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Abstract
To live is to reproduce. The propensity to pass on essential genetic identity to progeny
is fundamental to all forms of life. As living organisms have evolved in structure and
complexity, the mechanisms that arbitrate and safeguard this inheritance also have
evolved, often in the form of unique cells, called gametes. A vast majority of mul-
ticellular organisms reproduce via formation of oocytes (oogenesis). The process of
oogenesis across species shows remarkable similarity and a crucial step is the isolation
and individualization of germ cells fated to carry on this essential role. Amidst a seem-
ingly homogeneous population of germ cells that share cytoplasm within a syncytial
structre, hence also their chemical identity, how a select subset of cells are robustly
identified is a puzzling phenomena that has troubled developmental biology for decades.
We find the answer in the underlying physical interactions of these cells with its en-
vironment in the context of the nematode Caenorhabditis elegans. These cells behave
as tiny non-equilibrium elements as they pump cytosol from outside and fill in the
cytoplasmic luminal core ”rachis” generating flows at long lengthscales. Later along
the germ line, the disappearance of such external sources reduce the pressure difference
of the cells and rachis, eventually leading to an inversion of pressure difference. This
inversion in turn reverses direction of the cytoplasmic exchange and lead to an infla-
tion mediated growth phase of germ cells. We derive a minimal physical framework to
identify and evaluate the stability of such growth phases. We find that such inflation
driven growth is inherently unstable and lead to coarsening/condenstion, amplifying
small differences in volumes between connected cells leading to increasingly disparate
population of cells, an instability mediated by tissue hydraulics. This bears fundamen-
tal similarity to coarsening of connected soap bubbles where due to curvature driven
forces symmetric configurations are unstable. Here however using dynamic pumping
from outside, such symmetric configurations are stabilized actively, a feature that is
truly non-equilibrium. This alludes to that grown cells then become future oocytes
and the shrunken ones apoptose and are removed. We test these ideas by comparing to
experiments and find strong agreement, furthermore using genetic techniques we pre-
dict the existence of the instability independent of apoptotic pathways under predicted
flow fields. The persistence of such a volume instability under elimination of apoptosis
along with excellent agreement of predicted and experimental flow field consolidates
our abstract yet simple idea of instability driven heterogeneity of growth and shrink-
age. This presents a novel and fresh outlook to this decade old problem, where the cell
fates are not robustly selected but are rather emergent via hydrodynamic interactions.
It is fascinating to identify such a unique physical mechanism where the eventual fate
of the germ cells are determined in response to flow/pressure fields that are in turn
generated by a constantly replenishing pool of germ cells that constitute the germline.
The decision making hence truly is emergent out of interactions and activity of these



constituent cells. This presents an excellent example of self-organized decision making
exploiting a symmetry breaking transition of the underlying physical structure.
Spontaneous symmetry breaking, a conceptual pillar of modern physics, provides a
new perspective on questions of decision making and questions of selection. Starting
from our hydrodynamic model of symmetry-breaking we provide a mapping to evo-
lutionary dynamics. This derivation is one of its kind, where fundamental equations
of evolutionary dynamics are derived from basic principles of hydrodynamics rather
than phenomenologically written down. This combines remarkably the aesthetics of
evolutionary dynamics with the strength of physical intuition and interpretation. To-
gether we bring forth an elegant theoretical framework that bridges various concepts
and formalisms of hydrodynamics, mechanics and evolutionary dynamics to discover a
novel physical strategy that underlies a fundamental decision of life and death of germ
cells.
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Chapter 1
Introduction
The academic scrutiny of the physical world around us, is not only driven by relent-
less curiosity but also by confusion and aesthetics. A fundamental question that has
puzzled all scientists alike, is the question of morphogenesis - how a simple and often
spherical bag of biology grows, deforms, compartmentalizes to increasingly complex
functional structures - from water lilies to elephants. Achieving all of this with re-
markable reproducibility while battling fluctuations and variation at multiple scales
of length and time is a herculean task that an embryo must attain everytime without
fail. The mysteries of this perennial phenomena has sparked scientific research over
centuries – from biochemists that strive to understand the molecular basis of life [2–4]
to physicists and applied mathematicians that are drawn by the aesthetic questions of
shape, size and symmetry [5–7]. The latter of which, we enthusiastically share.

This chapter serves to introduce some essential concepts and questions later invoked
in this thesis and the philosophy with which we approach these questions.

1.1 Morphogenesis: forces that shape life
The study of morphogeneis encompasses the elements that conspire together to build
an organ and organism reproducible in shape and size. We shall limit our discussion to
multicellualr organisms, where a plenitude of cells emerge out a single cell zygote to give
rise to variety of structures and functions. The ability of constituent cells to move,
grow, change shape, sense and respond enables biological tissues and organisms to
dynamically create self-organized patterns of geometry. The changes of geometry must
follow forces that drive them. Hence a notable amount of work is done understanding
how form follows force, at short as well as long timescales. A significant advance in this
filed comes from careful experiments that established the basis of force generation at a
cellular scale by the cytoskeletal elements (reviewed in [8–10]). This has allowed various
physical theories to be tested with simple perturbations, providing more convincing
evidences than mere correlations. We shall discuss this with few simple examples.

1.1.1 Mechanics of living matter
A simple yet powerful view is to understand a biological structure as a static one,
considering the geometry and mechanics with an equilibrium-like framework. This
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argument holds true with a quasi-steadystate approximation, which is essentially a
study of short time-scales. In that case we seek to evaluate the minima of a pseudo-
potential, an analogue for free energy of a system with hidden variables. Say the
structure of our choice is represented by position vector of N special points, which
is sufficient to describe the structure, here the minima of the pseudo-potential W
will yield structures that should transpire naturally as they are favored energetically.
Although no global minima may exist, it allows us to prescribe dynamical rules to
study how shapes emerge and behave over time,

∂~xi
dt

= −∂W
∂~xi

∀i (1.1)

where ~xi denotes the position vector of the ith special particle and pseudo-potential
W may include terms such as surface energy, volume energy, edge tension etc. In
this spirit a class of models called vertex models have been successfully implemented
to understand various biological structures and problems [11–13] (reviewed in [14]).
Let us discuss the case of [13] where the authors consider a two dimensional lattice
of points, namely the junctions of cells. Cell edges that connect these junctions are
assumed to be straight and no curvature energy is used. The proposed pseudo-potential
is,

W =
∑
α∈C

Kα

2
(
Aα − A0

α

)2
+
∑
〈ij〉

Λijlij +
∑
α

Γα
2 L2

α (1.2)

where for each cell α ∈ C the first term captures the elastic penalty as the cell
area Aα deviates from the target area A0

α with an elastic modulus Kα; the second term
merely is a edge energy which wants to shrink cell edges of length lij that connect vertex
i & j with line-tension Λij, which is balanced by a global constraint term of perimeter
Lα elasticity of elastic coefficient Γα. For a homogeneous system an order-disorder
transition is found (see Fig.1.1). For negative reduced line tension and low reduced
contractility the groundstate is degenerate and yields many floppy modes and one can
deform the structure at no energy cost. Beyond this region the two dimensional lattice
is stiff and hexagonal and fluctuations around this state maintain average connectivity
number to be 6. This idea was extended with a simulation framework to compare
with a very dynamic tissue of Drosophila m. wing epithelium where cell division,
extrusions as well local non-affine movements of cells may disrupt such hexagonal order
and excellent agreement in prediction and experiments of cellular order and packing
revealed the strength of such a reductionist approach. An alternative point of view
and framework of the same cellular packing problem can be found in [15].

2



1.1 Morphogenesis: forces that shape life

A) B)

C) D)

Figure 1.1: A) Tissue geometry is shown for the Drosophila m. wing epithelium. B)
Snapshot of vertex model simulations. C) Phase diagram of vertex model predicts an
order-disorder transition. D) Comparison of predicted and experimentally observed
cell packing statistics. Adapted from [13]

These concepts can be generalized to a three dimensional structure [16], where one
must introduce a pressure related term as a Lagrange multiplier for the volume con-
straints. Surface tensions Ts and edge tensions can be accounted for in a similar spirit.
The pseudo-potential then modifies to,

W =
∑
α∈C

Kα

2
(
Vα − V 0

α

)2
+
∑
s∈S

TsAs +
∑
〈ij〉

Λ(a,b)
ij l

(a,b)
ij + δWext (1.3)

where similar to area elasticity in the two dimensional case a volume elasticity/con-
trol term is introduces as the first term with target volume V 0

α and ”bulk” modulus
Kα. It is a valuable realization that in principle this general idea can be extended to
any sort of constitutive relationships of geometric factor an their corresponding forces.
Fro example, the volume constraint demands only a simple Lagrange multiplier P and
introduces a term −PV , in which case we can demand that the cell volume with a
specific shape is V and evaluate the corresponding P that is necessary to satisfy that
minima, this is a hard constraint which can be relaxed with the proposed constitutive
relationship Pα = −Kα(Vα − V 0

α )/2, which is implemented here. The hard constant
can be recovered in the limit Kα → +∞. Any number of such relations can be written
to capture basic elements of the system at hand.

3
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A)

Apoptotic

force

B)

Figure 1.2: A) Apico-basal asymmetries in apoptotic cells are indicated and as a a
result local folding of the tissue. B) A 3D vertex model confirms the mechanism of
folding due to extrusions. Adapted from [17]

Using such farmework one can study the influence of various cellular events and
forces on three-dimensional shape. One beautiful example is found in folding of an
epithelia driven by polarized extrusion of cells out of the tissue, which generates out-
of-plane stresses [17].

Let us discuss the case of volume control in further detail. The volume elasticity term
is motivated by two essential elements, 1) cytoplasm is a fluid with low compressibilty
2) cells sense and respond to changes in volume. Both of these arguments rely on
existence of well defined boundaries of the cell. As we shall see in this thesis, this often
may not be the case and may have fascinating non-equilibrium effects that originate
from it.

1.1.2 Dynamics of biological fluids
On the other end biology presents us with systems that grow, evolve, flow in observable
timescale and in such cases very little can be understood from a static point of view.
In this section we shall discuss how various biological processes depend on fluid flows
and basic concepts required to think about fluids. A conserved physical phenomena
across species is protoplasmic streaming [18] , originally reported first by Corti (1774).
Cytoplasmic streaming can originate from various underlying physical mechanisms and
may materialize in complex flow patterns (reviewed in [19]).

4
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Figure 1.3: A) Cytoplasmc streaming in a plant, driven by active shear flow.
Adapted from [19]. B) Cytoplasmic streaming within D.melanogaster oocyte.
Adapted from [20] C) Cytoplasmic streaming within the mouse embryo. Adapted
from [21]

It is widely thought that cyotplasmic streaming mediate various biological function
e.g. chemical dispersion across long distances, homogenization of cytoplasm etc. The
study of fluid flows is inherently the study of the associate velocity field. The governing
equation for fluids is the celebrated Navier-Stokes equation [22]. Let us consider a
volume element of fluid with Eulerian velocity field ~v(~x, t) at position ~x. The total
time derivative following the fluid motion,

d

dt
= ∂

∂t
+ ~v·∇

can be expressed as a sum of the local rate of change ∂/∂t and the advective rate
of change ~v·∇ , which occurs as the volume element moves through gradient. An
important realization is that the acceleration of a fluid is,

d~v

dt
= ∂~v

∂t
+ ~v·∇~v

where the second term is non-linear in ~v, turning out to be the fundamental difficulty in

5
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solution of problems in fluid dynamics. We shall derive the equations of fluid dynamics.
Starting from consideration of mass conservation, let us denote ρ(~x, t) as the density.
Then,

∂ρ

∂t
+∇· (ρ~v) = 0 (1.4)

which can also be expressed as,

∇·~v = −1
ρ

dρ

dt
. (1.5)

This can be intrepidity as the incompressibility condition ,where negligible changes in
density equate to ∇·~v = 0. The conservation of momentum demands,

ρ
d~v

dt
= ρ

(
∂~v

∂t
+ ~v·∇~v

)
= ∇·σ + ρ~f (1.6)

where σ is the stress tensor and ~f is external body force. In the case of an incompress-
ible viscous ideal fluid,

ρ

(
∂~v

∂t
+ ~v·∇~v

)
= −∇p+ η∇2~v + ρ~f (1.7)

where p is the hydrodynamics pressure and η is the shear viscosity. In viscosity dom-
inated regimes the inertial terms drop out and we obtain the Stoke’s equation thta
describe steady flow fields,

∇p = η∇2~v (1.8)
Virtually all biological flows are viscosity dominated and Stoke’s equation provides us
with a convenient framework to study them. One must comment that the geometry
and boundary conditions play crucial roles in determining the flow fields. Application
of fluid dynamics in biology is age-old and originates from physiology. The flow of
blood through our vascular system is one the first physiological hydrodynamic problem
that fascinated scientists. One can assume our vasculature to be ideal cylinder and
compute discharge rate and it’s relationship to the geometry. This is given by the
Hagen-Poiseuille’s law (for a discussion see Appendix B.),

Q = πR4

8η
∆p
l

(1.9)

where R & l are respectively the radius and length of the capillary and ∆p the
pressure difference between two ends. Now if the capillary dilates or expands by a
factor of ε as R→ R(1+ε) the total discharge Q ∼ R4(1+ε)4 implying Q/Qo ∼ (1+4ε).
Hence for a mere 5% change in radii a 20% effect is expected.

Another lesson one can learn from the study of ideal fluids is about incompressibility,
which we simply assumed so far. Let us assume that the density varies with pressure
as ρ(p). The incompressibility of a flow is simply the statement that changes of density
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1.1 Morphogenesis: forces that shape life

due to flow via pressure changes are negligible. Given such pressure changes in flow
we can write, ∆ρ = dρ/dp∆p and in isothermal conditions, dp/dρ = c2 where c is the
isothermal speed of sound (∼ 103 m/s for water). Hence we find,

∆ρ
ρ

= ∆p
ρc2 (1.10)

For moderate to high-Reynolds number flows with characteristic velocity v0, we have
∆p ' ρv2

0, hence the incompressibilty assumption should hold when,

∆ρ
ρ

= v2
0
c2 << 1 (1.11)

As a result virtually all flows at physiological scale are incompressible.
Biological fluids are inherently active and may develop stresses due to complex

biochemcial processes that generate local stresses. Moreover there could be many
broken symmetry variables that introduce new hydrodynamic fields and hence cross-
couplings that can give rise to a rich variety of phenomena unforeseen in simple abiotic
matter. This is an active area of research, for an elaborate discussion see [23–27].

The cortex is a thin layer of condensed phase of cytoskeltal matter just beneath
the cell membrane. It is already interesting how such a condensed phase may be
stable being embedded within the bulk cytoplasm and whether it bears similarity to a
wetting layer [28]. The active gel theory of the cortex captures shape changes [29], cell
motility [30, 31] , cell divisions [32, 33] with great success. We shall consider a simple
yet elegant example of such an active fluid - actomyosin cortex of the C.elegans single
cell zygote. Here an anterior posterior gradient of myosin is seen to drive polarizing
flows.

The force balance can be written as,

∂xT = f (1.12)
where T is the two dimensional in-plane stress and f is the external force. Let’s assume
that the external force purely due to friction γ with the surface outside f = γv where
v is the velocity of the thin film. Under a viscous thin film approximation one can
assume,

T (x) = βC(x) + η
∂v

∂x
(1.13)

where the first term accounts for activity and C(x) denotes the concentration of
active force generating elements (here Myosin) and the second term is purely viscous
dissipation. As a result we obtain,

β
∂C

∂x
= −η ∂

2v

∂x2 + γv (1.14)

which related the gradient of molecular force generator to a macroscopic flow field.
This equation along with its’ extension have successfully captured the effective physics
of various morphogenetic processes e.g. cortical flow in nematode embryo [34–36], mor-
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Chapter 1: Introduction

phogenetic flows in flies [37] and beetles [38], emphasizing the importance of effective
field theories in morphogenesis.

A) B)

Figure 1.4: A) Velocity field of cortical flows in Posterior to Anterior direction is
shown for C.elegans single cell zygote. B) A schematic model depicts how anisotropic
tension underlies symmetry breaking flows in the cell. Adapted from [34]

1.2 Oogenesis : the stepping stone of complex life
Oogenesis is a fundamental morphogenetic process that sets the basis of all future
developmental events of an organism. Although born as regularly sized germ cells,
oocytes undergo tremendous growth during their maturation from germ cells and are
one of the largest cells in an organism. Amongst many species the germ cells develop
into future oocytes as part of a syncytial architecture, sharing a common cytoplasmic
pool. Both male and female germcells of a wide variety of animal (vertebrate and
invertebrate) species develop within a syncytial structure. The prevalence of struc-
tural similarities and stereotypic maturation steps of germ cells argue possibly for a
conserved mechanism (reviewed in [39–42] ).

The ultimate growth of some germ cells into oocytes is often achieved at the ex-
pense of other germ cells, where cytoplasmic partitioning between these connected
cells become disparate and unequal. This in turn creates population of shrinking germ
cells that contribute cytoplasm to the growing oocyte and are eventually removed via
apoptosis. This poses an interesting mystery of how, out of a seemingly homogeneous
population of connected cells that share a common chemical identity embedded in the
cytoplasmic pool, some cells individualise into growing oocytes and some into shrinking
cells. One may think of this as a symmetry breaking phenomena, where the original
symmetry of the system where all cells are seemingly equivalent, is lost in the course
of maturation. While many factors may play important role in the maintenance and
disappearances of such symmetries of a living and growing organ over time, certain
simplifications can yield fundamental insights into this perplexing phenomena. This
process of growth and cytoplasmic redistribution within such a syncytial tissue involve
bulk flows/exchange of cytoplasm and poses interesting aspect of tissue hydraulics.
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1.2 Oogenesis : the stepping stone of complex life

Meiosis

Gametogenesis

Gametes

Germline Cyst

Cyst 

formation

Cystoblast

Primordial 

germ cell

Proliferation

a)

Figure 1.5: Germline development proceeds in stereotypic steps across species. (A)
Demonstrates generic developmental stages of germline cyst growth. (B-D) shows
ovaries of Drosophila m. , Xenopus l. and mouse. (E-F) shows Drosophila and
mouse testis. (B, D, E, F) are stained with corresponding germ cell markers and (C)
is stained with gamma-tubulin. Top insets (B-D) and insets in (E-F), are electron
micrographs from each species. Bottom insets (B-D) show synchronous germ cell
division for each species. Adapted from [41].

In the following chapters we will address this fundamental question of embryology
borrowing and developing concepts of hydrodynamics and hydraulics and discuss the
physical basis of such a symmetry breaking event in the context of nematode C. elegans.
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Chapter 2
Biophysical measurements of
germline homeostasis
Across species germ cells develop into oocytes within syncytial architecture going
through stages of maturation and tremendous growth. This tremendous growth of
the future oocytes is often achieved at the expense of shrinkage of connected sister
germ cells, which are eventually eliminated by apoptosis. This conserved feature of
germ cells across species, where a seemingly homogeneous population of cells sharing
a common cytoplasm and hence an equivalent chemical identity, diverge into two dis-
tinct fates- one that grow and lives on and the other that shrinks and is discarded.
This essential cell fate decision of life and death of a germ cell is intertwined with the
physical transition of growth and shrinkage.

In this chapter, we investigate the underlying growth kinetics and hydrodynamics of
germ cells connected within the syncytial germline of adult hermaphrodite C.elegans to
understand better this divergent cell fates from the perspective of growth and shrink-
age. Using state of the art microscopy and image analysis, we quantify and infer cell
volumes, discharge rates, fluid flux etc. From these quantities we further extract phys-
ically meaningful quantifiers, that help us build a physical description of germ cell
growth and shrinkage. In the first half, signatures of growth and variation of germ cell
volumes is discussed applying various statistical methods. The later half emphasizes
on understanding the material basis of such growth and variation by applying concepts
of fluid dynamics.

For the rest of this thesis, while discussing oocyte growth we shall simply limit
ourselves to the volume of cytoplasmic matter contained rather than its content. It is
noteworthy that naturally various biochemical aspects as well as sub-cellular contents
evolve during the life of a germ cell, for a discussion see Appendix A.



2.1 Growth and motion of germ cells along the germline

2.1 Growth and motion of germ cells along the
germline

2.1.1 Homeostasis of C.elegans germline

Figure 2.1: Formation of the germline: (A) Schematic of the germline lineage (yel-
low) segregation starting from single cell zygote. (B) Stages of development of the
germline starting from L1 larval stage to young adults. Adapted from [43]

The development of the germline is crucially dependent on lineage segregation at the
early embryo stage, where the single cell C. elegans zygote goes through an asymmetric
division into A and P cells. The posterior cell P gives rise to eventually all germ cells
and does not contribute to soma. At the stage of hatching, the gonad comprises of
primordial germ cells (Z2 and Z3) connected to somatic gonad precursors (Z1 and Z4)
and surrounded by basement membrane. These four cells stay mitotically quiescent
until the mid-L1. Z1 and Z4 proliferate to 12 cells by the end of the L1 with two
distal tip cells (DTCs) that are essential for growth of the germ line, and 10 proximal
cells. The rapid extension of gonad arms is seen during early L3, provided by robust
proliferation of the germline in response to proliferative signals from the distal tip
cells [43].
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Chapter 2: Biophysical measurements of germline homeostasis

Figure 2.2: Germ cell numbers steadily increase in L4 and youngadults to roughly
2,000 germ cells [44]. The reduction of Notch receptor/GLP-1 inhibits germ cell
proliferation and results in arrested growth up to only 4-8 germ cells [45]; in glp-
1 gain-of-function mutants, which have unregulated GLP-1/Notch receptors, they
generate up to 4000 germ cells [46]. Adapted from WormBook [43].

Germ cell number goes through an approximately four-fold increase during the L4
and young adult stages (Fig.??). Germ cell proliferation is confined to the distal mi-
totic zone, a region that has been proposed to be a niche. Mitotic signals in the form of
GLP-1 is known to suppress entry to meiosis. Hence modulation of GLP-1 affects the
proliferation of germ cells and in turn the size and homeostasis of the germline. Ga-
metogenesis spans the late L4 and adult stages: spermatogenesis occurs during the L4
stage and oogenesis during the adult stage. By the young adult stage the germline has
achieved homeostasis of size that is maintained until aging (Fig.2.3). This homeostatic
state closely configures to the physical idea of steady state and average macroscopic
quantities e. g.size, length, number of cells remain unchanged over time.
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2.1 Growth and motion of germ cells along the germline
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Figure 2.3: (A) Schematic of an adult germline representing a mid-sagital section
view. (B) Maximum intensity projection of an fluorescent micrograph of C.elegans
adult germline;scale bar :20µm (C) Electron micrograph of the distal and proximal
gonad representing different elements. GBL:gonadal basal lamina (Adapted from
WormAtlas) (D) Measured length of the germline over time. Adapted from [47]

In this homeostatic state, the adult C. elegans germline constantly produces germ
cells that goes through stages of growth and maturation as they move along the
germline from the distal to proximal end all within one syncytial architecture where
the cytoplasm is exchanged and streamed through the central cytoplasmic corridor
called rachis [48]. The exchange of cytoplasmic between individual germ cells and the
luminal rachis is mediated by rachis bridges, which are remnant of the cytokinetic ring
formed a result of incomplete abcission [49]. Maintenance of such a dynamic steady
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Chapter 2: Biophysical measurements of germline homeostasis

state at the adult stage poses interesting questions and consequences of physics, which
span the later part of the thesis.

2.1.2 Motion and maturation of germ cells
The motion of germ cells is essential for the maturation and a quantitative understand-
ing of this motion is crucial to develop a physical overview of the oogenesis as a whole.
Direct approaches to access the velocities of germ cells pose the challenge of varying
timescales. The germ cells move very slowly in the distal region of the germline and
these velocities are statistically undetectable when compared to the twitching motion
of the surrounding muscle, while they rapidly speed up as they approach the proximal
turn. To extract steady and meaningful velocity profile of germ cells along the gonad
we exploit the steady state of the germline and conservation of cell density. This can
be expressed as,

∂tn+∇· (n~vc) = F (n) (2.1)
Here n indicates the cell density, ~vc the cell velocity and F (n) indicates the local density
changes due to birth and death events. For simplicity we choose F (n) to be a linear
function of local cell density n [50–54] ,

F (n) = (kd − ka)n (2.2)
where kd and ka are rates of cell division and cell apoptosis/extrusion. These quantities
can be experimentally accessed by identifying densities of dividing cells (using mitotc
spindles) along the gonad and cells going through characteristic apoptotic rounding [55]
The spatial profile of the rate of change of effective cell density is shown in Fig.2.4. This
is consistent with literature [43], where the mitotic zone ranges from 0%-30% length
along the DP ( distal-proximal ) axis, while the apoptotic zone starts only beyond 60%
gonad length.
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Figure 2.4: Spatial profile of effective rates of germ cell density change. Division
rate (kd) is measured by counting mitotic spindles and apoptotic rate (ka) by count-
ing apoptotic corpses.

In the steady state, the local cell densities do not evolve over time. Since the organ
is primarily cylindrical we can assume axisymmetry around the DP axis, which is
henceforth referred to as x−axis. The steady state cell density balance is simply given
by,

∂x(nvc) = (kd − ka)n (2.3)
Here n is the linear density of cells along the DP/x axis and vc is the x-axis velocity of
germ cells. To infer the cell velocities we combine the measured birth and death rates
(Fig.2.4) with measured linear density of cells (Fig.2.5). The solution is given by,

vc(x) = vc(0) + 1
n(x)

∫ x

0
(kd|x′ − ka|x′)n(x′)dx′ (2.4)

We choose vc(0) = 0 as boundary condition, which simply implies negligible motion at
the distal tip.
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Figure 2.5: Profile of linear density of germ cells along the distal-proximal axis. All
Error bars through out the thesis are 95% confidence interval of the mean.

The inferred cell velocity profile along the germline is depicted in Fig.2.6.

Figure 2.6: Inferred germ cell velocity field along the distal proximal axis.

We find that in the distal part of the germline the germ cell velocities steadily
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2.1 Growth and motion of germ cells along the germline

increase upto ∼ 60% length of the germline, followed by a decrease and eventual
increase. This non-monotonic behavior can be understood in simple terms by studying
Eq.2.3, which only has two local terms kd − ka and linear density n(x). The steady
increase in the distal part of the germline is primarily due to cell division (kd > ka)
and incompressibility, where accumulation of new born cells drive cell flux, much like
epiboly in Zebrafish [56] or cell motion in intestinal crypts [57]. The decrease can be
associated with the concurrent apoptosis/extrusion (kd < ka). The final increase of
the germ cell velocity close to the proximal turn along with monotonic decrease of the
linear density of cells n indicates a dilation or axial growth of germ cells, which can be
seen in Fig.2.3B.

2.1.3 Growth of germ cells along the germline

C
e

ll 
V

o
lu

m
e

 [
fL

]

x[%Length]
0 20 40 60 80 1000

100

300

500

700

0

500

fL

Distal Proximal

Figure 2.7: Spatial profile of germ cell volumes. Top: 3D rendering of segmented
germcells color coded fro volume. Bottom: Cell volumes along the germline. Data
from 5265 germ cells are shown taken from 18 gonad arms

To understand the growth of germ cells along the germline, we quantified the cell
volumes using confocal microscopy and membrane based 3D segmentation (Fig.2.7).
We find that the germ cell population is fairly homogeneous in size at the distal end
and size of germ cells lie roughly ∼ 60 fL, the cells grow bigger in size along the
germline DP axis and also the germ cell volumes become more dispersed. Close to the
proximal turn the germ cells volumes are dispersed ranging from really large ∼ 800 fL
to really small ∼ 50 fL cells. The growth of the germ cells can be captured in terms of
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Chapter 2: Biophysical measurements of germline homeostasis

the average cell volumes along the germline, depicted in Fig.2.8 where spatial binning
is employed to define statistical averages.
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Figure 2.8: Average cell volumes along the distal-proximal axis. Two proposed
growth phases are indicated with arrows.

The mean cell volume Vc shows a steady growth in the distal part of the germline,
while it shows a steep increase in the more proximal part and indicates the onset of
rapid growth prior to individualization of oocytes. Using the derived steady state
quantities we next estimate an expected growth rate of the germ cells in the distal
region. This is approximated as,

gv = 〈dVc
dt
〉 ' d〈Vc〉

dx
〈dx
dt
〉 = g(x)

v 〈vc〉 (2.5)

where g(x)
v = d〈Vc〉/dx describes the spatial gradient of cell volumes along the go-

nad and vc naturally indicates cell velocity. The above expression is exact when cell
growth and cell motion are statistically independent, in this case however this is only
a simplification. In the distal region we estimate g(x)

v by fitting a linear curve to the
average cell volumes along germline axis from 20% to 60% germline length and iden-
tifying its’ slope. We find that the slope indicates g(x)

v = 0.398(±0.023)µm2 with
95% confidence intervals indicated in parentheses. Within this region, the inferred
germ cell velocity vc ranges from 0.1µm/min to 0.2µm/min. Hence the approximate
growth rate of germ cell volumes in the distal region (20% to 60% length) range from
g = 0.0398(±0.0023)fL/min to g = 0.0796(±0.0046)fL/min.

A similar analysis can also be performed along the Distal-Proximal axis of the
germline and we can obtain local approximate growth rates of germ cells. Investi-
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2.1 Growth and motion of germ cells along the germline

gating the potential relationship of mean growth rates with the mean cell volumes
we find that the in the distal region of the germline, the mean growth rate g is inde-
pendent of local mean cell volume, while it shows a linear relationship with 〈Vc〉 near
proximal end, associated with the rapid growth of germ cells seen in Fig.2.8. This in-
dicates a transition from a slow and constant growth regime, which we term as ”germ
cell growth” to a sharp and possibly exponential growth regime, which we term as
”oogenic growth”.
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Figure 2.9: Local mean growth rates of cells is plotted against he local average cell
volume, color coded for position along the germline. Black dashed line indicates the
constant growth rate g = 0.039fL/min; Blue dashed line is a linear fit to the most
proximal data points.

2.1.4 Statistics of germ cell volumes along the germline
As evident from the growing spread of germ cells volumes in Fig.2.7, during maturation
along the DP axis not only the underlying signature of germ cell growth changes but
also the nature of variation. We observe a bimodal distribution of germ cell volumes
emerging at the proximal end, starting from a unimodal structure at the distal regions.
This might indicate a transition or instability somewhere along the DP axis. Taken
together with the finding that average growth rate of germ cells behave distinctly
between distal and proximal parts of germline, this lends credence to the idea of a
transition between growth modes from distal to proximal. To identify such a transition,
we shall discuss the statistical distinctions between volume distributions of the distal
and proximal population of germ cells and theorize on possible underlying causes and
consequences.

19



Chapter 2: Biophysical measurements of germline homeostasis

x [%Length]

0
2

0
0

4
0

0
6

0
0

C
e

ll 
V

o
lu

m
e

 [
fL

]

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

(i
)

(i
i)

(i
ii)

(i
v
)

(v
)

(i
)

(i
i)

(i
ii)

(i
v
)

(v
)

C
e

ll 
V

o
lu

m
e

 [
fL

]

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

PDF0
.0
2

0
.0
1 0

0
.0
2

0
.0
1 0

0
.0
1 0 0

0
.0
0
5 05
x
1
0
-3

(B)

(A)

Figure 2.10: (A) Germ cell volumes transition from an unimodal to bimodal dis-
tribution along the DP axis. (B) Probability density is showsn for 5 spatial bins
indicated in (A). Red lines indicated Gaussian fits around each mode.

The growing variation can be captured in terms of the standard deviation of the
volumes σV =

√
〈V 2 − 〈V 〉2〉, which steadily increases (Fig.2.11) along with the average

volume of cells.
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2.1 Growth and motion of germ cells along the germline

Figure 2.11: Local estimates of sample standard deviation of cell volumes plotted
along position along the DP axis. Inset: Logarithmic scale

Next we investigate the relative variation of the cell volumes in term of the coefficient
of variation (CV), defined as the ratio of standard deviation to the mean µV , give by
CV = σV /µV .

0 20 40 60 80 100

[x %Length]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
V

0 50 100

x [%Length]

0.2

0.4

0.6

0.8

Figure 2.12: Coefficient of variation of germ cell volumes plotted along the DP
axis. Inset: Logarithmic scale

Over the distal region of the gonad, the CV of cell volumes is fairly constant in-
dicating a potential relationship between the σV and µV . Such a relationship may
allude to the possibility that the changes in mean and variation may originate from
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Chapter 2: Biophysical measurements of germline homeostasis

same underlying processes. Similar relationships and implications have been studied
extensively in the case of bacterial cell growth under different growth conditions [58] .
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Figure 2.13: Relationship of standard deviation of volumes with mean cell volumes.
Dashed lines indicates fitted linear relationship with the most distal and most prox-
imal points (15,5 points in respective cases). Inset: overlay of two different genetic
conditions show that the relationship between µV , σV is robust.

The linear relationship of σV & µV along with an equivalent CV, imply that the
structure of the volume distributions in the distal region are similar. This can be seen
in Fig.2.14 where the histograms of cell volumes of distal population rescaled by their
respective mean is represented. To represent a regularized probability density function
a kernel smoothing approach is employed with Krönecker-δ function as the local kernel.
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Figure 2.14: Probability density functions of normalized germ cells volumes (nor-
malized by respective mean) from the distal part of the germline overlayed on top
of eachother. Color indicates spatial position along the germline in DP axis. Inset:
PDF of normalized volumes of proximal germ cells

An equivalent representation is also found in Fig.2.14.
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Figure 2.15: Probability density functions of normalized germ cells volumes (nor-
malized by respective mean) from the distal part of the germline overlayed on top
of eachother. Color indicates spatial position along the germline in DP axis. Inset:
PDF of normalized volumes of proximal germ cells
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Chapter 2: Biophysical measurements of germline homeostasis

To further discuss the nature of the volume variations and how a relationship of σV
and µV might arise, we shall propose statistical models for the volume distributions.
Naturally the cell volumes are limited to positive definite numbers, hence a regular
Gaussian model would fail to capture the data. Moreover, the distributions are not
symmetric and can be seen in the skewness of the cell volumes in Fig.2.16. We find that
distal cell volumes are positively skewed indicating rare event of cells larger than mean,
while proximal germ cell population shows negative skew indicating the opposite.
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Figure 2.16: Skewness of the germ cell volumes along the DP axis. The distal zone
shows positive skew, while the proximal zone shows negative skew.

A suitable statistical model that can capture both the positive definite aspect of the
data as well as account for the shape asymmetry/skewness is the log-Normal distribu-
tion

P (x) = 1
xσx
√

2π
exp

(
−(ln x− µx)2

2σ2
x

)
(2.6)

Equivalently ln x ∼ N (µx, σ2
x). We find that the Log-Normal distribution represents

the cumulative distribution function associated with the data well (Fig.2.17). Here we
have rescaled the volumes of the cells by the maximum volume locally at the spatial
bins. In the Fig.2.17 the solid line indicates the function,

Φ(x) = 1
2 erfc

(
− ln x− µx

σx
√

2

)

where erfc is the complementary error function. It is interesting to note that changes in
µx affect the mean and the sample variance of a log-normally distributed data however
the coefficient of variation remains unchanged as it solely depends on σx and is given
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by,
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Figure 2.17: Cumulative distribution functions of normalized cell volumes ( 20
spatial bins of the 0%-40% germline length) overlayed. Solid red line indicates a
single parameter fit of a log-normal distribution .

We propose the following explanation how a log-normal distribution might arise for
cells that are growing. Consider a cell with volume Vt at time step t and it goes through
geometric growth by a random variable rt ∈ [0,∞) and the volume at the next time
step is give by,

Vt+1 = rtVt (2.7)
Hence the growth of cell volumes can be seen as a sequence of random multiplicative
processes,

VN = V0

N∏
i=1

ri (2.8)

=⇒ ln
(
VN
V0

)
=

N∑
i=1

ln ri =
N∑
i=1

χi (2.9)

where ri and hence χi = ln ri ∈ (−∞,∞) may arise from different unknown distri-
butions. Since ri is a random variable, χi also is a random variable and for increas-
ingly many N we can invoke the central limit theorem. This is justified since any
finite growth can be partitioned into infinitely many steps of infinitesimal change.
The central limit theorem implies that the sum of infinitely many random variables
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Chapter 2: Biophysical measurements of germline homeostasis

i. e.χi = ln ri is a random variable with a Gaussian/Normal distribution. This would
directly imply that the volume variable VN is distributed log-normally. In the contin-
uous limit this growth simply maps to a Geometric Brownian motion described by the
stochastic differential equation,

dVt = µVtdt+ σVtdWt (2.10)
where µ is the deterministic relative growth rate and the second term describes a
fluctuating growth where Wt is a Wiener process. This leads to a temporal growth of
volume given by,

Vt = V0 exp
((

µ− σ2

2

)
t+ σWt

)
(2.11)

This line of argumentation is interesting from a biological perspective as it would
indicate that germ cell volumes grow geometrically. A contrasting scenario is found
in mirobial systems. While heavily debated, recent advances have suggested that in
various forms of microbial life e. g. E.coli, S.cerevesiae etc. the growth is additive and
challenges ideas of proportionate growth (for a review see [59]) , surface growth etc.
that lie at the heart of allometry in biology [60].

2.1.5 Homogeneous and heterogeneous growth modes of germ
cells

Taken together we find that the effective growth of germ cells transition from a slow
constant phase in the distal germline to a more geometric one in the proximal. Along
with the effective mean growth of cells, the nature of variation of volumes along the go-
nad also transitions, maintaining a low relative dispersion (CV ∼ 0.2) in the distal part
while high heterogeneity and bimodality arises in the proximal part. This separates
the germ cell growth into a homogeneous phase in the distal part and heterogeneous
one in the proximal part. We also find that, due to a linearity of the mean and std.
deviation of the cell volumes in the distal part, the distribution of cell volumes normal-
ized by their respective means collapse on top of each-other. This underlying feature of
the cell size distribution disappears in the proximal part, as the distributions become
more negatively skewed and heterogeneous. To further investigate the heterogeneity
of volumes we borrow well established inequality quantifiers from economic theory,
namely the Gini index and the Hoover index [61]. The Gini index G and Hoover index
for a population of n values xi where i = 1, .., n with sample mean µx = ∑n

i=1 xi/n are
given by,

G = 1
2n2µx

n∑
i=1

n∑
j=1
|xi − xj| , H = 1

2nµx

n∑
i=1
|xi − µx| (2.12)

We find that both inequality indices show a steady growth beyond ∼ 60% germline
length [Fig.2.18], marking the onset of heterogeneous growth.
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Figure 2.18: Inequality indices show steady growth beyond ∼ 65% germline length
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Chapter 2: Biophysical measurements of germline homeostasis

2.2 Flow fields within the germline
In the previous section we have established the nature of two distinct growth modes
of germ cells that are spatially segregated along the DP axis and this transition lies
around ∼ 65% germline length. These findings pose the following question,
Q: What is the underlying basis of these two growth modes i.e. what sets the distinct

rate of average growth and the origin of volume heterogeneity?

In this section borrowing principles of fluid dynamics, we investigate the underlying
basis of these indicated growth modes and postulate the associated transition. In the
spirit of the previous section, we again rely on fundamental conservation laws and
physically motivated approximations to identify and extract variables necessary to
discuss the origin of volume growth of germ cells. Before considering the intricacies of
the underlying growth dynamics, we clarify certain geometric constraints under which
the germ cells must grow and interestingly that limit the consideration of possibilities.

Like many other species, nematode germ cells grow within a syncytial structure and
are connected to a central luminal corridor called rachis. This allows for exchange of
cytoplasm from germ cell to rachis via rachis bridges and indirectly to other germ cells
of the syncytia. As a result the germ cells can either grow/shrink by exchanging volume
with the outside environment surrounding the germline or via cytoplasmic exchange
with the rachis [Fig.2.19].

Rachis

Figure 2.19: A schematic of the germline is shown emphasizing how exchange of
volume could either be from outside or with the rachis.

Within rachis , the shared cytoplasm is distributed via long range flows from the
distal to proximal end. These flows are known to drive the final steps of growth of the
oocyte. As the germ cell are connected to the germline via holes and exchange cyto-
plasm, it is reasonable to assume that these flows might mediate cytoplasmic exchange
with germ cells hence affect growth of cells, however very little is understood about
germline hydrodynamics. In the following section we shall investigate the relationship
of the germ cells with the flows within the rachis with the goal to understand the
growth dynamics of the germ cells and the germline tissue as a whole.
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2.2 Flow fields within the germline

2.2.1 Volume flux through the rachis
To discuss the cytoplasmic streaming in the DP axis, we perform fluorescence mi-
croscopy on the mid-sagital plane of the rachis and employ a Particle Image Velocime-
try [62–64] originally developed by PIVLab [65], to map the velocity filed of the cy-
toplasmic flow through the rachis. The general algorithm of velocity determination of
PIVLab is based on optimizing cross-correlations. A brief overview of the idea follows.
Let In(x, y) denote the intensity value of the pixel at point (x, y) in the nth frame of
a movie. After defining a coarsegraining template of d× d pixels, we can optimize the
following cross-correlation,

Xn(x, y,∆x,∆y) =∑x+d
x′=x−d

∑y+d
y′=y−d

[
In(x′, y′)− Īn(x, y)

] [
In(x′ + ∆x, y′ + ∆y)− Īn(x+ ∆x, y + ∆y)

]
√
σ2
n(x, y)σ2

n+1(x+ ∆x, y + ∆y)

where

Īn(x, y) =
(

1
2d+1

)2∑x+d
x′=x−d

∑y+d
y′=y−d In(x′, y′) (2.13)

σ2
n(x, y) =

(
1

2d+1

)2∑x+d
x′=x−d

∑y+d
y′=y−d

[
In(x′, y′)2 − Īn(x, y)2

]
(2.14)

The solution to this optimization problem yields the (∆x0,∆y0) for a given set of
(x, y) at the nth time frame that maximizes the cross-correlation. From this estimate
one can define the instantaneous velocities related to the coarsegraining box as,

vx = s

τ
∆x0 (2.15)

vy = s

τ
∆y0 (2.16)

This provides two dimensional velocity fields within the germline [Fig.2.20 A]. The
total three dimensional volume flux is defined as,

Q =
∫
~v· n̂dA (2.17)

where ~v is the velocity vector and n̂ is the unit normal vector of the area element
dA. We assume axisymmetry to estimate this quantity from two-dimensional fields.
We further find that the velocity along the DP axis peaks at the center of the rachis
and decays similar to a parabola towards the boundary of the rachis tube [Fig.2.20 B].
This is similar to a flow profile of a viscous fluid in a pipe [66]. The paraboloid flow
profile in a tube is simply an outcome of no-slip boundary condition and azimuthal
symmetry.
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Figure 2.20: A)An overlay of the germline image with a inferred velocity field from
PIV is presented. Color codes indicates speed. B) The normalized DP axis velocity
of the flowing cytoplasm decays symmetrically from the center. Solid black line is a
parabolic profile for comparison; exact form is indicated in legend.

We use the centerline of the rachis to identify the the orthogonal cross-section and
from it the related n̂. The dot product of the local velocity field ~v with n̂ yields the
DP-axis velocity vx, which the velocity component parallel to the centerline. At each
position of the centerline we extract how vx as a function of distance r from the center
to towards the edge [Fig.2.20 B]. To this radial profile of DP-axis velocity we fit the
following parabolic profile,

vx(r) = v0
(

1− r2

R2

)
(2.18)

where v0 & R are fit parameters that respectively indicate the peak velocity at the
center and radius of the tube. The volume flux then is given by,

Qr =
∫
dφ
∫ R

0
vx(r)rdr (2.19)
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2.2 Flow fields within the germline

which for the parabolic form reduces to,

Qr = πR2v
0

2 = πR2v̄ (2.20)

Hence estimation of v0 & R completely determines the volume flux. It is noteworthy
that the average velocity is simply given by v̄ = v0/2. This is due to the symmetry of
the flow profile around the center of the tube. We use this relationship between the
average velocity and maximum velocity to identify deviations from pipe flow and define
a consistent dataset. For a discussion on viscous flows through a pipe see Appendix B.
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Figure 2.21: Volumetric flux through rachis is represented along the DP axis. The
rachis flux peaks at about ∼ 60% germline length. Spatial gradient of the rachis flux
indicates exchange with the surrounding germ cells.

We find that the volume flux through rachis/discharge rate Qr shows montonic
growth until 60% of the germline length, beyond which it steadily decreases. To
understand the implications of this spatial profile of the volume flux, we appeal to the
fundamental principle of volume conservation, which is ensured in an incompressible
fluid [66–69]. Given that cytoplasm is incompressible we can further deduce that the
sptail gradient of this volume must identify the local information of sources and sinks
which account for the changes of the volume flux. Let us formulate this with the
following conservation law,

∂tAr + ∂xQr = J (2.21)
where Ar represents the cross-sectional area of the rachis and J represents the current
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Chapter 2: Biophysical measurements of germline homeostasis

of material in the direction of germ cell to rachis i. e.when the exchange of cytoplasm
driven by this current is in the direction of germ cell to rachis J > 0. At steady
state the current J is simply given by the spatial gradient of Qr. As noted before, Qr

steadily increases along the DP axis in the distal region upto ∼ 60% germline length
and decays thereafter. This indicates that J > 0 in the distal region and switches sign
in the proximal germline. We therefore calculate J from the spatial gradient of Qr

using a central difference method.
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Figure 2.22: Spatial profile of germ cell to rachis current J is shown. In the distal
region J > 0 and beyond ∼ 60% germline length J < 0

The nonzero current profile implies exchange with the surrounding germ cells. In
the distal region J > 0, which implies that germ cells donate cytoplasm to the rachis
and drive the cytoplasmic streaming, while in the proximal gonad J < 0 indicating
that germ cells take up material from the rachis to grow in volume. It is interesting to
note that in the distal region despite losing material to the rachis distal germ cells grow
from ∼ 50fL to ∼ 150fL in size. As a mere consequence of volume conservation, this
extra material for growth in the distal region then must arise from an external source
surrounding the germline and the gonadal basal lamina. To calculate this external
source we must account for flux balance of the entire germline tissue including the
transport flux due to cell motion.

2.2.2 Cell volume flux
In the same spirit we define the flux balance of cellular part of the germline as,
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2.2 Flow fields within the germline

∂tAc + ∂xQc = S − J (2.22)
where Qc = vcAc is the total cellular material flux, defined as the product of average

cell velocity and the cellular fraction of the germline cross-sectional area. S is the
source current which quantifies material uptake from the surrounding.

Figure 2.23: Spatial profile of cellular part of the germline cross-section Ac

Combining with previously estimated cell velocities (Fig.2.6) with the estimate of
Ac we identify the spatial profile of cell material flux Qc. Both the conservation laws
are,

∂tAc + ∂xQc = S − J (2.23)
∂tAr + ∂xQr = J (2.24)

which taken together provides the total sonsrvation of volume flux,

∂t(Ac + Ar) + ∂x(Qc +Qr) = S (2.25)
=⇒ ∂tAtot + ∂xQtot = S (2.26)

where Atot = Ac + Ar and Qtot = Qc +Qr.
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Figure 2.24: Spatial profile of cell volume flux Qc. Steady grwoth upto ∼ 60%
germline is observed beyond which non-monotonic behavior sets in.

2.2.3 External source current
Invoking the steady-state argument we identify the source current S as the spatial
gradient of total volume flux Qtot = Qc + Qr. A central difference method is used to
evaluate the numerical gradient.
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Figure 2.25: Source Current along the DP axis. Black dashed line shows a smooth
representation of S; red dashed line marks the region where S changes sign from
positive to negative.

We find that , consistent with our argumentation source current is positive in dis-
tal region accounting for growth of distal germ cells despite losing material to the
rachis and driving cytoplasmic streaming. Interestingly, the effective source current
is negative in the proximal region, indicating loss/leakage from the germline tissue.
We hypothesize that this leakage in the proximal gonad, is due to extrusion of apop-
totic cells. It is noteworthy that this spatial information is unknown in literature,
likely due to the inability to visualize and quantify take up of cytosolic matter. This
physics motivated analysis provides a novel way of accessing this spatial information
and hence the first quantitative insights on how germ cells grow by taking up material
from surrounding.

Moreover, this also implies that the distal germline primarily trasports material
from outside to rachis, driving long range cytoplasmic flows which leads to growth
of proximal cells as well as future oocytes. It is noteworthy that in the distal region
S > J and one can define the ratio as the pumping/filtration efficiency, ηπ = J/S .
We find that ηπ = 0.46(±0.08).

2.3 Conclusion
In this chapter we set out to investigate the underlying basis of germ cell growth as
well as how within this syncytial architecture some germ cells grow to become oocytes
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and some shrink and are apoptosed.
We found that in the distal part of the gonad, the germ cell population starts out

homogeneous and grows with a constant rate while maintaining low relative variation.
A strict relationship between sample mean and sample standard deviation of volumes
indicates regulated structure of the variation of cell volumes. This regulation of cell
size variation disappears in the proximal part, as the germ cell population becomes
increasingly heterogeneous and eventually bimodal. A transition is indicated by the
crossover of sample mean and sample standard deviation of volumes, from one linear
relationship to another with steeper slope. This implies incommensurate increase of
variation with respect to overall growth. Concurrently the mean growth rate sharply
increases in a volume dependent manner. We proposed and utilized two probabilistic
models to understand how variation of cell sizes may arise in this context. Taken
together, we found that germ cells populations show distinct modes of growth in distal
and proximal germline; the distal population grows slow and ”homogeneously” while
the proximal one is ”heterogeneous” and rapid, possibly marking the onset of eventual
oogenic growth.

We next set out to identify the hydrodynamic basis of germ cell growth to investigate
and explain the transition from one growth mode to the other in the distal-proximal
axis. Using concepts of fluid dynamics of viscous incompressible fluids and conservation
laws, we ascertain volume fluxes due to cytoplasmic streaming and cell movements. A
nonzero spatial gradient of the cytoplasmic flux in the rachis informed us about the
spatial profile of volume exchange between germ cells and rachis. This current J shows
a clear transition around ∼ 60% germline length, where it changes sign from positive
to negative. This marks the transition from a phase where germ cells lose cytoplasm
to rachis to a phase where they take up volume from the cytoplasmic stream down
the distal proximal line. The puzzling growth of germ cells in the distal part despite
losing material to rachis, led us to find the spatial profile external source current that
must exist to account for distal germ cell growth. Here as well, we find a transition of
source current at about 60% germline length. Both lateral fluxes that drive the flow
of cytoplasmic stream and the cell volume flux, invert in the same region, revealing a
transition of underlying tissue hydraulics.

The spatial proximity of the transition in tissue hydraulics and the statistical in-
stability of cell volumes begs the question whether the hydraulic transition not only
underlies the change in growth rate but also drives the growing heterogeneity. The
proximal germ cells are inflated by the cytoplasmic streaming and alludes to the possi-
bility that such inflation mechanisms are inherently unstable. In simile, it is impossible
to inflate two connected soap bubbles together via a channel, as due to curvature driven
forces small variation of sizes amplify making the configuration increasingly heteroge-
neous and eventually one bubble engulfs the other. Similar instability also occurs for
two connected balloons [70,71]. To address whether the transition in tissue hydraulics
could trigger such an instability and henceforth underlie the essential decision of life
and death in germ cells, a theoretical framework is necessary that addresses ques-
tions of structural stability of the germline. Towards this end, we derive a physical
framework in the next chapter.
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Chapter 3
Biophysical theories of the
germline dynamics

In the previous chapter, we have uncovered the intricate interplay of long range flows of
cytoplasm as well as cells with the emergent and quiet essential phenomena of growth
and shrinkage of germ cells within the C. elegans oogenic germline. Unlike other cells
that constitute tissues, the germ cells are not individual as they are connected to each-
other via the luminal corridor ”rachis”, which itself mediates long range cytoplasmic
flows. Hence these cells lack fundamental mechanisms of volume control or volume
elasticity and rapid changes and redistribution of volume is permitted by geometry
and the underlying mechanics. While various aspects of tissue mechanics and hydro-
dynamics is extensively studied, this unique system and phenomena pose novel and
fascinating questions about dynamics of tissue that pump and grow, hence presenting
an opportunity of new ideas and concepts.

In this chapter we will derive a framework to discuss the tissue hydraulics of germline,
with a particular focus on understanding effects of source and sink of material from
outside in the development of long range flow fields of cytoplasm as well as cells.
Using this framework, we will investigate how steady pressure gradients may develop
within an organ ”at rest”, and how these pressure gradients drive volume exchanges
locally. Furthermore, we will explore how such volume exchanges and fluxes influence
the stability of a cellular doublet as well as a cellular collective.



Chapter 3: Biophysical theories of the germline dynamics

3.1 Hydrodynamics of the germline
The germline is a syncytial tube that consists of a monolayer of cells. Within this
monolayer the cells divide and extrude, which introduces local changes in density as
well force dipoles, which leads to a coarse-grained effect of local stresses and gradient of
such stresses can drive rearrangement and flow of cells [50]. Within the inner cylinder
rachis, there exists steady long range flows of cytoplasm, which indicates gradients
of stress along the axis of symmetry of the germline. The cells are connected to
the inner cylinder called rachis via circular openings/holes ranging microns in radii.
Gradients or differences of stress across the boundary of cellular layer and the fluid-
filled inner cylinder would drive flows of cytoplasm. Together, this forms a description
of a hydrodynamic system that capture the essential features of the real and albeit
more complicated germline organ.

Before delving into considerations of geometry and formalism, we must identify the
hydrodynamics fields and their corresponding forces. Due to azimuthal symmetry
around DP/x-axis, we shall only limit ourselves to fluxes along the axis of symmetry.
Due to conservation of volume within the cellular layer as well as fluid within rachis,
we should have the following hydrodynamic fluxes: cell volume flux Qc, rachis flux Qr

that must satisfy the corresponding conservation laws. These fluxes develop in terms
of velocity fields within the respective layers. Cell density also can only change via
local birth and death events or as a result the cell density flux Jc = nvc and must
satisfies a conservation of law, as result we should obtain another hydrodynamic field
Jc. However this is not an independent field of its’ own but rather transpires through
the cell velocity field. We identify the conjugate forces fc & fr respectively to be the
axial gradient of cell pressure Pc and rachis pressure Pr,

fc = −∂xPc & fr = −∂xPr

To derive the constitute relationship between the fluxes and forces we appeal to
linear irreversible thermodynamics. One can write the isothermal (at temperature T )
entropy production (Ṡ) to be,

T Ṡ =
∫

[fcQc + frQr] dx =
∫

[(−∂xPc)Qc + (−∂xPr)Qr] dx (3.1)

Using linear Onsager relations one can obtain,

−∂xPc = λcQc + λcrQr (3.2)
−∂xPr = λrcQc + λrQr (3.3)

where λc, λr are straight coupling terms, while λcr & λrc represent cross coupling
terms. Because of time asymmetry in this system, λrc = −λrc. We later derive a
similar relationship from arguments based on fluid flows and develop a more intuitive
interpretation of the couplings and compare this general form.
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3.1.1 1 D hydraulic description
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Figure 3.1: Schematic of hydrodynamic fluxes in the germline and corresponding
physical variables.

We consider a one-dimensional representation of the gonad with positions x ∈ [0, L]
along the distal-proximal axis, where L is the gonad-length (Fig. 3.1). We first
consider the conservation of volume in terms of the flux balances,

∂tAc + ∂x(vcAc) = S − J (3.4)
∂tAr + ∂x(vrAr) = J . (3.5)

Here Ac and Ar denote the cross-sectional areas of the germline that correspond to the
germ cell layer and the rachis, respectively. The average velocities of rachis cytoplasm
and cells are denoted vr and vc, respectively and are defined as,

vr = Qr

Ar
& vc = Qc

Ac
.

Source current due to material uptake from outside into cell layer is denoted S, and
J signifies the germ cell to rachis current. This current J is driven by the difference
in cell pressure Pc and rachis pressure Pr, and given by

J = α(Pc − Pr) . (3.6)

Here, α is a dissipative coefficient that captures the permittivity of the tissue-fluid
interface that mediate such exchanges. Without a specific model in mind, some gen-
eral considerations of the system can inform us about this dissipative coefficient. An
interpreattion α is simply that it is the current generated for a unit pressure difference
att he interface of tissue and fluid. Since this current originates due to hydrodynamic
exchanges through holes, it should depend on the density of holes. Naturally, α ∼ n,
with n being the linear density of cells as well as holes, hence α ∼ l−1

c . Also, α should
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decrease with viscosity of the cytoplasm η, while it should diverge if η → 0+, hence
another relationship is α ∼ η−1. We will discuss the specific form of α in the next
section in detail.

The force balance in germ cells and rachis can be expressed according to

−∂xPc = γovc + γr(vc − vr) (3.7)
−∂xPr = γr(vr − vc) , (3.8)

where γo is a coefficient of friction between germ cells and the outside, and γr is an
effective friction coefficient that describes frictional interactions between germ cell layer
and the fluid within the rachis.

In the steady state, where the cross-sectional areas Ac & Ar does not change over
time, the conservation laws Eqs.(3.4-3.5) reduce to,

∂xQc = S − J (3.9)
∂xQr = J . (3.10)

These equations must be supplemented by boundary conditions. From the point of
view of viscous flow within a pipe it is natural to choose pressure boundary conditions
and prescribe them at both ends of the gonad, however due to the presence of exchange
and leakage (see Appendix B.) it is non-trivial to identify the appropriate pressure
condition at the inlet and outlet. Hence we motivate the boundary conditions from
our knowledge of the real system and choose to prescribe boundary conditions in terms
of the fluxes instead.

The germline tube is closed at the distal tip hence we propose that both fluxes of
both germ cells as well as rachis fluid at the distal tip (x = 0) vanish: Qc(0) = 0 and
Qr(0) = 0 . At the proximal end (x = L) we also see that the inner-tube closes and,
we have Qr(L) = 0. Note that volume conservation implies Qc(L) =

∫
Sdx, i.e. the

volume flux leaving the system at the proximal end Acvc(L) equals the total material
uptake

∫
Sdx from the outside.

3.1.2 Hydrodynamic flows through rachis bridges

Before engaging in particular solutions of the tissue hydraulics, it is convenient to build
a hydrodynamic view of how open cells such as the germ cells here may drive flows
to reservoirs. This will help us understand the material basis of the current J and
the nature of local pressure differences that drive such exchanges. As a zeroth order
approximation, one can take a perfectly cell with radius Rc and opening of radius r. If
r << Rc, then the flow field around the hole/pore is hardly affected by the boundaries
of the cell and effectively maps to a problem of flow through a circular orifice [66].
With the convenient choice of oblate coordinate system, this problem can be exactly
solved. This result is originally due to Sampson [72] and is often termed as Sampon’s
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flow.

A) B)

Figure 3.2: A) Schematic depiction of cell with a hole. B) Streamlines are shown
for Sampson’s flow

In this case one can assume that the pressure deep within the cell is steady and is
given by Pc and Pr for the reservoir. The relationship between ∆p = Pc − Pr and
volume flux q is given by,

q = r3

3η∆p . (3.11)

An equivalent result is also derived by Roscoe employing an electrostatic analogy [73]
. The scaling relationship can also be observed by the starting from a generalized pipe
flow where,

q ∼ r4

η

(
−∂p
∂z

)
(3.12)

The limiting length-scale here is the radius of the hole which sets the length-scale
for pressure drop, hence

q ∼ r4

η

(
∆p
r

)
= r3

η
∆p . (3.13)

One might wish to take the explicit geometry of the germ cells into account and
extend from an infinite pool to a more realistic geometry of spherical cap. If the
diameter of the hole makes an angle of 2ω at the center of the spherical cap, a correction
is found [74]. For small ω around π we find,

q ' r3

3η∆p
[
1− 1

4(ω − π)2
]

. (3.14)

Note that the scaling is unaffected. The current is given by J = q/lc , hence we
obtain the explicit relationship,
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J = α∆p = r3

3ηlc
∆p . (3.15)

The nonlinear dependence on r implies significant influence on current for even small
changes of hole radii, e. g. if r → r(1 + ε) then the corresponding J → J(1 + ε)3 ∼
J(1 + 3ε). Hence for an overall 5% change of hole radius a 15% effect can be found in
the current.

3.1.3 Solutions to simplified geometries
For simplicity we consider the case where the areas Ac and Ar are constant along the
gonad. In this case volume balance in steady state reads

∂xQc = S − α(Pc − Pr) (3.16)
∂xQr = α(Pc − Pr) , (3.17)

where Qc = Acvc and Qr = Arvr are the cell and rachis volume fluxes, respectively.
Combining these equations with the force-balance equations (Eqs. 3.7, 3.8) we obtain
the velocity profiles which read

∂2
xQc = ∂xS + α(γo + 2γr)

Ac
Qc −

2αγr
Ar

Qr (3.18)

∂2
xQr = −α(γo + 2γr)

Ac
Qc + 2αγr

Ar
Qr . (3.19)

In redefined nondimensional units we obtain

∂2
xQc = ∂xS + βcQc − βrQr (3.20)
∂2
xQr = −βcQc + βrQr . (3.21)

Here βc = α(γo + 2γr)/Ac and βr = 2αγr/Ar are nondimensional coefficients. This
constitutes a linear system of second order differential equations with the nonhomoge-
neous term ∂xS and an analytic solution can be obtained but a closed form is difficult
to represent. We shall however discuss the analytical solutions in the case of a simple
piecewise linear source profile.

Step function Source:

We choose the source profile to be,

S(x) = s0Θ(0.6− x) x ∈ [0, 1]
where Θ represents the Heaviside theta function. As a result there is constant source

current of s0 until 0.6 fraction of the tube, beyond which the source disappears. This
implies that ∂xS(x) = −s0δ(x− 0.6). We shall solve the Eq.3.20-3.21 by employing a
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jump condition at x = 0.6,
∂xS(x = 0.6) = −s0 . (3.22)

Hence both prior and beyond x = 0.6, the set of equation reduces to the homogeneous
form and can be expressed as,

∂2
x

(
Qc

Qr

)
=

(
βc −βr
−βc βr

)(
Qc

Qr

)
(3.23)

= β

(
Qc

Qr

)
. (3.24)

The eigensystem of the linear matrix β determines the solutions to this linear equa-
tion. Note that Tr(β) = βc + βr but the determinant Det(β) = 0, indicating that
eigenvalues must Eig = 0, βc+βr. To evaluate this system we implement the following
ansatz within Eq.3.23, (

Qc

Qr

)
=
(
Q0
c

Q0
r

)
e±λx (3.25)

and obtain,

λ2
(1) = 0 & λ2

(2) = βc + βr (3.26)
and the respective eigenvectors ,(

Q(1)
c

Q(1)
r

)
=
(
βc
βr

1

)
&

(
Q(2)
c

Q(2)
r

)
=
(
−1
1

)
. (3.27)

Hence the general solution is give by,(
Qc(x)
Qr(x)

)
= (c1 + c2x)

(
βc
βr

1

)
+
(
c3e
−λ(2)x + c4e

λ(2)x
)(−1

1

)
. (3.28)

The constant factors can be evaluated using boundary conditions. Note that,

∂xQc + ∂xQr = c2

(
βc
βr

+ 1
)

= S(x) (3.29)

which determines the value of c2.
Evaluating at x = 0 using the boundary condition,(

Qc(0)
Qr(0)

)
= c1

(
βc
βr

1

)
+ (c3 + c4)

(
−1
1

)
=
(

0
0

)
(3.30)
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=⇒ (3.31)

c1
βc
βr
− (c3 + c4) = 0 (3.32)

c1 + c3 + c4 = 0 (3.33)

which yields, c1 = 0 and c3 = −c4 = c and c2 = s0/(βc/βr + 1) . Hence the solution
for x ∈ [0, 0.6] reduces to,(

Qc(x)
Qr(x)

)
= s0

βc
βr

+ 1
x

(
βc
βr

1

)
+ c

(
e−λ(2)x − eλ(2)x

)(−1
1

)
. (3.34)

Evaluating at x = 1 using the boundary condition,

Qr(1) = 0 = c̄1 + c̄2 + (c̄3e
−λ(2) + c̄4e

λ(2)) (3.35)
and S(1) = 0 we find,

c̄1 = −(c̄3e
−λ(2) + c̄4e

λ(2)) (3.36)
which gives the following solution for x ∈ [0.6, 1],

(
Qc(x)
Qr(x)

)
= −(c̄3e

−λ(2) + c̄4e
λ(2))

(
βc
βr

1

)
+
(
c̄3e
−λ(2)x + c̄4e

λ(2)x
)(−1

1

)
. (3.37)

Moreover due to steady state condition Qc(1) =
∫
S(x)dx = 0.6s0 which gives the

condition,
− (c̄3e

−λ(2) + c̄4e
λ(2)) = 0.6s0

βc
βr

+ 1
(3.38)

The Eq.3.34,3.37 must match at the boundary at x = 0.6 and yields the following
condition,

c = c̄3e
−λ(2)0.6 + c̄4e

λ(2)0.6

e−λ(2)0.6 − eλ(2)0.6 . (3.39)

It is interesting to note that the in the beginning due to the presence of source
the linear part of the Qc is non-zero and may dominate for high values of βc/βr. We
present the numerically obtained solutions( [75,76]) in Fig.3.3.
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Figure 3.3: A) A source profile is presented ,approximated by the complimentary
error function; for solutions the the steepest erfc is chosen. B)-D) Normalized fluxes
are presented for various βc/βr

We find that the effective magnitude is purely a function of
∫
Sdx = Qc(1), hence

we presented fluxes normalized by Qc(1). The relative difference of βc and βr drive
the partitioning of fluxes between the cell volume and rachis flux. We also note that
upon increase of βc/βr the peak rachis flux increases, however the maximum value of
Qr asymptotically approaches Qc(1) (see Fig.3.5) . To understand the effect of leakage
on the system we modify the source profile to be,

S(x) = s0 (2Θ(0.6− x)− 1) x ∈ [0, 1]
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A) B)

C) D)

0 0.2 0.4 0.6 0.8 1

x [% Length]

-1

-0.5

0

0.5

1

S

0 20 40 60 80 100

x[%Length]

0

0.5

1

1.5

2

2.5

N
o

rm
a
liz

e
d

 F
lu

x
e
s

Q
c
/Q

c
(l)

Q
r
/Q

c
(l)

0 20 40 60 80 100

x[%Length]

0

0.5

1

1.5

N
o

rm
a
liz

e
d

 F
lu

x
e
s

Q
c
/Q

c
(l)

Q
r
/Q

c
(l)

0 20 40 60 80 100

x[%Length]

0

0.5

1

1.5

2

2.5

N
o

rm
a
liz

e
d

 F
lu

x
e
s

Q
c
/Q

c
(l)

Q
r
/Q

c
(l)

Figure 3.4: A) A source profile with proximal leakage is presented, approximated
by the complimentary error function; for solutions the the steepest erfc is chosen.
B)-D) Normalized fluxes are presented for various βc/βr

We find a similar qualitative behavior in terms of the spatial profile of the fluxes,
however the asymptotic values of peak Qr with tuning βc/βr exceed Qc(1) (see Fig.3.5)
.
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Figure 3.5: A) Maxima of normalized rachis flux as a function of relative frictions
for source profile without leakage. B) Maxima of normalized rachis flux as a function
of relative frictions for source profile with leakage.

Comparison to experiments:
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3.1 Hydrodynamics of the germline

We next approximate the experimentally obtained source current profile with a
function given by S(x) = a0 + ∑3

n=1(an cos(nx/L) + bn sin(nx/L) . This provides us
with a smooth and continuous representation S(x) of the data (Fig.2.25 dashed line).
We then fit numerically determined solutions of Eqs. 3.20 and 3.21 to the profile of
experimentally obtained cell volume flux and rachis flux Qc and Qr using βc and βr as
fit parameters (Fig.3.6 ).
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Figure 3.6: A) Cytoplasmic flux Qr through the rachis as a function of position
along the gonad. Open circles, Qr determined experimentally from 10 gonad arms.
Solid line, best parameter theory fit. B) Inferred cell volume flux Qc as a function
of position along the gonad. Open circles, Solid line, best parameter theory fit.
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along the DP-axis of the gonad. Open circles indicate experimentally inferred data,
solid lines are derived from fit solutions in Fig.3.6

48



3.2 Germline Mechanics and Stability of Symmetric States

3.2 Germline Mechanics and Stability of Symmetric
States

To investigate whether the inversion of cell to rachis current and the associated pressure
difference could lead to an inflation related instability we investigate the stability of
the germline at a given cross-section. Two aspects of the germline mechanics play
important role here: 1) the stability of the rachis structure i.e. the radial mechanics, 2)
the azimuthal stability of coupled homogeneous germ cells. Without loss of generality
we shall restrict the discussion here to idealized geometries of the germline, where
the rachis tube and the tissue tube are concentric. We shall first discuss the radial
mechanics, as it is non-trivial how a tissue structure with openings could attain stability
despite effects of cortical tension.

3.2.1 Radial mechanics of the germline tissue
In the standard pictures of tissue mechanics, it is inherently assumed that the cell vol-
umes are enclosed and as a result the incompressibilty criterion leads to local volume
elasticity [16, 77–79]. Unlike such regular tissues, the germline consists of open germ
cells with rachis bridges that allow volume exchange. These rachis bridges are cytoki-
netic remnants consisting of various proteins such as the long and short isoform of the
anilin protein ani-1 & ani-2 [49, 80], which have been argued to be a key molecular
player in the stability of these cytokinetic bridges. In this section we shall entertain the
idea that the influence of ring packings can affect the stability of the germline. Similar
to the approaches discussed in [16, 77], we shall adopt a discrete idealized mechani-
cal model and try to deduce a work function/pseudo-potential in terms of geometric
variables.

We consider a cross-section of the germline and a column of germ cells that are
radially distributed. This column consists of a single layer of cells and width lc. The
number of cells are denoted by Nc = ρlc, where ρ is the linear density of cells as defined
before. The outer and inner radii of the germline is noted as Re & Ri (See Fig.3.8).
We propose the following work function,

W =
Nc∑
k=1

 ∑
s∈{a,b,l}

T (k)
s A(n)

s +
∑
e

λele +K(k)
r (r(k) − r0)2

 (3.40)

where index k indicates the cell identity and index s denotes the surfaces within the
cell of (a, b, l) kind, indicating apical, basal and lateral locations. T (n)

s is the tension of
the surface s within cell k. The terms λele captures line tension of interface edges. The
last term captures the elasticity of rachis bridges where Kr is the the elastic modulus
and the r0 is the rest length of the rachis bridges. Note that there no explicit volume
control/elasticity terms have been introduced .
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Distal Proximal Cross-section Lateral View

Figure 3.8: Schematic of a germline cross-section showing the sagital and lateral
view.

We shall argue that the effects of the edge tensions can be absorbed within the lateral
cortical tensions and hence we can ignore. Next we shall discuss the case where all cells
are identical and seek solutions of the homogeneous kind. For the idealized geometry
depicted in Fig.3.8 expressing all the contributions explicitly in terms of Re, Ri, n we
obtain,

W [Re, Ri, n] = Tl
(
π(R2

e −R2
i ) + (n− 1)lc(Re −Ri)

)
+

Tb2πRelc + Tb2πRilc + nKr(r − r0)2 .

Furthermore we shall argue that Tl = Tb = Tc, implying no sharp distinction within
the germ cell cortex except the rachis cortex with Ta = Tr. We also propose rn = mRin,
indicating that the rings stretch/adjust if the underlying rachis surface stretches. The
outer boundary is constrained by the extracellular matrix and neighboring organs and
we shall impose Re to be fixed. This reduces the ensemble to [Ri, n] and allows us to
nondimensionalize all the lengthscales. We redefine,

R = Ri

Re

, l̃c = lc
Re

, tr = Tr
Tc
, kr = Kr

πTc
, ω = W

πR2
eTc

and after a little bit of algebra we obtain,

ω[R, n] =
(
Nckr(m−m0)2 − 1

)
R2 −

(
Nc − 1
π

− tr
)
l̃cR +

(
2 + Nc − 1

π

)
l̃c . (3.41)

Here the reaction coordinate R ∈ [0, 1], where the extrema presents the physical case
of a closed (R = 0) or a completely open (R = 1) rachis.

Note that in the absence of the ring elasticity (kr = 0), the work function resembles
a nucleation profile, only yielding boundary stable states R = 0 or R = 1.
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A) B)

Figure 3.9: A) Work function ω[R] depicted for various choices of kr,B) Corre-
sponding force associated with the work function

To obtain the extrema of the work-function, we seek zeros of the force balance law,

fR = −∂ω
∂R

= −2
(
Nckr (m−m0)2 − 1

)
R +

(
Nc − 1
π

− tr
)
l̃c (3.42)

and find the steady state Rss to be,

Rss = Nc − 1− πtr
2π (Nckr(m−m0)2 − 1) l̃c (3.43)

Rss presents a stable solution if and only if,

∂2ω

∂R2 = 2
(
Nckr(m−m0)2 − 1

)
> 0 (3.44)

which yields a stability criteria on the number of cells,

Nc > N0 = 1
kr(m−m0)2 . (3.45)

Furthermore R > 0 implies that,

Nc − 1
π

> tr (3.46)

and for
Nc − 1
π

≤ tr (3.47)

the boundary minima R = 0 is the stable solution. This allows us to obtain the phase
diagram for the radial stability of the germline.
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Figure 3.10: Phase diagram of the germline structure is obtained for high elasticity
regime.

For high values of rachis tension tr, we obtain a closed rachis phase. Stable finite
values of R is only obtained for Nc > N0 = 1/kr(m − m0)2, which is easily satisfied
for high elastic modulus kr. Hence elastic effects of the rachis bridges can effectively
stabilize the radial mechanics of the germline, even in the absence of explicit volume
control. For low ring elasticity the open rachis phase dominates and only the boundary
solutions are found. In this section we establish the basis for radial stability of the
germline and rachis, in the following section we shall ascertain how cells around the
rachis maintain azimuthal symmetry. For this purpose we shall simply assume that
the radii are at equilibrium.
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3.2.2 Azimuthal stability of a germ-cell doublet

Figure 3.11: Schematic of a germ cell doublet with azimuthal splay of θ and distal-
proximal depth of lc.

The change in sign of the germ cell to rachis current J at x ' 0.6L implies an inversion
of the pressure difference Pc − Pr. We now discuss how the stability of a pair of cells
located along the gonad at position x depends on the pressure profiles in the gonad.

We consider two cells with total cross-section area Ac covering the azimuthal angles
θ1 and θ2, respectively, with the constraint that θ1 + θ2 = 2π.

The volumes of the two cells are given by Vi = Acθilc/(2π), where lc is the distal-
proximal cell length. Because of material exchange the cell volume obeys,

dVi
dt

= Silc − Jilc , (3.48)

where Silc is the rate of volume uptake of cells i = 1, 2 from outside due to source
current Si and Jilc denotes the rate of volume loss from cell to rachis due to exchange
via holes.

We propose the following model,

Si = S0θi/(2π) & Ji = αi(Pc − Pr) (3.49)

which simply implies that cells with larger basal area will take up more material.
We have introduced S0 = S(x) and αi ' r3

i /(3lcη), where the radii ri of rachis bridges
can differ from cell to cell. The rate of change of cell volume can be written as,

dVi
dt

= Acθi
2π

dlc
dt

+ lcAc
2π

dθi
dt

= S0lc
θi
2π − αilc(Pc − Pr) . (3.50)

The total volume change is,

dV1

dt
+ dV2

dt
= Ac

dlc
dt

= S0lc − (α1 + α2)lc(Pc − Pr) . (3.51)

We define the relative volume difference ν = (V1 − V2)/(V1 + V2), which obeys ν =
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(θ1 − θ2)/(2π). We therefore consider the dynamics of ν as given by

dν

dt
= Pc − Pr

Ac
((α1 + α2)ν − α1 + α2) . (3.52)

In general, αi may depend on cell volume. We choose that ri ' r0θi/(2π), implying
a correlation between the rachis bridge radius and cell size . We then have αi =
α0(θi/(2π))3, where α0 = r3

0/(3ηlc). We find

dν

dt
= −α0(Pc − Pr)

2Ac
(1− ν)(1 + ν)ν . (3.53)

This equation has three steady-state solutions given by ν = 0 and ν = ±1, correspond-
ing to the solution of two cells of equal size, and two solutions where in each case one
of the two cells fills the entire cross-section.

The stability of all three fixed points is shown in Fig.3.12, where the rate of change
of relative volume difference dν/dt is plotted as a function of ν. For Pc > Pr the
symmetric steady-state with ν = 0 is stable, while the two asymmetric steady-states
are unstable. As soon as the pressure difference changes sign , the symmetric steady-
state becomes unstable and the system reaches one of the two asymmetric steady-states
by spontaneous symmetry breaking. We term this spontaneous symmetry breaking
phenomena driven by pressure inversion ”hydraulic instability”

A linear stability analysis can be performed around the fixed point ν∗ by introducing
a perturbation of δν,

δν

dt
= −α0(Pc − Pr)

2Ac

(
1− 3(ν∗)2

)
δν (3.54)

which implies,

δν

dt

∣∣∣
0

= −α0(Pc − Pr)
2Ac

δν & δν

dt

∣∣∣
±1

= 2α0(Pc − Pr)
2Ac

δν (3.55)

which shows stability switch when the sign of Pc − Pr changes.
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Figure 3.12: Rate of change of of relative volume difference(ν) is shown as function
of ν. Solid circles indicate stable steady-states while empty ones correspond to
unstable ones. For Pc > Pr the symmetric steady-state ν = 0 is stable and for
Pc < Pr the asymmetric states ν ± 1 are stable.

One can evaluate the kinetics of symmetry breaking restorations more methodically
by introducing large perturbations numerically and simply solving Eq.3.52 for various
initial conditions of ν.
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Figure 3.13: A) For various initial conditions ν decays to 0 and restore symmetry
when Pc > Pr. B) Semilogarithmic plot of A), emphasizing exponential decay as
ν → 0
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Figure 3.14: A) For various initial conditions ν grows to the nearest broken-
symmetry state ν = ±1 when Pc < Pr. B) Semilogarithmic plot of A), emphasizing
exponential convergence as ν → ±1

This stability can also be discussed in terms of identifying the minima of a potential
function

W (ν) = −α0(Pc − Pr)
2Ac

(
ν4

4 −
ν2

2

)
, (3.56)

for which
dν

dt
= −dW

dν
. (3.57)

This potential has a familiar structure to the Landau-Ginzburg potential.
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Figure 3.15: Pseudopotential is shown for various values of pressure-difference
Pc − Pr. The extrema of the potential change curvature upon changes of pres-
sure difference Pc − Pr.

Generalized case:
We further evaluate the generalized case where the radius of the rachis bridges have a
minimum size, which effectively introduces an offset in the proposed relationship of ri
and θi. This can be represented as,

ri = r0

(
θ

2π + b

)
(3.58)

Under this generalization the expression for the phenomenological coefficient αi mod-
ifies to,

αi = α0

(
θi
2π + b

)3

(3.59)

This implies that,

α1 = α0

(1 + ν

2 + b
)3

(3.60)

α2 = α0

(1− ν
2 + b

)3
(3.61)

(3.62)
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Inserting these expression in Eq.3.52 snd rearranging we obtain,

dν

dt
= −α0 (Pc − Pr)

Ac

[(1
2 + 3

2b
)
ν3 + 2

(
b3 − 3

4b−
1
4

)
ν
]

(3.63)

= −α0 (Pc − Pr)
Ac

[(1
2 + 3

2b
)
ν2 + 2

(
b3 − 3

4b−
1
4

)]
ν (3.64)

The fixed points of this equation lie at,

ν∗ = 0 , ±
(

1− 4b3

1 + 3b

) 1
2

. (3.65)

Note that only symmetry-broken states are influenced by the offset and for b = 0 we
recover the original result.
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Figure 3.16: A) Position of symmetry broken state changes with b, B) Position of
the non-trivial fixed points is shows as a function of offset b. For high values of b,
non-trivial fixed points approach the trivial fixed point ν = 0.
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Figure 3.17: Rate of change of of relative volume difference(ν) is shown as function
of ν for various values of b, orange arrow indicates increasing b. Top:Pc > Pr,bottom:
Pc < Pr
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3.2.3 Axial stability of germ cells
In this section we will discuss the stability of germ cells in the axial direction. It is note
that the azimuthal stability of the germ cell doublet does not depend on lc, however
the converse is not true. As a result as the azimuthal symmetry is broken, it may
influence stability axially as well. Equation of motion for lc is given by,

dlc
dt

=
(
S0

Ac
− α0(Pc − Pr)

Ac
(ν3 + (1− ν)3)

)
lc (3.66)

We find that there is no unique fixed point hence we must define a reference point
to evaluate stability. If the homeostatic linear density of cells is given by n0, then
we choose the reference point l∗c = 1/n0 . Redefining lc = l∗c + δlc , s̃0 = S0/Ac and
p̃ = α0(Pc − Pr)/Ac we find,

d

dt
δlc =

(
s̃0 − p̃(ν3 + (1− ν)3)

)
δlc (3.67)

which evaluated at different fixed point sof ν yield,

d

dt
δlc

∣∣∣∣∣
ν=0,+1

= (s̃0 − p̃) δlc & d

dt
δlc

∣∣∣∣∣
ν=−1

= (s̃0 − 7p̃) δlc (3.68)

Both s̃0, p̃ are essentially time-scales and the relative balance of the two determines
the stability of δlc. It is interesting to note that the growth rates are identical around
ν = 0,+1 however disparate from ν = −1. We explore the phase-space of (ν, δlc) as
a function of s̃0 & p̃. Note that here we only discuss the simplified case in which a
constant hydraulic conductivity α0 is maintained. This approximation only holds in
the vicinity of l∗c . Since α0 = r3

0/(3ηlc) ' r3
0/(3ηl∗c)(1 − δlc/l

∗
c), this correction does

not affect the stability analysis in linear order. Generically α0 as well as (Pc − Pr) are
dependent on lc. For a discussion please see Supplementary note of [1].
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Figure 3.18: Phase portrait is shown for various values of s̃0 for p̃ > 0. (A-C)
shows a stable fixed point at (0, 0) and saddle points at (±1, 0) D) (0, 0) is also a
saddle point.

For Pc > Pr: We find that the symmetric configuration (ν = 0) is stable axially as
long as s̃0 ≤ p̃, beyond which both cells of the doublet axially grow with same rates,
hence maintaining their homogeneity.
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Figure 3.19: Phase portrait is shown for various values of s̃0 for p̃ < 0. (A) shows
a stable fixed point at (1, 0) and saddle points at (−1, 0), (0, 0) (B-D) (±1, 0) are
saddle points and (0, 0) is a source.

For Pc < Pr: We find no stable state in the intermediate values of source. When
the leakage dominates in the regime 7p̃ < s̃0 < p̃ < 0, only the ν = +1 state is axially
stable and when s̃0 < 7p̃ < 0 both asymmetric states are axially stable.

62



3.3 Hydraulic symmetry breaking and theory of oogenic growth

3.3 Hydraulic symmetry breaking and theory of
oogenic growth

We find that upon inversion of the pressure difference Pc−Pr the current from germ cell
to rachis switches sign and as a result germ cell are inflated. We derived a framework
that investigates the stability of a germ cell doublet consodering geomeric arguments.
We find such pressure inversion indeed can trigger a change of stability between states
and upon inflation the symmetric configuration of the germ cell doublet becomes un-
stable and small variation of volumes amplify leading to a complete asymmetric state.
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Figure 3.20: Proposed mechanism of spontaneous symmetry breaking in the
germline upon pressure inversion. A) Schematic representation of the mechanism
is depicted. B) Bifurcation diagram for symmetry variable νdepicted spatially as a
parametric function of current J .

This mechanism confirms the conjecture of chapter 2, where we raise the possibility
that the transition of tissue hydraulics may underlie the growth-shrinkage symmetry
breaking within the syncytia. This theoretical idea makes certain simple predictions.
To test if indeed the transition of tissue hydraulics and henceforth the associated
hydraulic instability indeed underlies the eventual matter of life and death for a germ
cell, we inhibited the chemical pathway responsible for apoptosis in the germline. In
this case, no germ cell are expected to be extruded/eliminated from germline and
should exit proximally. However, hydraulic instability triggered by pressure inversion
should persist despite this biochemical manipulation and should lead to same transition
of volume heterogeneity. Moreover it is predicted that the inversion of J and hence
the maxima of Qr shall precede this onset of this volume heterogeneity.

To extend our analysis of tissue hydraulics of the unaltered germline to the non-
apoptotic case, we postulate that the source current profile is modified due to the lack
of extrusion/leakage and is given by Sn(x),

Sn(x) =
S(x), if S(x) > 0

0, otherwise
(3.69)
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where S(x) is the experimentally inferred source current profile for unaltered germlines
Fig.2.25. Using the best fit parameters βc, βr obtained for the unaltered germline
(Fig.??) along with the leakage-less source profile Sn(x), we predict the rachis volume
flux Qr and compare with experimental data (Fig.??).
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Figure 3.21: A) Rachis flux Qr is presented for non-apoptotic germline treated
with ced-3(RNAi). Solid line indicates theoretical prediction. B) Germ cell volumes
are presented along the DP position for non-apoptotic germlines. Shaded region
indicate region of volume instability evaluated using metrics described in chapter 2.

As predicted we find that the volume heterogeneity persists even in the absence of
apoptosis and extrusion and onset of the statistical instability is preceded by peak of
the rachis flux Qr.

Similar phenomena of oocyte growth has also been reported to depend on pressure
driven flows within the Drosophila germline cyst [81]. All though fundamental simi-
larities remain in terms of emergent altruistic behavior in both systems, the geometry
of the Drosophila germline cyst is a network 16 germ cells connected via small ring
canals and shows distinct mechanics.
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3.4 Cooperation, conflict and altruism

3.4 Cooperation, conflict and altruism
In this section, we extend the analysis of the azimuthal mechanical stability from a
germ-cell doublet to a radially distributed cellular collective of N cells. Extending the
framework described above above, we discuss questions of how a physical instability
mediates a cooperative/competitive transition within a connected cell population and
effectively gives rise to altruistic behavior. The dynamics of these cells are limited by
the following constraint ∑k θk = 2π which translates to,

∑
k

dVk
dt

= Ac
dlc
dt

= S0lc − (
∑
k

αk)lc(Pc − Pr) . (3.70)

The individual cell volumes obey,

dVi
dt

= Ac
θi
2π

dlc
dt

+ lcAc
1

2π
dθi
dt

(3.71)

= S0lc
θi
2π − lc(Pc − Pr)αi (3.72)

For convenience we define φi = θi/2π,∈ [0, 1], which is the angular fraction made
by the ith cell, which is also the volume fraction. Combining Eq.[3.70-3.71] we obtain
for φi,

dφi
dt

= −Pc − Pr
Ac

αi − φi∑
j

αj

 (3.73)

Inserting the relationship αi = α0φ
3 into Eq.[3.73] we obtain,

dφi
dt

= −α0
Pc − Pr
Ac

φ3
i − φi

∑
j

φ3
j

 . (3.74)

Note that since ∑φk = 1, the mean value of φ = N−1. In the homogeneous state
φk = N−1∀k, we shall investigate the stability criteria of the homogeneous state.
Extending our concept of stability inversion upon pressure inversion we investigate
numerically the case of positive and negative Pc−Pr. For this we define εp = Sign(Pc−
Pr).
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Case εp = +ve:

A) B)

Figure 3.22: A) Stability diagram of homogeneous state. B) Initial variations of φ
decay and approach stable homogeneous state. (N=30)

We find that similar to the cell-doublet when Pc > Pr, the homogeneous state is stable
and any deviation around it decays monotonically.

A) B)

Figure 3.23: Stability of the homogeneous state is evaluated for N=300.
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Case εp = −ve:

A) B)

Figure 3.24: A) Stability diagram of homogeneous state. B) Initial variations of φ
diverge and homogeneous state is unstable. One cell grows to φ = 1, while all other
cells decay to φ = 0. Inset: logarithmic scale is shown. (N=30)

We find that similar to the cell-doublet when Pc < Pr, the homogeneous state is
unstable and small variations diverge proportionally. At long timescale all but one cell
has φk = 0 and the ”condensate” cell encompasses the entire angular fraction as well
the volume. This can be thought of as a coarsening phenomena.

Figure 3.25: Stability of the homogeneous state is evaluated for N=300. Again
revealing a coarsening phenomena.

This extends our analysis of the hydraulic instability and the related volume coars-
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ening to a multicellular system. It shares certain commonalities with scenarios of
evolutionary dynamics(continuum game theory) where total resources are constrained
and species compete with each-other and underlying dynamics dictate emergence of
cooperation/survival of all or competition/survival of the fittest. In the rest of this sec-
tion, we shall take this analogy further and investigate a potential connection between
these approaches. We start with,

dφi
dt

= −α0
Pc − Pr
Ac

φ3
i − φi

∑
j

φ3
j

 (3.75)

= −α0
Pc − Pr
Ac

φ2
i −

∑
j

φ3
j

φi (3.76)

We now define a fitness function for the ith cell to be,

fi = α0
|Pc − Pr|

Ac
φ2
i (3.77)

Representing Eq.[3.76] in terms of fi yields,

dφi
dt

= −εp

α0
|Pc − Pr|

Ac
φ2
i −

∑
j

α0
|Pc − Pr|

Ac
φ2
jφj

φi (3.78)

= −εp

fi −∑
j

fjφj

φi (3.79)

= −εp
(
fi − f̄

)
φi (3.80)

where we have considered linear statistics and defined f̄ = ∑
k fkφk. Here εp = (Pc −

Pr)/|Pc − Pr| ∈ {−ve,+ve} denotes the sign of the pressure difference between cell
and rachis/reservoir and hence determines the direction of cytoplasmic flow between
germ cell and rachis. Eq.[3.80] has the classic form of a replicator equation [82, 83]
with a sign prefactor of εp. For εp = −1 we recover the famous equation for Darwinian
selection where cells grow (εp = −ve)or shrink(εp = +ve) as the corresponding fitness
function deviates from the average fitness given by f̄ .

This is essentially an optimization problem of f̄ and we can derive the equation of
motion of f̄ in terms of φk(t),
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df̄

dt
= d

dt

(∑
k

fkφk

)
(3.81)

=
∑
k

(
fk
dφk
dt

+ φk
dfk
dφk

dφk
dt

)
(3.82)

=
∑
k

(
fk
dφk
dt

+ 2φk
fk
φk

dφk
dt

)
(3.83)

=
∑
k

3fk
dφk
dt

(3.84)

= −3εp
∑
k

fk
(
fk − f̄

)
φk (3.85)

= −3εp
(∑

k

f 2
kφk − f̄

∑
k

fkφk

)
(3.86)

= −3εpσ2
f (3.87)

where using linear statistics we define σ2
f = ∑

k f
2
kφk−f̄ 2 as the variance of the fitness

f . Due to Jensen’s inequality σ2
f ≥ 0, indicating when εp = −ve, the average fitness f̄

decreases monotonically and when εp = +ve f̄ increases monotonically. For εp = −ve
it is equivalent to the Fisher’s fundamental theorem of natural selection [82, 83], with
an additional prefactor of 3.

In specific to study how relative proportions of two cells may evolve over time we
can derive,

d

dt

(
φj
φk

)
= 1

φk

dφj
dt
−
(
φj
φk

)
1
φk

dφk
dt

(3.88)

= −εp
(
φj
φk

(fj − f̄)− φj
φk

(fj − f̄)
)

(3.89)

= −εp
φj
φk

(fj − fk) (3.90)

indicating that growth of relative ratios is purely a function of difference in fitness,
a result akin to evolutionary dynamics of competing species.

This constitutes an elegant mapping between hydrodynamics and evolutionary dy-
namics. To elucidate the physical consequences let us evaluate and interpret the hy-
draulic fitness function fk,

fk = |α0(Pc − Pr)|
Ac

φ2
k =

∣∣∣∣∣α0(Pc − Pr)φ3
klc

Acφklc

∣∣∣∣∣ =
∣∣∣∣∣JklcVk

∣∣∣∣∣ (3.91)

where we multiply the numerator and denominator with φklc and identify α0(Pc −
Pr)φ3

k = Jk and Acφklc = Vk. In resource limited conditions i.e. in the absence of the
source current the entire rate of change of volume is determined by the current J and
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hence we find,

fk =
∣∣∣∣∣ 1
Vk

dVk
dt

∣∣∣∣∣ ∼ 1
τ

∣∣∣∣∣∆VkVk

∣∣∣∣∣ (3.92)

and is interpreted as the relative growth/shrinkage rate. Since both growth and
shrinkage would imply the same result here, it can interpreted as an adaptive sensor
in line with concepts of control theory and controls relative changes to the volume.
Furthermore this eludes to the idea that out of the population of cells the the fittest
(maximum fk) is neither the largest nor the fastest growing but rather the most ”adap-
tive”.

In a more general case the volume exchange could be driven by mechanisms other
than pressure driven flows, such as diffusive, osmotic etc. We briefly discuss the gener-
ality of this result in such context. The majority of the calculation remains the same
and we discuss the general case of α ∼ rβ and obtain,

dφi
dt

= −α0
Pc − Pr
Ac

φβi − φi∑
j

φβj

 (3.93)

where the generalized fitness term fk = |α0(Pc − Pr)|φβ−1
k /Ac. Retracing the steps

of Eq.3.81-87, we find for equation for the average fitness f̄ ,

df̄

dt
= −βεpσ2

f (3.94)

where we can only obtain these solutions for β > 1, otherwise the assertions of Eq.3.83
breaks down. We provide brief overview of the general results in a schematic form
below. We find that the general questions of structural stability as well as conclusions
regarding cooperative/competitive state remains unchanged for exponent β > 1, while
lower exponents are possible for passive and active transport through channels that
maintain constant surface density.

Exponent Example / Interpretation 

Stable

Stable

Unstable

Unstable

Marginal Marginal

Sampson flow through pores

Active/Passive transport

via pumps of constant density

Mechanosenstive channels
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3.5 Conclusion
Motivated by experimental result, in this chapter we develop a hydraulic theory of the
germline at rest. This theory elucidates on the development of steady flow fields across
the germline, development of pressure field as well as their inversion spatially. Using
only 2 parameters, this minimal theory captures experimental result and makes pre-
dictions with great accuracy. We derived a novel framework of stability of the germline
that revealed a tissue hydraulics induced spontaneous symmetry breaking and also in-
formed us of the necessary criteria for the stability of the symmetric state. We tested
rudimentary predictions of the theory experimentally with excellent agreement, pro-
viding a novel conceptual advance on growth and shrinkage of germ cells as symmetry
breaking. This provides a quintessential example of mechanics and hydrodynamics
underlying a fundamental decision making in biology.

We extended the framework of symmetry breaking originally derived from hydrody-
namic considerations to a multicellular system to ask questions of stability. We found
again a hydraulics induced coarsening phenomena. Starting from this model we found
an elegant derivation to game theory/evolutionary dynamics and developed ideas of
hydraulic fitness as an adaptive volume sensor and recovered conditions of coopera-
tive/ competitive transition. Here the effective equations of evolutionary dynamics are
not heuristic but rather emergent as they are derived from first principles of volume
conservation and hydrodynamic theory.

This weaves various concepts from different disciplines together, starting from bi-
ological fluids, tissue mechanics, game theory/evolutionary dynamics and presents a
unique interdisciplinary perspective to understand the growth and selection of a par-
ticular cell over others in a seemingly homogeneous and hydrodynamically connected
multicellular structures. These concepts developed here are indeed much more general
and should apply to various geometries and conditions.
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Chapter 4
Summary

Nothing in biology makes sense except in the light of evolution.
- Theodosius Dobzhansky

In this thesis, we strive to address a fundamental question of biology with concepts
and tools of physics. We started out with posing the question of life and death as
a cellular decision in the life of a germ cell, a decision that is fundamental to the
fate of progeny and hence to all of morphogenesis. We identified that this general
mystery persists across species in various geometries and time-scales. Using a physical
reductionist approach we identified that this decision making essentially is a transition
of growth and shrinkage in the life of a germ cell, a physical fate that appears in the
arrow of time and creates disparity in a seemingly homogeneous population of cells
that prior to this transition share their cytoplasmic pool and hence chemical identity.
We take the example of germ cells of adult hermaphrodite nematode C.elegans to
investigate this transition as well understand the basis of growth.

Using statistical models and elements of fluid dynamics, we characterize the growth
and shrinkage of germ cells. We find that the germ cells grow along their maturation
axis in two different phases, one that is slow and homogeneous hence regulating vari-
ation of cell sizes within the distal germ cell population, this phase is succeeded by a
phase of rapid and heterogeneous growth of germ cells leading to increasing disparity
of sizes within the proximal population. Concurrently we find that distal germ cells
pump cytoplasm into luminal core called rachis and drive long range cytoplasmic flows,
while the proximal cells take up material from this cytoplasmic stream. Albeit slow,
the growth of distal germ cells despite pumping volume into the rachis led us to iden-
tify the external source that accounts for this growth and maintenance of distal germ
cell volumes. This identification of the external source is based on simple principle
of volume conservation and reveals a vital piece of information that was heretofore
unknown. The transition of this source profile and the current from germ cell to rachis
occur within close proximal vicinity of the transition between growth modes identified
before. This alluded that perhaps the transition of tissue hydraulics is the underlying
cause of volume instability within the distal population, much like inflation instabilities
of connected soap bubbles.

To formulate this hypothesis we derived a novel framework of tissue hydraulics that
successfully captures the hydrodynamic fields across the germline and informed us of



an inversion of pressure differences between germ cells and rachis concurrent to the in-
version of the germ-cell to rachis current. We further derive a framework of mechanical
stability to evaluate the effect of such pressure inversions and we identify a stability
switch or a discontinuous transition between states upon this pressure inversion with
a simple example of a germ-cell doublet. While in the positive pressure difference
regime, as the germ cells pump into the rachis homogeneous cell volumes are stable
and any deviation from this symmetric configuration decays over time and symmetry
of the system is restored. On the contrary, when pressure difference inverts and germ
cells are rather inflated from within, the symmetric configuration become unstable
and any heterogeneity between two connected germ cells amplify nonlinearly leading
to increasingly asymmetric structures eventually achieving a configuration where one
cell engulf the entirety of the tissue. We identify this discontinuous transition to be
a symmetric breaking phenomena modulated by a pressure field. We term this as a
hydraulic instability. This growth of asymmetry has close parallel to coarsening and
condensation. Based on this simple idea, we make the deduction that the growth and
shrinkage transition for germ cells is driven by the tissue hydraulics and the associ-
ated insatiability. We test this proposition by eliminating the bio-chemical pathway
responsible for cell death and find that even in the absence of cell elimination this
transition of tissue hydraulics and the volume instability persist and the transition of
tissue hydraulics precedes the onset of volume heterogeneity. This tissue hydraulics
driven selection mechanism explains the stability of distal germ cells despite the inher-
ently open structure of germ cells, provides a tested mechanism of not only selection
of germ cells but also a mechanism that perpetually ensure growth and hence survival
of the chosen cell. This provides a fresh outlook on this age-old problem of oogenesis
and a quintessential example of mechanical instability driving a cell fate decision, a
robust alternative to biochemical switches.

Building upon this elegant model of a germ cell doublet to a system of N cells
we evaluate the question of stability and whether such multicellular structures can
stably pump and exchange cytoplasm through their common luminal core. We find
the same stability criteria for the N -dimensional systems. In the regime in which all the
cells are pumping and contributing cytoplasm (hence cells have higher pressure than
lumen) to the lumen is stable and homogeneous symmetric structures are restored
if small deviations are introduced. On the contrary, when the pressure difference
and the direction of the cytoplasmic exchange inverts, we find a similar coarsening
phenomena, where volume differences around the mean amplify and eventually all the
volume condenses to one cell, must like Ostwald ripening of droplets. From a naive
perspective this could be viewed as a transition between cooperative and competitive
behavior i. e.when the resources abundant in terms of source, cooperation is favored
and under resource limitation competition and a redistribution instability emerges.

Extending this naive analogy further, we discover a mapping between our model of
hydrodynamically interacting cells to a system of replicator equations and it adopts the
form of Darwinian selection model when lumen pressure is higher than cell pressure.
We derive the growth of the average fitness of the population and we find a modified
form of the celebrated Fisher’s fundamental theorem of natural selection. This mapping
provides a elegant way to extend this general idea of hydraulic instability and brings
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forth an evolutionary perspective on the nature of cooperation and competition of
cells within syncytial structures that share and distribute resources via hydrodynamic
flows. We find the physical interpretation of the fitness function to be the relative rate
of growth/shrinkage, which also can be thought of as an adaptive sensor. This weaves
in the idea of adaptability into this fascinating framework.

In all, we find a physical mechanism of stability and instability of a tissue driven by
hydrodynamic fields that underlie the symmetry breaking of growth and shrinkage and
hence the eventual decision of life and death. This brings forth novel ideas of symmetry
breaking, hydrodynamics, developmental biology and evolutionary dynamics together
with important consequences in the context of other syncytial structures. This provides
an elegant derivation of basic equations of evolutionary dynamics from fundamental
principles of hydrodynamics.

Outlook
The realization that in the absence of a decision maker virtually all decision making
processes are symmetry breaking, is a powerful conceptual advance in biology. This
beautiful example of how lingering residual effects upon a physical instability can com-
promise the outcome at much larger lengthscales, will be foundational to questions of
cellular decision making. Within the framework of this hydraulic symmetry breaking
we surprisingly recover equations and concepts of evolutionary dynamics and selec-
tion, a connection embedded within the spirit of biological questions that we asked.
We suspect this relationship has fundamental general consequences in the mysterious
context of multicellular cooperation and paves the path for future theoretical musings
into the transitions of complex multicellular collectives.
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Appendix A
Germ cell nuclear growth and
allometry
A.1 Nuclear growth
A germ cell grows upto 20 folds in size along its’ maturation from distal tip to proximal
turn, meanwhile the nucleus of a germ cell also transitions across functional states. We
find that the germ cell nuclei grow also 10 fold in volume starting from the distal end
to the proximal turn.

Figure A.1: Average nuclear volume is represented along the distal-proximal axis.

A.2 Allometric scaling and proportional growth
Cellular organelles such as the nucleus, mitotic spindle adapt their size to the dimen-
sions of the cell . Size regulation of cellular organelle is of fundamental importance



A.2 Allometric scaling and proportional growth

to biology [84–90]. Various mechanisms have been proposed to understand emergence
of scaling behavior between organelle and cell size. The germline provides a unique
model to investigate the question of scaling, as the cells have open boundaries and are
syncytial. We correlate the average nuclear size at a given location along DP axis with
average germ cell size (Fig.A.2) .

3

2

Figure A.2: Average nuclear size scales with average cell volume. Allometric re-
lationship breaks down in proximal gonad. Color code indicates position along the
DP axis.

We find that an allometric scaling can be deduced between nuclear size and germ cell
size for majority of the germline. This relationship breaks down near the proximal end
and could originate from bimodal cell volumes, hence we shall restrict the discussion
up to the scaling region. We propose the following scaling relationship,

Vn =
(
Vc
V0

)1+β
(A.1)

where Vn & Vc are the nuclear and cell volume respectively and V0 being the offset
volume. β is the allometric exponent that quantifies deviation from volume scaling,
i. e.β = 0 indicates perfect volume scaling, β < 0 indicates a sub-volume scaling
(e. g.surface scaling) and β > 0 a super-volume scaling. We find using a fitting proce-
dure, β = 0.5 ± 0.05 and V0 = 1.7 ± 0.01µm3. However within the gonad both germ
cells and nuclei are growing, hence they must dynamically maintain this relationship
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between Vc(t) & Vn(t) and this restricts their growth dynamics. As a result,

dVn
dt

= (1 + β) V β
c

V 1+β
0

dVc
dt

(A.2)

= (1 + β)
(
Vc
V0

)1+β 1
Vc

dVc
dt

(A.3)

Inserting the expression for Vn(t) we obtain,

=⇒ 1
Vn

dVn
dt

= (1 + β) 1
Vc

dVc
dt

(A.4)

This constitutes the law of proportionate growth for such a scaling relationship. In
future, it would be interesting to validate this temporal relationship. However there
exists some simple deductions that do not require temporal information. In Chapter
2, we found that the effective growth rate of distal germ cells is fairly constant and
does not depend on cell size, presumably due to growth by material uptake from
surrounding. One can approximate Eq.A.4 as,

δVn
Vn
' τn (1 + β) gc

V0
V
− 1

1+β
n (A.5)

where τn is the timescale of nuclear growth, gc = 〈dVc/dt〉 is the effective growth
rate of distal germ cells. This implies that with growing nuclear volume (Vn), relative
variation will decease. We try to provide an estimate of the prefactor. We estimated
gc ∼ 0.04µm3/min in chapter 2. One can assume τn is limited by the nuclear cycle
that ranges between 2 to 5 hrs [43]. Inserting the estimated values of gc, V0, β and an
example value of τn = 4hr = 240min into Eq.A.5 we obtain,

δVn
Vn
' 5.5V −2/3

n (A.6)

To test this rudimentary prediction we correlate CV (= σ/µ) of nuclear size with
average nuclear size and overlay the predicted curve (Fig.A.3).
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Figure A.3: Coefficient of variation of nuclear size is plotted against average nuclear
size. Dashed line shows predicted curve Eq.A.6. Color code indicates position along
the DP axis.

A.3 Conclusion
Here we provide a brief discussion of nuclear growth in the germline. Throughout the
thesis, we limit the discussion of oocyte growth solely to the volume of the cytoplasm
contained. However, not only germ cells must take up volume to grow, they also must
produce valuable cytoplasmic material (e. g.proteins, enzymes etc.), for this purpose
the proportionate growth of organelles like nuclei , ER is essential. While mechanisms,
such as ”limited resource model” can account for nuclear size scaling in most cells [84],
these concepts do not apply in the germline as the cells are open and access a vast
reservoir of cytosolic matter. This raises fundamental questions on what physical
mechanisms must underlie size scaling while exchange with an infinite pool of cytosol
is present.

A fascinating finding pertains to the decreasing heterogeneity of the nuclear volumes,
along the Distal Proximal axis as the average size of the nuclei grow. This is in sharp
contrast to the growing heterogeneity of cell volumes along the DP axis. A plausible
interpretation could be proposed in terms of a bet-hedging strategy to circumvent the
slow growth of nuclei. The ideal case would be where only the nuclei of the future
oocyte hence the future larger cells grow, for which it is essential to ascertain which
one of the germ cells grow to oocyte – a decision we have shown to rely on an instability,
hence naturally uncertain. An alternative strategy would be of the responsive kind,
where the nuclear growth would rapidly adapt to the growing germ cell, however the
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unstable growth of germ cells are via pressure driven cytoplasmic redistributions which
are much faster than the import limited growth of nuclei. We find that the nuclear
population becomes more homogeneous in size as they grow larger. This is indicative
of a hedged-bet solution, showing an equivalent weights on all nuclei. The bet-hedging
strategy presents a trade-off solution in this uncertain environment, much like many
biological systems [91–93].
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Appendix B
Viscous steady flow through a
pipe
In this chapter we shall discuss some basic results related to viscous flow through
channels ans pipes. We will extend this analysis to special cases to take into account
more realistic geometries and effects. These discussions will help guide certain direct
results implemented in chapter 2 & 3.

We shall consider an incompressible viscous fluid. Hence in the low Reynolds number
regime, the steady velocity field is prescribed as solution to the Stoke’s equation,

η∇2~v = ∇p (B.1)

where ~v is the velocity, η the viscosity and p is the pressure field. This equation is
supplemented by the condition of incompressibility,

∇·~v = 0 (B.2)

This is also has a simple implication that the pressure field is harmonic and is given
by the Laplace’s equation,

∇2p = ∇·∇p = ∇·
(
η∇2~v

)
= ∇2 (η∇·~v) = 0 (B.3)

B.1 Viscous flow through an ideal pipe
Let us consider a case of an ideal cylindrical tube of length l and duct radius R. We
shall define the axis of symmetry as the z− axis and consider a cylindrical coordinate
system (r, φ, z) to respect the symmetry of the problem. We prescribe the pressures at
both ends of the tube as p(z = 0) = P0 and p(z = l) = Pl. Now we shall seek solutions
of the velocity field ~v = (vr, vφ, vz). Due to azimuthal symmetry of the problem vφ = 0
and since the pressure field has no gradient in the radial direction, we can limit our
discussions to the flow velocity vz.
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Figure B.1: A) Schematic of a pipe of length l and circular cross-section of radius R
is shown. Inlet pressure P0 and outlet pressure Pl is indicated. B) Parabolic velocity
profile of vz(r) is shown across the normalized radial position r/R.

The Stoke’s equation thus reduces to,

η
1
r

d

dr

(
r
dvz
dr

)
= dpz

dz
(B.4)

The pressure field is given by the solution to the Laplace’s equation ∇2p = 0 and the
boundary condition. We find that,

dp

dz
= −∆p

l
(B.5)

where ∆p = Pl − P0. The general solution to the Eq.B.4 yields,

vz(r) = − 1
4η

∆p
l
r2 + a ln r + b (B.6)

We impose that vz(0) is finite , as a result the prefactor to the diverging logarithmic
term a = 0. We choose the the no-slip boundary condition vz(R) = 0 and obtain,

vz(r) = 1
4η

∆p
l
R2
(

1− r2

R2

)
(B.7)

This parabolic nature of the velocity profile is preserved fro all pressure driven flows
in channels and pipes. One can also identify that the given parabolic profile has a
maxima at r = 0 and is given by,

v0 = 1
4η

∆p
l
R2 (B.8)

We can then estimate the volume flux/discharge rate,

Q =
∫ 2π

0
dφ
∫ R

0
v0

(
1− r2

R2

)
= πR2v0

2 = πR4

8η
∆p
l

(B.9)

This relationship is the well known Hagen-Poiseuille law, originally discovered ex-
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B.1 Viscous flow through an ideal pipe

perimentally by Jean Leonard Marie Poiseuille at the age of 18 [94]. One can define
a hydraulic resistance k = Q/∆p, which here is given by k = πR4/8ηl. It is trivial to
see that the average velocity v̄ = Q/πR2 = v0/2. The local shear rate of the flow in
the circular pipe is simply , γ̇ ' v̄/R and scales with ∼ R.

This result still extends to pipes with non-uniform radii along the symmetry axis.
While the appropriate treatment of this problem is through the lubrication theory,
we can assume the case of slowly varying radii. In that case we can ask what is
the discharge rate of the tube as R(z). A simple interpretation is that the hydraulic
resistance becomes function of space. The following equation hold locally ,

− dp

dz
= 8ηQ
πR(z)4 (B.10)

Integrating along the length we find,

∆p = 8ηQ
π

∫ L

0
R(z)−4dz (B.11)

Hence the effective hydraulic conductivity is simply,

ke = π

η

1
l

[∫ L

0
R(z)−4dz

]−1

(B.12)

If the pipe is not hollow but consists of two concentric cylinders of radii R1 &
R2 where R1 > R2, we may still employ this analysis by applying Eq.B.6 with the
boundary conditions vz(R1) = vz(R2) = 0,

vz(r) = ∆p
4ηl

[
R2

1 − r2 + R2
1 −R2

2
ln(R1/R2) ln r

R1

]
(B.13)

We can then compute the discharge rate,

Q = π∆p
8ηl

[
R4

1 −R4
2 + (R2

1 −R2
2)2

ln(R1/R2)

]
(B.14)

General discussions of the effect of cross-section shape on the hydraulic conductance
of a pipe is an active area of research. Some variations of the circular pipe are of
particular importance in the context of biological fluid dynamics. For a pipe of ellip-
soidal cross-section described by x2/a2 + y2/b2 = 1 with no-slip boundary conditions
the velocity field is given by,

vz = ∆pa2b2

2ηl(a2 + b2)

(
1− x2

a2 −
y2

b2

)
(B.15)

and the discharge is,

Q = π∆p
4ηl

a3b3

a2 + b2 (B.16)
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Appendix B: Viscous steady flow through a pipe

In comparison to the discharge of a circular pipe (Qo) with same cross-sectional area,

Q

Qo

= 2ε
1 + ε

(B.17)

where ε = b/a is the ellipticity. One can see that this ratio has a maxima for ε = 1,
corresponding to a circular pipe, hence emphasizing how deviation from a circle to
ellipse reduces the hydraulic conductance of the pipe and hence efficiency of discharge
per unit volume of the pipe. To emphasize this case we can consider two more example,
of a square channel and of an equilateral triangle.

For the case of the square one obtains,

Q ' 0.035144a4

η

∆p
l

(B.18)

where a is the length of the side of the square. If we now evaluate the efficiency of
discharge with respect to a circular pipe of same area we find,

Q

Qo

' 0.88327 (B.19)

The reduced discharge is due to sharp corners, which is amplified in the case of an
equilateral triangle for which Q/Qo ' 0.72552.
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B.2 Influence of curvature on Poiseuille flow

B.2 Influence of curvature on Poiseuille flow
If a pipe along its axis of symmetry develops significant curvature as is often the case in
biological systems, purely axial flow of viscous fluid is no longer possible and secondary
flows develop in the cross-sectional plane. For a fully developed steady flow in such a
pipe with circular cross-section, the secondary flows develop primary as two vortices
parallel to the local centreline of the channel/pipe. As a result the maxima of the axial
velocity is shifted outward.

A) B)

Figure B.2: (A) Schematic of a curved pipe is shown with radius of curvature Rc
(B) Solid lines denote constant axial velocity contours while the dashed lines indicate
secondary flow. (Adapted from [95])

Let us consider a pipe with uniform radius of curvature Rc of the centreline. The
flow in such geometry is characterized by the Dean number κ = Re

√
R/Rc, where Re is

the Reynold’s number. A fluid element in the center of the pipe experiences an inward
acceleration ∼ v̄2/Rc, where v̄ is the average axial velocity. The body force is then
resisted by viscous forces in the cross-section ∼ ηv⊥/R

2, where v⊥ is the secondary
flow velocity. A balance of these two effects yield,

v⊥
v̄
' Re

R

Rc

(B.20)

From this form one can see that for low Re the criteria for ignoring effect of curvature
is simply R < Rc. If this criterion is satisfied, one can simply employ a perturbative
analysis. One finds that the discharge rate with respect to a straight circular pipe can
be fully characterized by the Dean number κ,

Q

Qo

= 1− 0.0306
(
κ

576

)2
+ 0.0120

(
κ

576

)4
+O

[(
κ

576

)6
]

(B.21)

For a more elaborate discussion see [95].

B.3 Influence of slip on Poiseuille flow
In an experimental system the assumption of no-slip at the boundary may not hold.
In that case finite velocities at the boundary may exist and experimental characteri-
zation of such phenomena has been extensively exploited in the context of fluid-solid
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Appendix B: Viscous steady flow through a pipe

boundaries. Conventionally, slip at the boundary is often discussed by introducing
the concept of ”slip length”, λ. For example, for a circular pipe of radius R, the slip
boundary condition is given by,

vz(r = R) = −λdvz
dr

Hence the axial velocity is given by,

vz(r) = −dp
dz

R2

4η

(
1− r2

R2 + 2λ
R

)
(B.22)

which does not distort the parabolic nature of the velocity profile however deviates
linearly around. This leads to the discharge rate,

Q = −dp
dz

πR4

8η (1 +Kn) (B.23)

where Kn = λ/R is dimensionless number and has analogous interpretation to Knudsen
number in gas flows. The deviation from a no-slip flow is hence,

Q

Qo

= 1 + 4 λ
R

(B.24)

We note that careful measurements of slip lengths on smooth solvophobic surfaces
suggest λ ' 30nm [96]. In that case for a channel of radius 10µm, the correction term
4λ/R ' 4(30× 10−4) ' 0.01, which corresponds to an 1% effect on the ideal flow.

Interestingly here the discharge rate and hence the amount of transported volume
is higher than the ideal pipe due to extra flow at the boundary. Equivalently the
hydraulic conductance is higher by a factor of 4λ/R.
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B.4 Viscous flow through a leaky pipe
We have seen how the pressure profile is simply linear along the tube and has no
intrinsic lengthscale and simply mimic the geometry. Let us consider a special case
where the walls of the pipe are permeable/leaky and allow leakage across walls. This is
of crucial importance to us as many biological tubes are leaky, especially the nematode
germline. The tube is embedded within a fluid of constant pressure p0. The pressure
at the inlet z = 0 is p1 > p0. The flow problem is described by,

η
1
r

∂

∂r

(
r
∂vz
∂r

)
= ∂pz

∂z
,
∂p

∂r
= 0 (B.25)

with the boundary conditions:

vr(0, z) = 0, vz(R, z) = 0, vr(R, z) = κw (p− p0) (B.26)

This yields the same parabolic solution for vz(r) and the discharge rate is again
described by Eq.B.9. Now the continuity equation yields,

d

dz
Q+ 2πRvr|r=R = 0 =⇒ d2p

dz2 −
16ηκw
R3 (p− p0) = 0 (B.27)

It is convenient to non-dimensionalize the equation with P = (p− p0)/(p1− p0) and
Z = z/l so that we have,

d2P

dZ2 − Λ2P = 0 (B.28)

with the boundary conditions P (0) = 1 & P (1) = 0. We have introduced Λ =
(16ηκwl2/R3)1/2, which introduces a internal lengthscale Λ−1. Note that the presure
here does not satisfy the Laplace’s equation but rather the general form of Helmholtz
equation, describing a general class of problems. of which Laplace’s equation is a
special case. The solution to the Eq.B.28 yields the pressure profile along the leaky
tube as,

P (Z) = sinh(Λ(1− Z))
sinh Λ (B.29)

and is plotted in Fig.B.3 B for different values of Λ. For Λ << 1 one can use an
expansion around Λ = 0 to obtain,

P (Z) = 1− Z + Λ2

6 Z(1− Z)(Z − 2)
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Figure B.3: (A) Schematic of a leaky pipe is shown with reference pressure p0
and inlet pressure p1 (B) Non-dimensional pressure profile P is plotted against non-
dimensional axial position Z for various values of Λ =

(
16ηκwl2/R3)1/2
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einer anderen Prüfungsbehörde vorgelegt. Die Arbeit wurde in Dresden am Max-Planck-
Institut für Physik komplexer Systeme unter der Betreuung von Prof. Frank Jülicher und
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