij . These interactions are all attractive, but the attractive interaction between
the modifiers of the same kind is stronger than the attraction between the antagonistic ones,
Jrr

0 , Jaa
0 ≫ Jar

0 > 0, that satisfy the existence of the bistable islands, Fig.2.3 and [71,89].
As we argued above, and due to the polymeric characteristics of DNA with a three-dimensional
structure (Fig.2.15), we account for long-range interaction in 1d. Specifically, and in our case
study, all the modifiers we are interested in are associated with large genomic regions rather
than point objects, and they affect chromatin regulation in three dimensions [90]. For ex-
ample, H3k27me3 is linked to regions of approximately 150 kbps in size [90, 91], while the
average effect length of H3K4me3 spans from 1.5 to 12 kbps [92]. A representative micro-
scopic model, however, can be intuitive to understand the mutual interactions between the
modifiers and DNA. The gap bridging between these two pictures of the same phenomena
requires a multiscale approach. A promising route toward this goal is using coarse-grained
models in the spirit of the phase field method, in which one can compute quantitative aspects
of the evolution of microstructure without explicit intervention. A significant advantage of
this method is its ability to handle dynamics at various time scales, as the rapid fluctuations
will be incorporated in a ”mesoscopic” 2 free energy of the system [93].
Back to the microscopic picture as the starting point, and taking into account the alterations
in the interaction among these modifiers influenced by PRC2 (Section 2.1.1), the aging system
experiences the following changes,

• Exchange dynamic between histone modifiers.

• The slow effect of the depletion of PRC2 on H3K27me3 causes a reduction in H3K27me3
concentration; however, the concentration of H3K4me3 remains constant.

1The long-range interaction linked to the spatial structure of chromatin is consistent across all histone modifiers,
such that they all have the same arbitrary λ that falls between 0 and 1. The exact value of λ is unimportant
in this work; we refer to the previous study of 1d long range interactions in genomics [1], in which they
discovered λ = 1

3 .
2Mesoscopic scales are larger than the lattice spacing but much smaller than the system size.
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The evolution of a given initial configuration of this system is described by the master
equation as,

∂P (σ, t)
∂t

=
∑
ij

(ω(σ′, σ)P (σ′, t) − ω(σ, σ′)P (σ, t)), (2.5)

where ω(σ, σ′) is the transition rate from configuration σ to σ′. To determine this rate,
we assume the local thermalization following a successful exchange as a way of restricting
the parameter space. Note that biological systems like the one we introduced here are
usually out of equilibrium. Nevertheless, due to the distinct time scales involved in the
exchange dynamics and the changes in H3K27me3 concentrations, we suggest achieving a
quasi-equilibrium state at each age, that is ω(σ, σ′) ∝ e−βδH ; where β is the Boltzmann
factor and H is the Hamiltonian. To explicitly express the transition rate, we begin by
defining the system’s Hamiltonian, taking into account the aforementioned characteristics of
the system as follows,

H(σ) = −1
2
∑
ij

[
Jaa

ij (1−si)(1−sj)+Jrr
ij sisj +Jar

ij [si(1−sj)+sj(1−si)]
]
−h(τ)

∑
i

si. (2.6)

Note that the first summation in the Hamiltonian includes all sites in the lattice to account for
long-range interaction in 1d, as we discussed above. Later, we will show how we simplify these
long-range interactions using a mean-field approach. The negative sign in the Hamiltonian
indicates that interactions are attractive. The first summation can also be understood as the
exchange dynamic, while the second describes the interaction between modifiers and PRC2
in the content of interacting with an external field, h, as a function of τ , the time scale of
ageing in the system and is modifying adiabatically/ very slowly compared to the exchange
dynamic; that is, it accounts for the separation of the time scales as τ = εt. Considering the
Hamiltonian in Eq. 2.6, the transition rate ω(σ, σ′) is,

ω(σ, σ′) = δ(si)δ(sj − 1)θe−β(2h−ua
i (σ)−ur

j (σ)). (2.7)

Where θ incorporates the entropy changes in the system due to the exchange. ua
i (σ) is

the interaction energy between site i and the rest of the system in configuration σ, when
site i is occupied by the modifier a, that is ua

i (σ) = ∑
j Jaa

ij (1 − sj) + Jar
ij (sj). A similar

definition works for ur
j(σ). Since the reduction of PRC2 is a very slow process compared

to the exchange dynamic between H3K27me3 and H3k4me3 [75], in order to average out
microscopic fluctuations, we now divide the system into compartments of linear size d, and
define a mesoscopic configuration σ̃ = {...cn...}, where cn is the concentration of repressive
(r) modifier, H3K27me3, in compartment n,

cn = 1
Nd

Σi∈nsi. (2.8)
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where Nd is the number of lattice sites in each compartment. With this, we follow the steps
in [94] and rewrite the master equation 2.5 as,

∂P (σ̃, t)
∂t

= −e(−2βh)∑
nm

∑
i∈n,j∈m

Trσ/σ̃δ(si)δ(sj − 1)θ

e(βua
i (σ))e(βur

j (σ))P (σ, t) + gain term.

(2.9)

where Trσ/σ̃ indicates that the sum runs over all the microscopic configurations σ, which are
compatible with the mesoscopic configuration σ̃. The gain term also represents the second
contribution from the master equation, that is, the transition from state σ̃ to σ. Using
mean-field approximation 1, the transition probability is extracted from the Eq. 2.9 as,

⟨δ(si)δ(sj − 1)θe−2βhe(βua
i )e(βur

j )⟩σ/σ̃ ∼ θe−2βhe(βga
i (σ̃))e(βgr

j (σ̃)). (2.10)

where ⟨...⟩σ/σ̃ means the average transition rate that governs the exchange between two
modifiers at sites i and j when they belong to the adjacent cells n and m, respectively.
Besides, ga

i (σ̃) and gr
j (σ̃) are expressions for the chemical potentials of histone modifiers a

and r on nucleosomes i and j,

ga
i (σ̃) = KT ln⟨δ(si)e(βua

i )⟩σ/σ̃,

gr
j (σ̃) = KT ln⟨δ(sj − 1)e(βur

j )⟩σ/σ̃.
(2.11)

which can be extrapolated to the average chemical potentials within the defined coarse-
grained compartments, ga

n = 1
Nd

∑
i∈n ga

i (σ̃) and gr
m = 1

Nd

∑
j∈m gr

j (σ̃). By substituting these
into master equation 2.9, and defining µn(σ̃) = ga

n(σ̃)−gr
n(σ̃), the average chemical potential

within each compartment, the master equation becomes,

∂P (σ̃, t)
∂t

= −Nd

d2 [
∑
nm

lmn(σ̃) exp
[

β

2d
(µm(σ̃) − µn(σ̃))

]
P (σ̃, t)−

∑
nm

lmn(σ̃′) exp
[

β

2d
(µm(σ̃′) − µn(σ̃′))

]
P (σ̃′, t)].

(2.12)

where σ̃′ refers to a mesoscopic configuration identical to σ̃, except a concentration unit, here
identified as 1

Nd
, is exchanged between two compartments cn and cm. Moreover, the function

lmn(σ̃), which we call mobility 2, is defined as,

lmn(σ̃) ∝ exp
[

β

2 (ga
n(σ̃) + gr

n(σ̃) + ga
m(σ̃) + gr

m(σ̃))
]

. (2.13)

1⟨f(i ∈ n)f(j ∈ m)⟩σ/σ̃ ∼ ⟨f(i ∈ n)⟩σ/σ̃⟨f(j ∈ m)⟩σ/σ̃
2This naming is based on the conventional understanding that mobility refers to the capacity for boundaries
to move within a system. In our case study, this mobility depends on the material property known as the
average chemical potential of active and repressive modifiers.
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As studying the exact solution of the master equation 2.12 is not possible, we extend it
and derive a Fokker-Planck equation that outlines the temporal changes in the concentration
fluctuations of the system around a stationary state. To this end, by using a Kramers - Moyal
expansion (to the second order in 1

Nd
), one can rewrite the master equation as (Appendix

B),

∂P (σ̃, t)
∂t

= 1
d2

[
−
∑
n,m

∂

∂cn
lnm(σ̃)β(µm(σ̃) − µn(σ̃))P (σ̃, t) +

∑
n,m

1
Nd

∂2

∂cn∂cm
(lnm(σ̃)P (σ̃, t))

]
.

(2.14)
Whereas the Fokker-Planck equation is equivalent to a Langevin formalism, one can write
down the dynamical equation for the concentration variable using Ito calculus as [94],

∂cn

∂t
= β

d2

∑
m

lnm(σ̃)(µm(σ̃) − µn(σ̃)) + ζn(σ̃, t). (2.15)

and ζn is a multiplicative Gaussian noise as a function of the coarse-grained configuration,
with the following moments,

⟨ζn(σ̃, t)⟩ = 0,

⟨ζn(σ̃, t), ζm(σ̃, t)⟩ = 2
Ndd2 lnm(σ̃)δ(t − t′).

(2.16)

Equation 2.15 is equivalent to the conventional Cahn-Hilliard equation with noise and definite
expressions for the mobilities and the moments of the noise [95,96]. The connection with the
well-known Cahn-Hilliard will be more clear by expressing coarse-grained chemical potentials
in the Eq. 2.15 as the functional derivative of mesoscopic free energy, which for the continuous
description reads,

∂tc = ∇ ·
(

l(σ̃)∇δF

δc

)
+ ζ(σ̃, t). (2.17)

Note that using a proper normalization, one can neglect the explicit effect of the mesoscopic
length scales d, Nd. The total free energy of the mesoscopic system reads,

F = E − TS. (2.18)

Here, we provide a map that resembles the microscopic description of the system where
energy, E, corresponds to the Hamiltonian 2.6, and the second term of the free energy
corresponds to the configurational entropy of the system [97],

S = kB

∑
n

[cn ln(cn) + (1 − cn) ln(1 − cn)] . (2.19)
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Putting all together, the total free energy is

F = −
∑

n

T [cn ln(cn) + (1 − cn) ln(1 − cn)] + 1
2
∑
nm

χnmcn(1 − cm) + h(τ)
∑

n

cn. (2.20)

where we define,
χnm = [Jaa

nm + Jrr
nm − 2Jar

nm] . (2.21)

that is the Flory-Huggins interaction parameter, and when the magnitude of the attractive
interactions between aa and rr pairs are larger than those between the ar pairs, the system
will tend to phase separate and maximize the number of aa pairs and rr pairs in the two
coexisting phases. The continuum format of the free energy 2.20 is obtained by noting that,

χnmcn(1 − cm) = 1
2χnm

[
(cn − cm)2 − c2

n − c2
m + 2cn

]
. (2.22)

The difference in concentrations between two compartments can be converted to a gradient,
and following a spatial continuous description ( cn → c(−→r ) ), the total free energy becomes,

F =
∫

d−→r f [c(−→r )] + ϵ

2 |∇c(−→r )|2. (2.23)

where ϵ = χ/2 and χ = ∑
m χnm, and the nonlinear local part of the free energy per unit

volume, f , is,

f [c] = T [c ln(c) + (1 − c) ln(1 − c)] + χ

2 c(1 − c) + h(τ)c. (2.24)

Fig 2.16 shows the dependency of the free energy density on the various parameters. Slow
changes in h impose asymmetry in the free energy, and the competition between active and
repressive modifiers that are imposed by the χ parameter will eventually be tilted towards
the active ones ( Fig 2.16. B ). Considering a fixed temperature as the temperature of a
living environment for mammalian tissues, we can create a phase diagram to outline and
summarize the phase behavior of the mixture.( Fig 2.16. C ). Taking into account the free
energy of Eq. 2.20, the phase boundary, referred to as the binodal, is established by the
common tangent of the free energy at compositions c′ and c′′, which correspond to the two
equilibrium phases, (

δF

δc

)
c′

=
(

δF

δc

)
c′′

. (2.25)

The solid line in the phase diagram, Fig. 2.16. C shows the solution of this criterium.
Furthermore, the curve corresponding to the inflection points of the free energy, which can
be found by equating the second derivatives, depicted by the dashed lines, is a boundary
between stable and metastable regions. Any perturbation in histone modifier concentrations
in this region will grow, eventually leading to a steady state. To gain a more precise grasp
of how concentration perturbations will disperse within the system, it could be helpful to
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Figure 2.16: (A) Free energy density for h = 1. Changing (increasing) interaction χ
leads to phase separation from a convex free energy (one well) to a non-convex (double
well) structure, implying phase separation between two histone modifiers. (B) Free energy
density for χ = 2.5 and different h that resembles a decrease in the binding affinity of
PRC2 and concentration. In all analyses, we keep the temperature as the temperature for
mammalian cell lines, 37◦C. (C) Phase diagram: The solid line shows the binomial criteria
where complete phase separation appears in the system, while the dashed line represents the
spinodal decomposition.
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linearize equation 2.17 by expanding δf
δc about some uniform initial composition, c0. Then

substituting c(r, t) = e(ik.r−ω(k)t) +c0 in Eq. 2.17, where the first term is a minor fluctuation,
amplification factor ω(k) should be tracked in terms of the wave number k to determine
which frequencies will be amplified. The variation in the concentrations causes variations in
chemical potentials and mobilities. However, in order to track the fluctuations to the lowest
order, one may use the unperturbed values of the mobilities, l(σ̃) = l̄, and obtain,

ω(k) = l̄k2
(

ϵ

2k2 + δ2f

δc2
0

)
. (2.26)

According to the classical definition [98], the spinodal region is characterized by negative
values of δ2f

δc2
0
. From Eq. 2.26, we see that ω(k) can be negative in the spinodal region for

sufficiently small k; thus, there are exponentially growing solutions of Eq. 2.17 in this region.
The most rapidly growing such solution occurs at k2

c = 1
2ϵ

∣∣∣ δ2f
δc2

0

∣∣∣.
Finally, in order to solve Eq. 2.17 explicitly, we use a sigmoidal ansatz as the initial profile

for the repressive modifier, H3K27me3, and track its behavior following the studied dynamic
in this section,

cn = c′ 1
1 + e−x+x0

+ c′′. (2.27)

where c′ and c′′ are the minima of the free energy, and x0 is a random variable that embedded
different lengths of different CGIs with a defined mean. By substituting it into Eq. 2.17,
and finding the steady state solution considering h(τ) = h0, and then using this solution and
applying the concentration modification due to loss of PRC2, h(τ) < h0, we find the steady
state solution once more to define the corresponding profile of repressive histone modifiers at
the new age. We implemented this procedure in a simulation, computed the corresponding
concentration profiles, and repeated it for different simulation ages coming from various
h(τ), Fig 2.17(A). We also calculated the correlation ratios accordingly, Fig 2.17(B). Using
a system size the same as the average length of CpG islands (1000 bps), we observe similar
behavior from the correlation ratios, a particular gaining correlation around 500 bps during
ageing. Furthermore, our simulation results predict the expansion of low methylated regions
and the increase of methylation in these regions, Fig 2.17(C).

Although the results of this model qualitatively satisfy all essential criteria and the critical
observations from data, to our knowledge, there is no experimental study on the mutual effect
of the decrease in the concentration of PRC2 and H3K27me3 and DNA methylation changes
during ageing. To adequately assess this model, ChIP-seq experiments need to be carried
out to investigate the impact of ageing on DNMT3, H3k27me3, and H3k4me3 levels in the
presence as well as knockout of PRC2. Only after that can adjustments be made to the free
energy associated with changes in PRC2, as well as the associated increases in methylation
within the region of low methylation and the rate at which the region expands in length.
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Figure 2.17: Predictions of the phase field model (Eq.2.17). (A) occupancy profile of
repressive histone modifiers that resembles methylation values in CpG islands during ageing.
(B) Correlation ratios for the simulated profiles show the striking patterns we expected,
considering the average length of simulated CGIs. (C) Gain of methylation and expansion
of the low methylated regions align with other observations from the Petkovhich dataset.
Different colors are associated with varying ages of simulation.

37



Chapter 2: Collective epigenetic processes during ageing

However, a few recent efforts align with the predictions we presented in Fig 2.17. Moqri et
al. [99] recently reported a correlation between an age-dependent gain of methylation in low
methylated regions and lower PRC2 bindings in these regions for somatic tissues. Yang et
al. [75] also reported a local loss of H3K27me3 coverage in a ChIP seq experiment following
their occupancy in broader regions and a decrease in coverage of PRC2 components such as
EZH2 in a two-state ageing system that is young 11 weeks, and old 80 weeks mouse liver
cells. However, a systematic whole-genome examination of all PRC2 targets in the context
of the ageing methylome is still lacking.

2.2.4 Application to single-cell data

Discovering new perspectives on age-related biological changes will come from going beyond
the misleading uniformity of bulk data and delving into the diversity offered by single-cell
analysis. [100, 101]. That is because bulk methylation analysis provides an average signal
across all cells, which may obscure significant differences between individual cells. However,
many DNAme age associations are potentially confounded by changes in cell composition,
particularly in blood where proportions of white blood cells are known to vary with age [102].
Additionally, within a given tissue or cell type, it is unknown whether DNAme ageing is a
cell-intrinsic process, such that all cells age at the same rate, or whether the ageing process is
inherently heterogeneous and, as such, a cell population phenomenon. This underscores the
need for better understanding and the relevance of developing single-cell age predictors and
analysis. Due to the recent development in single-cell technologies, it is possible to profile
DNAme in single cells genome-wide. [103, 104]. However, the data sets generated by these
methods differ greatly from those generated by bulk approaches in some aspects. Firstly,
single-cell DNAme data is almost entirely binary, i.e., methylation values are either 0 or 1
for any given cytosine. Secondly, the data sets are very sparse, typically > 90% missing
values. Furthermore, the genomic coverage is essentially random, such that a dataset of a
few hundred cells will contain no or only very few genomic loci with information from every
single cell, which represents major challenges for generating age predictors using current
approaches that rely on deep coverages at a consistent set of CpG sites [105], see Fig.2.18.
Within this section, we will analyze a large dataset of single blood cells from mice of varying

ages, addressing the pertinent issues. Additionally, we will utilize our correlation analysis
method from the previous section to a certain extent.

Key sequencing experiment

An extensive collection of 1055 peripheral blood cells from mice at 4 ages (10, 36, 77, and
101 weeks of age) have been prepared by our collaborators at the Bebraham Institute. After
sorting these cells, they performed single-cell M&T − seq. That is, they generated paired
single-cell methylomes and transcriptomes (see Fig.2.19. A), from which 853 cells passed
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2.2 Results

Figure 2.18: Schematic representation of the distinction between single-cell and bulk methy-
lation sequencing outputs. With bulk approaches (right), read coverage is high and consistent
between samples. In single cells (left), read coverage is low (often 1) and inconsistent be-
tween single cells, resulting in limited, distinct methylome profiles. Figure is adapted with
permission from [84] (License Number 5659301508019).
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Figure 2.19: (A) Illustration of the single-cell sequencing data set collected for this study.
(B) Cell type composition overview stratified by chronological age [105] (Courtesy of Marc
Jan Bonder).

quality control filters 1. Fig.2.19.B also shows a cell-type annotation based on the single-
cell transcriptome data. Although we focus on DNA methylation analyses in this thesis, we
consider these cell type-specificities for interpreting our analyses when needed.

DNA methylation analysis

Following the central hypothesis of this thesis that ageing is a result of a collective process
that can be reflected in systematic changes of two-point correlation functions, we tried to
translate our previous analysis to this single-cell data set. Fig. 2.20.A displays the connected

1On the DNAme side, we removed cells with a low read depth (removing cells with < 1M reads), removed cells
with a low unique number of mapping reads (cells with < 50, 000 uniquely aligned reads are removed), and
high non-CpG methylation levels (cells with non-CpG meth> 20% are removed). For more details on quality
control criteria, refer to Sec. 2.2.1.
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Chapter 2: Collective epigenetic processes during ageing

Figure 2.20: (A) Genome-wide connected two-point correlation functions between DNA
methylation marks at different ages for single-cell mouse blood cells with two-cell lineages.
(B) Genome-wide correlation ratios, considering the first age of the experiment as the refer-
ence. Each line corresponds to a single cell. Strong heterogeneity dominates age differences
across cells. (C) Increase of correlation variance over age.
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Figure 2.21: Correlation functions in pseudo bulk single-cell data show systematic changes
during ageing when cells of the same age are grouped together.

two-point correlation functions on a genome-wide scale for the two most populated lineages
of blood cells as depicted in Fig.2.19. B: B cell lineage and T cell lineage. Here, a very
strong heterogeneity across cells would dominate any age differences previously observed for
the bulk Petkovich data set. Subsequently, we examined the correlation ratios, Eq. 2.4, for
this dataset, and as it is shown in Fig. 2.20. B, although the stereotypical behavior of gaining
correlation around 500 bps is roughly detectable, there is no clear trend of ageing due to the
strong variability. Moreover, these correlation variabilities increase with age, specifically for
B cells, as shown in Fig. 2.20. C. Despite the strong cell-to-cell heterogeneity, we found that
average DNAme correlations changed systematically with age when cells with the same age
pooled together as a pseudobulk data set. Fig.2.21 shows this behavior for two cell lineages
filtered by the density of CpG regions. In order to examine the varying impact of different
genomic regions on the ageing process in more detail, we also examined alterations in DNA
methylation correlations based on distance within various genomic features, see Fig.2.22. As
depicted in this figure and in line with our expectations, CpG islands are protected from
unspecific changes, which can be seen in the behavior of the correlation ratios. In particular,
this region’s general short-distance gain of correlation is evident. Nevertheless, unspecific
ageing changes also predominantly affect gene bodies and enhancers, particularly those in-
volving developmental genes and Polycomb target sites, and the characteristic length scale
of this effect is preserved.
Taken together, we observed ageing as a characteristic behavior at the level of tissues or gen-
eral groups of cells. At the same time, it is not well defined at the level of single cells. This
can be further validated by examining low-dimensional representations of single-cell correla-
tion functions across genomic annotations. A suitable dimension reduction technique for this
purpose is the Uniform Manifold Approximation and Projection (UMAP). UMAP is a ma-
chine learning tool that aids in visualizing and comprehending extensive, high-dimensional
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Figure 2.22: Distance contribution of different genomic regions in multiplicative changes
of correlation function beyond the correlated noise. Blue shades correspond to loss of corre-
lation, and red corresponds to correlation gain.

datasets, like our single-cell correlation data. To achieve this purpose, UMAP that is a
non-linear and topology-preserving algorithm assumes that the original data is uniformly
distributed on a Riemann manifold. By learning this manifold, it preserves topology, ensur-
ing that points close together in two dimensions also maintain proximity in higher dimensions.
Fig.2.23 represents a low dimensional representation of correlations. There is a noticeable

overall trend of ageing in specific genomics regions like CGIs, promoters, and polycomb tar-
get genes; this trend can also be seen in the heatmap Fig.2.22. However, cells are generally
evenly dispersed in this pattern, making it difficult to identify distinct clusters of cells with
different DNAme ages. This suggests that individual cells within a tissue may age at different
rates, which could be associated with variations in cell function. However, one may ask if this
variability is genuinely biological or comes from the technical basis in individual annotations.
To answer this question, we represent another UMAP of the same data, considering total
coverage in different genomic regions that could be one of the most important sources of
variability. As is shown in Fig. 2.24, there is no spectacular technical bias, indicating that
age variability across single cells within one chronological age is biologically genuine.
In the upcoming section, we present similar findings using a different approach, specifically
utilizing machine learning methods. This analysis was primarily carried out by our collabora-
tors at EMBL and ETH [105], and the specifics are not covered in this thesis. Nonetheless, we
provide a brief explanation of the technique as it will aid in understanding the age diversity
we observed in single cells using DNAme correlation analysis.
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Figure 2.23: Low dimensional representations (UMAP) of single-cell correlation functions
across genomic annotations.

Single-cell DNAme age prediction using machine learning

The main difficulties in evaluating the chronological age of individual cells are the sparse
and binarized methylation patterns they possess. This makes it difficult to apply traditional
regression approaches, which depend on consistent coverage of CpG sites across samples (see
section 2.1.2). To this end, a ranked intersection algorithm has been designed to overcome
the intrinsic sparsity of single-cell methylomes. In short, the top age-correlating sites were
present in the intersection of the single-cell dataset, and the other two bulk datasets for blood
tissue, Petkovich et al., 2017 and Thompson et al., 2018 have been selected. Next, and to
address the challenge of binarized methylation, it’s been hypothesized that the methylation
levels observed in densely covered CpG sites within bulk sequencing data could serve as an
approximation for the probability of binary methylation at these specific CpG sites in single-
cell datasets. That is, if one measures a bulk methylation level of 0.7 at a single CpG and
picks a random single cell from that tissue, one can assume that there is a 70% chance this
particular cell will be methylated at this locus. Then the most likely age is computed by
multiplying the probabilities across loci and selecting the maximum. To demonstrate the
ability of our model to assign DNAme age to a broader range of cell types, we also generate
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Figure 2.24: Low dimensional representations (UMAP) of single-cell correlation functions
across genomic annotations. There is no spectacular technical bias in individual annotations
coming from coverage differences.

a similar ageing model for single-cell liver DNAme, by considering liver bulk datasets as the
intersection references: Reizel et al. study, 2015, Thompson et al., 2018, and Meer et al.,
2018. The results of these models are depicted in Fig.2.25. As shown in this figure, we
first evaluated the model’s performance at the pseudo-bulk level by combining cells from
the same donor. This was done to determine the influence of batch effects and various
sequencing methods. Our findings showed an MAE 1 of 10 weeks in blood and an MAE of
6.5 weeks in liver. However, single-cell predictions result in a broader spectrum; the MAE
increases to 26 weeks in blood and 16 weeks in the liver when predicting actual single cells.
Furthermore, a comparison of our liver and blood predictor showed that epigenetic ageing
signals are stronger (more accurate) in the liver as compared to blood, possibly reflecting
the more complex cell type distributions in blood. Despite the promising results of this
work, answering the fundamental question of whether cells age at different rates remains
challenging, and further integrated studies need to be done.

2.3 Summary and discussion

In this chapter, we investigated the collective epigenetic processes underlying DNA methyla-
tion modifications during ageing, and whether DNA methylation age is measurable in single
cells. We found that the DNA methylation ageing clock is the result of a collective process

1Mean absolute error (MAE), the sum of absolute errors divided by the sample size
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Figure 2.25: (A-B) Predicted DNAme age of pseudo bulked (A) blood and (B) liver single-
cell data. C-D) Predicted DNAme of the single cell (C) blood and (D) liver data [105]
(Courtesy of Marc Jan Bonder).

that is reflected in systematic changes in two-point correlation functions. To quantify these
systematic changes over time, we calculated the ratios of correlations at a given distance and
consecutive time points, which is a measure of changes in correlation beyond uncorrelated
noise. Our analysis demonstrates that these changes increase over time around a charac-
teristic distance of 500bp. To reveal the genomic origin of this striking pattern of ageing,
we analyzed multiplicative changes in correlations separately for different genomic regions
classified by the density of CpGs. We found that the gain of correlations at a distance of
500bp is specific to regions with high CpG density, termed CpG islands. As the average
distance of sites inside a CpG island to the boundary is 500bp, we hypothesized that the
increase in correlations at this distance is associated with DNA methylation dynamics at the
boundaries of CpG islands (shores). This is supported by our observation that the position of
the peak in multiplicative changes in correlations scales linearly with the size of CpG islands.
We also found that these changes in DNA methylation correlations characterize ageing in
a broad range of tissues. Our analysis also revealed that during the ageing process, there
is an increase in the size of low methylated regions that are mainly linked to CpG islands.
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At the same time, the methylation levels inside these islands show a rise as well. We stud-
ied the crosstalk between modifications to DNA methylation and histones, which are the
proteins responsible for compacting DNA. We discovered that the ageing indicators identi-
fied through correlation ratios are specific to CpG islands with histone modifiers associated
with gene activation (H3K4me3) and suppression (H3K27me3), termed bivalent CpG islands.
Considering a decrease in the concentration of H3K27me3 due to the depletion in polycomb
enzymes essential for establishing H3K27me3, we developed an asymmetric interactive two-
component phase field model that can reconstruct DNA methylation profiles over time. To
this end, we started with a microscope system description and systematically coarse-grained
it. While our model meets all necessary criteria and addresses critical observations from the
data, additional experiments are required to fine-tune the parameters. Specifically, we need
to investigate how changes in the concentration of PRC2, H3K27me3, and DNA methylation
interact during the ageing process.
Furthermore, we tried to study ageing dynamics at the level of single cells by investigating
their collective behavior and through machine learning models. Conducting both approaches,
we faced solid cell-to-cell heterogeneity within a group of cells with the same chronological
age, making biological age prediction challenging. Nevertheless, we found how genuine this
heterogeneity is by minimizing any technical biases that could affect this study. Further
studies need to be conducted for a comprehensive understanding of single-cell ageing.
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Chapter 3
Epigenetic reprogramming during
regeneration
3.1 Introduction

In Chapter 2, we examined the alterations in epigenetic modifications that occur during
ageing. We explored how the interaction among various layers of modifications gives rise
to collective behavior that can be utilized to predict biological age. While the epigenetic
changes related to aging generally occur slowly over a prolonged period, there are instances,
as discussed in Chapter 1, when these modifications can be altered rapidly. One crucial
example is during regeneration, where differentiated cells display extraordinary adaptability
by reprogramming into various cell types and removing DNA methylation marks through
passive and active demethylation processes. In this chapter, we will investigate the collective
behavior in liver cells’ reprogramming during regeneration, focusing on DNA methylation
and chromatin accessibility. Our analysis reveals that DNA methylation levels remain con-
sistent throughout the regeneration process, indicating that they do not differentiate between
different stages of regeneration. However, the structure of the chromatin is significantly dy-
namic. To better understand these modifications, we propose a theoretical framework that
elucidates the mechanisms underlying epigenetic changes and how the system remembers
past injuries during regeneration.

3.1.1 Epigenetic regulation in liver regeneration

Throughout adult life, tissues maintain cellular function and constant cell number through
robust homeostatic mechanisms, maintaining the fragile equilibrium between proliferation
and differentiation. The rate of cellular proliferation depends on the turnover requirement
of the tissue [106, 107]. In the mammalian system, the intestine and the skin are amongst
the organs with the highest cellular turnover, such that they take advantage of specific adult
stem cell compartments that are able to generate all the cell types of the resident tissue in
order to support homeostasis [108]. In contrast to the organs with high cellular turnover
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during homeostasis, the adult liver, which has a remarkable regenerative capacity, does not
contain a defined stem-cell compartment to maintain homeostasis. However, after acute liver
injury (e.g., toxic injury, alcohol, viral infection, and even fatty diet), regeneration can be
accomplished by proliferating quiescent and mature cells, which re-enter the cell cycle and
exhibit remarkable plasticity 1 by reprogramming into different progenitors [109]. In order
to understand this property, let us briefly discuss the liver’s structure and functionality.
The liver is the largest organ inside the body and undertakes numerous essential functions.,
such as regulating homeostasis and metabolism. It has a highly organized architecture and
contains several cell types, including hepatocytes, cholangiocytes (also named ductal cells),
endothelial cells, Kupffer cells, and stellate cells. Most of the metabolic functions are car-
ried out by hepatocytes, which are epithelial cell types that account for the greater part
of the organ size (more than 60 %). Hepatocytes manage the processing and uptake of
nutrients, manufacture serum proteins and blood clotting factors, and break down phar-
maceutical drugs and toxins. Cholangiocytes, categorized as biliary epithelial cells, shape
bile duct tubules and are responsible for altering and moving bile (released by hepatocytes)
along the biliary tree into the small intestine. [110]. Both hepatocytes and cholangiocytes
start to proliferate to restore the size and functionality of the liver upon injury. This can be
done by acquiring a bipotent liver progenitor capable of generating both liver epithelial cell
types [21,111]. Studying these regulations in liver cell-fate decisions required understanding
the epigenetic mechanisms in response to environmental cues that regulate chromatin struc-
ture and gene transcription needed for reprogramming the genome. Yet, this area is not fully
understood, and the molecular mechanisms through which adult (Quiescent) cells depart
from their lineage-restricted state and react to damage are mostly unidentified [21]. Using a
mouse model, it has been found that DNMT1 plays a crucial role in maintaining the identity
and function of the hepatocytes, such that deletion induced liver fibrosis and inflammation
and resulted in hepatocyte senescence due to aberrant methylation changes [112]. More-
over, Arid1a, a DNA interacting subunit of the SWI/SNF chromatin remodeling complex
has been shown to regulate hepatocyte plasticity through increased chromatin accessibility.
Such permissive states facilitate the chromatin binding of the transcriptional machinery (e.g.,
YAP/TEAD) that promotes the establishment of liver progenitor identity [113]. Similarly,
Cholangiocytes undergo epigenetic remodeling mediated by the methylcytosine dioxygenase
TET1 that oxidizes the repressive DNA mark 5-methylcytosine into 5-hydroxymethylcytosine
(5hmC). 5hmC can act as a stable epigenetic mark associated with gene activation or rep-
resent an intermediate of complete de-methylation after further oxidation catalyzed by TET
proteins (see Fig. 1.1). It has been found that TET1 was lowly expressed in homeostatic
adult cholangiocytes and was up-regulated following DDC-mediated liver injury in vivo [21].
Up-regulation of TET1 also facilitates the expression of components and targets of signaling

1Here, plasticity is defined as the ability of a cell to acquire novel features or adopt alternative fates in a tissue-
specific, controlled manner in response to distinct context-dependent intracellular or extracellular cues [106].

48



3.2 Research questions and overview of this chapter

Figure 3.1: Some epigenetic modifications that allow cell-fate changes into bipotent liver
progenitors. Upon injury, both adult (Quiescent) hepatocytes and cholangiocytes can de-
differentiate into bipotent liver progenitors, giving rise to both liver epithelial cell types.
These modifications include increased chromatin accessibility mediated by Arid1a and the
chromatin remodeling complex SWI/SNF [113] and oxidation of 5-methylcytosine (5mC)
into 5-hydro methylcytosine (5hmC) mediated by the methylcytosine dioxygenase TET1 [21].
Such permissive states facilitate the chromatin binding of the transcriptional machinery (e.g.,
YAP/TEAD) that promotes the establishment of liver progenitor identity.

pathways required for liver regeneration, including YAP. The epigenetic modifications that
we reviewed in this section are depicted in Fig.3.1. Similar to the ageing system introduced
in Chapter 2, the spatiotemporal structure of epigenome during regeneration undergoes a
complex process and has been affected by many degrees of freedom. However, despite its
complexity, we are again interested in understanding the emergent properties, such as col-
lective behaviors, that can be studied through an effective statistical model. With this in
mind, we will approach our research questions and give an overview in the next section.

3.2 Research questions and overview of this chapter

Solving the cellular reprogramming puzzle is impossible without a comprehensive study of the
different spatiotemporal scales of the epigenome. In Chapter 2, we delved into investigating
epigenetic modifications over an extended temporal scale, allowing us to explore the underly-
ing mechanisms of the aging process. Nonetheless, it is worth noting that the epigenome can
also undergo fast alterations, such as those occurring during tissue regeneration following in-
juries. The liver stands out as an exceptional organ endowed with a remarkable regenerative
capacity. The examination of epigenetic modifications during the process of liver regenera-
tion holds the potential to unveil the molecular underpinnings that propel this regenerative
phenomenon. Thus, in this chapter, our primary objective is to address the following query:
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What is the mechanistic basis underlying DNA methylation during the regeneration of the
liver? Trying to answer this question, we narrow our focus to investigate whether liver ep-
ithelial cells preserve a memory of the damage-repair process or if they revert to their initial
state upon recovery. For this purpose and in collaboration with the group of Dr. Meritxell
Huch (MPI-CBG), we drew on a single-cell experiment conducted for different phases of liver
regeneration, including pre-injury, proliferation (response to the toxin diet/injury), and re-
covery and termination. In the upcoming sections, we conduct a thorough examination of this
dataset. After making critical observations related to the memory effect within the system,
which emerges from our analysis of connected correlation functions, we proceed to employ a
minimal coarse-grained model aligned with the bistable nature of chromatin structure. We
leverage concepts from non-Markovian processes and the generalized Langevin equation to
quantify the behavior inferred from these correlation functions.

3.3 Results

3.3.1 Sequencing experiment

In this study, our primary emphasis is on the regeneration of ductal cells within the adult
mouse liver in response to tissue damage, a condition that typically poses a challenge to
the liver’s regenerative capabilities. To induce such damage, a diet enriched with 0.1%
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), which selectively eliminates hepatocytes,
was administered to the liver. Consequently, neighboring ductal cells are compelled to un-
dergo proliferation in order to compensate for the inflicted damage [21]. Then, ductal cells
were collected at different time points from priming ( when cells sense the damage but
without proliferation) to proliferation to recovery and termination sate (fully regenerated
tissue). Following cell collections, a single-cell sequencing experiment known as scNMT-seq
was carried out for each time point (see Fig. 3.2). This experiment was designed to si-
multaneously examine chromatin accessibility, DNA methylation, and transcriptome data.
Since DNA methylation and other epigenomic factors, such as chromatin accessibility, are not
operating in isolation but are intricately interconnected [114], the ability to profile various
epigenetic features alongside gene expression is crucial for obtaining a more comprehensive
understanding of epigenetic interdependencies [33]. Note that the standard protocol for de-
tecting methylation marks primarily involves bisulfite sequencing, as introduced in Sec.1.2.
However, for the purpose of parallel analysis of chromatin accessibility, a slight modification
is applied. To simultaneously assess chromatin accessibility and DNA methylation, a GpC
methyltransferase is used to mark accessible regions before conducting bisulfite sequencing
(BS-seq). This alteration enables the differentiation between these two epigenetic states. In
mammalian cells, CpG dinucleotides are typically highly methylated, while cytosine, followed
by adenine, cytosine, or thymine (referred to as CpH), is methylated at a much lower rate.
Therefore, the use of a GpC methyltransferase to label accessible chromatin allows for the
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Figure 3.2: Experimental design, courtesy of German Belenguer at MPICBG, for studying
the regeneration of ductal cells. Genomic DNA from undamaged or DDC-damaged livers
undergoes a scNMT sequencing experiment at each time point.

Figure 3.3: Quality control of the bisulfite sequencing component of the scNMT-seq ex-
periment. We retained cells meeting specific criteria, including a total read count exceeding
100000, mapping efficiency surpassing 5%, and CHH methylation levels below 15%. The
dashed red lines serve as visual references denoting these criteria. Various colors are used to
denote different batches within the experiment.

simultaneous capture of CpG methylation details [33]. A portion of this experiment, specifi-
cally covering the initial three time points, had been conducted and independently published
before this research [21]. In the case of the new dataset, we obtained the raw sequencing data
directly from the sequencing machine. Our responsibility included performing preliminary
analyses, encompassing quality control, trimming, and aligning the Bisulfite-Seq data to the
reference genome, all preceding any statistical measurements. A concise overview of this
workflow can be found in Appendix C. Here, we proceed with analyzing the aligned dataset.
Our processed dataset comprises substantially aligned 4291 cells originating from six distinct
experiment batches. We initiated the quality control process, retaining cells meeting specific
criteria: less than 15% CHH methylation, more than 5% mapping efficiency, and a total
read count exceeding 100, 000. Consequently, we opted to exclude approximately 12% of
the total cell population from further analysis. Fig.3.3 illustrates the various quality control
measures applied to this dataset. Once the data is prepared, it is possible to proceed with
the statistical analysis. This begins by examining the changes in the overall methylation and
chromatin accessibility depicted in Fig.3.4. It is revealed that the global changes in methy-
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Figure 3.4: Global DNA methylation levels and global chromatin structure are retained
during regeneration: The mean of methylation and accessibilities are depicted for different
experiment batches. Plots are split into two sets of red and gray colors associated with
various stages of the regeneration experience during and after the DDC diet, respectively.

lation levels before, during, and after regeneration are insignificant. Only slight differences
in global accessibility levels are observed. However, the heterogeneity between different ex-
perimental batches is more significant than any changes in accessibility. Although epigenetic
modifications are essential for cell reprogramming and gene transcription, monitoring global
behavior does not provide much insight. Consequently, the focus shifts towards examining
the collective behavior of cells in local regions. This objective will be pursued in the following
section, where regeneration is viewed as a collective epigenetic process.

3.3.2 Collective epigenetic processes during regeneration

In order to challenge our hypothesis that the reprogramming of cells during liver regeneration
is a result of collective behavior, we first asked whether there is any local association between
DNAme and DNA accessibility, which can be summarised in the connected cross-correlation
of both quantities. The cross-correlation function quantifies the correlation between DNAme
and DNA accessibility at sites a given distance apart. Analogously to the Eq.2.3, the cross-
correlation function for a given distance, j is defined as,

CC(j) = ⟨miai+j⟩ − ⟨mi⟩⟨ai+j⟩. (3.1)

where ai+j is the accessibility state at position i + j. Calculating this quantity for our pro-
cessed dataset introduced in the previous section first reveals the negative relation between
DNA methylation and DNA accessibility, characterized in Fig. 3.5. It becomes evident that
the regeneration process greatly influences the cross-correlation between methylation and
accessibility. After liver injury from DDC poisoning, the correlation between methylation
and accessibility is decreased. To be more precise, the local compaction of the chromatin
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Figure 3.5: Connected cross-correlation between DNA methylation and accessibility for the
whole genome as well as different local features along the genome. The inverse relationship
between DNA methylation and accessibility remains similar for different genomic features.
However, following liver injury caused by DDC poisoning, the association between methyla-
tion and accessibility is disrupted. Although it gradually returns to initial levels during the
recovery period, it never fully recovers to the same level as day 0 throughout the duration
of the experiment. Dashed lines are exponential fits to the data using R’s nls function.

is less correlated with methylation values after regeneration. Although, as it is observed in
Fig. 3.5, it slowly returns to baseline levels during recovery, it never fully recovers to the
same level as before the poisoning throughout the experiment. These patterns also remain
consistent across various genomic regions and the entire genome. Based on this observation,
our hypothesis is that the system’s ”history” possibly affects the changes in the interplay of
DNA methylation and chromatin accessibility. Thus, we continue by examining the auto-
correlations of methylation and accessibility separately in order to test our hypothesis and
determine its underlying mechanisms. According to Fig. 3.6, the autocorrelation of methy-
lation, which represents the correlation between methylated sites (as shown in Eq. 2.3),
decay for all time points during the experiment. Moreover, this spatial correlation between
methylated sites is not altered throughout the experiment. In contrast, when examining the
autocorrelation of accessibilities, which represents the correlation between accessible sites,
we only observe the correlations decay along the genome for their envelope, which can be
achieved by reducing the number of bins used in calculating the correlation along the genome.
Without this adjustment, we observe oscillations with a period of approximately 150 base
pairs, which corresponds to the length of the DNA wrapped around a single nucleosome.
This indicates that the chromatin structure is mainly preserved at the nucleosome level on a
short-length scale, that is, the size of the nucleosome and inter-nucleosomal DNA. However,
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Figure 3.6: Autocorrelation of (A) accessible cytosines and (B) methylated cytosines along
the genome. Both plots show decaying behavior; there are no changes detected between the
different time points of the regeneration process for the methylation; however, the structure
of chromatin is disturbed during regeneration due to the autocorrelation of accessibilities.
Although no clear trends were detected here, it seems that the structure of the chromatin
will first be looser/less compact after sensing the poison and starting the regeneration, and
it will slowly compact and relax to the initial state at late time points of the experiment.
The inset of autocorrelation for accesibilities shows the same measurement only with lower
bins. Both autocorrelations for accessibility and methylation have been normalized such
that the area underlying the curve, which in the case of correlation functions is dependent
on sequencing coverage, is equal to 1.
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Figure 3.7: Schematic representation of liquid-liquid phase separation in chromatin. The
purpose of the blue droplet shapes is to visually indicate the two main compartments of
chromatin: the more compacted and less compacted regions. This organization is not static
but rather adaptable to environmental changes, such as injury. For example, based on
our findings in Fig. 3.6, the chromatin tends to become looser/less compact during the
regeneration process. However, whether it returns to its pre-injury structure is uncertain.

deviations from this pattern can be observed on larger scales from the beginning of the ex-
periment. This is shown in the inset of Fig. 3.6. Although we do not see a clear trend in the
alteration of the chromatin structure from the first time point of the experiment, from Fig.
3.6, we can interpret that the chromatin structure will first be looser after sensing the poison
and gradually recover back to its initial state before poisoning at the later time points of the
experiment.
Therefore, one can conclude that chromatin is organized at multiple scales, and during the
process of regeneration, these levels are rearranged both spatially and temporally. To inves-
tigate the effects of perturbations such as poisoning (injury) on this system and to interpret
the changes we observe in the spatial correlation for accessible sites ( Fig. 3.6), we utilize a
coarse-grained model. In the following section, we combine the evidence of liquid-liquid phase
separation of chromatin from literature along with our own observations shown in Fig. 3.6.
Using a minimal free energy approach, we develop a dynamic equation for the accessibility
of the DNA. We then employ a field theory approach to solve this equation and determine
the corresponding autocorrelations. In the discussion section, we acknowledge that while the
model’s results align with the observed behavior of correlation functions, further validation
and refinement can only be achieved through experimental investigation.

3.3.3 Towards a biophysical mechanism of regeneration

Chromatin exhibits structural dynamics over multiple scales in space and time. In fact,
chromatin dynamics are central to its function as they provide biochemical access for the
cellular machinery to the underlying genomic DNA that facilitates gene expression, DNA
replication, repair, and recombination. Due to the flexible nature of chromatin that makes
these dynamics possible, such as its ability to fuse and rapidly exchange components with
its surroundings, it has been believed that chromatin has a liquid-like behavior [115, 116].
Moreover, the development of new technologies like whole-genome chromosome conforma-
tion capture (Hi-C) reveals that chromatin is, in general, compacted inside the cell nucleus
while it has two main compartments, the mostly transcriptionally active (less compacted/
euchromatin) and the mostly transcriptionally inactive (more compacted/ heterochromatin)
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compartment, which is known as phase separation. Considering the liquid-like behavior of
these compartments and being membrane-free, this phenomenon is called liquid-liquid phase
separation in physics terminology [116–120]. This chromatin compartmentalization must be
dynamically orchestrated and amenable to acute regulation for processes like injury and sub-
sequent reprogramming/regeneration, see Fig. 3.7.
With this in mind, and in order to write a dynamical equation for chromatin accessibilities
and to investigate the corresponding correlations, we start with a general but effective free
energy for the coarse-grained field of accessibilities (structure of chromatin), φ, that fulfills
the dynamic of liquid-liquid phase separation of chromatin,

F =
∫

d3x

(
f [φ(x)] + 1

2 |∇φ(x)|2
)

. (3.2)

This free energy is similar to Eq.2.23, in chapter 2, where we discussed DNA methylation
behavior during aging based on an interactive two-component phase field model. We have al-
ready learned that the free energy density has to have non-convex regions for phase separation
to occur, such as the Flory-Huggins free energy with a significant enough interaction param-
eter that we used in Chapter 2. Here, we use a variation of a so-called Ginzburg-Landau free
energy density. [121]. A combination of a quadratic term and a biquadratic term generates
a concave interval in the free energy density, and the total free energy follows,

F =
∫

d3x

(1
2a0φ(x)2 + λ

4!φ(x)4 + 1
2 |∇φ(x)|2

)
. (3.3)

Where a0 and λ are arbitrary constants parameters named as the so-called mass of the
model and coupling coefficient, respectively [122]. Given the availability of this free energy,
we can proceed with the dynamical equation of the accessibility field using the Mori-Zwanzig
formalism [123]. This approach is necessary because the interactions of multiple unknown
components, which we discussed in Section 3.1.1, have an impact on chromatin structure.
However, by utilizing the Mori-Zwanzig formalism, we can effectively project all these com-
ponents onto the space of methylation and accessibility, as discussed in Section 1.3.2. The
cost of employing this formalism is the emergence of memory effects in the system. As we see
later in this section, the memory effect significantly influences the observed changes in the
spatial correlations of the accessibilities. With this in mind, and considering methylation,
m(x, t), as an orthogonal fast-changing variable compared to accessibility (see Sec. 1.3.2 for
more detail), we can express the generalized Langevin equation for the accessibilities as,

δφ(x, t)
δt

= −
∫ t

0
dτKΓ(t − τ)δF

δφ
+ m(x, t). (3.4)

in which we substitute F from Eq. 3.3,

δφ(x, t)
δt

= −
∫ t

0
dτKΓ(t − τ)

(
(∇2 + a2

0)φ(x, τ) + λ

3!φ(x, τ)3
)

+ m(x, t). (3.5)
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Here, KΓ is a memory kernel that remains stationary during each attempt of the sequencing
experiment (regeneration state) since the level of injury is assumed to be constant at each
sequencing experiment. However, throughout the entire duration of the regeneration process,
that is, from one sequencing experiment to another, the level of the injury itself changes,
as shown in Fig. 3.2, which we highlight using Γ. This Γ distinguishes between different
regeneration states, and we anticipate that it is in the same order as the inverse time scale
of the experiment [124, 125]; such that in our case study, Γ → ∞ represents the pre-injury
state. Therefore, we consider the following ansatz for the memory kernel,

KΓ(t) = Γ2e−Γ2t. (3.6)

The statistical behavior of the fast variables (methylation), m(x, t), in Eq. 3.4, can be
described as,

⟨m(x, t)m(x′, t′)⟩ = KΓ(t − t′)C(x − x′). (3.7)

and also,

⟨m(x1, t1)...m(x2n, t2n)⟩ =
∑

possible pair
combinations

⟨m(x1, t1)m(x2, t2)⟩⟨m(xn, tn)m(xl, tl)⟩... . (3.8)

Eq. 3.7 represents the fluctuation-dissipation relation of the second kind [126]. It establishes
a connection between the memory kernel in the Generalized Langevin Equation and the
fast variable. In the same equation, C(x − x′) is used to describe the spatial correlation
for methylation. Based on Fig. 3.6, we learn that C(x − x′) is an exponentially decaying
function with distance. To solve Eq. 3.5, we use a perturbative series in λ [124,127],

φ(x, t) = φ(0)(x, t) + λφ(1)(x, t) + λ2φ(2)(x, t) + ... . (3.9)

Substituting the Eq. 3.9 into Eq. 3.5, and after equating terms with equal powers in λ, we
get, [

δ

δt
+ (∇2 + a2

0)
]

φ(0)(x, t) = m(x, t),[
δ

δt
+ (∇2 + a2

0)
]

φ(1)(x, t) = − 1
3!

∫ t

0
dτKΓ(t − τ)

(
φ(0)(x, τ)

)3
,[

δ

δt
+ (∇2 + a2

0)
]

φ(2)(x, t) = − 1
2!

∫ t

0
dτKΓ(t − τ)

(
φ(0)(x, τ)

)2
φ(1)(x, τ),

(3.10)
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and so on. Using the retarded Green function technique [122, 124, 127], one can write the
solutions of the above equations in a Fourier representation as,

φ(0)(k, t) =
∫ t

0
dt′
∫

d3k′G(k − k′, t − t′)m(k′, t′),

φ(1)(k, t) = − 1
3!

∫ t

0
dt1

∫
d3k1G(k − k1, t − t1)

∫ t1

0
dτKΓ(t1 − τ)(∫ t1

0
dt′
∫

d3k′G(k1 − k′, t1 − t′)m(k′, t′)
)3

.

(3.11)

where the Green function is G(k, t) = e−t(k2+a2
0) . Note in Eq. 3.11 the initial condition

φ(k, 0) = 0 has been used to simplify the solution, which may seem to differ from the initial
accessibilities from the experiment. However, any trace of an arbitrary initial condition
should die out with t → ∞, the time scale we study the chromatin structure at the end of
each sequencing experiment. Using Eq.3.7, Eq. 3.10 and Eq. 3.11, the zeroth order of the
connected correlation, ⟨φ(x, t)φ(x′, t)⟩(0) ≡ ⟨φφ⟩(0) ≡ D(x − x′; t, t), can be computed in a
Fourier space as,

D(k; t, t′) = C(k)
∫ t

0
dτ

∫ t′

0
dτ ′G(k; t − τ)G(k; t′ − τ ′)KΓ(τ − τ ′)

= C(k)
∫ t

0
dτ

∫ t′

0
dτ ′exp

(
−(t − t′ − τ − τ ′)(k2 + a2

0)
)

KΓ(τ − τ ′).
(3.12)

At the limit t = t′ → ∞, we have D(k; t, t′) = C(K)
k2+a2

0
. To analyze the correlation’s dependence

on memory, one should consider the first correction to the correlations. However, the ana-
lytical solution for this correction, obtained from Eq. 3.11, is very complex. To simplify the
procedure, we employ the Feynman diagram, which can serve as a graphical representation
for computing higher-order corrections. Using Feynman diagrams, we represent the Green
function, G, with a line and methylation, m, with a cross graphically. In this formalism, Eq.
3.9 can be expressed as,

To compute the correlations using this method, it is important to take into account that
when the average is taken over the fast variables (m), all combinations of crosses are combined
together in all possible ways as a result of the Wick-decomposition property, as described in
Eq. 3.8. Therefore, the two-point correlation function, up to the first correction (one-loop
level), can be expressed as follows,
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The first diagram here gives the zeroth order of the correlations as we calculated in Eq.
3.12, and with the combination of the last two terms, the right-hand side of the above diagram
can be written as,

RHS = ⟨φφ⟩(0) − λ

2

∫
d3k

∫ t1

0
dt

∫ t

0
dτ C(k)G(k1; t1 − t)D(k; τ, τ)D(k2; t2, τ)KΓ(t − τ)

− λ

2

∫
d3k

∫ t2

0
dt

∫ t

0
dτ C(k)G(k2; t2 − t)D(k; τ, τ)D(k1; t1, τ)KΓ(t − τ)

(3.13)

Substituting the Green function, Eq. 3.6, and Eq. 3.12 in the Eq. 3.13, one obtains the final
result in the limit t1 = t2 → ∞ as,

RHS = ⟨φφ⟩(0) − λQ(Γ)
( 1

k2
2 − a2

0
+ 1

k2
1 − a2

0

)∫
d3k

C(k)
k2 + a2

0
(3.14)

where Q(Γ) is a complex function 1 that represents the dependencies of the connected correla-
tions to the memory. Based on this outcome and referring back to the sequencing experiment,
it is clear that the connected correlation for accessibilities varies from the connected correla-
tion for the pre-injury state when Γ → ∞. The variation between connected correlations at
different states of the regeneration is also because of the presence of different Γs in different
sequences. In other words, when dealing with numerous degrees of freedom projected onto a
two-dimensional space, alterations in temporal correlations will impact spatial correlations,
thereby demonstrating the influence of memory within the system. Note that our primary
focus here was to present a formal framework to explain the variations in the connected
correlation of accessibilities in an injured system without relying on data fitting. To fully
comprehend the trends in the alteration of accessibilities correlation (Fig. 3.6), which directly
reflects the structure of the chromatin, it is necessary to combine our analysis with subse-
quent experiments that specifically investigate the topological structure of the chromatin,
such as Hi-C experiments. With that, we summarise our investigations in this chapter and
discuss potential future studies related to epigenetic changes during liver regeneration in the
next section.

1

Q(Γ) ≡
(

((72Γ4 + 9β2
1 − β2

2)Γ4 + β2
2(β2

1 − β2
2)

(4Γ4 + (β1 − β2)2)(4Γ4 + (β1 − β2)2)

)
,

β1 = Γ
√

2(k2
1 + a2

0) − Γ2,

β2 = Γ
√

2(k2
2 + a2

0) − Γ2.

(3.15)
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3.4 Summary and discussion

In this chapter, we have explored the underlying collective epigenetic mechanism respon-
sible for the liver’s cellular reprogramming during the regeneration process, specifically by
studying the connection between chromatin structures and past injuries. Our research has re-
vealed that the interplay between methylation modification and accessibilities of chromatin is
strongly dynamic after facing an injury and during the regeneration process. By considering
the various factors that may impact these changes in the interplay, we effectively projected
their influence on fast methylation variables and relatively slow chromatin structure. This
led to the emergence of memory within the system. By representing chromatin behavior with
a coarse-grained free energy and using perturbation analysis, we have explored the connected
correlations that support our experimental findings. We have observed that the chromatin
structure varies at different stages of regeneration and does not return to the same structure
as before the injury. To further investigate trends in the topological changes of chromatin,
we recommend integrating our studies with subsequent experiments that directly examine
chromatin structures, such as Hi-C maps. Additionally, inspired by the heterogeneity among
single cells discussed in Chapter 2, we propose exploring the possibility of distinct inherent
repair predispositions among different subpopulations of liver cells as a future direction for
this research.
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Chapter 4
Conclusion

“You cannot undo what has been done,” the tree replied. “But if you truly desire
to embrace life, then live it as if every day was your last, loving deeply and unre-
servedly, and cherishing each moment as it passes.”

– Rumi, Masnavi

Chemical modifications of the DNA and chromatin, collectively termed epigenetics, are key
players in regulating the identity and behavior of cells. In this thesis, by applying statistical
physics tools, we have explored the emergent collective processes following the changes in
epigenetic modifications at different time scales. In particular, we studied the mechanistic
basis of temporal changes in DNA methylation, a chemical modification of the DNA, and
their crosstalk with other epigenetic modifiers during biological ageing (Chapter 2) and re-
generation after injury (Chapter 3).
In Chapter 2, we highlighted the strong correlation between these modifications and an in-
dividual’s biological age, and we demonstrated that machine learning models can accurately
predict biological age by monitoring alterations in individual modifications. Nevertheless, it
is important to note that these machine learning models, while effective in predicting age,
typically rely on extensive sets of variables and are primarily descriptive in nature. Fur-
thermore, the underlying mechanisms driving these methylation-based age predictors remain
poorly understood. In order to understand the mechanistic basis underlying DNA methyla-
tion during ageing, we shifted our focus from tacking the changes of individual methylation
marks to their collective behavior. More precisely, we assessed the spatial correlation function
among methylation marks and tracked the systematic alterations observed in these correla-
tions over time. In particular, we computed the ratios of correlations at specific distances and
successive time points, which measure changes in correlation beyond uncorrelated noise. Our
analysis revealed a progressive increase in these changes over time, with a distinct pattern
emerging at an approximate distance of 500 base pairs. We also found that the augmenta-
tion of correlations at the 500 base pairs is primarily characteristic of the dynamic at the
boundary of regions rich in CpG sites, commonly referred to as CpG islands.



Chapter 4: Conclusion

Our analysis also unveiled an age-dependent increase in the size of low methylated regions
that are mainly linked to CpG islands. Concurrently, the methylation levels within these
islands displayed an upward trend. To understand the origins of this phenomenon, we delved
into the interplay between DNA methylation and histone modifications, which are responsi-
ble for DNA compaction. Our investigations pinpointed that the aging indicators identified
through correlation ratios are specifically associated with CpG islands bearing histone mod-
ifiers related to both gene activation (H3K4me3) and suppression (H3K27me3), known as
bivalent CpG islands. Taking into account the reduction in H3K27me3 concentration result-
ing from the depletion of polycomb enzymes crucial for its establishment, we developed an
asymmetric interactive two-component phase field model that can reconstruct DNA methy-
lation profiles over time. To this end, we started with a microscope system description and
systematically coarse-grained it. While our model adheres to the necessary criteria and ad-
dresses critical observations from the data, additional experiments are imperative to fine-tune
the model parameters. Specifically, we propose future investigations into how variations in
the concentrations of PRC2, H3K27me3, and DNA methylation interact during the aging
process.
Furthermore, in collaboration with Ferdinand von Meyenn’s group at ETH Zürich, Wolf
Reik’s group at the Babraham Institute and AltosLabs, and Oliver Stegle’s division at DKFZ
and EMBL Heidelberg, we embarked on the exploration of aging dynamics at the single-cell
level. We encountered substantial cell-to-cell heterogeneity within a cohort of cells of the
same age, making predicting biological age challenging. Nevertheless, we tried to minimize
the potential technical biases affecting the study’s results.
In addition to the slow epigenetic dynamics during ageing, epigenetic marks are modifying
rapidly upon active and passive processes during reprogramming after injury. In Chapter 3,
we studied the underlying collective epigenetic mechanism responsible for the liver’s cellular
reprogramming during regeneration. For this purpose, we drew on a single-cell experiment
conducted by the group of Meritxell Huch at MPI-CBG for different phases of liver regen-
eration, including pre-injury, proliferation (response to the toxin diet/injury), and recovery
and termination.
Our research has unveiled the profound impact of the regeneration process on the intricate
interplay between methylation modifications and chromatin accessibility. To comprehend the
multifaceted factors influencing these dynamics, we systematically assessed their effects on
the rapid methylation variable and the comparatively slower-changing chromatin structure.
This analysis revealed the emergence of memory within the system, where past influences
persisted.
In our investigation of chromatin behavior through a coarse-grained free energy representa-
tion and perturbation analysis, we explored the interconnected correlations that underpin
our experimental findings. Notably, we observed that the chromatin structure undergoes
variations at different stages of the regeneration process and does not revert to its pre-injury
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configuration.
To delve deeper into the trends regarding the topological changes in chromatin, we suggest
integrating our studies with subsequent experiments that directly examine chromatin struc-
tures, such as Hi-C maps. Furthermore, taking inspiration from the discussions on single-cell
heterogeneity in Chapter 2, we propose further exploration of the potential existence of
distinct inherent repair predispositions among different subpopulations of liver cells.

63



Appendices



Appendix A
Multiplicative changes in
correlation functions
We consider DNA as a linear arrangement with spins placed at each location, representing the
methylation level. To clarify, if a spin points upwards, it indicates a methylated site, whereas
a downward spin corresponds to an unmethylated site. As we are interested in uncorrelated
changes, we will consider a scenario where our lattice consists of only two sites, and during
the process of ageing, one spin will be filliped following the Bernoulli trial, as depicted below,

X Y YX

To investigate how the correlation function will be modified, we use expectation value or
mean representation of an arbitrary physical quantity O(σ⃗), which can be given by,

⟨O(σ⃗, t)⟩ =
∑

σ⃗

P (σ⃗, t)O(σ⃗). (A.1)

where P (σ⃗, t) is the probability for a certain configuration σ⃗ = (σ1, σ2, ..., σN ), σi =↑, ↓,
at time t. Starting from a system that is in an initial configuration (↑, ↑) with probability
P (σ⃗, t) ≡ P , we modify the system following the Bernoulli trial till we have the first down-
warded spin, and we will define it as the new age of the system, t′ = k (for k = N =
{1, 2, 3, ...}). Hence, the probability of finding the system within the new configuration is
P (σ⃗′, t′) = (1 − P )k−1P .
The average methylation status at a given site in our introduced system at the new age t′

can be written as,
⟨m′

Y ⟩ = (1 − P )k−1PmY = (1 − P )k−1⟨mY ⟩. (A.2)

Using Eq. A.1 and Eq. A.2, the two-point correlation function at a new age and a given
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distance C(d, t′) can be written as,

C(d, t′) = (1 − P )k−1⟨mXmY ⟩ − (1 − P )k−1⟨mX⟩⟨mY ⟩ = (1 − P )k−1C(d, t). (A.3)

That is, the uncorrelated changes in the correlation function come from multiplicative changes.
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Appendix B
From the Master equation to the
Fokker-Planck equation
The master equation is an integro-differential equation, which is typically challenging to
solve. As a result, it is commonly approximated as a partial differential equation. This
approximation is accomplished through the Kramers-Moyal expansion technique. To begin
with, consider the master equation as,

∂P (σ, t)
∂t

=
∫ ∞

−∞

(
ω(σ′, σ)P (σ′, t) − ω(σ, σ′)P (σ, t)

)
dσ′. (B.1)

We modify the parameterization of the integral to incorporate an initial state and a variation
from that initial state, r ≡ σ − σ′,

∂P (σ, t)
∂t

=
∫ ∞

−∞
(ω(r, σ − r)P (σ − r, t) − ω(−r, σ)P (σ, t)) dr. (B.2)

The idea of the Kramers-Moyal expansion is now to Taylor expand the first term in the
integral of this equation around σ, and we get,

∂P (σ, t)
∂t

=
∫ ∞

−∞

(
ω(r, σ)P (σ, t) +

∞∑
n=1

(−1)n

n! rn ∂n

∂σn
(ω(r, σ)P (σ, t)) − ω(−r, σ)P (σ, t)

)
dr

=
∞∑

n=1

(−1)n

n!
∂n

∂σn
an(σ)P (σ, t).

(B.3)

Where we define, an(σ) ≡
∫∞

−∞ rnω(r, σ)dr ≡
∫∞

−∞(σ − σ′)nω(σ, σ′)dσ′.
The Fokker-Planck equation is the special case of the Eq. B.3 when n = 2. According
to the Puwala theorem, the Eq. B.3 will either converge at the first term or the second
term. If the expansion continues beyond the second term, it is necessary for the equation’s
solution to have an infinite number of terms in order to interpret it as a probability density
function [128].



Appendix C
Preliminary analysis of sequencing
experiments
Analysis of raw sequence reads was accomplished identically to [21]. Beginning with the
raw FastQ files generated by an Illumina sequencer, an initial quality control step is crucial.
This is vital because poor-quality calls potential adapter contamination can have adverse
effects, potentially leading to reduced mapping efficiency or, if mapped, introducing errors
in methylation calls and misalignment. These errors could make the base call accuracy
approach 50% akin to a completely random outcome. To remove these undesirable reads,
we use Trim Galore (Version 0.6.5, Babraham Inst.) with the default parameters for two
genome strands of a cell in a single-end mode. With this, we automatically remove 1)
base calls with a Phred score (a measure of the expected error rate per base pair) of 20 or
lower, 2) short sequences after trimming (< 20 bp), and 3) unmethylated cytosine residues
that come from adaptor contamination. Fig. C.1 displays an example of Trim Galroe’s
output. The trimmed reads were aligned to the mouse assembly GRCm39 using Bismark [36]
(v0.22.3, parameters: − non directional). Afterward, reads underwent deduplication using
deduplicate bismark, which randomly chose an alignment for positions covered more than
once. Following deduplication, methylation calls were extracted from the mapping output
using the Bismark methylation extractor (v0.14.4) with the specified parameters: −bedGraph
−buffer 10G −parallel 4 −CX. Lastly, methylation calls need to be distinguished for the
actual methylated CpG sites, and the ones that are labeled for GpC sites represent the
accessible sites along the chromatin. For this purpose, we use Bismark coverage2cytosine
(v0.12.1, parameters: − nome). Further statistical analysis, such as secondary quality control
and average DNAme and accessibility levels, was performed by custom pipeline in R.



Figure C.1: An example of raw data trimming for a single cell from the scNMT-seq exper-
iment introduced in section3.2. Up: low-quality base calls (indicated by the red zone) are
trimmed off from the end of reads. Bottom: An increase in cytosine and thymine content
toward the end of the reads, attributed to adaptor contamination. This contamination is
subsequently eliminated through the trimming process.
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[89] J. O. Haerter, C. Lövkvist, I. B. Dodd, and K. Sneppen. Collaboration between cpg
sites is needed for stable somatic inheritance of dna methylation states. Nucleic acids
research, 42(4): 2235–2244 (2014)

[90] P. B. Singh, S. N. Belyakin, and P. P. Laktionov. Biology and physics of
heterochromatin-like domains/complexes. Cells, 9(8): 1881 (2020)

[91] B. Tolhuis, I. Muijrers, E. de Wit, H. Teunissen, W. Talhout, B. van Steensel, and
M. van Lohuizen. Genome-wide profiling of prc1 and prc2 polycomb chromatin binding
in drosophila melanogaster. Nature genetics, 38(6): 694–699 (2006)

82



Bibliography

[92] S. Park, G. W. Kim, S. H. Kwon, and J.-S. Lee. Broad domains of histone h3 lysine 4
trimethylation in transcriptional regulation and disease. The FEBS journal, 287(14):
2891–2902 (2020)

[93] M. Plapp. Phase-field models. In Handbook of Crystal Growth, pages 631–668. Elsevier
(2015)

[94] Q. Bronchart, Y. Le Bouar, and A. Finel. New coarse-grained derivation of a phase
field model for precipitation. Physical review letters, 100(1): 015702 (2008)

[95] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. i. interfacial free
energy. The Journal of chemical physics, 28(2): 258–267 (1958)

[96] C. M. Elliott and Z. Songmu. On the cahn-hilliard equation. Archive for Rational
Mechanics and Analysis, 96: 339–357 (1986)

[97] S. Safran. Statistical thermodynamics of surfaces, interfaces, and membranes. CRC
Press (2018)

[98] P. M. Chaikin, T. C. Lubensky, and T. A. Witten. Principles of condensed matter
physics, volume 10. Cambridge university press Cambridge (1995)

[99] M. Moqri, A. Cipriano, D. Nachun, T. Murty, G. de Sena Brandine, S. Rasouli,
A. Tarkhov, K. A. Aberg, E. van den Oord, W. Zhou, et al. Prc2 clock: a univer-
sal epigenetic biomarker of aging and rejuvenation. BioRxiv, pages 2022–06 (2022)

[100] R. Bahar, C. H. Hartmann, K. A. Rodriguez, A. D. Denny, R. A. Busuttil, M. E. Dollé,
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