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Abstract

During animal development numerous organs with functions ranging from fluid transport
to signal propagation develop into highly branched shapes and forms. To ensure organ
function, the formation of their geometrical and topological as well as size-dependent prop-
erties is crucial. For example, organ geometry serves to maximize exchange area with its
surroundings and organ topology controls the response to fluctuations and damage. Most
importantly, organ size and proportion need to scale throughout animal growth to meet
the demands of increasing body size. However, how organ geometry and topology are es-
tablished and scaled in a self-organized manner, remains poorly understood. In this thesis,
we present a novel theoretical framework to study the self-organized growth and scaling
of branched organs. In this framework, we represent the organ outline by an infinitely
thin interface and consider morphogen-controlled interface evolution in growing domains.
We demonstrate that an instability in interface motion can lead to the self-organized for-
mation of complex branched morphologies and show how the interplay between interface
motion, morphogen dynamics, and domain growth controls the geometrical, topological,
and size-dependent properties of the resulting structures.

To understand the formation of branched structures from instabilities in morphogen-
controlled interface growth, we first consider a range of different interface growth scenarios
in non-growing domains. In a first approach, we present a stochastic lattice model with in-
terface growth driven by a morphogen concentration gradient. We find a range of branched
morphologies extending from self-similar fractal structures to almost circular structures
with only a few branches depending on the morphogen gradient length scale. We present
the Euler characteristic as an example of a topological invariant and employ it to intro-
duce topological constraints into interface growth, leading to the formation of tree-like
structures. In a second approach, we study a continuum model for morphogen-controlled
interface growth. In this model, the interface has a constant tendency to grow and is
inhibited by morphogen concentration. Additionally, we take into account a curvature de-
pendency of interface growth, which leads to an effective stabilization of interface motion
at small length scales. We identify branch distance and thickness as key morphologi-
cal properties and discuss their regulation. We relate branch distance regulation to the
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interplay of destabilization from morphogen inhibition and stabilization from the curva-
ture dependency of interface growth and explain branch thickness regulation in terms of
mutual branch inhibition. By considering interface instability in different scenarios, we
overall demonstrate the robustness of our approach.

Finally, we apply our theoretical framework to study the branching morphogenesis of
the planarian gut. The planarian gut is a highly branched organ that spans the entire
organism and is responsible for the delivery of nutrients to the planarian body. Planarians
undergo massive body size changes of more than one order of magnitude in organism length
and thus constitute an ideal model organism to study the growth and scaling of branched
organs. We reconsider our continuum model and include novel features needed to account
for the organization of the planarian gut. We take into account external guiding cues that
alter the orientation of branches and, most importantly, consider branching morphogenesis
in a growing domain. We demonstrate that our model can account for the geometrical and
topological properties of the gut and show that gut scaling can arise from to the interplay
of branch growth and organism growth.

Overall, we present a novel theoretical framework to study the growth and scaling
of branched organs. In this framework, we demonstrate the self-organized formation of
branched morphologies from instabilities in morphogen-controlled interface growth and
show how the interplay of interface motion, morphogen dynamics, and system size deter-
mine geometry, topology, and size-dependent properties of the resulting structures.
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Zusammenfassung

In der Entwicklung von Tieren formen sich zahlreiche Organe mit Funktionen von Flu-
idtransport bis zu Signalweiterleitung, zu hochgradig verzweigten Strukturen. Um die
Funktion dieser Organe zu gewährleisten, sind deren geometrischen, topologischen und
größenabhängigen Eigenschaften entscheidend. Die Organgeometrie zum Beispiel dient
zur Maximierung der Austauschoberfläche mit der Umgebung und die Organtopologie
bestimmt das Verhalten bei Fluktuationen und Beschädigungen. Vor allem müssen Organ-
größe und -proportion mit der Körpergröße skalieren, um den Anforderungen zunehmender
Körpergröße gerecht zu werden. Wie sich jedoch die Geometrie und Topologie von Orga-
nen in selbstorganisierter Art und Weise herausbildet und mit der Körpergröße skaliert,
ist nur wenig verstanden. In dieser Arbeit stellen wir eine neue Theorie vor, um das
selbstorganisierte Wachstum und Skalieren von verzweigten Organen zu untersuchen. In
dieser Theorie stellen wir die Organoberfläche durch eine dünne Grenzfläche dar und be-
trachten die morphogengesteuerte Grenzflächendynamik in wachsenden Domänen. Wir
zeigen, dass eine Instabilität in der Grenzflächenbewegung zur selbstorganisierten Bildung
von komplexen, verzweigten Strukturen führen kann und wie das Zusammenspiel von
Grenzflächenwachstum, Morphogendynamik und Domänenwachstum die geometrischen,
topologischen und größenabhängigen Eigenschaften der resultierenden Strukturen steuert.

Um die Bildung von verzweigten Strukturen aufgrund von Instabilitäten in morpho-
gengesteuertem Grenzflächenwachstum zu verstehen, betrachten wir zunächst eine Reihe
unterschiedlicher Szenarien für Grenzflächenwachstum in nicht wachsenden Domänen. In
einem ersten Ansatz stellen wir ein stochastisches Gittermodell vor, in dem das Grenzfläch-
enwachstum von einem Morphogengradienten gesteuert wird. Wir finden in Abhängigkeit
der Länge des Morphogengradienten eine Reihe verzweigter Morphologien, die von selb-
stähnlichen fraktalen Strukturen bis zu beinahe kreisförmigen Strukturen mit nur weni-
gen Verzweigungen reichen. Wir stellen die Euler-Charakteristik als ein Beispiel für eine
topologische Invariante vor und benutzen sie, um topologische Einschränkungen in das
Grenzfächenwachstum einzuführen, welche zur Bildung baumartiger Strukturen führen. In
einem zweiten Ansatz stellen wir ein Kontinuumsmodell für morphogengesteuertes Grenz-
flächenwachstum vor. In diesem Modell besitzt die Grenzfläche eine konstante Wachs-
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tumstendenz und wird von der Morphogenkonzentration inhibiert. Zusätzlich beziehen
wir eine Krümmungsabhängigkeit des Grenzflächenwachstums mit ein, welches die Grenz-
flächenbewegung auf kleinen Längenskalen effektiv stabilisiert. Wir identifizieren den
Zweigabstand und die Zweigdicke als morphologische Schlüsseleigenschaften und disku-
tieren deren Regulation. Wir setzen die Regulation des Zweigabstandes mit dem Zusam-
menspiel von Destabilisierung durch die Morphogeninhibierung und Stabilisierung durch
die Krümmungsabhängigkeit des Grenzflächenwachstums in Verbindung und erklären die
Zweigdicke durch die gegenseitige Inhibierung der Zweige. Durch das Betrachten von
Grenzflächeninstabilitäten in verschiedenen Szenarien, zeigen wir insgesamt die Robus-
theit unseres Ansatzes.

Wir wenden unsere Theorie schließlich an, um die Morphogenese des Plattwurmdarms
zu untersuchen. Der Plattwurmdarm ist ein hochgradig verzweigtes Organ, das den ganzen
Organismus durchdringt und für die Versorgung des Plattwurmkörpers mit Nährstoffen
verantwortlich ist. Plattwürmer erfahren Änderungen ihrer Körperlänge von bis zu einer
Größenordnung und stellen daher einen idealen Modellorganismus zur Untersuchung von
Wachstum und Skalierung verzweigter Organe dar. Wir betrachten wieder unser Kontinu-
umsmodell und fügen neue Bestandteile hinzu, die zur Beschreibung der Organisation des
Plattwurmdarms benötigt werden. Wir ziehen Umgebungsreize in Betracht, welche die
Orientierung von Zweigen verändern und betrachten die Morphogenese verzweigter Struk-
turen in einer wachsenden Domäne. Wir zeigen, dass unser Modell die geometrischen und
topologischen Eigenschaften des Darmes korrekt wiedergibt und dass die Skalierung des
Darmes aus dem Zusammenspiel von Zweigwachstum und Organismuswachstum entstehen
kann.

Insgesamt präsentieren wir eine neue Theorie zur Untersuchung des Wachstums und
Skalierens verzweigter Organe. In dieser Theorie demonstrieren wir die selbstorganisierte
Bildung verzweigter Morphologien mittels Instabilitäten in morphogengesteuertem Grenz-
flächenwachstum und zeigen, wie das Zusammenspiel von Grenzflächenwachstum, Mor-
phogendynamik und Systemgröße die Geometrie, Topologie und größenabhängigen Eigen-
schaften der resultierenden Strukturen bestimmt.
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Chapter 1

Introduction

1.1 Development of living organisms

The development of living organisms is a fascinating process. Many life forms develop
from a single fertilized egg into a multicellular organism consisting of billions of cells
of various types [1–3]. To ensure correct development, numerous processes need to be
coordinated and controlled. On the molecular scale, gene expression is regulated to ensure
the formation of the correct proteins at the right place at the right time. Numerous cell
divisions take place where at every round two daughter cells are formed each having a copy
of the genetic material. Cells group to form intricate tissue and organ architectures that
perform tasks ranging from digestion of food to excretion of waste and pumping of fluids.
Overall, development is a prime example for the self-organization of a highly complex
system from an initially simple state.

Despite the complexity of this process, four key developmental processes can be iden-
tified [1]. The most apparent of all developmental processes is probably growth. Growth
refers to the increase of organism size during development and can be achieved in different
ways. For example, the increase of organism size can take place via cell proliferation, i.e.
repeated rounds of increase in cell size and subsequent division. Growth can also take
place by cell enlargement or by accumulation of extracellular material. As the number of
cells in the organism increases, tissue patterning becomes important. During development
different regions with distinct cellular behavior are organized. For example, during em-
bryonic development cells are recruited to different germ layers. These are regions of cells
that give rise to specialized tissues in the adult organism, such as gut, muscle, or nervous
system. Another example for tissue patterning is the establishment of the body plan.
Bilaterally symmetric organisms possess an anterior-posterior axis and a dorsal-ventral
axis that are set up during embryonic development. Closely related to tissue patterning
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Chapter 1 Introduction

(a) (b)Geometry Topology

Figure 1.1: Morphogenesis: self-organization of complex spatio-temporal pat-
terns (a) We show gut villi of the mouse intestine as an example for a pattern with an
intricate geometry. Image shows immunostaining with VEGFR2/CD31 (green/red) as cell
surface markers. Scale bar denotes 200 µm. (b) We show the vein network of a lemon leaf
as an example of a pattern with intricate topology. Image shows an experiment in which
a hole was cut into the main vein (black circle). Despite the hole, fluorescein (yellow)
flows to regions behind the stem due to the topology of the network. Reproduced with
permission from Refs. [11, 12]

is cell differentiation. The vertebrate body contains hundreds of different cell types such
as epithelial cells, blood cells, or muscle cells [3]. Cell differentiation refers to the process
by which cells adopt these distinct cell fates. Finally, organisms exhibit a great variety of
forms and shapes. The generation of form is another key element of development, which
we discuss next in more detail.

1.1.1 Morphogenesis: the emergence of geometry and topology

Morphogenesis, the generation of form in developing organisms, is a central aspect of
development as is combines all of the aforementioned processes [1, 4]. As the organism
grows, cells differentiate and form complex 3D organ and tissue architectures. A striking
example is gastrulation, the process by which the blastula (a spheroidal arrangement of
cells) transforms into the gastrula (a structure that contains three germ layers endoderm,
mesoderm and ectoderm) during early embryonic development [3]. At the end of this
process, the embryo has transformed from a single-layered to a multi-layered structure
with different cell types and correctly oriented anterior-posterior axis. Other prominent
examples include branching morphogenesis of numerous organs [5, 6], the formation of
villi in the gut [7, 8], or the formation of cortical convolutions in the brain [9, 10].

The generation of form includes the specification of both geometry (length scales and
size) and topology (connectivity) of objects [13]. For example, geometry plays a role for the
growth of gut villi [7, 8]. Villi need to attain their characteristic finger-like shape and have
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1.1 Development of living organisms

to be spaced correctly to ensure efficient nutrient absorption (Fig. 1.1a). Topology plays a
role during branching morphogenesis as network topology influences transport properties
(Fig. 1.1b). Tree-like networks yield optimal fluid transport [14–16], while networks with
loops yield optimal transport for fluctuating loads and with respect to damage to parts of
the network [12, 17].

Questions regarding the origin of geometry and topology of living organisms are old and
date back to ancient Greeks [1]. Today it is acknowledged that a combination of chemical
signals and mechanics organize the morphogenesis of living organisms [4, 18, 19]. For
example, chemical substances can provide a length scale via a reaction-diffusion mechanism
[4]. A substance that diffuses with diffusion constant D and undergoes degradation with
rate k can form graded concentration profiles with a characteristic degradation length
scale λ =

√
D/k. Also, signaling can influence topology. In some cases of branching

morphogenesis, inhibitory signals are released that prevent different branches from merging
[20].

Apart from simple, graded concentration profiles, complex, spatio-temporal geometries
and topologies can be generated via instabilities [4]. The Turing-instability is a prominent
example of such a pattern formation process and exemplifies how complex patterns can
emerge from uniform initial states [21] (Fig. 1.2). In his seminal paper titled “The chemical
basis of morphogenesis”, Turing studied a minimal system comprising two chemical species
that undergo diffusion and react with each other [22]. He showed that such a system
exhibits rich pattern formation processes ranging from uniform states to oscillations and
traveling waves. In particular, a standing wave (now known as Turing pattern) can be
generated with a wavelength that emerges from the reaction-diffusion length scales of the
chemical species. Key to the formation of such Turing patterns is a reaction network with
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Figure 1.2: Instabilities as a mechanism for the self-organization of complex
spatio-temporal patterns. We show the Turing instability as an example. The interac-
tion of an activator (diffusion constant DA) and an inhibitor (diffusion constant DI) leads
to the self-organized transition from a homogeneous to an inhomogeneous structure with
a characteristic length scale ℓ.
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Chapter 1 Introduction

short-ranged activation and long-ranged inhibition [23–25]. Turing patterns are discussed
in the context of digit formation [26] or the stripes of zebrafish [27], to name just a few
of the numerous examples. Apart from the Turing-instability, instabilities have also been
discussed in the context of tissue mechanics [4]. For example, it was proposed that brain
cortex folding arises from the relative growth of white (inner layer, slow growth) and gray
matter (outer layer, fast growth) [9, 10].

In this thesis, we focus on the influence of chemical signals on morphogenesis. In the
next section, we discuss a special class of chemical signals, called morphogens, and their
role in development.

1.1.2 The role of morphogens in development

Morphogens and morphogen gradients are central to our understanding of development [1].
Morphogens are diffusable signaling molecules that determine cell division and differentia-
tion in a concentration-dependent way [2]. Morphogens are produced in dedicated regions,
spread in the tissue and undergo degradation. They form morphogen gradients, i.e. the
morphogen distribution decreases away from the production region. We next highlight
key experiments that elucidated the role of morphogens in development and then briefly
discuss the formation of morphogen gradients.

The notion of gradients that influence developmental processes first appeared in the
work of Morgan and Child at the beginning of the 20th century [28–30]. In his studies of
the regenerative capabilities of Tubularia, Morgan noticed the phenomenon of polarity in
his experiments as amputated tissue pieces correctly reestablished their body axes [31]. He
explained this finding by introducing a hypothetical substance that spreads between the
poles of the animal in a graded manner. While Child shared his views on the existence of
such gradients, he interpreted them not in terms of “formative substances” [32] as Morgan,
but in terms of a gradient in metabolic activity [33]. While the precise nature of gradients
was under debate, the notion of gradients was born.

The experiments of Hilde Mangold and Hans Spemann mark the next important mile-
stone in our understanding of how morphogens organize development [2, 34–37]. Mangold
and Spemann studied newts at gastrulation stage. At this stage, the blastula (a spheroidal
arrangement of cells) develops into the gastrula (a structure that contains endoderm, meso-
derm, and ectoderm) [3]. In their experiments, they transplanted tissue from the dorsal
side of the gastrula (so-called blastolip) to the ventral side of a gastrula of another embryo.
Using embryos of newts with different pigmentation allowed them to distinguish host and
donor cells. Interestingly, they observed that the transplanted cells remained blastopore
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1.1 Development of living organisms

Gastrula

Ectoderm
Mesoderm

Endoderm

Blastolip

Transp
lant

(a) (b)

Figure 1.3: Spemann-Mangold experiment. (a) Tissue transplantation from blas-
tolip of donor gastrula to host gastrula. (b) The Spemann-Mangold experiment in Xeno-
pus laevis. Image shows wild-type animal (top) along with animal obtained from gastrula
with transplanted tissue at same developmental stage. Reproduced with permission from
Ref. [38, 39].

lip and even initiated gastrulation. A second embryo with correctly established anterior-
posterior and dorsal-ventral axis formed and is attached ventrally to the embryo generated
by the host tissue. Both embryos contain pigmented and unpigmented cells indicating that
host cells adapted a fate they would not have chosen without the transplantation. There-
fore, cell fate is not predetermined, but can induced by distinct organizer regions. The
blastopore lip of the new embryo is nowadays known as Spemann organizer. Overall, the
experiments of Spemann and Mangold demonstrated what is now known as the concept of
induction. Signals released from specialized “organizer” regions influence the fate of cells
in the surrounding tissue.

Lewis Wolpert then combined the ideas of “organizer” regions and morphogen gradients
in his famous French flag model to explain how positional information can be generated
[1, 2, 40] (Fig. 1.4). In this model, source cells produce morphogen that spreads in the
tissue and is read out by target cells. Target cells are capable of exhibiting different
concentration-dependent responses. In particular, Wolpert assumed that cell fate depends
on whether certain concentration thresholds are reached. Thereby, one morphogen signal
can give rise to multiple cell types in the tissue. Even though the concept of how a
morphogen works, was now stated, a clear experimental demonstration was still lacking.

The first clear experimental demonstration of a morphogen was the Bicoid protein in
Drosophila embryos [1, 29]. In a set of seminal experiments, Nüsslein-Volhard and col-
leagues elucidated the role of Bicoid protein for head formation in Drosophila embryos
[42–44] and demonstrated a gradient of Bicoid [45, 46] (Fig. 1.5). They showed that Bi-
coid deficient embryos could not form a head, but head formation could be rescued by

5



Chapter 1 Introduction

positionposition

threshold 1

threshold 2

threshold 1

threshold 2

m
or

ph
og

en
co

nc
en

tr
at

io
n

m
or

ph
og

en
co

nc
en

tr
at

io
n

(a) (b)

Figure 1.4: Morphogen-gradient generation and interpretation. (a) According to
Crick’s model, morphogen is produced in a source region (black) and degraded in a sink
region (gray), which results in a linear concentration gradient. (b) Morphogen gradients
can also be formed by production in a source region (black) and uniform degradation.
According to the French flag model, cells in the tissue show a concentration-dependent
behavior and adapt cell fates accordingly (color) in both scenarios of gradient formation.
Figure based on Ref. [41].

adding Bicoid protein obtained from wild-type embryos. Most importantly, the injection
site of Bicoid protein determined the position of head formation. This way a head located
at the anterior pole and in the middle of the embryo could be formed. Even a second
head could be induced by injecting Bicoid at the posterior region of a wild type embryo.
Altogether, their results identified that Bicoid acts as a morphogen in Drosophila embryos
and paved the way for the identification of more morphogens.

Over the years various other morphogens in a diverse set of tissues and organs in different
organisms have been identified (see [41, 47] for an overview). Apart from patterning the
fly embryo, morphogens are also involved in body axis formation in the fly wing. Here,
an interplay of Hh and Dpp signaling patterns the anterior-posterior axis of the fly wing
[48–52]. During gastrulation of Xenopus embryos, wnt patterns the anterior-posterior
axis of the neural plate [53] and bmp organizes the dorsal-ventral axis in the zebrafish
embryo [54], to name just a few of the numerous examples. Beyond setting up the body
plan, morphogens also control the growth of tissues and organs [55]. For example, Dpp
organizes the growth of fly wing and eye [56–58] and recent results suggest that bmp
influences growth of the zebrafish pectoral fin [59]. In a later section, we explore the
role of morphogens in branching morphogenesis. The widespread usage of morphogens to
coordinate and control the development of tissues and organs highlights the importance
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1.1 Development of living organisms

(a) (b)

Figure 1.5: Bicoid gradient in Drosophila embryos. (a) Bicoid protein distribution
in whole mount of wild-type embryos at syncytial blastoderm stage. (b) Quantification of
the Bicoid gradient. Image shows anti-bcd immunostain intensity as function of position
along anteroposterior axis averaged from 12 wild-type embryos. Error bars denote twofold
standard deviation. Images adapted with permission from Ref. [45].

of the morphogen concept for understanding developmental processes.
The formation of morphogen gradients is crucial for providing positional information

and therefore the control of development processes. Thus, much effort has been devoted
to understand the mechanisms underlying the formation of morphogen gradients. Nowa-
days, morphogen gradients are thought to form by the interplay of transport, removal,
and production [30, 47]. Both directional and non-directional as well as active and pas-
sive mechanisms contribute to the transport of morphogen [47, 60]. On small length and
timescales (nm,ms), morphogen transport takes place by free, extracellular diffusion. By
contrast, on the tissue scale (µm to mm) a range of different mechanisms affects trans-
port. For example, morphogen can repeatedly attach and detach to receptors on the cell
surface and parts of the extracellular matrix which overall hinders its motion. Moreover,
morphogen transport can take place via transcytosis, i.e. morphogen can enter the cell,
undergo intracellular transport, and subsequently leave the cell again. Also cytonemes,
thin, actin-rich protrusions that extend from cells, contribute to morphogen motion [61].
Cytonemes can be employed by morphogen producing cells to transport morphogen to
distant regions, but also the reverse process takes place and morphogen receiving cells
use cytonemes to sense morphogen at distant locations [41]. Removal of morphogen takes
place via degradation, immobilization, and also an effective removal of morphogen takes
place due to dilution of morphogen concentration by cell division. Production takes place
in distinct morphogen producing regions.

Despite the plethora of processes contributing to morphogen transport and removal, the
formation of morphogen gradients can be described by reaction-diffusion models, where
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transport takes place with an effective diffusion and degradation rate [29, 60]. Crick was
the first to propose a reaction-diffusion model for morphogen gradient formation [62]. In
his model, he studied the concentration of a morphogen subject to diffusion and uniform
degradation together with a distinct morphogen production and degradation region. In
1D, the proposed model gives rise to linear gradients (Fig. 1.4a). Nowadays, the so-called
synthesis-diffusion-degradation model (SDD) provides a minimal framework to study the
morphogen gradient formation [30, 47]. In this model, morphogen gradients form from the
interplay of diffusion with uniform degradation that takes place in the entire system. This
approach gives rise to gradients of exponential shape with a characteristic length scale
that increases for more diffusive morphogen species and with larger morphogen lifetime
(Fig. 1.4b). The SDD model has been successfully employed to study morphogen gradient
formation in the Drosophila wing imaginal disc and the zebrafish embryo [63, 64] and will
also be an important cornerstone of our work.

1.1.3 Allometric scaling: the role of body size in biology

Body size is an important aspect of living organisms and thus also morphogenesis. While
small crustaceans weigh only a few µg, blue whales have a body mass of roughly 105 kg.
Thus, living organisms span a remarkable range of 14 orders of magnitude in terms of body
mass [65–67]. Assuming that similar developmental processes form organisms at either
side of this spectrum, this naturally raises the question of how differently sized animals
are related. Are large organism just a scaled up version of smaller organisms and how are
scale and proportion maintained during growth?

The term allometry describes the study of how biological features change with organism
size [68–70]. This includes morphological features (e.g. organ and tissue size), physiological
features (e.g. metabolic rate, energy storage) as well as ecological features (e.g. locomotion
speed) [70, 71]. Four main classes of allometry are distinguished [68, 70]. Ontogenetic
allometry studies the relationship between biological features and body size during growth
of a species. Interspecies allometry compares features between different adult species,
whereas intraspecies allometry compares features within different adult organisms of the
same species. Phylogenetic allometry studies how biological features changed throughout
evolution. In this thesis, we will study ontogenetic allometries.

We refer to the equations that describe the functional dependence of a biological feature
with body size as allometric equations. Interestingly, it turns out that allometric equations
often obey power laws of the form

y = y0x
α, (1.1)
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1.2 Development of branched structures: branching morphogenesis

where y denotes a biological feature and x denotes the body size of the organism [71, 72].
We refer to α as the scaling exponent and y0 as the intercept.

Power laws of the form of Eq. (1.1) yield linear functions in double logarithmic coor-
dinates which facilitates the interpretation of α and y0 (Fig. 1.6) [70, 72]. The scaling
exponent α measures how much a biological feature changes compared with changes in
organism size. We distinguish isometric scaling (α = 1) and allometric scaling (α ̸= 1).
While for isometric scaling biological features change proportionally with organism size,
this proportionality breaks down for allometric scaling. Note that the term “allomet-
ric” comes from the Greek word “alloios” meaning “different”, expressing the disparity
in growth of biological features and organism size [72]. We distinguish sublinear scaling
(α < 1) and superlinear scaling (α > 1). For sublinear scaling, biological features change
less than organism size. Conversely, for superlinear scaling, biological features change
more than organism size. The proportionality factor y0 sets the intercept of the linear
function in double logarithmic coordinates. It therefore marks biological features at a
particular reference organism size.

Scaling relations are ubiquitous in biology [71, 72]. For example, the surface area A

of mammals scales with body mass M as A ∝ M2/3 [71, 73]. This is an example of how
scaling relation can be rationalized by simple geometrical considerations. The scaling of
metabolic rate P with body mass M as P ∝ M3/4 (known as Kleiber’s law) is another
prominent scaling relation [74]. Assuming that metabolic rate is proportional to surface
area gives 2/3 as scaling exponent, which is in contradiction with the observed exponent.
Thus, the derivation of the scaling exponent from geometrical consideration fails in this
case. Instead, it was suggested that the distribution of nutrients is limited by exchange
surfaces (e.g. vasculature) and the structure and scaling of exchanges surfaces gives rise
metabolic scaling [75–77].

1.2 Development of branched structures: branching
morphogenesis

Branching morphogenesis is a ubiquitous developmental process occurring in plants, an-
imals, and even fungi on a large range of spatial scales [80, 81]. The term refers to the
formation of branched morphologies by repeated rounds of branch initiation and extension.
Branching manifests itself in different ways [80]. While some organisms have a branched
body plan (e.g. trees and corals), other organisms possess a branched internal anatomy
(e.g. lungs). Branched morphologies can fill the entire organism body (e.g. vasculature),
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Figure 1.6: Allometric scaling of a general organismal feature y with body size
x. Scaling relations of the form of Eq. (1.1) yield linear functions in a plot with logarithmic
axes. (a) A change in scaling exponent α corresponds to a change in slope. (b) A change
in y0 corresponds to a change in the intercept of the corresponding linear function.

but can also be confined to a constrained region (e.g. lung). Branching can take place at
the single cell level (dendrite of neuronal cells), but can also involve the collective migration
of many cells (e.g. lungs). Branched morphologies also perform a variety of functions like
the transport of fluids (vasculature) and gases to signal propagation (nervous network).
While shape and functions are diverse, branching typically serves to maximize exchange
area between compartments when space is limited. We find maximization of the exchange
area in the respiratory organs (lungs, trachea), excretory organs (kidney) and exocrine
glands (mammary gland, salivary gland) and the vasculature.

Morphogen gradients also play an important role during the formation of branched
organs [5, 6, 82–85]. A set of local and global guiding cues ensure the correct formation and
growth of branches. A system where this interplay is particularly well understood is the
tracheal system of Drosophila (Fig. 1.7a) [86–88]. The tracheal system is the respiratory
system of insects and transports air from openings in the insect body to the interior. It is
an example of a stereotyped organ, meaning that branching occurs in a highly reproducible
way and organ structure is similar in different organisms of the same species. The tracheal
systems develops during embryogenesis from sac-like structures of the embryo. The growth
factor branchless (Bnl, a member of the FGF family) is expressed in target tissue and
acts as a chemoattractant. Tracheal cells sense Bnl via receptors called Breathless (Btl)
and migrate towards the source of Bnl [89, 90]. Since tracheal cells are connected by
adherens junctions, neighboring cells are pulled along with them causing the formation
of an elongated tube. In response to high levels of Btl, receptors Delta/Notch signaling
is triggered [91–93]. Cells with high levels of Btl have an increased Delta production,
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1.2 Development of branched structures: branching morphogenesis

(b)(a) mammary glandtracheal system

Figure 1.7: Examples of branching morphogenesis. (a) Top: Tracheal system in
Drosophila embryo at stage 16. Scale bar denotes 25 µm. Bottom: Tip cells sense the
growth factor Bnl via receptor Btl and migrate towards source of Bnl. Notch/Delta
signaling causes the formation of a stalk. (b) The mouse mammary gland forms during
embryonic, pubertal, and adult stages. In the embryonic stage, a rudimentary gland is
formed that invades surrounding tissue during puberty. During pregnancy milk producing
alveoli form. Reproduced with permission from Refs. [6, 78, 79]

which in turn induces Notch signaling in neighboring cells. Notch inhibits the tip cell fate
thereby causing the formation of stalk. Overall, the tracheal system serves as an example
of a stereotyped organ that forms under the influence of a chemoattractant.

In contrast to the tracheal system of Drosophila, the mammary gland is an example
of a non-stereotyped organ that forms by chemorepulsion (Fig. 1.7b) [6, 79]. The mam-
mary gland is a bilayered epithelial structure comprising inner luminal epithelial cells and
basal myoepithelial cells forming ducts. The development of the mammary gland takes
place during embryonic, pubertal, and adult stages. First, five placodes are formed during
embryonic development that subsequently develop into a rudimentary branched struc-
ture. Then, the most striking change takes place during puberty when branches invade
the surrounding tissue to form the mammary gland. Finally, during pregnancy milk-
producing alveoli form. Interestingly, the mammary gland obtains its structure without
any chemoattraction [83, 94–97], but instead relies on chemorepulsion. TGFβ, an in-
hibitor of branching morphogenesis, is produced by the mammary gland itself and forms
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Regeneration Growth and degrowth(b)(a)

Figure 1.8: Growth, degrowth, and regeneration of planarians. (a) Planarians
exhibit exceptional regenerative capabilities. Colored lines indicate the position of a cut.
Regenerated tissue fragments from 14 d.p.a. Scale bar 500 µm. (b) Depending on food
availability, planarians can grow and degrow. Scale bar 1 mm. Both images show the
planarian species Schmidtea mediterranea. Reproduced with permission from Refs. [65,
101]

a gradient around branches, as demonstrated both in vivo and in vitro [82, 98]. TGFβ
inhibits growth of ducts by either promoting the deposition of extracellular matrix around
the mammary gland or by reducing the proliferation of basal cells [99, 100].

1.3 Planarians as a model system for organism scaling

Planarians are a group of flatworms that are mostly known for their exceptional abilities
[102, 103]. For example, planarians are famous for their extraordinary regeneration capa-
bilities (Fig. 1.8a). The planarian species Schmidtea mediterranea can regenerate missing
body parts from (almost) arbitrarily small tissue fragments of any shape within approxi-
mately 14 days. This includes the de-novo formation and positioning of any missing body
part, such as head or tail, and the restoration of size and proportion of the body [103].
These striking regenerative capabilities inspired John Graham Dalyell in 1814 to state
that planarians “...may almost be called immortal under the edge of the knife” [104]. Be-
sides their regenerative capabilities, planarians are also studied for their fluctuating body
size (Fig. 1.8b). For example, the species S. mediterranea grows when food is available
and shrinks during starvation (also called degrow) and in the process undergoes massive
changes in body length (1-20 mm), body mass (0.1-20 mg), and also cell number (104−107)
[65]. Beside these massive intraspecies size variations, planarians also offer a large range
of interspecies size variation. Species at lake Baikal were reported to reach ∼100 mm and
a species in Japan even reaches up to 1 m in body length [105].
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1.3 Planarians as a model system for organism scaling

The exceptional capabilities of planarians challenge existing ideas and concepts in de-
velopmental biology. For example, the existence of morphogen gradients spanning the
entire organism length in planarians questions existing concepts for morphogen gradient
formation. While a diffusion-degradation mechanism can generate morphogen gradients
spanning the size of a tissue, novel concepts are needed to explain the formation of gra-
dients spanning the entire organism [106]. Moreover, morphogen gradients in planarians
have the ability to both scale with organism size and restore after an amputation event.
While patterns in a Turing instability emerge in a self-organized way, they show a char-
acteristic length scale and thus lack scaling with organism size. Inspired by morphogen
gradients in planarians, a novel class of pattern forming mechanism was proposed that
shows both scaling and self-organization [107]. In this thesis, we proceed in the same
spirit and use the capabilities of planarians as inspiration to develop novel theoretical
concepts. In particular, we use planarians as a model system to study growth and scaling
of branched organs with the planarian gut as an example. Here, we now give an overview
planarian anatomy including the planarian gut.

Planarians are part of the phylum Platyhelminthes (platy=flat; helminthes=worms)
and constitute the clade Tricladida [105]. They are free-living organisms and live in both
aquatic (salt- and freshwater) and terrestrial environments around the world. They have a
bilaterally symmetric, flat body with anterior-posterior (distinct head and tail region) and
dorso-ventral polarity (photoreceptors on the dorsal side). Despite their simple appearance
they have a rich set of internal organ systems (Fig. 1.9).

The planarian gut is a highly branched organ that is responsible for the digestion of
food and the delivery of nutrients to the body (Fig. 1.9,1). It spans the entire body and
has a characteristic shape with one main branch in the anterior and two main branches
in the posterior region [108]. The intestinal epithelium (gastrodermis) consists of three
cell types [109–111]. The inner intestinal cell layer consists of phagocytes that absorb
food particles for intracellular digestion and contain lipid droplets as well as glycogen and
therefore contain part of the organismal energy storage. Goblet cells produce and secrete
enzymes for digestion. Finally, the gut also possesses outer intestinal cells with so far
unknown function [112]. The entire gut is enclosed by enteric muscle [113].
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Figure 1.9: Planarian anatomy. Top: Sketch of planarian body anatomy. Bottom:
Microscopy images of highlighted body regions. (1) The planarian gut (red, Smed-
porcupine-A, green, Smed-sufu in-situ hybridization) along with the body outline (blue,
nuclear counterstaining with DAPI). The gut is a highly branched organ responsible for
food digestion. Empty region in the center of gut is the region the pharynx resides in. (2)
Brain (red, Smed-pc2 in-situ hybridization), central nervous system, and pharynx (green,
α-tubulin immunostaining). (3) Protonephridia (depth-coded confocal maximum projec-
tion of acetylated-tubulin immunostaining) are excretory organs distributed throughout
the body. (4) The planarian pharynx is a muscular tube that can extrude upon food in-
gestion (red, phalloidin staining of muscle actin). (5) Pluripotent stem cells (red, confocal
maximum projection of piwi-1 in-situ hybridization) are distributed throughout the body.
(6) Planarians have a layer of longitudinal, diagonal, and horizontal oriented muscle fibers
(depth-coded confocal maximum projection of 6G10 immunostaining). Staining details
indicated in parentheses taken from Ref. [103]. Adapted with permission from Ref. [103].
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1.3 Planarians as a model system for organism scaling

Apart from the gut, planarians have a rich internal anatomy [103]. They have a brain
connected with two ventral nerve cords and simple photoreceptors (Fig. 1.9,2). Pro-
tonephridia serve as a simple excretory organ (Fig. 1.9,3). The planarian pharynx is a
muscular tube located on the ventral organism side and serves as the only body opening
for both food ingestion and feces excretion (Fig. 1.9,4). The entire organism is surrounded
by three layers of musculature with circular, longitudinal, and diagonal orientation [114,
115] (Fig. 1.9,5). The ventral side of the epidermis has cilia that are used for a gliding
motion [116].

A key feature of planarian anatomy is their large population of pluripotent stem cells
(called neoblasts) (Fig. 1.9,6) [117, 118]. Neoblasts are small, round cells (diameter 7-
12 µm), that reside in the mesenchyme [103]. They constitute 10-20% of all cells and
are the only cell type that can divide in the organism [119]. Thus, they are essential
for the maintenance and regeneration of the planarian body. Under normal conditions
they undergo division with a basal rate and renew all existing tissues. After feeding,
neoblast division rate shortly increases, leading to an increase in organism size [120–
122]. Irradiation with γ radiation blocks neoblast division and leads to the death of the
organism [123, 124]. Interestingly, an organism can be rescued by transplanting a single
stem cell from a healthy organism [125]. This experiment demonstrates that neoblast
are pluripotent stem cells and highlights the importance of neoblasts for the regenerative
capabilities of planarians.

A set of evolutionary conserved signaling pathways organizes the planarian body plan
(Fig. 1.10) [103, 108]. For example, the Wnt signaling pathway organizes the anterior-
posterior axis. Wnt shows graded activity along the anterior-posterior axis with highest
activity in the tail and lowest activity in the head [126]. Activation of Wnt signaling leads
to the transformation of a head into a tail and during regeneration at both poles tails
form [127, 128]. Conversely, the inhibition of Wnt signaling leads to the transformation
of a tail into a head (the animal forms a brain and eyes in the posterior region, only one
instead of two main gut branches in posterior region) and during regeneration at both
poles heads form [127, 129, 130]. The proteins Bmp4 and Admp ensure the organization
of the dorso-ventral axis (BMP family) [131, 132]. In planarians bmp4 is expressed at the
dorsal pole and admp at the ventral pole of the organism. The knockdown of bmp4 has
striking consequences for the organism and leads to the formation of cilia on the dorsal
epithelium [132]. Finally, the medio-lateral axis is controlled by the expression of wnt5
and slit [133, 134]. Knockdown of wnt5 leads to a phenotype with two additional pharynx
placed next to the pharynx present in all wild-type animals and knockdown of slit leads
to the fusion of photoreceptors on the organism midline.
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Figure 1.10: Morphogen signaling systems in planarians. We show the signaling
activity of the main signaling pathways in planarians. Note that the shown signaling
gradients are extrapolations from the respective gene expression pattern and do not reflect
measurements. Reproduced with permission from Ref. [103].

1.4 Branching in physics: pattern formation in unstable
interface growth

The formation of complex branched morphologies is not only a common process in biology,
but also in many areas of physics [135–137]. Branched structures are observed in a wide
class of systems including the solidification of a liquid from an undercooled melt, the flow
of fluids through narrow channels, the aggregation of particles during electrodeposition,
the growth of bacterial colonies, and also in dielectric breakdown (Fig. 1.11). While these
systems seem diverse at first, their highly branched structure originates in a similar way.
On an abstract level, all these systems can be described as the growth of an interface
that separates two distinct regions (e.g. the liquid and solid phase in solidification). Any
protrusion in this interface leads to an amplification of the growth rate of this protrusion
and therefore leads to unstable interface evolution. Since the growth rate of this interface
is controlled by a field that is determined by the Laplace equation (e.g. temperature in
solidification), this class of pattern forming systems is called “Laplacian growth” [137,
138]. We now discuss the solidification of a pure liquid and diffusion-limited aggregation
of particles as two paradigmatic examples of this broad class of pattern forming systems.

1.4.1 Solidification and the Mullins-Sekerka instability

The formation of complex interfacial patterns is a common process in crystal growth [135,
136, 144, 145]. Typical scenarios of crystallization include the growth of a solid from a
pure undercooled liquid (e.g. freezing of water) or from a supersaturated solution (e.g.
supersaturated solution of NH4Cl). In both cases, crystallization starts from a nucleation
seed and then the solid advances into the liquid while forming branched interfacial pat-
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electrodeposition
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Figure 1.11: Pattern formation in unstable interface growth. (a) Left: Growth
of a snowflake crystal as an example for solidification influenced by symmetry of its con-
stituents. Right: Growth of a crystal from a supersaturated aqueous ammonium chloride
solution between two glass plates as an example for solidification in a random environment
as one of the glass plates has a rough surface. (b) Growth of zinc aggregates from aqueous
solution of zinc sulfate. A carbon cathode is placed in the center of a zinc ring anode
(diameter 17 cm) and a dc voltage applied. 2D aggregates grow along an interface of n-
butyl acetate on the solution. (c) Time-integrated image of discharge pattern (Lichtenberg
figure). An electrode was connected at the center of a thick glass plate that was grounded
at the boundary. Upon applying a voltage pulse, a radial discharge pattern develops. (d)
Viscous fingering pattern observed when a less viscous fluid (air) is injected into a more
viscous fluid (glycerine). Reproduced with permission from Refs. [139–143]

terns. Here, we discuss the solidification from a pure undercooled liquid as an example to
highlight key aspects for this class of pattern forming systems. The discussion of growth
from a supersaturated solution is analogous and can be found in [135, 136].

We consider a scenario where a solid (s) phase is embedded in a liquid (l) phase [136].
The liquid phase is undercooled, i.e. it is at temperature T < TM , where TM is the
melting temperature. As a simplification, we consider both phases to be separated by a
sharp interface. In each phase, the temperature Ti is governed by the diffusion equation

∂tTi = Di
T ∇2Ti, (1.2)
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where i ∈ {s, l} labels the respective phase and Di
T denotes the thermal diffusivity. This

equation is complemented by appropriate boundary conditions depending on the specific
scenario that is studied. At the interface, we can use energy conservation to arrive at an
equation for the interface velocity vn:

Lvn = [Ds
T c

s
p(∇T )s −Dl

T c
l
p(∇T )l] · n (1.3)

Here, L denotes the latent heat per unit volume, ci
p denotes the specific heat per unit

volume in the respective phase, and n denotes the interface normal vector. Eq. (1.3)
balances the latent heat released upon solidification (left side) with the heat transported
away from the interface into the two phases (right side). At the interface we use the
Gibbs-Thomson relation

T = TM

(
1 − γκ

L

)
(1.4)

as a boundary condition, which takes into account the dependency of the melting tem-
perature on the interface curvature κ. The interface curvature κ is defined such that it
is positive for a protrusion of the solid into the liquid phase and γ denotes the surface
tension. Altogether, Eqs. (1.2)-(1.4) define a simple model for the growth of an interface
by solidification. Note that solidification is an example of diffusion-limited growth since
the rate of heat transport away from the interface determines the interface velocity (1.3).
This has interesting consequences for the stability of the interface which we will discuss
next.

To qualitatively understand the origin of unstable interface evolution in this model, we
consider two scenarios of interface growth in a system with walls maintained at temper-
ature T < TM [136]. In one scenario the solid is in contact with the walls and grows
into a liquid with temperature T > TM . In this scenario, interface growth is stable: Any
protrusion of the interface results in a reduction of heat transport from the protrusion
to the system wall and therefore in a reduction of protrusion velocity. The growth of
protrusions is hindered and the interface gets smooth again. By contrast, the growth of
a solid from the center of the system towards the system walls leads to unstable interface
growth. Here, the formation of a protrusion leads to an increase of heat transport from
the protrusion and thus to an increase of protrusion velocity. The growth of protrusions
is promoted, leading to complex branched interfaces.

The diffusion-driven instability in solidification was first systematically studied by Mullins
and Sekerka and is therefore today known as the Mullins-Sekerka instability [146, 147]. A
similar instability with finger like protrusions (known as viscous fingering) can be observed
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when a viscous fluid is pushed into a second more viscous fluid in a narrow, flat channel.
Here, Saffman and Taylor elucidated the mechanism of the instability and therefore it is
today known as Saffman-Taylor instability [140, 148]. Both systems serve as paradigmatic
examples for the formation of branched interfaces.

While instabilities lead to highly branched structures, many other factors contribute
to their overall morphology. For example, in solidification the anisotropy of the grow-
ing structure (e.g hexagonal symmetry of snowflakes) is closely related to the internal
order of the substances forming it (e.g. molecular structure of water, Fig. 1.11a, left).
More irregularly crystals can be formed if the growth process takes place in a “random
environment”. A crystal of NH4Cl without apparent symmetry was grown between two
glass plates, where one of the glass plates had a rough surface (Fig. 1.11,a, right) [139,
149]. Likewise, an anisotropy for patterns generated in viscous fingering can be induced
by engraving a lattice structure on the glass plates confining the fluid motion in the ex-
perimental apparatus [150]. Thus, both the instability and external factors control the
structure of branched patterns.

1.4.2 Diffusion-limited aggregation

(a) (b)
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Figure 1.12: Unstable interface growth in diffusion-limited aggregation. (a)
Example cluster of size M = 2500 generated by DLA. Simulation performed by the author.
(b) Correlation function C(r) for an ensemble of 12 aggregates of size M = 50000. We
denote the size of a lattice site by a. Error bars denotes the standard deviation of the
correlation function. Note that for the data shown here, the error bar size is smaller than
the marker size.
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The formation of clusters by irreversible aggregation of particles provides another im-
portant class of systems with complex interface growth. For example, in electrodeposition
experiments a variety of interface morphologies can be bound [141, 151]. In these ex-
periments, a cathode is placed in the center of a vat surrounded by a ring-like anode
(e.g. Zn). Both anode and cathode are immersed in a solution (e.g. zinc sulfate ZnSO4).
Upon applying a dc voltage, the formation of highly branched structures can be observed
(Fig. 1.11b).

In their seminal work, Witten and Sander developed a model to understand the struc-
tures observed in the irreversible aggregation of particles [152, 153]. In their model, now
known as “diffusion-limited aggregation” (DLA), a random walker on a (square) lattice
represents aggregating particles. Initially, a particle is placed as a nucleation seed in the
center of the system and subsequently another particle is released at a random location at
the system boundary. The particle performs a random walk until it reaches a site next to
the cluster. In this case, the random walk is terminated and a new particle released. The
random walk of a particle is also stopped, if a particle crosses the system boundary. The
repeated execution of this process results in complex branching morphologies exhibiting
self-similar fractal scaling (Fig. 1.12).

The formation of branching structures in DLA and solidification is closely related. To
make this connection rigorously, we follow Witten and Sander and employ parallels be-
tween random walks and the diffusion equation [152, 153]. We introduce the probability
u(x, k) that a random walker is at lattice site x at time step k. The probability u(x, k)
satisfies the relation

u(x, k + 1) = 1
c

∑
l

u(x + l, k), (1.5)

where c denotes the number of neighbors of a lattice site. This equation expresses that a
particle can be found at lattice site x at time step k + 1 if it was at a neighboring lattice
site x+l at the previous time step and made a jump to x. Eq.(1.5) is key to our discussion
since we can use it to derive both the continuum limit of particle and interface motion.
First, we can regard Eq. (1.5) as a discrete diffusion equation with boundary conditions
u = 1 on the system boundary and u = 0 on the sites adjacent to the cluster. In the
continuum limit, we find

∂tu = D∇2u (1.6)

with diffusion constant D. Note that we can neglect the time derivative on the left hand
site since particles are released one at a time and the quasistatic limit therefore holds.
Next, we can derive the continuum limit of interface motion. From Eq. (1.5) we deduce
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that the probability v(x, k) that a particle is added to the cluster satisfies

v(x, k + 1) = 1
c

∑
l

u(x + l, k). (1.7)

In the continuum limit, this gives for the normal velocity vn of the interface of the cluster

vn = Dn · ∇u, (1.8)

where n denotes the interface normal vector. Thus, we have derived the continuum limit
of diffusion-limited aggregation given by Eq. (1.6) and (1.8).

With the continuum limit at hand, we can now discuss similarities and differences
between models for diffusion-limited aggregation and solidification. In both cases, the
interface grows by diffusion. In solidification, the diffusion of heat away from the interface
determines the interface growth rate. The heat flux is largest at tips causing an instability
of interface growth. In DLA, the diffusive motion of particles to the interface determines
its growth. The arrival of particles at tips is largest, while valleys further inside of the
cluster can be considered as screened. This leads to a self-amplification of the growth of
tips in a similar way as for solidification. An important difference between both models is
the lack of surface tension in DLA. This demonstrates the close connection between DLA
and other surface growth models.

Over the years, many extensions and variants of DLA have been studied. Much effort has
been devoted to approach the mean-field limit of DLA. For example, Nittmann developed
a noise reduction technique where particles are only attached to the cluster once they have
landed s times on the same perimeter site of the cluster [154]. This way, a transition from
noisy structures (s small) to smooth structures with non-zero finger thickness (s large)
could be demonstrated. To overcome the lack of surface tension in DLA, a curvature
dependence was included into the attachment kinetics of random walkers. Vicsek and
Tao used a curvature-dependent attachment probability [155, 156], while Kadanoff and
Liang developed a method, where particles could detach and re-attach in a curvature-
dependent manner [157, 158]. Variants of DLA have been applied to scenarios other
than irreversible aggregation of particles. For example, Niemeyer developed the so-called
dielectric-breakdown model to study self-similar structures observed in discharge patterns
[142]. In this model, the analogy between the Laplace equation and the probability to find
a random walker at a lattice site is used, cf. (1.5). Niemeyer solves the discrete Laplace
equation for the electric potential and adds lattice sites to the cluster with a probability
proportional to the gradient of the electric potential. This way, self-similar structures with
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Chapter 1 Introduction

properties similar to discharge patterns can be generated.

1.5 Organization of this thesis

In this thesis, we study theoretically the self-organized formation of branched structures in
biology. To this end, we combine the idea of morphogen-controlled growth of organs with
the concept of self-organized formation of branched structures by unstable interface mo-
tion. Thus, we study instabilities and pattern formation in morphogen-controlled interface
growth as a mechanism for the formation of branched structures in biology.

This thesis is broadly divided into two parts. In chapter 2 and 3, we first present mini-
mal models for morphogen-controlled interface growth. We discuss how instabilities arise
in interface motion and analyze the geometry and topology of the resulting interfacial pat-
terns. In chapter 2, we present a lattice model for morphogen-controlled interface growth.
In this model, interface growth takes place in a stochastic way with a rate determined
by a concentration gradient. We relate our model to diffusion-limited aggregation and
explain how an instability originates in analogy to DLA. We further discuss the statistical
properties of the different branched structures the model gives rise to. Finally, we derive
topology-preserving transition rates that allow us to control the topological properties of
branched structures. Overall, chapter 2 presents a first example for an interface growth
rule that exhibits an instability and allows us to study the limit of zero surface tension
and finite noise of morphogen-controlled interface growth.

In chapter 3, we present a continuum model for morphogen-controlled interface growth.
In contrast to chapter 2, we explicitly take into account surface tension in our description.
We perform a linear stability analysis and discuss how an instability takes place in this
model. Next, we go beyond the linear stability analysis and study the geometry and
topology of interfacial patterns in the unstable parameter regime. We provide a brief
introduction to the phase-field method and explain how it can be employed to numerically
solve the interface equations. We combine simulations with analytically tractable special
cases of our model to understand the geometrical and topological properties of resulting
morphologies. Overall, chapter 3 presents a second example for an interface growth rule
that exhibits an instability and allows us to study the limit of zero noise and finite surface
tension of morphogen-controlled interface growth.

While the first part of this thesis served to understand basic principles of instabilities
in morphogen-controlled interface growth, in the second part we apply the developed
ideas and concepts together with colleagues from the MPINAT in Göttingen (Amrutha
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1.5 Organization of this thesis

Palavalli, Baiqun An from the lab of Jochen Rink) to study planarian gut morphogenesis.
To this end, we first provide a quantitative analysis of the planarian gut in chapter 4.
After presenting details of our quantification procedure, we discuss the geometrical and
topological properties of the planarian gut. A particular focus lies on the size-dependent
properties of the planarian gut, where we reveal how various gut features show power law
scaling as a function of organism size.

In chapter 5, we present a model for the morphogen-controlled growth and scaling of
the planarian gut. This model is based on our continuum description from chapter 3 and
introduces novel concepts to account for the organization of the planarian gut. Since gut
morphogenesis takes place in a growing organism, we include organism growth into our
description. Inspired by branch orientation in the planarian gut, we introduce additional
external guiding cues into the description to control branch orientation in our model. To
understand the formation of branched patterns in this model, we first consider a non-
growing system and discuss how branch distance, thickness, and orientation and also the
symmetry of morphologies is controlled. Next, we study a growing system and study the
size-dependency of resulting morphologies. We find that various properties of morpholo-
gies display power law scaling, which we rationalize by a minimal scaling argument. We
finally compare model predictions with experimental data. We conclude this thesis with
a discussion of our results and provide an outlook on future work in chapter 6.

23



Chapter 1 Introduction

24



Chapter 2

Geometry and topology of aggregates
formed by morphogen-controlled growth

In this chapter, we combine the idea of morphogen-controlled growth of tissues and or-
gans with concepts from diffusion-limited aggregation (DLA) to develop a minimal lattice
model for morphogen-controlled branching morphogenesis. DLA is a central concept in
unstable interface growth and has been employed to study electrodeposition, dielectric
breakdown, or also viscous fingering [138]. Here, we present a stochastic lattice model of
morphogen-controlled interface growth and demonstrate how highly branched morpholo-
gies are generated by an instability similar to the one in DLA. Motivated by the role of
topology for branched structures in biology, we use the Euler characteristic as an example
of a topological invariant to introduce constraints into the growth process and thereby
generate tree-like aggregates.

This chapter is structured as follows. We first present our lattice model for morphogen
controlled interface growth and relate it with DLA by considering the respective continuum
limits. We demonstrate the generation of highly branched structures by an instability and
discuss the statistical properties of resulting aggregates. In the second part of the chapter,
we introduce the Euler characteristic and use it to introduce topological constraints into
interface growth. We then discuss the statistical properties of the resulting morphologies.
Finally, we provide an outlook on our approach and demonstrate how the incorporation
of topological constraints into interface dynamics allows us to both grow and degrow
aggregates. This might serve as a scenario to study the reversibility of interface growth
processes in the future.
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Chapter 2 Geometry and topology of aggregates formed by morphogen-controlled growth

2.1 Stochastic lattice model of morphogen-controlled
interface growth

2.1.1 General model setup

For simplicity, we consider a square lattice with N rows and columns and thus in total
N2 square lattice sites, where each lattice site is of length a. We label rows with index i
and columns with index j and these indices thus satisfy

i = 0, . . . , N − 1 (2.1a)
j = 0, . . . , N − 1. (2.1b)

Each lattice site is equipped with an occupation number nij and a morphogen concentra-
tion cij. Occupation numbers are binary variables with nij ∈ {0, 1}. Morphogen concen-
trations cij are positive real numbers with cij ≥ 0. We denote the set of all occupation
numbers by {nij} and likewise the set of all morphogen concentrations by {cij}. We refer
to the set of all lattice sites with nij = 1 as “aggregate”.

Due to the importance of local 3×3 neighborhoods for the definition of model dynamics,
we provide a simplified notation for lattice site indices of such neighborhoods (Fig. 2.1).
In particular, we use the mapping

r = Ni+ j with r = 0, . . . , N2 − 1 (2.2)

to number lattice sites with a single index r instead of labeling rows and columns with a
pair of indices i, j. In this mapping, lattice sites are numbered in a row-major order, i.e.
lattice sites are traversed and numbered along rows. We obtain a pair of indices i, j from
a single index r by using the inverse of the mapping Eq. (2.2)

i = r/N (2.3a)
j = r mod N, (2.3b)

where “/” denotes integer division and “mod” denotes the modulo operation. Apart
from the central lattice r in a neighborhood, we also provide a simplified notation for its
neighbors. We denote the lattice site index of its four nearest neighbors by ei. Likewise,
we denote the lattice site index of its four next neighbors by di. In both cases, the index
i = 1, . . . , 4 labels the neighbors in a counterclockwise direction.
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Figure 2.1: Notation for local 3×3 neighborhood around a lattice
site r. We denote nearest neighbors by ei and next neighbors by
di, where we in both cases label neighbors by i = 1, . . . , 4 in a
counterclockwise direction.

2.1.2 Model dynamics

In our stochastic lattice model of branching morphogenesis, we study the coupled dynamics
of occupation numbers {nr} and morphogen concentrations {cr} (Fig. 2.2a). The dynamics
of occupation numbers is governed by the Master equation

∂tp({nr}, t) =
∑

r

[kr
−nr + kr

+(1 − nr)]p(n0, . . . , 1 − nr, . . . , nN−1)

−
∑

r

[kr
−nr + kr

+(1 − nr)]p(n0, . . . , nr, . . . , nN−1),
(2.4)

which describes the stochastic transition of a single occupation number nr = 0 → nr = 1
with growth rate kr

+ or nr = 1 → nr = 0 with degrowth rate kr
−. Here, we consider a

special case of the dynamics described by Eq. (2.4) with transition rates

kr
+ = k0

+
∑

e

(1 − nr)nr+e
cr+e − cr

a
(2.5a)

kr
− = k0

−
∑

e

nr(1 − nr+e)
cr+e − cr

a
. (2.5b)

Clearly, in both cases the (de)growth rate kr
± is determined by a morphogen gradient.

Moreover, the terms (1 − nr)nr+e and nr(1 − nr+e) ensure that transitions of occupation
numbers take place only at interfaces, i.e. at lattice sites with a non-zero gradient of
occupation number (Fig. 2.2b). While kr

+ is non-zero for empty lattice sites (nr = 0)
with any activated nearest neighbor (nr+e = 1), kr

− is non-zero for activated lattice sites
(nr = 1) with any empty nearest neighbor (nr+e = 0). Thus, Eq. (2.4) and (2.5) describe
an interface (de)growth process guided by a morphogen gradient. In both cases, the rate
k0

± allows to adjust the overall rate of the process and therefore provides a timescale for
this (de)growth process.

The dynamics of morphogen concentrations {cr} is governed by the reaction-diffusion
equation

∂tcr = D∇̄2cr − k(nr)cr + s(nr), (2.6)
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(a) (b)
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cr/c0
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Figure 2.2: Lattice model for morphogen-controlled branching morphogenesis.
(a) We consider a N × N square lattice with lattice constant a and system size L =
Na. Each lattice site r carries an occupation number nr ∈ {0, 1} and a morphogen
concentration cr. We show an example aggregate formed according to Eq. (2.5) and
Eq. (2.6) of size M = 7500 in the DLA-limit (λin/a = 0.01, λout/L = 100, ∆c = c0

in)
displaying the characteristic, highly ramified structure. (b) Magnification of the dashed
box in (a): We indicate potential growth sites (filled circles) and degrowth sites (empty
circles). Note that topology-changing transitions are allowed according to the transition
rates Eq. (2.5).

where we have used the discrete Laplacian operator

∇̄2cr = 1
a2

∑
e

[cr+e − cr]. (2.7)

These equations describe the diffusion of morphogen between lattice sites with diffusion
constant D, the degradation with a rate k(nr), and the production with rate s(nr). For
generality, we assumed that the degradation and production of morphogen can depend on
the occupation number.

While Eq. (2.6) describes a general reaction diffusion process on a lattice, here we
study a special case. For simplicity, we consider the quasistatic limit in which morphogen
dynamics is much faster than the interface (de)growth dynamics. We therefore solve the
case ∂tcr = 0 instead of the full dynamics defined by Eq. (2.6). Moreover, we consider the
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2.1 Stochastic lattice model of morphogen-controlled interface growth

degradation and production terms

k(nr) = kinnr + kout(1 − nr) (2.8)
s(nr) = sinnr + sout(1 − nr). (2.9)

Thus, degradation and production rates are constant, but in general different for regions
inside (nr = 1) and outside (nr = 0) of aggregates. As a consequence, we have different
reaction-diffusion lengths λi =

√
D/ki and characteristic morphogen concentrations c0

i =
si/ki for inside and outside regions. In general, we have a non-zero difference ∆c of
characteristic morphogen concentrations between the inside and outside region, where
∆c = c0

in − c0
out. In our model we can study both the case of strong morphogen production

inside (∆c > 0) and outside (∆c < 0) of aggregates. Here, we focus on the case of strong
morphogen production inside the aggregate (∆c > 0), which corresponds to the case of
morphogen that is produced in an organ diffuses in the organism and in this way guides
organ growth.

In our model, we enforce zero occupation number (nr = 0) and zero morphogen concen-
tration (cr = 0) at the system boundary, i.e. we have a morphogen sink at the boundary.
As a simple scenario for pattern formation and in analogy to the situation studied in DLA,
we initialize our system with a single occupied lattice site in the system center with zero
concentration throughout the system.

To numerically obtain samples of the stochastic process defined by Eq. (2.4) and Eq. (2.5)
together with the quasistatic limit of Eq. (2.6), we use the Gillespie algorithm [159–161].
Given a configuration of occupation numbers {nr} at a time t0, we first obtain the cor-
responding concentration values {cr}. In the quasistatic limit, the morphogen dynamics
described by Eq. (2.6) and Eq. (2.7) constitute a system of M coupled linear equations
that we can solve by using the conjugate gradient method [162]. Next, we use the rate αr

for a transition to take place at lattice site r to determine the overall transition rate α to
leave the current state of the system:

α =
∑

r

αr αr = kr
+ + kr

− (2.10)

We use this to determine the time ∆t to the next transition

∆t = t− t0 = − log ξ
α

, (2.11)

where ξ is a uniformly distributed random number with ξ ∈ [0, 1]. The specific event that
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Chapter 2 Geometry and topology of aggregates formed by morphogen-controlled growth

will take place is determined according to

r−1∑
s=0

αs < ζ <
r∑

s=0
αs, (2.12)

where ζ is another uniformly distributed random number with ζ ∈ [0, 1].

2.1.3 Relation to diffusion-limited aggregation

To compare our lattice model for branching morphogenesis with DLA, we consider the
continuum limit of both models. In the continuum limit, the reaction-diffusion dynamics
of the lattice model defined by Eq. (2.6) becomes

∂tci = D∇2ci − kici + si, (2.13)

where the index i ∈ {in, out} labels regions inside and outside the aggregate. From the
transition rate Eq. (2.5), we find that the normal velocity vn of the interface separating
the inside and outside region obeys

vn = D0
±n · ∇c, (2.14)

where we have introduced the interface diffusion constant D0
± = k0

±a and n denotes the
interface normal vector. For a discussion of the continuum limit of DLA we refer the
reader section 1.4.2 of the introduction chapter.

The continuum limit of our lattice model and DLA now allow us to discuss similarities
and differences of both models. While in both cases the gradient of a diffusive field deter-
mines the growth of the aggregate, the models differ in the details of the dynamics and
boundary conditions of the diffusive fields. In the lattice model, the morphogen concentra-
tion c constitutes the diffusive field and its dynamics is governed by the reaction diffusion
equation Eq. (2.13) together with a fixed concentration at the system boundary. This
allows us to consider different scenarios in which morphogen is predominantly produced
on the aggregate and forms a gradient towards the boundary or the opposite case in which
morphogen is predominantly produced on the boundary and forms a gradient towards the
aggregate. In any case, the concentration fields have a characteristic length λin inside and
λout outside of the aggregate. Moreover, the preferred concentration value c0

i = si/ki in
each region can be controlled by the ratio of production rate si and degradation rate ki.
In the case of DLA, the probability u to find a random walker constitutes the diffusive
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2.2 Geometry of aggregate morphologies

field. The probability to find a random walker is governed by diffusive dynamics according
to Eq. (1.6) together with the condition u = 1 at the system boundary (source of random
walkers) and the condition u = 0 on the aggregate (sink of random walkers). In contrast
to the lattice model, the number of random walker is conserved in DLA. Thus, a degrada-
tion rate and therefore a characteristic length scale is lacking. Overall, our lattice model
is a versatile system to study the formation of interface patterns guided by a morphogen
gradient. Note that we can recover the DLA dynamics with our lattice model (“DLA
limit”) in the limit of decoupled lattice sites on the aggregate (λin/a ≪ 1 with c0

i = const)
and vanishing degradation of morphogen outside of the aggregate (λout/L ≫ 1).

The relation between our lattice model and DLA allows us to discuss if the lattice model
exhibits unstable interface evolution. Witten and Sander performed a linear stability
analysis for DLA and showed that the system can become unstable [152, 153]. An interface
protrusion experiences a larger influx of random walkers than its flat surroundings and
thus undergoes enhanced growth. Since protrusion growth further increases the influx
of random walkers a positive feedback sets in, which leads to the formation of unstable
interface morphologies. From this we conclude that our lattice model becomes unstable
in the DLA-limit in a similar way. An interface protrusion experiences larger morphogen
concentration gradients than its flat surroundings and thus undergoes enhanced growth. A
positive feedback sets in, which leads to the formation of complex branched morphologies.
Next, we numerically study our lattice model and confirm the unstable interface evolution
in the DLA-limit. Additionally, we study the influence of coupled lattice sites (λin ̸= 0)
and non-vanishing morphogen degradation (λout/L ≪ 1).

2.2 Geometry of aggregate morphologies

We next systematically studied the various interfacial patterns the lattice model gives rise
to. To confirm the relation between our lattice model and DLA, we first considered the
DLA-limit of the lattice model. In this limit, we find unstable interface evolution that
gives rise to highly ramified morphologies with apparent similarity to DLA aggregates
(Fig. 2.3a and b, left most). Next, we studied the influence of the diffusion-degradation
length λout on aggregate morphology. To this end, we start with the DLA-limit and
gradually increase λout while maintaining the remaining model parameters (Fig. 2.3a).
We find a transition from highly branched morphologies (λout ≫ L) to compact, almost
circular shapes (λout ≪ L). In the limit of strong morphogen degradation (λout ≪ L),
morphogen gradients at the interface are determined by the length scale λout only. As a
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Figure 2.3: Aggregate morphologies and quantification of their statistical prop-
erties. (a) We show aggregates of size M = 10000 with λin/a = 0.01 for different values
of λout. (b) We show aggregates of size M = 10000 with λout/L = 100 for different val-
ues of λin. (c,d) Quantification of statistical properties of aggregates with the two-point
density-density correlation function C(r) defined by Eq. (2.15). Error bars denote the
standard deviation obtained from averaging the correlation function for n = 16 different
aggregates, but are typically smaller than the marker size.
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consequence, we find uniform growth rate along the interface which results in the reduction
of the instability and the growth of a circular morphology. To study the influence of the
diffusion-degradation length λin on aggregate morphology, we employ a similar strategy.
We start with the DLA-limit and then gradually increase λin (Fig. 2.3b). Again, we find a
transition from highly branched (λin ≪ a) to compact morphologies (λin ≫ a). In the limit
of strong diffusion (λin ≫ a), we again find uniform morphogen gradients at the interface
resulting in the reduction of the instability and the growth of circular morphologies.

To quantify the statistical properties of the observed morphologies, we use the two-point
density-density correlation function

C(r) = ⟨ρ(r0)ρ(r0 + r)⟩|r|=r, (2.15)

where ⟨ · ⟩ denotes the average over all orientations and positions r0 [135, 163]. Intuitively,
the correlation function C(r) gives the probability to find two occupied lattice sites a
distance r apart. To calculate the correlation function C(r) of aggregates on a square
lattice, we use the relation

C(r) = lim
δr→0

µ(r, δr)
V (r, δr) , (2.16)

where µ(r, δr) denotes the number of all pairs of occupied lattice sites within a shell of
size r − δr < r < r + δ with δr/r ≪ 1 and V (r, δr) denotes the number of both occupied
and unoccupied lattice sites in this shell [135].

We determined the correlation function C(r) for the aggregate morphologies presented
earlier (Fig. 2.3a,b) and found that the diffusion-degradation lengths λi overall control
the qualitative behavior of C(r). In particular, we distinguish two qualitatively different
regimes of C(r) depending on the relative size of the outside diffusion-degradation length
λout to system size L and the relative size of inside diffusion-degradation length λin to lat-
tice site size a (Fig. 2.3c,d). In the DLA-limit, we find that the behavior of the correlation
function is well described by the power law

C(r) ∝ r−α (2.17)

with scaling exponent α = 0.27 ± 0.03. The scaling exponent was determined from a
linear fit to the logarithmized correlation function obtained from n = 16 aggregates of
size M = 10000 for the range r < Rg, where Rg denotes the radius of gyration. Thus, we
found self-similar, fractal aggregates in this limit with a scaling exponent similar to the
one found in DLA (αDLA = 0.27) [164]. Upon decreasing the diffusion-degradation length
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Figure 2.4: Calculation of the Euler characteristic χ on a square lattice. To
determine the Euler characterisitic χ of an aggregate of non-zero occupation numbers,
we first triangulate the aggregate by inserting a diagonal line for every lattice site with
nr = 1. Next, we determine the number of faces F (gray triangles), edges E (lines
connecting vertices), and vertices V (circles on corner of triangles) of the triangulation
and from this we calculate χ according to Eq. (2.18). The Euler characteristic provides
information on the topology of the aggregate and in particular its topological changes.
Since the aggregates in (a) and (b) have the same topology their Euler characteristic is
the same. However, by placing an additional lattice site with nr = 1 the topology of the
aggregate changes and thus its Euler characteristic.

λout, we pass through an intermediate regime and finally find C(r) = const (λout ≪ L).
In this regime, we found compact shapes and thus a homogeneous correlation function.
Likewise, we find a transition from power law (DLA-limit) to homogeneous behavior of
the correlation function for increasing values of the inside diffusion-degradation length λin.
Note that for all of the regimes we find a sharp decrease in the correlation function for
large values of r due to the finite size of the aggregates.

2.3 Topological control of stochastic interface growth

Given the importance of topology for the functioning of branched structures in biology,
we naturally wondered how the topological properties of the generated aggregates can
be controlled. Here, we present topology-preserving transition rates as a way to control
aggregate topology. To define these transition rates, we use the Euler characteristic as
a measure for aggregate morphology and allow only occupation number transitions that
conserve the Euler characteristic. Here, we now first present how the Euler characteristic
can be used to quantify aggregate morphology.

2.3.1 The Euler characteristic for a lattice

The classification of topological properties of objects is a well-studied problem in mathe-
matics. Topological invariants, i.e. quantities that are invariant under smooth transfor-
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2.3 Topological control of stochastic interface growth

mations of objects, have been established as an important concept for this classification
[165–167]. For example, the Euler characteristic χ is an integer that provides a simple
measure for the topology of an object and provides a classification of objects according to
their topology. Conversely, topological changes of objects are the reflected by changes in
χ. The Betti numbers bi are another example of a topological invariant and provide a more
fine-grained quantification of the topology of an object. While the zeroth Betti number
b0 is equal to the number of connected components C, the first Betti number provides the
number of holes H in the object and in general the kth Betti number gives the number of
k dimensional holes of an object. Given that Euler characteristic and Betti numbers both
characterize the topology of an object it is hardly surprising that they are related. It can
be shown that the Euler characteristic is the alternating sum of Betti numbers, which in
the case of a 2D surface gives χ = C − H [168]. Overall, topological invariants such as
the Euler characteristic or Betti numbers are a powerful tool to quantify the topology of
objects. Due to its simplicity, we now focus on the Euler characteristic.

The Euler characteristic χ of a closed surface S is defined via a triangulation of S [166].
The triangulation consists of F faces, E edges, and V vertices and with this the Euler
characteristic is defined as

χ = F − E + V. (2.18)

Note that the triangulation of S always exists given that the surface is closed. Moreover, it
can be shown that Euler characteristic is independent of the chosen triangulation. Here,
we consider only square lattices, which we triangulate by inserting a diagonal line into
every lattice site.

To familiarize ourselves with the definition of the Euler characteristic and its calculation
for regions of non-zero occupation numbers on a square lattice, we now determine the Euler
characteristic for three different configurations of occupation numbers (Fig. 2.4). Clearly,
configuration (a) and (b) share the same topology and thus their Euler characteristic is
the same. By contrast, from (b) to (c) the topology and thus the Euler characteristic
changes. Note that for the cases presented here the relation χ = C − H between Euler
characteristic χ and the number of connected components C and holes H is useful. We
can apply the relation to avoid counting the large amount of faces, edges, and vertices.
Clearly, (a) and (b) have both C = 1 and H = 0 and thus χ = 1. In (c), we still have
C = 1, but now H = 1 and thus χ = 0.

To evaluate the Euler characteristic for arbitrary configurations of occupation numbers
{nr}, we need a systematic method to determine the total number of faces F , edges E, and
vertices V from a given set {nr}. Here, we employ a strategy in which we first determine
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the local number of faces Fr, the local number of edges Er, and the local number of vertices
Vr and from this obtain the total number of the respective quantity by summation over
all lattice sites r:

F =
∑

r

Fr E =
∑

r

Er V =
∑

r

Vr (2.19)

The calculation of the total number of faces from the local number of faces provides a
simple example for this procedure. Since every square lattice site contains two triangular
faces the local number of triangular faces is twice the occupation number nr:

Fr = 2nr (2.20)

Clearly, the total number of faces is then given by the sum over the local number of faces.
To calculate the total number of edges, we follow a similar strategy. However, in this case
we need to distinguish different types of edges:

Er = E1,r + E2,r + E3,r (2.21)

We first define the local number of edges E1,r that lie within a lattice site. Further, we
define the local number of edges E2,r that lie at the border of a lattice site and are shared
with an adjacent site and we also define the local number of edges E3,r that lie at the
border of a lattice site, but are not shared with another site:

E1,r = nr E2,r =
∑

i

1
2nrnei

E3,r =
∑

i

nr(1 − nei
) (2.22)

In every case, the local number of edges can be determined from the local configuration
of occupation numbers (Fig. 2.5). Note that edges can occur in different orientations. To
take into account every orientation, we perform a sum over all orientations i. In a similar
way, we calculate the total number of vertices as the sum of local number of vertices:

Vr = V1,r + V2,r + V3,r + V4,r (2.23)

We distinguish between the number of vertices Vn,r that belong to n different lattice sites:

V1,r =
∑

i

nr(1 − nei
)(1 − nei+1) (2.24a)
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2.3 Topological control of stochastic interface growth

V2,r = 1
2
∑

i

nrnei
(1 − nei+1)(1 − ndi

) + nr(1 − nei
)nei+1(1 − ndi

) (2.24b)

V3,r = 1
3
∑

i

nr(1 − nei
)nei+1ndi

+ nrnei
(1 − nei+1)ndi

+ nrnei
nei+1(1 − ndi

) (2.24c)

V4,r = 1
4
∑

i

nrnei
nei+1ndi

(2.24d)

By adding up the total number of faces, edges, and vertices, we then find that the Euler
characteristic is given by

χ = 1
12
∑
r,i

nr[3 − 2nei
ndi

− 6nei+1 − 2nei+1ndi
+ 4nei

nei+1 + 3nei
nei+1ndi

]. (2.25)

Overall, this equation allows us to calculate the Euler characteristic for a arbitrary con-
figurations of occupation numbers {nr}. Interestingly, the Euler characteristic provides
global information about the topology of a given configuration {nr}, but can be calculated
entirely from local information.

(c)(b)(a) faces verticesedges

E1,r E2,r

E3,r

Fr V1,r V2,r

V3,r V4,r

Figure 2.5: Definition of faces, edges, and vertices on a square lattice in terms
of occupation numbers. The total number of faces F , edges E, and vertices V of an
aggregate can be determined on the basis of local 3 × 3 neighborhoods. Lattice sites in
this neighborhood can be occupied (nr = 1, gray), free (nr = 0, white), or the definition
of an element is independent of the occupation number (nr ∈ {0, 1}, lines). (a) Neighbor-
hood corresponding to the definition of the local number of faces Fr. (b) We display the
neighborhoods used to determine the number of edges E1,r belonging solely to one lattice
site, the number edges E2,r shared between two occupied lattice sites, and the number of
edges E3,r shared between occupied and free lattice site. (c) In a similar way, we display
the configurations used to determine the number of vertices V1,n belonging to n occupied
lattice sites. Note that in (b) and (c) also neighborhoods rotated by multiples of π/2
define the respective structure.
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Chapter 2 Geometry and topology of aggregates formed by morphogen-controlled growth

2.3.2 The Euler characteristic as a measure for topological changes

We next used our relation for χ to calculate the change of Euler characteristic ∆χ given
that a single occupation number at lattice site s is changed (∆ns = ±1). To calculate the
corresponding change in ∆χ from Eq. (2.25), we need to determine the change of products
of occupation numbers such as ∆(nsnt). We evaluate expressions of this form with the
product rule like identity

∆(nsnt) = ∆nsnt + ns∆nt (2.26)

and analogously for expressions involving more than two occupation numbers. Note that
higher order terms of the form ∆ns∆nt are lacking since we consider a process in which
only one occupation number can be changed at a time.

We apply the product rule like identities to Eq. (2.25) and find after grouping terms
according to their dependency on ∆nr,∆nei

,∆nei+1 , and ∆ndi
that ∆χ is given by

∆χ = 1
12
∑
r,i

∆nr[. . . ] + ∆nei
(−2ndi

+ 4nei+1 + 3nei+1ndi
)nr

+ ∆nei+1(−6 − 2ndi
+ 4nei

+ 3nei
ndi

)nr

+ ∆ndi
(−2nei

+ 3nei
nei+1 − 2nei+1)nr,

(2.27)

where “. . . ” corresponds to the terms in square brackets in Eq. (2.25). This equation
determines the total change in ∆χ by summing the change in χ for every local, 3 × 3
neighborhood around lattice site r. The evaluation of the sum over r is straightforward
since we have an occupation number change (∆ns = ±1) only for lattice site s. After
evaluating the sum in Eq. (2.27) we find

∆χ = ∆ns

[
1 −

∑
i

nei
(1 − nei+1ndi

)
]

(2.28)

for the change ∆χ of the Euler characteristic. Thus, ∆χ can be calculated from the
occupation numbers in a local neighborhood around nr.

To determine a simple criterion whether a change in occupation number leaves the
topology invariant, we make use of Eq. (2.28). Given the change of a single lattice site
(∆ns = ±1), the topology remains invariant according to Eq. (2.28) if

∑
i

mi = 1 (2.29)

holds for a local neighborhood, where we have introduced mi = nei
(1 − nei+1ndi

) as an

38
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Figure 2.6: Lattice model for branching morphogenesis with topological con-
straints. (a) As before, we consider a N × N square lattice with lattice constant a and
system size L = Na. We show an example aggregate of size M = 7500 formed with topo-
logical constraints according to Eq. (2.31) and Eq. (2.6) in the DLA-limit (λin/a = 0.01,
λout/L = 100, ∆c = c0

in). Due to the topological constraints imposed by the transition
rates Eq. (2.31), loops are lacking in the aggregate. (b) Magnification of the dashed box in
(a): We indicate potential growth sites (filled circles) and degrowth sites (empty circles).
Note that topology-changing transitions are lacking.

abbreviation. Clearly, the sum of the four binary variables mi is equal to one, given that
exactly one of the mi evaluates to one. To provide a simple, binary criterion if the local
neighborhood fulfills Eq. (2.29), we use the logical xor function f

f(m0,m1,m2,m3) = m0m̄1m̄2m̄3 + m̄0m1m̄2m̄3 + m̄0m̄1m2m̄3 + m̄0m̄1m̄2m3 (2.30)

with four arguments, where the bar denotes the operation m̄i = 1 − mi. The function in
Eq. (2.30) evaluates to 1, provided that exactly one of its arguments is 1 (similar to the
logical “xor” function with two arguments).

We can use criterion Eq. (2.30) to finally define the topology-preserving (∆χ = 0)
transition rates

kE
+ = k0

+
∑

e

(1 − nr)nr+ef(m0,m1,m2,m3)
cr+e − cr

a
(2.31a)

kE
− = k0

−
∑

e

nr(1 − nr+e)f(m0,m1,m2,m3)
cr+e − cr

a
. (2.31b)
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Chapter 2 Geometry and topology of aggregates formed by morphogen-controlled growth

According to this relation, we find non-zero transition rates only for topology-preserving
occupation number changes, which results in the growth of tree-like aggregates (Fig. 2.6).

2.3.3 Tree-like aggregates

We studied the influence of the diffusion-degradation lenghts λi on aggregate morphology
and find behavior similar to the case without topology-preserving transition rates. As
before, we find a transition from highly branched to circular morphologies for decreasing
values of λout (Fig. 2.7a) and for increasing values of λin (Fig. 2.7b) along with the cor-
responding transition from power law scaling to homogeneous behavior in the correlation
function (Fig. 2.7c,d).

While the statistical properties of aggregates grown with and without topological con-
straints are similar, differences become apparent when the growth of an aggregate is fol-
lowed by its degrowth. To this end, we generated an aggregate in the DLA-limit without
taking into account topological constraints. Next, we use the generated aggregate as an
initial condition and study its degrowth with k0

− = −k0
+. We find that as the size of the

aggregate decreases, branches disconnect from the main part of the aggregate (Fig. 2.8a,
highlighted by arrows). Next, we generated an aggregate in the DLA-limit with taking
into account topological constraints and subsequently studied its degrowth. By contrast,
no branches disconnect from the main part of the aggregate. Thus, the transition rates
Eq. (2.31) allow us to study tree-like aggregates and its degrowth.

2.4 Summary and discussion

In this chapter, we have presented a minimal lattice model for morphogen-controlled
branching morphogenesis. In this model, we combine the idea of morphogen-controlled
growth of tissues and organs with concepts from DLA. In DLA, highly branched mor-
phologies originate from an instability in the underlying interface growth process. Here,
we demonstrate how a similar instability leads to the formation of highly branched mor-
phologies in morphogen-controlled interface growth. We study the geometrical properties
of the resulting structures and additionally demonstrate how the topology of structures
can be controlled.

At the center of our study lies a stochastic lattice model. We consider a square lattice
with system size L, where lattice sites of size a are equipped with a binary occupation
number nr that indicates the presence or absence of a cell belonging to a hypothetical
organ. Occupation number transitions take place stochastically with a rate determined
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Figure 2.7: Tree-like aggregate morphologies and quantification of their sta-
tistical properties. (a) We show aggregates of size M = 10000 with λin/a = 0.01 for
different values of λout. (b) We show aggregates of size M = 10000 with λout/L = 100
for different values of λin. (c,d) Quantification of statistical properties of aggregates with
the two-point density-density correlation function C(r) defined by Eq. (2.15). Error bars
denote the standard deviation obtained from averaging the correlation function for n = 16
different aggregates, but are typically smaller than the marker size.
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Figure 2.8: Growth and degrowth of (tree-like) aggregates in the DLA-limit.
(a) We consider an aggregate formed without topology-preserving transition rates in the
DLA-limit. We use this aggregate as an initial condition to our model and subsequently
study its the degrowth also without topology-preserving transition rates. We indicate dis-
connected branches (black arrows). (b) We consider an aggregate formed with topology-
preserving transition rates in the DLA-limit. We use this as an initial condition to our
model and study its degrowth with topology-preserving transition rates. M denotes ag-
gregate size. In (a,b), we show the aggregate sizes M = 1000, 700, 400, 100 (from top to
bottom).
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2.4 Summary and discussion

by a morphogen gradient and represent organ growth. We denote the morphogen con-
centration at each lattice site by cr and assume a minimal reaction-diffusion process for
the morphogen dynamics. Morphogen shows (effectively) free diffusion and undergoes
region-dependent degradation and production. We consider the case of strong morphogen
production in the “in” region and, as a result, find a morphogen gradient from the inside
to the outside region of the system. Gradients have diffusion-degradation lengths λin and
λout.

To understand the relation between DLA and our lattice model, we compared the respec-
tive continuum limits. In both models, we find that the growth of aggregates is controlled
by the gradient of a field that obeys the diffusion equation, but the precise dynamics of
the diffusive field and its boundary conditions differ. Our lattice model recovers DLA dy-
namics in the limit of decoupled lattice sites (λin/a ≪ 1 while c0

in = const) and vanishing
degradation rate outside (λout/L ≫ 1).

We next studied the interface dynamics numerically. Most importantly, we find that
in the DLA-limit an instability occurs that leads to the formation of highly branched
morphologies. The growth of an interface protrusion results in an increase in morphogen
gradient and thus an increase in interface growth. A positive feedback sets in that leads
to unstable interface growth. This mechanism is shared with DLA and thus is at the
center of the formation of branched morphologies in both models. Next, we studied the
influence of the diffusion-degradation lengths on morphologies. To this end, we started
with the DLA limit and gradually increased the diffusion-degradation length λout and find a
transition from highly branched (λout/L ≫ 1) to almost circular morphologies (λout/L ≪
1). Similarly, we gradually increased the diffusion-degradation length λin and observed
a similar transition from highly branched (λin/a ≪ 1) to almost circular morphologies
(λin/a ≫ 1). In each case, the change in morphology is accompanied by a corresponding
change in correlation function. We observe a transition from a self-similar power law
correlation function (DLA-limit) to homogeneous correlation function. In the DLA-limit,
the growth of branched morphologies is governed by the instability. Upon leaving the DLA
limit (λout/L ≪ 1 or λin/a ≫ 1), we find uniform gradients along the interface, leading to
uniform growth rates and the formation of circular morphologies.

A key novelty of our approach lies in the control of the topological properties of formed
structures. We use the Euler characteristic as an example of a topological invariant to in-
troduce topological constraints into interface growth and thus derive topology-preserving
transition rates. As a result, we can demonstrate the growth of tree-like (loopless)
branched morphologies with similar statistical properties to the conventional structures.

Our work complements previous studies on the formation of branched morphologies in
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Chapter 2 Geometry and topology of aggregates formed by morphogen-controlled growth

DLA. DLA and variations of it were employed to study patterns arising in electrodeposition
[141] or fractal viscous fingering [169, 170]. In particular, Niemeyer et al. used a similar
approach to generate branched structures observed in dielectric breakdown [142]. They
generated highly branched morphologies by obtaining the electric potential from a solution
of the Laplace equation and updating lattice sites based on the gradient of the electric
potential. Here, we generalize this approach by introducing the additional length scales
λin and λout in the problem. Additionally, we introduce topological constraints into the
transition rates and demonstrate the formation of tree-like aggregates. We “rethink” DLA
and show how it can be used to develop a model for the growth of branched morphologies in
a biological context. We envision that the model presented here serves as a starting point
for a quantitative study of e.g. retina vessels [171–173] or neuronal branching [174–176].
Our work also opens up various directions for more theoretical research. For example, the
growth and degrowth of aggregates naturally raises questions regarding the irreversibility
of this growth process. Additionally, we wonder if we can obtain fluctuating, steady-state
structures by alternating growth and degrowth steps. Finally, it might be useful to develop
the Euler characteristic also for other connectivities (considering diagonal neighbors on a
square lattice also as connection) and for other lattice geometries (triangular, hexagonal).

A drawback of the approach presented here (and also DLA) lies in the difficulty to leave
the strong-noise, low surface tension limit in a controlled way. For example, in studies on
DLA an effective surface tension was introduce by including a curvature-dependent growth
probability [155, 156] or by including curvature-dependent attachment and reattachment
rules [157, 158]. However, these approaches suffer from the difficulty to define curvature on
a lattice. Noise-reduction techniques were introduced in which particles must land several
times on a perimeter site of the aggregate before it attaches. However, how exactly to
perform the noise-reduction is ambiguous and different techniques lead to vastly different
overall structures [154, 177]. In the next chapter, we present a model for morphogen-
controlled branching morphogenesis that allows us to study the low noise and finite surface
tension limit.
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Chapter 3

Morphogen-controlled branching
morphogenesis and growth

In this chapter, we study morphogen-controlled growth of an interface as a model for
branching morphogenesis. We show how complex, branched morphologies can arise in a
self-organized way from an instability in interface motion. Moreover, we explain the control
of the geometrical and topological properties of the resulting branched morphologies from
the interplay between interface growth and morphogen dynamics.

We first present our continuum model for branching morphogenesis and growth. We
perform a linear stability of a flat moving interface and show how an instability can take
place in this scenario. Next, we study interface growth beyond the linear regime. We
present the phase field method as a numerical tool to study interface motion and explore
various interface morphologies and their characteristics. We identify branch distance and
thickness as key parameters of branched morphologies and discuss simple, analytically
tractable scenarios of interface motion to understand branch distance and thickness regu-
lation.

3.1 Continuum model for morphogen-controlled interface
growth

We first present our continuum model for morphogen-controlled branching morphogenesis
(Fig. 3.1a). In this model, we study the growth of a hypothetical organ guided by the
concentration of a morphogen. For simplicity, we consider a 2D setting and divide the
system into a region inside (“in”) and outside (“out”) the tissue. The interface between
both regions is mathematically described by the curve R.

We assume that the motion of the interface R takes place in normal direction with
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Figure 3.1: Morphogen-controlled branching morphogenesis. (a) In our model,
we study the growth of an organ (brown) under the influence of a morphogen (green). As
an example, we here show the planarian gut. We denote the system by Ω. We represent the
organ outline by an interface vector R with interface normal n. We denote the morphogen
concentration inside and outside the organ by cin and cout, respectively. (b) We study the
motion of an interface in an infinitely long rectangular system of width Lx as a minimal
scenario to understand the pattern formation in our model. In the linear stability analysis,
we study the growth of perturbations with wavelength λ and corresponding wavevector k.

normal velocity vn according to

∂tR = vnn (3.1a)
vn = χ(c) − βκ, (3.1b)

where n denotes the interface normal vector and κ the interface curvature which is positive
for an outward protrusion and negative for an inward protrusion. The normal velocity of
the interface motion lies at the heart of our model and is key to the pattern formation
in this system. We assume that interface motion is in general morphogen-controlled as
expressed by the term χ(c) and additionally depends on interface curvature. Due to the
dependency of interface growth on curvature, outwards protrusions experience a nega-
tive velocity, and inwards protrusion a positive velocity. As a result, the interface has a
tendency to reach a flattened configuration and is effectively stabilized. We denote the
strength of coupling between interface and its curvature by β. For the dependency χ of
interface motion on morphogen concentration, we make the choice

χ(c) = v0 − γc, (3.2)

which expresses the tendency of the interface to grow with velocity v0 and the inhibition
of interface growth by the presence of morphogen at the interface with inhibition strength
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3.1 Continuum model for morphogen-controlled interface growth

γ.

We assume that a minimal reaction-diffusion system governs the dynamics of the mor-
phogen concentration ci

∂tci = D∇2ci − kici + si, (3.3)

where the index i ∈ {in, out} labels whether the morphogen concentration belongs to
the inside or outside region of the organ. According to Eq. (3.3), morphogen diffuses
with effective diffusion constant D and undergoes degradation and production with rate
ki and si, respectively. This dynamics describes the formation of morphogen gradients
with a preferred concentration value c0

i = si/ki and degradation length λi =
√
D/ki in

the inside and outside region, respectively. In particular, our model describes situations
with a concentration difference ∆c = cin − cout between the preferred concentration values
c0

i and allows us to study scenarios where morphogen production in the inside (∆c > 0)
or outside (∆c < 0) region dominates. Here, we focus on the case where morphogen is
predominantly produced in the organ (∆c > 0) and inhibits organ growth. Finally, we use
the two boundary conditions at the interface R

cin(R) = cout(R) (3.4a)
n · ∇cin(R) = n · ∇cout(R). (3.4b)

The conditions at the system boundary depend on the type of problem that is studied and
we leave them for now unspecified. Overall, we think that this model captures key effects
responsible for morphogen-controlled branching morphogenesis.

To understand pattern formation in this system, we study the motion of a flat interface
in an infinitely long rectangular system Ω with x ∈ [0, Lx] and y ∈ [−∞,∞] (Fig. 3.1b).
This scenario will allow us to study when an instability in interface motion is initiated
and what time and length scales govern this instability. For the motion of an interface in
a rectangular system the interface vector R can be written as

R(x, t) = xex + yI(x, t)ey, (3.5)

with the corresponding interface normal vector (oriented out of the interface)

n = −∂xyIex + ey√
1 + (∂xyI)2

. (3.6)

In both cases, yI denotes the y coordinate of the interface position and from the time
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derivative of Eq. (3.5) we can deduce ∂tyI = ∂tR · ey for the dynamics of the interface
position. By employing our definition of the interface dynamics in Eq. (3.1), we find

∂tyI = vn
1√

1 + (∂xyI)2
. (3.7)

In addition to the boundary conditions at the interface given by Eq. (3.4), we require that
concentration gradients at infinity vanish as expressed by

lim
y→±∞

∂yci(x, y) = 0. (3.8)

Additionally, we use periodic boundary conditions at the left and right side of our system.

3.2 Morphological instability of a moving front in an
infinitely long system

3.2.1 Stationary state

Transformation to moving frame

The stationary state of the system defined by equation Eq. (3.1) and Eq. (3.3) is a planar
interface moving with constant velocity v in y-direction accompanied by a stationary
concentration profile c̄i(y). To determine the interface velocity and the corresponding
concentration profile, we transform the system from a resting reference frame to a reference
frame co-moving with the interface. Mathematically, this transformation is expressed by

(x, y, t) → (x̃, ỹ, t̃)
x̃ = x

ỹ = y − vt

t̃ = t.

(3.9)

The transformed morphogen concentration c̃ obeys c̃(x̃, ỹ, t̃) = c(x, y, t) and the trans-
formed interface position ỹI obeys ỹI(x̃, t̃) = yI(x, t) − vt. We can evaluate their temporal
and spatial derivatives in the moving frame and find

∂yI

∂t
= ∂ỹI

∂t
+ v

∂c

∂t
= ∂c̃

∂t̃
− v

∂c̃

∂ỹ

∂c

∂x
= ∂c̃

∂x̃
∂c

∂y
= ∂c̃

∂ỹ
.

(3.10)
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Therefore, the dynamics in the moving reference frame reads

∂tyI = vn
1√

1 + (∂xyI)2
− v (3.11a)

∂tci − v∂yci = D∇2ci − kici + si. (3.11b)

Note that we have omitted the ∼ symbol for quantities in the co-moving reference frame for
notational simplicity which we will continue in the rest of this chapter. As a consequence
of the transformation to a co-moving frame, we obtain an additional advection term, which
describes the relative motion between a stationary system and the moving interface. The
transformed boundary conditions at the interface in the co-moving frame are

cin(x, 0) = cout(x, 0) (3.12a)
n · ∇cin(x, 0) = n · ∇cout(x, 0), (3.12b)

together with periodic boundary conditions at x = 0, Lx and no-flux boundaries at y →
±∞. Having defined the system dynamics in the co-moving frame, we can now determine
the stationary state of the system.

Morphogen concentration

We first derive the stationary morphogen profile in the co-moving frame. The stationary
morphogen profile c̄i is defined by the stationary diffusion equation

0 = ∇2c̄i + 1
ℓ
∂y c̄i − 1

λ2
i

c̄i + 1
λ2

i

c0
i , (3.13)

where we have introduced the diffusion length ℓ and the degradation lengths λi

ℓ = D

v
λ2

i = D

ki

(3.14)

along with the offset concentration c0
i = si/ki. While the diffusion-length ℓ provides a

measure for the length of concentration gradients in systems without degradation (ki = 0),
the diffusion-degradation lengths λi provide a measure for the length of concentration
gradients in resting systems (v = 0). The offset concentrations c0

i provide a characteristic
morphogen concentration that originates from the interplay of morphogen production and
degradation.
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To solve the stationary diffusion equation, we make the ansatz

c̄in(y) = Āeqiny + c0
in c̄out(y) = B̄e−qouty + c0

out, (3.15)

where Ā and B̄ are constants that we determine from the boundary conditions Eq. (3.12)
at the interface and qi are the positive solutions of

0 = q2
i ± 1

ℓ
qi − 1

λ2
i

. (3.16)

Note that we have chosen the ansatz such that c̄in remains finite for y → −∞ and that
c̄out remains finite for y → +∞. Finally, the solutions ci are

c̄in(y) = Ā exp
[
+ y

ℓin

]
+ c0

in c̄out(y) = B̄ exp
[
− y

ℓout

]
+ c0

out (3.17)

with the constants

Ā = −∆c
ℓin
ℓout

1 + ℓin
ℓout

B̄ = +∆c 1
1 + ℓin

ℓout

, (3.18)

the difference between inside and outside offset concentration ∆c = c0
in − c0

out and the
diffusion-degradation length ℓi defined by

1
ℓi

= ± 1
2ℓ +

√
1

4ℓ2 + 1
λ2

i

. (3.19)

Here, the positive sign corresponds to the “in” solution and the negative sign to the
“out” solution. The diffusion-degradation length ℓi is composed of the diffusion length ℓ

and degradation length λi and provides a measure for the length scale of concentration
gradients in moving systems with non-zero degradation (v ̸= 0, ki ̸= 0).

Let us now discuss the stationary morphogen profiles (Fig. 3.2a). The concentration
profile in the in- and outside region is given by an exponential function with the diffusion-
degradation length ℓi as a characteristic length scale. For y ≪ ℓin, the concentration cin

approaches c0
in, while for y ≫ ℓout, the concentration cout approaches c0

out. The diffusion-
degradation length scale ℓi is determined by the ratio Pei = λi/ℓ, which constitutes a
Péclet number. This is a non-dimensional number that characterizes the importance of
diffusion and degradation for the formation of concentration gradients. In the regime of
small Péclet number, the morphogen degradation dominates the system dynamics. In this
regime, only the diffusion-degradation length scale plays a role and ℓi reduces to ℓi = λi.
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3.2 Morphological instability of a moving front in an infinitely long system
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Figure 3.2: Stationary concentration profiles along a moving interface. (a) We
show stationary concentration profiles c̄ given by Eq. (3.17) as a function of position y for
different values of the Péclet number Pei = λi/ℓ (red). We normalize concentrations by the
offset concentration c0

in in the “in” region and rescale lengths by the diffusion-degradation
length ℓi. (b) We show the stationary concentration c̄(v) at the interface position y = 0
given by Eq. (3.20) as a function of interface velocity v for different values of the inside
degradation length λin (green).

By contrast, the dynamics is dominated by the interface motion in the regime of large
Péclet number. Here, we find ℓin = ℓ and ℓout → ∞. Due to the infinite length of the
system, any position ahead of the interface (y > 0) has been exposed infinitely long to
the production and degradation of morphogen and therefore has reached the value cout

without any spatial gradient. By contrast, positions behind the interface y < 0 have only
been exposed for a finite amount of time to production and degradation of morphogen
and therefore have not yet reached the offset concentration cin.

From the general stationary concentration profile c̄, we can now easily derive the concen-
tration at the interface position c̄I. An understanding of the concentration at the interface
position is crucial as it determines the velocity of the stationary interface velocity. To
obtain c̄I, we set y = 0 in Eq. (3.17) and find:

c̄I(v) = ∆c 1
1 + ℓin

ℓout

+ c0
out (3.20)

As the stationary concentration profile in general, also the concentration value at the
interface position is determined by the interplay of interface velocity and degradation
length (Fig. 3.2b). For small velocities (Pei ≪ 1), the diffusion-degradation lengths ℓi

reduce to the degradation lengths λi and thus c̄I is determined only by the degradation
lengths for v = 0. By contrast, for large velocities (Pei ≫ 1), we find c̄I = c0

out.
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Figure 3.3: Stationary interface velocity. (a) We illustrate how the stationary ve-
locity v of the interface is determined. We show the left hand side of Eq. (3.21), which is
the morphogen concentration c̄I at the interface position as a function of interface velocity
for different values of concentration difference ∆c (blue). We additionally show the right
hand side of the same equation which is a linear function with intercept v0/γ and slope
−1/γ (black). (b) We show the stationary interface value v obtained from solutions of
Eq. (3.21) for different values of concentration difference ∆c.

Interface velocity

To obtain the stationary interface velocity v, we require ∂tyI = 0 and find

c̄I(v) = v0

γ
− 1
γ
v. (3.21)

This equation constitutes an implicit relation for the interface velocity v. First, we graph-
ically determine the number of solutions of this equation (Fig. 3.3a). Thus, we are seeking
intersections of the concentration at the interface c̄I(v) with a linear function with offset
v0/γ and derivative −1/γ. If c̄′

I(v = 0) exceeds the slope of the linear function, we find
exactly one solution, while we find up to three solutions (depending on the value of v0)
for the opposite case:

c̄′
I(v = 0) < −1

γ
: up to three solutions (3.22a)

c̄′
I(v = 0) ≥ −1

γ
: exactly one solution (3.22b)

From the condition c′
I(v = 0) = −1/γ, we derive the value ∆ccrit at which the transition

from the regime of exactly one to up to three solutions occurs:

∆ccrit = 2D
γ

( 1
λin

+ 1
λout

)
(3.23)
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3.2 Morphological instability of a moving front in an infinitely long system

Finally, we determine the solution of Eq. (3.21) numerically (Fig. 3.3b). For our purposes,
we consider a parameter regime in this thesis with only one solution for the stationary
interface velocity.

3.2.2 Stability analysis

Linearization at the stationary solution

We linearize the dynamical equations of the system given by Eq. (3.11) around the sta-
tionary interface position ȳI = 0 and the stationary concentration profile c̄i(y) by

yI(x, t) = δyI(x, t) (3.24a)
ci(x, y) = c̄i(y) + δci(x, y, t), (3.24b)

where δyI and δci denote small perturbations around the stationary interface position and
concentration profile, respectively. The linearized interface and concentration dynamics
then reads

∂tδyI = −γ[∂y c̄(0)δyI + δc(0)] + β∂2
xδyI (3.25a)

∂tδci = D∇2δci + v∂yδci − kiδci. (3.25b)

Along with the dynamical equations of the system, we also linearize the boundary condi-
tions given by Eq. (3.12) and find:

δcin(x, 0) = δcout(x, 0) (3.26a)
∂2

y c̄in(x, 0)δyI + ∂yδcin(x, 0) = ∂2
y c̄out(x, 0)δyI + ∂yδcout(x, 0) (3.26b)

The linearized dynamical equations Eq. (3.25) together with the linearized boundary con-
ditions Eq. (3.26) constitute a set of coupled linear differential equations that we now
solve.

Determination of growth rates

Due to the translation invariance of the system in x-direction we make the ansatz

δyI(x) = ξke
ikx+µkt (3.27a)

δci(x, y) = δci,k(y)eikx+µkt (3.27b)
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Chapter 3 Morphogen-controlled branching morphogenesis and growth

for the interface perturbation δyI and the concentration perturbation δci, where we have
introduced the amplitudes ξk and δci,k(y). We additionally introduced the wavevector
k and the growth rate µk of a perturbation. According to our definition, an interface
perturbation is amplified and thus the interface dynamics is unstable for µk > 0, and we
find stable interface dynamics for µk < 0.

To determine the functional form of the amplitude δci,k(y), we insert the ansatz for
the concentration perturbation Eq. (3.27b) into the linearized concentration dynamics
Eq. (3.25b). We find that the amplitudes obey

δcin,k = cin
k e

qiny (3.28a)
δcout,k = cout

k e−qouty, (3.28b)

where qin and qout are the positive solutions of

0 = (λinq)2 − v

D
λ2

inq −
(

(λink)2 + 1 + µ

kin

)
(3.29a)

0 = (λoutq)2 + v

D
λ2

outq −
(

(λoutk)2 + 1 + µ

kout

)
. (3.29b)

Our sign convention in the argument of the exponential functions in Eq. (3.28) ensures
that the solutions remain finite for y → ±∞ in the respective region. To determine the
prefactors cin

k and cout
k , we insert our ansatz for the concentration perturbation Eq. (3.27b)

together with the concentration amplitude Eq. (3.28) into the linearized boundary condi-
tions and find

cin
k = cout

k (3.30a)
ξk[∂2

y c̄in − ∂2
y c̄out] = −qoutc

out
k − qinc

in
k . (3.30b)

From this equation, we can determine ci
k and thus we have fully specified the concentration

perturbation δc(x, y).
Finally, we determine the growth rates µk by inserting the ansatz for the interface

perturbation Eq. (3.27a) into the linearized interface dynamics given by Eq. (3.25a) and
find

ξkµk = −γ[∂y c̄ξk + δc(x, 0)] − βk2ξk. (3.31)

We replace the interface amplitude ξk by Eq. (3.30) and use our previous results for the
stationary concentration profile given by Eq. (3.17) and the perturbation of the mor-
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3.2 Morphological instability of a moving front in an infinitely long system

phogen concentration given by Eq. (3.27b) to find that the growth rate of an interfacial
perturbation is given by

µk = γ∆c 1
ℓout + ℓin

1 −

√
1 + 4

(
ℓ

λout

)2
+
√

1 + 4
(

ℓ
λin

)2

√
1 + 4ℓ2

(
µk+kout

D
+ k2

)
+
√

1 + 4ℓ2
(

µk+kin
D

+ k2
)
− βk2.

(3.32)

This constitutes an implicit equation for the growth rate µk that we will discuss next in
more detail.

Analysis of the growth rates

We first analyze the quasistatic limit of the spectrum of growth rates. In this limit, we
assume that morphogen dynamics is much faster than the dynamics of interface pertur-
bations (µk/ki ≪ 1) and, as a consequence, the morphogen concentration ci can adapt
instantaneously to any perturbation of the interface position. To find the growth rates µk

in the quasistatic limit, we enforce ∂tci in Eq. (3.25b) and find

µk = γ∆c 1
ℓout + ℓin

1 −

√
1 + 4

(
ℓ

λout

)2
+
√

1 + 4
(

ℓ
λin

)2

√
1 + 4ℓ2

(
1

λ2
out

+ k2
)

+
√

1 + 4ℓ2
(

1
λ2

in
+ k2

)
− βk2. (3.33)

In contrast to the general spectrum of growth rates in Eq. (3.32), we obtain an explicit
relation for the growth rate µk, which allows us to discuss several key features of the
instability.

Most importantly, we find that an instability can occur in interface motion. While for
small values of morphogen inhibition γ, the system is stable, we find that for values larger
than a critical inhibition γc, the system is unstable (Fig. 3.4a). To determine the critical
value γc, we expand the growth rate given in Eq. (3.33) in a Taylor series up to second
order. We find that zeroth and first order term are zero, leaving the second order term
as the only non-zero term. The critical value γc is obtained from setting the slope of the
expanded growth rates to zero at the origin according to dµk/dk|k=0 = 0. From this,
we find for the critical inhibition γc for the transition from stable to unstable interface
behavior

γc = β

∆c
1

2ℓ2
ℓin + ℓout(

2ℓ
ℓin

− 1
) (

2ℓ
ℓout

− 1
) . (3.34)

Interestingly, we find that irrespective of inhibition strength a translation of the system
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Figure 3.4: Growth rate spectrum. (a) We show the growth rate µk of an interface
perturbation in the quasistatic limit given by Eq. (3.33) in the stable (γ < γc), critical
(γ = γc), and unstable (γ > γc) regime. (b) We show the growth rate µk of interface
perturbations obtained from the numerical solution of the implicit relation Eq. (3.32) for
different values of the diffusion constant D while keeping ℓ and λi constant. Dqs denotes
a reference diffusion constant. We additionally show the growth rate according to the
quasistatic approximation Eq. (3.33) (gray dashed line).

(perturbation with k = 0) does not lead to an instability (µ = 0 at k = 0). In the
quasistatic limit, a translation of the interface is accompanied instantaneously by a cor-
responding translation of the morphogen concentration. Thus, µ(k = 0) = 0 reflects the
translation invariance of the system in the quasistatic limit.

The growth rate spectrum in the unstable regime exhibits a characteristic shape with
zeros at k = 0 and kc > 0 and a maximum in between at kmax (Fig. 3.4a). These special
points can be used to define characteristic length scales via k = 2π/λ that characterize
the formation of unstable interfacial patterns. For example, we will later determine a
measure for branch distance from kmax. We use the limit kmaxℓ ≫ 1 (“small velocity”)
and kmaxλi ≫ 1 (“small branch distance”) and find that kmax is given by

k3
max = γ∆c

β

1
4ℓinℓout

. (3.35)

The zero kc of the growth rate spectrum allows us to determine the instability of interface
perturbations. While perturbations with k < kc are unstable, perturbations with k > kc

are stable. To determine a relation for kc, we use the approximations kcℓ ≫ 1 and kcλi ≫ 1
and find

k2
c = γ∆c

β

1
ℓout + ℓin

. (3.36)

According to Eq. (3.33), the interface instability results from the competition of desta-
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3.3 Phase field model of morphogen-controlled interface growth

bilization from the inhibition of interface growth by a morphogen (positive first term)
and the stabilization from the curvature dependency of interface growth (negative sec-
ond term). The formation of a protrusion on a flat interface leads to a reduction of the
morphogen concentration and inhibition at the protrusion tip. As a consequence, the pro-
trusion experiences an increased growth rate compared to a flat interface. In the unstable
regime, the stabilizing effect from the curvature dependency of interface growth is insuf-
ficient to compensate the increase of protrusion growth. The protrusion extends which
leads to a further reduction of the morphogen concentration at its tip. We thus find a
positive feedback between the decrease of morphogen concentration and the increase of
protrusion growth, which eventually results in complex, branched interface morphologies.

In the quasistatic limit, the morphogen field adapts instantaneously to any perturba-
tions of the interface. In general, however, a lag between interface perturbation and the
morphogen dynamics can exist and lead to changes of the growth rate spectrum due to
retardation effects (Fig. 3.4b). For example, when the quasistatic limit is violated we find
that a flat interface is unstable against translations (µk > 0 at k = 0). After a translation
of the interface, the concentration field lags behind, which results in a reduction of mor-
phogen concentration at the interface position, a corresponding reduction of inhibition,
and thus an increase of interface growth.

3.3 Phase field model of morphogen-controlled interface
growth

3.3.1 Introduction to the phase field method

To obtain solutions of our model for morphogen-controlled branching morphogenesis also
in the nonlinear regime, we need a method for the numerical solution of the interface
dynamics (3.1) along with the morphogen dynamics Eq. (3.3). Here, we use the phase
field method, which is a versatile technique to treat problems of interface motion. It
is an example of method in which the interface is represented implicitly and allows the
treatment of topological changes of the interface. Additionally, it works easily in arbitrary
dimensions and stands out due to its computational simplicity, as only a set of coupled
reaction-diffusion equations has to be solved [178]. Other popular methods such as the
level-set [179] or volume of fluid method [180] also represent interfaces in an implicit way,
but are computationally more complex as advection equations have to be solved. The
boundary-element method is an example of a method in which the interface is explicitly
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Figure 3.5: Phase field method for studying interface motion. (a) Top: We show
a circular interface (black line) with radius R and moving with normal velocity vn as a
simple example of interface motion. Bottom: The phase field ϕ represents the interface
in an implicit way. The function ϕ(1 − ϕ) peaks at the interface. (b) We show the energy
density f(ϕ) given in Eq. (3.38) as a function of the phase field ϕ for different values of the
bias χ̂. (c) We show the solution Eq. (3.42) of the Allen-Cahn equation in a 1D scenario
as a function of the position x. The interface velocity v is given by the ratio of interface
width w and time scale τ . The interface width w is given by the ratio of the energetic
cost to form an interface ξ and a.

discretized. However, this approach suffers from the difficulty to account for topological
changes of the interface and the computational cost for long and strongly curved interfaces
is large [138, 181].

At the heart of the phase field method is the continuous order parameter like phase field
ϕ(x, t) that takes values ϕ ∈ [0, 1] (Fig. 3.5a). The phase field ϕ serves as a mathematical
tool to implicitly represent the interface [178]. While the value ϕ = 1 indicates the presence
of organ, the value ϕ = 0 indicates the absence of organ. Both regions are connected by
a thin transition layer that we call the interface. By defining the dynamics of the order
parameter ϕ, we thereby implicitly define the dynamics of the interface.

To derive the evolution equation of the phase field ϕ, we first define the energy E[ϕ] of a
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3.3 Phase field model of morphogen-controlled interface growth

given phase field configuration. The energy E[ϕ] is of Ginzburg-Landau type and defined
by

E[ϕ] =
∫
dx

[
ξ2

2 (∇ϕ)2 + f(ϕ)
]
. (3.37)

The first term denotes the energetic contribution of an interface and introduces an ener-
getic cost of order ξ to form an interface between a region of ϕ = 1 and ϕ = 0. The second
term denotes the bulk contribution (Fig. 3.5b)

f(ϕ) = a2

2 fs(ϕ) + χ̂

6 ft(ϕ) (3.38)

of the energy and consists of a symmetric part fs and tilting part ft defined by

fs(ϕ) = ϕ2(1 − ϕ)2 ft(ϕ) = ϕ2(2ϕ− 3). (3.39)

The parameters a and χ̂ allow us to control the relative importance of each energetic
contribution and thus the interface dynamics. The symmetric part fs is a double well
potential with minima at ϕ = 0, 1 that satisfy fs(0) = fs(1) = 0. Therefore, the symmetric
part of the bulk energy defines two energetically preferred phases ϕ = 0, 1. The tilting part
ft has minima at ϕ = 0, 1 as well. However, we have constructed ft such that ft(0) = 0
and ft(1) = −1, and therefore the phase ϕ = 1 is energetically preferred by the tilting part
ft. From the properties of fs and ft, we can conclude that the bulk contribution f is a
tilted double well potential with minima at ϕ = 0, 1 and f(0) = 0 and f(1) = −χ̂/6. The
parameter χ̂ allow us to control by how much the phase ϕ = 1 is energetically preferred.
To ensure the existence of minima at ϕ = 0, 1, we require |χ̂| < a2. Note that by using
the energy function Eq. (3.37) along with the bulk contribution Eq. (3.38), we follow the
convention presented in Ref. [178].

To derive the dynamics of the order parameter ϕ, we assume the relaxational dynamics

τ
∂ϕ

∂t
= −δE

δϕ
. (3.40)

According to this, the phase field develops into a configuration that minimizes energy E

with a rate determined by the characteristic time scale τ [136, 178]. Upon performing the
variational derivative in Eq. (3.40), we find that the time evolution of ϕ is governed by

τ
∂ϕ

∂t
= ξ2∇2ϕ+ 2a2ϕ(1 − ϕ)

(
ϕ− 1

2 + χ̂

2a2

)
, (3.41)
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which is known as the Allen-Cahn equation and central to the phase field method [178,
182]. To understand how Eq. (3.41) and in particular the parameters ξ, a, and τ determine
interface dynamics and shape, we now study two minimal scenarios of interface motion.

We first consider a 1D system with boundary conditions ϕ(−∞) = 1 and ϕ(∞) = 0. In
this system, Eq. (3.41) is solved by the interfacial profile of the form [178, 183]

ϕ(x, t) = 1
2

[
1 − tanh

(
x− vt

2w

)]
. (3.42)

Thus, the interfacial profile is described by a sigmoidal function, where energetic cost ξ
to form interfaces between two phases of ϕ controls the interface width w = ξ/a and χ̂

controls the interface velocity v = χ̂ w/τ (Fig. 3.5c) [178]. The relations for interface
velocity and width link the properties of the phase field with interface properties. Note
that due to the finite width of ϕ the interface has the non-zero surface energy σ (also known
as surface tension) [144, 178]. The surface energy is defined as the difference between total
energy and bulk energy according to

σ =
∫ ∞

−∞
dx
[1
2(∂xϕ)2 + f(ϕ) − f(1)

]
. (3.43)

We can rewrite this for the case of the energy Eq. (3.37) and the profile Eq. (3.42) to
σ = ξ2 ∫∞

−∞ dx(∂xϕ)2, which gives σ = ξ2/(6w). The surface tension is an important
quantity and will be essential for the study of curved interfaces in 2D systems. We have
thus established the connection between the parameters of the phase field energy with
properties of the interface. Note that we can independently adjust interface thickness,
surface tension, and propagation speed with the phase field parameters.

As a second minimal scenario of interface dynamics, we now consider the motion of a
circular interface (Fig. 3.5a). This scenario allows us to study the influence of curvature
on interface motion. To understand the interface dynamics in this case, we use the sharp
interface limit of the Allen Cahn Eq. (3.41) instead of considering the full dynamics of ϕ
as in the 1D case. By taking the limit of w → 0 while the mobility µ = τ/ξ2 and surface
tension σ are held constant, we can find for the normal velocity vn of an interface (see
appendix B for a derivation)

vn = 1
µ

[
χ̂

6σ − 1
R

]
, (3.44)

where R denotes the radius of the circular interface [144, 184]. As before, we find that the
energetic bias influences interface motion and can lead to a positive or negative contribu-
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tion to interface velocity. Additionally, we find that the energetic cost to form an interface
results in a negative contribution to interface velocity. Note that Eq. (3.44) reduces in
the limit R → ∞ to the result for the velocity of a flat interface that we have presented
earlier.

In the next section, we present the phase field model corresponding to the continuum
model presented in the previous section.

3.3.2 Phase field model for morphogen-controlled interface growth

In the phase field model that corresponds to our continuum model, we study the dynamics
of the phase field ϕ and the morphogen concentration c described by the set of two coupled
reaction-diffusion equations

τ
∂ϕ

∂t
= ξ2∇2ϕ+ 2a2ϕ(1 − ϕ)

(
ϕ− 1

2 + χ̂(c)
2a2

)
(3.45a)

∂c

∂t
= D∇2c− k(ϕ)c+ s(ϕ). (3.45b)

As described in the previous section, the phase field equation describes interface motion in
an implicit way, where the bias χ̂ determines the normal velocity of the interface. While
we have so far considered a constant bias χ̂, we now consider a concentration-dependent
bias in accordance with the growth rule Eq. (3.1):

χ̂(c) = v̂0 − γ̂c(x, y) (3.46)

Note that we denote quantities in the phase field model that have a counterpart in the
continuum model with a hat symbol. To account for the region-dependency of morphogen
degradation and production in the continuum model, we consider phase-field dependent
degradation and production in the phase field model:

k(ϕ) = kinϕ+ kout(1 − ϕ) (3.47a)
s(ϕ) = sinϕ+ sout(1 − ϕ) (3.47b)

Clearly, in the inside region (ϕ = 1), we find k = kin, and in the outside region (ϕ = 0),
we find k = kout and similarly for the production term.

The phase field model is constructed in a way to match the sharp interface description
in the limit of w → 0 while mobility µ and surface tension σ are held constant. We present
the details of the sharp interface limit in appendix B and here use Eq. (3.44) to find the
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correspondence

v0 = ξ/a

τ
v̂0 γ = ξ/a

τ
γ̂ β = ξ2

τ
(3.48)

between parameters in the continuum model and the phase field realization.

3.4 Geometry and topology of morphologies

To study pattern formation beyond the onset of instability, we use the phase field method
to obtain numerical solutions of the continuum model. We consider a rectangular system of
width Lx and length Ly with periodic boundary conditions ϕ(0, y) = ϕ(Lx, y) along the left
and right boundary and no-flux boundary conditions ∂yϕ(x, 0) = ∂yϕ(x, Ly) = 0 along the
bottom and top boundary. We enforce the same boundary conditions for the morphogen
concentration c. We initialize the system with a flat interface located at yI(0) together
with morphogen concentration c(x, y) = 0 in the entire system. To avoid boundary effects,
we locate the initial interface position such that yI(0) ≫ λi for interfaces with velocity
v > 0 and at Ly − yI(0) ≫ λi for interfaces with v < 0.

We consider an unstable parameter regime and find that after sufficiently long time
(µmaxt ≫ 1) a flat moving interface undergoes an instability and exhibits branching
(Fig. 3.6). After a sufficiently long time the system reaches a space-filling configura-
tion that we then quantify. Here, we provide a brief overview of our analysis and refer the
reader to appendix C for a more detailed description. To analyze branch properties, we
consider a row of the discretized phase field ϕ. We calculate the branch distance as the
distance of branch midlines and branch thickness from the length of “in” regions.

3.4.1 Control of branch distance

To vary branch distance in a controlled way, we make use of results from the stability
analysis. In the quasistatic limit, we find that the growth rate µ(k) of a perturbation
with wavelength λ = 2π/k has a maximum µmax at a corresponding wavelength λmax.
As a result, perturbations with wavelength λmax grow fastest and dominate the pattern
formation process. We expect resulting patterns to have a characteristic length scale λmax

and thus use the fastest growing wavelength λmax as a measure for branch distance d.
In the quasistatic limit, we obtained by additionally invoking the limit of small velocity

(kmaxℓ ≫ 1) and small branch distance (kmaxλi ≫ 1) Eq. (3.35) as analytical expression
for λmax. Even though this relation is valid only in a well-defined limit, it allows us to
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Figure 3.6: Interface evolution beyond the onset of instability. We study the
instability of a flat moving interface in a rectangular domain of width Lx and length Ly.
µmax denotes the maximal growth rate in Eq. (3.33). We additionally indicate branch
distance d and the branch thickness b (gray arrows).

qualitatively discuss the dependency of λmax and thus branch distance d on model param-
eters. According to Eq. (3.35), λmax increases with β. The curvature dependency β of
interface growth expresses the tendency of the system to relax back to a flat configuration
after a perturbation and thus with increasing β branch distance increases.

To demonstrate how branch distance can be controlled in our model, we next studied the
instability of a flat moving interface in a rectangular system with the phase field method.
We use β as an example for a control parameter for branch distance, but note that any
other of the previously mentioned parameters could take this role. To change β in the
phase field model, we make use of the correspondence Eq. (3.48) between parameters in
the continuum model and its implementation with the phase field method. We vary β by
changing ξ and keeping the interface width constant by making a corresponding change in
a. With this strategy, we study the effect of a ∼3fold change in β and find a correspond-
ing ∼2fold change in terms of branch number, where we simply counted the number of
branches along a horizontal direction in the system (Fig. 3.7a). To confirm this observa-
tion, we additionally quantified the branch distance in our simulations. We compare the
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Figure 3.7: Control of branch distance. (a) We study the instability of a flat moving
interface in a rectangular domain with width Lx and length Ly. We show morphologies
obtained from the instability of a flat moving interface for different values of β. (b) We
show the mean branch distance d extracted from simulations. Error bars denote the
standard deviation. Additionally, we show the fastest growing wavelength λmax (line) as
a measure for branch distance d as a function of the curvature dependency β of interface
growth. We numerically obtained λmax from Eq. (3.33).

measured branch distance with the predicted branch distance from our relation for λmax

and find good agreement (Fig. 3.7b). Overall, we therefore identify λmax as a measure and
β as a control parameter for branch distance.

3.4.2 Control of branch thickness

The mutual inhibition of branches prevents them from growing into each other and there-
fore controls branch thickness. To understand this process in more detail, we now motivate
a minimal, analytically tractable scenario for the interaction of branches. We consider an
already formed branched morphology and focus on two branches that are aligned parallel
to each other (Fig. 3.8a, inset). The boundaries of such branches are only slightly curved
and thus they are well approximated by flat interfaces. Moreover, due to the symmetry
of the problem, it is sufficient to consider only one of the branches in this scenario. With
these simplifications we can study the interaction of branches by considering the position
yI of a flat interface in a system of size L (Fig. 3.8b). We relate the system size L to
branch distance d by d = 2L and we obtain the branch thickness b from the stationary
position of the interface ȳI by b = 2ȳI.
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Figure 3.8: Minimal scenario to study branch thickness. (a) To understand what
controls branch thickness, we study the mutual interaction of two branches. Due to
the symmetry of the situation, we study only the interface position of one branch. We
further consider the branch interface as flat. These simplifications allows us to infer branch
thickness from the position yI of a flat interface. (b) In our minimal scenario, the system
size is related to branch distance by d = 2Ly and we find the branch thickness from
b = 2ȳI, where ȳI denotes the stationary interface position.

The dynamics of interface position and morphogen concentration are governed by

∂tyI = v0 − γc(yI) (3.49a)
∂tci = D∂2

yci − kici + si, (3.49b)

which is equivalent to the dynamics presented earlier in Eq. (3.1), except that the curvature-
dependent term vanishes here since we consider a flat interface. The morphogen concen-
tration further needs to satisfy that both concentration and concentration gradients at the
interface match

cin(yI) = cout(yI) ∂ycin(yI) = ∂ycout(yI) (3.50)

and we additionally require no-flux conditions

∂ycin(x, 0) = 0 ∂ycout(x, L) = 0 (3.51)

at the system boundary. Overall, we thus propose to reduce the problem of how branch
thickness arises from the interaction of two branches to studying the stationary position
ȳI of a flat interface.

To obtain the stationary interface position and from this branch thickness, we now
derive the stationary state of the system. We first determine the stationary concentration
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Figure 3.9: Stationary morphogen concentration profiles and interface posi-
tion. (a) We show the stationary concentration profile c̄(y) (red lines) from Eq. (3.52) as
a function of position y for different values of the interface position yI (dashed gray lines).
We additionally show the concentration value c̄I at the interface (black line). (b) We show
the stationary interface position ȳI as a function of v0/(γ∆c) for different values of system
size L. Additionally, we show the approximations in the limit of narrow branches given in
Eq. (3.57) (gray dashed-dotted line), the limit of thin branches given in Eq. (3.58) (gray
dotted line), and the limit of thick branches given in Eq. (3.59) (gray dashed line).

profile c̄i that is governed by the stationary reaction diffusion equation

0 = ∂2
yci − 1

λ2
i

ci + 1
λ2

i

c0
i , (3.52)

where we have used the abbreviation of the degradation length λi =
√
D/ki and of the

offset concentration c0
i = si/ki. By making an exponential ansatz for Eq. (3.52), we find

the solution as

c̄in(y) = 2A cosh(y/λin) + c0
in (3.53a)

c̄out(y) = 2BeL/λout cosh [(y − L)/λout] + c0
out (3.53b)

together with the constants

A = ∆c
2

1
1 + λout

λin

tanh (y/λin)
tanh[(yI−L)/λout)]

1
cosh

(
yI
λin

) (3.54a)

B = ∆c
2 e−L/λout 1

1 + λin
λout

tanh[(L−yI)/λout]
tanh(yI/λin)

1
cosh[(yI − L/)λout]

. (3.54b)

The morphogen concentration profile is therefore given by an hyperbolic cosine that
smoothly interpolates between a region of high and a region of low concentration (Fig. 3.9a).
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Finally, by setting y = yI in Eq. (3.53), we obtain the morphogen concentration c̄I = c̄i(yI)
at the position of the interface:

c̄I(yI) = ∆c

1 + λin
λout

tanh
(

L−yI
λout

)
tanh

(
yI

λin

) + c0
out (3.55)

Note that we have omitted the labels “in” and “out” that indicate the respective gut
region, since at the position y = yI the concentrations c̄in and c̄out are equal.

The stationary interface position ȳI (an consequently the branch thickness) is defined
by the stationary solution of Eq. (3.49a). We require ∂tȳI = 0 and find that the stationary
solution satisfies

v0

γ
= c̄I(ȳI). (3.56)

By choosing ∆c as a characteristic concentration value, we thus find that the ratio of in-
terface growth tendency v0 and inhibition strength γ∆c determine the stationary interface
position and consequently branch thickness. Due to the nonlinearity of c̄I, this constitutes
an implicit relation that determines ȳI. The steady-state solution ȳI exists if v0/γ ≤ c0

in

(assuming that c0
in > c0

out). In general, we need to solve Eq. (3.56) numerically to obtain
ȳI.

However, we can determine approximations for ȳI in different limiting regimes (Fig. 3.9b).
In the regime of narrow branches (L ≪ λi and thus yI ≪ λi), we find the approximation

ȳI

L
= 1

1 −
(

λout
λin

)2 v0
γ

−cin
v0
γ

−cout

. (3.57)

In this regime, we therefore find that ȳI ∼ L. Interestingly, the stationary interface
position is independent of any diffusion-degradation length if λin = λout. In the regime of
thin branches ((L − yI)/λout ≫ 1), we find that the stationary interface position is given
by

ȳI

λin
= arctanh

− λin

λout

v0
γ

− cout
v0
γ

− cin

. (3.58)

Finally, we find that in the regime of thick branches (ȳI ≫ λin), the stationary interface
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position is governed by

L− ȳI

λout
= arctanh

−λout

λin

v0
γ

− cin
v0
γ

− cout

. (3.59)

These equations demonstrate how the diffusion-degradation lengths and the branch dis-
tance determine the branch thickness in the respective limits.

Next, we demonstrated the control of branch thickness in our simulations. To this end,
we studied branched morphologies obtained from the instability of a flat moving interface,
where we use ∆c a control parameter for branch thickness (Fig. 3.10a). Apart from
controlling branch thickness, the concentration difference ∆c introduces additional changes
to interface motion and instability. Recall that the concentration difference ∆c influences
interface velocity (Fig. 3.3b). We consider a wide range of ∆c and as a consequence study
the instability of interfaces with both positive and negative velocity. The concentration
difference ∆c additionally controls branch distance according to Eq. (3.35). To compensate
the effect that varying values of ∆c have on branch distance, we choose β ∝ ∆c, which
maintains branch distance according to Eq. (3.35).

Finally, we compared the prediction of branch thickness from our minimal scenario with
the branch thickness observed in simulations of the full model. We first quantified branch
distance and confirmed that branch distance is constant in agreement with our prediction
(Fig. 3.10b). Next, we quantified branch thickness and found good agreement between
the predicted and observed values of branch thickness (Fig. 3.10c). Interestingly, we find
that changes in branch thickness can result in changes in the topology of morphologies.
For example, for small values of branch thickness, we find loose branches that lost contact
with the main part of the network. By contrast, for large values of branch thickness, we
find that branches form loops. Overall, we thus established a quantitative way to study
branch thickness and identified ∆c as a parameter to control branch thickness.
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Figure 3.10: Control of branch thickness. (a) We show morphologies obtained from
the instability of a flat moving interface for different values of ∆c. To maintain branch
distance as we vary ∆c, we choose β ∼ ∆c according to Eq. (3.35). The two left scenar-
ios correspond to an interface that starts close to the top system boundary and moves
downwards (v < 0), while the two right scenarios correspond to interfaces that start close
to the bottom system boundary and move upwards (v > 0). v0 denotes the tendency of
interface growth, γ denotes the inhibition strength, and ∆c denotes the difference of the
offset concentration in the “in” and “out” region. (b) We show branch distance d (dots)
as a function of the ratio v0/(γ∆c) for different values branch distance d. We additionally
show the mean value in each case (line). To control branch distance, we considered the
values β/(γ∆cλin) = 0.005 (yellow) and β/(γ∆cλin) = 0.11 (green). (c) We show the ratio
b/d (dots) of branch thickness b and distance d as a function of v0/(γ∆c) for different
values of branch distance.
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3.5 Summary and discussion

In this chapter, we have studied morphogen-controlled growth of an interface as a model for
branching morphogenesis. We show how branched morphologies arise from instabilities in
the interface motion in a self-organized way and analyzed the geometrical and topological
properties of the resulting morphologies.

At the center of our study, lies our continuum model for morphogen-controlled inter-
face growth. In this model, we represent the outline of a hypothetical branched organ
by an infinitely thin interface. We assume that the interface has a constant tendency to
grow, which is inhibited by the concentration of a morphogen. Additionally, we intro-
duce a curvature dependency into interface growth which reduces the growth of outward
protrusions and increases growth of inward protrusions. Thus, the curvature dependency
gives the interface a tendency to grow to a flat configuration and effectively stabilizes
interface motion. We assume that the morphogen diffuses in the system and undergoes
region-dependent degradation and production. In particular, we consider a case where
morphogen production takes place predominantly inside the organ and forms gradients
from inside to the outside of the organ. Overall, we think that this model captures key
features of branched organ morphogenesis.

To understand if an instability can occur for this system, we first study the motion of
a flat interface in an infinitely long system. We perform a linear stability analysis for this
scenario and determine the corresponding growth rate spectrum. Additionally, we consider
the limit of quasistatic morphogen dynamics in which the morphogen concentration adapts
instantaneously to any perturbations of the interface position. This limit allows us to
discuss several key features of the pattern formation in our model. In the quasistatic
limit, we can show that a transition from stable to unstable interface behavior occurs
for increasing inhibition strength through the morphogen. The formation of a protrusion
from the interface results in a reduction of morphogen concentration and thus in growth
inhibition at the protrusion. In the unstable regime, the reduction in growth inhibition is
large enough (or conversely, the stabilization from the curvature dependency of interface
growth is small enough) that the protrusion grows further. The growth of a protrusion
results in a further reduction in morphogen concentration and thus growth inhibition. We
thus find a positive feedback between protrusion growth and morphogen reduction that
results in unstable interface growth. When the quasistatic limit is violated, retardation
effects further enhance the instability in the interface motion. The morphogen field lags
behind interface perturbations and, as a consequence, the morphogen concentration at
protrusion tips is reduced, leading to an increase in protrusion growth.
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Next, we studied pattern formation beyond the linear stability analysis. We use the
phase field method for the numerical solution of the interface equations and show how com-
plex, branched morphologies originate from the instability in interface motion. We identify
branch distance and thickness as key parameters of the resulting branched morphologies
and study idealized scenarios of interface motion to understand how model parameters
control branch distance and thickness. We identify the fastest growing wavelength of an
instability occurring in a flat moving interface as a measure for branch distance. We
discuss how the mutual inhibition of branches controls branch thickness and show how
branch thickness can be related to the stationary position of a flat interface in a system of
finite size. We identify the concentration in the organ as a control parameter for branch
thickness. Finally, our approach also allows us to study topological properties of resulting
morphologies. In the limit of small branch thickness, we find that branches pinch off and
in the limit of large branch thickness we find that neighboring branches merge and form
loops. In the intermediate regime, we find tree-like morphologies characterized by the
absence of loops or loose branches.

The continuum model presented in this chapter provides a complimentary approach to
the lattice model from chapter 2. While our lattice model allows us to study the formation
of branched morphologies in the limit of strong noise and zero surface tension, here we
study the limit of finite surface tension and zero noise. Moreover, in this chapter we
provide a further example for an interface growth rule that yields an instability.

In our model, we assume that branching morphogenesis is solely controlled by a mor-
phogen. However, several other environmental factors contribute to the formation of
branched structures that we have excluded in our approach for simplicity. For example,
the overall appearance of morphologies can be influenced both by the geometry of the
environment it grows in and the initial configuration of the network. The formation of
the mouse mammary gland starts from initial placodes formed during embryogenesis and
sensory neuron morphogenesis in the zebrafish fin takes place in an almost circular sector
[20, 185]. Thus, our approach of initializing the instability from a flat moving interface
in a rectangular system facilitates the analysis of the instability, but oversimplifies the
scenarios encountered in organisms. Several extrinsic signals can influence branching mor-
phogenesis. Sensory neurons in the zebrafish fin show a distinct radial orientation and
it was proposed that chemical (e.g morphogen gradients) or mechanical cues influence
this orientation [185, 186]. Finally, we also studied the formation of branched structures
in a non-growing environment while branching morphogenesis can take place in a grow-
ing organism. For example, the planarian gut undergoes extensive remodeling and forms
numerous new side branches as the organism increases in size [187]. While these points
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have not been addressed in this chapter, we take them into account, when we study the
branching morphogenesis of the planarian gut in chapter 5.
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Chapter 4

Quantitative analysis of planarian gut
branching morphology

In this chapter, we present the planarian gut as an example of a highly branched organ. We
provide a detailed analysis of the geometrical and size-dependent properties of planarian
gut morphologies along with an analysis of size and shape of the planarian body and
pharynx.

We first introduce the experimental data that our collaborators Amrutha Palavalli and
Baiqun An from the lab of Jochen Rink at the Max-Planck Institute for Multidisciplinary
Sciences in Göttingen obtained. We explain the image processing and subsequent quan-
tification procedure including the definition of the various quantities we consider in our
analysis. We subsequently use our analysis to study shape and size of the planarian
body and pharynx. Next, we study the size-dependent properties of the planarian gut.
Overall, our analysis provides important insights of the organization of the planarian gut.
Moreover, our findings from this chapter inform key aspects of a model for gut branching
morphogenesis presented in the next chapter. We will use the tools for gut quantification
presented here to quantify gut morphologies obtained from the model presented in the
next chapter.

4.1 Quantification of the planarian gut

Our collaborators first imaged the planarian gut to quantify its geometrical as well as size-
dependent properties. To this end, they collected cohorts consisting of ca. 10 size-matched
animals in the range 1 to 11 mm and subsequently prepared the animals for imaging with a
fixation process. Note that the fixation process changes the size of the organism. While an
animal was labeled being of a certain size before fixation, the size after fixation typically
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Figure 4.1: Quantifying planarians and the planarian gut. (a) In-situ hybridiza-
tion of the planarian gut. Intensity is proportional to expression of a selected gene in
inner intestinal cells. (b) Our collaborators used the segmentation of the raw data in (a)
to determine the skeleton of the planarian gut. Inset: We define a branch en as the set of
pixels that connect two branch points (black dots) in the skeleton. Colors indicate differ-
ent branches and the index n labels branches. (c) We show the primary branch (black)
and side branches (orange). The orange tone indicates the orientational order parameter
cos2(ψ), where ψ denotes branch angle. (d) We show side branches originating in the an-
terior part of the primary branch (black) that grow to the left (blue) and right (red) along
with unclassified branches (gray). Raw image data as well as segmentation and skeleton
obtained by Amrutha Palavalli.
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slightly decreases. This explains why the size range displayed in parts of our analysis
differs from 1 to 11 mm, but is slightly shifted a to range with smaller lower and upper
bounds. Moreover, due to the grouping into size-matched animals, we find that our data
is also grouped into roughly five clusters (cf. Fig. 4.4a). After size-matching and fixation,
our collaborators performed in-situ hybridizations using a marker for inner intestinal cells
(Fig. 4.1a). From a binarization of the raw data they determined a skeleton, i.e. a one
pixel wide representation of the binarized data with the same connectivity as the original
data. The skeletonized gut structures are the cornerstone of our analysis and allow us
to quantify various properties of gut organization. Note, however, that the employed gut
marker only labels inner but not outer intestinal cells and thus we can faithfully reconstruct
the skeleton of the gut, but we (so far) lack information about the branch thickness.

At the center of our gut skeleton analysis lies the identification of branch points (“ver-
tices”) and branches (“edges”) (Fig. 4.1b). We define pixels as branch points based on
properties of a local, 3 × 3 neighborhood around them (see appendix C for details) and
branches as the set of pixels

en = {(i1, j1), . . . , (iM , jM)} (4.1)

that connect two branch points (i1, j1) and (iM , jM). We denote the total number of
branches by N , the total number of pixels in a branch by M , and use the index n to
label individual branches. Note that the connection of two branch points is unique as we
consider tree-like (loopless) structures. We additionally distinguish between the primary
branch and side branches. The primary branch is determined as the union of the three
longest paths of branches that each originate at the origin of the gut (Fig. 4.1c). We call
any remaining branches side branches.

Branch length, thickness, and distance

Based on the definition of an branch in Eq. (4.1), we define several geometrical branch
properties (Fig. 4.1b). We define branch length ℓn of an individual branch as

ℓn =
M−1∑
m=1

∆ℓm, (4.2)

where ∆ℓm =
√

(im+1 − im)2 + (jm+1 − jm)2 denotes the Euclidean distance of a branch
segment between two pixels (im, jm) and (im+1, jm+1). We define the mean branch length
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ℓ of the organism as the mean

ℓ = 1
N

N∑
n=1

ℓn (4.3)

of individual branch lengths. Finally, we define total gut length Lgut = ∑
n ℓn as the total

length of all branches and find Lgut = Nℓ.

Even though we (so far) lack the data to faithfully estimate branch thickness, we provide
the necessary definitions and use them in chapter 5 to analyze the respective properties
of simulated gut structures. To estimate branch thickness, we use the so-called distance
transform [168]. The distance transform is applied to binarized images and returns for
every foreground pixel (i, j) of the image the distance rij to the nearest background pixel.
The distance transform rij at the position of the branch skeleton (i.e. branch midline)
provides a measure for the distance to the branch boundary and thus can be used to
determine branch thickness. We define the thickness of an individual branch bn as the
averaged distance transform along a branch en according to

bn = 1
M

∑
(i,j)∈en

2rij, (4.4)

where the factor of 2 is needed as branch thickness represents the distance betweeen branch
boundaries. We define the mean branch thickness of the organism as the mean

b = 1
N

N∑
n=1

bn. (4.5)

of individual branch thickness.

Apart from branch length and thickness, branch distance d is another key property of
gut morphologies. To determine branch distance, we consider each column of the image
in turn and determine the distance dk of subsequent side branches. We then define the
mean branch distance of a morphology as the mean

d = 1
Nd

Nd∑
k=1

dk, (4.6)

of individual side branch distances, where Nd denotes the total number of side branch
distances in the entire image. Note that we exclude distances dk that span the pharynx
to prevent the distance calculation to be biased.
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Branch orientation

To quantify branch orientation, we use the mean branch angle ψn. The mean branch
angle ψn is defined as the circular mean of the local branch angles ψnm of individual
branch segments. The local branch angles ψnm represent the inclination of an individual
segment m of a branch en to a vertical axis and are obtained from

xnm = cosψnm (4.7a)

= im+1 − im
hm

(4.7b)

ynm = sinψnm (4.8a)

= jm+1 − jm

hm

, (4.8b)

where the tuple (xnm, ynm) represents the position on the unit circle corresponding to the
local branch angle ψnm. To determine the mean branch angle from the set of local angles,
we determine the arithmetic mean (x̄n, ȳn) of the corresponding unit circle positions. Tak-
ing the arithmetic mean of unit circle positions ensures the correct averaging of angles as
compared to directly averaging angles. We then obtain the mean branch angle ψn from

tan(ψn) = ȳn

x̄n

. (4.9)

The average angle ψ̄n is then ψ̄n = atan2(ȳn, x̄n), where atan2 denotes the two argument
arctan. Note that atan2 returns angles in the range [−π, π] and therefore has the advantage
to unambiguously determine the angle. By contrast, the atan function returns angles in
the range [−π/2, π/2] which requires to determine the corresponding quadrant manually.
Overall, this constitutes a robust measure for branch orientation. Compared to other
methods (e.g. inclination of branch end-to-end vector to vertical axis) this method robustly
characterizes branch orientation also for the curved branches we find in the gut (Fig. 4.1c).

Branch symmetry

Finally, we quantify the symmetry of gut morphologies (Fig. 4.1d). We determine the
symmetry of a gut structure as the mismatch of branch points along the anterior part of
the primary branch (Fig. 4.1d, black line). We call a gut structure symmetric if branches
that grow into the left and right organism side originate at the same position on the
primary branch and antisymmetric otherwise. To quantify the mismatch between branch
points, we introduce the indicator functions vi,m for the left (i = l) and right (i = r)
organism side, where m = 1, . . . ,Mpb indicates the position along the primary branch that
consists of Mpb pixels and Npb individual branches. The indicator function has vl,m = 1
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if at the respective position a branch grows into the left organism side and similarly for
vr,m. We determine the integrated indicator function

Vi,m =
m∑

m̃=1
vi,m̃, (4.10)

which has a stair-like function. For symmetric gut structures, branch points along the
primary branch and thus also the stair-like integrated indicator function matches. By
contrast, for antisymmetric structures, a mismatch between branch points and thus the
integrated indicator function exists. We quantify the mismatch by the normalized inte-
grated squared difference

∆V = 1
Npb

Mpb∑
m=1

(Vl,m − Vr,m)2. (4.11)

We find the value ∆V = 13.71 (averaged over n = 11 worms with 1 mm), which indicates
that the gut operates in an intermediate regime away from being either symmetric or
antisymmetric.

Gut morphology

We use the provided skeletons to quantify size and shape of planarians (Fig. 4.3a). We
determine the convex hull of the gut skeleton and use it as a measure of the worm outline
that we characterize by its center of mass (xw, yw) as well as its length Ly, width Lx, and
area Aw. The convex hull is the smallest convex polygon that encloses all elements of a
given set and can be visualized as a the configuration of a rubber band that contracts until
no further contraction is possible. We extract the pharynx outline in a similar manner by
employing an algorithm that expands a shape until no further expansion is possible. We
characterize the pharynx outline by its center of mass (xp, yp) as well as its length ly, width
lx, and area Ap. We further define the branched area Ab as the difference Ab = Aw − Ap

between worm and pharynx area. Thereby the branched area denotes the size of region
that the gut can expand into.

Our collaborators imaged gut morphologies in the range from 1 to 11 mm and provided
the corresponding gut skeletons (Fig. 4.2). Next, we employ this data to study size-
dependent properties of planarians and in particular the planarian gut.
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Ly = 1mm Ly = 8mm Ly = 11mmLy = 2mm Ly = 5mm

Figure 4.2: Size-dependent changes of organism and gut morphology. We illus-
trate size-dependent changes in organism and gut morphology based on gut skeletons for
the five different body sizes quantified by our collaborators. We consider organisms with
length Ly in the range 1 mm to 11 mm, thus spanning a more than 10 fold increase in
organism length and a more than 100 fold increase in branched area. Segmentation and
skeletonization performed by Amrutha Palavalli.

4.2 Size and shape of flatworms and their pharynx

We first quantify the shape of flatworms and their pharynx (Fig. 4.3). To this end, we
determine the worm and pharynx outlines from the convex hull of worm and pharynx. We
position the outlines at the center of the coordinate system by subtracting the organism
center of mass (xw, yw) or the pharynx center of mass (xp, yp) from the respective outline.
We further rescale the outlines with their respective width and length. We present the
rescaled outlines along with an ellipse given by the equation x2 + y2 = 1 and find good
agreement. This indicates that an ellipse is an approximation for worm and pharynx
outline. To further support this finding, we perform a least-squares fit of the equation
xr + yr = 1 of a generalized ellipse to the rescaled worm and pharynx outlines. We obtain
the values rw = 1.85 ± 0.12 and rp = 1.99 ± 0.16 from the fit which are close to the value
r = 2 of an ideal ellipse. We therefore adopt ellipses as a minimal approximation for worm
and pharynx shape.
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Figure 4.3: Quantification of organism size and shape. (a) We show the worm
outline together with the pharynx outline. We characterize the worm outline obtained
from a convex hull of gut skeletons by its length Ly, width Lx, and area Aw. Likewise, we
characterize the pharynx outline by its length ly, width lx, and area Ap. Additionally, we
quantify its center of mass (xp, yp) as well the distance ∆ between the top of organism and
pharynx. (b,c) We show the organism and pharynx outline centered at their respective
center of mass (xw, yw) and (xp, yp). (d,e) We show the worm and pharynx outlines rescaled
by the respective length. Additionally, we show an ellipse of the form xr − yr = 1 with
r = 2 (black line).
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Figure 4.4: Quantification of body size and aspect ratio of planarians. We
present different measures for body size and how they are related. (a) We show organism
width Lx as a function of worm length Ly (dots) and a fit of the form y = axb (line). (b)
We show branched area Ab as a function of worm area Aw (dots) together with a fit of
the form y = axb (line). The inset shows the relative pharynx area Ap/Aw as a function
of worm area. (c) We show the worm length Ly as a function of worm area Aw (dots)
together with a fit of the form y = axb (line). Note that in all cases the power law fit was
obtained from a linear fit to logarithmized data.
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Since our aim is to study size-dependent properties of the planarian gut, we next examine
different measures for worm size (Fig. 4.4). We first study the relationship between worm
width Lx and worm length Ly and find a power law with scaling exponent < 1. This scaling
law indicates that worm length increases faster than worm width which we can confirm
visually (Fig. 4.2). Likewise, we study the relationship between organism area Aw and the
branched area Ab. We find that a power law with scaling exponent > 1 relates organism
area and branched area, indicating that branched area increases faster than worm area.
We attribute this non-isometric scaling to the decreasing relative size of the pharynx (see
next section for more details). Finally, we examine the relation between worm length
Ly and area Aw. We find that a power law with scaling exponent close to 0.5 relates
worm length and worm area as expected from dimensional considerations. Note that this
scaling exponent is in agreement with previous studies where the power law Ly ∝ A0.55

w was
reported [65]. We have therefore presented an ensemble of size quantifications. We have
established scaling relations between different measures of size and can therefore convert
different size measurements into each other. We choose Ab as a measure for worm size.

We can employ the scaling relation Lx ∝ L0.79
y between worm length Ly and worm

width Lx to determine the ratio gx/gy of organism growth rate gx and gy. An organism
that grows with constant rate in each direction i ∈ {x, y} obeys Li(t) = Li,0e

git, where t
denotes time and Li,0 denotes the length at time t = 0. This implies the scaling relation
Lx ∝ Lgx/gy

y between worm width and length. From a comparison with the measured
scaling relation (Fig. 4.4a) we therefore find gx/gy = 0.79 for the ratio of growth rates.

We next present a quantification of size and position of the planarian pharynx (Fig 4.5).
The pharynx is located along the organism midline (xp/Lx ≈ 0.5) in the lower semihalf
of the worm (yp/Ly < 0.5). While the distance ∆ between organism tip and the top
part of the pharynx is independent of organism size, the pharynx position yp shows a
slight increase for larger organism sizes. From this we conclude that the organism exhibits
slight anisotropic growth, i.e. the tail region grows faster than the head region. Clearly,
the relative pharynx size decreases for increasing organism size. For small organism size
the pharynx spans almost the entire organism in terms of width (lx/Lx → 1) and half
of the organism in terms of length (ly/Ly ≈ 0.5). By contrast, for a large organism
the pharynx spans half of the organism in width (lx/Lx ≈ 0.5) and a quarter in terms
of length (ly/Ly ≈ 0.25). This decrease of the relative pharynx size is also confirmed
visually (Fig. 4.2).

We present the data obtained from the quantification of pharynx size and position
together with different interpolation functions (Fig. 4.5). We show the relative position
xp/Lx and the relative distance ∆/Ly along with their average value (Fig. 4.5a,c line).
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Figure 4.5: Position, size, and aspect ratio of the pharynx. (a) We show the
measured horizontal component xp of the pharynx center of mass (dots) along with its
mean x̄p/Lx = 0.51 ± 0.04 (line). (b) We display the relative vertical position yp/Ly of
pharynx center of mass (dots) along with with a fit to Eq. (4.12) (line). (c) We show the
difference ∆ from the organism tip to the top part of the pharynx along with its mean
value ∆̄/Ly = 0.39 ± 0.04 (line). (d,e) We show the relative pharynx width lx/Lx and
length ly/Ly (dots) along with a fit to Eq. (4.12) (line). (f) We display the pharynx length
ly as a function of pharynx width lx (dots) along with a fit of the form y = axb (line). We
performed a linear fit to the logarithmized data.

We show the relative position yp/Ly as well as the pharynx size lx/Lx and ly/Ly together
with the interpolation function

f(x) = ae−x/b + c, (4.12)

where a,b, and c are fit parameters determined for each of the aforementioned quantities
(Fig. 4.5). We will use these interpolation function later in our model to correctly position
and size the model pharynx.

4.3 Size-dependent properties and scaling laws of the
planarian gut

We identify four complementary scaling relationships that characterize the size-dependent
properties of the planarian gut. We first analyze the total length of the gut and find the
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key scaling relationship
Lgut ∝ Aη

b (4.13)

with scaling exponent η = 0.75 ± 0.01. Thereby the massive increase of total gut length
over two orders of magnitude of organism size is well described by a power law with a
single scaling exponent. Interestingly, the scaling exponent η is different from 1/2 and
thereby does not follow from simple dimensional considerations.

The non-isometric scaling of the total gut length is related to the non-isometric scaling
of branch distance. To see this, we note that the scaling relationship Eq. (4.13) relates
the total gut length with an area and thereby implicitly defines a length. This implicitly
defined length provides a measure for the distance of branches and we can infer from
Eq. (4.13) that it scales with branched area with scaling exponent 0.25. To confirm this
observation, we independently quantified the distance d of side branches. We find that
d ∝ A

αy

b with αy = 0.24 ± 0.04 confirming our prediction. Thus, branch distance increases
with organism length in a non-isometric manner.

To investigate whether the increase in total gut length originates from an increase in
branch length ℓ or the number of branches we further analyzed the size dependency of N
and ℓ. We obtain that mean branch length obeys ℓ ∝ Aαx

b with αx = 0.19 ± 0.08 and that
the number of branches obeys N ∝ Aζ

b with ζ = 0.59 ± 0.05. Thus, the massive increase
in the total gut length stems from both an increase in the number of branches as well
as an increase of mean branch length. We obtain the reported scaling exponents from a
least-squares fit of a linear function to the logarithmic data. Moreover, to determine the
scaling exponents of N and ℓ, we excluded points with Ab < 2 · 104 mm2 corresponding to
the 1 mm cohort. We exclude the 1 mm cohort since for small organism sizes mean branch
length is heavily biased by the length of branches belonging to the primary branch. We
also show the mean branch length where branches belonging to the primary branch are
excluded and find a better agreement.

Besides the scaling of branch length, branch distance, and the number of branches,
we also characterize branch orientation (Fig. 4.7). Given the vertical orientation of the
elements of the primary branch, we focused our analysis on side branches. We use the
mean branch angle ψn introduced in Eq. (4.9) and study the probability distribution
p[cos2(ψn)] of the orientational order parameter cos2(ψn) of side branches. The orienta-
tional order parameter respects the organismal symmetry and allows us to detect hori-
zontal (cos2(ψn) = 0), vertical (cos2(ψn) = 1), and diagonal (cos2(ψn) = 1/2) branches in
a simplified manner. We find that independent of organism size the distribution of the
orientational order parameter shows a strong peak at cos2(ψ) = 0 indicating the mostly
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Figure 4.6: Scaling of the planarian gut. (a) We show the total gut length Lgut as a
function of the branched area Ab (dots) along with a fit of the form Lgut = L0

gutA
η
b (line).

(b) We display the mean branch length ℓ (blue dots) as a function of branched area Ab
along with a fit of the form ℓ = ℓ0A

αx
b (line) for values Ab > 0.2 mm2. To illustrate how

the primary branch biases ℓ towards larger values for small organism sizes, we additionally
display the mean branch length without the primary branch (orange dots). (c) We show
the total number of branches N as a function of the branched area Ab (dots) along with
a fit of the form N = N0A

η
b. As for ℓ, the fit was obtained for the range Ab > 0.2 mm2.

(d) We show branch distance d as a function of branched area Ab (dots) along with the
fit d = d0A

αy

b (line). In each case, the a linear fit to logarithmized data was performed.
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Figure 4.7: Quantification of branch orientation. We show the probability distri-
bution p[cos2(ψ)] of the orientational order parameter cos2(ψ) of branch orientation ψ for
differently sized animals (color). The displayed distribution corresponds to side branches
from n = 11 (1 mm), n = 14 (5 mm), n = 6 (11 mm) animals.

horizontal orientation of side branches. Since branches originate from other branches with
a non-zero angle and branches are oriented towards the curved organismal boundary in the
head and tail region of the organism, branch orientation shows in general large variation.
As a consequence, we find that apart from the peak at cos2(ψ) = 0 the orientational order
parameter has a mostly uniform distribution away from cos2(ψ) = 0.

4.4 Summary and discussion

In this chapter, we have introduced the planarian gut as an example of a highly branched
organ. We have quantified the geometrical and size-dependent properties of gut mor-
phologies as well as the size and shape of planarians and their pharynx. The findings
presented here form the basis of chapter 5, where we theoretically study gut branching
morphogenesis.

We first introduced the experimental data provided by our collaborators and its quan-
tification. They performed in-situ hybridization of in total n = 57 planarians in the size
range from 1 to 11 mm. Next, they binarized the raw data and determined a skeleton on
basis of the binarization. The skeleton is a one-pixel wide connectivity-preserving repre-
sentation of the binarized data and serves as the basis of our quantitative analysis. We
identify individual branches in the skeleton and quantify their mean length ℓ, distance d,
thickness b, and angle ψ as well as the total number of branches N and the total gut length
Lgut. Additionally, we use the mismatch of branch points along the primary branch as a
measure for the symmetry of gut morphologies. Even though the provided data fails to
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robustly label the gut outline, we explain the quantification of branch thickness b, which
we will apply to our simulated gut structures. On the basis of gut skeletons, we further
quantified worm and pharynx shape. In each case, we use a convex hull to extract the re-
spective outline. We use the convex hull area as a measure for worm area Aw and pharynx
area Ap, respectively. We use the major and minor axis length as a measure for organism
length Ly and width Ly as well as pharynx length ly and width lx. The center of mass
provides a measure for the horizontal xp and vertical pharynx position yp.

We then used our analysis to discuss various aspects regarding the size and shape of
worm and pharynx outline. Interestingly, we find that worm length and width are related
by the scaling relation Lx ∝ L0.79

y indicating that the aspect ratio of the organism is
size-dependent. In particular, the organism length increases more rapidly than organism
width with a growth rate ratio of gx/gy = 0.79. We find that worm and pharynx shape
are approximately described by an ellipse. In particular, we find that the pharynx is
located along the organism midline (xp/Lx ≈ 1/2) and shifts its relative position yp/Ly

in anterior direction for larger organism sizes while its relative size Ap/Aw decreases. The
aspect ratio of pharynx shows also shows a size-dependent behavior with a similar trend
as the organism aspect ratio.

Finally, we used our analysis to study geometrical and in particular size-dependent
properties of the planarian gut. We find that side branches are aligned towards the
organismal boundary and that the gut exhibits neither a symmetric nor antisymmetric,
but an intermediate configuration. Interestingly, key characteristics of the gut show power
law scaling as a function of body size with scaling exponents that lack a simple geometrical
interpretation. The scaling laws reveal that the total gut length displays a tremendous
increase with organism size which stems from both an increase in mean branch length and
the total branch number.

Let us also discuss shortcomings and limitations of our analysis. We have focused on
analyzing 2D projections of 3D gut images and thus neglected features of the 3D archi-
tecture of the gut. For example, with increasing organism size branches occasionally grow
above each other (Jochen Rink, personal communication). It might also be interesting to
analyze 3D properties such as total gut surface area and total gut volume. The gut is the
planarian organ responsible for delivery of nutrients to cells and it might be thus related
to Kleiber’s law scaling of metabolic rate in planarians [65].

Overall, we developed a set of versatile tools to analyze various aspects of the planarian
body and gut. We apply our analysis tools in the next chapter to gut morphologies
obtained from a gut branching model and thus they allow us to compare scaling laws from
model and experiment. Moreover, our detailed analysis of worm and pharynx outline
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informs the choice of boundary conditions in our gut branching model.
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Chapter 5

Morphogen-controlled growth and
scaling of the planarian gut

In this chapter, we present a model for morphogen-controlled growth and scaling of the
planarian gut. In this model, we reconsider our continuum model presented in chapter 3
and combine it with novel ideas and concepts to understand planarian gut morphogenesis.
At the center of our model is again the growth of an interface subject to the concentration of
a morphogen. As opposed to previous chapters, we now account for details of the organism
shape and study the formation of branched structures emerging from a primary branch
in an elliptic, worm-like geometry. Moreover, inspired by the orientation of branches
in the planarian gut, we take into account external guiding cues that align branches to
predefined axes in addition to the purely morphogen-controlled gut growth. Finally, to
account for the massive body size fluctuations of planarians, we include organism growth in
our description allowing us to study size-dependent properties of branching morphologies.

To systematically understand the formation of branched patterns in this model, we
proceed in three steps. After defining the model, we first consider a system without or-
ganism growth and discuss key determinants for the formation of branched structures in
this scenario. We demonstrate the alignment of branches with different external guid-
ing cues and discuss how morphogen-mediated interaction between branches in the left
and right organism half determine the symmetry of branching morphologies. By using
findings from chapter 3, we demonstrate the control of branch distance and thickness of
gut branching morphologies. As a second step, we present two scenarios for generating
gut morphologies for different organism sizes. In a first approach (branching model), we
study the de-novo formation of morphologies in a systems of different sizes. In a second
approach (branching model with organism growth), we study the continuous remodeling
of a morphology subject to organism growth. In both cases, we analyze the size-dependent
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Figure 5.1: Model for morphogen-controlled growth and scaling of the pla-
narian gut. (a) We represent the gut outline by an infinitely thin interface R with
normal vector n. This interface separates the growing domain Ω into a region inside
(“in”) and outside the gut (“out”). We consider morphogen-controlled growth of the in-
terface R, where ci denotes the morphogen concentration in the region i ∈ {in, out}. (b)
We take into account the effect of external guiding cues on interface growth by an external
orientation field m. As an example, we show the orientation field mext derived from the
concentration cext of a second morphogen with constant concentration c0

ext at the organism
boundary.

properties of resulting morphologies and find power law scaling of various gut features as
a function of organism size. In a third step, we rationalize the observed scaling relations
by simple scaling arguments. Throughout this chapter, we compare the value of quantities
from simulations and experiments to provide a parameter regime which yields realistic gut
morphologies in the model.

5.1 Morphogen-controlled interface growth in growing
domains

We now present a minimal model to study morphogen-controlled branching morphogenesis
and growth of the planarian gut (Fig. 5.1). In our minimal approach, we represent the
gut outline by an infinitely thin interface R and study the dynamics of R in a 2D domain
Ω. The gut outline separates the domain Ω into a region inside and outside of the gut,
where the respective region is labeled by the index i ∈ {in, out}.

The motion of R and therefore gut growth takes place in normal direction n with
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velocity vn according to

∂tR = vnn (5.1a)
vn = χ(c,m) − βκ+ u · n + aΞ. (5.1b)

The normal velocity vn captures key contributions to interface growth in a coarse-grained
way and is therefore at the center of our model. We assume that growth depends on
interface curvature κ, where according to our convention κ is positive for outward protru-
sions (concave shapes) and negative for inward protrusions (convex shapes). Due to the
curvature dependency of interface growth, outward protrusions experience a negative and
inward protrusions a positive velocity. As a result, the interface has a tendency to grow
to a flat configuration and is effectively stabilized, where the parameter β determines the
strength of the curvature dependency and thus the strength of the stabilization. The ad-
vection term u·n takes into account that the interface is carried along with the organism as
the organism grows, where u denotes the velocity field corresponding to organism growth.
A hypothetical gut structure of circular shape subject to only the advection term deforms
to an ellipse with a total area larger than before (assuming anisotropic organism growth
gx ̸= gy). Additionally, we assume that the interface is subject to uniform distributed
noise Ξ ∈ [−1/2, 1/2] with noise amplitude a. Finally, the term χ represents the influence
of different signals on gut growth. We assume that a morphogen with concentration c is
present in the organism that controls interface growth and thus χ depends on morphogen
concentration. Additionally, we assume that gut growth is guided by external cues such
as planar cell polarity or a second morphogen originating at the organism boundary. We
represent external guiding cues in a coarse grained way with an external orientation field
m that guides interface growth. The term χ lies at the heart of our model and we will
explain its precise form now in more detail.

The term χ depends on both the morphogen concentration c and on the external orien-
tation field m. We assume that these dependencies can be separated into the form

χ(c,m) = Γ(c)Θ(m), (5.2)

where Γ takes into account the dependency on the morphogen concentration c and Θ
takes into account the direction dependency of growth. A further motivation to employ
this separation ansatz comes from studies of solidification, where this approach is used to
include anisotropy arising from molecular structure [183]. In chapter 3, we identified the
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function

Γ(c) = v0 − γc(R) (5.3)

as a minimal example that yields self-organized branched structures and therefore employ
it here again. The parameter v0 denotes a basic growth tendency that is inhibited with
strength γ by the presence of morphogen at the interface. We assume for the direction
dependency Θ of growth

Θ(m) = 1 − 2δ sin2(θ/2) (5.4a)
θ = ∢(n,m), (5.4b)

where δ denotes the coupling strength between interface growth and external orientation
field and lies in the range δ ∈ [0, 1/2] to ensure χ > 0 (Fig. 5.1b). θ denotes the angle
between the interface normal vector n and the external orientation field m and is crucial
to understand the influence of m on interface growth. For growth directions n parallel to
m (sin2(0) = 0), the morphogen-controlled growth term χ(c,m) = Γ(c) reduces to only its
morphogen dependency. However, for growth directions n orthogonal to m (sin2(π/2) =
1), the morphogen-controlled growth term gives χ(c,m) = Γ(c)(1 − 2δ), i.e. growth is
suppressed by a factor of 1 − 2δ in the direction orthogonal to m. As a result, we have a
preferred growth in the direction of orientation vector m while growth orthogonal to m

is suppressed.

We study morphogen-controlled growth of the planarian gut and therefore the mor-
phogen concentration ci is another important ingredient in our model. The dynamics of
the morphogen concentration ci in each region i is determined by the advection-diffusion
equation

∂tci + u · ∇ci = D∇2ci − (ki + gx + gy)ci + si. (5.5)

We take into account the diffusive motion of morphogen with effective diffusion constant D
as well as effective degradation with rate ki and a production with rate si. Moreover, due
to organism growth, morphogen concentrations ci are subject to dilution with rate gx + gy

and advection with velocity u. At the interface R, we enforce the boundary conditions

cin(R) = cout(R) (5.6a)
n · ∇cin(R) = n · ∇cout(R), (5.6b)

where we have used the interface normal vector n. Therefore, we require that the con-
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5.1 Morphogen-controlled interface growth in growing domains

centrations and the normal components of the concentration gradients at the interface
position R match.

Since the morphogenesis of the planarian gut takes place in a growing organism, we
study the dynamics of R in a growing domain Ω. Every point x ∈ Ω undergoes the
dynamics

∂tx = u (5.7a)
u = gxxex + gyyey, (5.7b)

where u is a velocity field and gx and gy denote the organism growth rates in the respective
direction. Throughout this chapter, we assume constant growth rates gi leading to an
exponential increase of the dimensions of Ω. This allows us to study the scaling of observed
structures over a wide range of sizes. Note that we consider periodic growth rates in the
last section of this chapter, when we study the robustness of observed structures with
respect to periodic growth and degrowth.

We consider two options for the orientation field m. First, we consider an orientation
field of the form

my = eyθ(x− Lx/2) − eyθ(Lx/2 − x) (5.8)

and thus enforce growth along mediolateral axis of the organism. In a different approach,
we employ an “external” morphogen that has a source on the organism boundary and
forms gradients to the organism center to guide gut growth. We refer to this morphogen
as external, since it is produced at the organism boundary and not in the gut. For this
case, we define the orientation field

mext = ∇cext

|∇cext|
, (5.9)

as the normalized gradient of cext, which enforces growth in direction of steepest increase
of external morphogen concentration.

For all x ∈ Ω the external (or second) morphogen concentration cext is subject to the
advection-diffusion equation

∂tcext + u · ∇cext = Dx
ext∂

2
xcext +Dy

ext∂
2
ycext − (kext + gx + gy)cext, (5.10)

together with the boundary condition u|∂Ω = const. In Eq. (5.10), Dx
ext and Dy

ext denote
effective diffusion constants and kext denotes the effective degradation constant of the
external morphogen. The diffusion-degradation length λx

ext =
√
Dx

ext/kext and λy
ext =
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Figure 5.2: Numerical solution of the model for morphogen-controlled growth
and scaling of the planarian gut. We use the phase field method presented in chapter 3
to study the interface dynamics numerically. For the phase field ϕ we impose a primary
branch consisting of a straight line in the head region, an elliptic part around the pharynx,
and two parallel straight lines as a boundary condition. The straight line in the head
region has thickness bpb, while the remaining parts are infinitely thin corresponding to the
width of one pixel in the discretization. Details of boundary conditions are provided in
appendix A.

√
Dy

ext/kext provide a characteristic length scale for the gradient generated by the external
morphogen along the x and y direction, respectively. Note that by adapting the diffusion-
degradation length scales λx

ext and λy
ext we can align growth of branches predominantly in

x- (λx
ext ≪ λy

ext) or y-direction (λy
ext ≪ λx

ext) of the organism.

The morphogen dynamics defined by Eq. (5.10) describes the general scenario of a mor-
phogen forming gradients towards the organism center and provides rich possibilities to
direct the growth of branches. For simplicity, we consider a special case of this dynamics
in the rest of this chapter. Instead of solving the time-dependent dynamics of Eq. (5.10),
we consider the quasistatic limit and find the solution of ∂tcext = 0. Motivated by the ori-
entation of planarian gut branches, we consider the case of branch alignment in horizontal
direction (λx

ext ≪ λy
ext). To ensure that this choice is maintained throughout organism

growth, we consider the case λx
ext ∝ Lx and λy

ext ∝ Ly.

We employ the phase field method to numerically study the interface dynamics of our
model (Fig. 5.2). We refer the reader to section 3.3 of chapter 3 for a brief introduction to
the phase field method and present the phase field model corresponding to Eqs. (5.1) in
appendix B. The shape of the boundary employed in the phase field model is motivated by
our analysis of organism shape. We determine the solution of phase field ϕ and morphogen
concentration c in the domain Ω = Ωw \ Ωp, which corresponds to an organism described
by an ellipse Ωw with an empty region Ωp for the pharynx. The regions Ωw and Ωp are
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5.2 Determinants of gut geometry in the model gut

defined by

Ωw = {(x, y)|
∣∣∣∣∣x− x0

Lx/2

∣∣∣∣∣
2

+
∣∣∣∣∣y − y0

Ly/2

∣∣∣∣∣
2

≤ 1} (5.11a)

Ωp = {(x, y)
∣∣∣∣∣x− xp,0

ℓx/2

∣∣∣∣∣
2

+
∣∣∣∣∣y − yp,0

ℓy/2

∣∣∣∣∣
2

≤ 1}, (5.11b)

where Lx and Ly denote organism width and length and lx and ly denote pharynx width
and length. We use (x0, y0) and (xp,0, yp,0) to denote the position of the respective ellipse.
We study the dynamics of the external morphogen in the domain Ωw. To study the system
dynamics numerically, we transform the phase field equations from a growing to a non-
growing reference frame. In this reference frame, we enforce no-flux boundary conditions
for both phase field and morphogen concentration on ∂Ω and additionally implement the
primary branch as a boundary condition for the phase field ϕ with ϕ = 1 (details see
appendix A). In all our simulations, we use ϕ(x, y) = 0, ci(x, y) = 0, and cext(x, y) = 0 as
initial condition. We provide details on the numerical solution of the resulting phase field
equations in appendix A.

5.2 Determinants of gut geometry in the model gut

To understand the formation of branched structures in our model, we first study the
model dynamics in a non-growing domain. In particular, we consider a worm-like domain
Ω reminiscent of a 1 mm worm and systematically study and compare the geometrical
features of simulated and experimental gut structures.

5.2.1 Alignment of branching in the presence of guiding cues

The alignment of branches with an external orientation field m constitutes a key feature
of our model. We here study the formation of simulated gut structures with respect to the
orientation field my and mext. We provide qualitative arguments for why mext constitutes
a more realistic orientation field for branch alignment and then quantitatively compare
branch orientation in simulated and experimental structures. Note that in this section we
include a non-zero noise amplitude a to obtain branch orientation statistics. By contrast,
the data presented in the remaining sections were obtained without noise.

We first qualitatively study the formation of gut structures subject to the orientation
field my (Fig. 5.3a). The orientation field my provides a simple scenario for guiding gut
growth and many features of the resulting patterns can be discussed here already. In
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Figure 5.3: Alignment of branches with guiding cues. We show gut morpholo-
gies obtained with orientation field my (a, orientation in horizontal direction) and mext
(b, orientation towards organism boundary). For both cases, we show the resulting gut
morphologies (brown) along with their skeleton for increasing values of the orientation
strength δ. In the skeletons, we indicate the primary branch (black) and side branches
(orange). For side branches the color code indicates the value of cos2(ψ), where ψ denotes
the average branch angle measured with respect the y-axis.

particular, this scenario allows us to qualitatively discuss the transition from an irregular
to a more regular gut morphology depending on the value of coupling δ between gut growth
and orientation field. We first consider the case without a coupling between gut growth
and orientation field (δ = 0) as a reference case. Here, we observe an irregular overall
gut morphology. For example, the branches labeled (1) and (3) start with a right angle
with respect to the primary branch, but then undergo a sharp turn and grow along the
organism boundary. Even more strikingly, branch (2) undergoes two turns at a right angle.
This behavior can be understood by knowing the time evolution of the interface. Branch
(3) starts growing prior to branch (2) and blocks its motion. Thus, branch (2) is forced
to make a sharp turn. Upon increasing the value of the coupling δ, the gut morphology
becomes more regular. Already for small coupling values (δ = 0.1), turns with a right
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Figure 5.4: Statistics of orientational order parameter. (a,b) We show the proba-
bility distribution of the orientational order parameter cos2(ψ) for zero (a) and non-zero
(b) coupling strength δ. (c) Average orientational order parameter ⟨cos2(ψ)⟩ as a func-
tion of coupling strength δ for different noise amplitudes a. We additionally show the
experimentally measured average orientation parameter for worms of length 1 mm (gray
dashed line). (d) Probability distribution of the orientational order parameter obtained
from worms of length 1 mm.

angle are lacking and for δ = 0.4 almost all branches are parallel to each other and
grow in horizontal direction. The transition from irregular to regular gut morphology is
supported by the value of the orientational order parameter (color code of branches).

We also studied gut growth guided by the orientation field mext and found a qualita-
tively similar behavior (Fig. 5.3b). Without coupling between gut growth and orientation
field (δ = 0), we find irregular gut morphologies with branches that grow along the organ-
ism boundary and take sharp turns. For increasing values of coupling, the gut morphology
becomes more regular and for large values of coupling (δ = 0.4) branches are parallel to
each other. Again, this transition is supported by the values of the orientational order
parameter (color code of edges). Note that we found one key difference between the mor-
phologies formed by my and mext. While morphologies formed by my grow in horizontal
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Chapter 5 Morphogen-controlled growth and scaling of the planarian gut

direction, morphologies formed by mext point towards the organism boundary. A striking
example of this are branches marked (4) and (5). Branch (4) grows under the influence of
my initially in horizontal direction, but once it reaches the boundary it grows along the
boundary. By contrast, branch (5) grows towards the boundary. Since no evidence exists
for growth of branches along the organism boundary and growth appears to be oriented
towards the organism boundary in the experimental data, we consider gut growth guided
by mext from now on only.

The transition from an irregular to a regular gut morphology is also reflected by the
value of the orientational order parameter cos2(ψ). We quantified the average angle ψ of
individual branches and calculated the orientational order parameter cos2(ψ) (Fig. 5.3,
color code). From this, we determine the cos2(ψ) distribution, which allows us to char-
acterize gut morphologies in detail. In the case without coupling between gut growth
and orientation field (δ = 0), the value of the orientational order parameter is broadly
distributed in the range [0, 1] with three mildly pronounced peaks at 0, 1/2, 1 (Fig. 5.4a).
This indicates that branches are oriented in vertical, horizontal, or a direction that is a
multiple of 45◦. By contrast, for the case of large coupling, we find that orientational order
parameter values are mostly localized around cos2(ψ) = 1 showing that most branches are
oriented horizontally (Fig. 5.4b). This is further supported by our finding that the average
orientational order parameter ⟨cos2(ψ)⟩ shows a monotonic decrease from ⟨cos2(ψ)⟩ ≃ 0.5
to ⟨cos2(ψ)⟩ ≃ 0.2 (Fig. 5.4c). Additionally, we find that this result is independent of the
chosen noise level demonstrating that this transition is a robust feature of our model.

Finally, we employed our quantification of the average orientational order parameter
to determine a range of coupling parameter δ that yields gut morphologies with branch
orientations statistics similar to the ones from experimental gut morphologies. To this
end, we indicate the experimentally determined average orientational order parameter in
Fig. 5.4c (gray horizontal line). We find that irrespective of the noise level the parameter
range δ ∈ [0.3, 0.5] gives reasonable agreement between average orientation parameter from
simulation and experiment. Additionally, we find that the histogram of cos2(ψ) agrees well
both in terms of absolute numbers and shape (Fig. 5.4d). Thus, our model is able to give
key features of gut morphologies. From now on, we consider the parameter δ = 0.4 only.

5.2.2 Symmetry of gut branching morphologies

The symmetry of simulated gut branching morphologies with respect to the vertical organ-
ismal midline is another important feature of simulated gut structures. In particular, we
observe that branches in the left and the right organism half arrange in an antisymmetric
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5.2 Determinants of gut geometry in the model gut

way to each other. A branch in the right half corresponds to a gap between branches
in the left half and vice versa. Here, we now discuss the origin of this transition from
symmetric to antisymmetric branch arrangement and demonstrate the control of branch
arrangement symmetry.

We first qualitatively study how an antisymmetric branch arrangement arises during
the formation of gut structures. We consider a system with a thin primary branch and
additionally make sure that primary branch and the pharynx are centered at x = Lx/2.
The correct positioning of primary branch and pharynx are important to make sure that no
asymmetries enter the system via the boundary conditions. As the system gets unstable,
small protrusions and eventually branches originate from the primary branch. At this
stage, the symmetry along the vertical midline is still maintained. However, after the
system enters a space filling configuration and a sufficiently long time has passed, the
system transitions from a symmetric to an antisymmetric branch arrangement involving
extensive branch rearrangements.

This transition originates from morphogen-mediated interactions between branches in
the left and right organism sides. First, the transition is initiated by the spontaneous
up- or downwards motion by one of the side branches due to noise (noise is part of the
model or originates from numerical inaccuracies). To illustrate how the transition takes
place, we now focus on the spontaneous upwards motion of a branch in the right body
half. The spontaneous upwards motion of a side branch has two effects. First, the side
branch is now misaligned with its corresponding branch on the left organism side. As
a result, morphogen produced from a branch in the left organism half spreads in the
right organism half and prevents the side branch from moving to its original position.
Second, due to the spontaneous upwards motion of a side branch the distance between
side branch and its upper neighbor decreases. This results in an increase of morphogen
concentration between both branches and a mutual repulsion. The downwards motion of
the side branch is blocked and hence it moves upwards. This triggers a chain reaction in
which side branches on the right organism side move upwards and side branches on the left
organism side move downwards. Overall, we find that the symmetric branch arrangement
is unstable, whereas the antisymmetric branch arrangement is stable.

Morphogen-mediated interactions between branches on the left and right organism sides
destabilize symmetric gut branching morphologies. Conversely, we can stabilize symmet-
ric gut morphologies by preventing spreading of morphogens between both body sides. To
this end, we introduce a primary branch with finite thickness bpb and obtain the steady
state configuration of a simulated gut for various values of bpb (Fig. 5.5a). With increasing
primary branch thickness, the mismatch between branch points along the primary branch
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decreases and thus symmetry increases. To quantify this observation, we used our quantifi-
cation procedure presented in chapter 4. We first determine the indicator functions vi that
signal whether a branch grows towards the left or right organism half (Fig. 5.5b,c). Next,
we find the integrated indicator function Vi which has a characteristic stair-like shape and
calculate the normalized integrated squared difference ∆V of indicator functions given in
Eq. (4.11). In agreement with our observation for simulated gut structures, we find a clear
decrease of ∆V with increasing thickness of the primary branch bpb (Fig. 5.5d). We com-
pare the value of ∆V obtained in simulations and experiment and find for bpb/λin = 1/2
reasonable agreement between simulation and experiment.
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Figure 5.5: Symmetry of gut branching morphologies. (a) We show gut morpholo-
gies (brown) along with their skeleton for different values of primary branch thickness bpb.
We indicate the anterior part of the primary branch (black), branches originating from
this to the left (blue) and the right (red) and the remaining side branches (gray). (b,c)
We show indicator functions vi for zero (b) and non-zero (c) primary branch thickness. y
denotes the position at which a branch grows to the left or right. (d) We show the inte-
grated squared difference ∆V of the normalized integrated indicator function as a measure
for the mismatch of branches as a function of primary branch thickness bpb. We indicate
the experimentally measured value of the asymmetry (gray dashed line) and a realistic
parameter value (cross).
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5.2.3 Control of branch distance

In our discussion of simulated gut morphologies, we have so far focused on branch arrange-
ment. This included the branch arrangement with respect to an orientation field and the
(anti)symmetric branch arrangement between left and right organism body sides. Apart
from branch arrangement, it is crucial to discuss the effect of varying branch distance and
branch thickness on gut morphologies. Here, we now discuss the effect of varying branch
distance on gut morphologies and in the next section we present a similar analysis for the
effect of varying branch thickness.

To study the influence of branch distance on gut morphologies, we make use of key
results from chapter 3. There we have studied the instability of a flat moving interface
in an infinitely long system. We have identified the ratio γ∆c/β between characteristic
inhibition strength γ∆c and the strength β of curvature dependency of gut growth as a key
determinant of branch distance. In particular, with Eq. (3.35) we provided an analytical
relation for branch distance in an idealized scenario. Even though the assumptions of this
scenario are not entirely applicable here, the relation for branch distance still provides
qualitative analytical insight into the dependency of branch distance on system parame-
ters. In particular, it allows us to generate morphologies with different values of branch
distance (Fig. 5.6a).

To understand the effect of different values of branch distance in detail, we carefully
quantified gut morphologies. We first quantified branch distance d and confirmed our
earlier observation of a strong increase of branch distance with increasing β (Fig. 5.6b).
We next quantified branch thickness b and find that an increase in branch distance results
in an increase in branch thickness (Fig. 5.6c). Clearly, an increase in branch distance
results in a decrease of morphogen concentration between branches. This promotes branch
growth and results in an increased branch thickness. Interestingly, we find that an increase
in branch distance results in an increase in the mean branch length ℓ (Fig. 5.6d). This can
be understood by considering branches in head and tail region of the organism separately.
In the head region, branches originate from the primary branch and grow towards the
organism boundary. Thus, irrespective of branch thickness or distance, branches in the
head region have length ℓ ≃ Lx/2 of roughly half the organism width Lx. By contrast, the
presence of branches in the tail region strongly depends on the value of branch distance.
For small branch distance and consequently small branch thickness, many short branches
form in the tail region and thus the overall branch length is smaller than Lx/2. By
contrast, for large branch distance and branch thickness, side branches are lacking in the
tail region since the primary branch occupies all available space. Thus, the overall mean
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branch length satisfies ℓ ≃ Lx/2.

Apart from branch distance, thickness, and length we also quantified global gut prop-
erties. For example, we find that the branch number N decreases for increasing branch
distance (Fig. 5.6e). Clearly, given that the organism length is fixed, more branches fit
in the system as branch distance decreases. We also quantified the influence of branch
distance on the total gut length Lgut and found a decrease of gut length with increasing
branch distance (Fig. 5.6f). With increasing branch distance, less branches are present in
the system and thus total gut length decreases. Note that this finding is consistent with
the relation Lgut = Nℓ for gut length. The strong decrease of branch number overcom-
pensates a mild increase in branch length and thus overall gives an increase in gut length.
Apart from qualitative insights on the influence of branch distance on gut length, we can
also discuss the range of possible values Lgut can take. For small branch distance, the to-
tal gut length is in principle unbounded and can take arbitrarily large values. As branch
distance increases, branches get less numerous until eventually no side branches appear
and the gut is composed only of the primary branch. Thus, gut length is bounded from
below by the primary branch length Lpb ≃ 2fLy + (1 − f)Ly, where f = yo/Ly denotes
the relative position yo of the primary branch origin. Finally, we also quantified gut area
and find that gut area is not affected by changes in branch distance (Fig. 5.6g). Given the
approximate relation Agut ≃ Lgutb, we find that the branch distance independent gut area
comes from the compensation of gut length decrease by an increase in branch thickness.
Overall, branch distance serves as a key parameter to control gut morphology as it allows
us to go from highly ramified morphologies to morphologies with only a few side branches
by increasing β.

To find a parameter range for β, where gut properties in simulation and experiments
coincide, we compare simulated and experimental gut properties. We first relate branched
areas from simulation and experiment by the relation

Aexp
b = Asim

b

(
Lexp

y,0

Lsim
y,0

)2

, (5.12)

where the subscript “sim” and “exp” indicate the respective quantities for simulations and
experiments. This relation allows us to determine the branched area Aexp

b in experiments
corresponding to the branched area Asim

b used in simulations. We can use Aexp
b and the

scaling relations provided in Fig. 4.6 to determine the gut properties of an experimental
system corresponding to the system size studied in simulations (Fig. 5.6, gray dashed lines).
We find reasonable agreement for total gut length Lgut in simulations and experiments for

102



5.2 Determinants of gut geometry in the model gut

0.02 0.04 0.06 0.08
curvature dependency β/(γ∆cλin)

0.06

0.08

br
an

ch
di

st
an

ce
d
/
L
y
,0

0.02 0.04 0.06 0.08
curvature dependency β/(γ∆cλin)

0.025

0.030

br
an

ch
th

ic
kn

es
s
b/
L
y
,0

0.02 0.04 0.06 0.08
curvature dependency β/(γ∆cλin)

0.05

0.10

0.15

br
an

ch
le

ng
th
`/
L
y
,0

0.02 0.04 0.06 0.08
curvature dependency β/(γ∆cλin)

20

40

60

nu
m

be
r

br
an

ch
es
N

0.02 0.04 0.06 0.08
curvature dependency β/(γ∆cλin)

2

3

4

gu
t

le
ng

th
L

gu
t/
L
y
,0

0.02 0.04 0.06 0.08
curvature dependency β/(γ∆cλin)

0.08

0.10

0.12

gu
t

ar
ea
A

gu
t/
L

2 y,
0

experiment simulation

(a) β/(γ∆cλin) = 0.08

c/c0
in

0.0

0.2

0.4

0.6

0.8

1.0

c/c0
in

Lpb/Ly,0

(b) (c) (d)

(e) (f) (g)

β/(γ∆cλin) = 0.02 β/(γ∆cλin) = 0.03

Lx,0/(2Ly,0)

Figure 5.6: Control of branch distance. (a) We show gut morphologies (brown)
together with the corresponding morphogen concentration c (green tone) and skeleton for
different values of the curvature dependency β of interface growth. Different colors in
the skeleton indicate different branches. (b-g) We show various gut features as a function
of the curvature dependency β. Ly,0 denotes the organism length. In cases (b,d,e,f), we
provide the experimentally measured value of the respective quantity (dashed gray line)
along with a realistic parameter value (cross). For the branch length in (d) we show half
the organism width Lx/2 as an upper bound (solid gray line). For the total gut length in
(f) we show the primary branch length Lpb as a lower bound (solid gray line).
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β/(γ∆cλin) ≃ 0.03. In this regime, the total number of branches and mean branch length
deviate form their experimentally measured value due to the shape of the primary branch
in our simulations. While in the actual organism the primary branch in the posterior region
is given by two diagonal lines approaching each other, we use two parallel lines with a fixed
distance in the simulations. As a result, we find more branches in the organism posterior
region in the simulations than in the experimental system. The additional small, posterior
branches lead to a smaller mean branch length in simulations than in experiments.

5.2.4 Control of branch thickness

Having discussed the influence of branch distance on simulated gut morphology, we now
provide a similar discussion for the influence of branch thickness on gut morphology. In
particular, we generate gut morphologies for different values of branch thickness while
maintaining branch distance and analyze the corresponding changes in gut morphology.

To generate gut morphologies with different values of branch thickness, but the same
value of branch distance, we again use findings from chapter 3. There, we demonstrated
branch thickness control from mutual branch inhibition. In particular, we presented a
minimal model that allowed us to provide Eq. (3.56) as relation for branch thickness.
According to this relation, the interplay between gut growth tendency v0 and the char-
acteristic inhibition strength γ∆c determine branch thickness. While an increase in v0

promotes gut growth and therefore increases branch thickness, an increase in γ∆c inhibits
gut growth and therefore decreases branch thickness. Even though we here consider a more
complex scenario than considered in the minimal model, the findings from the minimal
model still provide guidance for the influence of model parameters on branch thickness.
Here, we use ∆c to control branch thickness. To ensure that branch distance stays con-
stant as branch thickness is varied, we need to compensate an increase in ∆c with an
appropriate increase in β with ∆c ∼ β as required by Eq. (3.35). We use this strategy to
generate gut morphologies and find that all gut morphologies have a remarkably similar
skeleton and thus overall structure while at the same time morphologies occupy more of
the available space in the organism due to increased branch thickness (Fig. 5.7a).

We next quantified the resulting gut morphologies to first confirm that our approach of
changing branch thickness while maintaining branch distance works. We quantified branch
distance d and found that branch distance stays as predicted approximately constant
(Fig. 5.7b). We quantified branch thickness b and find a roughly 2fold increase in b with
decreasing value of ∆c (Fig. 5.7c). These two observations confirm that as predicted branch
distance is constant for all morphologies while an increase in branch thickness is observed
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Figure 5.7: Control of branch thickness. (a) We show gut morphologies (brown)
together with the corresponding morphogen concentration c (green tone) and skeleton for
different values of v0/(γ∆c). Different colors in the skeleton indicate different branches.
(b-g) We show various gut quantities as a function of the ratio v0/(γ∆c). Ly,0 denotes
organism length. We indicate the parameter value used in the rest of this chapter (cross).

as ∆c decreases. Note that this is in agreement with the qualitative predictions from the
simple scenarios we studied in chapter 3 and thus further highlights their usefulness. We
studied the effect of branch thickness changes on the remaining gut properties and find
that overall gut structure stays constant as neither branch length ℓ, total branch number
N , or total gut length Lgut show any significant change (Fig. 5.7d-f). We finally studied
total gut area Agut and find that gut area increases with branch thickness which can
be rationalized from the approximation Agut ≃ Lgutb together with the branch thickness
independent gut length (Fig. 5.7g).

Overall, we have identified branch thickness as a further key parameter to control gut
morphology. Once our collaborators generate gut images that allow us to reliably extract
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Chapter 5 Morphogen-controlled growth and scaling of the planarian gut

branch thickness, we can use the approach presented here to choose model parameters to
account for the observed branch thickness. In combination with our previous approaches,
where we studied branch orientation, distance and also overall gut symmetry, we have
overall demonstrated control over the geometrical properties of simulated gut structures
in a non-growing domain. Next, we employ the so far generated structures (using the
parameter value indicated by the “cross” in figures) and study their size-dependent prop-
erties.

5.3 Size-dependent properties and scaling laws

Massive size increases are a key feature of planarian biology. Depending on food avail-
ability, planarians can grow and even shrink over massive size ranges. The species S.
mediterranea, for example, can adjust their body length 20fold [65]. This massive increase
in body size is also reflected in the organization of the planarian gut. During organism
growth, the gut undergoes extensive remodeling of existing branches and de-novo forma-
tion of new branches [187]. We studied the size-dependent properties of the planarian gut
in chapter 4 and found that despite the complexity of this reorganization process various
gut properties obey power laws. This naturally rises the questions about size-dependent
properties of gut morphologies in the model and if scaling laws arise here as well.

To study the size-dependent properties of gut morphologies in our model, we consider
two approaches to generate gut morphologies of different sizes. In our first approach
(branching model), we study the de-novo formation of gut morphologies from a primary
branch in differently sized worm-like geometries. In a second approach (branching model
with growth), we consider an already established gut morphology as initial condition and
subsequently study its remodeling subject to organism growth. In both cases, we quantify
size-dependent properties of the resulting morphologies and find that various gut properties
are described by power laws of the form y = y0x

α. In particular, we demonstrate control
of intercept y0 and scaling exponent α.

5.3.1 Quantitative study of the branching model

We first employed the branching scenario to generate gut morphologies in differently-sized
worm-like geometries and find that irrespective of size, branching takes place robustly and
leads to gut morphologies that fill the entire available space. As a way to alter gut mor-
phologies and thus potentially observed scaling exponents, we consider gut morphogenesis
for different organism aspect ratios. To this end, we study the formation of simulated
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(a) (b)

(c) (d)

s = 1 s = 10s = 5 s = 1 s = 10s = 5

s = 1 s = 10s = 5s = 1 s = 5 s = 10

branching scenario branching with organism growth scenario

branching with organism growth scenario branching with organism growth scenario
instantaneous growth

(gy/µmax ≫ 1)

quasistatic growth
(gy/µmax ≪ 1)

realistic gut structure
(gy/µmax ≃ 0.14)

Figure 5.8: Simulated gut morphologies for different system sizes.. We show sim-
ulated gut morphologies for different relative size increases s = Ly/Ly,0, where Ly denotes
the organism length and Ly,0 denotes the initial organism length. (a) We show simulated
gut morphologies generated with the branching scenario. (b-d) We show simulated gut
morphologies sizes generated with the branching and growth scenario with different values
of gy/µmax, where gy denotes the organism growth rate and we employ µmax as a measure
for gut growth rate.
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Figure 5.9: Gut scaling in the branching scenario. We show various gut features
as a function of branched area Ab for different values of anisotropy parameter r, where
Lx ∝ Lr

y. Ly,0 denotes the initial organism length. We indicate scaling laws obtained from
a scaling argument (black lines).

gut structures in worm-like geometries with different anisotropy parameter r defined in
Lx ∝ Lr

y. As the organism aspect ratio is in principle fixed in the real organism, this ap-
proach might appear artificial at first. However, it allows us to discuss important features
of gut organization.

Discussion of scaling exponents

We quantified gut morphologies obtained from the branching model to understand their
size-dependent properties. We first quantified branch distance d and find that branch
distance is approximately constant with respect to organism size (Fig. 5.9a). Despite
the tremendous increase in organism size of two orders of magnitude, we find only a
mild increase in branch distance. This size-independent behavior of branch distance is
expected and in agreement with earlier observations. In chapter 3, we have used the
scenario of a flat moving interface and revealed several determinants of branch distance
(e.g. strength β of curvature dependency of interface growth). As the determinants of
branch distance are size-independent, we also find that branch distance is size-independent.
We next quantified branch thickness b and found that branch thickness and distance
display similar size-dependent behavior (Fig. 5.9b). In particular, also branch thickness
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5.3 Size-dependent properties and scaling laws

shows only a slight increase despite the massive increase of branched area. The similarity
in the size-dependent behavior between branch distance and thickness can be understood
in the light of our branch thickness discussion from chapter 3. There, we identified branch
distance as a key determinant of branch thickness. Thus, given that branch distance is
constant, a constant branch thickness is not surprising. Next, we studied branch length ℓ

and found that branch length depends on the organism aspect ratio and shows different
size-dependent behavior for small and large organism sizes (Fig. 5.9c). For small organism
sizes, branch length is constant since the value of the mean branch length is dominated by
two long branches next to the pharynx. These branches are extraordinarily long since they
lack further side branches due to space limitations imposed by the pharynx. An abrupt
change in the size-dependency of mean branch length occurs once a critical system size
is reached. For increasing organism sizes, the relative size of the pharynx decreases and
space for side branches next to the pharynx becomes available. Thus, for large organism
sizes the mean branch length is no longer dominated by two long branches next to the
pharynx. For large organism sizes, we find that the size-dependent behavior of branch
length depends on the anisotropy parameter r. We find for an organism with size increase
in y-direction only (r = 0) constant branch length. In this case, organism width is fixed
and branches of the same length emerge from the primary branch. As a result, we find
size-independent branch length. We find size-dependent branch length for an organism
with size increase in x-direction only (r → 0). In this case, organism length is fixed and
branches invade an organism with increasing width. As a result, we find size-dependent
branch length.

Having discussed the size-dependent behavior of branch properties, we can now also
discuss the size-dependency of global gut properties. We first quantified the total branch
number and found qualitatively a similar behavior to branch length. We observe that for
large organism sizes the size-dependent behavior is influenced by the anisotropy parameter
r (Fig. 5.9d). For an organism with size increase in y-direction only, more branches of
the same length are added along the primary branch and we find N ∝ Ly and thus
N ∝ Ab. For any other system size increases, the increase in branch number is less strong
as additional side branches appear. The size-dependent behavior of total gut length is
captured by the scaling relation Lgut ∝ Ab (Fig. 5.9e). This can be easily rationalized
by recalling that for total gut length Lgut = Nℓ holds. The scaling exponents of branch
length and number of branches simply combine to a linear scaling of total gut length with
branched area. Finally, we study the size-dependent behavior of total gut area and find
that it is captured by Agut ∝ Ab (Fig. 5.9f). In this case, we can use Agut ≃ Lgutb as a
simple approximation to understand size-dependent behavior. Clearly, since the branch
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Chapter 5 Morphogen-controlled growth and scaling of the planarian gut

thickness is independent of organism size, we find that total gut area and total gut length
exhibit the same size dependency.

5.3.2 Quantitative study of the branching model with organism
growth

As a second example for how gut morphologies of different sizes can be generated, we now
consider the branching model with organism growth. In this model, we include organism
growth in the dynamics (gx ̸= 0, gy ̸= 0) and study the remodeling of gut morphologies
as organism size continuously increases. Note that this approach is in strong contrast to
the branching model, where we studied the de-novo formation of gut morphologies in a
discrete set of differently sized worm-geometries. The presence of organism growth and,
in particular, the competition between organism growth and gut growth leads to drastic
changes in overall gut morphology, which we analyze in this section.

The focus of our analysis will be again the size-dependency of gut morphologies. To
generate gut morphologies of different sizes, we follow a two-step approach in which we first
specify an initial gut structure and subsequently study the remodeling of this structure
subject to organism growth. For simplicity, we use gut morphologies generated with the
branching model (i.e. in a small worm-geometry without organism growth) as an initial
condition. Our understanding of the branching model allows us to control various features
of the initial condition and thus initialize the growth process in a controlled way. As a
second step, we then study the remodeling of the initial gut morphology subject to growth
rates gx and gy, where we keep the ratio of growth rates r = gx/gy constant. Maintaining
the ratio of growth rates ensures the scaling Lx ∝ Lr

y of length Ly and width Lx, as
observed in the experimental data. Overall, this two-step approach allows us to generate
gut morphologies of different sizes in a controlled way.

To understand the influence of organism growth on gut morphologies, we studied the
remodeling of gut morphologies for a range of organismal growth rates gi (Fig. 5.8b-d).
We find that the interplay of organismal growth and gut growth has a striking influence
on overall gut morphology. While organism growth is characterized by the rates gi, we use
the growth rate of the fastest growing mode from the instability of a flat moving interface
µmax given in Eq. (3.33) as a measure for gut growth. In the limit of quasistatic organism
growth (gi ≪ µmax), we observe highly ramified structures which a uniform branch density
irrespective of size. By contrast, we find that in the limit of instantaneous organism growth
(gi ≫ µmax) the branch density decreases. In this case, gut morphologies are simply scaled
up as the organism grows.
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Figure 5.10: Gut scaling in the branching with growth scenario. We show various
gut features as a function of branched area Ab for different values of organismal growth
rate gi. Ly,0 denotes the initial organism length. In all simulations, we maintain the ratio
of growth rates r = gx/gy as gy is varied. We indicate scaling laws obtained from a scaling
argument (black lines).

We subsequently quantified the gut morphologies obtained from the branching model
with organism growth. We find that the size-dependency of various features is governed
by power laws of the form y = y0x

α. In particular, we find that for large enough organism
sizes the competition between organism growth and gut growth determines the scaling
exponent. To understand how this competition gives rise to different scaling exponents,
we now discuss the behavior of length scales such as branch distance, branch thickness,
and branch length. From this, we can then also understand the behavior of branch number
and the total gut length and area.

Discussion of scaling exponents

Many of the key features introduced by the competition between organism and gut growth
can be discussed already for the behavior of branch distance (Fig. 5.10a). For example,
we find that branch distance exhibits qualitatively different behaviors depending on the
organism size - or equivalent to that - depending on how long the organism has been
subject to organism growth already. For a small organism (Ab/L

2
y,0 < 1), we find that

branch distance scales with organism area as d ∝ A
4/7
b irrespective of the applied growth

rate. In this regime, the distance of branches increases along with the organism length
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Chapter 5 Morphogen-controlled growth and scaling of the planarian gut

resulting in the scaling d ∝ Ly and thus d ∝ A
1/(1+r)
b with 1/(1+ r) = 4/7 (r = 3/4). This

type of behavior continues until a critical branch distance has been reached and branch
interfaces get unstable again. New branches form along the primary branch and also from
tip splitting of already existing branches.

For a large organism (Ab/L
2
y,0 > 1), we find that branch distance scales with branched

area as d ∝ A
αy

b , where the scaling exponent αy depends on the particular growth rate.
In this regime, the behavior of branch distance is characterized by the competition of
organism growth and gut growth. While organism growth continuously increases branch
distance, gut growth leads to emergence of new branches and thus decreases branch dis-
tance. We can illustrate how this competition gives rise to different scaling exponents for
two limiting regimes. In the limit of instantaneous growth, organism growth takes place
at a much faster pace than gut growth (gi ≫ µmax). As a result, gut morphologies are
simply scaled up and lack any morphological changes. We find that branch distance d

scales as d ∝ Ly and thus d ∝ A1/(1+r) with 1/(1+ r) = 4/7 (r = 3/4). By contrast, in the
limit of quasistatic organism growth, gut growth rate is much larger than the organism
growth rate (gi ≪ µmax). In this limit, the gut has enough time to adapt to any morpho-
logical changes caused by organism growth. As a result, we find that the branch distance
is constant. Note that from now on we will focus on the regime of large organisms and
discuss the different observed scaling exponents.

The size-dependent behavior of branch thickness b resembles the behavior of branch
distance (Fig. 5.10b). In the limit of instantaneous growth, we find that branch thickness
scales with branched area as b ∝ A

4/7
b . In this limit, organism growth proceeds much

faster than gut growth. No additional branches form and the gut is simply scaled up. As
a result, branch thickness scales as b ∝ Ly and thus as b ∝ A

1/(1+r)
b with 1/(1 + r) = 4/7

(r = 3/4). In the limit of quasistatic growth, we already found that branch distance is
constant with respect to branched area. As branch distance determines branch thickness,
we also find that branch thickness is constant.

Finally, also the mean branch length ℓ displays power law scaling for large organism sizes
with a range of different exponents that depends on the organism growth rate (Fig. 5.10c).
In the limit of instantaneous growth, the mean branch length approximately scales with
branched area as ℓ ∝ A

3/7
b . To rationalize this, we consider a simple scenario in which all

branches are aligned horizontally. In this idealized scenario, branch length obeys ℓ ∝ Lx

and thus ℓ ∝ A
r/(1+r)
b with r/(1+r) = 3/7 (r = 3/4), which is in good agreement with the

finding from simulations. Note that the exponent from simulations slightly deviates from
the predicted exponent towards larger values since our assumption of horizontal branch
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5.3 Size-dependent properties and scaling laws

alignment breaks down. Some branches display vertical alignment with branch length
scaling of ℓ ∝ Ly corresponding to ℓ ∝ A

1/(1+r)
b with 1/(1 + r) = 4/7 (r = 3/4). Thus,

branches with vertical orientation bias the scaling exponent towards higher values. In
the quasistatic limit, the mean branch length shows only a slight increase with organism
size. To understand this, we can again invoke the simplified scenario in which all side
branches are oriented horizontally. Due to extensive side branching in the quasistatic
limit, branches in the simplified scenario have a tendency to maintain a constant length.
However, this idealized argument again breaks down as some branches in the simulations
display vertical alignment and bias the observed scaling exponent to larger values.

The scaling of branch distance, thickness, and length now allow us to understand the
size-dependent behavior of total branch number, total gut length, and total gut area. In
all cases, we again find power law scaling for large organism sizes with a range of scaling
exponents determined by the competition between organism growth and gut growth. We
now start by discussing the size-dependency of branch number as from this the behavior
of total gut length and area follows (Fig. 5.10d). In the limit of instantaneous growth,
the branch number is independent of organism size. In this limit gut, morphologies are
simply scaled up along with the organism without any morphological changes. Thus, the
number of branches is independent of organism size. By contrast, the number of branches
increases strongly in the limit of quasistatic growth, where we find the scaling N ∝ A0.75

b

indicating an (almost) constant branch density achieved by the extensive formation of new
branches in this limit.

The size-dependent behavior of the total gut length can be understood from the behavior
of mean branch length and the number of branches as for the total gut length holds
Lgut = Nℓ. Since the number of branches and the mean branch length display power law
scaling for large organism sizes, the total gut length also displays power law scaling as
a consequence (Fig. 5.10e). In the limit of instantaneous growth, we find Lgut ∝ A

3/7
b .

In this limit, the branch number is constant and therefore the total gut length increases
primarily due to an increase in mean branch length. Thus, the total gut length displays
the same scaling behavior as mean branch length. In the limit of quasistatic growth, we
find the scaling Lgut ∝ Ab. In this limit, the mean branch length only displays a slight
increase and thus total gut length primarily increases due to an increase of branch number.
The scaling of mean branch length and branch number combines to a linear scaling.

Finally, the size-dependent behavior of total gut area can be understood from the behav-
ior of total gut length and branch thickness. To this end, we use the relation Agut ≃ Lgutb

as a simple approximation for total gut area. From this relation it is clear that total gut
area exhibits power law scaling since both branch thickness and total gut length exhibit
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Figure 5.11: Influence of curvature dependency on gut scaling in the branching
with growth scenario. We show various gut features as a function of branched area Ab
for the growth rate gy/µmax = 0.06. Ly,0 denotes the initial organism length. Note that β
controls branch distance of gut morphologies and thus we effectively study the influence
of branch distance on gut scaling laws.

power law scaling. Interestingly, total gut area scales as Agut ∝ Ab irrespective of the
organism growth rate indicating a constant gut density (Fig. 5.10f). In the limit of in-
stantaneous growth, gut morphologies are simply scaled up and lack any morphological
changes. Clearly, this results in the scaling Agut ∝ Ab. This manifests itself also in the
behavior of total gut length and branch thickness. A mild increase in total gut length is
compensated by a strong increase in branch thickness overall giving rise to a constant gut
density. Conversely, in the limit of quasistatic growth, branch thickness is constant and the
increase of total gut area arises from the high degree of ramification of gut morphologies.

Discussion of offset

So far, we have established that various gut features display power law scaling of the form
y = y0x

α and demonstrated how to change the scaling exponent α for a given value of
intercept y0. Now we demonstrate how to change the intercept y0 for a given value of
the scaling exponent α. To change the intercept of the resulting power laws, we alter
properties of initial gut morphologies. Clearly, changing the value yr of the power law at
a reference organism size xr, must correspond to a change in intercept y0 given the scaling
exponent is approximately constant.
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5.4 Scaling argument for branching and growing networks

As an example, we discuss the influence of branch distance of initial gut morphologies on
the intercept of power law scaling. We use the gut morphologies presented in Fig. 5.6a as
initial condition and study their size-dependent behavior. Again, we find that irrespective
of branch distance gut features show power law scaling with a scaling exponent determined
by the interplay between gut growth and organism growth. Most importantly, we find that
the intercept y0 of power laws depends on the chosen initial branch distance (Fig. 5.11).

5.4 Scaling argument for branching and growing networks

λx . . . ℓ

λy . . . d

∆ . . . b

edge length
edge distance
edge thickness

network length
network area

λ̇i = giλi + ki(λ̄i − λi)

A = Nλxλx

Λ = Nλx

Σ = Nλx∆

r = gx

gy

Lx ∝ Lr
y

Lx ∝ Ar/(1+r)

Ly ∝ A1/(1+r)

(c)
Lx

λx

λy

branching and growing networkbranching network(b)

Ly

λx ∝ Lx

λy ∝ λmax

A = LxLy

(a)

∆

Figure 5.12: Scaling argument for minimal network geometry. (a) Instead of
considering the full complexity of simulated gut morphology and worm-like boundary, we
study a simplified scenario. We consider a rectangular system of length Ly, width Lx and
thus area A = LxLy. We reduce the full complexity of the gut to a system of horizontal
line segments of length λx, distance λy, and thickness ∆. (b) According to our scaling
argument for branching networks, the line segments reach from the system center to the
system boundary (λx ∝ Lx) and maintain a preferred distance (λy ∝ λmax) irrespective of
system size. (c) According to our scaling argument for branching with growth, networks
are subject to rescaling with organism growth rate gi and relaxation to a preferred length
λ̄i with rate ki, where i ∈ {x, y}.

In the previous section, we have discussed size-dependent properties and in particular
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the scaling of gut morphologies in a model for branching and a model for branching
with organism growth. To understand how scaling relations for different aspects of gut
morphologies are related and how scaling laws emerge in principle, we now provide a
simple scaling argument. In this argument, we reduce the full complexity of the simulated
gut morphologies to a minimal network geometry (Fig. 5.12a). We simplify branches to
horizontal line segments of length λx, vertical distance λy, and thickness ∆ that constitute
a network with in total N line segments with total length Λ and total area Σ. Note that we
use characters from a different alphabet to distinguish properties of our minimal network
geometry (Greek letters) and the morphologies observed in simulation and experiments
(Latin letters). We approximate the elliptical organism shape by a rectangular domain
and neglect the presence of the pharynx. The rectangular domain is characterized by its
width Lx, length Ly, and area A = LxLy. Width and length are not independent, but
related by Lx ∝ Lr

y, where the exponent r = gx/gy is given by the ratio of organism growth
rates and quantifies the anisotropy of size changes of the domain. While for r = 1 width
and length change isometrically, for r < 1 the length Ly increases faster than the width
Lx and vice versa for r > 1. We relate area A to width Lx and length Ly by Lx ∝ Ar/(1+r)

and Ly ∝ A1/(1+r).
From the definition of the local quantities edge length, distance, and thickness, we

define the overall number of edges in the network as well as total network length and area.
The arrangement of edges constitutes a space filling network that satisfies A = Nλxλy

(Fig. 5.12a). From this we find for the number of edges

N = A

λxλy

. (5.13)

We define the total network length Λ as

Λ = Nλx. (5.14)

Finally, the total network area Σ is obtained from

Σ = Nλx∆. (5.15)

Clearly, in all cases local quantities define total network properties.
We now make use of the correspondence between local and total network properties to

understand how in general the scaling of local quantities determine scaling of total network
properties. We define scaling exponents according as

116



5.4 Scaling argument for branching and growing networks

λx ∝ Aαx

λy ∝ Aαy

∆ ∝ Aρ

(5.16)
N ∝ Aζ

Λ ∝ Aη

Σ ∝ Aν

(5.17)

For consistency, we have defined the scaling exponents in a similar fashion as for the
data analysis presented so far. From the definitions of network properties Eqs. (5.13) to
(5.15), we easily find

ζ = 1 − αx − αy

η = ζ + αx

ν = ζ + αx + ρ.

(5.18)

These relations emphasize again how local network properties determine total network
properties in our scaling argument and conclude our discussion of how local and total
network quantities are related. Overall, we have reduced the complexity of gut morpholo-
gies to a minimal network geometry and discussed how in this geometry different network
properties and their size-dependencies are related. Next, we provide simple arguments for
the value of scaling exponents of local network properties and compare scaling exponents
obtained from the scaling argument with scaling exponents obtained from simulations.

5.4.1 Scaling exponents for branching networks

We use characteristic features of morphologies in the branching model to provide scaling
exponents for local network properties in this scenario. We found that branch distance
and thickness are constant with respect to organism size (Fig. 5.9a,b) and morphologies
show little side branching (Fig 5.8a). These findings motivate us to assume

λy = const ∆ = const λx ∝ Lx (5.19)

for the scaling argument of the branching model. According to these assumptions, we
consider an idealized network geometry with edges that extend from the system center
to the system boundary and are characterized by distance and thickness that is constant
with respect to system size (Fig. 5.12b).

The scaling exponents for network properties follow in straightforward way. We can
read off the scaling exponents for edge distance and thickness directly from Eq. (5.19) and
find the scaling exponent of edge length by using the relation between system width and
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area:

αy = 0 ρ = 0 αx = r

1 + r
(5.20)

Since we assumed that edge distance and thickness are lacking a size-dependency, their
scaling exponents are zero. By contrast, we assumed that edge length is proportional
to system width and thus edge length shows in general a size-dependency with the cor-
responding scaling exponent determined by the anisotropy parameter r. In the limit of
system size changes in x-direction only (r → ∞), edges are elongated with system width.
In this limit, changes in system width and length are related by Lx ∝ A and thus we find
αx = 1. In the limit of system size changes in y-direction only (r = 0), edges maintain
their length and consequently edge length lacks a size dependency and we find αx = 0.
We determine the scaling exponents for total network properties by combining the rela-
tion between local and total network properties Eq. (5.18) and the so far established local
network properties Eq. (5.20):

ζ = 1
1 + r

η = 1 ν = 1 (5.21)

The total number of edges is defined in terms of edge distance and length and thus its
size-dependency can be understood with the help of the size-dependencies of λy ad λx. In
the limit of system size changes in y-direction only (r = 0), edges maintain their distance
and length and thus the number of edges increases with system size as indicated by ζ = 1.
By contrast, in the limit of system size changes in x-direction only (r → ∞), edges increase
their length in proportion to system size and thus the number of edges is constant, and we
find η = 0. Interestingly, we find that the scaling of total network length is independent of
the anisotropy parameter r. To understand this, we combine Eq. (5.13) and Eq. (5.14) to
find that total network length is only dependent on edge distance according to Λ = A/λy.
Since network area is proportional to total network length (given constant edge thickness)
we find ν = 1.

We next compared the scaling exponents obtained from the scaling argument with expo-
nents extracted from simulations and find overall a reasonable agreement (Fig 5.13). Our
scaling argument correctly predicts that the size-dependency of gut properties is captured
by power laws. In particular, our argument correctly predicts the scaling exponent for
branch distance, thickness as well as total gut length and area. Even though our scaling
argument fails to capture the scaling exponent αx for the mean branch length and the
total number of branches ζ, it correctly predicts that αx and ζ depend on the anisotropy
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Figure 5.13: Scaling exponents in the branching model. We show scaling expo-
nents from simulations (dots) along with predictions from our scaling argument (black
line) given by Eq. (5.20) and Eq. (5.21) as a function of the anisotropy parameter r. We
show scaling exponents obtained from a linear fit to the logarithmized data presented in
Fig. 5.9 along with an error bar that represents the standard deviation of the obtained
scaling exponent. Additionally, we show the scaling exponents determined in experiments
(gray dashed line).

parameter r including the correct trend of how r influences the respective scaling expo-
nents.

Deviations between predicted and extracted scaling exponents stem from the failure of
assumptions in the scaling argument. In the scaling argument, we assumed that branches
are oriented horizontally and extend from the system center to the system boundary with-
out side branching. Clearly, this is an oversimplification as branches show side branching
in the simulated structures (Fig. 5.8a). Since branches undergo side branching in the
simulation, their mean branch length increases less with system size than assumed in the
scaling argument. As a consequence, we find that the scaling exponent extracted from
simulations is smaller than the exponent from the scaling argument. In relation to this,
we find that due to side branching the number of branches in the simulations increases
stronger with system size than predicted with the scaling argument. As a consequence,
we find that the scaling exponent extracted from simulations is larger than the exponent
from the scaling argument.

We provide an overview of scaling exponents obtained from simulations and scaling
argument along with exponents determined from experiments in table 5.1. Note that
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Chapter 5 Morphogen-controlled growth and scaling of the planarian gut

irrespective of the anisotropy parameter r the branching model fails to capture the scaling
exponents determined in experiments.

5.4.2 Scaling exponents for branching and growing networks

In the scenario with branching and growth, the interplay between branch growth and
organism growth controls overall gut morphology. For example, branch distance increases
due to organism growth, but reduces when the separation of branches is large enough
and new side branches emerge. We employ our minimal network geometry to study this
interplay and derive the resulting scaling exponents in this case.

We consider a scenario in which the size of edges λi evolves in a growing domain of
length Li, where i ∈ {x, y} (Fig. 5.12c). Size Li and length λi undergo the dynamics

dLi

dt
= giLi (5.22a)

dλi

dt
= giλi + ki(λ̄i − λi), (5.22b)

where gi denotes the organismal growth rate, ki denotes a relaxation rate and λ̄i denotes a
characteristic length scale. This dynamics takes into account key features of the branching
process in a minimal way. We found that the interplay between organism growth and gut
growth determines branch distance and length. To account for this interplay in our scaling
argument, we assume that edge size is rescaled due to organism growth and at the same
time has a tendency to relax back to a preferred length λ̄i due to formation of new branches.
Additionally, system size Li is constantly rescaled with rate gi due to organism growth.
The dynamics is complemented by the initial conditions λi(t = 0) = λi,0 for edge size,
Li(0) = Li,0 for domain length and thus A0 = Lx,0Ly,0 for domain area. Motivated by our
finding that branch thickness scaling follows branch distance scaling, we assume ∆ ∝ λy

for the scaling argument.
To understand the size-dependency of λi, we solve the dynamics given by Eq. (5.22)

and express edge size λi as a function of area A. We easily find that the dynamics of λi

and Li as a function of time are

A(t) = A0e
(gx+gy)t (5.23a)

λi(t) = λ̄i

ki

gi

ki

gi
− 1

+ e
git(1− ki

gi
)

λi,0 − λ̄i

ki

gi

ki

gi
− 1

 . (5.23b)

We solve Eq. (5.23a) for t and use the result to eliminate the time dependency of λi in
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Eq. (5.23b) in favor of an area dependency and find:

λi(A) = λ̄
ki

gi

ki

gi
− 1

+
(
A

A0

) gi−ki
gx+gy

λi,0 − λ̄
ki

gi

ki

gi
− 1

 . (5.24)

This expression constitutes the general size-dependency of edge size λi and allows us to
identify regimes in which λi displays scaling.

We find that the ratio ki/gi of relaxation and growth rate determines the size-dependent
behavior of the edge sizes λi. For large organism sizes (A/A0 ≫ 1), we find the three
qualitatively different size-dependencies

λi(A) =



λ̄i

νi
gi

νi
gi

−1 gi < ki

νiλ̄i
1

gx+gy
log A

A0
gi = ki[

λi,0 − λ̄i

νi
gi

ki
gi

−1

] (
A
A0

) gi−νi
gx+gy gi > ki.

(5.25)

For small organism growth rates (gi < ki), organism growth is slower than branch growth
and thus branches manage to invade any free spaces and relax back to their preferred
configuration. As a consequence, we find that edge size reaches a constant value in this
limit. By contrast, for large organism growth rates (gi > ki), organism growth is faster
than branch growth and thus branches never manage to invade free spaces. As a conse-
quence, edge length increases as a function of time and therefore also size. Between these
two regimes we find that edge length increases logarithmically with area as a special case.

From the scaling relation of lengths λi given by Eq. (5.25), we can read off the scaling
exponents:

αx =

0 gx < kx

gx−kx

gx+gy
gx > kx

(5.26) αy =

0 gy < ky

gy−ky

gx+gy
gy > ky

(5.27)

For the case ki = gi, no power scaling is found as edge size increases logarithmically with
area. The exponents for the remaining network properties then follow by Eq. (5.18).

We subsequently compared the scaling exponents obtained from the scaling argument
and the simulations. To this end, we determined the scaling exponents in the simulation
data by performing a linear fit to the respective logarithmized gut property for large
organism sizes (A/A0 > 2). Overall, we find reasonable agreement between predicted
and measured scaling exponents (Fig. 5.14). Our scaling argument correctly predicts
the overall trend in scaling exponents from quasistatic to instantaneous growth for six
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Figure 5.14: Scaling exponents in the branching model with growth. We show
scaling exponents from simulations (dots) along with predictions from the scaling argu-
ment given by Eq. (5.26), (5.27), and Eq. (5.18) (black line) for different values of organism
growth rate gy. Scaling exponents for simulations were determined from a linear fit of the
respective logarithmized quantity shown in Fig. 5.10 for sizes Ab/Ab(t = 0) > 2. Addi-
tionally, we show the scaling exponents determined in experiments (gray dashed line) and
highlight the set of scaling exponents in simulations that are closest to the experimental
exponents (cross).

observables simultaneously.

We find deviations between predicted and extracted scaling exponents due to the failure
of assumptions in our scaling argument. In the scaling argument, we assumed that the
simulated gut structures consist of horizontally aligned branches and excluded the primary
branch from the argument. However, branches display a slight deviation from horizontal
alignment causing a deviation between extracted and predicted scaling exponents. While
edge length is subject to rescaling only in x-direction in the scaling argument, edge length
is subject to rescaling in both x and y-direction in the simulation. This results in a
measured scaling exponent that is larger than the predicted exponent. In a similar way,
edge thickness is subject to rescaling in y-direction in the scaling argument, but subject
to rescaling in both x and y-direction in the simulation. As a consequence, the measured
scaling exponents are smaller than the predicted exponents. The exclusion of the primary
branch from the scaling argument can cause additional deviations between measured and
predicted scaling exponents. In the limit of quasistatic organism growth, the numerous
almost horizontal edges that originate from the primary branch contribute a major part
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5.5 Comparison with experimental data

of the total gut length and the exclusion of the primary branch from the scaling argument
is well justified. However, in the limit of instantaneous organism growth, the primary
branch contributes a major part of the total gut length and excluding the primary branch
from our argument leads to deviations between measured and predicted exponents. In the
scaling argument, we assume that total gut length stems from horizontal edges and thus
is rescaled only in x-direction. However, in the simulation the primary branch contributes
significantly to total gut length and thus total gut length is rescaled both in x and y-
direction. As a result, we find that measured scaling exponents are larger than predicted
scaling exponents in the limit of instantaneous growth.

We provide an overview of scaling exponents derived from the scaling argument for the
branching with growth scenario in table 5.1. Interestingly, we find that scaling exponents
obtained experimentally lie within the range predicted by the scaling argument. To un-
derstand whether the scenario of branching with organism growth can generate the scaling
relations of the real organism, we next provide a detailed comparison of the size-dependent
behavior of gut properties found in the model and the organism.

5.5 Comparison with experimental data

After systematically identifying a parameter regime in which gut properties from simu-
lations and experiments share features in a small organism size (section 5.2) and during
organism growth (section 5.3), we next compared the gut properties for the identified
regime in detail with experimental data. We show gut structure properties obtained from
the branching with growth scenario together with experimental data by using the organ-
ism length Ly,0 of the smallest organism taken into account as a length unit (Fig. 5.15).
Most importantly, we find reasonable agreement between gut properties in simulation
and experiments. In both cases, gut properties show (approximately) power law behavior
characterized by similar intercept and scaling exponents. Let us further highlight that the
scaling behavior of the four experimentally quantified gut properties are captured simulta-
neously by our model. The model additionally predicts the scaling of branch length b and
total gut area Agut. Currently, experiments are ongoing to determine these gut properties
which then eventually provide a further test of our model.

Deviations between simulated and experimental gut structures can have different sources.
Deviations between gut properties from simulations and experiments can occur due to the
finite resolution of our systematic parameter scan. Both intercept and scaling exponent
can be further improved by performing a parameter scan with a higher resolution. Devi-
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Figure 5.15: Comparison of gut scaling laws from experiment and theory. We
show various gut features obtained in simulations (blue dots) and experiments (brown
dots) as a function of branched area Ab. Ly,0 denotes the smallest organism length taken
into account in simulation and experiment. The gray area corresponds ±15% of the power
law fit to the respective experimental gut property and serves as a reference to estimate
deviations between gut properties in simulation and experiment. The gut structures cor-
responding to the simulation data presented here can be found in Fig. 5.8c.

ations can occur also due to a mismatch of structures from simulations and experiments
at small sizes already. For example, we find a deviation between mean branch length
ℓ and total branch number N for small organism sizes. In the experimental gut struc-
tures, the two posterior parts of the primary branch (Fig. 4.2) lack side branches in 1 mm
organisms and bias the mean branch length towards large values. As the organism size
increases, side branches appear along the anterior parts of the primary branch leading to
a sudden reduction of mean branch length. By contrast, in our simulation, the anterior
part already carries side branches in a small organism (Fig. 5.6a) and thus lacks a sudden
jump in mean branch length. Finally, our choice to use the smallest organism length Ly,0

taken into account as a length unit also causes deviations. In experiments, Ly,0 can be
obtained only approximately and thus introduces deviations into our comparison. In our
comparison of simulated and experimental gut properties, we show ±15% of power law fits
of experimental gut properties as a reference to estimate deviation between gut properties
in simulation and experiment.

We finally provide the scaling exponents for gut properties from simulations presented
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5.6 Effect of periodic organism (de)growth on morphologies

Table 5.1: Overview of scaling exponents in experiments and simulations. We
show scaling exponents for anisotropy parameter r = 3/4. The format [·, ·] indicates a
range of exponents. ND denotes not determined. For details on how exponents were
obtained, we refer the reader to the corresponding sections.

Exponent Experiments branching branching and growth
simulation scaling argument simulation scaling argument

αx 0.19 ± 0.08 0.29 ± 0.06 3/7 ≃ 0.43 0.22 ± 0.01 [0, 3/7]
αy 0.24 ± 0.04 0.01 ± 0.24 0 0.21 ± 0.01 [0, 4/7]
ζ 0.59 ± 0.05 0.68 ± 0.04 4/7 ≃ 0.57 0.60 ± 0.01 [1, 0 ]
η 0.75 ± 0.01 0.96 ± 0.01 1 0.82 ± 0.01 [1, 3/7]
ρ ND 0.01 ± 0.46 0 0.13 ± 0.01 [1, 3/7]
ν ND 1.00 ± 0.01 1 0.96 ± 0.01 [1, 3/7]

in Fig. 5.15 in table 5.1 and thereby complete our overview of gut scaling behavior in
simulation and experiment.

5.6 Effect of periodic organism (de)growth on
morphologies

Inspired by the fascinating ability of planarians to grow and degrow their body and thus
also their gut, we finally studied the behavior of gut properties in our model with respect to
cycles of growth and degrowth. In particular, we wondered whether our model in principle
can account for the growth and degrowth of gut structures and if so whether this process
shows signs of irreversibility.

To study the effect of cycles of growth and degrowth on gut morpholgies, we initialized
our model with an already established gut morphology and studied its time evolution
subject to a periodic growth rate gi(t) for i ∈ {x, y} with period T . We choose T such
that after half a period the organism length has increased by a factor s irrespective of
growth rate, i.e. Ly(t = T/2) = sLy,0. For simplicity, we consider a sinusoidal growth rate
gi(t) = gi,0 sin(2πt/T ), where gi,0 denotes the growth amplitude. For a sinusoidal growth
rate, organism length undergoes the dynamics

Li(t) = Li,0e
Gi(t) Gi(t) =

∫ t

0
g(t̃)dt̃ = gi,0T

2π

[
1 − cos

(
2π t
T

)]
. (5.28)
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Figure 5.16: Periodic organism (de)growth of gut structures. (a) We show branch
distance as a function of time t for different values of growth rate gy,0. We denote the
branch distance at time t = 0 by d0. We additionally show the sinusoidal growth rate g(t)
with period T and amplitude gy,0 that we use to grow the organism (gray line). (b) We
show branch distance d as a function of organism length Ly for the same values of growth
rate gy,0 as in (a). Ly,0 denotes initial organism length. (c) We show the enclosed area
Aenc of orbits as a function of growth rate gy,0. The area was determined according to
Eq. (5.32) for orbits from simulation data using the trapezoidal rule for n = 6 and m = 2
(last four periods).

and according to this the organism length Ly satisfies Ly(T/2) = sLy,0 for the period

T = π

gy,0
log(s). (5.29)

This type of scenario allows us to study the effect of periodic organism growth on gut
morphologies.

We track several gut properties as a function of time and discuss the behavior of branch
distance d as an example gut property. Most importantly, we find that morphologies can
undergo numerous rounds of growth and degrowth while maintaining their overall branched
morphology. After an initial transient behavior, gut properties reach a periodic behavior
with an amplitude and phase determined by the organismal growth rate (Fig. 5.16a). Note
that amplitude and phase of the periodic dynamics have important consequences for the
reversibility of this process and thus will be the focus of our discussion.

The time-dependent behavior of gut morphologies can be understood with the help of
the scaling argument presented in section 5.4 of this chapter. In our scaling argument,
we studied the dynamics of the edge distance λy in a simple network geometry as an
idealized scenario for the dynamics of branch distance d during organism growth. In this
scenario, edge distance λy is subject to rescaling due to organism growth with rate gy and
relaxation towards a preferred length scale λ̄y with rate ky due to the growth of additional
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side branches. In the limit of quasistatic organism growth (gi ≪ ki), we find that

λy(t) = λ̄y

(
1 + gy(t)

ky

)
+ O

(gy,0

ky

)2
 (5.30)

satisfies Eq. (5.22b) to linear order in gy,0/ky for a periodic growth rate. According to
this, the length scale λy oscillates in phase with the periodic growth rate and thus with
a phase difference (∆ϕ = π/2) to organism length Ly with an amplitude determined by
the growth amplitude gy,0. Note that these findings are in agreement with the behavior
of branch distance d observed in simulations (Fig. 5.16a). To understand the limit of
instantaneous growth (gy ≫ ky), we consider a special case of Eq. (5.22b), where no
relaxation to a preferred length takes place (ky = 0). For a periodic growth rate we find
the solution

λy(t) = λy,0e
Gy(t) (5.31)

for edge distance. In this limit, organism growth dominates the dynamics of edge distance
and no side branches emerge. As a consequence, λy follows the behavior of system size
with λy ∝ Ly. Edge distance oscillates in phase with the organism length (∆ϕ = 0)
and in each period of growth and degrowth changes its length by a factor of s. Again,
the predictions from the scaling argument are in agreement with the behavior of branch
distance in the simulation data (Fig. 5.16a).

To understand the reversibility of gut properties subject to periodic organism growth,
we next studied the behavior of branch distance as a function of organism length. Clearly,
if growth and degrowth are reversible then growth and degrowth trajectories in the (d, Ly)
plane follow along the same path and branch distance is a function of size only. By contrast,
different paths for growth and degrowth in the (d, Ly) plane indicate the irreversibility of
growth and degrowth. We show the values of branch distance depicted in Fig. 5.16a
now as a function of organism length Ly and find that after a short transient behavior
the trajectories settle into a closed orbit (Fig. 5.16b). In the limit of quasistatic growth
(gi ≪ µmax), we find that orbits enclose a non-zero enclosed area indicating irreversibility.
In this limit, we found that branch distance lags behind organism length with a non-
zero phase difference, thus giving orbits with non-zero area. By contrast, in the limit of
instantaneous growth (gi ≫ µmax), we found zero phase difference between branch distance
and organism length and thus orbits enclose zero area indicating the reversibility in this
limit.

To quantify the irreversibility of periodic growth and degrowth, we use the area Aenc

enclosed by the orbit of the nth and mth growth and degrowth cycle as a measure. The
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enclosed area is defined by

Aenc = 1
n−m

∫ Ln

Lm

d(L) dL, (5.32)

where we used Ln = L(t = nT ) as an abbreviation and n − m denotes the amount of
growth and degrowth cycles taken into account for the irreversibility quantification. We
find a growth rate dependent enclosed area with finite value in the limit of quasistatic
growth, a maximum in the intermediate regime, and a vanishing enclosed area for the
limit of instantaneous growth (Fig. 5.16c). To understand this non-monotonic behavior,
we again employ our scaling argument. In the limit of quasistatic organism growth, we find
by combining Eq. (5.30) and Eq. (5.32) that Aenc ∝ gy,0. With increasing growth rate the
amplitude of oscillations in edge distance and thus the enclosed area and irreversibility of
growth and degrowth increases. Note that this calculation fails to account correctly for the
plateau in enclosed area for small values of the growth rate due to an oversimplification
of the branching process in the scaling argument. While in the scaling argument the
amplitude of edge distance oscillations can vanish for gy → 0, they will always be finite
in the simulations as branch distance needs to pass a critical threshold for branching
to occur. In the limit of instantaneous organism growth, the phase difference between
organism length and branch distance vanishes with increasing organism growth rate and
thus enclosed area and the irreversibility vanish with increasing organism growth rate.

Note that we also considered a periodic rectangular function (reminiscent of a feeding
and starvation period of the organism) and found that the main findings of this section
qualitatively still hold.

5.7 Summary and discussion

In this chapter, we have presented a model for morphogen-controlled growth and scaling
of the planarian gut. In this model, we combine ideas presented in chapter 3 with novel
concepts needed to account for the organization of the planarian gut. At the center of our
approach is again the idea that a morphogen controls the growth of a complex branched
organ. In addition, we consider external guiding cues that can alter the orientation of
branches. We take into account the organism shape and study branching morphogenesis in
a realistic worm-like geometry. To account for the massive body size increase of planarians,
we include organism growth in our description.
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Summary

In our model, we consider a 2D system and describe the outline of the planarian gut
by an infinitely thin interface. The dynamics of this interface lies at the center of our
model and captures key processes responsible for the morphogenesis of the planarian gut
in a coarse grained way. As in chapter 3, the interface has a constant tendency to grow
which is inhibited by the concentration of a morphogen. We have established this as
a minimal growth rule that yields self-organized branched structures and thus employ it
here again. As before, we consider a curvature dependency of interface growth that results
in the stabilization of interface motion. Motivated by the orientation of branches in the
planarian gut, we take into account external guiding cues that can alter branch orientation.
Finally, we account for the overall growth of the organism by an advection term in the
interface growth equation. We describe the morphogen dynamics by a minimal reaction-
advection-diffusion system. According to this, the morphogen spreads in the organism via
diffusion and also by advection due to organism growth. Morphogen undergoes region-
dependent degradation and production with a constant rate and is additionally subject
to an effective degradation rate due to the dilution by organism growth. We consider a
scenario in which morphogen is produced in the gut region and no production takes place
outside the gut region. Inspired by our quantitative analysis of planarian body shape we
study the coupled dynamics of interface and morphogen in an elliptic growing domain with
an empty space in its center to account for the region the pharynx resides in. Overall,
we think that this model captures key effects responsible for the morphogenesis of the
planarian gut in a coarse grained fashion.

To systematically understand the growth of branched structures in this model, we first
considered a non-growing domain as a simple scenario of pattern formation. Most impor-
tantly, we find that irrespective of organism shape or external guiding cues the interface
robustly undergoes an instability leading to the formation of branched structures. We
first studied the influence of different external orientation fields on gut morphologies. We
considered the external orientation field my (orientation in horizontal direction) and mext

(orientation towards organism boundary) and demonstrated that for both cases branches
align in direction of orientation field for increasing values of coupling strength δ. We
find that mext captures qualitative features of gut morphologies in planarians well and
we therefore focus our discussion on this case of orientation field. We further showed
how morphogen-mediated interactions between branches in the left and right organism
half influence gut morphology symmetry and how the thickness of the primary branch
can be used to control these interactions and thus symmetry. In the limit of an infinitely
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thin primary branch, gut morphologies display an antisymmetric configuration, where a
branch in the left system half corresponds to a gap between branches in the right system
half and vice versa. In this limit, branches spontaneously leave a symmetric arrangement
and morphogen from the opposite organism half prevents branch motion to the original
symmetric arrangement. We demonstrated that for increasing primary branch thickness
this effect is suppressed and a transition from antisymmetric to symmetric configuration
takes place. Finally, we used the findings presented in chapter 3 to discuss the control of
branch distance and thickness. We use the strength of curvature dependency of interface
growth to control branch distance and show that increasing the dependency of interface
growth on curvature increases branch distance. We use the morphogen inhibition strength
to control branch thickness and show how decreasing inhibition strength leads to an in-
crease in branch thickness. Overall, we have systematically discussed various aspects of
pattern formation and demonstrated the generation of an entire family of worm structures.
We quantified key features of the planarian gut in both simulations and experiments and
identify a parameter regime in which the structures in our model share key features with
the gut in small organism sizes (1 mm).

Next, we proposed two different scenarios to generate gut morphologies of different sizes
and discussed their size-dependent properties. In a first approach (branching scenario),
we study the de-novo formation of gut morphologies in systems of different sizes. Overall,
morphologies show a relatively simple organization with branches extending from the
primary branch to the organism boundary with almost no further side branching. We find
that size-dependent gut properties show power law scaling as a function of system size
and demonstrate how the control of the scaling exponent of branch length and number by
organism aspect ratio.

In an alternative approach (branching with growth scenario), we study the continuous
remodeling of an already established structure subject to organism growth. In strong
contrast to the branching scenario, we find that depending on the ratio of gut growth to
organism growth morphologies can exhibit highly branched shapes with numerous side
branches. In the limit of quasistatic growth, gut growth is much faster than organism
growth and thus any empty spaces in morphologies can be invaded by new branches. As a
result, we find highly ramified morphologies with numerous side branches. By contrast, in
the limit of instantaneous growth, gut growth is much slower than organism growth and
spaces in morphologies remain empty. As a result, we find a simple gut architecture in
which morphologies are simply scaled up during organism growth. The transition from a
simple to complex gut organization is also reflected in the size-dependent properties. We
find that size-dependent gut properties are captured by power laws with scaling exponents
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that are determined by the ratio of gut growth rate to organism growth rate.
To understand how scaling relations of different gut properties are related and originate,

we next used a simple scaling argument. We reduce the complexity of morphologies to
a minimal network geometry in which branches are represented by straight horizontal
edges. Motivated by our quantification of morphologies in the simulation, we propose an
ansatz for the scaling of edge length, distance, and thickness and from this determine the
scaling of total network length, area, and total edge number. For the branching scenario,
we assume that edges extend from the system center to the boundary and maintain a
size-independent distance and thickness. This ansatz is in agreement with the scaling of
branch length and distance and captures the aspect ratio dependence of branch length. It
further allows us to correctly predict the scaling of total gut length and area as well as the
aspect ratio-dependent scaling of total branch number. For the scenario of branching with
growth, we propose a dynamics for edge length and distance that captures the interplay
between gut growth and organism growth. We assume that edge length and distance are
constantly rescaled due to organism growth and have a tendency to relax to a preferred
length scale due to growth of new branches. Motivated by the observation that branch
distance determines branch thickness, we assume that edge thickness scales linearly with
edge distance. Our scaling argument for the branching with growth scenario, correctly
predicts the transition from highly branched networks in the limit of quasistatic growth to
scaled up networks in the limit of instantaneous growth. Deviations between our scaling
argument and observed scaling exponents in simulations originate from oversimplifications
in the model assumptions.

Having analyzed two different scenarios to generate differently sized morphologies, we
next compared properties of simulated and experimental gut structures. While the branch-
ing scenario disagrees with the experimental gut properties, we find that the branching
with growth scenario captures the four experimentally determined gut properties well.
This highlights the importance of organism growth in our description.

Inspired by the ability of flatworms to both grow and degrow, we finally studied the
behavior of simulated gut structures subject to periodic organism growth. We use a
sinusoidal growth rate as a simple scenario to study periodic body size changes and study
branch distance as an example gut property. Most importantly, we find that simulated gut
structures can undergo numerous rounds of growth and degrowth without loosing their
branched structure. In addition, we find that the amplitude and phase of branch distance
oscillations depend on the ratio of gut growth rate to organism growth rate. In the limit of
quasistatic growth, we find that branch distance oscillations are in phase with sinusoidal
growth rate and exhibit a phase difference with organism length. By contrast, in the limit
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of instantaneous growth, gut growth is much slower than organism growth, and branch
formation is lacking. As a result, branch distances are periodically scaled along with the
organism length and branch distance oscillations have zero phase difference

Overall, we have thus presented a novel theoretical framework to study the self-organized
growth and scaling of the planarian gut. Our framework provides a range of qualitative
and quantitative predictions on the organization of the planarian gut which we next use
as a basis to discuss experimental tests of the model. Additionally, we discuss limitations
of our approach, outline the wider implications of our findings and give an outlook on
future work.

Discussion

Our model provides various experimentally testable predictions. Most importantly, we
predict the scaling of six different gut properties as a function of organism size. We
compared the scaling of branch length and distance as well as total branch number and
total gut length obtained from simulations and experiments and found good agreement for
both intercept and exponents of scaling relations. Currently, experiments with a marker
for outer intestinal cells are ongoing, which will allow us to extract branch outlines. From
this, we can determine branch thickness and total gut area and test our model prediction
for the respective quantity.

In our model, the formation of branched structures crucially relies on the guidance
of a morphogen that is produced on the gut. Thus, naturally the question arises how
already formed gut structures change for altered morphogen production. According to
our model, a decrease in morphogen production for an already formed structure results
in an increase in branch thickness as mutual branch inhibition is reduced. Even more
strikingly, the complete removal of morphogen would result in a sheet-like morphology,
where all branches have merged. Currently, RNAi experiments are ongoing to inhibit
the production of several morphogens candidates and to eventually test our prediction.
Once a morphogen has been identified, features of the morphogen gradient in model and
experiment can be compared such as for example the size-independent gradient length
scale predicted according to the model.

The existence of guiding cues that control the orientation of branches is a further key
assumption of our approach. In this chapter, we have presented a second morphogen that
is produced on the organismal boundary and forms gradients towards the organism center
as an example of such a cue. The removal of this guiding cue results in branches that,
in general, are less oriented towards the organism boundary and can also undergo sharp
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turns. In planarians, wnt5 is a candidate for such a morphogen as it is expressed along
the mediolateral axis and the inhibition of wnt5 expression constitutes another test of our
model [103, 108, 134]. Note that in this chapter we have focused on a second morphogen
originating from the organism boundary as a guiding cue. However, many other factors
can contribute to the alignment of branches. For example, planar cell polarity as well as
mechanical cues from muscle fiber orientation might contribute to branch orientation [115,
188]. Our framework takes into account external guiding cues in a coarse grained way via
the external orientation field and can in principle take into account other guiding cues as
well.

Finally, we studied the periodic (de)growth of gut morphologies in the model and demon-
strated the irreversibility of gut properties under (de)growth. For example, we showed that
gut morphologies of a growing organism are characterized by a larger branch distance than
in a shrinking organism. An experimental way to test this prediction might be to grow a
set of small (e.g. 1 mm) worms to a medium size (e.g. 5 mm) and conversely starve a set
of large worms (e.g. 11 mm) to the same medium size and subsequently measure their gut
properties.

Our model is based on a set of simplifying assumptions that might limit the applicability
of our results. To reduce the computational complexity of our problem, we presented a
2D model. However, planarians are 3D organisms and their gut shows distinct features of
3D organization. For example, in large organisms branches occasionally grow over each
other (Jochen Rink, personal communication). To account for the 3D organization of the
gut, the model needs to be studied in 3D. Note, however, that our key findings remain
unaffected by the dimensionality of the problem. Given the existence of an instability
in 3D, we also expect the mutual inhibition of branches, the invasion of empty regions
by branches, the organization of branch orientation by external guiding cues, and also
the emergence of scaling relations due to interplay of gut growth and organism growth.
Another simplification of our approach lies in the assumption that morphogen is produced
on the gut. As the gut is a hollow tube a more realistic approach would be to assume
morphogen production only at the gut outline. Note that this can be easily implement
with the phase field method by using a morphogen production term with sin ∝ ϕ(1 − ϕ)
instead of sin ∝ ϕ.

Let us finally discuss future research directions. A key result of our model is the emer-
gence of scaling relations from the interplay of gut growth and organism growth. In our
model, a range of exponents arises, but our model fails to provide an explanation for why
a particular organism growth rate and thus a set of gut scaling exponents is chosen in the
organism. We envision that by implementing a feedback between organism growth and
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gut growth a particular exponent can be chosen.
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Chapter 6

Summary and discussion

In this thesis, we have theoretically studied the self-organized growth and scaling of
branched organs. In our approach, we represent the organ outline by an infinitely thin
interface and study the morphogen-controlled motion of this interface in growing domains.
We demonstrate the formation of highly branched morphologies from an instability in in-
terface motion and show how the interplay between interface motion, morphogen dynam-
ics, and domain growth control the geometrical, topological, and size-dependent properties
of the resulting structures.

Summary

In the first part of this thesis (chapter 2 and 3), we consider different scenarios of morphogen-
controlled interface motion in non-growing domains and study how geometrical and topo-
logical properties arise from the interplay of interface motion and morphogen dynamics.
To this end, we first present a stochastic lattice model for morphogen-controlled inter-
face growth in chapter 2. In this model, the state of lattice sites (occupied, unoccupied)
indicates the presence or absence of an organ cell. The set of all occupied lattice sites
constitutes the organ and we refer to this set as “aggregate”. State changes occur in a
stochastic manner controlled by a morphogen gradient and represent organ growth. We
assume that a minimal reaction-diffusion system governs morphogen dynamics. According
to this dynamics, morphogen shows an effective diffusion and undergoes region-dependent
degradation and production. In particular, we consider a setting with strong morphogen
production on the aggregate with morphogen gradients forming towards the system bound-
ary. As a simple scenario for pattern formation, we consider a single occupied lattice site
in a square system as an initial condition. We numerically study the dynamics of this
scenario and find that highly branched morphologies occur from an instability in inter-
face motion. The formation of an interface protrusion leads to a decrease of morphogen
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gradients at the protrusion and consequently protrusion growth is enhanced. A positive
feedback between increase in protrusion growth and decrease in morphogen gradient length
sets in, which leads to the formation of highly branched morphologies. The characteristic
morphogen gradient length scales control the geometry of the resulting structures. De-
pending on the morphogen gradient length scale, we find structures ranging from highly
branched morphologies with self-similar properties to almost circular structures with only
a few branches. Finally, we present the Euler characteristic as an example of a topolog-
ical invariant and use it to introduce topological constraints into interface motion. As a
result, we find tree-like (loopless) aggregates with otherwise similar statistical properties.
Overall, chapter 2 serves as a first example for the formation of branched structures from
an instability in interface growth and how the geometrical and topological properties can
be controlled.

In chapter 3, we study a continuum model of morphogen-controlled interface motion.
This model serves as a complementary approach to our lattice model and provides a fur-
ther example of morphogen-controlled interface motion that forms branched morphologies
from an instability. We again represent an organ outline by an infinitely thin interface.
As opposed to the lattice model, where a morphogen gradient determines interface mo-
tion, here we study a scenario, where the interface has an intrinsic tendency to grow, but
growth is inhibited by the morphogen concentration at the interface. Additionally, we
consider a curvature-dependency of interface growth that results in a negative velocity of
outward protrusions and a positive velocity of inward protrusions. As a consequence, the
interface has a tendency to grow to a flat configuration and interface motion is stabilized
on small length scales. As before, we assume that morphogen undergoes effective diffusion
along with a region-dependent degradation and production and again focus on a scenario
in which morphogen is dominantly produced within the interface and a gradient forms to
the outside. To understand if an instability can occur in interface motion, we perform a
linear stability analysis of a flat moving interface. Additionally, we consider the limit of
quasistatic morphogen dynamics in which the morphogen concentration instantaneously
follows any interface perturbations. This limit allows us to understand key features of the
instability in detail. Most importantly, we find that a flat moving interface can exhibit an
instability. The formation of an outward protrusion results in a reduction of morphogen
concentration and thus in a reduction of growth inhibition at the protrusion. As a con-
sequence, the protrusion growth is enhanced and a positive feedback between protrusion
growth and morphogen reduction leads to complex branched morphologies. To understand
the geometrical and topological properties of the resulting morphologies, we studied the
formation of unstable interface patterns in this model beyond the linear stability anal-
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ysis. In particular, we combine analytically solvable scenarios of interface motion with
the numerical solution of the model to understand how branch distance and thickness are
controlled. We use the wavelength of the fastest growing mode in the instability of a flat
moving interface as a measure for branch distance and relate branch distance regulation
to the interplay of stabilization from the curvature dependency and destabilization from
morphogen inhibition. To understand branch thickness regulation, we reduce the com-
plexity of mutual branch inhibition to studying the stationary position of a flat interface.
We identify the stationary position of a flat interface as a measure for branch thickness
and explain branch thickness regulation from the interplay of interface growth tendency
and morphogen inhibition.

In the first part of this thesis (chapter 2 and 3), we demonstrated that branched mor-
phologies can originate from instabilities in morphogen-controlled interface motion and
discussed how the interplay of interface motion and morphogen dynamics determines the
geometry and topology of the resulting structures. By considering different scenarios of
morphogen-controlled interface growth, we demonstrated the robustness and versatility
of our approach. So far, however, we have considered only idealized scenarios of inter-
face motion where only morphogen concentration determines interface motion and thus
organ growth. In many organisms, however, several other environmental cues influence
the growth of branched organs. For example, constraints imposed by the organism shape
can influence the overall morphology of branched organs [20, 185]. Moreover, chemical
and mechanical cues affect the growth of branched organs and can lead to a orientation
of branches along a certain organismal axes [185, 186]. Most importantly, we neglected
the influence of organism growth and thus the role of body size for the morphogenesis of
branched organs [187]. In the second part of this thesis (chapter 4 and 5), we address
these questions in our study of planarian gut branching morphogenesis.

In chapter 4, we present the planarian gut as an example of a highly branched organ
that grows and scales along with organism size. We provide a quantitative analysis of the
geometrical and size-dependent properties of the planarian gut as well as the shape and
size of the planarian body. Our collaborators from the MPINAT in Göttingen (Amrutha
Palavalli, Baiqun An, Jochen Rink) performed in-situ hybridizations of the planarian gut.
They extract a skeleton, i.e. a one pixel wide connectivity-preserving representation of
the original data, from their raw data that allows us to extract various quantitative fea-
tures of planarian gut and body. First, we analyzed the shape and size of the planarian
body. We use the convex hull of the skeleton as a measure for the organism outline and
show that planarians have a size-dependent aspect ratio with the length increasing faster
than the organism width and that planarian body outline is approximately captured by
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an ellipse. We perform a similar analysis for the gut-devoid region, where the planarian
pharynx resides. We find that this region increases with a similar size-dependent aspect
ratio as the organism and its shape can also be approximately captured by an ellipse.
These findings inform our choice of boundary conditions in our theoretical study of the
planarian gut. Additionally, we studied several geometrical gut properties and in par-
ticular their size-dependent behavior. We distinguish primary branch and side branches.
The primary branch is the union of the three longest paths of branches starting at the
pharynx and we call any remaining branches side branch. We study the symmetry of
gut branching morphologies and find that morphologies neither exhibit a symmetric (side
branches projecting to the left and right organism half originate at identical positions)
nor anti-symmetric configuration (side branches projecting to left and right organism side
alternate), but exhibit an intermediate configuration. Moreover, we study branch ori-
entation and show that side branches exhibit a strong orientation towards the organism
boundary. Most importantly, we demonstrate the power law scaling of several gut prop-
erties (e.g. branch distance or total branch number) with system size. The findings and
quantification tools presented in this chapter serve as a basis for our theoretical study of
planarian gut branching morphogenesis presented in the next chapter.

To theoretically study the growth and scaling of the planarian gut, we reconsider our
continuum model for morphogen-controlled growth and include novel features that are
needed to account for the organization of the planarian gut. In contrast to our previous
approaches, we take into account the organism shape. Motivated by our quantitative
study of planarian and pharynx shape, we study interface motion in a domain of elliptical
shape. As a second novelty, we take into account that interface growth can be influenced
by external guiding cues. As an example, we consider a second morphogen that forms
gradients from the organism boundary to the organism center and assume that interface
growth takes place preferably into direction of this morphogen gradient. Most importantly,
we include organism growth in our model. The interface is now moved along as the
organism grows in addition to its intrinsic tendency to grow, the inhibition through a
morphogen, and its curvature dependency.

To understand the formation of branched structures in this model, we first consider a
non-growing system and study the de-novo formation of gut structures from a primary
branch. This minimal, hypothetical scenario allows us to study basic pattern formation
principles of this model. Most importantly, irrespective of boundary-related constraints
or influences from external guiding cues, the interface robustly undergoes an instability
and forms highly branched morphologies. In the absence of external guiding cues, the
morphologies are disordered with branches growing along the organism boundary and
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undergoing sharp turns. By contrast, for increasing values of coupling between external
guiding cue and interface growth, morphologies become ordered and branches increasingly
orient towards the organism boundary. Morphology symmetry is controlled by morphogen-
mediated interactions between branches in the left and right organism half. Branches
initially form in a symmetric configuration, but then transition spontaneously to an anti-
symmetric configuration. The reverse transition is prevented by morphogen concentration
spreading between the two organism halves. For increasing primary branch thickness, this
interaction is suppressed, leading to the formation of symmetric morphologies. Overall,
we present a range of simulated gut structures and demonstrate control over its geomet-
rical properties. In particular, we can provide a parameter regime where simulated gut
structures share key features with experimental ones.

Next, we employed two scenarios to study the size-dependent properties of the planarian
gut. In our first scenario (branching scenario), we study the de-novo formation of gut struc-
tures from a primary branch in differently sized systems. We a find simple gut organization
with side branches extending from the primary branch to the organism boundary with-
out any further side branches. Various gut properties are captured by scaling relations,
but as the observed scaling exponents disagree with the experimentally measured ones,
we conclude that the branching scenario fails to account for size-dependent planarian gut
organization. In an alternative approach (branching with growth scenario), we consider
an already formed simulated gut morphology and study its continuous remodeling as or-
ganism size increases. Depending on the ratio of gut growth rate to organism growth rate,
we find a set of structures ranging from highly branched morphologies with numerous side
branches to morphologies that are simply scaled up as organism size increases. Gut prop-
erties are described by scaling relations with scaling exponents depending on the ratio of
gut growth to organism growth rate. In particular, this range includes a set of exponents
in agreement with experimentally measured exponents.

Discussion

Overall, we have provided a novel theoretical framework to study the self-organized growth
and scaling of branched organs in biology. Our framework is based on the generation of
branched interface morphologies from instabilities and thus has parallels with other unsta-
ble interface growth phenomena such as viscous fingering or solidification. For example, in
solidification, the interface between liquid and solid region moves under the influence of a
temperature field which is governed by the diffusion equation [136]. The formation of in-
terface protrusions results in unstable interface growth due to a positive feedback between
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protrusion growth and temperature reduction at the protrusion. Additionally, intrinsic
(e.g. molecular structure) and extrinsic cues (e.g. properties of surrounding medium) can
alter the morphology of structures [139, 149]. In our approach, the formation of unstable
structures is governed by similar principles. The interface representing the organ outline
moves under the influence of a morphogen concentration field which is also governed by the
diffusion equation. In a similar way to solidification, the formation of a protrusion leads to
unstable interface growth and external cues (e.g. second morphogen) can influence organ
growth.

Inspired by the formation of branched structures in biology, our approach complements
and extends existing studies of unstable interface growth phenomena. While heat and thus
the temperature field in solidification is a conserved quantity, morphogen concentration
constitutes a non-conserved quantity as it can be produced and undergo degradation. The
non-zero degradation rate of morphogen leads to additional length scales that can drasti-
cally alter morphologies. For example, we find that the degradation length can suppress
the instability (lattice model) or can serve as a control parameter for branch distance and
thickness (continuum model). Motivated by the importance of branched organ topology,
we established concepts to quantify and control the topology of resulting morphologies. In
the lattice model, we use the Euler characteristic to introduce topological constraints into
interface growth that lead to the formation of tree-like structures. In the continuum model,
we demonstrate the regulation of branch thickness by mutual branch inhibition and use
this to generate morphologies with loops (limit of large branch thickness) and with loose
branches (limit of small branch thickness). Most importantly, branched organs need to
adapt their size and proportion as organism size increases. We include organism growth in
our description and demonstrate its drastic effect on branched morphology. In particular,
we relate the emergence of scaling relations with the interplay between organism growth
and gut growth.

In contrast to other theories of branching morphogenesis, our approach provides insta-
bilities as a physical mechanism for the generation of branched structures and can also
be tested experimentally. For example, in a recent approach, branched organs are repre-
sented by a set of line segments with active tips. Branch growth is taken into account
by a branching and annihilating random walk of active tips and additionally tips become
inactive when they are in close proximity to other tips [20]. While this can explain the
large scale organization of branched networks, an explanation for the de-novo formation
of branches and tip termination is lacking. In our approach, branches are formed from
an instability and tip termination results from mutual branch inhibition. Size-dependent
network properties and, in particular, the scaling of networks is often considered as an
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optimization problem [75, 189, 190]. For example, scaling relations of network geometries
can be derived from minimizing the energy dissipation of fluid transport [75]. While this
predicts scaling relations for various systems correctly, a clear picture of network formation
is lacking which makes experimental tests difficult. By contrast, our approach provides
a clear physical picture of network formation and, on the basis of this, predicts various
experimentally testable scenarios.

Outlook

As a future research direction, we envision to relate gut scaling with the organismal energy
budget to study metabolic scaling. The metabolic rate P , defined as the heat production
of an organism in a resting state, is a key quantity that characterizes organismal metabolic
activity. Interestingly, in numerous organisms (including planarians) the metabolic rate
shows power law scaling with body mass M according to P ∝ M3/4 known as Kleiber’s
law [65, 74]. As Kleiber’s law is found in various animals across an enormous size range,
it indicates a fundamental organization principle in animal metabolism. According to a
prominent hypothesis, Kleiber’s law results from transport limitations that constrain nutri-
ent delivery and thus metabolism [75, 77]. Given the role of the planarian gut for nutrient
delivery to the planarian body and the massive available size range, planarians constitute
an ideal system to study metabolic scaling. We aim to combine a set of experimental and
theoretical approaches to test the transport limitation hypothesis and understand the role
of transport limitations for planarian metabolism. For example, we envision to employ
our understanding of gut morphogenesis to alter gut structure and monitor for related
changes in organism metabolism. Additionally, we can combine existing energy balance
models with our continuum model of gut branching morphogenesis to develop a spatial
energy balance model. We can include a nutrient field into our description with a source
on the gut to identify scenarios in which metabolic scaling can emerge. Overall, our study
of gut branching morphogenesis can inspire new experiments and approaches to advance
our understanding of metabolic scaling.
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Appendix A

Numerical solution of the phase field
model

In this appendix, we provide details for the numerical solution of the phase field model
presented in chapter 3 and 5. We first state the equations of the phase field model again
for completeness. To simplify the numerical solution of the model, we transform the
model equations from a growing to non-growing domain. We present the finite-difference
discretization of the transformed equation and finally introduce an adaptive step size
scheme that we employ to drastically reduce the number of time steps needed. Overall,
we present a versatile numerical scheme that allows to study interface dynamics using the
phase field method for various geometries in an efficient way.

A.1 Model equations in growing reference frame

The dynamics of the phase field ϕ and the morphogen concentration c is governed by the
set of equations

τ

(
∂ϕ

∂t
+ u · ∇ϕ

)
= ξ2∇2ϕ+ r(ϕ) (A.1a)

∂c

∂t
+ u · ∇c = D∇2c− [k(ϕ) + gx(t) + gy(t)]c+ s(ϕ). (A.1b)

To abbreviate the model equations, we introduced the source term r of the phase field
model as

r(ϕ) = 2a2ϕ(1 − ϕ)
(
ϕ− 1

2 + χ̂

2a2

)
, (A.2)
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where the energetic bias is defined by χ̂ = Γ̂Θ̂ + âΞ together with

Γ̂(c) = v̂0 − γ̂c(x, y) (A.3a)

Θ̂ = 1 − δ

[
1 − (−∇ϕ)

|∇ϕ| · m

]
. (A.3b)

The noise term Ξ denotes a uniform distribution in the range [−1/2, 1/2]. The degradation
rate k and the source term s of the morphogen concentration are defined by

k(ϕ) = kinϕ+ kout(1 − ϕ) (A.4a)
s(ϕ) = sinϕ+ sout(1 − ϕ). (A.4b)

For a detailed discussion of the model parameters we refer the reader to chapter 3 and 5.

A.2 Model equations in non-growing reference frame

To simplify Eq. (A.1), we transform the system dynamics from a growing to a non-growing
reference frame by using the transformation

(x, y, t) → (x̃, ỹ, t̃)
x̃ = xe−Gx(t)

ỹ = ye−Gy(t)

t̃ = t.

(A.5)

We indicate quantities in the non-growing domain by a ∼ symbol and abbreviate the
integrated growth rate Gi(t) by

Gi(t) =
∫ t

0
gi(s) ds. (A.6)

The transformation from growing to non-growing reference frame in Eq. (A.5) is also
commonly used for studying the scaling of morphogen gradients or Turing instabilities in
growing domains [191, 192].

According to the transformation given by Eq. (A.5), the phase field ϕ in the growing
domain and the phase field ϕ̃ in the non-growing domain are related by

ϕ(x, y, t) = ϕ(x̃eGx(t), ỹeGy(t), t)
= ϕ̃(x̃, ỹ, t̃).

(A.7)
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By using the chain rule, we find that the time-derivative of the phase field ϕ transforms
as

∂ϕ

∂t
= −gxxe

−Gx(t)∂ϕ̃

∂x̃
− gyye

−Gy(t)∂ϕ̃

∂ỹ
+ ∂ϕ̃

∂t̃
. (A.8)

Likewise, we find for the transformation of first and second spatial derivative of the phase
field

∂ϕ

∂x
= e−Gx(t)∂ϕ̃

∂x̃

∂

∂x

∂ϕ

∂x
= e−2Gx(t)∂

2ϕ̃

∂x̃2 . (A.9)

By combining the relations for the transformed derivatives Eq. (A.7) to Eq. (A.9) with
the model in the growing reference frame given by Eq. (A.1), we find that the phase field
model equations in the non-growing reference frame are given by

τ
∂ϕ

∂t
= ξ2e−2Gx(t)∂

2ϕ

∂x2 + ξ2e−2Gy(t)∂
2ϕ

∂y2 + r(ϕ) (A.10a)

∂c

∂t
= De−2Gx(t) ∂

2c

∂x2 +De−2Gy(t) ∂
2c

∂y2 − [k(ϕ) + gx(t) + gy(t)]c+ s(ϕ). (A.10b)

Most importantly, we find that in the non-growing reference frame the advection term
vanishes and time-dependent diffusion constants appear. Thus, we changed the problem
from the solution of an advection-diffusion equation to the solution of a diffusion equation,
which drastically reduces the problem complexity. Note that the descriptions in growing
and non-growing domains are equivalent, but correspond to two different point of views.
In the growing reference frame, intrinsic length scales (e.g. reaction-diffusion lengths)
maintain their length, but the system size increases. By contrast, in the non-growing
reference frame, intrinsic length scales decrease, but the system size increases. As a result,
intrinsic length scales and the system size show the same relative behavior irrespective of
the chosen reference frame.

In this thesis, we studied interface and thus phase field dynamics in various geometries
with different boundary conditions. Since we use the model equations in the non-growing
reference frame for their numerical solution, we also define the boundary conditions in
the non-growing reference frame. In chapter 3, we studied interface dynamics without
organism growth (gx = gy = 0) in the rectangular geometry

Ωr = {(x, y)|x ∈ [0, Ly], y ∈ [0, Ly]}. (A.11)
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We used the no-flux boundary conditions

∂yϕ(x, 0) = 0 ∂yc(x, 0) = 0 (A.12a)
∂yϕ(x, Ly) = 0 ∂yc(x, Ly) = 0 (A.12b)

at the bottom (y = 0) and top (y = Ly) boundary along with the periodic boundary
conditions

ϕ(0, y) = ϕ(Lx, y) c(0, y) = c(Lx, y) (A.13)

at the left (x = 0) and right (x = Lx) boundary. In chapter 5, we studied interface and
thus phase field dynamics in an elliptic domain Ωw with a hole Ωp in it as defined by

Ωw = {(x, y)|
∣∣∣∣∣x− x0

Lx/2

∣∣∣∣∣
2

+
∣∣∣∣∣y − y0

Ly/2

∣∣∣∣∣
2

≤ 1} (A.14a)

Ωp = {(x, y)
∣∣∣∣∣x− xp,0

ℓx/2

∣∣∣∣∣
2

+
∣∣∣∣∣y − yp,0

ℓy/2

∣∣∣∣∣
2

≤ 1}. (A.14b)

We used no-flux boundary conditions for phase field and morphogen concentration on the
domain boundaries ∂Ωw and ∂Ωp. Additionally, we defined a region Ωpb where ϕ = 1 holds
in order to model the primary branch. In all cases, we use ϕ(x, y) = 0 and c(x, y) = 0 as
initial condition at t = 0.

A.3 Finite difference discretization

We employ the finite difference method for the numerical solution of the model equations
in the non-growing reference frame [193–195]. We discretize positions x, y, and time t by
using the grid

xi = i∆x i = 0, · · · , Nx − 1 (A.15a)
yj = j∆y j = 0, · · · , Ny − 1 (A.15b)
tn = n∆t n = 0, · · · , Nt − 1, (A.15c)

where ∆x = Lx/Nx, ∆y = Ly/Ny, and ∆t = T/Nt denote the grid spacing and Nx, Ny,
and Nt denote the number of grid points used for the discretization. We further introduce
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Figure A.1: Computational domain of the discretized equations. We show the
computational domains employed for the phase field, morphogen concentration, and ex-
ternal morphogen concentration in chapter 5. We show the primary branch domain Ωpb,
the worm domain Ωw (large white ellipse), the pharynx domain Ωp (small gray domain),
and the simulation domain Ω = Ωw \ Ωp.

the abbreviations

ϕ(xi, yj, tn) = ϕn
i,j c(xi, yj, tn) = cn

i,j (A.16)

for the values of phase field and morphogen concentration at grid points.

To discretize derivatives, we use forward, backwards, and also centered finite differ-
ence discretizations [195]. For time derivatives we employ both the forward difference
approximation

∂ϕ

∂t
(xi, yj, tn) =

ϕn+1
i,j − ϕn

i,j

∆t + O(∆t) (A.17)
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Figure A.2: Construction of primary branch domain Ωpb. The construction of
the primary branch domain proceeds in four steps. (a) We first draw an ellipse around
(xp,0, yp,0) with minor axis lp,x length and major axis length lp,y that serves as the part of
the primary branch enclosing the pharynx region. (b) Next, we draw a straight line with
width bpb from the top of the system to the intersection pharynx enclosing ellipse. (c) We
draw two parallel straight lines with distance dpb from the bottom of the system to the
pharynx enclosing ellipse. (d) Finally, we remove the part of the pharynx-enclosing ellipse
between the previously drawn parallel lines.

and the backward difference approximation

∂ϕ

∂t
(xi, yj, tn) =

ϕn
i,j − ϕn−1

i,j

∆t + O(∆t). (A.18)

We use the the backward difference approximation for first order spatial derivatives

∂ϕ

∂x
(xi, yj, tn) =

ϕn
i+1,j − ϕn

i,j

∆x + O(∆x) (A.19)

and the centered difference approximation for the second order spatial derivatives

∂2ϕ

∂x2 (xi, yj, tn) =
ϕn

i+1,j − 2ϕn
i,j + ϕn

i−1,j

∆x2 + O(∆x2). (A.20)

To derive the discretized versions of the coupled partial differential equations, we re-
placed derivatives with their respective finite difference approximations. Using the forward
difference in time and centered difference in space we find for the discretized phase field
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A.3 Finite difference discretization

equation

ϕn+1
i,j − ϕn

i,j = F n
ϕ,x(ϕn

i+1,j − 2ϕn
i,j + ϕn

i−1,j) + F n
ϕ,y(ϕn

i,j+1 − 2ϕn
i,j + ϕn

i,j−1) + 1
τ
r(ϕn

i,j),

(A.21)

where we have introduced the dimensionless Fourier numbers [195]

F n
ϕ,x = ξ2

τ

∆t
∆x2 e

−2Gx(tn) F n
ϕ,y = ξ2

τ

∆t
∆x2 e

−2Gy(tn). (A.22)

Note that Eq. (A.21) constitutes an explicit scheme since it provides an explicit relation
for the calculation of phase field values at time tn+1 from phase field values at times tn.
Using the backward difference in time and the centered difference in space we find the
discretized morphogen concentration equations

cn+1
i,j − cn

i,j = F n+1
c,x (cn+1

i+1,j − 2cn+1
i,j + cn+1

i−1,j) + F n+1
c,y (cn+1

i,j+1 − 2cn+1
i,j + cn+1

i,j−1)
−k(ϕn+1

i,j )∆tcn+1
i,j + s(ϕn+1

i,j )∆t
(A.23)

together with the dimensionless Fourier numbers

F n
c,x = D

∆t
∆x2 e

−2Gx(tn) F n
c,y = D

∆t
∆x2 e

−2Gy(tn). (A.24)

This constitutes an implicit scheme since Eq. (A.23) provides a set of coupled linear
equations that we need to solve to obtain concentration values at time step tn+1. We use
an explicit scheme for the phase field equations since explicit schemes are simple also for
nonlinear equations. However, as we will see below this comes with the disadvantage that
the step size ∆t can not be chosen arbitrarily large. Implicit schemes are unconditionally
stable, but have the disadvantage that a set of coupled equations needs to be solved.

The rectangular and worm-like computational domains along with the respective bound-
ary conditions can be addressed with the finite difference method in a straightforward way.
To study the model dynamics in the rectangular domain Ωr, we use the grid introduced in
Eq. (A.15). We replace grid points in the finite difference schemes that lie outside the grid
by using a discretized version of the respective boundary conditions [195]. For example,
we use the discretized no-flux boundary conditions

ϕn
0,j − ϕn

−1,j

∆x = 0
ϕn

Ny ,j − ϕn
Ny−1,j

∆x = 0 (A.25)

of the phase field at the bottom and top boundary to eliminate grid points ϕ−1,j and
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ϕNy−1,j and likewise for the morphogen concentration. We use the discretized version of
the periodic boundary conditions

ϕi,−1 = ϕi,Ny−1 ϕi,Ny = ϕi,0 (A.26)

to eliminate grid points ϕi,−1 and ϕi,Ny and likewise for the morphogen concentration. To
study model dynamics in the worm like domain, we again employ the grid introduced
in Eq. (A.15). We use the finite difference schemes for grid points in Ω along with the
respective replacements at the boundaries. We enforce the value ϕi,j = 1 for grid points
in Ωpb.

We construct the primary branch domain Ωpb in a four-step procedure. We first draw
the boundary of an ellipse centered at (xp,0, yp,0) with minor axis length lp,x and major axis
length lp,y (Fig. A.2a) This ellipse serves as the part of the primary branch that encloses
the pharynx region. Next, we draw a straight line with thickness bpb from the top of the
computational domain to its intersection with the pharynx enclosing part of the primary
branch (Fig. A.2b). Next, we draw two parallel straight lines with distance dpb from the
bottom of the system to the pharynx enclosing part of the primary branch (Fig. A.2c).
Finally, we remove the pharynx enclosing part of the primary branch between the two
parallel straight lines (Fig. A.2d).

To efficiently implement the numerical solution of the model equations, we rewrite
the finite difference schemes in vector form. While the update scheme for the phase
field dynamics is easily implemented, the update scheme for the morphogen concentration
constitutes an implicit equation, which we solve by using the conjugate gradient method
[162].

A.4 Numerical stability and non-uniform step size scheme

We now discuss the numerical stability of the finite difference schemes Eq. (A.21) and
Eq. (A.23). This provides us with criteria for choosing step size ∆t and grid resolution ∆x
and ∆y. Moreover, it will allow us to propose an adaptive step size scheme that satisfies
the constraints imposed by numerical stability, but also reduces the number of time steps
needed.

To understand the numerical stability of the finite difference scheme Eq. (A.21) for the
phase field, we study the (reduced) scheme

ϕn+1
i,j − ϕn

i,j = Fϕ,x(ϕn
i+1,j − 2ϕn

i,j + ϕn
i−1,j) + Fϕ,y(ϕn

i,j+1 − 2ϕn
i,j + ϕn

i,j−1), (A.27)
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where we consider the time-independent Fourier numbers Fϕ and neglected the source term
r to simplify analysis. Even though we consider only a reduced finite difference scheme,
the analysis of its numerical stability will still provide useful qualitative predictions. We
employ the Neumann analysis as a basic tool for studying the numerical stability of linear
finite difference schemes with constant coefficients [195]. According to this analysis, we
study the time dependence of the solutions ϕn

i,j by making the ansatz

ϕn
l,j = Aneiqxl∆xeiqyj∆y, (A.28)

where A denotes the amplification factor1. A numerical scheme is called stable if |A| < 1
holds for all Fourier modes. By inserting the ansatz into Eq. (A.27) and solving for A, we
find

A = 1 − 4Fϕ,x sin2
(
qx∆x

2

)
− 4Fϕ,y sin2

(
qy∆y

2

)
(A.29)

and conclude that the reduced numerical scheme is stable if Fϕ,x + Fϕ,y <
1
2 holds. Due

to the dependency of the Fourier numbers on the step size and grid spacing, this relation
constitutes a constraint for the chosen discretization. Note that this finding is in qualitative
agreement with our observations for the full finite difference scheme. There we found
heuristically that for numerical stability Fϕ,x + Fϕ,y < c needs to hold, where c is a
constant that depends on the model parameters and was found to be c < 1/2.

To understand the stability of the numerical scheme of the morphogen concentration,
we proceed in a similar way. We use the (reduced) scheme

cn+1
i,j − cn

i,j = Fc,x(cn+1
i+1,j − 2cn+1

i,j + cn+1
i−1,j) + Fc,y(cn+1

i,j+1 − 2cn+1
i,j + cn+1

i,j−1)
−k(ϕn+1

i,j )∆tcn+1
i,j ,

(A.30)

where we assumed time-independent Fourier numbers Fc and neglected the concentration-
independent source term s as it is irrelevant for the numerical stability. We insert the
ansatz

cn
l,j = Aneiqxl∆xeiqyj∆y, (A.31)

into Eq. (A.30) and determine the amplification factor A:

A = 1
1 + 4Fc,x sin2

(
qx∆x

2

)
+ 4Fc,y sin2

(
qy∆y

2

)
+ k∆t

(A.32)

1Note that the superscript indicates a power, not the time step.
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According to this, the numerical scheme is stable irrespective of grid resolution ∆x, ∆y,
and temporal step size ∆t.

The conditions for numerical stability and the interface properties presented in chapter 3
inform our choices of step size ∆t and grid spacing ∆x and ∆y. We choose the grid
spacing such that an interface of width w can be resolved (∆x = ∆y ≈ w). In the
case of a growing organism the interface width decreases and we ensure that the smallest
encountered interface width is resolved. For given grid spacing ∆x and ∆y, the numerical
stability of the explicit Euler scheme employed for the phase field equation determines the
allowed step size ∆t. For a given grid spacing, we choose step size ∆t such that the sum
of Fourier numbers is smaller than an empirically found threshold c at every time step.

An important constraint of our numerical scheme is the limitation on Fourier numbers
and thus the time step ∆t introduced by the explicit scheme used to discretize the phase
field equation. For a given grid spacing the time step ∆t needs to be chosen small enough
to ensure numerical stability. However, we can relax the constraint imposed on time
steps for simulations with non-zero growth rate due to the time-dependency of Fourier
numbers in this case. For example, for simulations including constant growth rates gi, the
Fourier number decreases exponentially in time and the time step ∆t can be increased
exponentially in time without affecting numerical stability. In general, we can choose the
time step

∆t = F 0
ϕ,x

τ

ξ2 ∆x2e2G(tn) (A.33)

for simulations with non-zero growth rate gi, where we introduced G = min(Gx, Gy) and
also assumed a square grid (∆x = ∆y). The corresponding sequence of time points tn at
which we obtain the solution then reads

tn+1 = F 0
ϕ,x

τ

ξ2 ∆x2e2G(tn) + tn (A.34)

and we find for the Fourier numbers at every time step

F n
ϕ,x = F 0

ϕ,x e
2(G(tn)−Gx(tn))tn F n

ϕ,y = F 0
ϕ,y e

2[G(tn)−Gy(tn)], (A.35)

where we used G = min(Gx, Gy). Given that numerical stability holds for the initial
Fourier numbers, our adaptive step size scheme maintains numerical stability throughout
the simulation while drastically reducing the number of time steps employed.
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Appendix B

Sharp-interface limit of the phase field
equations
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Figure B.1: Sharp interface limit of the phase field method. (a) We show a circular
structure obtained with the phase field method (brown) along with its interface (black).
We denote the radial coordinate by r and the interface position by R. ϕint and ϕbulk denote
the phase field value near and far away from the interface, respectively. (b) Radial cross
section of the phase field profile shown in (a). We use w to denote the interface width.

In this section, we establish the connection between the phase field model given by
Eq. (A.1) presented in the previous section and the corresponding sharp interface limit
presented in the main text by following the approach presented in Refs. [144, 196, 197].
We consider a radially symmetric phase field profile ϕ(r, t) with an interface located at
position R. We study the limit of small interface width w → 0 while the mobility µ and
the surface tension σ are held constant. In particular, we assume that the interface width
is small compared to the radius R (w/R ≪ 1) and to the diffusion degradation lengths
λi (w/λi ≪ 1). Moreover, we assume that for an interface moving with a velocity v the
diffusive timescale td = w2µ is much smaller than the advective time scale ta = v/w of
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Appendix B Sharp-interface limit of the phase field equations

the phase field equation, i.e. we assume the interface Péclet number vwµ is small. We
derive an approximation ϕbulk for the phase field ϕ that is valid for regions far away from
the interface. Likewise, we derive an approximation ϕint of the phase field ϕ that is valid
near the interface. We then use these approximations and relate them to Eq. (5.1) of the
sharp interface limit and derive boundary conditions between the different regions.

Bulk region

We first derive the approximations ϕbulk and cbulk for the phase field and morphogen
concentration in the bulk region, i.e. in regions far away from the interface. We rewrite
the phase field equation from Eq. (A.1a) in the form

µw2 [∂tϕ+ u · n ∂rϕ] = w2∂2
rϕ+ w

r
∂rϕ+ 1

2f
′
s(ϕ) + w

6σ
χ̂

6 f
′
t(ϕ), (B.1)

where we have expressed all parameters in terms of the interface width w and otherwise
constant parameters. We used polar coordinates to express gradients and the Laplacian
and employed the symmetric part fs and tilting ft of the bulk energy contribution defined
in Eq. (3.38). In the limit of small interface width w, gradients in the phase field dynamics
in Eq. (B.1) can be neglected far away from the interface and the phase field equation
reads

f ′
s(ϕbulk) = 0. (B.2)

The symmetric part fs of the bulk energy contribution has minima at ϕ = 0, 1 and therefore
we find that far away from the interface, the phase field takes the values

ϕbulk = 0, 1. (B.3)

Using the bulk values ϕbulk and inserting them into Eq. (A.1b), we find

∂tc
bulk + u · ∇cbulk = D∇2cbulk − [k(ϕbulk) + gx + gy]cbulk + s(ϕbulk). (B.4)

For ϕbulk = 1, this gives the dynamics for the “in” and for ϕbulk = 0, we recover the
dynamics for the “out” region.
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Interface region

To examine the behavior of morphogen concentration and phase field near the interface,
we use the coordinate transformation

r̃ = r −R

w
. (B.5)

With this transformation we move to a reference frame that is comoving with an interface
located at position R. Moreover, the rescaling (“stretching”) of r̃ with the interface width
allows us to study the phase field and morphogen profiles near the interface. We first
apply this transformation to the phase field dynamics in Eq. (B.1) and find

µw2
[
∂tϕ− vn

1
w
∂r̃ϕ+ u(wr̃ + R) · n

1
w
∂r̃ϕ

]
= ∂2

r̃ϕ+ w

wr̃ +R
∂r̃ϕ+ 1

2f
′
s(ϕ) + w

6σ
χ̂

6 f
′
t(ϕ),

(B.6)

where we have used vn = Ṙ. In the limit w → 0, we find that near the interface the
behavior of ϕ is governed by

0 = ∂2
r̃ϕ

int + 1
2f

′
s(ϕint). (B.7)

To ensure that the solution ϕint approaches the values of values of the phase field in the
bulk region for the limit ϕint(r̃±∞), we solve this equation using the boundary conditions
ϕint(−∞) = 1 and ϕint(∞) = 0. The phase field profile near the interface is given by

ϕint(r̃) = 1
2

[
1 − tanh

(
r̃

2

)]
. (B.8)

Note that this is a rescaled version of the 1D phase field profile Eq. (3.42) with v = 0.
Thus, we find that the phase field profile of a weakly curved interface is locally given by
a 1D phase field profile.

To study the morphogen concentration near the interface, we apply the transformation
Eq. (B.5) to Eq. (A.1b) and find

w2

D

[
∂tc− vn

1
w
∂r̃c+ u(wr̃ + R) · n

1
w
∂r̃c

]
= ∂2

r̃ c+ w

r̃w +R
∂r̃c− w2

D
[k(ϕ) + gx + gy]c

+w
2

D
s(ϕ).

(B.9)

In the limit w → 0 we find that the morphogen concentration cint near the interface is
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governed by

∂2
r̃ c

int = 0. (B.10)

From this, it follows that cint(r̃) = Ar̃ + B, where A,B are integration constants. Since
the morphogen concentration cint has to be bounded for r̃ → ∞, we conclude that A = 0
and obtain cint(r̃) = const, i.e. that the morphogen concentration near the interface is
constant.

Interface velocity and boundary conditions at the interface

We calculate the interface velocity vn by performing an integration of the governing equa-
tion of ϕ in a neighborhood of size ℓ around the interface. We choose the neighborhood
such that w ≪ ℓ ≪ λi. The governing equation of ϕ at the interface position R reads

µw2 [−vn∂rϕ− u(R) · n∂rϕ− u(r) · n∂rϕ] = w2
[
∂2

rϕ+ 1
r +R

∂rϕ
]

+ w

6σf
′(ϕ). (B.11)

We multiply both sides by ∂rϕ and integrate over R − ℓ ≪ r ≪ R + ℓ and find

µw2 1
6w [−vn − u(R) · n] = w2 1

6w
1
R

+ w

6σ
χ̂

6 , (B.12)

where we have used
∫
(∂rϕ)2 = 1/(6w). We then arrive at the relation for interface velocity

vn = 1
µ

[
χ̂

6σ − 1
R

]
+ u(R) · n (B.13)

and recall that χ̂ = Γ̂Θ̂ + âΞ with

Γ̂(c) = v̂0 − γ̂c(x, y) (B.14a)

Θ̂ = 1 − δ

[
1 − (−∇ϕ)

|∇ϕ| · m

]
. (B.14b)

This relation Eq. (B.13) for interface velocity is central as it allows us to relate quantities
in the phase field model (with hat) to quantities in the continuum model (without hat).

To relate parameters in the phase field and continuum model, we first recall the interface
dynamics in the continuum model

vn = ΓΘ − βκ+ u · n + aΞ (B.15)

156



together with

Γ = v0 − γc (B.16a)
Θ = 1 − 2δ sin2(θ/2) (B.16b)

By comparing Eq. (B.13) and Eq. (B.15), we make the identifications v0 = ξ/a
τ
v̂0, γ = ξ/a

τ
γ̂,

and β = ξ2

τ
. For the case of a non-zero noise amplitude â that is added to χ̂, we find

a = ξ/a
τ
â. We can derive the dependency of interface growth on external orientation field

by using the relation [196]

(−∇ϕ)
|∇ϕ| = n, (B.17)

which holds for w → 0. We use n ·m = cos(θ) together with the trigonemetric identity 1−
cos(θ) = 2 sin2(θ/2) and obtain Θ = 1 − 2δ sin2(θ/2). Since the morphogen concentration
near the interface is constant, the boundary conditions Eq. (5.6) follow trivially.
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Appendix C

Morphometry of branched patterns

In this appendix, we present details on various quantifications of branched structures that
we used in the main text.

C.1 Quantifying branch distance and branch thickness

To determine the branch distance and thickness in phase field simulations of systems
with rectangular geometry, we first obtain the binarized phase field ϕ̄ and its skeleton
(Fig. C.1a). The binarized phase field is defined on the basis of the phase field ϕ by

ϕ̄ =

1 ϕ > 1/2

0 ϕ ≤ 1/2
. (C.1)

The skeleton is a one-pixel wide representation of the binarized phase field ϕ̄ with the same
conncectivity as ϕ̄ and was obtained with the skeletonization algorithm implemented in
the scikit package [198, 199]. The binarized phase field and its skeleton are central to our
analysis and allow us to determine branch distance and thickness in a simplified manner.

For the quantification of branch distance and thickness, we consider each row j of the
discretized and binarized phase field ϕ̄ij and skeleton separately (Fig. C.1bc) Considering
each row in turn, we determined the distance dk of subsequent peaks in the skeleton and the
length bk of regions of consecutive 1s. The branch distance d and thickness b corresponding
to the entire phase field configuration is then determined from the arithmetic mean

d = 1
Nd

∑
k

dk b = 1
Nb

∑
k

bk (C.2)

of the respective quantity, where Nd denotes the total number of all regions between peaks
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Figure C.1: Quantification of branch distance d and thickness b in a rectangular
geometry. (a) We show the binarized phase field ϕ̄ij resulting from a simulation of the
model presented in chapter 3. (b,c) We show the binarized phase field ϕ̄ij (brown) and
skeleton (yellow) for two example rows from the image shown in (a). We indicate the
distance dk of two peaks of the skeleton and the length bk of a region of consecutive 1s in
the binarized phase field. In each case, we show the number n of periods in the respective
row, the mean branch distance d, and mean branch thickness b for the row.

in the skeleton and Nb denotes the total number of regions of consecutive 1s. The error
shown along with the mean in the main text corresponds to the standard deviation of
dk and bk. Note that our method takes into account periodic boundary conditions. To
demonstrate this, we applied our method to a row corresponding to a branch configuration
with and without overlap at the system boundary (Fig. C.1b,c). In both cases, the number
n of periods in the row is correctly estimated.

C.2 Definition of branch points
The identification of branch points in the skeleton of gut structures obtained from exper-
iments and simulations is a central element of our analysis. The classification of a lattice
site (i, j) as branch point or tip is based on local 3×3 neighborhood around the respective
lattice site (Fig. C.2). An occupied lattice site (nij = 1) is called a threefold branch point if
it has more than two occupied neighbors and the local neighborhood has three unoccupied
non-connected regions. Similarly, we call an occupied lattice site a fourfold branch point if
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“T” “X” “tilted X”“Y”

“tilted T” “tilted Y” “tilted X” “tilted X”

(a) (b) (c)threefold branch points tipsfourfold branch points

Figure C.2: Definition of branch points and tips. The definition of branch points
and tips is based on local, 3 × 3 neighborhoods that contain occupied (nij = 1) and
unoccupied (nij = 0) sites. (a) Threefold branch points are occupied lattice sites with more
than two occupied neighbors and a neighborhood with three unoccupied non-connected
regions. (b) Fourfold branch points are occupied lattice sites with more than two occupied
neighbors and a neighborhood with four unoccupied non-connected regions. (c) Tips are
occupied lattice sites with exactly one occupied neighbor.

it has more than two occupied neighbors, but the local neighborhood is divided into four
unoccupied non-connected regions. Finally, we call an occupied lattice site a tip if it has
exactly one occupied neighbor. Thus, the local neighborhood of a tip has one unoccupied
connected region. We identify the local neighborhoods satisfying these criteria (Fig. C.2)
and label tips and branch points accordingly in the skeleton (Fig. C.3).
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Appendix C Morphometry of branched patterns
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Figure C.3: Identification of vertices. We show the branch points and tips (dark
brown) obtained in a skeleton of an experimental gut structure from the vertex definitions
shown in Fig. C.2
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Appendix D

Parameter values used in this thesis

In this chapter, we provide parameter values and additional information that is needed to
generate the data used in this thesis.

In Fig. 5.9, we used the following procedure to generate differently sized organisms.
We first choose gy = 1 and gx = rgy, where r is the anisotropy parameter. We choose
organism size according to Li = Li,0e

git with t ∈ [0, 1
gx+gy

log(sA)], where sA denotes the
relative area increase and was sA = 65. In Fig. 5.8a, we adopt a similar strategy, but
choose Li = Li,0e

git with t ∈ [0, 1
gy

log(sL)], where sL denotes the relative length increase.
In both cases, we adapt the relative pharynx size lx/Lx, ly/Ly, and pharynx position yp/Ly

to organism size as follows. We found that relative pharynx size and position obey the
function

f(s) = ae−sL/b + c, (D.1)

where the parameter values for the respective cases are

lx/Lx : a = 0.22 b = 1.23 c = 0.20
ly/Ly : a = 0.16 b = 1.52 c = 0.07
yp/Ly : a = −0.21 b = 5.24 c = 0.59.

These parameters were initially determined from a fit of the corresponding data with
respect to system length using Eq. (D.1), but afterwards adjusted, as for example the
pharynx region in small worms was found to be too large and almost collided with the
organism boundary. We additionally employed lp,x = 1.15lx and lp,y = 1.15ly for the
elliptical part of the primary branch around the pharynx in both figures. In both figures,
we additionally employed the rescaling D̃i

ext = (Li/Li,0)2Di
ext, where D̃i

ext denotes the
diffusion constant of the external morphogen in a system of increased size. This rescaling
adjusts the degradation length of the second morphogen with system size.
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Appendix D Parameter values used in this thesis

Table D.1: Parameters used in chapter 2.
Symbol Unit Fig. 2,6 Fig. 3,7c Fig. 3,7d Fig. 8
N / 250 512 512 100
a a 1 1 1 1
M / 7500 10000 10000 1000
k0

+ k0
+ 1 1 1 1

k0
− k0

+ 0 0 0 -1
D a2k0

+ 1 1 [1, 1012] 1
kin k0

+ 10000 10000 10000 10000
kout k0

+ 1.6 · 10−9 [3.81 · 10−1, 3.82 · 10−11] [4 · 10−10, 3.81 · 102] 1.6 · 10−9

sin k0
+ 10000 1 1 10000

sout k0
+ 0 0 0 0

In Fig. 5.10 and Fig. 5.11 we used the following procedure to generate differently sized
organisms. Given a range of growth rates gy, we determined gx = rgy and run the
simulation for T = 1

gy
log(sL) with sL = 9.5.
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Appendix D Parameter values used in this thesis
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