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Abstract

The self-organisation of cells into complex tissues relies on the tight regulation of
molecular processes governing their behaviour. Understanding these processes is a cen-
tral questions in cell biology. In recent years, technological breakthroughs in single-
cell sequencing experiments have enabled us to probe these processes with unprece-
dented molecular detail. However, biological function relies on collective processes on
the mesoscopic and macroscopic scale, which do not necessarily obey the rules that
govern it on the microscopic scale. Insights from these experiments on how collective
processes determine cellular behaviour consequently remain severely limited. Meth-
ods from nonequilibrium statistical physics provide a rigorous framework to connect
microscopic measurements to their mesoscopic or macroscopic consequences.
In this thesis, by combining for the first time the possibilities of single-cell technolo-

gies and tools from nonequilbrium statistical physics, we develop theoretical frameworks
that overcome these conceptual limitations. In particular, we derive a theory that maps
measurements along the linear sequence of the DNA to mesoscopic processes in space
and time in the cell nucleus. We demonstrate this approach in the context of the es-
tablishment of chemical modifications of the DNA (DNA methylation) during early
embryonic development. Drawing on sequencing experiments both in vitro and in vivo,
we find that the embryonic DNA methylome is established through the interplay be-
tween DNA methylation and 30-40 nm dynamic chromatin condensates. This interplay
gives rise to hallmark scaling behaviour with an exponent of 5/2 in the time evolution
of embryonic DNA methylation and time dependent, scale-free connected correlation
functions, both of which are predicted by our theory. Using this theory, we successfully
identify regions of the DNA that carry DNA methylation patterns anticipating cellular
symmetry breaking in vivo.
The primary layer determining cell identity is gene expression. However, read-outs of

gene-expression profiling experiments are dominated by systematic technical noise and
they do not provide “stochiometric” measurements that allow experimental data to be
predicted by theories. Here, by developing effective spin glass methods, we show that
the macroscopic propagation of fluctuations in the concentration of mRNA molecules
gives direct information on the physical mechanisms governing cell states, independent
of technical bias. We find that gene expression fluctuations may exhibit glassy be-
haviour such that they are long-lived and carry biological information. We demonstrate
the biological relevance of glassy fluctuations by analysing single-cell RNA sequencing
experiments of mouse neurogenesis.
Taken together, we overcome important conceptual limitations of emerging technolo-

gies in biology and pioneer the application of methods from stochastic processes, spin
glasses, field and renormalization group theories to single-cell genomics.
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Zusammenfassung

Die Selbstorganisation von Zellen zu komplexen Geweben beruht auf der strengen Re-
gulierung molekularer Prozesse, welche ihr Verhalten bestimmen. Diese Prozesse zu
verstehen ist eine zentrale Frage der Zellbiologie. In den letzten Jahren haben techno-
logische Durchbrüche bei Einzelzell-Sequenzierungsexperimenten uns ermöglicht, diese
Prozesse mit noch nie dagewesenen molekularen Details zu untersuchen. Biologische
Funktionen beruhen jedoch auf kollektiven Prozessen auf der mesoskopischen und ma-
kroskopischen Ebene, die nicht unbedingt auf den selben Prinzipien basieren, denen
sie auf der mikroskopischen Skala unterliegen. Die Erkenntnisse aus diesen Experi-
menten über die Bestimmung des zellulären Verhaltens durch kollektive Prozesse blei-
ben daher stark begrenzt. Methoden der statistischen Nichtgleichgewichtsphysik bieten
einen präzisen Rahmen, um mikroskopische Messungen mit ihren mesoskopischen oder
makroskopischen Konsequenzen zu verbinden. In dieser Arbeit kombinieren wir zum
ersten Mal die Möglichkeiten der Einzelzelltechnologie mit den Werkzeugen der sta-
tistischen Physik in Nichtgleichgewichtssystemen und entwickeln einen theoretischen
Rahmen, der diese konzeptionellen Einschränkungen überwindet. Insbesondere leiten
wir eine Theorie ab, die Messungen entlang der linearen Sequenz der DNA auf meso-
skopische Prozesse in Raum und Zeit im Zellkern abbildet. Wir demonstrieren diesen
Ansatz im Zusammenhang mit der Etablierung chemischer Modifikationen der DNA
(DNA-Methylierung) während früher Embryonalentwicklung. Anhand von Sequenzie-
rungsexperimenten sowohl in vitro als auch in vivo, stellen wir fest, dass das em-
bryonale DNA-Methylom durch das Zusammenspiel von DNA-Methylierung und 30-40
nm großen dynamischen Chromatinkondensaten gebildet wird. Dieses Zusammenspiel
führt zu einem charakteristischen Skalierungsverhalten mit einem Exponenten von 5/2
in der zeitlichen Entwicklung der embryonalen DNA-Methylierung und zeitabhängi-
gen, skalenfreien Korrelationsfunktionen, die beide von unserer Theorie vorhergesagt
werden. Mit Hilfe dieser Theorie gelingt es uns DNA-Regionen zu identifizieren, die
DNA-Methylierungsmuster tragen, welche zelluläre Symmetriebrechungen in vivo vor-
hersagen. Genexpression ist die primäre Ebene, die die Zellidentität bestimmt. Die Er-
gebnisse von Experimenten zur Erstellung von Genexpressionsprofilen werden jedoch
durch systematisches technisches Rauschen dominiert und liefern keine „stochiometri-
schen“Messungen, welche eine Vorhersage der experimentellen Daten durch Theorien
ermöglichen würden. Durch die Entwicklung effektiver Spinglass-Methoden können wir

vii



unabhängig von technischen Verzerrungen zeigen, dass die makroskopische Ausbreitung
von Fluktuationen in der Konzentration von mRNA-Molekülen direkte Informationen
über die physikalischen Mechanismen liefert, die den Zelltyp festlegen. Wir stellen fest,
dass Fluktuationen in der Genexpression ein glasartiges Verhalten aufweisen können,
sodass sie langlebig sind und biologische Informationen enthalten. Wir demonstrieren
die biologische Relevanz glasartiger Fluktuationen durch die Analyse von Einzelzell-
RNA-Sequenzierungsexperimenten während der Neurogenese in Mäusen. Insgesamt
überwinden wir somit wichtige konzeptionelle Beschränkungen aufkommender Tech-
nologien in der Biologie und leisten Pionierarbeit bei der Anwendung von Methoden
aus den Bereichen Spin-Gläser, stochastische Prozesse, Renormierungsgruppen- und
Feldtheorien auf die Einzelzellgenomik.
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1. Introduction

1.1. Bridging physics and single-cell genomics

What is life? This is not only a rhetorical question that you will hear by someone trying
to flirt in a club, but it is also the title of a fascinating book by Erwin Schrödinger
[1], who asked himself the same questions, for possibly deeper reasons. If we just try
to pause for a moment and think about what life is, we would have a hard time even
to figure out where to start. Possibly, depending on your interests and experience, you
would have a different starting point: the origin of life, the social life or the development
of life. Personally, what fascinated me the most and let me start the PhD journey is the
latter one. In particular: how do cells self organise into tissues and organs? How can
they make precise decisions in space and time, despite the noisy environment they live
in? Understanding the mechanisms underlying the regulation of cell fate is pivotal, not
only for a comprehension of the processes responsible for development, regeneration
and ageing, but also for diseases that occur upon disregulation of these processes, such
as cancer. In order to characterize many biological processes that occurs during the
life of an individual - cell decisions are not an exception - it is fundamental to consider
their energetic costs. Biological processes require a flux of energy from the environment,
which is essential for life. But how do different organisms process this flux of energy?
Schrödinger and many others after him would have replied that energy is essential to
form structures, so eventually to make order. There is a constant battle throughout
our life between energy, which builds order, and entropy, which destroys it. We already
know which one is the winner, as eventually, the death is the inevitable triumph of
entropy. A net flux of energy, in a physical language, is associated with systems out
of thermal equilibrium. Nonequilibrium physics then arises as a natural framework to
understand development and cell behaviour [2]. In order to study the development of
life we cannot withdraw from a theoretical understanding of systems out of equilibrium.
As mentioned, we still need a starting point as the factors involved in cells behaviour
are quite too many to be covered in a thesis, or even 100 of them. We thus look at
the minimal scale that current technologies allow us, which is the molecular one. On
the molecular level, different processes are involved in regulating cellular fate [3]. One
factor, which historically has been extensively covered is the expression of genes [4].
In the last decades, it has become clear that there are additional, epigenetic layers of
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1. Introduction

regulation: dynamic changes in the way the DNA is folded, modifications to the protein
complexes around which the DNA is wrapped and chemical modifications of the DNA
itself play a role in determining cell fate.

Figure 1.1.: DNA methylation and DNA compaction of chromosome 1 of the mouse
embryo at a base pair resolution for hundreds of cells from single-cell sequencing ex-
periments.

This is our starting point, but we always have to keep in mind that no process is
completely decoupled from the other, such that the more we explore the neighbours of
our starting point the more connections we will find. In this thesis, I will offer a uni-
fied theoretical and conceptual framework to deal with some of them. Even though all
these layers of cell regulation have been known for decades, only in recent years tech-
nological breakthroughs in single-cell biology allow probing them with unprecedented
microscopic detail in living organisms (in vivo) [5]. In sequencing experiments we ob-
tain information on the expression of thousands of genes, a detailed molecular profile of
epigenetic modifications and even the spatial organisation at single-cell resolution. The
breakthrough is that we can profile all these layers of regulation, at the same time, for a
single cell (Fig. 1.1), which we refer to as multi-omics. Single-cell multi-omics technolo-
gies have led to detailed descriptions of the molecular processes underlying cellular be-
haviour [6]. Such a breakthrough posed some questions about the way we were thinking
about cell types, changing it from a discrete representation to a continuous one. Going
even deeper, we still struggle to properly define what a cell type is, or whether this
concept might be obsolete. As nothing is completely decoupled, even the knowledge of
all these layers is not enough to get a full comprehensive idea. Biological functions, such
as cell differentiation or proliferation are determined by emergent (collective) states on
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1.1. Bridging physics and single-cell genomics

the cellular and tissue scale that arise from interactions between processes occurring at
the molecular scale, but the collective properties of interacting many-particle systems
do not necessarily obey the rules that govern the microscopic scales. Schrödinger him-
self would have had a hard time to understand how ferromagnetism works by solving
the associated Schrödinger equation describing detailed atomic interactions. In biology,
the problem we are facing is similar, as the collective dynamics underlying biological
function cannot be straightforwardly inferred from detailed molecular measurements.
Hence, despite the excitement brought by novel developments in single-cell genomics
(“2018 breakthrough of the year” by Science), insights from these technologies remain
descriptive until matched with methods to identify collective degrees of freedom. We
thus arrived to the central question of this thesis: How can we unveil from detailed
quantitative information of the microscopic scale the emergent processes that deter-
mine biological function at the cellular and tissue scale? For an untrained eye, this
looks like the solution to a puzzle for which we have all the constituent building blocks
accessible via multi-omics experiments. Why can we not solve the puzzle? Rephrasing
the question in more daily life terms: would we be able to understand how an engine
works by looking at its individual components? The challenge is not only to rebuild the
engine, but to understand the consequences of taking away just one particular screw,
which in the analogy is as if we were provoking a disease in a body. The knowledge of
the building blocks is not enough, but we need to understand how they work together,
a phenomena know as emergence of collective behaviour. Collective behaviour is key
to understand processes such as symmetry breaking: how can two identical cells make
different decisions? What are the factors involved in these decisions? Non equilbrium
physics of complex systems deals with the solution of these puzzles, by studying how
emergence of macroscopic collective behaviour arises from microscopic interactions. In
particular, field theory and renormalization group theories [7, 8], which give a theoret-
ical framework to infer different contributions of microscopic degrees of freedom, come
as a natural and powerful framework to begin to understand the collective processes
underlying cellular behaviour and symmetry breaking in vivo. Recent technological ad-
vances, such as deep learning, may suggest that the analysis of big single-cell data set,
as in Fig. 1.1, has a better performance when done by an artificial intelligence [9]. If an
artificial intelligence can humiliate the best Go players in the world, it can do the same
with physicists [10]. Artificial intelligence can only be used as a powerful predictive
tool, but, due to the lack of general conceptual framework, it remains descriptive and
not suited to bridge the scales ranging from microscopic to macroscopic. In particular,
it will not provide insight into the underlying rules governing the mechanisms of cell
behaviour for the following reasons: First, it requires solving a difficult “inverse” prob-
lem which involves mapping given sequencing profiles to one out of an infinite number
of processes in space and time. Solving this problem computationally involves probing
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a large number of such processes for consistency with the sequencing data. Secondly,
emergent properties of interacting complex systems do not usually obey the rules that
act on its constituents (emergence). A mechanistic understanding of biological pro-
cesses does not only allow us to still give accurate predictions, but when something
changes with respect to our predictions, we can pinpoint the causes of the change and
eventually open up the world to something unexpected. As an example, the breaking
of a certain mechanism can give insight into the particular causes of a disease and the
understanding of it will greatly simplify the work to find a cure for it. In this thesis,
we will pursue an interdisciplinary approach and combine novel technologies in single-
cell genomics and nonequilibrium statistical physics to understand collective processes
underlying cellular behaviour. Our work will aid to overcome important conceptual lim-
itations in genomics inferring the emergence of macroscopic and collective behaviour
from molecular measurements, and provides a framework for understanding the func-
tion of key biological processes underlying cellular regulation. At the same time, we will
take an interdisciplinary approach to tackle fundamental questions in nonequilibrium
physics. Specifically, we will develop and solve original theories for out of equilibrium
field theories with non-local and non-linear interactions, scale invariance of processes
that are not close to a critical point, disordered systems without symmetries and multi
scale interacting complex systems. In the following part of the introduction, we will
describe the biology of gene expression and DNA methylation as fundamental mecha-
nisms underlying cell behaviour and their dynamic changes throughout the life span of
an individual. Later, we will give a more detailed description of current technologies in
genomics and their limitations. Finally, we will introduce the main theoretical concepts
and tools of out of equilbrium systems used in this thesis.

1.2. Biological background

1.2.1. Epigenetics

Although there are different definitions of the term epigenetics, here we will adopt the
definition: “ Epigenetics is the change in the state of expression of a gene that does
not involve a mutation, but that is nevertheless inherited in the absence of the signal
or event that initiated the change ” [11]. Example of epigenetic processes are: changes
in the chromatin structure, histone acethylation, enhancers or DNA methylation. In
this thesis, we will mostly study DNA methylation, which is one of the primary layers
of epigenetic modifications. DNA methylation is a chemical modification that affects
the nucleic acids of the DNA. In particular, in mammals it mostly affects cytosine (C)
when it is next to a guanine (G) adding a methyl group to the cytosine. This base-
pair is referred to as CpG where p stands for the phosphorous between cytosine and
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1.2. Biological background

guanine, and we refer to it as 5mC whenever it is methylated. Methylation patterns
play a crucial role for the development of an individual as well as for its adulthood [12].
Changes in methylation patterns have been associated for example to cancer cells [13]
and furthermore the readout of methylated DNA can be used to infer the biological ages
of individuals [14]. Their tight regulation is thus essential for the life of an individual.
There are three main processes responsible for the changes of DNA methylation:

de novo, maintenance and demethylation DNA methylation. DNA methylation is es-
tablished by enzymes from the DNMT3 family. In particular, DNMT3a/b actively
modify the epigenetic status of CpGs into methylated cytosines Fig. 1.2 A, whilst
DNMT3L are used to recruit the DNMT3a/b. Maintenance of DNA methylation is
the re-establishment of DNA methylation after cell division. During DNA replication,
the new strand is not methylated and DNMT1 reads out the methylated sites on the
template strand and copies them into the new one. Demethylation, as we will later
specify, is caused by lack of DNMT1 or by active removal of methylation marks by
enzymes in the TET family. We will first focus on the establishment of DNA methyla-
tion, also referred to as de novo DNA methylation. We will later explain the effect of
maintenance and demethylation of DNA methylation and its role in ageing and cancer.

Figure 1.2.: (A) Establishment of DNA methylation by DNMT3 enzymes. Methylated
CpG are highlighted in black. (B) Schematic sketch of DNA methylation dynamics
during early mouse development (EN stands for N days after fertilization).

Early embryonic development

During development there are drastic changes at the global and local level of DNA
methylation. In particular, after fertilization, embryonic cells inherit paternal and ma-
ternal DNA methylation marks. In the first days of the mouse embryo, paternal and
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maternal DNAme is erased and it is followed by a wave of de novo DNA methylation. In
particular, the global level of DNA methylation increases from ∼ 20% to ∼ 80% (Fig.
1.2 B). This wave of de novo DNAme precedes the first decisions made by embryonic
cells and is one of the factors that determines their fate [15]. A deep understanding of
how methylation patterns are established is thus key to understand cell fate decision.
The mechanisms of de novo DNAme are largely unknown in vivo and even in in vitro.
Only recently, due to the breakthrough of new technologies [16–18] we got access to a
detailed profiling of DNAme at the base pair resolution for single cell. In [19] DNAme
patterns reveled the specific binding locations of DNMT3A/B at different genomic loci.
DNMT3 enzymes are responsible for de novo DNAme. We can identify three differ-

ent DNMT3 enzymes: DNMT3a, DNMT3b and DNMT3L [20]. These enzymes, during
development, have partially non-overlapping biological functions [21]. In particular,
DNMT3a and DNMT3L enzymes are required for methylation of most imprinted loci
in germ cells [22]. DNMT3b is responsible for methylation of the centromeric region
[23] and its mutations are a cause of facial anomalies syndrome, rare autosomal disease
[24]. DNM3L is catalytically inactive and cooperates with the other DNMT3 enzymes
(Fig. 1.3 A) to methylate the DNA and it is a positive regulator of methylation at the
gene bodies of housekeeping genes [25, 26]. DNMT3L is also involved in the release of
DNMT3a from dense heterochromatin to make it available to act at imprinted differ-
entially methylated regions [27]. The enzymes in the DNMT3 family act together to
establish new methylation marks upon binding to the DNA.
The complex of DNMT3, as shown in Fig. 1.3 B occupies 8-10 bps along the DNA,

whereas CpG have a typical distance of ∼ 100bps. The differences and similarities be-
tween enzymes in the DNMT3 family is evident from the distinct functional domains.
The N-terminal part in DNMT3a and DNMT3b contains two defined domains, ADD
and PWWP, the latter one being absent in DNMT3Ls. The PWWP part is essential
for the targeting of the pericentromeric chromatin and the ADD part part constitutes
a platform for protein-protein interactions. The ADD part also interacts with the N-
terminal part of histones H3 tails, thereby stimulating DNAme. active transcription.
DNMT3L interacts with unmethylated tails of the histone, recruiting DNMT3a at
specific loci [28, 29]. The C-terminal domains of all three DNMT3 have the AdoMet-
dependent MTase fold, but DNMT3L contains several amino acid exchanges and dele-
tions within the conserved DNA-(cytosine C5)-MTase motifs, stressing the impossibility
of catalytic activity by these enzymes [30].
A detailed knowledge of the functions of DNMT3 enzymes, is not sufficient to un-

derstand how they interact between each other in order to bind and methylate the
DNA during development and how it affects the first cell fate decisions made in the
embryo. DNAme provides an epigenetic barrier that reduces developmental potential
by promoting different cellular identity [31]. Changes in methylation allow the zygote
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Figure 1.3.: (A) DNMT3s and their cooperative action along the DNA. (B) Occupa-
tion length in bps of the enzyme group. (C) Functional domains of DNMT3 enzymes.
Figures are adapted from [25, 30].

to erase the epigenetic signature inherited and to regain developmental totipotency. An
in-depth understanding of the mechanisms responsible for changes in DNAme is thus
crucial to tame potency trajectories and diseases.

Ageing and cancer

DNA methylation patterns are not fixed throughout the life of an individual after
de novo DNAme. In particular, there are processes which actively or passively remove
methylation marks. Passive demethylation is caused by maintence of DNAme upon cell
division by DNMT1 enzymes [33]. DNMT1 reads out the methylated strands and copies
the methylation status to the new strand. Passive demethylation is then caused either
by a loss of DNMT1 [34] or by a failure of the “copy-paste” machinery [3]. In Fig. 1.4 A,
we show how DNMT1 enzymes recognize DNA methylated cytosines and methylate the
cytosines on the other strand. After the first DNA replication, the DNA is said to be
hemimethylated before the pattern is restored. It is found [35] that cells with depletion
of DNMT1 progressively lose DNAme at the promoter of the tumor-suppressor gene
CDKN2A. In human cells, DNAme at the the promoter of CDKN2A is associated with
its silencing [36]. In general, DNA methylation can be an early sign to detect cancer
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Figure 1.4.: (A) Maintenance of DNA methylation by DNMT1 enzymes after cell
replication. (B) Differential changes of DNA methylation in cancer cells at the level of
CpG islands (CGI). (C) DNA methylation oscillations driven by de novo methylation,
active and passive demethylation. Figures are adapted from [3, 13, 32].

cells [13]. Without entering into details, even though the specific DNA methylation
patterns are not yet fully understood, regions of the genome with high CpG density
(CpG islands) are usually less methylated in comparison to less dense CpG regions [3].
In cancer cells, the situation is almost reversed (Fig. 1.4 B) and CpG islands (∼ 13000
in the human genome) may undergo de novo methylation whilst demethylation occurs
at the nuclear lamina domains (lamin-bound), which characterize the structure of the
chromatin. This demethylation is thought to be mostly passive and it is caused by a
failure of DNMT1 machinery due to the fast replication in cancer cells [37] . Active
demethylation may happen due to several factors. Here we focus mostly on the role of
the TET enzymes family (TET1/TET2/TET3), which add a hydroxyl group onto the
methyl group of 5mC (DNAme) such that the new methylated CpG will be referred
to as hydroximethylated (5hmC) [38]. CpGs then goes through successive changes of
the chemical modification (C → 5mC → 5hmC → 5fC → . . .) [39] leading to an
active turnover [40]. We can then think of DNA methylation as a clock, Fig. 1.4 C.
Methylation turnover leads to oscillations of DNAme which becomes evident during
exit from pluripotency [32], such that the understanding of such machinery becomes a
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key to unveil symmetry breaking in the embryo. DNAme is not only associated with
development or cancer, but changes of DNAme patterns are observed during ageing [41].
We can then use DNAme to quantify chronological and biological age of individuals.
In the last decade there have been improvements in machine learning techniques and

multiple epigenetic clocks were built. According to [14] a “DNA methylation clock” -
example of an epigenetic clock - is an estimator built from DNAme marks that are
strongly correlated (r ≥ 0.8) with chronological age or time, which can accurately
quantify an age-related phenotype. One of the first clocks [42], tested on blood-derived
DNA, takes only 71 CpGs in order to infer chronological and biological age. An epige-
netic clock constructed in [43] does not need a specific cell line, but it can accurately
predict the age with cells from different tissues. These epigenetic clocks have limita-
tions both from sample sizes and from a lack of mechanistic understanding, but they are
anyway able to measure the biological age of an individual, which may differ between
individuals with the same chronological age.
DNAme then plays an essential role during life and in this thesis we will develop the

analytical and statistical tools to investigate and predict its dynamic changes as well
as to understand the underlying biophysical mechanisms.

1.2.2. Gene expression

Gene expression is the process that allows cells to translate genetic information into
functional proteins. There are many factors involved in the regulation of gene expression
and in the following we summarized some key steps that lead to the production of a
functional protein [3].

• RNA polymerase (RNAP) binds to the promoter of a gene, thus initializing tran-
scription.

• A bound RNAP opens the DNA, exposing the chromatin for roughly 10bps (tran-
scriptional bubble), it then slides along the the gene body one base pair at a time
until it arrives at the terminator part.

• The outputs of this process are either noncoding RNAs or messenger RNAs (mR-
NAs).

• mRNA is translated into functional protein by ribosomes.

As all the the previous steps encode noise, even within this simplified picture, the
expression of a single gene is subjected to great variability making the distribution of
gene expressions possibly long-tailed [44, 45]. On top of that, genes interact with each
other, introducing another source of noise, which may facilitate the regulation of all
the genes in the nucleus, namely gene regulatory networks (GRNs). Interactions are
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Figure 1.5.: Simplified representation of different steps involved in gene expression.
RNA polymerase (star) translate the gene into mRNA which is then transcribed into
protein. Proteins of different genes or the gene itself (self-regulating) can act as acti-
vators or repressors upon binding to enhancer or promoter regions.

essential in the following sense: if there is no interaction between genes, every gene
is transcribed independently from the others. The only way to control transcription
would be to change the rates at which every transcription, translation degradation
process is happening. Even though this is not an absurd scenario, as we will see when
studying the effect of DNAme in gene bodies, it is quite reductive and likely cannot
cope with the time scales of a living cell. The simplest form of interaction we know
are via activator and repressor transcription factor proteins (TFs). Activators bind
to either operator or enhancers and, as the name suggest, they increase the rate of
transcription. The detailed role of enhancers is beyond the scope of this thesis, but
it is fascinating to know that these genetic regions can be even millions of base pairs
far from the promoter of the targeted gene and recruit specific TFs and loop in the
three dimensional space of the nucleus to interact with the the promoter [46]. Repressor
proteins, on the other hand, prevent transcription by binding to operators or enhancers,
Fig. 1.5. Activators and repressors proteins thus give rise to interactions between genes,
changing the distributions of protein and mRNA in a living cell. When interactions are
taken into account, genes form a network where each node interacts with other by
activating or repressing each other. Not every gene plays a role in the transcription of
the other, as two genes may not interact at all. As an example, in E. Coli, the expected
number of genes activating or repressing a target one is 2 − 3 [47], making this GRN
a sparse network. How does the knowledge of GRNs help in understanding cell fate
decision?
Before giving an answer to the last question, we need to know what a cell state is. It

is hard to point out at a single definition of cell state or cell type [48]. We can generally
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say that a given cell type is characterized by the expression of certain genes and the
downregulation of others. Understanding how different GRNs work helps to infer cell
state transitions and, even more generally, cell types. In particular, during development,
the potency of progenitor cells is increasingly restricted as they undergo numerous fate
decisions Fig. 1.6 A. After fertilization, an organism is comprised of a single cell, which
keeps on dividing. A single cell, upon the first division, becomes two identical cells, then
four, eight, etc... Individuals are clearly not ball of identical cells and something must
happen, in a way that cells take different decisions and form different structures. This
phenomenon is referred to as symmetry breaking. It looks like a complicated concept,
but is not and we all experience that. Imagine that we put a ball carefully on the
top of an hill between two valleys. Where will the ball eventually fall (if it does)? We
would say with conviction that it will fall with 50 % probability in one of the valleys.
This is partially true. If the landscape and the ball itself are perfectly symmetric
(rotationally symmetric), then 50 % should be the outcome. We said partially true
because when all the details are taken into account we could realise that the hill is
actually not as smooth as we thought and there might be a little bit of wind blowing
in a particular direction. If we had known all these conditions, we would have been
able to tell in which valley the ball will fall. In physics, for example, the ball may
pictorially represent a ferromagnetic material and the valleys possible orientation of the
magnetization. If a temperature is quenched from a temperature higher to one lower
than the Curie temperature, the ferromagnetic material will have a net magnetization
in a given direction, breaking the rotational symmetry. Similarly, cells can be pictorially
represented as balls rolling down a hill with many valleys, where a valley is a cell type
(Fig. 1.6 B). This representation is referred to as epigenetic or Waddington landscape
[49]. There have been many attempts to quantify the Waddington landscape [50–52]
and so to relate the pictorial representation to actual quantitative data. As an example,
in (Fig. 1.6 B) there are no axes as it is not clear, as far as our knowledge is concerned,
if they can be uniquely identified in terms of biological parameters. Even though the
Waddington landscape gives a simple picture to hierarchically order cell types, it does
not capture how they are defined cell state transitions with respect to the microscopic
parameters.
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Figure 1.6.: (A) Cell fate decisions during development. Epiblast cells (red) are em-
bryonic progentior cells and have the remarkable capacity to generate any somatic cell
type. Figure adapted from [53]. (B) The Waddington landscape as a pictorial repre-
sentation of cell fate decisions.

1.2.3. Sequencing of DNA and RNA in single cells

In the previous section we introduced two main layers of regulation of cellular symmetry
breaking: gene expression and DNA methylation. Nowadays, sequencing experiments
allow us to quantify both layers at the same time for single cell [6]. We will discuss
mainly two types of sequencing experiment: RNA sequencing (RNA-Seq) and bisulphite
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sequencing (BS-Seq), as the main sequencing concepts are shared between different
experiments. In RNA-Seq and BS-Seq experiment the molecular content of a cell is
first extracted from the nucleus, respectively RNA and DNA, or with current multi-
omics technologies, both at the same time. As a first step, cells need to be sorted. One
possible method is flow-activated cell sorting (FACS), that tags cells with a fluorescent
monoclonal anti-body, which recognizes specific surface markers [5]. The content is
initially fragmented and then amplified, as it would be extremely hard to get any
signal, especially for single cells. This steps introduces technical biases (batch effects)
as the cells are not equally amplified and they have to be corrected in the analysis of
the resulting data set. Batch effects are then a source of technical variability that makes
it extremely hard to compare a data set of the same experiment, done for example,
in different laboratories. As the content was fragmented, there is a further step of
alignment to map back each fragment to the sequence along the DNA or RNA [54, 55].
The information is then stored and further quality control steps must be done in order to
have an informative data set. In particular for DNA sequencing, due to the amplification
steps, whenever the fragments are mapped back to the genome of reference, there might
be multiple fragments for the same part of the genome. The number of fragments
multiplied by the average fragment length and divided by the length of the genome
gives the coverage, which is used for quality control as it is a measure of the information
contents. All the previously introduced steps of sequencing come along with technical
noises and biological variability, thus requiring machine learning and sophisticated
pipelines to obtain quantitative predictions from sequencing experiments. In the next
sections we are going to give more details of the two technologies, but we have to keep
in mind that we will analyse single-cell multi-omics experiment as well, where these
technologies are used together for individual cells.

Bisulphite sequencing

Bisulphite sequencing allows us to obtain information on the methylation status of
CpGs along the DNA sequence [56]. We do not enter into details of the technical
steps of bisulphite sequencing, but we outlined them briefly in Fig. 1.7. In particular,
a DNA strand passes through a bisulphite treatment where all the non-methylated
cytosines are transformed into uracil. Each strand is amplified via polymerase chain
reaction (PCR) and uracil is transformed into thymine, such that, the only cytosines
that are left are the one that were originally methylated. As it is the case for most
of the sequencing experiments, there are mainly two types of bisulphite sequencing:
bulk and single cell. Bulk sequencing pushes together fragments of different samples
such that the individual methylation status of each DNA strand is lost. Single-cell
sequencing maps methylated cytosines of single-cell DNA strands. We will begin by
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showing methods for the analysis of bulk sequencing, as it is the most challenging, and
we will later deal with single-cell data. In Fig. 1.7 we show the outcome of a typical
bulk bisulphite sequencing data. For each sample (sample.id) we have the length of
the fragment as well as its start and end position on the chromosome (seqnames). We
then have the number of CpG per each fragment as well as the number of informative
CpG (number of methylated + number of non-methylated). This is a very crucial part
for sequencing analysis, as due to technical errors, there might be misreads such that
we lose information of some cytosine or even fragments in the process. The number of
informative CpGs in bulk sequencing can be larger than the total number of cytosines
as we might have multiple reads per position from different samples. We then need
to be very careful and compute every statistical observable accounting for different
information contents. One way to do so is to tile the data, as in Fig. 1.7, such that
there are at least 10 informative CpGs per tile. Then, a different weight to each tile
is defined as p+n

n.cpg
, with p, n the number of methylated and unmethylated cytosines

respectively and p + n is the information per fragment. Individual methylation for
each fragment is computed as p+1

p+n+2 [16]. Every global quantity can be computed upon
weighted averages over individual tiles and eventually filtering out regions which are on
the tails of the weights distributions. In single-cell sequencing we do have information
for each individual CpG per cell, but the same procedures of weightings can be applied,
particularly to identify not informative regions of the DNA.
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Figure 1.7.: Sketch of the bisulphite sequencing treatment and data processing
(adapted from [57]). After the bisulphite treatment, the data is collected and regions
which do not have enough coverage are filtered out. In the table we show bulk BS-Seq,
where there is no information on DNA methylation at single CpG resolution but rather
for different fragments. The data is then tiled upon merging different fragments and
finally analysed.

RNA sequencing

As mentioned in the previous section, we have not yet defined a way of how to quantify
gene expression and what the limits of recent technologies are. Specifically, during the
last years, RNA sequencing [58] has come out as a powerful tool to investigate gene
expression and in particular RNA abundances at single-cell resolution [59]. The main
steps of single-cell sequencing are the extraction of RNA followed by mRNA enrich-
ment, which gives a total number of roughly 10-30 million fragments per sample. These
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fragments, encoding information on single gene transcripts, must be first aligned and
then analysed. Via all these steps, we might have already lost a lot of information due
to technical imperfections and, as every fragment of the sample is amplified, there is no
clear relationship between the readout after sequencing with the actual stochiometric
value of the transcripts. We construct a n×m matrix with n is the number of samples
(cells in case of single-cell sequencing) and m the number of genes. The entries are
RNA abundances of single genes. As a first step we need to filter samples as done for
bisulphite sequencing experiments. Specifically, we remove: cells with low reads (tail
of the distribution), cells in which only few genes are expressed and cells with high
number of reads of mitochondrial genes as they are signatures of senescent (non prolif-
erating) cells (Fig. 1.8). Due to different batch effects, a log10 normalization is applied
to the entire matrix. Typically, a gene that does not vary across samples is a sign of
technical errors in the sequencing procedure. In order to avoid keeping genes with these
feature, a certain number of highly variable genes (HVGs)is selected (typically 1000-
2000). The new matrix then is n × h , where h is the number of HVGs. The content
of every cell lies in an h-dimensional space and often some visualization techniques
are implemented in order to have a clearer representation of the data set. In particu-
lar, not all the dimensions may contribute equally to the identification of cell states,
developmental trajectories, etc. In order to better visual the high-dimensional data, a
dimensional reduction is in generally performed. In Fig. 1.8 we show two historically
used dimensional reduction techniques: a principal component analysis [60] (PCA) and
uniform manifold approximation and projection [61] (UMAP). Both techniques have
different advantages and disadvantages, but they achieve the same outcome of visual-
ising cells in a lower dimensional space (typically two-dimensional). We do not enter
into details of the need of different dimensional reduction techniques as it is beyond the
scope of this thesis. Briefly, PCA is an orthogonal linear transformation where the first
principal components are defined in terms of covariances in the original space. On the
other hand, UMAP is non-linear and topology-preserving algorithm which requires that
the original data is uniformly distributed on a Riemann manifold. Interestingly, these
tools may capture structures in the data that are not obvious in higher dimensions. In
order to understand a possible practical use of dimensional reduction, in Fig. 1.8 we
use PCA and UMAP to show different biologically relevant quantities. As an example,
in the PCA plot we show the total number of gene counts and in the UMAP the ex-
pression of the gene Dio3 for all the cells. As we will see later, we can follow trajectories
along dimensional reduction plots to understand how a particular gene changes along
them and, going back to the cells lying on that trajectory, we might find information
on different underlying biological processes. In order to give structure to the RNA-
Seq outcomes, algorithms like k-means clustering [62] are often used. They represent
samples (cells in scRNA-Seq) in a k-nearest neighbor graph, and identify clusters via
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module optimization. Without entering into the specific algorithm details, in general, a
matrix with distances between samples is constructed (samples are expressed as vectors
of gene expression), where the metric can be chosen. After the distances are computed
the closest k samples to one sample are found and then a weighed edge between two
samples based on distances and shared neighbours is produced [63, 64]. After the graph
is built, Leiden and Louvain algorithm [65, 66] use module optimization, by minimizing
a functional on the graph, to define different communities or clusters. Both in k-means
and Leiden or Louvain algorithm an arbitrary parameter is introduced by the choice
of the value k for the first one and on the number of communities to detect for the
latter ones. It becomes clear that, apart from the technical variability of sequencing all
these further steps of analysis introduce biases which must be overcome or smoothed
for a deeper understanding of biological process analysed with RNA-Seq. To conclude,
in this section, we outlined some steps for a bioinformatic and statistical analysis of
RNA-Seq and BS-Seq data set. We showed how both sequencing techniques have their
limitations and in the next section we are going to present some of the theoretical
methods of nonequilibrium systems used in this thesis which will allow us to overcome
these limitations and shed light on underlying biological and physical mechanisms that
are hidden in data sets constructed with sequencing experiments.
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Figure 1.8.: Simplified workflow of standard bionformatics analysis of an RNA se-
quencing experiment. Cells are first filtered based on technical quality: cells with low
number of total RNA counts, low number of total expressed genes (>0) and with high
percentage of mitotic RNA are filtered out. After normalization, informative genes
are selected (highly variable genes) and then dimensional reduction (here UMAP) and
clustering methods algorithms (here Leiden) are used to visualize the data and identify
communities. The data are adapted from [67].

1.3. Theoretical background

1.3.1. Field theoretical methods in nonequilibrium physics

In this section we outline the main field theoretical methods for nonequilibrium statis-
tical physics used throughout the thesis. Field theories, path integrals and renormaliza-
tion group are powerful tools that allow us to predict many statistical and physical ob-
servable [68]. Field theories provide a framework to study biological and physical prob-
lems with arbitrary non-linearities and different sources of noises for spatially extended
stochastic systems. In nonequilibrium physics we mostly deal either with Langevin
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equations, describing the stochastic dynamics of a field, which is a coarse-grained de-
scription of microscopic or macroscopic variables, or master equations, describing the
spatio-temporal changes of a probability distribution itself. Langevin equations may be
described via Fokker Planck equations, describing the probability distribution of the
field [69], in a similar manner as the master equation. The main difference between
the two formulations of a stochastic process is that master equations allow discrete
changes in the variables, whilst Fokker Planck equations are in a continuous form, so
we have to choose the right framework based on the problem we are dealing with. Path
integrals are a closed representation of field theories and their use greatly simplifies,
as we will see, the computation of physical observables. We will first construct a path
integral starting from the Langevin equation, known as Martin-Siggia-Rose-Janssen-
De Dominicis [70–72] and later we will construct it starting from a master equation,
known as Doi-Peliti [73, 74].

Path integral representation of the Langevin equation

We start with a general stochastic partial differential equation describing the dynamics
in space (~x) and time t of a field φ(~x, t),

∂tφ(~x, t) = L(φ(~x, t)) +G(φ(~x, t))η(~x, t) . (1.1)

L and G are general functions of the fields. η(~x, t) is the noise, which in a simple
form is Gaussian and uncorrelated with zero mean and unitary variance, such that
〈η(~x, t)η(~y, t′)〉 = δ(t− t′)δ(~x− ~y), where 〈. . .〉 is the average over multiple realisations
of the noise. This is an arbitrary complicated equation, without a general solution and
we need to find a starting point to construct a path integral. As a wise man told me
once “when you don’t know what to do, just insert an identity!”. There are many ways
to add an identity, but we only know that the field φ(~x, t) must satisfy Eq. (1.1). We
can then write

1 =
∫
D [φ(~x, t)]

∏
~x,t

δ(∂tφ(~x, t)− L(φ(~x, t))−G(φ(~x, t))η(~x, t)) , (1.2)

where D [φ(~x, t)] stands for all the possible values the field can take. We thus found
the identity, at the price of adding a delta function. We can then use the functional
integral representation of the delta function

1 =
∫
D [φ(~x, t)]D

[
iφ̃(~x, t)

]
e
∫
d~x
∫
dt φ̃(~x,t)[−∂tφ(~x,t)+L(φ(~x,t))+G(φ(~x,t))η(~x,t)] , (1.3)

where φ̃(~x, t) is, at this stage of description, a dummy variable introduced as the
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functional representation of the delta function and it has no clear physical meaning. In
the last step we rewrote Eq. (1.1) as a path integral, which is still hard to handle. We
are only interested in a general statistical observable of a physical quantity, that we
defined as O [φ(~x, t)]. Such a quantity may be the average of the field 〈φ(~x, t)〉, time
autocorrelations of a field or spatial correlations between the field at different values of
~x. As the process we are studying is stochastic, we are interested in computing averages
over the noise distributions. In particular, 〈O [φ(~x, t)]〉 can be expressed as,

〈O [φ(~x, t)]〉 =
∫
D [η(~x, t)]P (η(~x, t))O [φ(~x, t)] · 1∫

D [η(~x, t)]P (η(~x, t)) · 1 , (1.4)

where P is the probability distribution of the noise. We multiplied numerator and
denominator by 1, which will be substituted with the definition of the identity, Eq. (1.3).
Upon writing the probability distribution of the Gaussian noise,

〈O [φ(~x, t)]〉 ∝
∫
D [η(~x, t)]

∫
D [φ(~x, t)]D

[
iφ̃(~x, t)

]
e−

1
4

∫
d~x
∫
dt η(~x,t)η(~x,t)

e
∫
d~x
∫
dt φ̃(~x,t)[−∂tφ(~x,t)+L(φ(~x,t))+G(φ(~x,t))η(~x,t)]O [φ(~x, t)] ,

(1.5)

and integrating over the quadratic term in η(~x, t),

〈O [φ(~x, t)]〉 =
∫
D [φ(~x, t)]D

[
iφ̃(~x, t)

]
O [φ(~x, t)] e−S[φ,φ̃] , (1.6)

with

S[φ, φ̃] =
∫
d~x

∫
dt φ̃(~x, t)

[
∂tφ(~x, t)− L(φ(~x, t))−G(φ(~x, t))φ̃(~x, t)

]
, (1.7)

we arrive to the MSRJD path integral formulation of the Langevin equation. In this
formalism, any observable is represented as a path integral over two different fields,
φ̃, φ. In the next section we will arrive to a very similar path integral starting from a
general master equation. We will then show a practical example and how to compute
desired observables.

Path integral representation of the master equation

In this section we present the formalism developed by Doi [73] and Peliti [74] to rep-
resent master equation in a path-integral formulation. We start with the description
of particles evolving on a one dimensional lattice with N sites. This choice is useful
for didactic reasons and close to the specific theories we will develop in the rest of the
thesis. The generalization to higher dimension is straightforward, and not useful for the
purposes of this thesis. We define D = (D1, . . . , DN) the discrete values of the quantity
D across the lattice. At each time step, there are mainly three different process that
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1.3. Theoretical background

can happen.

• D can increase its value by discrete amounts in any lattice sites, or multiple at
once, for example Di → Di + 1.

• D can decrease in a similar manner or

• D can be “reshuffled”, for example, Di → Di − 1 , Dj → Dj + 1.

The third case can be recast in the first two, as it is a decrease and increase at the
same time at two different lattice sites. The probability distribution describing D thus
changes in time according to,

∂tP (D, t) = L+[P (D, t)] + L−[P (D, t)] , (1.8)

where L± are operators describing the creation or annihilation of a particle. To make
a concrete simple example, if there is a spontaneous creation of a particle at any site
with rate k+ and annihilation of two particles with rate k−, the master equation is,

∂tP (D, t) =
∑
i

k+ [P (D, Di − 1, t)− P (D, t)] +

∑
i

k−
[

(Di + 2)(Di + 1)
2 P (D, Di + 2, t)− Di(Di − 1)

2 P (D, t)
]
,

(1.9)

where P (D, Di+n, t) stands for P (D1, D2, . . . , Di+n, . . . , DN , t). Before proceeding
with the path integral representation we introduce a Fock space, in which the proba-
bility distribution is formally written as,

|P (t)〉 =
∑
D
P (D, t)a†D1

1 ...a†DNN |0〉 . (1.10)

The operator a†Dii is the creation operator and formally represents a creation event
at a given site. Di denotes the number of bound enzymes at site i. The creation and
annihilation operators ai, a†i act on the basis |D〉 as follows,

a†i |Di〉 = |Di + 1〉 ,

ai |Di〉 = Di |Di − 1〉 ,
(1.11)

and they follow standard commutation rules, [ai, a†i ] = 1. Using this notation we can
formally rewrite the master equation (1.8) in terms of the operators, a†i , ai,

∂t|P (t)〉 = −H|P (t)〉 , (1.12)

where H is determined by the specific processes taken into consideration. In particular,
H is written only in terms of the creation and annihilation operators. In the specific
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example of Eq. (1.9), H = ∑
i

[
k+(1− a†i ) + k−(1− a† 2

i )a2
i /2

]
. The expectation value

of any observable O(D, t) by definition is

〈O(D, t)〉 =
∑
D
O(D)P (D, t) . (1.13)

After some algebra (Appendix A) we arrive at a closed expression in terms of H as
a path integral,

〈O(D)〉 =
∫
D[φ]D[φ̂]O(φ, φ̂ = 1)e−S[φ̂,φ] , (1.14)

with
S[φ̂, φ] = −

∑
i

φi(tf ) +
∫ tf

0
dt
∑
i

(
φ̂i(t)∂tφi(t) +Hi[φ̂, φ]

)
, (1.15)

In H the following replacements are made due to the coherent state formulation:
a†i → φ̂i , ai → φi, φ = (φ1 . . . φN) and similarly for φ̂. Every observable O(D) has
first to be written in terms of creation and annihilation operators a†, a, which are then
replaced with the fields φ, φ̂ and finally the conjugate field φ̂ must be set to one [8].
If we compare equations (1.14),(1.6) we realise that they have a very similar form,
which is extremely convenient as it overcomes several problems. First of all, starting
with two completely different approaches from different physical scenarios, we arrive
to a common expression that we can treat with the same theoretical tools, such as
renormalization group. The Langevin description is a an approximation for a continu-
ous field of its dynamics, whilst the master equation is an exact representation of all
the possible microscopic processes. Either way, we realise that physical and biological
observables may still, under certain condition, be described with the same theoretical
tools... Is that not fascinating? Before getting too excited, we have to be careful in
the interpretations. The fields φ, φ̂ in both representations still have an unclear phys-
ical meaning. The field φ in the MSRJD path integral is directly related to the real
field, whilst in the Doi-Peliti it is only related via noise averages. By looking at a path
integral, we would need to know the original problem (master or Langevin equation)
before getting into any computation. In this thesis we will not further comment on
different interpretations, as they are fully discussed in several textbooks [7, 8, 68], we
just mention that φ̃ is related in both formalism to response functions. Our main goal is
to use these theoretical tools to predict genomic and physical observables, such that we
will be mostly interested in computing noises averages described in terms of the fields
φ. In particular one observable that we will face throughout the thesis is connected
correlation functions, which we will discuss in the next section. Connected correlation
functions describe how fields are correlated in space or in time, such that they encode
information of the spatio-temporal dynamics.
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1.3. Theoretical background

Figure 1.9.: Highlights of the main theoretical methods applied to genomics in this
thesis. After observation, the data is analysed and the main relevant observables are
identified. The theoretical description is derived in terms of a coarse-grained field or
from microscopic processes. Different descriptions lead to different path integral for-
mulations, which are then used to infer and predict experimental data.
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Cumulant generating functional for correlation functions

In the previous sections we were able to write every observable of a stochastic process
in a path integral formalism. Specifically, correlation functions C(~x, ~y, t, t′) of a field
φ(~x, t) are defined as,

C(~x, ~y, t, t′) = 〈φ(~x, t)φ(~y, t)〉

Cc(~x, ~y, t, t′) = 〈φ(~x, t)φ(~y, t)〉 − 〈φ(~x, t)〉〈φ(~y, t′)〉 .= 〈φ(~x, t)φ(~y, t)〉c ,
(1.16)

Cc are connected correlations and they describe correlations of the fields independently
of changes in their averages. The latter ones are the correlations we are interested as
they are essential, as we will see, to describe processes where the mean does not have
a clear physical meaning. As these are observables of a generic process, we can write
them in the form Eq. (1.14),(1.6). We use the same notation as for the MSRJD (φ̃),
but the same concepts apply to the Doi-Peliti path integral. Specifically, we define a
generating functional of correlations, Z[h, φ, φ̃], as

Z[h, φ, φ̃] =
∫
D[φ, φ̃]e−S[φ,φ̃]+

∫
d~x
∫ tf

0 dt[h(~x,t)φ(~x,t)+h̃(~x,t)φ̃(~x,t)]∫
D[φ, φ̃]e−S[φ,φ̃]

. (1.17)

We introduced auxiliary fields h = (h, h̃), which will eventually be set to zero as they
are not originally present in the path integrals. Path integrals are though essential to
simplify the computation of correlation functions. Connected correlation functions can
then be derived by taking functional derivatives of the logarithm of generating function
(cumulant generating functional) as,

〈φ(~x, t)φ(~y, t′)〉c = δ2

δh(~x, t)δh(~y, t) ln(Z[h, φ, φ̃])|h=0 . (1.18)

It can be easily checked that Eq. (1.18) describes physical correlation functions even for
the Doi-Peliti path integral [75]. The actions S[φ, φ̃] or S[φ, φ̂] are arbitrary complicated
functional of the fields. There are often cases, where the actions contain terms that are
quadratic in the fields. We will refer to the quadratic terms of the action as the bare
action S0. Let us consider the case in which the action can be split into a quadratic
part, which we will refer to as Gaussian or bare and a second part, which contains
all the terms above the second order in the fields, S = S0 + SI . If we neglect for one
moment the SI we can evaluate the generating functional. Upon first transforming the
field theory into Fourier space ~x→ ~q and t→ ω as it is easier to compute correlation
functions in this space, the generating functional is compactly written as,

Z[h, φ, φ̃] ∝
∫
D[φ, φ̃,h] exp

∫
~q,ω
−1

2
(
φ̃ φ

)
Ŝ0

φ̃
φ

+
(
h̃ h

)φ̃
φ

 , (1.19)
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where Ŝ0 is a matrix containing the operators in Fourier space associated to the dynam-
ics and to the second orders terms in the fields. We are left with a Gaussian functional
which leads to,

Z[h] = exp
∫

~q,ω

(
h̃ h
)
Ŝ−1

0

h̃
h

 . (1.20)

It is straightforward to take functional derivatives and find connected correlation
functions. Many interesting physical processes are not often formalised in a way such
that the action is purely Gaussian. In these cases we need to find a way to deal with
higher order terms. We start from a simple didactic case for in order to present how non-
linearities can be treated in stochastic systems expressed as path integrals. Specifically,
we take Eq. (1.1) with L(φ(~x), t) = aφ(~x) + bφ(~x)3 +D∂2

~xφ(~x, t) and G(φ(~x), t) =
√
D.

The only term that will not be quadratic is the cubic term, whilst the quadratic terms
in a, b (quadratic after multiplying by φ̃(~x, t)) will be part of the bare action, such that
bare connected correlations C0(~x, ~y, t, t′) are in Fourier space,

C0(~q, ω) = 2D
ω2 +D2(a+ ~q2)2 . (1.21)

We omit from now on the lower index c to indicate connected correlations. The only
non-linear term in φ3 must be evaluated. If the parameter b is small enough, we may
expect that this term is subleading with respect to the quadratic terms, such that we
can expand the action as,

e−S[φ,φ̃] ' e−S0

[
1− SI + 1

2S
2
I +O(S3

I )
]
, (1.22)

with SI = b
∫
d~x

∫
dt φ(~x, t)3. All the terms in the previous equation are then higher

order moments over the Gaussian distribution e−S0 and they can be computed by means
of Feynman diagrams as we will see. We then developed a procedure to consistently
compute correlation functions from any field theory upon writing the path integral
formulation. We thus have a powerful consequence: as long as we are able to write the
biological process either as a master equation or as a Langevin equation, we have a
workflow to compute every observable no matter how complicated the problem is. In
Fig. 1.9 we outline this workflow schematically. It is clear that the computation of all
the terms in Eq. (1.22) is extremely cumbersome and in the next section we present
how renormalization group methods greatly simplify the task.

1.3.2. Renormalization group theory

Whenever an action is expanded as in Eq. (1.22), there is always a question that we
need to address: to which order should we stop the expansion? Someone would say that
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1. Introduction

as physicist the second order is more than enough, but the first one is sometimes satis-
factory as well. Unfortunately, these expansions are justified when they are controlled,
meaning that we know which terms we are omitting and why we are omitting them. Let
us consider for example that the non-quadratic terms in the action are the cubic one and
a spatially dependent one, e.g. SI = b

∫
d~x

∫
dt φ(~x, t)3 + c

∫
d~x

∫
dt φ(~x, t)2∂2

xφ(~x, t) +
. . .. We would first need to evaluate all this terms at linear order, then at the second
order and so on. Without entering into details, it is clear that this would be a vast
program and we will luckily have to find something different than the path integral
formulation. Moreover, this expansion is not often well behaved or well defined [7].
Renormalization group theory does the job for us, by selecting which terms in the path
integrals are relevant and quantifying how these terms affect connected correlation
functions or more generally, critical exponents associated with a field theory. Renor-
malization has one requirement: the field theory has to be close to a critical point or
has to be scale invariant. We have not yet defined what a critical point of a field the-
ory is. For our purposes, a critical point is a point in the parameter space of the field
theory where observables, such as correlation functions, become scale invariant. When
a quantity is scale invariant, it is not anymore possible to define a length scale, or
differently, the length scale is infinite. Even though, scale invariance or self-similarity
may seem hard concepts, we have often faced them during our life: fractals are typical
scale invariant objects, an example are the roman broccolis. By looking at their shape,
we realise that whenever we zoom in a particular region of the broccoli, it repeats it-
self almost indefinitely, such that the zoomed part is a representation of the whole at a
smaller scale. By looking at a smaller part of the object, we can in principle reconstruct
the entire object by zooming out. Renormalization group does exactly the same proce-
dure with field theories, it hence provides a way to connect microscopic theories with
macroscopic description, taking into account fluctuations from all the length scales.
Here we outline the main step of Renormalization group theory. Let’s imagine that we
observe a certain field theory at a given resolution a. We first decrease this resolution,
it is the opposite of a microscope, we could call it a macroscope, arriving to a length
scale l · a, with l > 1. By doing so, we formally integrate out fluctuations that are
smaller than the new resolution. The field is then renormalized as φ(x)→ φ̂(x). As we
zoomed out, we need to rescale the length scales such that x′ = x/l. As we changed
the length scales, we need to recover the size of fluctuations such that φ′(x′) = φ̂(x)lξ,
with ξ a yet unknown exponent. The action after an RG transformation is changed to:
S −→

dl
S ′ = R[S], with R the renormalization procedure. If we make l small enough the

action will perform a trajectory S → S ′ → S ′′ → . . ., known as RG flow. An RG fixed
point is an attractor (S∗) of the RG flow, Fig. 1.10 A such that the action remain
structurally invariant under further RG transformations.
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1.3. Theoretical background

Figure 1.10.: (A) The RG fixed point is the attractor of different microscopic theories
defined in terms of their parameters. (B) The momentum shell is divided into two parts:
high and low momenta. The high momenta are integrated out and this step is repeated
till eventually the microscopic theory reaches the RG fixed point.

In particular, different microscopic theories may lead to the same attractor under
RG and that’s where the usefulness of Renormalization group theories lies. Microscopic
theories with different parameters and even different shapes of interactions, close to
the critical point, have the same critical exponents. Field theories which share same
critical exponents are grouped into universality classes.
Even though the outlined procedures might look like an hard task, Wilson developed

a method, known as momentum shell renormalization, which will greatly simply the
tasks we outlined in words [76]. In particular the idea of Wilson was that whenever we
coarse grain the fields, we effectively integrate out degrees of freedom with wavelength
shorter than the wavelength associated with the resolution we coarse grain to. We define
a momentum shell with the momentum k ∈ [0,Λ], where Λ is the maximum momentum
naturally given by the lattice spacing of the theory. Momentum shell renormalization
follows the same steps we outlined before but in Fourier space (Fig. 1.10 B). Specifically,
we first

• integrate out momenta modes in Λ/l < k < Λ. These are the modes, smaller
than our resolution (high momenta corresponds to short wavelengths),

• rescale distances x′ = x/l and so momenta k′ = k l and

• rescale fields φ′(x′) = φ(x)lξ.

In summary, Wilson momentum shell renormalization group allows to relate different
microscopic theories to the same macroscopic behaviour for different field theories close
to a critical point. It is then a powerful technique that we will implement whenever
we need to go infer macroscopic behaviour from microscopic measurements. In this
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first part of the theoretical introductions we show a way to describe physical observ-
able of field theories in path integral formulations and tools that allow to deal with
non-linearities. Complex systems cannot often been described by the spatio-temporal
dynamics of a field, but they often involved field theories interacting on multiple scales.
In the remaining part of the introduction we introduce the concepts of disorder via spin
glass theories, which will serve as a theoretical foundation to deal with complex net-
works of interactions, such as the gene regulatory networks.

1.3.3. Theories for disordered systems

Biological systems form complex networks where interactions between several compo-
nents are governed by several and often unknown factors. In this section, we introduce
concepts in spin glass theories that will be widely used in Chapters 4, 5 which deal with
complex networks of interactions with inherited disorder. Disorder arises, for example,
when interactions between different components of the system are uneven. Spin glass
theories have the advantage of being minimal representation of disordered systems that
we can study and can give us insights into emerging properties of such systems. In this
thesis, we are mostly interested in the effect of disorder in complex systems, such as
gene regulatory networks or multi-scale interacting systems. A minimal model for the
role of disorder is the Sherrington-Kirkpatrick model [77], which exact solution was
given by Parisi in [78]. Let us consider that the system is described by a set of possible
states or variables ξ = (ξ1, . . . , ξN), with N the system size. ξi may represent for exam-
ple the expression of the gene i or the methylation status of a CpG site i. We consider
for now that these variables are binary (ξi = ±1). We associate to every realization of
ξ an energy of the form: H = f(ξ), where H is the Hamiltonian and it is a generic
function of the state of the system. A form of the Hamiltonian, that encodes minimal
interactions, such that every sequence ξ is represented as

H =
∑
i,j

Ji,jξiξj . (1.23)

Ji,j are for now arbitrary value, which represents interaction between state variables
(ξ). If Ji,j = −J we recover the Curie-Weiss model or fully connected Ising model. The
specific form of Ji,j encodes the minimal energy states of the system. In particular,
if Ji,j are all negative, the energy is minimized whenever ξi and ξj have the same
value. Whenever Ji,j are all negative, the outcome is that the minimum of the energy
is achieved by the sequence ξ = (1, . . . , 1) or ξ = (−1, . . . ,−1). In technical terms,
the ground state has a two-fold degeneracy as the minimal energy can be achieved in
two ways. Even though we have not described yet what happens to systems described
by the Hamiltonian (1.23) in contact to an heat bath, at this level of description they
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seem trivial. To go one little step further, we consider a group of three isolated spins
(i = 1, 2, 3) with symmetrical interactions (Ji,j = Jj,i) and J1,2 = J1,3 = J2,3 = 1. It
can be checked that the minimum of the energy has an 8-fold degeneracy as eighth
different sequences have the same energy, ξ = (1, 1,−1) or ξ = (−1,−1, 1) and so on.
This property is referred to as frustration [79] and generally refers to constraints such
that it is not possible to minimize all the bonds Ji,jξiξj at the same time. We consider
for now only a very small system N = 3, if we take N � 1 then the situation may get
really complicated. In particular, imagine that system is in a given configuration ξ∗,
which does not minimize the energy. Let us consider that we can only change a variable
(ξi) at a time and accept this change only if the energy is lowered by the change. There
might situations in which we cannot change any variable as the energy will increase,
but the sequence ξ∗ is not the the absolute minima of the energy. This is known as a
metastable state, as roughly speaking, even though is not the minimum of the energy
is minimal enough such that it is hard to change and get out of that. As mentioned, the
thermodynamical behaviour might be very different, but we will discuss it in Chapter
4. Disorder is encoded into the random distribution of interactions and from now on,
we take Ji,j to Gaussian distributed with mean µ = 0 and variance σ2. The probability
of observing a particular configuration, if the system is in a thermal bath, is given by
the Boltzmann distribution,

P (ξ) = e−β
∑

i,j
Ji,jξiξj/Z , (1.24)

where Z is the normalization and β = kbT (kb is the Boltzmann constant and T is
the temperature). It is easy to check that if Ji,j are distributed with N(0, σ2) the
Hamiltonian is not extensive. We thus need to fix this issue and take Ji,j distributed
with variance σ2/

√
N . Spin glasses are not different from standard statistical physics

problems, as every thermodynamical quantity can be computed from the free energy
F via the partition function Z,

F = − lim
N→∞

1
βN

logZ ,Z =
∑
ξ

e−β
∑

i,j
Ji,jξiξj , (1.25)

We immediately realise that there is a major problem, namely, we are computing
the free energy just for a specific realisation of the couplings (disorder) Ji,j, whilst it
will be way better to find it for the couplings distributed according to N(0, σ2/

√
N).

In this way, we can study all the systems with the couplings having the same variance
at once, way more convenient! To do so, we take the average of the partition function
Z over the distribution of couplings,

Z =
∫
dJP (J)

∑
ξ

e−β
∑

i,j
Ji,jξiξj , (1.26)
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with P (J) the distribution of Ji,j, Gaussian here, and ∑
ξ stands for the sum over

ξi = ±1,∀i. This is called annealed average and unfortunately will not give in general
reasonable results. We will not enter more into details, but in order to have an intuitive
understanding of the reason of such failure, in Eq.(1.26) we are averaging over the cou-
plings and sum over the spins at the same time. We are then considering the couplings
to be equally “important” as the variables, in other words, we let the couplings change
with the variables, whilst we would like to keep them fixed and perform the average
later. In order to solve this issue, we can average the free energy over the couplings
rather than the partition function,

F = − lim
N→∞

1
βN

logZ = − lim
N→∞

1
βN

lim
n→0

1
n

logZn , (1.27)

where
Zn =

∫
dJP (J)

∑
ξ1...ξn

e−β[H(ξ1)+...+H(ξn)] . (1.28)

Figure 1.11.: (left) Simple example of frustration for a group of three spins in a spin
glass model (J1,2 = J1,3 = J2,3 = 1). Once the two spins are oriented in order to
minimize the energy, the bonds between them and the third spin (ξ3) are frustrated as
they do not minimize the energy irrespective of its sign. (right) Schematic view of the
spin glass free energy landscape in terms of replicas (pink circles) where the couplings
Ji,j of the Hamiltonian H are quenched Gaussian random variables.

In the last step we made use of the replica trick [80], rather than computing an
average over the log of the partition function we just compute the average over n times
the partition function (referred to as replicated). This technique greatly simplify the
computation of the free energy, which will be cumbersome otherwise. Moreover, as
we will see in later chapters, there is a strong connection between replicas and actual
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physical or biological systems. In particular, the free energy (quenched) is given by

F = − lim
N→∞

lim
n→0

1
βNn

log
∫ dJP (J)

∑
ξ1...ξn

e−β[H(ξ1)+...+H(ξn)]
 . (1.29)

We started with the study of the thermodynamic equilibrium of one system and we
arrived to the computation of the thermodynamic of n uncoupled identical systems.
This is pretty weird, as we might expect that computing n times the partition function
shouldn’t give more insights rather than computing it once. Actually this is not the
case. As we outlined in this section, the minima of the free energy are multiple in
glassy systems, and depending on the initial conditions or other external factors, the
system may remain trapped in one of them. Intuitively if we replicate the system n

times, some copies may end up in one minima, some in other, such that replicated the
partition functions, actually may be used as a way to study the free energy landscape
in its full glory. Yes... we need then to take the limit n → 0, but this is another story
and we will not discuss it here [79]. There are more concepts in spin glass theories that
we will analyse in the remaining part of the thesis. From now on, whenever we refer to
free energy in spin glass or disordered systems, we will adopt the definition given by
Eq.(1.29).

1.4. Overview of the thesis

In this thesis we overcome conceptual limitations of genomics and sequencing using
methods from nonequilibrium statistical physics. By developing novel frameworks in
non equilbrium systems, we are able to predict scaling behaviour for long range in-
teracting particle systems and asymmetric spin glasses, which are in agreement with
numerical and experimental results. Specifically, in Chapter 2 we infer chromatin struc-
tures in the three dimensional space of the nucleus upon developing a theoretical
framework based on one dimensional multi-omics genomic data profiling DNA methy-
lation,chromatin accessibility and gene expression. Our theoretical framework describes
DNAme kinetics in terms of a master equation that is mapped to a quantum prob-
lem with hard-bosons. Upon using renormalization group and path integral methods,
we show that the experimentally observed scaling behaviour of connected correlation
functions and average DNAme in the mouse embryo, both in vitro and in vivo, is cor-
rectly predicted by our theory. At the end of the chapter and in Chapter 3 we challenge
the theory to infer the relationship between DNA methylation and gene expression for
cells exiting from pluripotency. We then extend the results for systems with long range
interactions to set a theoretical background for synchronization phenomena found dur-
ing the first cell fate decisions. As gene expression is also regulated via gene regulatory

31



1. Introduction

networks, in Chapter 4 we construct a master equation describing the effect of different
molecular processes in those networks. Specifically, by starting from a master equation
we map the dynamics of fluctuations to an asymmetric bipartite spin glass. We show
that these systems exhibit both a static and a dynamical phase transition between a
phase where fluctuations are uncorrelated to a glassy phase with non trivial correla-
tions. Relying on single-cell sequencing data we show that cells may lie in a glassy phase
and transitions between cell states are regulated via correlations of fluctuations which
emerge in this phase. At the end of this thesis, Chapter 5, we extend the theoretical re-
sults found throughout the thesis to derive a minimal, yet general theory of multi scale
interacting complex systems. The theoretical results are general, such that they can be
applied to complex systems ranging from embryonic development to ecosystems and
social systems. Finally, in Conclusions and future perspectives we summarize in detail
all the findings of this thesis and we give possible future research directions inspired
by this thesis.
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2. From Sequence to Space and
Time in Single-Cell Genomics

2.1. Introduction

Figure 2.1.: Highlights of the main theoretical and computational steps used to in-
fer de novo DNA methylation dynamics and mesoscopic structures from single-cell
sequencing experiments.

Recent breakthroughs in single-cell sequencing allows us to probe molecular mecha-
nisms with unprecedented details. As we discussed in Sec. 1.2.3, BS-Seq can be used to
measure CpG methylation. This sequencing technique gives as an outcome the methy-
lation status of almost every CpG of the DNA (∼ 70 %). This results in an huge and
comprehensive amount of data and information. Every time such immense data set are
built, there is always a question that puzzles us: What can we learn from them? It is
clear that if we want to find our personal name written on the DNA with a methylation
“alphabet”, we will probably succeed. What we measure is a one dimensional (sequence
space) string of bits of information (methylated or not), but we know that processes
in the cell happens on the three dimensional space of the nucleus (physical space). Im-
portantly, these processes cannot currently be inferred by conventional computational
methods for the following reasons. First, it requires solving a difficult “inverse” prob-
lem which involves mapping given sequencing profiles to one of an infinite number of
processes in space and time. Solving this problem computationally involves probing a
large number of such processes for consistency with the sequencing data. As the sim-
ulation of these processes involves unspecified, non-local interactions and therefore is
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2. From Sequence to Space and Time in Single-Cell Genomics

computationally very costly, solving this inverse problem using conventional tools is
not feasible. Secondly, emergent properties of interacting complex systems do usually
not obey the rules that act on its constituents (emergence) [81] the spatio-temporal
processes underlying biological function cannot straightforwardly be inferred from de-
tailed molecular measurements as provided by single-cell genomics. In this chapter, by
applying methods from nonequilbrium physics to single-cell genomics, we develop a
unique and general theoretical framework to connect detailed molecular measurements
in single-cell genomics to emergent phenomena in space and time. Specifically, we use
tools such as renormalization group and stochastic field theories to show that emergent
phenomena in physical space, such as phase separation, can be unveiled from single-cell
epigenome sequencing along the one-dimensional DNA sequence. We demonstrate this
approach by revealing the interplay between the establishment of epigenetic marks (de
novo DNA methylation) during early mouse development and nanoscale topological
changes in chromatin structure. In particular, in Sec. 2.2 we show how statistical rel-
evant quantities can be inferred from single-cell and BS-Seq. Based on these findings
in Sec. 2.3,2.4 we will develop a theoretical framework to infer collective epigenetic
mechanisms in early development aimed at understanding and predicting experimental
data. In Sec. 2.5 we develop a tool to infer dynamics in the cell nucleus from sequencing
data. Finally, in Sec. 2.6 we challenge the theoretical results by predicting experimen-
tal results and in Sec. 2.7 we apply these methods to in vivo mouse embryo data
showing the effect of methylation patterns on symmetry breaking of cells exiting from
pluripotency [82]. All these steps are outlined in Fig. 2.1. Finally, in Sec. 2.8 we extend
the theoretical framework to account for methylation changes during adulthood and
ageing.

2.2. Analysis of sequencing data of DNA methylation

As we outlined in the introduction (Sec. 1.2.1), upon exit from pluripotency which oc-
curs around implantation of the embryo, upregulation of the de novo methyltransferase
genes Dnmt3a/b leads to massive and rapid de novo DNA methylation to a genome
average of 80% per CpG Fig. 2.2 A [25].
In order to study how DNAme is established during early development, our collab-

orators in the Wolf Reik laboratory cultured mouse embryonic stem cells (mESCs) in
2i culture conditions, where cells assume a naïve pluripotent state and DNA methyla-
tion is globally low. Cells were then released into serum conditions Fig. 2.2 B, where
Dnmt3a/b genes are upregulated [32], meaning that DNMT3 enzymes are in high abun-
dance in the cell nucleus. The transition from 2i to serum conditions has been shown
to recapitulate the epigenetic and transcriptional changes occurring during transition
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2.2. Analysis of sequencing data of DNA methylation

Figure 2.2.: (A) Establishment of DNA methylation by DNMT3 enzymes. Methylated
CpG are highlighted in black. (B) Schematic sketch of DNA methylation dynamics dur-
ing early mouse development and illustration of 2i-release experiments and sequencing
data.

to formative and primed pluripotency in the embryo [83].
After release into serum conditions we performed two complementary sets of ex-

periments (Fig. 2.2 B). Firsty, we performed a bulk whole-genome bisulfite-sequencing
(BS-seq) time course of 31 time points over a period of 56 hours giving access to
high-coverage information with high temporal resolution and secondly we performed a
single-cell NMT-sequencing (scNMT-Seq) experiment of 288 mESCs with lower tem-
poral resolution (0h, 24h and 48h). scNMT-Seq is a multi-omics sequencing experiment
which enables joint profiling of the genomic distribution of DNA methylation marks,
DNA accessibility (GpC methylation) and the transcriptome (gene expression) at a
single-cell resolution [16].
We initially focus on the first experiment and we use the second experiment to fur-

ther verify of our findings. As de novo DNA methylation is associated with a gain in
average methylation, from roughly 15 % to 80 % (the percentage is always in number
of methylated CpG divided by total number of CpGs), we calculated the increase of
average methylation (methylation density) across the whole genome, Sec. 1.2.3 (tech-
nical details in Appendix B.1). In Fig. 2.3 we show a subset of the data showing the
global increase of DNAme over a wide genomic region.
As the establishment of methylation marks is known to be regulated locally by

a number of different factors, including CpG density [84], transcription and histone
modifications [85], the global increase of methylation density may be not informative
as there is a risk to average over totally distinct functional genomic domains. Basically,
we should avoid to mix pizza with pineapple. We then computed changes in DNA
methylation densities along many of such distinct genomic features (promoters, gene
bodies, etc...). We found that functionally distinct genomic regions acquired average
DNA methylation levels at different rates Fig. 2.4 A
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Figure 2.3.: Methylation density changes along a portion of chromosome 1 of mESCs
for 56 hours after release into 2i from serum conditions.

We then asked whether all the curves Fig. 2.4 A have the same functional form and
we made the following scaling ansatz,

〈m〉g,ρCpG = ag,ρCpG + f(bg,ρCpG , t) , (2.1)

with 〈m〉g,ρCpG the methylation density for the genomic feature g with CpG density
ρCpG. ag,ρCpG is the initial base value after erasure of paternal and maternal DNAmethy-
lation and f(bg,ρCpG , t) is a generic function which may depend on a set of parameters
bg,ρCpG . We then looked for the simplest possible model which is in accordance with
experimental data. We were able to rescale time (Appendix B.1) for each time series
in such a way that all curves collapsed onto a single curve Fig. 2.4 B, a phenomenon
referred to as scaling behaviour.
The surprising emergence of scaling suggests that there is one generic mechanism

of how DNA methylation is established genome-wide. This implies that, apart from a
rate and an initial base value, the mechanisms is the same in every genomic region and
it is independent of the CpG density. Notably, the simplest model gives a power law
with an exponent of 5/2, f(t) = bρCpG,dτ

5/2, with τ being the rescaled time. We are
in a position to write down a very compact and generic form of how the methylation
density 〈m̃〉, upon subtracting the base value a and rescaling by b, changes with respect
to the rescaled time,

〈m̃〉 = τ 5/2 . (2.2)

The time evolution of average DNA methylation levels therefore is scale-invariant, i.e.
its mathematical form does not change on time intervals of different lengths (self-
similarity). Temporal scale-invariance and scaling behaviour with a specific exponent
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2.2. Analysis of sequencing data of DNA methylation

Figure 2.4.: (A) Methylation density changes during 56hrs time-course of different ge-
nomic regions (colors), further subdivided by their CpG density (shapes). CpG densities
bins are defined using quantiles of the distribution of densities over all the fragments.
Error bars are smaller than the size of the points. (B) Scaling analysis of the curves in
(A) allow to collapse them into a single master curve which follows a power law with
exponent 5/2.

of 5/2 are a signature of collective, self-organisation processes, suggesting that DNA
methylation marks are established via a collective mechanism involving interacting
DNMT3 enzymes [25, 86]. Whenever this interactions connect different genomic loci,
this results in spatial coordination of de novo DNAme along the genome [87, 88].
Dynamical quantities, such as the increase of the average methylation with respect

to time are often not sufficient to rule out independence between methylation binding
events. In order to strengthen the hypothesis that there is a collective process un-
derneath de novo DNAme, we computed equal time connected two point correlation
functions (Appendix B.1), as they provide a way to infer the potential spatial coordi-
nation between DNA methylation marks. Connected correlations functions are defined
as,

〈mimj〉c = 〈mimj〉 − 〈mi〉〈mj〉 , (2.3)

with i the genomic position of a CpG site and mi its methylation density. The average
in Eq. (2.3) is performed over different cells at the same time point and over pairs of
CpGs at a distance |j− i|. We focus now on genome wide correlations and we will later
derive correlations for specific genomic regions. The main reason for this choice relies
on the specific data we are looking at. Bulk BS-Seq experiment have high temporal
resolution (56 hrs, sampled almost hourly, with some sleeping), but not high spatial
resolution as we do not have information for single CpGs. This definition of corre-
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Figure 2.5.: Connected two-point correlation functions between DNA methylation
marks at different times during the 2i-release experiment (double logarithmic plot).
Oscillations are caused by nucleosomes positioning at ≈ 150 − 200 bps. Dashed black
lines are power laws with exponents fitted with a power law model. The exponents,
which determine how correlations between DNA methylation marks decreases with
respect to their distance in sequence space, range from−0.35 for cells sequenced directly
after release to −0.275 for cells sequenced 56 hours later.

lations allows to infer correlations between methylation marks, independently of the
average. As has been observed previously [89, 90], we found that in addition to weak
oscillations reflecting nucleosome positions, these correlations follow a power law over
several orders of magnitude in sequence space Fig. 2.5. A power law decay of connected
correlation functions is a signature of strong correlations of DNA methylation marks
over distances of thousands of base pairs and which come about presumably by yet un-
known interactions between DNMT3 binding events over extended genomic domains.
The exponents changes with respect to time and so average methylation, ranging from
−0.35 to −0.275, which for a reader trained in critical phenomena may be quite puz-
zling. In Sec. 2.6 we theoretically predict how different exponents are time dependent
and how they are connected to non criticality and to the effective dimensionality of
the system. Taken together, the emergence of scaling behaviour suggests that de novo
DNA methylation is a collective phenomenon that is spatially coordinated along the
genome.
We are now in a position to develop a theoretical framework to study de novo DNA

methylation based on sequencing experiment. In the next section, using field theoretical
methods we will infer the stochastic kinetics of de novo DNA methylation in the space
defined by the one dimensional sequence of CpGs (sequence space) and we will predict
both the increase of average methylation with respect to time as well as the shape of
connected correlation functions.
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2.3. Nonequilibrium theory of de novo DNA methylation

2.3. Nonequilibrium theory of de novo DNA
methylation

To reveal the biological mechanisms underlying the interactions between DNMT3 bind-
ing events we developed a theoretical approach that allows inferring collective processes
in the physical space of the nucleus from measurements along the one-dimensional se-
quence of the DNA. In contrast to hypothesis-driven approaches typically used to model
biological systems our framework deduces the kinetics from sequencing data. Briefly,
we start by describing the stochastic kinetics of de novo DNA methylation in the se-
quence space via a master equation formulation. Upon mapping the master equation
to an hard-boson like path integral, we will be able to predict scaling behaviour of
connected correlation functions and the dynamic changes of the average DNA methy-
lation. Later, we will employ a dynamic geometric mapping between distances in the
sequence space and distances in a projected physical space to derive the kinetics in the
three dimensional space of the nucleus. At the end, we will use of theoretical results to
accurately predict kinetics, experimental correlation and cross-correlation functions in
vitro and in vivo.
Specifically, we begin by a defining a physical and mathematical framework for gen-

eral out-of-equilibrium stochastic enzymes kinetics incorporating:

• binding and unbinding of enzymes to the DNA,

• chemical modifications of the DNA and

• general and unknown interactions of enzymes along the DNA sequence.

In the context of de novo DNA methylation, the chemical modification is DNAme at
CpG sites and the enzymes are the DNMT3a/b. In the following we will work in the
context of de novo DNA methylation, but the theory can be applied to other epigenetic
processes. We begin with the last of the previous terms of enzymes kinetics as it will
turn out to be the only important to infer de novo DNA methylation dynamics and it
is the most theoretically challenging. To this end define an interaction kernel with the
less possible assumptions. In particular, we assume that DNMT3 enzymes, bind to a
particular CpG site with a rate that depends on the positions of the other enzymes that
are already bound in the vicinity of the site. Second, we make no distinctions between
DNMT3a/b and for the rest of the thesis, unless specified otherwise, we will refer to
them as DNMT3. These assumptions greatly simplify the theoretical analysis and will
be justified at posteriori as our model will correctly predict emergent spatio-temporal
statistics. We then consider a positive feedback and cooperation between DNMT3
enzymes. We initially restrict the model to interaction kernels that depends only to the
distance between the possible binding site and closest already bound enzymes. This
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choice will turn out to be sufficient to predict experimental observables such that we
do not need to add further interactions. The binding rate at a given CpG site i is then
given by the closest sites to the right and to the left with a bound enzymes on top
Fig. 2.6.

Figure 2.6.: Illustration of the first term of the master equation (2.4). CpG sites are
depicted as circles, where an empty and a filled circle indicate a non methylated and a
methylated CpG respectively. The black dashed lines indicate the interactions encoded
in the kernel in Eq. (2.4), whilst the gray line are the neglected contributions to the
kernel.

Specifically, if the nearest bound sites are at positions L and R we write the binding
rate as Ji,L + Ji,R, where the two terms correspond to the contribution from the left
and right bound neighbour, respectively. Ji,j are in general functions of the distance
between the binding sites, such that we write Ji,j = Ji,j(|j − i|). Interaction with the
closest occupied sites on the left and right effectively restrict these interactions in range
[91, 92]. Omitting unbinding and demethylation terms for brevity, the time evolution
of the probability of finding a given DNMT3 binding and DNA methylation profile,
P (D,m, t) follows a master equation of the form

∂P (D,m, t)
∂t

=
N∑
i=1

N∑
l=i+1

Ji,i+l(l)
l−1∏
j=1

D̄i+j

Dl[DiP (D̄i,m, t)− D̄iP (D,m, t)]

+ l.n.n.

+ methylation and unbinding processes ,

where D and m are a binary vectors describing DNMT3 occupancy and DNA methy-
lation, respectively, such that, for example, Di = 1 if site i is occupied and Di = 0
otherwise. D̄i is the same vector where, at position i, Di is replaced by 1 − Di and
D̄i = 1 − Di. N is the number of lattice sites of the sequence space, such that i = 1
indicate the first CpG, i = 2 the second and so on, irrespective of the distance neigh-
bouring CpG sites in base pairs (Fig. 2.6). Written in this form, the distance between
CpGs is topological and not metric [93], but the distance in base pairs (metric) between
two CpG sites can be easily included in the theory upon rescaling the interaction kernel
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Ji,i±l. The interaction with the left nearest neighbors has the same form as the term
shown and is abbreviated by "l.n.n". In this ansatz, we implicitly assumed that there are
no further non-linearities or spatial correlations relevant on large enough length scales,
for example from the catalytic activity (the deposition of methyl groups) of bound
enzymes on the DNA or from de-methylation processes. We will show below that such
additional processes are irrelevant under rescaling and we omit them in the following.
We are then left with only binding kinetics and methylation rates by DNMT3 enzymes.
In the context of de novo DNA methylation the non-linear nature of DNMT3 binding
is supported by the literature [88].
In the following, as linear and uncorrelated processes do not contribute to the results

obtained below, we will consider the marginal distribution

P (D, t) =
∑
m
P (D|m, t)P (m, t) . (2.4)

Following the definition of the model ansatz we have P (D|m, t) = P (D, t) such that
the master equation for the marginal distribution has the same form as above,

∂P (D, t)
∂t

=
N∑
i=1

N∑
l=i+1

Ji,i+l(l)
l−1∏
j=1

D̄i+j

Dl[DiP (D̄i, t)− D̄iP (D, t)] + l.n.n. . (2.5)

The further complexity of this master equation (a part from long range interactions)
is on the intrinsic sites exclusions. Indeed, a DNMT3 enzymes can bind only to free,
i.e. non bound, CpG sites, such that standard Doi-Peilti path integral methods based
on bosonic commutation rules cannot be applied. In particular, we need to take into
account that a CpG site can be either occupied by a DNMT3 enzyme or not, such that
multiple DNMT3s can not bind at the same site. We refer to the last constraint as site
restriction and historically there are two ways to deal with it. The first one is based on
writing the master equation in terms of fermionic operators [94], which by definition
encode this constraint, but the resulting path-integrals are often very cumbersome and
it is extremely hard, even for master equations simpler than the one we presented,
to derive explicit analytical results. The second approach is based on adding the site
restrictions with Dirac delta functions, allowing to work with bosonic operators [95].
In the following paragraph we will explain in details how to construct a path integral
and how to derive a field theory for master equations with site restrictions

2.3.1. Path integral representation

In order to rigorously write down the path integral formulation of the master equation
Eq. (2.4), we introduce a Fock space, Sec. 1.3.1, in which the probability distribution
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is formally written as

|P (t)〉 =
∑
D
P (D, t)a†D1

1 ...a†DNN |0〉 . (2.6)

The operator a†Dii is the creation operator and formally represents a binding event
at a given site. Di denotes the number of bound enzymes at site i. The creation and
annihilation operators ai, a†i act on the basis |D〉 as

a†i |Di〉 = |Di + 1〉 ,

ai |Di〉 = Di |Di − 1〉 ,
(2.7)

and they follow standard commutation rules [ai, a†i ] = 1. Using this notation we can
formally rewrite the master equation in terms of the creation operators, a†i

∂t|P (t)〉 = −H|P (t)〉 , (2.8)

where H is from Eq. (2.5)

H = −
N∑
i=1

N−i∑
l=1

l−1∏
j=1

Ji,i+l(l)δ̂Di+j,0 δ̂Di+l,1 [a†i δ̂Di,0 − δ̂Di,0 ] + l.n.n. . (2.9)

The terms δ̂Di,0 are equal to 1 if an enzyme is not present at the CpG site i and 0
otherwise and restrict binding to a single enzyme per site. Before proceeding further,
we need to understand how the δ̂ operator acts in the Fock space. To do so, we introduce
a coherent state basis (Section 1.3.1) for which the identity is given by

1 =
∫
dφdφ̂e−φ̂φeφa

† |0〉 〈0| eφ̂a . (2.10)

In this new basis, following the rules of [95], the δ̂ operator acts on the coherent state
basis as

〈φ| a†δ̂n̂,m |φ〉 = 1
m! φ̂

(
φ̂φ
)m

e−φφ̂ ,

〈φ| aδ̂n̂,m |φ〉 = 1
(m− 1)!φ

(
φ̂φ
)m−1

e−φφ̂ ,

〈φ| δ̂n̂,m |φ〉 = 1
m!

(
φ̂φ
)m

e−φφ̂ .

(2.11)

We now express every observable A(D) as a path integral of the form (Section 1.3.1),

A(D) =
∫
D[φ]D[φ̂]A(φ, φ̂ = 1)e−S[φ̂,φ] , (2.12)
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with
S[φ̂, φ] = −

∑
i

φi(tf ) +
∫ tf

0
dt
∑
i

(
φ̂i(t)∂tφi(t) +Hi[φ̂, φ]

)
, (2.13)

and where we performed a partial integration in time. The Hamiltonian in this action
reads

Hi[φ̂, φ] = (1−φ̂i)e−φ̂iφi
[
N−i∑
l=1

Ji,i+l(l)φ̂i+lφi+le−
∑

j
φ̂i+jφi+j +

i∑
l=1

Ji,i−l(l)φ̂i−lφi−le−
∑

j
φ̂i−jφi−j

]
.

(2.14)
Defining the generating functional of correlations Z[h, φ, φ̄] as

Z[h, φ, φ̂] =
∫
D[h, φ, φ̂]e−S[φ,φ̂]+

∫ y
0 ds

∫ tf
0 dt[h(s,t)φ(s,t)+h̄(s,t)φ̂(s,t)] , (2.15)

expectation values of products of observables, such as correlation functions, can be
expressed as functional derivatives with respect to the auxiliary external field h =
(h(s, t), h̄(s, t)),

〈φ(s, t)〉 = δ

δh(s, t)Z[h, φ, φ̂]|h=0 ,

〈φ(s, t)φ(y, t′)〉 = δ2

δh(s, t)δh(y, t)Z[h, φ, φ̂]|h=0 .

(2.16)

We have to be careful as φ(s, t) is not D(s, t), i.e. the density of enzymes at position
s. φ(s, t) is for now just the field of the coherent state basis. Luckily, it is easy to show
that 〈D(s, t)〉 = 〈φ(s, t)〉, and similarly for correlations [75], which makes the use of field
theoretical methods very usefull in the context of master equations for nonequlibrium
systems. We are now in a position to derive the time evolution of the average density
of bound enzymes and later of methylation density.

2.3.2. Semiclassical solution of the path integral

In this section we infer the functional form of the interaction kernel of enzyme binding
events from a semiclassical solution of the field theory in order to derive moments
equations for 〈D(s, t)〉 , 〈m(s, t)〉. In a first step, we rewrite the Hamiltonian Eq. (2.14)
in continuous space, i.e. Riemann integration. Upon introducing a spatial discretisation∑
i ∆s→

∫
ds the Hamiltonian in the action (2.14) is given by

H[φ̂(s), φ(s)] = J(1− φ̂(s))e−φφ̂
[ ∫ N−s

0
dy φ̂(s+ y)φ(s+ y)

yλ
e−
∫ y
z=0 dzφ̂(s+z)φ(s+z)

+
∫ s

0
dy φ̂(s− y)φ(s− y)

yλ
e−
∫ y
z=0 dzφ̂(s−z)φ(s−z)

]
,

(2.17)
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where we specified the binding kernel for a long-range process as Ji,i±(l) = J
lλ

and
took the binding rates equal throughout the genome. The choice of the kernel is a
minimal choice for a long-range kernel of interactions. We will later show that this
choice is sufficient for a theoretical prediction of experimental observables. The integrals
in Eq. (2.17) are not solvable in general and we need to develop a method to deal with
them. We can then look for a clever Taylor expansion of the functions of the fields.
These results will turn out to be correct for the first moments of the master equations
(methylation density), but will fail to predict higher moments (correlation functions).
In particular, we expand to first order in the exponential and to the second order in
the terms φ̂(s±y)φ(s±y)

yλ
. As the last step we extend the limit of integration to infinity

and the Hamiltonian is simplified to

H[φ̂, φ] = JΓ(1− λ)
(
1− φ̂

)
e−φφ̂

2
(
φ̂φ
)λ

+
(
φφ̂
)λ−3 (

2− 3λ+ λ2
) ∂2

(
φφ̂
)

∂s2

 ,
(2.18)

where Γ(x) is the Euler gamma function. In order to derive the last equation we made
use of the known integral:

∫∞
0 dxeax/xλ = aλ−1Γ(1 − λ) for 0 < λ < 1. It can be

shown [75] that computing the first moment 〈D(s, t)〉 = 〈φ(s, t)〉 from Eq. (2.16) is
equivalent to extremising the action S[φ, φ̂] in Eq. (2.13), making possible to derive
physical observables from averages of the coherent states. The extremisation of the
action is known as semiclassical solution or, in other context, mean field solution. We
will refer to semiclassical solution when we derive it from a path integral and mean
field when it is directly derived from the master equation. Upon extremising the action,
δS
δφ̂(x) |φ̂(x)=1 = 0 while setting φ̂(x) = 1 for probability conservation [8], we obtain a
partial differential equation describing the time evolution φ(s, t) as

∂φ(s, t)
∂t̃

= φ(s, t)λ +Dφ(s, t)λ−3∂2
sφ(s, t) . (2.19)

Here, t̃ = 2JtΓ(1 − λ) and D = (2 − 3λ + λ2)/2 > 0 is the diffusion constant. It can
be shown that this solution is a minima of the action such that δ2S

δφ̂(x)2 |φ̂(x)=1 > 0. We
thus found the semiclassical dynamics for the coherent state φ(s, t). In can be further
shown [8] that in Eq. (2.19) we can substitute φ(s, t) with 〈D(s, t)〉 such that Eq. (2.19)
describes the dynamics of the average DNMT3 occupancy and so it is a field theory for
the average of an observable of the master equation. In the hard-boson path-integral
representation, Eq. (2.17), the term exp

[
−
∫ y
z=0 dzφ̂(s+ z)φ(s+ z)

]
in the Hamilto-

nian, for a slowly varying field can be approximated by e−y〈φ̂(s)φ(s)〉, where 〈φ̂(x)φ(x)〉
is the average product of the fields. This defines an effective exponential cutoff to the
interactions at a characteristic length. This interpretation of the exponential term jus-
tifies the expansion within the limit of integration. We replaced a spatial average with
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an ensemble average, which for this spatial translation invariant systems is justified, as
long as some conditions are fulfilled, which we are gonna talk about later. Moreover,
the analysis done in the previous section was combining ensemble average (different
cells) with spatial averages (averaging over genomic features).

2.3.3. Inference of the interaction kernel

To infer the interaction kernel Ji,i+l we compute first and higher order moments of
the local methylation density m(s, t) which, in the semiclassical limit, follows from
∂tm(s, t) = kφ(s, t), where k is the methylation rate (note that we omit demethylation).
Having computed these moments for a general class of interaction kernels we can then
match theoretical predictions with experimental data to infer the functional form of
interactions between enzyme binding events. Here, we focus on the time evolution of
the first moment of the global DNA methylation level, m(t) = ∑N

s=1m(s, t)/N . To
begin, we sum Eq. (2.19) to obtain a differential equation for φ(t) = ∑N

s=1 φ(s, t)/N ,
which is solved by

φ(t) = t1/(1−λ) , (2.20)

where time is made adimensional upon diving Eq. (2.19) by J and we refer, with a
slight abuse of notation, to the adimensional time as t. Average level of DNAme can
be straightforwardly derived as

∂tm(s, t) = kφ(s, t) , (2.21)

arriving to the final expression:

m(t) = m(t = 0) + k
1− λ
2− λt

1+1/(1−λ) . (2.22)

Therefore, in order to match the experimentally obtained exponent of 5/2 we find that
λ = 1/3, such that the interaction kernel is

Ji,i±l = 1
l1/3

, (2.23)

Our parameter free model is then able to predict first moments observed experimentally
Fig.2.4.

2.3.4. Failure of the perturbative expansion of the action

Sometimes, negative results are more useful than positive results. In this section, we
will show how typical field theoretical approaches to compute connected correlation
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functions fails with an Hamiltonian like Eq. (2.17). We remind (Section 1.3.1), that
in order to computed two-point spatial correlation functions the following quantity is
evaluated from the field theory:

〈φ(s, t)φ(y, t′)〉 =
∫
D[φ]D[φ̄]φ(x, t)φ(y, t′)e−S[φ,φ̄] . (2.24)

When computing correlation functions we typically need a bare action [8], with terms
up to quadratic order and higher order terms which are treated perturbatively. The
action Eq. (2.13) lacks quadratic terms in the Hamiltonian. We may then look for
perturbation around the semiclassical solution, which we indicates as ρ, by means of a
Gauge transformation: φ = (ρ+ ψ)e−ψ̄, φ̂ = eψ̄. The Hamiltonian in the new fields is

H[ψ̄, ψ] = 2Γ(1− λ)(1− eψ̄)e−(ρ+ψ)
[
ρλ
(

1 + ψ

ρ

)λ
+Dρλ−3

(
1 + ψ

ρ

)λ−3
∂2ψ

∂x2

]
. (2.25)

Starting from Eq. (2.25) we add another term in the Hamiltonian accounting for
DNMT3 unbinding. As this term will be shown to be irrelevant it serves only as the
purpose of having a well defined stationary state. Such term is of the form Hu =
u
∑N
i=1(1 − ai)δ̂Di,1, which results in a term in the action: uφ(φ̂ − 1)e−φ̂φ. Expanding

around the small perturbations (ψ, ψ̄) and retaining only leading terms,

H = f(ρ)
(
ψ̄ + 1

2 ψ̄
2
)

(−1
2ψ

2+ψ−1)
[
1+λψ

ρ
+λ2 − λ

2
ψ2

ρ2 +Dρ−3
(

1 + (λ− 3)ψ
ρ

)
∂2ψ

∂x2

]
,

(2.26)
with f(ρ) = 2Γ(1−λ)ρλe−ρ. The correlation functions for the new fields are computed
through the generating functional (Section 1.3.1)

Z[h, ψ, ψ̄] =
∫
D[h, ψ, ψ̄]e−S[ψ,ψ̄]+

∫ y
0 dx

∫ tf
0 dt[h(x,t)ψ+h̄(x,t)ψ̄(x,t)] . (2.27)

Correlation and response functions are respectively derived as previously

〈ψ(s, t)ψ(y, t′)〉 = δ2

δh(x, t)δh(y, t)Z[h, ψ, ψ̄]|h=0

〈ψ(s, t)ψ̄(y, t′)〉 = δ2

δh(x, t)δh̄(y, t)
Z[h, ψ, ψ̄]|h=0 .

(2.28)

We then split the action into a Gaussian and an ”interactive“ part. The linear terms
(−f(ρ)ψ̄+ue−ρρψ̄) act as a shift of the external field h̄. In Fourier space the Gaussian
action, with ψ± = ψ(±q,±ω) and equivalently for ψ̄± can be recast in a matrix form
as

S0 = 1
2
(
ψ̄−ψ−

)
Ŝ0

ψ̄+

ψ+

 , (2.29)
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with

Ŝ0 =
 −f(ρ)

(
1 + u ρ−λ+1

2Γ(λ−1)

)
−iω + f(ρ)

(
Dρ−3q2 + λ

ρ
− 1− u ρ−λ+1

2Γ(1−λ)

)
iω + f(ρ)

(
Dρ−3q2 + λ

ρ
− 1− u ρ−λ+1

2Γ(1−λ)

)
0 .


(2.30)

Taken all terms together the moments generating functional is

Z[h, ψ, ψ̄] =
∫
D[ψ, ψ̄,h] exp

∫
q,ω
−1

2
(
ψ̄−ψ−

)
Ŝ0

ψ̄+

ψ+

+
(
h̄+ f(ρ) h

)ψ̄+

ψ+


︸ ︷︷ ︸

Z0

e−S1 ,

(2.31)
where S1 contains the remaining non-quadratic term of the action. The bare (from the
Gaussian part) connected correlations are from Eq. (2.31)

C0(q, ω) =
f(ρ)

(
1 + u ρ−λ+1

2Γ(1−λ)

)
ω2 +W (q)2 (2.32)

With W (q) = f(ρ)
[(

λ
ρ
− 1

)
+Dρ−3q2 − u ρ−λ+1

2Γ(λ−1)

]
Once we found the Gaussian part for correlation functions, we can start to treat S1

perturbatively (Section 1.3.1) by means of Feynman diagrams. Feynman diagrams are
a powerful theoretical tools when computing higher order corrections to observables
after a perturbation expansion of the action. In particular, the perturbed partition
function is in general written as a power series

Z[h, ψ, ψ̄] =
∫
D[h, ψ, ψ̄]Z0(1− S1 + 1

2S
2
1 + . . .) . (2.33)

As an example, the first correction to connected correlation functions is formally

〈ψ(s, t)ψ̄(y, t′)〉 = 〈ψ(s, t)ψ̄(y, t′)〉Z0 −
∫
D[h, ψ, ψ̄]Z0ψ(s, t)ψ̄(y, t′)S1 , (2.34)

where 〈ψ(s, t)ψ̄(y, t′)〉Z0 stands for the bare correlation functions, Eq. (2.32). We just
need to compute the second term on the r.h.s of Eq. (2.34). As Z0 is Gaussian, this
first higher order term is an higher order moment of the form,

∫
D[h, ψ, ψ̄]Z0ψ(s, t)ψ̄(y, t′)

∫
s′′,t′′

F (ψl(s′′, t)ψ̄m(s′′, t′′)) , (2.35)

where we respedented the perturbative contribution of the action S by writing an in-
tegral of a general function F of the fields. In general, not every diagram contributes
to the connected correlations functions for reasons we don’t discuss here [8]. For the
purpose of our analysis, the first relevant terms that contribute to connected correla-
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Figure 2.7.: Perturbative expansion of the connected correlation functions, Eq. (2.38).
A closed loop indicates integration over internal variables.

tions are the one in the 4th power of the fields: ψlψ̄m, l + m = 4, the other terms are
not present due to the space translation and left/right symmetry. All of the surviving
terms are in the form (in Fourier space),

−
(
Almq

2 +Blm

)
ψlψ̄m . (2.36)

The first correction (one loop) is,
∫
D[h, ψ, ψ̄]Z0ψ(k)ψ̄(k′)

∫
k′′,k′′′,k′′′′

(
A13q

′′2 +B13
)
ψ̄(k′′)ψ(k′′′)ψ(k′′′′)ψ(−k′′−k′′′−k′′′) ,

(2.37)
where we denoted with k the Fourier components as k = (q, ω). The only non vanishing
contribution to the correlation functions is, to one loop (Fig. 2.7),

C(k) = C0(k)
[
1− 6(G0(k) +G0(−k))

(
A3,1q

2 +B3,1
) ∫

k′
C(k′)

]
(2.38)

G0(k) is the null-model for the propagator. We haven’t discussed the propagator yet,
for now it is simply: G0 = 〈ψ̄ψ〉.
We then expand the action to higher order terms and the only relevant contributions

are given by {l = 2n − 1,m = 1} with n ∈ N. This expansion gives rise to one-loop
2n-point vertex only, Fig. 2.7. If we keep all the term in the expansion the one-loop
contribution to correlation functions can be computed has:

C(k) = C0(k)
[
1− (G0(k) +G0(−k))

∞∑
n=2

c2n
(
A2n−1,1q

2 +B2n−1,1
)(∫

k′
C(k′)

)n−1
]

(2.39)
Where c2n = (2n)! is the combinatorial factor coming from the possible contractions
for the 2n-point vertexes and,

Al,1 = f(ρ)Dρ−3
l−1∑
k=0

(−1)k
ρl−k−1

(λ)l−k+1

k!(l − k − 1)!(λ)2
Bl,1 = f(ρ)

l∑
k=0

−1k
ρl−k

(λ)l−k
k!(l − k)!(λ− l + k) ,

(2.40)
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2.4. Spatial correlation functions of DNA methylation marks

with (λ)l = λ(λ− 1)...(λ− l)
We obtained a closed expression for the connected correlation functions, with the

Gaussian part identical to the Ginzburg-Landau field theory for the dynamics of a
non-conservative field [96]. It is known [8] that in such models, power law correlation
functions with non trivial exponents arise close to a critical point and our field theory
does not have any critical point for λ = 1/3 [92, 97]. It can be shown that the field
theory defined by the Gaussian action Eq. (2.29) can never be scale invariant as the
mass term W (q = 0) is never zero [98]. On top of that, we argue that the perturbative
approach gave contributions as the one of models A/B [96] for which critical exponents
are known [8] and they are not in accordance with experimental data or numerical
simulations as we will show. We want to stress that we have power law behaviour of
connected correlation functions in a system that does not have a critical point as this is
often assumed and sometimes hard to justify for systems with such non trivial behaviour
[99, 100]. Intuitively there is a deeper reason why this approach fails to correctly predict
correlation functions. After we expand the fields around a base state integrals of the
form Eq. (2.17) inside the integrals there is the length scale, 1/〈φ〉, which is associated
with the effective cutoff of interactions. In other terms, we neglect how the integral
behave above and below the natural cutoff introduced by the average occupancy, as
expected for long-range interactions restricted to the closest neighbours. In order to
overcome this problem in the next sections we will adopt a different approach which
will turn out to predict experimental connected correlation functions Fig. 2.5.

2.4. Spatial correlation functions of DNA methylation
marks

The key insight to calculate the correlation function is that Eq. (2.17) gives rise to two
spatial regimes in sequence space. For short distances interactions are long-range fol-
lowing a power law decay with exponent 1/3, while for distances larger than 1/〈φ〉 inter-
actions decay exponentially and are effectively local. In the following, we will therefore
derive the correlation function separately for these two regimes using renormalization
group methods and we will confirm these results with numerical simulations.

2.4.1. Short tail scaling

In order to develop a method that is capable to describe the short-distance regime we
consider the action Eq. (2.17) and, after taking the semiclassical approximation, we
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expand it to first order in φ, and ∂s. After this we obtain

∂tφ(s, t) =
∫ s

0
dy φ(y)|s−y|−λe−

∫ s−y
z=0 dz φ(z)+

∫ s

0
dy ∂yφ(y)|s−y|1−λe−

∫ s−y
z=0 dz φ(z) , (2.41)

where s is the position in sequence space. For the sake of brevity we omitted the noise
terms and integrals of the same form describing interactions with the right nearest
bound site. The interaction kernel Eq. (2.17) has the form |s− y|−λe−

∫ s−y
z=0 dz φ(z), with

λ = 1/3 in the case of de novo DNA methylation. Upon considering a perturbation
h(s, t) around a mean field dynamical solution, φ0(t), i.e. φ(s, t) = φ0(t)+h(s, t) taking
terms up to second order in h(s, t) and after some algebra, we find that the equation
for h(s, t) is described by, Appendix C.1.1,

∂th(s, t) = e−φ0(t)
∫ s

0
dy h(y)|s− y|−λe−φ0(t)

∫ s

0
dy
∫ s

y
dw h(y)|s− y|−λh(w− y) + ξ(s, t) .

(2.42)
Here we introduced the noise ξ(s, t), such that this equation is in the form of a Langevin
equation. Before going further we need to make a couple of remarks. First, we did not
add noise, the noise is always present as the field described by the master equation is
stochastic. Second, there are different ways in order to derive noise starting from the
path integral Eq. (2.17). The noise can be derived by identifying terms that are pro-
portional to φ̂2. Why is it so? If we would start from the master equation and write the
path integral formulation than the noise term in the Langevin equation acquires a term
in φ̂2 in the path integral (Sec. 1.3.1). Here, we are doing the inverse workflow. Even
though, this might look trivial and completely justified, it is not in many situations, due
to the different interpretations of the fields in the Doi-Peliti and MRSJD path integral
formulation [101]. We carefully look in the expansion of the action Eq. (2.17) terms that
are both non-conservative, i.e. proportional to φ̂2 and conservative, i.e. proportional to
φ̂2∂2

sφ (terms in ∂sφ are not present due to symmetries). By collecting these terms, the
noise in Eq. (2.42) has correlations 〈ξ(s, t)ξ(s′, t′)〉 = δ(t− t′)(2ΓNC − 2ΓC∂2

s )δ(s− s′)
and zero mean. ΓC and ΓNC are the noise strengths for conservative and non conser-
vative noise, respectively. They are just functions of J and their specific value is not
important in the following. After this little preamble we are in a position to derive con-
nected correlations functions at short distances. After some algebra, Appendix C.1.1,
they have the shape

〈h(s, t)h(s′, t)〉 =
[
2
(
|s− s′|2ΓC + ΓNCλ(1 + λ)

)
|s− s′|−2−λcos(πλ)/2Γ(λ)

]
, (2.43)

where Γ(λ) is the gamma function. We therefore obtain for the scaling of the corre-
lation function 〈h(s, t)h(s′, t)〉 ∼ |s− s′|−λ with λ = 1/3 in the case of de novo DNA
methylation.
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We expect that higher order corrections to this result will depend on the parameters
of the model, in particular on average enzyme occupancy, φ0. In order to understand
this point, we may reason that the previous derivation is exact at low values of the
average occupancy, φ0, whilst for larger values of φ0 we expect higher order corrections
to become relevant. In the context of spatial correlations we use the terms enzyme oc-
cupancy and DNAme synonymously from now on. We can already notice from the bare
propagator and correlator in that in the short wavelength regime diffusion takes over
and in case of conservative noise we expect correlation functions to be described by
other exponents. In particular, if we express 〈h(s, t)h(s′, t)〉 ∼ |s′− s|2χ it is possible to
realize by dimensional argument [102] that there is another value for the critical expo-
nent, χ = −(1+d+λ)

3 , which follows from taking into account higher order non linearities
and it will be the correct exponent for the long tail of the correlation functions. In
the following we are going to prove this simple scaling argument with renormalization
group methods.

Figure 2.8.: (A) Bare propagator (G0), correlator (C0) and vertex (W0).
(B,C,D) one loop corrections to the propagator, correlator and vertex respectively.
Closed loops indicate integration over the internal variables.

2.4.2. Long tail scaling

In order to calculate the exponents for the long distance regime we begin with Eq. (2.41)
which, as above, is regularised by including the lowest order spatial derivative that is
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in agreement with the symmetries of the model. After linearisation we obtain

∂th(s) =∂2
sh(s) +

∫ s

0
dyh(y)|s− y|−λ+

−
∫ s

0
dyh(y)|s− y|1−λ(h(s)− (s− y)1

2∂sh(s)) + ξ(s, t) .
(2.44)

where we used
∫ b
a dx f(x) ≈ (b − a)(f(a) + f(b))/2. After some algebra (Appendix

C.1.2) we can write the previous equation in Fourier space as,

G0(q, ω)−1h(q, ω) = ξ(q, ω)− ν
∫

k,ω′
W (q,k)h(k, ω)h(q − k, ω′ − ω) , (2.45)

where h(q, ω) =
∫
ds
∫
dth (s, t) eiqseiωt,G−1

0 =
(
iω +D0q2 + J |q|−λ

)
. We reintroduced

the dimensional parameters from the adimensional Eq. (2.44) as we are interested in
how different terms in the field theory scale under renormalization. In Eq. (2.45) we
defined the vertex, which accounts for the non linear part, as

W (q,k) = 1
2

[
k(q − k)
|k− q|3−λ

+ (q − k)k
|q|3−λ

]
. (2.46)

In the limit k → 0 (hydrodynamic limit) the vertex scales as k, which implies non
renormalization of the vertex function. We now proceed with standard renormalization
group technique as outlined in Sec. 1.3.2. RG describes the flow of parameters under
renormalization. Due to the simple form of Eq. (2.45), which does look like a KPZ
equation with non-local kernel [103, 104], we don’t even have to go to the path integral
formulation as it is quite easy to derive perturbative expansions of the vertex, propa-
gator and correlator [105]. In particular, we can notice that Eq. (2.45) is a recursive
equation for the field h, as it enters on the r.h.s in the convolution integral such that
by recursion,

G0(q, ω)−1h(q, ω) = ξ(q, ω)− ν
∫

k
W (q,k)G0(q, ω)ξ(q, ω) . . . . (2.47)

We haven’t specified what the dots in the previous equations are. It will take a page, or
actually an infinite page to write them all. Moreover, this is just the recursion relation
for h and we would need to write other recursions for G,C,W , really a tough program!
Luckily, Feynman diagrams are again powerful tools to write this recursion relationship
in a compact and clear form. In particular, to one loop (cutting the recursion after
one iteration), the perturbative expansion of the field theory (2.45) is represented by
means of Feynman diagrams in Fig. 2.8. These diagrams then serves as a way to find
corrections to the parameters under RG. As an example, the perturbative expansion
of the propagator by taking into account the first order correction (Fig. 2.8B) is,
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2.4. Spatial correlation functions of DNA methylation marks

G(q, ω) = G0(q, ω) + 4ν2G0(q, ω)2
∫

k,ω′
W (q,k)h(k, ω)

h(q − k, ω′ − ω)W (q,−k)C(k, ω′)G0(q − k, ω − ω′)
(2.48)

Without any technical computations, we notice that the integral is diverging, that’s
were RG comes into play. As outlined in Sec. 1.3.2, the integral is computed in the
momentum shell [Λe−l,Λ], and the divergence is ”cured“. After the evaluation of the
integral, we need to compare the l.h.s and r.h.s of Eq. (2.48). Specifically, all the terms
of the order q2 will renormalize the diffusion coefficient D0 and so the terms in qλ

will renormalize J . We have to do the same procedure for the renormalization of the
correlator and the vertex, which first order corrections are respectively given in (Fig. 2.8
C,D). We skip further technical details as they are quite lengthy and are similar to KPZ
like equations found in many textbooks [8, 68] and papers [106, 107]. We outline the
standard workflow procedure of RG in Fig. 2.9.

Figure 2.9.: Steps to derive the RG flow equations. In this example we evaluate the
correction to the propagator. n are the numbers of diagrams (in this case n = 4).
For simplicity

∫> is the integral were the variables are computed for high momenta
k ∈ [Λe−l,Λ], and the opposite for G<.

Finally, the renormalization of the parameters leads to the following RG flow equa-
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tions,

∂lD0 =
[
z − 2− Kdν

2

dD3
0

[(d− 2) ΓNC + (d− 3) ΓC ]
]
D0 ,

∂lν = [z + χ− 2 + (3− λ)] ν ,

∂lΓC =
[
z − 2χ− d− 2− Kdν

2

2dD3
0ΓC

(1 + d)(ΓNC + ΓC)2
]

ΓC ,

∂lΓNC = [z − 2χ− d] ΓNC ,

(2.49)

where Kd = Sd/(2π)d and Sd is the area of a d dimensional sphere. From the non
renormalization of the non conserved noise and of the couplings we get the exact
exponent identities χ = (−1−d+λ)

3 and z = (−2+d+2λ)
3 . χ is the exponents describing

decay of spatial equal time connected correlation functions of the fields and z is the
dynamical critical exponents, describing how temporal and spatial correlation length
scale with respect to each other at criticality [102]. In d = 1 and for long distances
correlations then decay with an exponent 2χ = −10

9 . Taken together, we find that the
correlation function in sequence space decays in two algebraic regimes,

C(s− s′) =

|s− s
′|−( 1

3), for |s− s| � 1/〈m〉 ,

|s− s′|−( 10
9 ), for |s− s| � 1/〈m〉 .

(2.50)

The cross-over between these regimes is related to the cutoff of the long-range interac-
tions. The position of the cross-over scales with the only length scale in the system, the
typical distance between neighbouring methylated CpGs, 1/m. Intuitively, this length
scale separates a regime dominated by active feedback between DNA methylation and
topology and a regime characterised by passive, conservative fluctuations. This last
point will be clearer in the next section. The numerical prefactor of the proportionality
between the position of the crossover and 1/〈m〉 depends on the statistics of distances
between neighbouring CpGs in base pairs. We confirm theoretical predictions and de-
termine this prefactor using stochastic simulations of master equation Eq. (2.4) with
disordered represented by the actual CpG positions in the mouse genome and found
that the position of the crossover is approximately equal to 350/〈m〉 (see below). The
algebraic decay of connected correlation functions arises naturally in our system due
to the shape of the interaction kernel, which results in a system far from equilibrium.
In equilibrium statistical mechanics, power law correlation functions are expected to
be observed when a system is closed to a critical threshold. On the other hand, in a
non-equilibrium setting, power law behaviour of connected correlation may be observed
in a non critical regime [98]. Even though our theory is in agreement with experimen-
tal data, predicting scaling behaviour of average DNA methylation and correlation
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functions, the interaction kernel that we inferred, Eq. (2.23), has not yet a physical
or biological meaning. In the following, we are going to derive the consequences in
the space of the nucleus of the interaction kernel and provide a framework to infer
chromatin structures from lower dimensional data and models.

2.5. Inference of mesoscopic processes in physical
space

In the previous sections we inferred the dynamics in the sequence space of the DNA,
but we have clear in mind that biological processes, and DNAme is no exception, hap-
pens along the 3D structure of the chromatin. How can we say something regarding
topological structures on the DNA if we just study a master equation for binding and
methylation kinetics in 1D sequence space? This is the gap that we want to bridge
in this section. Specifically, we give a theoretical tool to answer the more general ge-
nomic question: How can we learn from low dimensional data about high dimensional
structures?
On top of this very general problem, when we computed experimental connected

correlation functions in Sec. 2.2, we found a dependence of the power law of correlation
functions to time and so, average methylation. Even though, via theoretical analysis
of the master equation (2.4) we were able to predict different spatial regimes and
capture exponents of connected correlation (Sec. 2.4.1,2.4.2), we are still lacking an
understanding of how they depend on the average methylation. In this section we
develop a field theory to understand the dynamics in the physical space of the nucleus
and the exponents will be characterised within this framework.

2.5.1. Geometric consequences of the interaction kernel

In Sec. 2.3 we infer the kernel from sequencing data and in particular from its first
moment (average DNAme) and we obtain Eq. (2.23). Mathematically this kernel is well
defined and allowed us to compute spatial correlation functions. However, in this form,
the kernel is a pure mathematical object without any clear biological interpretation.
Mathematically the kernel is proportional to the rate of binding at a given CpG i

for a DNMT3 enzymes and we found that it is proportional to the distance to the
closest bound enzymes to the power of −1/3, i.e. Ji = 1/L1/3 + 1/R1/3, with L,R the
distance to the left and right nearest bound DNMT3 respectively. Instead of looking
at the binding rate at a given CpG site, we ask what is the binding rate in a region
surrounding that enzyme, i.e., between the other already bound enzymes. The total
binding rate in a region of size l around bound sites is, ∑|R−L|i=1 Ji, therefore scales
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as l2/3. l2/3 is the surface to volume ratio of an object with volume l, such that if a
genomic region of l base pairs were compacted l2/3 base pairs would be accessible on
the surface, Fig. 2.10 A. Therefore, notably, the inferred interaction kernel describes
the compaction of the DNA around methylated sites and the preferential binding of
DNMT3 to compacted regions, resulting in positive feedback, Fig. 2.10 B , which
is fully consistent with biochemical studies showing that DNAme leads to attractive
forces between tetra-nucleosomes in vitro [108]. Starting from a master equation in the
one dimensional sequence space we arrive to a geometrical interpretation on the three
dimensional scale of the nucleus, which we will refer from now on as physical space. In
this section we are going to rigorously map the dynamics on these two different spaces.

2.5.2. Field theory in physical space

To systematically derive the dynamics in the space of the nucleus (physical space) from
the inferred kinetics in sequence space we start with the partial differential equation
describing the spatio-temporal dynamics in sequence space in the semiclassical limit,
Eq. (2.19). To begin, we will ask how small length elements in physical space evolve in
time for a given position in sequence space. Based on this, we will calculate effective
local fluxes in DNA methylation density in physical space and employ a real space
renormalization scheme to absorb directed, non local fluxes. Specifically, we seek to
define a function gi that describes the evolution of length elements in a properly defined
physical space with respect to changes in DNA methylation density,

δ∆xi = ∆xi − gi(∆xi), (2.51)

with initial conditions ∆x0 = ∆s. ∆s and ∆x are, respectively, length elements in
sequence and physical space. gi(∆xi) is for now an unknown function that depends on
processes that changes the topological structure of the DNA. Our approach is differ-
ent with respect to standard differential geometrical approaches. The main reason for
introducing a different approach is that we want to derive a general representation of
topological dynamics of the DNA which is robust with respect to local forces acting
on the DNA. These local forces are often unknown, especially in vivo and we want to
derive a minimal model, such that we don’t need to claim which particular force is
relevant. The procedure goes as follow: starting from a description in sequence space
given by the semiclassical time evolution of the field φ(s, t), we aim to derive a master
equation in physical space. Let ∆ξi be the length of a discrete element in physical
space. A DNA methylation event (understood in a coarse-grained fashion) causes a
local compaction of the DNA, such that this length element is contracted by

∆ξ′i = ∆ξ1/3
i . (2.52)
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2.5. Inference of mesoscopic processes in physical space

Figure 2.10.: (A) Geometric and physical interpretation of the local kernel in
Eq. (2.23). The binding rate scales as the distances l between two neighbouring enzymes
to the power of 2/3 which is the fraction of accessible sites due to local compaction of
the chromatin. l2/3 is proportional to the surface to volume ration of a sphere of radius
l. (B) Local feedback between DNA methylation and topology which gives rise to de
novo DNA methylation.
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2. From Sequence to Space and Time in Single-Cell Genomics

Physical space is then understood as the projection of a 3D space onto a 1D space.
We argue that this projection is a very good representation of the whole 3D space as
long as the predicted structure spans over short length scales, shorter than DNA loops,
Fig. 2.11.

Figure 2.11.: Physical space as projection of the 3D space of the nucleus. The mas-
ter equation in sequence space (2.5) is dominated by long-range interactions between
DMNT3 enzymes. Upon coarse graining in a projected 1D space, the interactions be-
come local (in this space) and give rise to condensation in the physical space of the
nucleus, Eq. (2.58).

In the absence of demethylation continous de novo methylation will therefore con-
tinously compact the DNA locally such that the total length of the DNA in physical
space, Λ = ∑

i ∆ξi, decreases over time. This gives rise to a flux with a velocity that
locally depends on the entire concentration field left and right of a given position. To
avoid such difficulties, we define a dynamic real space renormalization scheme with
renormalized length elements ∆xi such that the total length of the DNA, L = ∑

i ∆xi,
remains constant over time. To achieve this, for a given de novo methylation event,
∆xi is first contracted according to ∆x′i = ∆x1/3

i and then rescaled by ∆x′′i = b∆x′i,
with the rescaling factor b > 1 given by

b = ∆xi + ∆xi+1 + ∆xi−1

∆x′i + ∆x′i+1 + ∆x′i−1
. (2.53)

After renormalizing back such that the total length is unchanged, we get an effective
flux of methylated sites Fig. 2.12, in the vicinity of the contracted domain. With this,
we obtain an updating scheme for the concentration of methylated sites at position i,
ρi, at each DNA methylation event. Specifically, the updated concentration at a given
position, ρ′i, is given by contributions from the original concentrations and symmetric
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2.5. Inference of mesoscopic processes in physical space

fluxes from the adjacent left and right length elements,

ρ′i = ρi + (ρi+1 + ρi−1) ∆x− b∆x1/3

2∆x . (2.54)

We now consider the joint probability P (ρ, t) to find a given concentration profile ρ at
a time t. On time scales much larger than the time scales associated with microscopic
DNA methylation and compaction events, we can define the rate of de novo methylation
in a given length element i, W (ρi) = ρλi with λ = 1/3. In this limit, the time evolution
of P (ρ, t) is then given by a master equation for the redistribution of DNA methylation
marks in physical space. It takes the form

∂tP (ρ, t) =
∑
i

[W (ρi − rρi−1)P (ρi − rρi−1, ρi−1 + rρi−1,ρ)]

+
∑
i

[W (ρi − rρi+1)P (ρi − rρi+1, ρi+1 + rρi+1,ρ, t)]

− 2
∑
i

W (ρi)P (ρ, t) ,

(2.55)

where r = (∆x−b∆x1/3)
(2∆x) is a dimensionless parameter describing the effective flux of

DNA methylation in physical space as a result of a DNAme event. Here, P (ρ, t) is
the probability of a given density profile at time t, and we introduce a notation where
P (ρi+1−1,ρ, t) signifies the probability of a density profile ρ, under the condition that
at position i+ 1 the density is equal to ρi+1− 1. The term W (ρi) accounts for the rate
of the DNA methylation, W (ρi) = ρλi .
The first moment of the master equation (density of enzymes in the projected space)

is (Appendix C.2),

∂tφ(x, t) = −ra2
0W (φ(x, t))∂2

xφ(x, t) . (2.56)

This partial differential equation describes the flux of DNA methylation density
in physical space stemming from the local, methylation-dependent compaction of the
DNA. How do the other terms in Eq. (2.19) evolve in physical space? In general, the
procedure outlined above leads to a change in the functional form of long-range inter-
actions in physical space. On a mean-field level, however, such interactions again give
rise to a local and a diffusion term with potentially different non-linear dependencies
on φ(x, t). Following the calculations we performed in sequence space in Section 2.3 the
exponents describing these non linearities in the Langevin equation are not indepen-
dent of each other. As the first moment, which is a global average on the genome scale,
must be identical in sequence space and in physical space, the local term and therefore
also the diffusive term, must have the same form in sequence and in physical space.
Therefore, in physical space, the time evolution of φ(x, t) is described by a combination
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2. From Sequence to Space and Time in Single-Cell Genomics

Figure 2.12.: Effect of changes in DNA compaction on the redistribution of methy-
lated CpGs in physical space (black and purple circles). The method consists of two
steps: first, after a methylation event the chromatin gets contracted (blue dashed line).
Secondly, we renormalise space such that the total length of the system remain invari-
ant (blue dashed line). With this procedure methylated sites of neighboring domains
(purple circles) effectively lead to a flux into the contracted domain in physical space.

of processes identical in sequence space and an additional term, Eq. (2.56), describing
the flux of DNA methylation in physical space due to changes in DNA topology. Taken
together, after substituting the definition of W (φ), W (φ(x)) = φ(x)λ, we arrive at a
partial differential equation describing the time evolution of φ(x, t) in renormalized
physical space,

∂tφ(x, t) = φ(x, t)λ + φ(x, t)λ−3∂2
xφ(x, t)− rφ(x, t)λ∂2

xφ(x, t) . (2.57)

By taking into account the next highest order in the Van Kampen expansion we
derive a term for the noise which, due to the conservation of methylation in the renor-
malization procedure, is conservative,

∂tφ(x, t) = φ(x, t)λ + φ(x, t)λ−3∂2
xφ(x, t)− rφ(x, t)λ∂2

xφ+ η(x, t) + ∂x [g(φ(x, t))ξ(x, t)] .

(2.58)
The noise terms have correlations 〈ξ(x, t)ξ(x′, t′)〉 = 2ΓCδ(t− t′)δ(x− x′) and 〈η(x, t) ·
η(x′, t′)〉 = 2ΓNCf(φ(x, t))δ(t−t′)δ(x−x′). We include the non-conservative noise term
as it comes from binding kinetics described in the previous sections. As in the following
we will mostly interested in perturbations around a dynamical homogeneous solutions
the particular dependencies in g(φ) and f(φ) is not relevant to lowest order for the
remainder of our analysis.

60



2.5. Inference of mesoscopic processes in physical space

The partial differential equation describing the time evolution of the field φ(x, t)
is structurally similar to Eq. (2.19), but contains a new term −rφ(x, t)λ∂2

xφ which is
an anti-diffusive term counteracting the diffusion term. We expect that with increas-
ing values of φ this term will dominate the diffusion term and potentially lead to the
formation of highly methylated regions in physical space. Although we did not explic-
itly state higher order terms in the spatial derivatives these terms must exist. In the
next section we will investigate how such terms affect the formation of methylation
condensates.

2.5.3. Formation of condensates in physical space

Eq. (2.58) highlights the emergence of new physical phenomena with respect to the
dynamics in sequence space. In this section, we will systematically investigate whether
spatial structures emerge in physical space. To this end, we will investigate whether a
homogeneous field in physical space is linearly unstable, which would imply the emer-
gence of a characteristic length scale resembling DNA methylation condensates. To
this end we take into account the next highest order term in φ, ε∂4

xφ, which describes
restoring forces counteracting DNA compaction at a finite length scale. Condensation
happens if a spatial perturbation, δφ, of a homogeneous solution, φ0, is unstable. Fol-
lowing standard procedures [109] we linearised Eq. (2.57) and made a general ansatz
for the time evolution of the field φ(x, t) upon perturbation with wave vector k,

φ(x, t) = φ0 + eωteikxδφ . (2.59)

The homogeneous state is unstable if ω > 0. We obtain a dispersion relation relating
the rate of growth of the instability to the wavelength of the perturbation of the form

ω(k) = λφλ−1
0 −

(
φλ−3

0 − rφλ0
)
k2 − εφλ0k4 , (2.60)

which is depicted in Fig. 2.13 A for a fixed value of r and varying values of φ0. Clusters
of methylated DNA can form if the maximum of this function is greater than zero for
a finite values of k. This latter condition is ensured by the second derivative being
negative. We find that the homogeneous state becomes unstable if φ0 > r−

1
3 . The

strongest growing mode at the point of the instability is k =
√
rφ3

0−1(√
6εφ3/2

0

) , which gives an

indication of the expected typical length scale of the resulting pattern. In summary,
we expect an instability in the form of finite size methylation condensates to arise
if the average DNA methylation concentration, φ0, exceeds a threshold above which
anti-diffusion takes over diffusion given by r− 1

3 . We performed numerical simulations
of the Langevin equation (2.58) and found that methyl condensates do indeed form in
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Figure 2.13.: (A) Dispersion relation of Eq.(2.58) with the addition of a fourth or-
der term in the derivative (εφ(x, t)λ∂4

xφ(x, t)). The parameter values are r = 20, ε =
0.01, λ = 1/3. (B) Numerical simulations of Eq.(2.58) are performed with a pseudo-
spectral method [110] with the same parameter as in A.

the expected parameter range (Fig. 2.13 B).

2.5.4. Order of magnitude estimate of condensate sizes

As the precise values of r and ε are unknown the linear stability analysis cannot be
used straight forwardly to identify the length scale of the predicted methylation con-
densates. To get an order of magnitude estimate of these condensates we therefore
resort to dimensional analysis. There are three length scales involved in the formation
of methylation condensates corresponding to the parameters determining the dispersion
relation in the previous section:

1. The typical distance between methylated CpGs, l5mC . With an average CpG
density of roughly 1% and average DNAme level of 50% we estimate that l5mC ≈
500 bp.

2. The typical length scale over which DNAme locally affects DNA compaction, lc.
From the cross-correlation function between DNAme and accessibility we find
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that lc ≈ 1000 bp, Fig. 2.18D. We expect that this length scale affects the size of
condensates positively.

3. A length scale describing the restoring force counteracting DNA compaction, lr.
We expect this to be of the same order of magnitude as the DNA persistence
length, lr ≈ 100 bp, and to affect the size of condensates negatively.

Taken together, the length scale reflecting the typical size of condensates from these
three length scales is given by l ≈ l5mC lc/lr, which is approximately equal to 5000bp.
To test if dynamics of local feedback between DNAme and compaction also leads

to the formation of higher-order chromatin structures (methyl-condensates) on larger
spatial scales with increasing levels of DNA methylation we reasoned that such conden-
sates should be identifiable as an excess of mid-range physical contacts between pairs
of genomic loci in highly methylated regions as measured in chromatin conformation
capture experiments. We therefore analysed single-nucleus methyl-3C sequencing data
of mouse serum grown ESCs [111]. We tiled the mouse genome into windows of 100kb
and, for each window, calculated average DNAme levels and the probability distribu-
tion of contact distances. Notably, we found an abrupt increase in mid-range contacts
between 3000bp and 5000bp (translating to roughly 30-40nm in diameter) for regions
exceeding an average DNAme level of 40 % (Fig. 2.14), in agreement with our prediction
of a spatial instability and the emergence of DNAme associated chromatin structures.
The sizes of these structure are again consistent with our theoretical estimate and with
those estimated from super-resolution imaging studies [112–114].

Figure 2.14.: Contact probability of genomic regions for distance (0-10000 bps). We
subdivided genomic fragments by their average DNA methylation. There is a notable
increase of the contact probability at distances between 3000 and 5000 bps, which is in
agreement with our dimensional argument Sec. 2.5.4. The bump of contact probabilities
is present only for regions with average DNAme greater than 40% (inset), in agreement
with the stability analysis derived in Eq. (2.5.4).
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2.6. Prediction of experimental correlation functions

Having inferred how de novo DNAme dynamics affects the chromatin structure in the
three dimensional space of the nucleus we are in the position to answer the remaining
open question about methylation dependent exponents of connected correlations. We
focus on the short tail corrections as the corrections to the long tail are identical and
the same reasoning will apply.
To understand these corrections to the exponents it is convenient to temporarily con-

sider the correlation function in non-renormalised physical space, and then transform
back to sequence space. We begin by noticing that in sequence space the correlation
function decays as |s − s′|−1/3 for vanishing values of average local DNAme. In non-
renormalised physical space for vanishing average DNA methylation the correlation
function must scale in the same way as in sequence space, i.e. ∼ |ξ − ξ′|−1/3. We now
consider the effect of n DNA methylation events. According to Eq. (2.52), this leads to
a contraction ∆ξ′ = ∆ξ−(1/3)n . Going back to sequence space, where length elements
scale as ∆s ∼ ∆ξ3 we obtain that the correlation function decays as |s−s′|−(1/3)n+1 . n is
a monotonically increasing function of the local average DNA methylation level which
vanishes for φ0 → 0. Expanding to first order we obtain approximately n ≈ αφ0 + . . .

where α is a parameter that we determined to be approximately equal to 1 numeri-
cally. Correlation functions then scale as 〈h(s, t)h(s′, t)〉 ∼ |s− s′|−(1/3)1+φ0 . If we now
replace the average occupancy with the average methylation, as they are straightfor-
wardly directly proportional Eq. (2.21), we obtain that two point connected correlation
functions are described by two power laws with methylation density exponents

C(s− s′) =

|s− s
′|−( 1

3)1+〈m〉

, for |s− s| � 1/〈m〉 ,

|s− s′|−( 10
9 )1+〈m〉

, for |s− s| � 1/〈m〉 .
(2.61)

An exponent, that depends on the average might be definitely something nor com-
mon or trivial. Intuitively, global level of average DNAme play the role of dimension in
field theory, and exponents do depend on the dimensionality of the system for standard
field theories. We then can argue that we started from a one dimensional theory and re-
alised that the dimensions are effectively changing along with average methylation, such
that absence of DNA methylation gives the one dimensional results and a completely
methylated DNA would be a singularity with zero dimension. This is of course quite
absurd and not biologically relevant, but yet a smoother transition between dimensions
is expected. In Fig. 2.15 A we summarise different regimes of the correlations function
and their biophysical meaning. In Fig. 2.15 B we compare theoretical prediction with
numerical simulation of the master equation (2.4). We validate our theoretical and
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Figure 2.15.: (A) Theoretical prediction of connected correlation functions from
renormalization group and field theoretical methods. Connected correlation functions
decay as power laws for two different spatial regimes dominated by active or passive
influence of topology on DNA methylation respectively. The crossover between these
two regimes is set by the inverse of the average DNA methylation. (B) Gillespie simu-
lations [115] of the master equation (2.4) with binding rate J = 1 and methylation rate
k = 1. We omit unbinding and demethylation. Numerical simulations are performed
over a lattice with the biological distribution of distances of CpGs from chromosome 1
of the mouse. Numerical correlations functions are computed as in experimental bulk
BS-Seq (Sec. 2.2). Here we plot correlations functions for a global average methylation
of 0.5. Theoretical correlation functions, Eq. (2.50) correctly captures the exponents
and the cross-over of the numerical simulations.

numerical predictions with two different experiments. The first experiment, mentioned
in the beginning is a scNMT-Seq 2i-release experiment of mESCs in which cells are
sampled up to two days after release (D0,D1,D2). The second experiment is a scBS-
Seq of mESCs cultured in vitro in serum conditions. Experimental data for the latter
experiment was processed identically to [16]. The results are shown in Fig. 2.16, where
we computed two point connected correlation functions in different genomic regions
(features) and for different methylation density. We were able to achieve the first data
split as we have high spatial resolution in single-cell sequencing and we further divide
by local methylation density as the predicted exponents do depend on average methy-
lation. Our parameter free theory (dashed black line) is in excellent agreement with
experimental data (Fig. 2.16) further strengthening the hypothesis of local feedback
between DNA methylation and topology via long-range interactions.
It is quite mesmerising that a parameter free theory predicts methylation patterns in

different genomic regions and at different stages in development. Puzzled by this finding
we sought to challenge our theory further. In particular scNMT-Seq allows to obtain
molecular information of chromatin structures (GpC methylation) and gene expression
(mRNA-Seq) at the same time as CpG methylation (BS-Seq). With standard bioinfor-
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Figure 2.16.: Connected correlation functions of mESCs in serum conditions and after
2i release. Colors stands both for different days after release in the scNMT-Seq 2i-release
experiment as well as to distinguish serum and 2i-release. Correlations functions are
computed dividing different features by their DNAme (0−0.8). Theoretical predictions
(dashed black line) are in perfect agreements with the data as they captures both the
length scales that divides the different regimes as well as the exponents across all the
features and different DNAme. Promoters (TSS) and CpG islands (CGI) are shorter
compared to other features such that long tails could not be resolved.

matics techniques Appendix B.2.2 we analyse at first the transcriptome Fig. 2.17 A,B
and found that Dnmt3 genes are upregulated during development as well as other genes
associated to pluripotency, which is consistent with their active role in de novo DNA
methylation. In the next section we will analyse and predict chromatin structure from
GpC methylation, which is a measure of DNA accessibility as GpC methyltransferase
enzymes bind to regions where nucleosomes are depleted [116].

2.6.1. Cross-correlation functions

scNMT-Seq gives detailed molecular information for three layers of regulation, CpG
DNAme, RNA expression and chromatin structure. In particular, it maps the 1D DNA
sequence to a binary sequence where each element of the sequence is either accessible or
not. This information is stored in GpC methylation, making this layer of information
analysable as CpG methylation. Predicting accessibility is thus the last challenge to our
theory, which allowed us to infer chromatin structure from one dimensional sequencing
data. To infer GpC methylation, we then proceed in the same fashion as done for CpG
methylation. We first compute global changes in GpC methylation, which we will refer
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Figure 2.17.: (A) Low dimensional representation (UMAP) of the gene expression
space for mESCs during de novo DNA methylation. Gradient colors are global av-
erages of DNAme. (B) Normalized expression of Dnmt3a and Dnmt3b genes during
development. (C) Changes over time of accessibility compared to DNA methylation.

to as accessibility. In Fig. 2.17 C we compare the first moment of accessibility (average
accessibility) for different stages in development to the average DNA methylation (CpG
methylation). DNA methylation increases in the same fashion as found in bulk BS-Seq,
Fig. 2.4. GpC methylation increases as well, even though much slower. This result seems
in contradiction with what we found previously. In order to understand this apparent
contradiction, we have to bear in mind that we predicted that DNAme locally compact
the DNA on very small structures, whilst this may not be the case if one considered
structures on larger length scales. We can formalise this qualitative argument by simply
considering the binding kernel. We indeed found that the fraction of accessible sites
scales as l2/3, with l the size of a compacted region. If we consider another methylation
event inside this region, we expect the region to be split in two parts,(left an right) with
respect to the newly methylated site. The two regions have sizes l1, l2 and of course
l1 + l2 ≈ l. These two regions are compacted as well, such that the total number of
accessible sites is l2/31 + l

2/3
2 . This must be compared with l2/3. It is easy to check that

l
2/3
1 + l

2/3
2 > l(2/3) ∀(l1, l2), when l1 + l2 = l.
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Having theoretically explained this seemingly unexpected behaviour of global acces-
sibility, we ought to find the behaviour of connected cross-correlation functions, which
will be the last challenge to our model. To derive the cross-correlation we begin with
the master equation (2.5) and introduce a complementary binary vector a, ai ∈ {0, 1},
which describes whether a site i is accessible (ai = 1) or not (ai = 0). We then couple
this vector to the DNA methylation dynamics in the simplest form compatible with our
model interpretation in physical space. We begin by considering the expectation value
of the product miaj (cross-correlation) and for the sake of simplicity in the notation
we take i < j. Cross-correlation are by definition

〈miaj〉 = P (mi = 1, aj = 1) = P (aj = 1|mi = 1)P (mi = 1) . (2.62)

P (aj = 1|mi = 1) is the conditional probability that a site at position j is accessible
whenever a site at position i is methylated. P (aj = 1|mi = 1) cannot be computed
directly as it implicitly depends on other values of a and m.
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Figure 2.18.: (A) Methylation-accessibility model. The red line is the only relevant
contribution for connected cross-correlations functions and all the other contributions
(dashed lines) are irrelevant. (B) Theoretical prediction of connected cross-correlation
functions, Eq. (2.68), are in excellent agreement with different experimental data
(serum and 2i-release NMT-Seq). (C) The strength of cross-correlation functions is
linear in the average methylation as predicted in Eq. (2.68) (α〈m〉). (D) The typical
length scale Ka at which cross-correlation decays is independent of DNA methylation
in agreement with Eq. (2.68).

To proceed, we therefore in a first step “integrate in” the random variable describing
accessibility at position aj−1 ,

〈miaj〉 =
∑
aj−1

P (aj|aj−1,mi)P (aj−1|mi)P (mi = 1) . (2.63)

Reiterating this procedure for the second factor we find

〈miaj〉 =
∑

aj−1,aj−2

P (aj = 1|aj−1,mi = 1)P (aj−1|aj−2,mi)P (aj−2|mi = 1)P (mi = 1) .

(2.64)
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We reiterate again these steps |j − i| times and we obtain

〈miaj〉 =
∑

ak,i≤k<j
P (aj|aj−1,mi)P (aj−1|aj−2,mi) . . . P (ai+1|ai,mi)P (ai|mi)P (mi = 1) .

(2.65)

We are not yet in a position to give physical expression for the conditional probabilities
as they have an unknown dependence on mi. For simplicity, we assume for now that
the mechanical coupling between base pairs is much stronger than the coupling of DNA
methylation marks:

〈mimi+1〉 � 〈aiai+1〉 . (2.66)

Therefore, P (aj|aj−1,mi) ≈ P (aj|aj−1) for i 6= j. We will elaborate on this assumption
in more details below.
In the DNAme model, the probability of binding decays according to Eq. (2.23).

The physical interpretation of this kernel was that it reflects the binding probability
of enzymes at compacted sites. In our model, the probability that a site is compacted
then decays with the distance to the nearest methylated site to the power of λ = −1/3.
Therefore, in order to reflect this kernel, the conditional probability P (aj|aj−1) should
decay as P (aj|aj−1) ∝ aj−1(1 −Ka/k

λ), where aj−1 plays the role of a delta function
and k is the distance between a CpG and GpC site. Taken together, we obtain

〈miaj〉 = P (mi)P (ai|mi)
|j−i|∏
k=1

(
1− Ka

kλ

)
. (2.67)

In our derivation we implicitly assumed that the conditional probabilities P (aj|aj−1)
do not explicitly depend on DNA methylation values at positions other than i. In
principle, in order to derive simple expressions for the conditional probabilities we
would have had to not only sum over intermediary positions in the accessibility vector,
a, but also over all positions in the DNA methylation vector m, ultimately giving a
sum over exponentially weighted paths between mi and aj Fig. 2.18 A. In the limit,
where the mechanical coupling Ka is much stronger than the coupling between DNA
methylation events, this sum over exponentials is dominated by the path with the
highest contribution of Ka (orange line in Fig. 2.18 A). With P (mi) = 〈mi〉 and
defining the local coupling between DNA methylation and accessibility α = P (ai|mi),
an expression for cross-correlation functions is given as

〈miaj〉 = α〈m〉 exp
(
−Ka|i− j|2/3

)
. (2.68)

In summary, we find that the strength of cross-correlation is linearly proportional to
the average DNA methylation level. By contrast, the length scale of the decay, K3/2

a , is
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independent of average DNA methylation. Both results, as well as the functional form
of the cross-correlation function, are in excellent agreement with the experimental data
Fig. 2.18 B,C,D. We are now in a luxurious position where our theory predicts both
DNAme correlation functions and cross-correlation between DNAme and chromatin
accessibility for several sequencing experiments in vitro. Moreover we are able to predict
the shape of this functions for different functional genomic regions, with a parameter
free theory. This is suprising, maybe too surprising. How can a biological simple theory
predicts higher order statistic in the whole genome? If that’s true, it would mean that
de novo DNAme is a simple process and no special information can be stored in a
genomic region. Indeed, such a mechanism alone cannot encode biological information
in DNAme patterns beyond the binding affinity of DNMT3 enzymes to the DNA and
chromatin. This mechanisms alone, as we are going to show, does not allow to store
information locally on the genome via DNAme. We then want to find if our theory
cannot predict DNAme patterns in some genomic regions and then analyse them in
more details. The regions individuated by the theory, will then be the one that are
locally regulated and something more or different than our simple biological model is
happening. In the next section, we will analyse in vivo data from the mouse embryo
and identify which are those processes.
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2.7. Anticipating symmetry breaking during exit from
pluripotency via DNA methylation marks

Figure 2.19.: (A) Comparison between theoretical and numerical connected correla-
tion functions for mESCs sequenced 4.5 days after fertilization (E4.5). (B) Connected
correlations functions for later stages of development (E5.5-E7.5). The two spatial
regimes of the shape of connected correlation functions is preserved but there is an en-
richment of correlations between 100-1000bps. (C) Enrichment of connected two points
correlations with respect to the “null” model (E4.5). Each row represents cells in a cer-
tain stage during development and E7.5 cells are divided into mesoderm, ectoderm
and endoderm. Residuals are based on the difference between numerical simulation
and experimental data.

Having inferred and tested the kinetic rules governing de novo methylation in mESCs
in vitro we then asked whether we could predict the establishment of 5mC marks dur-
ing exit from pluripotency and early gastrulation in vivo. The model derived above
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describes a single mechanism establishing DNAme genome-wide. Therefore, we ex-
pect that when cells become primed for differentiation from E5.5 and carry lineage-
dependent DNAme patterns [6] additional mechanisms targeting DNA methylation
must be in place. We reasoned that, by quantifying statistical patterns of deviations
from our model describing generic, genome-wide DNAme dynamics (“null model”), we
could identify genomic regions being specifically regulated by additional processes. To
address this question, we analysed scNMT-Seq data from mouse exit from pluripotency
and initial cell fate decisions during gastrulation [6] (Appendix B.4). As expected, the
model predicts the distribution of DNAme marks in pluripotent cells at E4.5, Fig. 2.19
A. During later stages of development (E5.5-E7.5), when cells undergo cell fate transi-
tion, we observed systematic deviations between theory and experiments: even though
correlation functions still roughly follow the pattern of two distinct short and longer-
distance spatial regimes, we found an enrichment correlations in DNA methylation
on a scale between 100 and 1000 bps, Figures 2.19 B. To examine whether this pat-
tern occurs genome-wide or is restricted to specific genomic regions we systematically
quantified the difference between theory and experiment (residuals), normalised by the
experimental standard error, for any distance between CpGs and different genomic an-
notations. We found that the enrichment in correlated DNAme marks was specific to
gene bodies and in particular to genes silenced between E5.5 and E7.5, but not active
genes, Fig. 2.19 C.
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Figure 2.20.: (A) Boxplot of average gene body DNA methylation between active
and inactive genes during development for all the cells in the embryo. Median, first
and fourth quantile are plotted as a box plot, where the median is the horizontal thick
line and quantiles are the two boxes heights. The p-value shows significant difference.
(B) Residuals for groups of genes that are differentially downregulated between pairs of
embryonic stages. (C) Residuals for groups of genes that are differentially upregulated
between pairs of embryonic stages. Significant deviations in (B,C) are marked by red
squares (p<0.05, t-test).

It is well known that differences in global levels of DNAme in gene bodies affect
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transcriptional activity [117]. This effect may depend on CpG density and it is in
general associated to promoter DNA methylation. Here, we found that promoters and
CpG islands follow the biophysical theory defined the previous sections, whilst gene
bodies are found to statistically deviate. In order to capture whether global gene body
DNA methylation affects transcriptional activity or the main contribution comes from
the distribution of the methylation marks independently on the average, we computed
absolute levels of DNAme in active and silenced genes. We found that they differed
only slightly Fig. 2.20 A and therefore cannot fully explain systematic deviation of gene
bodies DNA methylation marks to theoretical predictions.
We then asked whether such deviation is a consequence of gene silencing between

E5.5 and E7.5, or whether it temporally precedes the silencing of genes during differ-
entiation. To this end, we determined differentially expressed genes between each pair
of embryonic stages and calculated for each set of genes the enrichment or depletion in
spatial correlations between DNAme marks in all stages and lineages. We found that
for silenced genes which are downregulated between a pair of embryonic stages these
changes in DNAme patterns emerge up to two days before changes in the transcrip-
tome appear, suggesting that these marks could play an instructive role by priming
the genes for silencing during differentiation Fig. 2.20 B. By contrast, we identified the
DNAme pattern characteristic for active genes only after genes had been activated, but
not before Fig. 2.20 C. We found that these patterns apply in particular to pluripo-
tency genes Fig. 2.21 A, but also to a set of silenced genes which are not annotated as
pluripotency genes Fig. 2.21 B. While polycomb (H3K27me3) [118–120] or H3K9me3
[121, 122] pathways might be candidates for premarking silenced genes, further mecha-
nistic studies will be necessary to elucidate the detailed molecular pathways behind this
process. Taken together, our framework to infer collective epigenetic processes involved
in de novo methylation allows identifying epigenetic patterns preceding transcriptional
silencing during differentiation. DNA methylation (5mC) is not the only epigenetic
modification of CpG sites during exit from pluripotency, but as we outlined in the
introduction (Sec. 1.2.1), enzymes other than DNMT3s, such as DNMT1s and TETs
can modify the status of CpG sites. In the remaining part of the chapter, we extend
the nonequilibrium enzyme kinetic models introduced in Sec. 2.3 and Sec. 2.4 to take
into account the activity of different enzymes of the active methylation turnover.
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Figure 2.21.: Residuals for gene bodies of pluripotency genes (A) and of of the top
and bottom 2000 expressed genes excluding pluripotency genes (B).
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2.8. Active turnover of DNA methylation

In the previous sections we showed how topological DNA changes lead to long-range
interactions between CpG sites and hence to global changes in DNA methylation during
the loss of pluripotency. We showed how DNMT3s enzymes cooperate and interact to
deposit DNA methylation marks. On the other hand, methylation marks can be actively
removed by TETs or passively by DNMT1s enzymes (Sec. 1.2.1) [32, 40]. Specifically,
for epiblast cells that are beginning to exit from pluripotency, DNMT3s and TETs are
coexpressed [31]. TETs enzymes modify the methylated cytosines oxidating 5mC to
hydroxymethyl-cytosine (5hmC) then to formyl-cytosine (5fC) and finally to carboxyl-
cytosine (5caC), such that CpGs sites perform a biochemical cycle passing through
different states (Fig. 2.22 A), the first one being DNA methylation. In order to get
further insights into changes of DNA methylation in a developing embryo, we thus
need to study how this biochemical cycle (DNA methylation turnover) is regulated.
In this section, we map the DNA methylation turnover to coupled stochastic non
linear oscillators. Specifically, we develop a theory of oscillators with power law long
range interactions and non local interaction kernel, which has the shape inferred in
the previous sections. As these systems may show global and local synchronization, we
analyse the conditions under which synchronisation arises.

2.8.1. Phase oscillators with restricted long-range interactions

Figure 2.22.: The methylation cycle is divided into three phases: ψ1, ψ2, 2π−ψ1−ψ2.
CpGs in the first phase interact with restricted long-range interactions with CpGs that
are in the second phase. CpGs also oscillate with an intrinsic frequency ωi, where i
indicates the lattice position.

CpGs sites perform a biochemical cycle passing through different states (Fig. 2.22 A)
and as there are just a discrete number of these states, the DNA methylation turnover
is effectively described by a discrete phase oscillator [123]. In the previous sections
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we found that long range interactions arise between CpG, where a DNMT3 enzyme is
bound and free CpG (C). This is the only form of interaction that we know and that is in
accordance with experimental evidences, and we do not add other interactions between
different states of the cycles. We can thus think of the biochemical cycle as a discrete
phase oscillators interacting via long range interactions only in particular phases of the
clock, ψ1, ψ2. These two phases, sketched in Fig. 2.22 B, are not necessarily defined
by one discrete state, but they may incorporate multiple states. If we define a discrete
oscillators with n discrete states, the "macrophase” ψ1 is a shortcut for the first ψ1

discrete states, ψ2 for the next ψ2 and the last phase is comprised of n−ψ1−ψ2 states.
As an example, if n = 20, ψ1 may stand for the first two states and ψ2 for the next three.
We anticipate that in the continuous limit, ψ1 and ψ2 take finite ranges and the last
phase occupies a total range of the clock, 2π−ψ1−ψ2. The master equation describing
the DNA methylation turnover, which takes into account long range interactions as in
Eq. (2.4), is (Fig. 2.22)

∂tP (φ) =
N∑
i=1

[(ωi + ki (φ, φi − 1))P (φ, φi − 1)− (ωi + ki (φ))P (φ)]

ki (φ) = J
N∑

k=1/k 6=i
δφi,ψ1δφk,ψ2

e−ρ2|k−i|

|k − i|λ

ρ2 = 1
N

N∑
j=1

δφj ,ψ2 ,

(2.69)

where we omitted the implicit time dependency on P (φ) and we used a mean-field
version of the interaction kernel. The delta function δφi,ψ2 and similarly for δφi,ψ1 in
Eq. (2.69) is one whenever φi ∈ ψ2, meaning that the state φi belongs to one of the
states identified by ψ2, and it is zero otherwise. ρ2 and ρ1 are then counting functions
of sites with discrete states in ψ2 and ψ1 respectively. We used the notation f(φ, φi±1)
to compactly indicate the state [φ1, . . . , φi ± 1, . . . φN ]. The frequency ωi denotes the
intrinsic oscillations rate of a given CpG i and it is proportional to the typical time that
a CpG site i takes to complete the biochemical cycle. The lattice sites indicate, as in the
previous section, the topological position of each CpG along the DNA, such that i = 1
is the first CpG , i = 2 the second, etc... Eq. (2.69) fully defines the dynamics of the
oscillators, but it has no exact solution and so we proceed with a system size expansion.
The key idea is to divide φ into a stochastic and a deterministic part and study their
coupled dynamics. By doing so, we formally make an analytical continuation of the
discrete clock [124] given by

φi = ΩΦi(t) + Ω1/2ξi(t) , (2.70)
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with Ω, the number of states of the clock. After equating equal order in Ω in the
master equation, Appendix D.1, we arrive to a Langevin equation describing the time
evolution of the phase of each clock:

dφi
dt

= wi + f1(φi)
N∑

k=1,k 6=i

Je−ρ2|k−i|

|k − i|λ
f2(φk) +

√
2ωiξi(t), (2.71)

ξi(t) is a Gaussian white noise with zero mean and unitary variance, 〈ξi(t)ξj(t′)〉 =
δ(t− t′)δi,j and we promoted δφ,ψi to be general functions of the phases (f1(φ), f2(φ))
and it will be discussed later. Eq. (2.71) has the form of a stochastic Kuramoto model
[125, 126] with partial interactions (only between two phases of the clock) and screened
long range interactions. One hallmark question on such process is whether and how
this system achieves synchronisation. In Fig. 2.23 we show numerical simulations of
Eq. (2.71) without noise and we can already notice the particular biochemical patterns
arising from such interactions. The methylation clocks seem to be synchronised in a
band like structure, such that groups of CpG oscillate together and others seem to
not be synchronised at all. This phenomena may remind chimera states observed in
spatially interacting Kuramoto oscillators in one dimension [127].
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Figure 2.23.: (A) Synchronization of the deterministic part of Eq. (2.71) for g(ω) =
δ(ω−1) and J = 10 starting from an asynchronous state.(B) Dynamics of the Kuramoto
order parameter r (green) and the average DNA methylation ρ2 (blue). These functions
exhibit a sustained oscillations in time. (C) Individual oscillators phases φi after 105

time steps with dt = 0.01. The lattice is divided into separated regions of synchronised
oscillators.

Analytically, in order to see at which values of the parameters this model can exhibit
a transition from an asynchronous state to a synchronized one, we need to study the
behaviour of the Kuramoto order parameter

r(t)eiψ(t) = 1
N

∑
i

eiφi(t) . (2.72)

To do so we first define the generator of moments [128–130],

Hm
k,q := 1

N

N∑
j=1
〈eikφjeiqj〉wmj (2.73)
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where (.) is the average over the distribution of intrinsic frequency ωi and 〈(.)〉 is an
average over the possible realisation of the noise. In the previous equation we employed
a Fourier transform of the fields. Hence, k is dual to φ and q is dual to the DNA
sequence. Upon defining a function χ(θ, y, z, t) as

χ(θ, y, z, t) =
∞∑

k=−∞

∞∑
m=∞

∞∑
q=−∞

e−ikθe−iqz
ym

2πm!H
m
k,q, (2.74)

its time evolution is given (Appendix D.2) by

∂tχ(θ, y, z, t) = − ∂

∂θ
[ν(θ, y, z, t)χ] + ∂

∂y

∂

∂θ
D(y) ∂

∂θ
χ(θ, y, z, t)− ∂χ

∂θ∂y
, (2.75)

where ν(θ, y, z, t) = y + J
[
f1(θ)

∫
dθ̂
∫
dẑ e

−ρ2ẑ

|ẑ|λ f2(θ̂)χ(x̂, y = 0, z − ẑ, t)
]
is a drift-term

andD(y) = 2y. Defining ρ(θ, ω, z, t) as the density of oscillators with phase θ, position z
and frequency ω at time t, and taking y = 0 (deterministic limit of Eq. (2.71)), its conti-
nuity equation is given by exploiting the relationship χ(θ, y, z, t) =

∫
dωg(ω)eyωρ(θ, ω, z, t)

as

∂ρ(θ, ω, z)
∂t

= − ∂

∂θ
[ν̃ρ(θ, ω, z, t)]]

ν̃ = ω + Jf1(θ)
[∫ ∫ ∫

dωdẑdθ̂ g(ω)e
−ρ2ẑ

|ẑ|λ
f2(θ̂)ρ(θ̂, ω, z − ẑ, t)

]

ρ2 =
∫ ∫ ∫

dθ′dω′dz′g(ω′)f2(θ′)ρ(θ′, ω′, z′)∫ ∫ ∫
dθ′dω′dz′ρ(θ′, ω′, z′)g(ω′)

reiψ =
∫ ∫ ∫

dθdωdzρ(θ, ω, z)g(ω)eiθ z ∈ (0, 1),

(2.76)

where g(ω) is continuous form of the distribution of intrinsic frequencies ωi.
As

∫
dθρ(θ′, ω′, z′) = 1 and

∫
dωg(ω) = 1, the denominator of ρ2 is always one.

Eq. (2.76) is a self-consistency equation for the density as ρ2 depends on ρ. In order
to close the equation we need to find the functional form of f1, f2. As in the origi-
nal discrete oscillators model, f1 and f2 were delta functions over a set of consecutive
states (f1,2 = δφ,ψ1,2), their continuous form is f1(θ) = H(Θ(ψ1) − mod(θ, 2π)) and
f2(θ) = H(mod(θ, 2π) − Θ(ψ1))H(Θ(ψ2) − mod(θ, 2π)), where H(x) is the Heaviside
step function and mod(a, b) is the rest of the division a/b and Θ(ψ1,2) is the value of
the last discrete state of the phase ψ1,2. As an example, if the clock is composed of 12
discrete sites and ψ1 cover the first three sites, ψ1 = π

2 . In the following, whenever we
refer to biological control function we take the last definition of f1, f2 with ψ1 = [0, π2 )
and ψ2 = [π2 ,

3π
2 ].
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2.8.2. Stationary solutions of synchronised states

Eq. (2.76) does not admit asynchronous stationary solutions. The main reason is that
the control functions break the rotational symmetry such that the equations are not
invariant under a shift of the fields (oscillators). Indeed, the first integral in Eq. (2.76)
will never vanish for an asynchronous solution as long as

∫
dθf2(θ) 6= 0. Moreover,

we have to consider that for biological consistency, the distribution of frequencies for
each oscillators has to be positive. Generally this problem is solved by moving to a
rotating frame with a certain angular velocity, typically the median of g(ω) [130]. In
our specific problem, due to the lack of rotational symmetry, this transformation does
not simplifies the analytical calculations. For general functions f1(θi)f2(θj) is sometimes
possible to change to a coordinate system which allows the asynchronous solution to
be the stable solution [131], as long as the product f1(θi)f2(θj) can be written as
g(θi − θj), with g a function that is 2π periodic and well defined. As f1,2(θ) in the
problem we are considering are step functions, it is not always possible to write in
the rotationally symmetric form g. Moreover, as the asynchronous solution is never a
stable solution, a stability analysis as in [132, 133] or a power series expansion [134]
around this state does not give any useful insight for this process, as the stationary
states are non-trivial even for vanishing strength of interactions J . We thus need to look
for an order parameter different from the Kuramoto one which is even experimentally
more accessible. A natural order parameter is ρ2, which biologically is the average
DNA methylation. For the biological control functions, ρ2 = 1/2 in a phase where the
interactions do not play any role on synchronization and should be greater than 1/2
whenever J > Jc. We thus first seek for a stationary solution of Eq. (2.76) and we
found out that there are two possible solutions. One solutions where oscillators are
phase locked at frequencies such that ν̃ = 0 and a second solution where oscillators
rotate in a non collective manner around these frequencies and they will satisfy the
stationary condition ν̃ρ = C(ω), where C(ω) is a constant that is determined upon
normalization [130]. All together we find that

ρ =

δ
[
ω + Jρλ2Γ(1− λ, 0, ρ2)H(π/2− θ)

]
ω ∈ [−Jρλ2Γ(1− λ, 0, ρ2), 0]

C(ω)
|ω+H(π/2−θ)A(λ)J | elsewhere

A(λ) =
(
π
∫
dωg(ω)C(ω)/ω

)λ ∫ π
∫
dωg(ω)C(ω)/ω

0
dye−|y|/|y|λ ,

(2.77)

where Γ(1− λ, 0, ρ2) =
∫ ρ2

0 dye−|y|/|y|λ and H(x) is the Heaviside step function. C(ω)
is set by the normalization such that,

∫ 2π
0 dθρ = 1 and we obtain, C(ω) = 2|ω||A(λ)J+ω|

π(|ω|+3|A(λ)J |) .
To get some useful analytical insights regarding changes in the synchronization of the
system, we compute ρ2 from its definition, Eq. (2.75) and inserting the stationary
distribution ρ from Eq. (2.77). The first branch of solutions gives a null contributions
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as g(ω) has a domain ω ∈ [0,∞] such that

ρ2 = 2
∫ ∞

0
dω

A(λ)J + ω

3A(λ)J + 4ωg(ω) . (2.78)

As there are no clear symmetries that can be exploited, this integral does not have a
simple solution for a general distribution of frequencies. We initially work in the small
J limit. As A(λ) depends on J , we can not simply expand the integrand in series of
J , but we need to find first the solution of the self consistency equation for A and
later expand. In particular, we find that A(λ) = ρλ2Γ(1− λ, 0, ρ2) and we can plug this
result back into the self consistency equation for ρ2. The expansion of the integrand
in Eq. (2.78) in powers of J has a divergency 1/ω such that the integral might be not
well defined for a general distribution of frequencies. To avoid such difficulties, we fix
the distribution of frequencies to be an exponential with mean µ for which the exact
self consistency equation for ρ2 is

ρ2 = 1
8

[
4− ρλ2Γ[1− λ, 0, ρ2]Jµe

3ρλ2 Γ(1−λ,0,ρ2)Jµ
4 Ei

(
−3

4ρ
λ
2Γ(1− λ, 0, ρ2)Jµ

)]
, (2.79)

where Ei(x) = −
∫∞
−x dye−y/y is the exponential integral function. In the low interaction

limit J → 0 we find ρ2 = 1
2 and for high interaction J → ∞, ρ2 = 2

3 . The first of this
limit is clear as for no interactions ρ2 simplifies to ρ2 =

∫
dθf2(θ)/2π, which for the

biological control function gives the value 1/2. On the other hand when J goes to
infinity, oscillators that are in the phase ψ1 - the only one affected by interactions
- will pass an infinitesimal time in that phase such that the density of oscillators is
effectively restricted in the phase domain [π/2, 2π]. The oscillators in this last domain
experience no interactions such that on average ρ2 =

∫
dθf2(θ)/(3π/2), which for the

biological control function gives the value 2/3. Eq. (2.79) for finite and non-zero values
of J cannot be further simplifies, but it can be solved numerically and in Fig. 2.24
A we show the analytical prediction compared to numerical simulations for different
system sizes (number of oscillators).There is still a little discrepancy between numerical
simulations and theoretical results (Fig. 2.24 A inset) and we argue that it is caused
either by finite size effects as the numerical curves approach the theoretical one for
increasing values of the system size or by the formation of spatial structures such that
the homogeneous solution is never stable. Only a systematic study of non-homogeneous
solutions will tell us which hypothesis is correct. The Kuramoto order parameter r, once
the value of A(λ) is known, is found numerically from equations (2.77) and (2.76).
Specifically, as ρ2 saturates at a constant value, r can never been 1 such that full
synchronization is never achieved. In Fig. 2.24 B we show numerical simulations of
Eq. (2.76) for an exponential distribution of frequency with µ = 1 and in Fig. 2.24
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Figure 2.24.: (A) Kuramoto order parameter 〈r〉 and 〈ρ2〉 (inset) as a function of the
interactions strength J . The average (〈. . .〉) is taken over 100 realisations of numerical
simulations of the model in Eq. (2.71). Different colours represent different system
sizes, i.e. the number of lattice sites (N). Theoretical predictions (2.79) and (2.76) are
shown as a black dashed line. Numerical simulations of Eq. (2.71) are performed using
a 4th order Runge-Kutta algorithm with λ = 1/3 and the frequencies ωi are random
numbers drawn from an exponential distribution with unitary mean. In (B) we show
one realisation of the simulations with parameters J = 1, N = 1000 (150 sites are
shown) and a 4th order Runge-Kutta algorithm with time step dt = 0.01.

A we compare theoretical prediction to numerical values of ρ2 and r. Here, we found
that methylation turnover does not exhibit any transition between an asynchronous to
synchronous state at finite values of the interactions strength (J) between CpG sites
(oscillators). In particular, we found that synchronization and methylation increase
non-linearly with respect to the interaction strength and there is no evidence general
scaling with respect to the frequency distribution of oscillators. Moreover, we found that
full synchronization, in case of partially interacting oscillators, can never be achieved
as the average DNA methylation ρ2 saturates at a constant value.

2.8.3. Partial synchronization in the genome

From numerical simulations we see that long range interactions leads to particular
phase-locked spatial structures along the genome Fig. 2.24 A, which are stable in the
long time limit. Indeed, we found out that r(t), which measure the degree of syn-
chronization saturates at a constant level lower than one, even for high value of the
interactions J Fig. 2.24 B. This behaviour, which can only be explained through an
analytical study of Eq. (2.71) beyond linear stability has an important biological con-
sequences: CpG sites will never synchronised genome-wide, making it possible to easily
change local structure if needed, without having to change them genome-wide, such
that this model make DNA methylation plastic against perturbation and stable at the
same time. In order to exploit if the genomic distribution of CpGs plays an important
role for synchronisation, we did numerical simulations of Eq. (2.71) with distances be-
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Figure 2.25.: (A) Numerical simulations of Eq. (2.71) with a 4th order Runge-Kutta
algorithm (dt = 0.01) where the lattice distances are taken from the CpG distribution
of chromosome 1. We rescaled each distances such that the average distance is 1, to
make it comparable with the lattice model. (B) Comparison of the difference between
global and local (Eq. (2.80)) Kuramoto order parameter for lattice simulation and
simulation on the genome with nl = 10. Median, first and fourth quantile are plotted
as a box, where the median is the horizontal thick black line and quantiles are the two
boxes heights. The p-value shows significant difference.

tween sites taken from chromosome 1 of the mouse genome. A part from a qualitative
difference between genome simulations and lattice based ones (Fig. 2.25 A), we ought to
find an observable which better describes local synchronization. To this end we define
a local order parameter rl as

rl = 1
L/nl

(L−nl)/nl∑
k=0

1
nl

(k+1)nl∑
j=knl

eiφj , (2.80)

where the first CpG position is at j = 0. We argue that these defined parameter
catches local changes in synchronisation with respect to global ones. We found that
the local order parameter is significantly higher for genome simulations with respect to
lattice one (Fig. 2.25 B), suggesting the possibility that the distribution of CpGs along
the genome favours local synchronisation, further strengthening the difference already
introduced by long range interactions between local and global synchronisation.

2.9. Summary and discussion

In this chapter we applied methods from non equilbrium statistical physics to infer
emergent spatio-temporal processes from multi-omics genomic experiments. In partic-
ular, we apply our theory to early dynamics of DNAme during development before one
of the first symmetry breaking events in the mouse embryo. This transition, happen-
ing between E5.5 and E6.5 after implantation, sets the exit of epiblast cells out of the
naive pluripotent state. In Sec. 1.2.1 we analysed 2i-release experimental data of mouse
embryonic stem cells and upon studying the increase of the average DNA methylation
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and the spatial arrangement of methylated sites, we show how DNA methylation is
established via a collective mechanisms involving long range interactions. The data
suggest that these interactions are non trivial as collective degrees of freedom emerge
during the entire process of de novo methylation. Puzzled by these findings, in Sec. 2.3
and Sec. 2.4, we derived a theory of out of equilbrium theory of enzyme kinetics with
general and unknown interaction kernel between enzymes, which we applied to unveil
the mechanisms of de novo DNAme. Upon writing the resulting master equation, deriv-
ing the path integral formulation and finally applying renormalization group methods,
were able to infer the kernel of interactions between DNMT3 enzymes (responsible of
de novo DNA methylation). Moreover, our theory correctly predicts the increase of the
average methylation in time before cellular symmetry breaking as well as the shape of
connected correlation functions for several functional genomic regions (Sec. 2.6). Our
theory shows that de novo DNA methylation is established via an interplay between
enzymes binding kinetic and local chromatin structure. In Sec. 2.5 we apply a newly
developed geometrical renormalization scheme to infer the dynamics in the three dimen-
sional space of the nucleus (physical space) from one dimensional sequencing data (se-
quence space). We were able to show that there is a positive between between DNAme
and chromatin compaction, predict the size of local chromatin structures (condensates)
and how they emerge from interactions. We tested our results on several experimental
data, which confirmed our theory. In 2.7, we challenge our theory with in vivo experi-
ments. In particular we wanted to know whether the predicted mechanisms are broken
locally, such that specific information can be encoded in the genome via DNAme. We
found out, that these mechanisms is indeed broken along gene bodies upon exiting
from pluripotency. Specifically, we show that gene bodies of genes that are going to be
downregulated have a different arrangement of methylation marks (irrespective of the
mean) with respect to other functional genomic regions or to genes that are going to
be upregulated, which instead follow the general mechanism predicted by out theory.
Surprisingly, we show that the specific arrangement of methylation marks appear two
days before the actual shut down of the gene and the consequent cell fate transition. All
together we were able to derive a systematic theory to unveil mechanisms in the three
dimensional space of the nucleus from one dimensional sequencing data. Our theory
is able to predict several genomic observables in the sequence space as well as in the
physical space, from in vitro and in vivo data of mouse embryo. The theory, which we
apply in the context of de novo DNA methylation, can be generalized to any other
epigenetic process, hence providing a general framework to infer enzyme kinetics and
emergence of collective degrees of freedom from sequencing data. Finally, in Sec. 2.8
we study the combined role of different enzymes, DNMT3 included, that modify the
status of CpG base pairs (Sec. 1.2.1). In particular, by taking the long range interac-
tion nature of the process as derived in the previous sections, we were able to map the
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methylation cycle of CpG sites as a Kuramoto model with non-linear, non-local and
partial phase interacting kernel. We analysed when synchronisation can be achieved in
such systems, and found out that the long range interactions facilitate synchronization
of local structures, yet preventing full synchronization of the genome.
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3. Scaling and Memory during
Transcriptional Activity

In Chapter 2, we showed how DNA methylation marks are established through the
interplay between DNA methylation and chromatin conformation. In particular, by
combining novel methods from single-cell genomics and nonequilibrium field theories
we were able to unveil processes underlying the formation of the embryonic methy-
lome. This distribution was encoded in the shape of connected correlation functions,
which exhibit scale free behaviour. In Sec. 2.7 we found that there are regions along the
genome that break this general mechanisms such that their correlation functions are
not scale free. We found that regions were these mechanisms is broken are gene bodies
prior to downregulation during early development. Puzzled by these findings, our aim is
to have a better biological and theoretical understanding of the interplay between gene
body DNA methylation and gene expression. In particular, in Sec. 3.1 we demonstrate
scaling relations between gene expression, DNA methylation and gene length. To un-
derstand the biophysical origin of these relations, we constructed a biophysical model
based on collective polymerase movements on the gene bodies coupled to dynamic
binding-unbinding of DNMT3s typically acting as obstacles to the polymerase move-
ment [117]. The model can successfully address the observed scaling relation generally
without any free parameters. We found, in accordance with the results of the previous
section, that the correct scaling exponents are observed when taking into account how
the three dimensional distance between base pairs along the DNA scales with respect
to their linear distance. The observed scaling is reminiscent of a self avoiding random
walk of the polymer in three dimensions and it is responsible for the observed scal-
ing in the methylation levels revealed by analytical calculations and simulations. Even
though the model correctly predict scaling exponents it does not capture changes in
transcriptional output with respect to changes in DNAme patterns, with same global
methylation levels. In Sec. 3.2 we extend the model by allowing memory effects of
RNA polymerases during transcription and found that they can possibly explain the
difference in methylation patterns between downregulated and upregulated genes.
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3.1. Derivation of scaling laws

In order to explore the interplay between transcription and DNA methylation dy-
namics at the genome scale, we analysed recently published scNMT-Seq datasets in
mouse embryonic stem cells which provide the mRNA and DNA methylation level at
genome scale with single-cell resolution [16]. Obtaining a biophysical understanding
of the interplay between DNA methylation and gene expression is complicated by the
fact that scRNA-Seq experiments produce non-stochiometric read outs (Sec. 1.2.3). To
infer quantities predictable by biophysical theories we used a simple stochastic model
for gene expression with a poison-beta approximation to fit the distribution to obtain
the parameter values of the model for every individual gene [135].

Figure 3.1.: Different scaling relationships are plotted for individual genes (dots)
that are left after filtering procedures averaged across cells. The adjusted R2 val-
ues of linear regressions are indicated at the bottom of each graph. (A) Scal-
ing between the elongation rate (RT ) and genes length (L) and between aver-
age methylation and genes length (B), where the slopes of the linear fit are
−κ ≈ 0.95,−η ≈ 0.6 respectively. (C) mRNA abundance does not show any clear
scaling with respect to the gene length (R2 ≈ 1e−5). All the exponents are computed
by fitting a linear regression model (lm function in R).

mRNA molecules are produced every time a polymerase ends its activity by reaching
the end of the genes that it is transcribing. Intuitively, the longer the genes, the smaller
would be the transcription elongation rates (RT ) in case there is a roughly constant and
equal number of polymerases for each genes. We first preprocess and filter data as done
in [16] (Sec. 1.2.3). We then compute the transcription elongation rates (RT ) for the
set of genes that are left in our analysis and show that elongation rates are negatively
correlated with the length of the genes (L) such that log(RT ) ∼ −κ log(L) , κ ≈ 0.95±
0.02 (Fig. 3.1 A) .
However, the average mRNA level does not display any such correlation with the gene

length (Fig. 3.1 C) and this can be explained by the fact that the average mRNA level
depends on the promoter ON/OFF rates which are not influenced by the length of the
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3.1. Derivation of scaling laws

gene. The dependency of the elongation rate with respect to the length suggests that
the number of polymerases is roughly conserved for every gene and that the timescale
of movement of the polymerases on the gene is much slower than the transcription
initiation rates on the promoter. We then proceed to compute the average methylation
for each gene. The average DNA methylation, computed as number of methylated CpGs
divided by the total number of CpGs, should not have any dependence on the gene
length. Surprisingly, this is not the case (Fig. 3.1 B) as the average methylation 〈m〉
has a stretched exponential dependency on L given by log(− log(〈m〉)) ∼ −η logL , η ≈
0.60± 0.01.
As of the output of single-cell sequencing experiments, we can correlate scaling ex-

ponents of each individual cell with the mRNA levels of individual genes belonging to
the same cell. This procedure is similar to what we did in Sec. 2.7. In particular, we
test whether the scaling relationships hold in every individual gene of every individual
cell. We found that there are few genes which show high correlation with the scaling
exponents (Fig. 3.2 A). In order to find out which genes are then responsible for the
observed scaling, we performed a gene ontology enrichment analysis [136] taking the
top 100 genes according to their correlation values. We observed that genes associated
with chromatin silencing and epigenetic factors appear predominantly at the top of the
enrichment analysis Fig. 3.2 B. These results are again in line with the previous chap-
ter, pointing at an interplay between chromatin structure and scaling of transcriptional
elongation rate.

Figure 3.2.: (A) Spearman correlation between individual gene exponents (dots) and
predicted scaling exponent. Few genes are significant (above the red line) for which the
p-value is gretear than 0.05. Colors indicates p-values thresholds. (B) Identification of
the significant genes which are found to be mostly associated with chromatin silencing
and epigenetic factors.

In order to investigate the mechanism for the observed scaling, we constructed a
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biophysical model based on the totally asymmetric exclusion process (TASEP) [117,
137] for the movement of the polymerases coupled with dynamic binding-unbinding of
methyl binding enzymes. The methyltransfer enzymes can not bind to the CpG site
unless it is devoid of any polymerase and, similarly ,the polymerase can move to a CpG
site only if it is not occupied by an enzyme thus, posing as an obstacle to the movement
of polymerases. These features of the model constitute a two way competition between
the polymerase and enzymes kinetics (Fig. 3.3 A). We consider that there are NT total
RNA polymerases, assumed constants for the reasons explained before. Each RNAP
can be in two states, bound or not bound. We define Nf the number of free or unbound
RNAP and Nb = NT − Nf the number of bound RNAP. In particular, RNAPs bind
at the promoter with a rate α, such that the total binding rate is αNf . This binding
rate sets a time scale τ between two successive RNAP binding events, τ = 1

αNf
. If the

RNAP slides along the gene body with a constant speed r calculated in bps/s, then the
typical distances between two RNAP is d = r/τ . For a gene of length L, the average
number of bound RNAP is, Nb = LNfα/r and as Nb + Nf = NT , the number of free
RNAP as a function of NT is

Nf = NT

1 + L/L0
, (3.1)

with L0 = r/α, which is a characteristic length scale. The elongation rate (RT ) is by
definition the inverse of the time between two consecutive mRNA production events
and it is given by

RT = 1
τ

= 1
d/r

= αNT

1 + L/L0
. (3.2)

As L0 is proportional to the speed of RNAP r, if r � α, meaning that the speed
of RNAP polymerase is slower compared to its typical binding rate then we get the
scaling relation

log(RT ) = − log(L) + log(rNT ) . (3.3)

Eq. (3.3) is useful as we don’t need to know - and it is not possible to obtain it from
RNA-Seq experiments - the speed or the total number of RNAP to understand how
the transcription rate scales with respect to the gene length. In particular, the term
log(rNT ), which is the unknown, can be found as the intercept of the linear fit between
log(RT ) and log(L).
The scaling relationship (3.3) seems to be independent of DNA methylation, but

nothing ensures that r or NT are independent of DNA methylation. Moreover, there
could be an hidden dependency and in the following we are going to highlight how they
are connected. In particular, Eq. (3.3) was derived under the assumption of constant
rates of RNAP transcriptional activity, but there might be factors that can change the
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3.1. Derivation of scaling laws

rates. For example, if there is another enzyme, such as DNMT3, bound to the gene
body, then both the speed r of the RNAP can decrease as well as the typical number
of bound RNAP Nb. In the following, we consider the effect of methyl binding enzymes
on transcriptional activity since we have experimental information of DNAme, which
is established by these enzymes. The following model can be straightforwardly extent
to other enzymatic activities.

Figure 3.3.: (A) Sketch of the model and interplay between RNA polymerases (or-
ange) and methyl binding enzymes (green). The rate of binding kON and unbinding
kOFF are given by the equilbrium condition kON/kOFF = exp(βµ). In (B) we show
the numerical results for the scaling between elongation rate and RNAP density and in
(C) between DNAme and RNAP density obtained from numerical simulations for dif-
ferent CpG densities. The dashed lines are the theoretical exponents. (D) The scaling
between elongation rate and RNAP density does not change with increasing numbers
of enzymes (DT ). On the other hand, the scaling exponent between methylation and
RNAP density, Eq. (3.8), increases with respect to the total number of enzymes (E),
saturating at ≈ 0.55 (F). The CpG density is 10% (Number of CpG/L) in all the
simulations unless specified otherwise and the gene length is L = 50.

In order to reveal how methyl binding enzymes bound on the DNA change tran-
scriptional activity, we consider DT total enzymes, of which n are bound enzymes on
the gene body (Fig. 3.3 A). As an enzyme does not have necessarily to bind at the
promoter, but can bind anywhere along the gene, then the number of ways n enzymes
can bind to Lf free sites is

Lf (Lf − 1) . . . (Lf − n) . (3.4)
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3. Scaling and Memory during Transcriptional Activity

Moreover there are
(
DT
n

)
ways to choose n enzymes out of a total of DT . If we associate

to every bound enzyme an energy µ, the partition function is

Z =
DT∑
n=0

(
DT

n

)
Lnfe

−βµn = (1 + Lfe
−βµn)DT . (3.5)

In the previous equation we made two assumptions. First, we assume that the speed
of RNAP is slow (as before) such that the number of binding sites is Lf ≈ L and if
DT � Lf , then Lf (Lf − 1) . . . (Lf − n) ≈ Lnf . Secondly, we consider that the system
is in equilbrium with a thermal bath at a temperature T and β = 1

kbT
and with an

energy proportional to the number of bound enzymes, namely µn. µ is the energy
required to bind an enzyme at a give site, which is given by the catalytic domain via
ATP (Sec. 1.2.1). From the partition function we can then obtain the average enzyme
occupancy as

〈n〉 = 〈E〉
µ

= DT
Lf

eβµ+Lf
. (3.6)

where the average energy 〈E〉 = −∂logZ
∂β

. As DNA methylation is proportional to the
average occupancy of methyl binding enzymes, the average methylation is given by

〈m〉 = 〈D〉
Lf

= DT
1

eβµ + γL
, (3.7)

where γ is the combination of the number of CpG sites and the sites not occupied by
RNAP. In particular, the number of free CpG is given by Lf = γ′L− L

d
γ′L = γ′L(1− 1

d
).

γ′ is the average CpG density and it is typically, γ′ ≈ 0.01 and we set γ = γ′(1 − 1
d
).

We need to find how does the free energy cost for a biding events µ depends on the
parameters of the model. In particular, it can only depend on the length of the gene
as the other parameters are related to RNAP such that µ = KLη, where η is unknown
for now and K is a constant. We finally arrive to a compact scaling relation between
average DNA methylation and gene length

log(− log〈m〉) ∼ −η log(L) , (3.8)

where the terms after the dots incorporate unknowns parameters as before. As one
of the simplest choice for η we take typical scaling factor of a polymer carrying out a
self avoiding random walk in three spatial dimensions (η ≈ 0.6) [138]. In Fig. 3.1 B we
plotted this scaling relation and indeed find that it matches very well the experimental
data, where the inferred slope is ηexp = 0.6.
In order to reproduce the analytical result numerically, we performed a set of sim-

ulations by keeping the length fixed but varying the polymerase number which is an
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equivalent way of changing the polymerase density. Specifically we fix L = 100 and set
K = 1 for all the simulations. The simulation results show that the transcription elon-
gation rate scales inversely with the polymerase density (Fig. 3.3 B) whereas average
DNA methylation level scales as Eq. (3.8) with η ≈ 0.56 with respect to the polymerase
density (Fig. 3.3 C). In fact, we observed that the scaling exponents are independent
of the CpG density of the gene body (Fig. 3.3 B,C). Here, methyl binding enzymes
create obstacles to the movement of polymerases. Next, we performed the simulation
for a different number of obstacles and observed that the scaling in transcriptional
elongation is retained (Fig. 3.3 D) but the scaling exponent between DNA methylation
level and length of the gene body increases with the obstacle number (Fig. 3.3 E,F)
saturating at around 0.55 for high obstacles number, illustrating the rational for the
observed correlation shown in Fig. 3.2 B.
As discussed in the previous section, the explanation of the observed scaling relations

requires two fundamental assumptions in the model, namely, the constant polymerase
number per gene as well as the scaling between three dimensional distance and the
linear distance on the DNA based on the self avoiding random walk of the polymer. In
order to investigate the scaling, we analysed a recently published single-cell Hi-C data
set at 100 Kb resolution [139]. The experimental data provides us with a contact map of
all the mouse embryonic stem cells chromosomes at single-cell level. From the data, the
scaling between the three dimensional distance and linear distance is calculated over a
distance of 2Mb (Fig. 3.4 A) for several regions of the 16 chromosomes for 8 different
mESC cells (Fig. 3.4 B). In fact, the average scaling exponent is found to be very close
to around 0.56 corroborating our assumption that the DNMT3 binding is hindered by
the presence of polymerases close by and the binding rate is proportional to the distance
in physical space. Next, we focused on the other assumption of a constant number of
RNAPs per gene which can be explored using a genome wide pol2 ChIP-seq data. Here,
we analysed the polymerase densities over the genes of different lengths and observed
that indeed the polymerase density scales with an exponent -0.93 in accordance with
the simulation result (Fig. 3.4 C).
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Figure 3.4.: (A) Scaling of the linear distance between base pairs along the 1D se-
quencing of the DNA and their 3D distance from HiC data. (B) The measured expo-
nents of the scaling for different cells are in agreement between each other and suggest
that the binding energy of methyl binding enzymes is indeed proportional to the three
dimensional spatial distance as explained in the previous chapter. (C) The experimen-
tal scaling of RNAP density with respect to the length of the genes is in accordance
with our theoretical prediction.

3.2. Effects of memory of DNA methylation marks
during transcriptional output

Until now we have focused on the effects of the average level of DNAme in gene bodies
on the transcriptional output. We now investigate whether for a given DNAme level the
genomic arrangement of DNAme marks can influence transcription. As the previous
scaling arguments suggest, equations (3.8) and (3.3), the minimal interaction between
methylation marks and transcription is encoded in the transcriptional speed r. We take
then ri (transcriptional speed at site i) to be a function of the gene body methylation
pattern m, ri = ri(m). We then expand this functions in terms of the first moments
of the distribution of methylation resulting in

ri(m) ≈ r0 + f(〈mi〉) + g(〈mimj〉) . (3.9)

Where f, g are for now two functions and 〈mi〉 and 〈mimj〉 are respectively average
methylation and spatial correlation functions. If the particular structure of the pattern
does not influence transcription then g = 0 and we expand f(〈m〉), around 0 such
that, r(m) = ∑

i ri/L ∼ r0(1− λ〈m〉) , where L is the gene length. The negative sign
indicates that methylation slows down transcription [117]. If λ� 1 then

r(m) ∼ r0e
−λ〈m〉 (3.10)
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In order to understand the effect of spatial correlations in DNA methylation patterns
on transcriptional rate, we proceed with a microscopic description. In particular, at a
first level of description, DNA methylation patterns are defined by their typical spatial
correlation length. As a simple form of non-local interaction between methylation and
transcription which encodes the correlation length of DNA methylation pattern we
consider the kernel

Ki =
i∑

j=0
|mj −mj+1|/L . (3.11)

The kernel Ki counts all the variations in the methylation pattern from the initial
site of transition (i = 0) to the site i (Fig. 3.5 A) and as we will see later it encodes
spatial correlation functions of DNA methylation. We expect that variations in DNAme
patterns further slow down transcriptional activation such that it has the same sign as
f , which will be justified at posteriori. The average transcriptional speed is

r(m) = 〈
∑
i

(1− λ(mi + νKi))〉/L , (3.12)

where ν sets the relative contribution of the kernel Ki with respect to the term that
scales with the average DNAmethylation. We proceed with a mean field approximation,
P (m) = P (m1)× P (m2) . . .× P (m2)P (mL) such that r is approximated as

r(m) ≈
∑
i

(1− λ (〈mi〉+ ν〈Ki))〉/L. (3.13)

We consider the system to be translational invariant (〈mi〉 = 〈m〉) and the kernel is
evaluated as follows: if methylation patterns have a typical length scale of ξ then the
number of signs changes up to sites i scales as i/ξ such that

r(m) ∼ r0e
−λ(〈m〉+ ν

ξ
) . (3.14)

We then find that the correlation length and translational speed are positively related.
Putting equations (3.14),(3.8),(3.3) together we obtain a relationship between the tran-
scriptional elongation rate and the correlation length of DNA methylation patterns,

logRT = 1
η

log(− log〈m〉)− λ(〈m〉+ ν

ξ
) + . . . . (3.15)

For low values of average DNA methylation 〈m〉, the first term on the r.h.s is dominant,
whilst it becomes irrelevant at high methylation levels. The third term on the r.h.s, as it
is not dependent on average DNA methylation, cannot be detected from our previous
analysis. In order to experimentally verify these predictions we analysed correlation
length in each individual gene and later divided the genes between the 1000 most
expressed (Top) and less expressed (Bottom). As the typical number of CpGs in each
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gene body is quite limited (∼ 500 − 600 CpG per gene body on average), we use a
spectral density approach to quantify the correlation length of a given gene i as ξ̃i =
I0/γ

′Li, with I0 the spectral density for zero frequency. This method requires a spatial
series where observation are equally spaced, such that we later rescaled correlation
length by the average distance between CpGs as, ξ̃i = ξi Li/γ′iLi = ξi/γi . The results
are shown in Fig. 3.5 B and they do strengthen the hypothesis that transcriptional
output is correlated to the correlation length of the DNA methylation patterns. In
particular, we find that an increase in the correlation length between DNA methylation
marks on the gene bodies is associated with an increase of transcriptional output.
Here, we showed how the interplay between DNA methylation and gene body length

affects transcriptional output. We found that the logarithm of elongation rate is linearly
proportional to logarithm of the gene body length, such that genes with longer gene
bodies are on average less transcribed. Upon introducing a biophysical model of RNA
polymerases activity affected by methyl binding enzymes kinetics, we showed that the
average enzymes occupancy is a stretched exponential function of the gene body length.
Specifically, the average DNA methylation follows the same scaling relationship with a
stretching exponent that depends only on the spatial arrangement of base pairs in the
physical space. Later, we extend the biophysical model to account for changes of DNA
methylation marks arrangement with the same average DNA methylation. We found
that memory in transcriptional output determined by the correlation length scale of
DNA methylation marks affects the transcriptional output such that higher correlation
lengths are associated with highly expressed genes. All the results are supported and
in accordance with experimental evidences.

Figure 3.5.: (A) Memory kernel Ki for RNAPs at two different binding sites (i =
3, 10). (B) Estimated correlation length between methylated CpGs for highly and lowly
expressed genes. In the violin plots the median is encoded in the horizontal thick black
and first and fourth quantiles are encoded in the boxes heights. The p-value, obtained
with a t-test between the correlation lengths of the two set of genes, shows significance.
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3.3. Summary and discussion

In Sec. 2.7 we concluded that DNAme plays a crucial role in determining cell state tran-
sitions, in particular at the level of gene body. In this chapter we provided a theoretical
framework, always based on experimental results, to tame the complex interplay be-
tween DNAme and gene expression. In particular, in Sec. 3.1 we exploit these intimate
relationship by studying scaling laws in gene expression. We initially analyse sequenc-
ing experiments of mESCs in serum conditions and derived relationships between three
fundamental quantities in gene expression" transcription rate, gene body length and
average DNA methylation. Upon developing a minimal and simple thermodynamical
model for transcription factor kinetics and DNMT3 binding we were able to explain all
the experimental scaling relationships. Specifically, transcription factor kinetics is ob-
structed by the presence of DNMT3, which gives rise to a competitive interaction, such
that non trivial scaling relationship are observed. Surprisingly, theoretical and exper-
imental scaling relationship matches if we consider the 3D structure of the chromatin
and its relationship with DNAme as derived in the previous chapter. We then argued
whether the only relevant part for transcription was the global average methylation
or the structure of methylation patterns. In Sec. 3.2 we include in our model a term
which accounts for transcriptional memory along the gene body, concluding that the
correlation length of methylation pattern plays a role in transcriptional output. Upon
computing correlation lengths for different genes, we found that our prediction that
translational speed is inversely proportional to the correlation length, making sense
of the results derived in the previous chapter. Even though the theoretical modeling
was sufficient to explain the correlations of transcriptional output with DNAme, it
was lacking a dynamical perspective, in particular how to regulated transcription via
changes in DNAme.
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4. Glassy Fluctuations in Gene
Regulatory Networks

Throughout this thesis, drawing on the analysis of genomic single-cell sequencing data
we developed theories of non equilbrium systems that are in agreement with experimen-
tal findings and that are able to predict mechanisms underlying cellular behaviour. In
particular, we were able to infer emergent mesoscopic structures of the DNA and their
interplay with chemical DNA modifications by analysing one dimensional sequencing
experiments (BS-Seq). Apart from DNA methylation, another layer of regulation of
cell fate are gene regulatory networks. Single-cell RNA sequencing experiments allow
to get quantitative profile of gene expressions, but they are extremely challenging for
a direct inference of statistical quantities (Sec. 1.2.3). Systematic technical errors, lack
of stochiometric observables and biological variability do not allow accurate theoretical
prediction from sequencing experiments. We thus reason that the theoretical approach
to infer emergent processes hided in RNA sequencing measurements has to follow the
reverse path we took so far.
Here, we start from a theoretical understanding of gene regulatory networks and the

coarse-grained theory will suggest the informative statistical observable to infer gene
expression fluctuations dynamics in gene regulatory networks. Specifically, in Sec. 4.1
we describe general gene expression dynamics in terms of a master equation, which
incorporates interactions between two of the experimentally accessible layers of regu-
lation, mRNA and protein. We will show that the propagation of fluctuations in gene
regulatory networks can be universally mapped into bipartite spin glass theories. We
thus can use methods developed in the context of glass systems to infer gene expres-
sion fluctuations. In particular, we will find the analytical phase diagram which divides
fluctuations of gene expression in two main categories: paramagnetic and glassy. The
statistical observable which encodes this information is the overlap distribution, which
measures heterogeneity between cells which belongs to the same statistical ensemble.
Having identified the relevant observable, which is parameter free, in Sec. 4.2 we will
draw on three different publicly available scRNA-Seq experiments to quantify hetero-
geneity in cell states and by comparison to the previously derived phase diagram we
will be able to identity glassiness of cell states. We will highlight how neural induced
progenitor cells of mouse show potential glassy behaviour such that it is possible to
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encode information in gene expression fluctuations. In Sec. 4.3, we find another phase
in which fluctuations of gene expression may reside by studying their out of equil-
brium dynamics. Specifically, in paramagnetic-like cell states, fluctuations may still be
long-lived, such that they are autocorrelated in time for time scales longer than the
one described by individual molecular processes. We then ask what are the potential
role of correlated fluctuations in cell state transitions and in Sec. 4.3.1 we analyse a
self-regulating gene as a paradigmatic example of a genetic switch. We show that one
potential role of correlated fluctuations is to regulate the switching between different
states of the gene favouring and fixating one of the two states. Finally, in Sec. 4.4,
drawing again on single-cell sequencing experiments we show how transition between
different cell states is captured by a sharp increase of gene-gene correlations, which is
qualitative predicted by minimal theories of cellular symmetry breaking. All together,
we derived a theory of gene expression fluctuations in gene regulatory networks that
identify statistical observables, namely overlaps, in single-cell RNA sequencing experi-
ments, which are stable against technical and biological variability. Moreover, overlaps
are both a measure of the heterogeneity of different cell states and of correlated fluc-
tuations in gene networks.

4.1. Phase diagram of gene expression fluctuations

We consider a set of genes which are, following the central dogma of molecular biol-
ogy, transcribed to mRNA molecules and then translated to proteins with respective
molecular abundances mi and ni and degradation rates γi and di (Fig. 4.1). mRNA
molecules are translated to proteins at a rate gi. The transcription of a gene depends
on the protein abundance of other genes via a nonlinear function fji(nj), which, as
a result of cooperative promoter binding, typically takes the form of a Hill function,
fj,i =

(
n
αji
j δj,a(i) + δj,r(i)

)
/
(
ν
αji
ji + n

αji
j

)
with threshold value νji and degree of coop-

erativity αji. δj,a(i) = 1 if j is activated by the transcription of i and 0 otherwise.
The same applies to δj,r(i), meaning that a gene j inhibits the transcription of i. The
time evolution of the probability P (n,m, t) of finding protein and mRNA abundances
n = (n1, . . . ,mN) and m = (m1, . . .mN), respectively, is given by a master equation of
the form,

∂P (n,m)
∂t

=
N∑
i=1

di
(
E1
i − 1

)
niP (n,m)

+ Ω
pi +

∑
j∈e(i)

f eji

(
nj
Ω

) (F−1
i − 1

)
P (n,m)

+
(
F 1
i − 1

)
γimiP (n,m)

+ Ω
(
E−1
i − 1

)
gimiP (n,m) .

(4.1)
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Figure 4.1.: (A) Schematic of the master equation (4.1). The mRNAs of a gene i (mi)
are produced with a rate than depends on the proteins of other genes (fji(nj)) which act
as repressors (a) or activators (J) of the target gene and with a basal production rate
pi, independent of the other proteins. mRNAs are translated into protein ni at a rate
γi. mRNAs and proteins degrade with rates γi and di respectively. (B) Representation
of interactions between different genes inside the cell nucleus (dashed black ellipse).
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j ∈ e(i) in the second terms means that the sum goes over all the genes j that are
either activators or inhibitors of i. E±i is a step operator that acts on any function
to the right as E±i g (n,m) = g ({n, ni ± 1},m) and similarly for F±i which acts on
the mRNA dependent part. As far as our knowledge concerns, this is the first study
of gene regulatory networks dynamics with arbitrary interactions between genes and
which takes into account mRNAs and proteins.
Master equations like Eq. (4.1) are not solvable exactly, such that we need to seek

for approximations to estimate protein and mRNA levels. Different techniques can be
applied to approximate master equations of the form (4.1), such as field theoretical
descriptions [140, 141], WKB approximations [142], spectral methods [143] and sys-
tem size expansion [124]. We perform a multivariate system size expansion, as it is
suited to study the dynamics of fluctuations around steady state protein and mRNA
concentrations. To this end, we express both mRNA and protein concentrations in
terms of a deterministic and a stochastic component as ni(t) = Ωφi(t) + Ω1/2ξi(t) and
mi(t) = Ωψi(t) + Ω1/2ηi(t) where Ω is the systems size (volume of the cell nucleus).
φi(t) and ψi(t) will follow a determinate dynamic as we are going to show in the fol-
lowing, whilst the dynamics of ξi(t) and ηi(t) are stochastic. The system size expansion
proceeds as follows: upon substituting the decomposition of mRNA and protein into
the master equation we equate terms with the same order in Ω on both sides of the
master equations. To highest order in Ω we obtain the following differential equations,

∂φi
∂t

= giψi − diφi
∂ψi
∂t

= pi − γiψi +
∑
j∈a(i)

faji (φj) +
∑
j∈r(i)

f rji (φj) .
(4.2)

Equations (4.2) describe the mean field behaviour of the protein and mRNA levels,
i.e. their mean value. The first equation describes the production of protein i upon
translation of mRNA i with rate gi and degradation of protein with rate di. The second
of those equations describe mRNA production with basal rate pi, which is independent
on the protein and mRNA level. The second term accounts for mRNA degradation,
whilst the other two terms are the only non-linear term and they describe mRNA
production due to the activation or inhibition from the protein of the genes which acts
as transcription factors for the targeted gene. These last terms, as we are going to show,
makes GRN very rich in dynamical and even static behaviour. Before proceeding with
the study of the full interacting system, we study its behaviour if the genes were not
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interacting. Equations (4.2) reduce to

∂φi
∂t

= giψi − diφi ,

∂ψi
∂t

= pi − γiψi .
(4.3)

The exact mean field dynamical solution for mRNA concentration is (dropping the
index i),

ψ(t) = e−γt [γψ0 + p(eγt − 1)]
γ

, (4.4)

where ψ0 is the initial mRNA concentration. The solution for φ(t) is lengthy and we
omit it for the sake of simplicity. The initial concentration for this very simple case
does not affect long-term behaviour, we then set them to ψ0 = φ0 = 0 such that,

ψ(t) = e−γt [p(eγt − 1)]
γ

,

φ(t) =
gp
[
γ
(
e−dt − 1

)
+ d (1− e−γt)

]
γd(d− γ) .

(4.5)

mRNA concentration first increases exponentially till eventually saturate to the sta-
tionary value ψ∗ = p/γ , whilst protein levels saturate exponentially to φ∗ = pg/γid .
As there is only one unique steady state for each gene, it means that there exists only
one unique steady state of the gene networks for constant values of the parameters,
which is of course absurd. Interactions are then essential to span the whole complexity
of cellular states. We proceed now the the study of the effect of those terms on GRN.
Equations (4.2) do not have any exact solutions for general functions fji even for the
steady state as fji can be arbitrary non linear functions. The system size expansion of
the master equation gave to highest order that the deterministic part components of
protein and mRNA concentration must satisfy the systems of equations (4.2), which in
general admits multiple steady states. In order to study the dynamics of GRNs fluctu-
ations we then proceed with an expansion of the master equation to the next highest
order term (Ω0) around one of the possible steady states, denoted by φ∗ and ψ∗. From
the expansion, we obtain a Fokker-Planck equation describing the time evolution of
the joint probability of mRNA and protein fluctuations in the vicinity of a stationary
state (Appendix E.1),

∂P (ξ,η)
∂t

=
N∑
i=1

[
Dn
i

∂2

∂ξ2
i

+Dm
i

∂2

∂η2
i

+ ∂

∂ξi
vni + ∂

∂ηi
vmi

]
P (ξ,η) , (4.6)

where Dn
i = diφ

∗
i + giψ

∗
i , Dm

i = γiψ
∗
i + pi + ∑

j∈e(i) fji(φ∗j), vni = diξi − giηi, vmi =
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−∑j∈e(i) f
′(φ∗j)ξj+γiηi are effective diffusion and drift coefficients, respectively (f ′(φ) =

df(φ)/dφ). Fluctuations are described by a Fokker Planck equation, whilst mean values
were not, as fluctuations encodes all the stochastic contributions in the GRN around
a stationary state. Stationary solutions of the Fokker-Planck equation are seek in the
form P = exp(−H)/Z. As typical mRNA abundances are much smaller than protein
abundances, fluctuations in mRNA abundances are much stronger than fluctuations in
protein abundances, Dm

i � Dn
i . In this limit, we obtain in Appendix E.1,

H =
N∑
i=1

diξ
2
i

2Dn
i

+
N∑
j=1

γiη
2
j

2Dm
i

−
N∑
i=1

2gi
Dn
i

ξiηi +
∑
ij

f ′j,i(φ∗j)
Dm
i

ξjηi . (4.7)

We define the couplings: f
′
j,i(φ

∗
j )

Dmi
= Jij. The couplings depend only on the specific inter-

actions between genes, e.g. whether transcription factors bind as monomers, trimers,
etc... and on the steady state values of the attractors of the dynamics. The specific
interactions are fixed once a steady state is chosen and may change, as we studied in
the previous sections, due to epigenetic modifications, which we will neglect for not.
This implies that the main sources of variations for the couplings are the steady state
values from which they are defined. As the specific form of the couplings is unknown,
as a minimal form, we take them to be Gaussian distributed with vanishing mean and
variance σ/

√
N . With this notation (4.7) is formally equivalent to the Hamiltonian of

a bipartite spin-glass [144, 145], such that we can transfer methods from spin glass
theory (Sec. 1.3.3) to understand the propagation of fluctuations in gene networks. We
neglect here the sparse nature of the network, but rather consider a fully connected
network. In general, either we consider couplings Ji,j = ±1 and only a finite fraction
of edges [146] or as we did, takes a fully connected network with vanishing variance
with respect to the system size. We choose the second approach as the couplings can
be more easily related to experimental data. The couplings of the Hamiltonian can be
indeed inferred from gene-gene correlations [147–149] as continuous valued.
The formal similarities between GRN and spin glasses are not new [140, 150], but as

it will be clearer later, we develop a different framework which will allow to bridge the
gap between RNA-Seq experiments and theoretical predictions which other theories
are lacking. Specifically, we found that we can not map the full dynamics of gene
expressions to a spin glass, but only the dynamics of gene expression fluctuations
around a stationary state. These findings point out which statistics one has to study to
better understand GRNs. In particular, cells would have to be as close as possible to a
stationary state and we would need to study fluctuations around those states. Moreover,
as we will see, dealing with fluctuations overcomes many difficulties in the analysis of
RNA-Seq data. We then develop a theory which does not assume Boolean networks
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4.1. Phase diagram of gene expression fluctuations

[151, 152], specific interactions between genes or small gene networks and can deal
with the full complexity of GRNs. We now proceed with the study of the probability
distribution of fluctuations. We define the average correlation of fluctuations between
realisations (replicas) a and b, Qξ

ab = N−1∑
i〈ξai ξbi 〉 and Q

η
ab = N−1∑

j〈ηai ηbi 〉, namely
overlaps. With this definition we can formally define a free energy [79] (Section 1.3.3)
by

F = − lim
n→0+,N→∞

(βnN)−1
∫

dξ dη dQη
abdQ

ξ
abe
−βnNH . (4.8)

In formal analogy to statistical physics, by taking derivatives of F we can compute
macroscopic properties of GRN. The Hamiltonian is (Appendix E.2)

H = σ2

2
∑
a6=b

(
Qξ
abQ

η
ab

)
+ σ2

2
∑
a

(
Qξ
aaQ

η
aa

)
− log

∫
dξ dηΨη,ξΨηΨξ ,

(4.9)

with

Ψξ = exp
∑
a6=b

σ2

2 Q
ξ
abξ

aξb +
∑
a

σ2

2 Q
ξ
aaξ

aξa +
∑
a

V ξ(ξa)


Ψη = exp
∑
a6=b

σ2

2 Q
η
abη

aηb +
∑
a

σ2

2 Q
η
aaη

aηa +
∑
a

V η(ηa)


Ψη,ξ = exp
[∑
a

K̃ξ,ηξ
aηa

]
.

(4.10)

The rich behaviour of fluctuations of GRNs is then entirely described by the structure
of the overlaps Qξ

ab and Q
η
ab. At this stage, we have no idea of what the values of each

entries Qξ/η
ab are. This problem was solved, for the case of a unipartite SK model, by

Parisi [78] and a mathematically rigorous proof was given in [153, 154]. In order to
obtain insight into the statistical ensembles of gene expression fluctuations we now
deal with the structure of Qab for asymmetric bipartite spin glasses described by the
Hamiltonian (1.23) and show that it is the key to understand GRNs. To this end,
we substitute an ansatz of the form Qξ

ab = (1 − qξ0)δab + qξ0 and analogously for Qη
ab

(replica symmetric ansatz). If there is a unique solution of the minima of F with
q0 = 0 the system is in a paramagnetic like phase where replicas are uncorrelated
between each other. On the other hand, when the replica symmetric ansatz for Qab is a
solution of F , but F is concave, then F admits local minima such that fluctuations may
remain trapped in metastable states. Fluctuations may be of two kinds, constrained
and not constrained. We reason that protein and mRNA fluctuations can never be
unconstrained, meaning that individual fluctuations cannot have domain [−∞,∞].
This is clear as the basin of attraction of stable steady state are finite.
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As fluctuations scales as Ω1/2, in the continuous limit we can impose a spherical
constraint such that, ∑i ξ

2
i = N, ξi ↔ ηi, making this model a bipartite version of the

p-spin spherical spin glass [155]. This constraint can be interpreted as the tendency of
a cell to control fluctuations in order to fix a stationary state, or can be extrinsically
imposed. Instead of constraining global fluctuations, we can as well constrain them
locally such that, ξi, ηi = ±1. In Appendix E.3 we analyze both cases and find that
for GRN there is an analytical expression for the boundary between a phase where the
only solution is q0 = 0 and a phase where q0 is positive. The boundary of this region is
given by,

α2 = 1 + tanh K̃ξ,η (binary)

1 = α

2
√

2
3 +

√
1 + 8K̃2

ξ,ηα
2√

1 + 2K̃2
ξ,ηα

2 +
√

1 + 8K̃2
ξ,ηα

2
(spherical) (4.11)

where and K̃ξ,η = 2gi
Dni

and α = 1/σ. We neglect gene to gene variability in the chemical
rates, which as long as the rates are Gaussian distributed is merely a shift of σ [156].
As previously outlined, both phase boundaries divide the phase space into two regions.
Above the grey or red line in Fig. 4.2 there is a unique solution given by Qab = 0 and
below the boundaries the replica symmetric solution is not a unique minima of the free
energy. The existence of a replica symmetric solution doesn’t imply that the free energy
F is always stable. Specifically, the replica symmetric solution might correspond to a
maximum of the free energy. We then need to study the stability of the free energy
with respect to the replica symmetric (RS) solution [157] and we find analytically
the boundary where the replica solution is unstable for the spherical spin glass. In
particular, the condition for stability is given by [157],

1− σ2(1− 2〈ξaξb〉+ 〈ξaξbξcξd〉) > 0 , (4.12)

with
〈ξaξbξcξd〉nRS =

∫
DzDw

(∫
dξadηaξae−HRS(ξa,ηa)∫
dξadηae−HRS(ξa,ηa)

)n
, (4.13)

and 〈. . .〉RS indicating the average over the overlap matrix where we substituted the
entries in accordance with the replica symmetric ansatz. These equations can be solved
numerically and the phase boundary is shown as a black solid line in Fig. 4.2. Therefore,
gene expression fluctuations in GRNs exhibit a phase transition from a phase where
fluctuations are uncorrelated to a glassy phase characterised by strong correlations
of fluctuations. Interestingly, mRNA translation leads to the existence of this phase
boundary that is absent in the p-spin spherical glass with p = 2, whilst it is present in
case of binary fluctuations (SK).
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4.1. Phase diagram of gene expression fluctuations

Figure 4.2.: Phase boundary between a paramagnetic like phase (P) and a glassy
like phase (SG). Solutions q0 = 0 for the spherical spin glass (grey line) and bipartite
SK (red line). The black line denotes the De Almeida Thouless (DAT) line of the
instability of the replica symmetric solution for the spherical spin glass. In the region
between the black line and the grey line the replica symmetric solution is stable and
unstable otherwise. The dashed blue line signals the dynamical transition below which
time autocorrelation functions of protein and mRNA fluctuations have a non-vanishing
plateau, Eq. (4.23). On the right hand side we show a low dimensional representation
of the free energy in terms of the possible configurations. The paramagnetic macrostate
is the only minima of the free energy above the blue line, whilst below the blue line
other metastable states exists. Below the DAT line the paramagnetic macrostate is not
a minima of the free energy.

A hallmark of glassy behaviour is non ergodicity, so that even over very long time
scales such systems do not explore the entirety of phase space. Therefore, in the glassy
phase, gene expression fluctuations are localised in the gene expression space. As we will
discuss below, the localisation of fluctuation has potentially significant implications for
the stability of gene expression states. All together, we found that mRNA and protein
fluctuations around stationary cell states may exhibit glassy behaviour depending on
the parameter of the gene networks, which are as well determined by the particular
stationary state. In the next section we aim at identifying different steady states via
RNA-Seq experiments and study where cell lie in the phase diagram, Fig. 4.2. In
particular, we want to identify which cells show glassy behaviour, if any, and which do
not. The identification of these states, it will be shown to be essential to understand
cell fate transitions and cell regulation.
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4. Glassy Fluctuations in Gene Regulatory Networks

4.2. Evidence of glassy fluctuations from RNA
sequencing experiments

In the previous sections we studied possible distributions of protein and mRNA fluc-
tuations patterns for cells in a stationary state. We found out that there might emerge
two phases, which in the statistical physics language we characterized as paramagnetic
and glassy. As outlined at the beginning we proceed with a bottom up and approach
and we analyse single-cell gene expression sequencing data to understand in which
context these two different phases emerge. In particular, the overlap distributions will
tell us in which phase a given steady state is. In the paramagnetic phase, the overlap
distribution is unimodal centered around q = 0 and in the glassy phase it is broader. As
RNA sequencing data only allows us to obtain information on mRNA and not protein
abundance, we will from now on focus solely on the mRNA levels. We have already
shown in the previous sections, that the transition between paramagnetic and glassy
happens for both mRNA and protein at the same boundary, such that inferring the
glassy phase for mRNA abundance is enough to infer in which phase the whole gene
regulatory network is. We recall the definition of overlaps between two replicas for
mRNA fluctuations (Qη

a,b),

Qη
a,b = 1

N
〈
∑
i

ηai η
b
i 〉 , (4.14)

where the sum runs over all genes and the angle brackets are the thermal average over
the Boltzmann distribution. a, b are the replica indices. At this point, it is still not
that clear what a replica in single-cell sequencing experiments is. Before proceeding
we need to find a proper biological definition for replicas, bearing in mind that we are
computing statistical quantities for fluctuations.
We omit the average over the disorder, meaning that every thermodynamical quan-

tities must be computed averaging over all the possible realisation of the interaction
couplings Jij in Eq. (4.7). As thermodynamic quantities are self-averaging, we can com-
pute statistical observable in the steady state for a specific realisation of the couplings,
which for now is unknown, and later generalise to different couplings realisations, as
long as the mean and variance are the same. We have then found constraints of where
observables should be computed, which means that we need to find attractors of the
gene networks dynamics, which are identified as cell types. We finally have to compute
overlaps for pairs of replicas, which are now identifiable as different individual cells
within the same cell types, and finally get the overlaps distributions.
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4.2. Evidence of glassy fluctuations from RNA sequencing experiments

Figure 4.3.: UMAP dimensional reduction for mouse brain cells sequenced at E16.5.
For each cluster of cells (colours) identified with the Leiden community detection algo-
rithm we compute the overlap distribution for every pair of cells. nIPCs show a broader
distribution of overlaps than neuroblast cells.

Specifically we analyse three different single-cell RNA-Seq data set from the mouse
brain [67]. We initially process all data set, as explained in Sec. 1.2.3. Briefly, we filter
cells, log-normalize the data and then select 1000 highly variable genes. For all the data
sets only cells with reads ∈ [103, 2 104], less than 20% of mitochondrial RNA and with
at least 800 genes expressed are kept (this choices are the one of [67]). Later we proceed
with the UMAP dimensional reduction Fig. 4.3 for data visualization. We perform a
k-means clustering [62] and Leiden community detection [65] to find out which cells
belongs to the same cluster and we label them. Each cluster is then read as a cell type.
We interpret clusters as stationary states and we can proceed with the study of the
overlaps and then compare with analytical results.
In order to obtain mRNA fluctuations, we first center mRNA values by subtracting

the mean of each gene for cells in a given cluster and divide by the variance and then
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compute overlaps between centered mRNA. Overlaps encode the degree of similarity
between cells in the same cluster, as well as the position of a cluster in the phase
diagram (Fig. 4.2). In Fig. 4.3 we plot the overlap distribution for three different clus-
ters: neural intermediate progenitor cells (nIPCs), immature pyramidal cells (Pyr) and
neuroblasts of mouse brain cells sequenced at E16.5. The overlaps and UMAPs for the
other two data set are presented in Fig. 4.4. The overlaps distribution quantifies in a
direct and physical way the similarities between cells in the same cluster. In all the
data set analysed, the distribution of overlaps for nIPCs appears to be broader than
for immature and differentiated cells. Before discussing the biological and physical im-
plication of this finding, we need need to quantify the broadness of the distribution and
rule out possible finite size effects. In order to quantify the broadness of the distribution
we compute the overlap width as the standard deviation of the overlap distributions
for all the cells in a given cluster. In Fig. 4.5, we show the scaling of the overlap width
with respect to the number of genes the overlap is computed over (from 10 to 103

highly variable genes). In particular, if the fluctuations of RNA in two different cells
are uncorrelated, we expect the scaling to follow the central limit theorem (blue dashed
line), meaning that the standard deviation should scale as 1/

√
number of genes. The

scaling of nIPCs is the only one that show consistent deviation from the central limit
theorem in all the data set analysed, giving a further confirmation that the broadness
of their overlap distributions is not a finite size effect. On the other hand, clusters of
nIPCs are comprised of very few cells (∼ 50), compared for example with neuroblast
(∼ 200− 450). In order to rule out the possibility that this deviation from the central
limit theorem is given by a finite size effect due to limit number of cells, we compute
the scaling for subsamples of the biggest clusters (in number of cells). Specifically, we
select 50 cells from the bigger clusters in all three data set and compute the scaling of
the overlap width with respect to the number of genes for different subsamples. The
subsamples are generated by choosing a cell in the bigger clusters randomly and select-
ing the k nearest neighbours in the graph constructed with k-means clustering, where
k is equal to the number of cells in the smaller cluster (nIPCs). In Fig. 4.6 A we show
that for the different subsamples there is no consistent deviation from the central limit
as it was observed for nIPCs in Fig. 4.5. In Fig. 4.6 B we show the resulting histograms
of overlap widths for different subsamples for 103 genes and compare them to nIPCs
(dashed line). We see again that nIPCs have always almost a higher overlap widths
compared to immature Pyr and granule mature cells at different sampling times. This
finding rules out the possibility that the scaling observed in nIPCs is a finite size effect.
Taken together, we strengthened the finding that nIPCs have a broader distribution of
overlaps compared to the other cell types in these data set of mouse brain.
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4.2. Evidence of glassy fluctuations from RNA sequencing experiments

Figure 4.4.: (A) UMAP dimensional reduction for mouse brain cells sequenced at P0
(left) and P12 and P35 (right). (B) Overlaps distribution of genes in cells belonging to
the clusters indicated in (A).
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Figure 4.5.: (A) Example of the scaling between overlap width (standard deviations
of the distribution) and number of genes over witch the overlap is computed. The black
solid line is the average over different choices of the genes (dots). The dashed blue line
is the central limit theorem (CLT) prediction, ∼ (Number of genes)−1/2. In all the
plots we show the overlap widths scaling for cells in the same cluster for the all the
data set: E16.5 (B), P0 (C), P12 and P35 (D).
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Figure 4.6.: (A) Scaling of the overlap width with respect to the number of genes for
different subsamples (dots) of the larger clusters (indicate on top). The cells in the sub-
samples are of the same number of IPCs (nIPC) in all the respective data set and they are
chosen by randomly select a cell and selecting the nIPC − 1 nearest neighbour in the k-
means graph. The dashed blue line is the CLT prediction, ∼ (Number of genes)−1/2.
(B) The frequencies distribution of the overlap widths for different subsamples, deter-
mined as in A, for all the data set are shown and compared with the overlap widths
of the IPCs (dashed black line).

A broader distribution of overlaps indicates that there is an underlying spin glass
landscape, in particular, that these cells resides in a glassy phase, where the dynamics
between different realisations of mRNA fluctuations is slower compared to a param-
agnetic landscape. On the other hand, for cells that have a narrow distribution of
overlaps, which is paramagnetic like, the replicas are uncorrelated on average. Cells
that are in a glassy phase are less heterogeneous between each other than the one in
a paramagnetic phase, but as we will see in the next sections, the dynamics of gene
expression fluctuations for "glassy cells" will have potential implications on plastic-
ity and cell state transitions. We recall that the overlap distribution does not require
any dimensional reduction or other clustering algorithms, but only data normalization.
Overlap distributions are then statistical observables, that we can compute without the
need to tune or choose any free parameters as for dimensional reductions or clustering
algorithm, and they are then an essential tools to quantify actual similarities between
cells with respect to the structure of the landscape and in particular where certain cell
types resides in the phase diagram Fig. 4.2. It will be of great interest in the future to
study which cell states in which context have glassy behaviour and why is it so. Here,
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we found a statistical tool to identify cell states in terms of glassiness and find the
parameters that guides such transitions. Having identified cells with respect to their
overlap distributions in a particular cell state, changes the way we have to interpret
transitions between cell states in terms of epigenetic (Waddington) landscapes. The loss
of stemness cannot be seen even pictorially as the transition from a paramagnetic like
phase to a ferromagnetic one Fig. 1.6, but rather as transitions from a rough landscape
to another one. Stem cells occupy one of the multiple valleys and differentiated cells
occupies valleys of a possibly smoother landscape, Fig. 4.7. We remind that our theory
is for gene expression fluctuations of cells which are close to a steady state, so they be-
long to the same statistical ensemble. We can then study how the different landscapes
change in terms of the parameters of the gene network by quantifying glassiness of
cell states, but we cannot say much about the way these landscapes change during cell
state transitions. Before digging more into the high complexity of cell state transition
we have to clearly identify what is the role of glassy fluctuations in gene regulatory
networks and how they change stability of gene networks.

Figure 4.7.: Different interpretation of the Waddington landscape: stem cells occupy
one of the multiple minima of the free energy landscape and a quench or loss of stemness
leads to a change of the landscape.
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4.3. Out of equilibrium dynamics of gene expression
fluctuations

To understand the kinetic consequences of glassy fluctuations we study the dynamics
of mRNA and protein fluctuations described by the Fokker Planck equation (4.6)

∂tξi = giηi − diξ +
√
Dn
iW

ξ
i ,

∂tηi = −γiηi +
∑
j∈e(i)

f ′j,i(φ∗j)ξj +
√
Dm
i W

η
i .

(4.15)

Upon redefining the couplings as f ′k,j(φ∗k) = Jkj, the time evolution of ξi and ηi is
described by the Langevin equations (Appendix E.4)

∂tξi = giηi − diξi +
√
Dn
iW

ξ
i ,

∂tηi = −γiηi + σ2λ
∫

dt′χξiηi(t, t
′)ξi(t′) + σW ηi

c +
√
Dm
i W

η
i .

(4.16)

W η
i and W ξ

i are Gaussian uncorrelated white noises with zero mean and unit variance
and
〈W ηi

c (t)W ηi
c (t′)〉 = Cξ

i (t, t′), Jij = 0, J2
ij = σ2/N , and JijJji = λσ2/N . Cξ

i (t, t′) and
χξiηi(t, t

′) are respectively the auto-correlation and response functions of the protein
noise. In Eq. (4.16) there is no quadratic terms that accounts for gene gene interac-
tions. The powerful MSRJD method, Sec. 1.3.1, allows us to pass from 2N coupled
equations (4.15) to N groups of two coupled equations (4.16), at the price of adding
a colored noise and a temporal and non-local kernel, which depend on the correlators
and propagators of the system. Eq. (4.16) are the noise dynamics without any con-
straints, spherical or binary. If the couplings are asymmetric such that Jij and Jji are
uncorrelated for all pairs of genes then λ = 0 and in Fourier space

ξj(ω) = gjηi(ω) +
√
Dn
iW

ξ(ω)
iω + dj

,

ηj(ω) = W ηi
c (ω)

iω + γj
.

(4.17)

Correlation in Fourier space, defined as Cξ
i (ω, ω′) = 〈ξi(ω)ξi(ω′)〉with, ξ ↔ η are,

Cξ
i (ω, ω′) =

g2
jC

η
i (ω, ω′) + δ(ω + ω′)Dn

i

(iω + dj)(iω′ + dj)

Cη
i (ω, ω′) = σ2Cξ

i (ω, ω′) +Dm
i δ(ω + ω′)

(iω + γj)(iω′ + γj)
.

(4.18)
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which, if time translational invariance holds simplifies to,

Cξ
i (ω) = Dm

i g
2
i +Dn

i γ
2
i +Dn

i ω
2

d2
i γ

2
i − g2

i σ
2 + d2ω2 + γ2

i ω
2 + ω4 . (4.19)

Figure 4.8.: (A) Gillespie simulations of the master equation (4.1) with parameters
gi = di = γi = 1, pi = 0.1, N = 100 and uniformly distributed exponents αj,i ∈
[1, 6]. Colored lines indicate protein abundances of different genes. (B) Autocorrelation
functions of protein fluctuations, averaged across all genes, computed after the system
reached a steady state (blue line) are in agreement with theoretical predictions (dashed
grey line) from Eq. (4.19).

This analytical result is in good agreement with Gillespie simulations of the full
stochastic system, Fig. 4.8 A,B. Therefore, for short times, ω → ∞, the autocor-

relation of protein fluctuations decays exponentially as Cξ
i (|t − t′|) ∼ τ

(1)
i e

− t

τ
(1)
i on

a characteristic time scale τ (1)
i = [4/(d2

i γ
2
i − g2

i σ
2) ]1/4. Similarly, in long-time limit,

ω → 0, is also exponential with a characteristic time τ (2)
i =

√
(d2
i + γ2

i )/(d2
i γ

2
i − g2

i σ
2)

[158]. In contrast to physical glassy systems typical time scale at which temporal cor-
relations in gene expression fluctuations decay is independent of the noise strength.
Therefore, protein fluctuations decay rapidly if diγi � giσ and exhibit long-term mem-
ory if diγi ≈ giσ. τ (1)

i and τ (2)
i are purely imaginary if diγi < giσ meaning that in this

case the attractor of the deterministic dynamic is unstable.
We have to bare in mind that we found the shape of connected time autocorrelation

in the approximation of unconstrained fluctuations. Even though this is a reasonable
approximation in the paramagnetic like state, it is expected to fail in the glassy phase
where constraints on fluctuations may change the relaxation dynamics. We will now
discuss analytical results of spherically constrained fluctuations. Analytical solutions
of the dynamics of binary fluctuations are very hard to get [159] and not of partic-
ular interest for the biological system we are studying as they are a crude approxi-
mation, so we will not refer anymore to them. In order to study the effect of a glassy
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4.3. Out of equilibrium dynamics of gene expression fluctuations

phase dynamically we study Eq. (4.16), with a spherical constraint for the fluctuations,∑
i ξi(t)2 = N ,

∑
i ηi(t)2 = N , [160–162]. This is formally introduced via Lagrange mul-

tipliers µξ(t), µη(t) as

∂tξi(t) = giηi(t)− diξ(t)− µξi (t)ξ(t) +
√
Dn
iW

ξ
i (t)

∂tηi(t) = −γiηi(t)− µηi (t)η(t) +W ηi
c (t) ,

(4.20)

with 〈W ηi
c (t)W ηi

c (t′)〉 = Dη
i + σ2Cξ

i (t, t′). From Eq. (4.20) we obtain the equations for
the dynamics of autocorrelation functions:

∂tC
ξi(t, t′) = giC

ξ,η(t, t′)− di(t)Cξ
i (t, t′)− µξ(t)C

ξ
i (t, t′) +Dn

i 〈W
ξ
i (t)ξi(t′)〉

∂tC
η
i (t, t′) = −γiCη

i (t, t′)− µη(t)Cη
i (t, t′) + 〈W ηi

c (t)ηi(t′)〉 ,
(4.21)

with Cξ,η
i (t, t′) = 〈ξi(t)ηi(t′)〉. After some algebra (Appendix E.5), and dropping the

dependence on i by taking a delta distributions of the parameters, we show that for
long enough time, the equations (4.21) that satisfy the fluctuation dissipation theorem
(FDT) and time translational invariance (t′ > t, t′ − t = τ) are simplified to

∂τC
ξ(τ) = g

(
Cξ,η(τ)− Cξ,η(0)Cξ(τ)

)
− Dn

2 Cξ(τ)

∂τC
η(τ) = −D

m

2 Cη(τ) + 2σ2

Dm
(1− Cη(τ))2Cξ(τ) .

(4.22)

As autocorrelation functions should be decreasing functions with respect to τ , FDT
does not hold whenever ∂τCξ(τ) > 0, ξ ↔ η. This last condition is not satisfied when

σ > σc = Dm

2 . (4.23)

The autocorrelation functions of bipartite asymmetric spin glasses with spherical con-
strained fluctuations thus exhibit a plateau in this regime making them long-lived.
In Fig. 4.9 A we perform numerical simulation of Eq. (E.66) and show the scaling
of protein fluctuations autocorrelation functions for different values of σ and how the
plateau emerges for σ close to the critical value. It is interesting to notice that such
behaviour is not present for the spherical 2-spin spin glass with unipartite lattice, i.e.
only ξ or η. Thus, the two-step process involving protein production may be essential to
regulate fluctuations dynamically as a dynamical transition exist even with two-body
interactions.
Here, upon mapping the out of equilibrium of gene expression fluctuations to a bi-

partite asymmetric spherical spin glass, we found that, even for cells in a paramagnetic
phase there is another phase defined by a transition line in the phase diagram, where
autocorrelation functions of protein and mRNA fluctuations are not exponentially de-
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4. Glassy Fluctuations in Gene Regulatory Networks

caying at typical length-scales given by the molecular processes in the gene network,
but long-lived. Thus the interaction between genes is a key to store information in
fluctuations via the emergent collective dynamics of gene expression fluctuations. The
existence of a plateau for autocorrelation functions, even outside the glassy phase, sig-
nals that memory can be stored in cell states that do not exhibit glassy properties.
All together, fluctuations may tell us the specific function of a biological attractor (cell
state) as well as its plasticity. As the transition between cell states goes beyond our
theory, in the next section, we will take simple biological models of cell state transi-
tions and highlight the potential effect of autocorrelated fluctuations in the regulation
of such transitions.

4.3.1. Biological function of correlated fluctuations

To investigate one potential biological function of strongly correlated protein fluctua-
tions we consider a paradigmatic example of a bistable genetic switch. In the simplest
case such a switch is given by a self activating gene [163, 164],

∂tφ = α
φn

1 + φn
− dφ+ γ + ξ(t) , (4.24)

where ξ(t) represents correlated fluctuations with correlator C(t, t′) = 〈ξ(t)ξ(t′)〉. As
we found previously, 〈ξ(t)ξ(t′)〉 = Dξ

ζ
exp{(−|t− t′|/ζ)} in the paramagnetic state,

where ζ is a characteristic time after which fluctuations become uncorrelated (d→ 1/ζ
, Dn → Dξ/ζ2). As the exact correlation of glassy fluctuations are extremely hard
to get analytically, we define a glassy limit when ζ is greater than the characteristic
times set by molecular processes (ζ � 1/d). This is far from being an exact form
of glassy fluctuations, but it’s the simplest form for a process that shows non trivial
correlations. We take into account as well multiplicative noise coming from changes in
degradation rate by replacing d→ d+

√
2λη(t), with 〈η(t)η(t′)〉 = δ(t− t′). The system

described by Eq. (4.24) has two stable fixed point, corresponding to, respectively, low
and high concentrations of proteins. We then ask what is the effect of correlated noise
in the transition between these two states. We fixed the parameters as: α = 5, γ = 0.1,
d = 2, λ = 0.5 and n = 2. We study the statistic of the mean first passage time (MFPT)
between the two stable steady states, which is given by writing the approximate Fokker
Planck equation (AFPE) associated with Eq. (4.24) [165, 166],

∂tP (φ, t) = − ∂

∂φ
[f(φ)P (φ, t)] + ∂2

∂2φ
[D(φ)P (φ, t)] (4.25)

with D(φ) = Dξ
2(1−ζf ′(φs)) + λφ2 and f(φ) = α φn

1+φn − dx + γ − λφ, where φs is the
deterministic steady state. The stationary solution of the AFPE are in the form P (x) =
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e−Φ(φ)/Z and after integrating the equation for the stationary solution over dx and
substituting the ansatz exponential we obtain,

Φ(x) =
∫
dx

∂xD(x)− f(x)
D(x) = ln(D(x))−

∫
dx

f(x)
D(x) . (4.26)

Upon inserting the definition of f(x) and D(x), we get the exact expression for the
stationary probability,

P (x) = exp
−(d+ λ) log (Q+ λx2)

2λ +
(Q(α + γ)− γλ) tan−1

(√
λx√
Q

)
√
λ
√
Q(Q− λ)

− α tan−1(x)
Q− λ

 /Z
(4.27)

where Q = Dξ

2(1−ζf ′(xs)) . From Eq. (4.27) we obtain an expression for the approximated
MFPT as an Arrenhius law,

τ1→2 = 1
2πΦ′′(φ1)Φ′′(φ2)e

−[Φ(φ1)−Φ(φ2)] 1↔ 2 , (4.28)

where φ1 and φ2 are the two attractors of the deterministic dynamics and Φ′′(φi) =
∂2
φi

Φ(φ)|φ=φi , i = 1, 2. The escape rates are plotted in Fig. 4.9. In particular the es-
cape rate τ1→2 is non monotonic in λ, meaning that a cell can regulate the state of
the gene (in terms of expression) by varying the autocorrelation time. In particular,
the mean first passage time between two state of the genes initially decreases with in-
creasing correlation time of protein fluctuations, meaning that the transition between
gene expression states can happen at time scales faster with respect to uncorrelated
fluctuations. On the other hand, in the limit of glassy fluctuations and so long-lived
fluctuations, both mean first passage times have higher values compared to non cor-
related fluctuations, thus fluctuations fix the self-regulating gene in one of the two
states.
In this section, we thus characterized the possible implications of glassy fluctuations

on the dynamics of genetic switches by studying the stability of a self regulating genes.
We found that a potential role of correlated fluctuations is to decrease, in comparison
to uncorrelated fluctuations, the mean first passage times from one steady state of the
self regulating gene to the other one. In contrast the mean first passage time for the
opposite transition is increased. This process thus select one steady state and can play
a role in fixing a particular cell state by limiting its plasticity. As we shown in this
chapters transition between cell states are as well regulated by interactions between
genes, which may lead to drastic changes of the expression of multiple genes, that a
self-regulating gene model cannot explain. In the last section, we quantify changes in
gene expression during cell state transitions and develop a minimal theory which is in
qualitative agreement with the data.
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Figure 4.9.: (A) Protein autocorrelation functions for different values of σ. A plateau
(dashed black line) is observed when the interaction strength σ approaches the critical
value σc = Dm

2 from below, Eq. (E.69). The parameters are Dm = 3, g = 1, Dn = 0.1
and Eq. (E.69) are solved with a 2nd order Runge Kutta algorithm with dt = 0.01 .
(B) Escape times τ1→2, τ2→1 following Arrenhius law as described by Eq. (4.28). τ1→2
is a non monotonic function of the protein fluctuations autocorrelation time ζ.

4.4. Cell state transitions

In order to study transitions between cell states we need to first characterize them
in terms of RNA-Seq experiments. A limitations of single-cell sequencing is that once
the cell is sequenced, it dies, such that we do not have any information about the
dynamics changes in gene expression for a single cell. To overcome this problem, we
use algorithms that defines a pseudo-time [167], which map an effective time (no unit
of measure) to each cell. By doing so, we can interpret gene expression changes between
cells as the dynamic of expression for a single cell. We can then visualize on the UMAP
the pseudotime (Fig. 4.10 A) and define potential trajectories. Once a pseudotime
is defined we can follow cells during the trajectory, in particular can see how they
evolve in the phase diagram Fig. 4.2. We first define an overlap for individual cells, by
computing the overlap width of the distribution given by the overlaps between the 50
nearest neighbour in the UMAP of the given cell. The results are given in the top right
panel of Fig. 4.10 B for all the data sets. Even though the overlap is heterogeneous we
don’t see any significant change along the transition. This result confirms that cell state
transitions cannot be seen as adiabatic changes in the spin glass landscape, rather as
transitions between different landscapes, where each landscape identifies a particular
cell state and its heterogeneity. This does not come as a surprise, as the developed
theory was expected to hold only close to a steady state of the gene regulatory network.
To quantify the changes in the spin glass landscapes we compute the Spearman

correlation coefficient between all pairs of genes between cells in a given neighbour of
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Figure 4.10.: (A) Pseudotime for single-cell sequencing shown in the UMAP represen-
tation. (B) Overlap widths for individual cells are computed as the standard deviation
of the overlaps distribution of all the pairs of cells from the first fifty nearest neighbours
in the k-means graph of a given cell and the cell itself.
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Figure 4.11.: The average Spearman correlation coefficient is calculated along the
pseudotime trajectories for all the cells which are the 50 neighbours of a given cell in
the k-means graph. The increase in the correlation values is associated to a transition
in the high dimensional gene expression space.
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a specific cell, this defines a Spearman coefficient for each cell. We plot its absolute
value (the sign just reflects activation/inhibition) along pseudotime and we find that
the Spearman coefficient has a bump at a given pseudotime which in the UMAPs
corresponds to linkages between clusters (Fig. 4.11 bottom) for all the data set analysed.
In order to understand how this bump emerges during cell state transitions, we take
as a model for cell fate decision the toggle switch (Fig. 4.12 top left), which is a well
studied minimal network which exhibit non trivial behaviour, such as bifurcation [168].
A toggle switch is defined by a couple differential equation of the form,

∂tn1 = r21
1

1 + nα21
2

+ p1 − d1n1

∂tn2 = r21
1

1 + nα12
1

+ p2 − d2n2 .
(4.29)

n1, n2 in Eq. (4.29) are the protein concentrations of two genes which inhibit each
other with rate r12, r21 and via Hill functions. p1, d1 are respectively protein production
and degradation rate for the first gene and similarly for the second. We will for now on,
for the sake of simplicity that equal degradation, interaction rate and Hill coefficient
αij for both genes. The toggle switch has the interesting property that the steady state
concentration of a protein bifurcate by increasing the interaction rate (quench), such
that it will take one of the two branches in Fig. 4.12 B (bottom left, blue line), if the
production rate is fixed. On the other hand the other protein will take the opposite
branch such that the symmetry is broken. The solution where both genes have same
steady state values of the protein is unstable after a value rc (dashed blue line) [169,
170]. This is not the only way to get a switch as we can in principle fix the interaction
rate and change the ratio between the production rates, such that when whenever
the ratio is 1 there is a transition between the most expressed genes. We thus model
cell fate transition by either quenching the interaction rate keeping fixed all the other
rates or by quenching the production rate of one of the two genes. We then compute
the Spearman correlation coefficient between the two genes at fixed rate along the
quench. The results are shown in the right panel of Fig. 4.12. We can see a bump in the
Spearman correlation, similar to the experimental results, whenever there is a quench
of the interaction rate. On the other hand, there is no sign of transition whenever the
quench is on the production rate. A possible speculative interpretation of these results
in agreement with our theories is the following: a quench in interaction rate is due to
the change of intrinsic factors, such as DNA methylation, chromatin structure etc...
whilst a quench in production, or upregulation of a given gene is an extrinsic factors,
as for example signalling molecules. We thus might have a way to quantify the different
roles of intrinsic and extrinsic factors during cell state transitions. This result would
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not clearly rule out the importance of extrinsic factor during cell state transition, but it
would rather point at an essential role of intrinsic factors. As these are only preliminary
results, we cannot make any strong point yet, but they are promising enough to further
explore them in the future.

Figure 4.12.: Toggle switch (top left) and stable fixed point of Eq. (4.29) for different
quenches of the parameters (bottom). The blue lines are steady state for a single gene
(gene 1), the other genes has the same steady state value before the bifurcation and
take the opposite branch after the transition. (Right) Spearman correlation coefficient
(solid lines) averaged over ten different realizations (light curves) of Eq. (4.29). In
both quenches the rates goes from zero to the. For the interaction quench the rate are
p1 = p2 = 1, r12 = r21 = 1 and for the production quench they are p2 = 1, r12 = r21 = 1.
The Hill coefficients are in all the simulations α12 = α21 = 2 and degradation rates are
one. The quenching protocol is an increases of either r or p1 every 20000 time steps up
to the transition point by 0.05 and then it is increase by 0.1. All simulations are run
for 1e6 time steps with Euler Mayorana method with time step dt = 0.01. Different
realisation are obtained by adding Gaussian uncorrelated white noise in both equations
(4.29) with variance 0.1.

4.5. Summary and discussion

In this chapter, we developed a theory to study fluctuations of gene expression in
gene regulatory networks based on RNA sequencing data, which, as outlined in Sec.
1.2.2, encodes information on the expression of individual genes. As these experiments
come along with technical uncertainties, we proceeded with a reverse approach with
respect to the previous chapters. In Sec. 4.1 we developed a theoretical framework
for general gene regulatory networks, where mRNA are transcribed, translated into
proteins and proteins of a given gene may interact with other genes as transcription
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factors changing the transcriptional output of the targeted gene. We were able to
map the dynamics of genes fluctuations close to a steady state of the network to
the dynamics of an Ising bipartite spin glass model. Upon using methods originally
developed in glassy systems (Sec. 1.3.3), we study the emergent behaviour of such
system and found out that gene regulatory networks may exhibit a transition from
a phase with uncorrelated fluctuations to one glassy phase, were fluctuations are non
trivially correlated. In Sec. 4.3 we study the specific form of these correlations and found
out that depending on the structure of the network as well as the particular steady
state they may be exponentially autocorrelated in time or exhibit a plateau, such that
autocorrelations are long-lived in time. In Sec. 4.2, we used all the theoretical results to
seek which experimental observables are relevant for the study of GRNs. Specifically,
we first identify, with machine learning clustering methods, the steady states of the
gene network as broadly defined cell states. Later, we study overlaps distributions,
for three different mouse brain RNA-Seq experiments, which measures the similarities
between replicas of a system (individual cells) in the same state and found that stem
cells exhibit a broader distributions with respect to differentiated one. Surprisingly,
these results point out to a new way of analysing RNA-Seq experiments and the need
to rethink epigenetic landscapes and cell state transitions. Specifically, cell states can
be thought as rough landscapes, where valley are possible macrostates of fluctuations
with the same statistical ensemble. In some regimes, the dynamics between different
fluctuations macrostates is glassy, such that fluctuations are long-lived and it is possible
to store information in gene expression fluctuations. In order to investigate the potential
role of glassy dynamics, we studied a paradigmatic model of a self-regulating gene and
we find that correlated fluctuations play a role in the regulating the changes between
different expression states of a gene, by controlling the mean first passage times between
different steady states value. Finally, we quantify changes in gene expression between
different cells state by measuring gene-gene correlations along cell state transitions. We
found out that transition between cell states are associated with a peak in gene-gene
correlations which is in qualitative agreement with theoretical gene-gene correlations
of prototypical models of cellular symmetry breaking All together, the picture we have
in mind of cell states and cell state transitions is very rough and intricate, as we
found how different layers of regulations act together in a non-trivial way to determine
possible cell states. It would be great to have a theory which encodes all the layers
and interactions between layers at different scales. Unfortunately, we do believe it is
quite unreasonable and maybe useless to develop such complicated model where the
theoretical understanding is minimal and the space of parameters is too huge to explore.
We would like to cheat a bit and skip all these complexities underlying cell fate and
try to develop in the next section a rather easy, but much more understandable theory
of multiscale interacting complex systems.
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Interacting Complex Systems

Complex systems often interact on multiple scales and the emergence of a collective
behaviour is often understood when all these different scales are taken into account.
As a paradigmatic example we can think of development. In the previous chapters we
zoomed inside a cell, arriving to the nucleus and we studied the role of epigenetic factors
during cell state transitions. These are, of course, not the only relevant factors that
play a role to determine which is the state of the cell. As mentioned in the introduction,
signalling factors, induce cells to transit to a particular state. It is then outstanding and
mesmerising, that despite all these complicated multi scale interactions, cells do take
precise decision in space and time and an organism is formed. In this last chapter, we
derive a general theory for complex systems interacting on multiple scales. In particular,
we derive bounds that divide regions of the phase space where the system is in a
particular macroscopic state. In the first section we review previous and outstanding
works done in complex systems and point out at the limitation that brought us to
develop a new theory.

5.1. The May bound

In his work, ahead of time [171], May described how complex systems reache stability
when governed by a huge number of interactions. In particular, let’s consider a com-
plex systems with continuous components ρ = (ρ1, . . . , ρL). Such a complex system is
described by a network of interactions, such that we can write the deterministic time
evolution of the components as a set of N coupled differential equations

∂tρi = fi(ρ) . (5.1)

Eq. (5.1) describes such general interacting system with arbitrary functions fi, which
encode how the components ρi are changed by the other components. Such system
may reach a stationary state such that ∂tρi = 0,∀i. Without entering deeply into
dynamical systems theory [109], it is enough to know that there might be multiple
of such stationary states and that they are divided into two big classes: stable and
unstable. When a system reaches a stable stationary state, that we indicate as ρ∗, if
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every component is minimally perturbed, ρi = ρ∗i + δρi, with δρi � 1, the system will
return, after a certain time, to the stationary values. Instead, a complex system in an
unstable stationary state, when minimally perturbed, will go far away from it till it
reaches a stationary state or attractor. Technically we can express the stability of a
complex systems via

∂tδρ = Âδρ , (5.2)

with the components of the matrix Â, Ai,j = ∂fi(ρ∗j )
∂ρj

. May realised that whenever this
matrix has a pretty simple form the stability of the system is fully characterised. In
particular, if the entries of the matrix are symmetric and distributed according to a
distribution with finite mean µ and variance σ2, the stability of the system is compactly
described with a simple relation: the May bound. The system is almost certainly stable
if for large L (number of components) [171, 172],

σ < L−1/2 . (5.3)

We arrived to a very general condition for stability for a complex system described by
a continuous field ρ satisfying Eq.(5.1). Even though this is a very general and powerful
result, there are still some details that must be explored more deeply. In particular, in
this thesis we have often faced field theoris describing a continuous field ρi(~z), where
the variable ~z may play the role of spatial coordinate or any continuous variable. The
argument by May still applies to this field as long as there are no processes which
shape the field along the ~z directions, such that ∂znρi(~z) = 0∀i ∈ [1, L], n ∈ [1, d],
with L the number of components of the field ρ(~z) and d the spatial dimension. As we
have shown, many biological processes do not satisfy this constraint and in the next
section we will deal exactly with the effect of the breaking of this constraint in complex
systems. Moreover, complex systems may interact in the ~z space on multiple length
scales, such that new phenomena emerge, such as pattern formation.

5.2. Field theory of multiscale processes

We consider a stochastic particle system of N particles, where each of them, indexed
by n, is characterised by a categorical variable i ∈ [1, L] and a position ~zn in a space
endowed with a Euclidean metric (metric space). We then define the density of particles
(field) at position ~z as ρi(~z ) = ∑

n δ(~z in−~z), where ~z in are the positions of the particles
of type i.
The time evolution of ρ(t) is determined by conservative processes, which maintain

the global density, and non-conservative processes. In the metric space these processes
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are characterised by different typical length scales, ζ, which give a typical distance over
which particles interact. We denote their rate by a vectorial functional fζ [ρ]. In the
mean-field or deterministic limit, the time evolution of ρ obeys the following equation

∂tρ(~z, t) =
∫
d~z′

∫ ∞
0

dζ e−|~z−~z′|/ζfζ [ρ(~z′, t), ~z′] . (5.4)

In Eq.(5.4), we required that there is a length scale associated to the interactions
along the metric space ~z. As a minimal choice for this interactions we take an exponen-
tial with a cutoff ζ. As ρ(~z, t) = (ρ1(~z, t), . . . , ρL(~z, t)), the functional f must have the
same number of vectorial components. Moreover, in general f has a dependency on the
cutoff scale ζ, as different length scales may not contribute equally to the dynamics.
In order to define the transition rates we write fζ [ρ] = fCζ [ρ] + fNCζ [ρ]. We formally

divided the time scales at which the only physical processes (conservative and not
conservative) happen. As we introduced categorical and finite range components of
the density ρ, in the following we define contributions from conservative and non-
conservative processes for these two sources of interactions.
To begin, as a minimal model for a non-conservative processes, we take the non-local

birt-death process [173] such that fNCζ [ρ] = λ(2h [ρ, ~z]− 1) ◦ ρ(~z ), which we will refer
to as fi[ρi]. We argue that this is a minimal non-linear process which may contain
different length scales due to non-locality of the kernel h.
On the other hand, we express conservative processes as a stochastic dynamics for

single particle in a given potential, which may depend on the full state of the system.
In general, such processes can be described as the dynamics of individual particles in
the continuous variable ~z as

∂t~z
i
n = −

L∑
j=1

N∑
m

∇V ({~z jm}) +
√

2Dρi
~ξ ni (t) , (5.5)

with 〈~ξ ni (t)~ξmj (t′)〉 = δ(t − t′)δn,mδi,j. The only assumptions we made, which greatly
simplifies the dynamics while keeping it general, are the overdamped limits of the dy-
namics and the Gaussian white noise. The last introduced process (5.5) thus conserves
the number of particles. We will represent it as fC,iζ [ρ] and it is derived from the density
representation of Eq. (5.5) [174, 175].
Hence, we are left to describe global scales encoded in the categorial dependence of

the functional fζ [ρ]. As the simplest non trivial form, we consider a quadratic term in
Kijρiρj.
Before studying the analysis of the stochastic dynamics we need to find a form for

the kernel h that can encode different length scales. We then expand the kernel h to
first order as

h[ρ, ~z] ≈ h0 + h1

∫
d~y νe−|~z−~y|/ζ1ρ(~y) +O(ρ2) , (5.6)
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where ν is a parameter stemming from the expansion. We represent the second term
in the expansion Eq. (5.6) as a solution φ(~z) of a partial differential equation of the
form [176]

αiφi −Dφi∇2φi = νi − γiρi , (5.7)

which simplifies Eq. (5.4) as it reduces the convolution integral to the solution of a
production-degradation-diffusion equation. The constants are arbitrary, so we set them
conveniently to: hi0 = νi/αi, hi1 = −γi

√
Dφiαi and ζ i1 =

√
Dφi/αi.

Combining all this processes together (Fig. 5.1) and taking a two-body potential
which depends only on the distance between particles in the same global space i, i.e.
V = V (|~zin − ~zjm|)δi,j, we obtain a stochastic partial differential equation for ρi(~z) that
is

∂tρi = fi [ρi] +
∑
j 6=i

Kjiρjρi +Dρi∇2ρi +∇ ·
[
ρi

∫
d~y∇V ρi(~y)

]
+ ηi +∇ · ~ξi ,

(5.8)

where ξ and η are Gaussian white noise with

〈ηi(~z, t)ηj(~z′, t′)〉 = λiρi(~z, t)δ(t− t′)δ(~z − ~z ′)δi,j ,

〈ξi(~z, t)ξj(~z′, t′)〉 = 2Dρiρi(~z, t)δ(t− t′)δ(~z − ~z ′)δi,j .
(5.9)

η(~z, t) is a multiplicative noise coming from the system size expansion of the birth-
death process [124, 173] while ~ξi(~z, t) comes from the density representation of Eq.
(5.5).
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Figure 5.1.: Schematic representation of the main different multi scale processes. The
processes are: birth-death with a non-local kernel and diffusion in the metric space
~z. Particles are then labelled with different categorical variables i = 1, . . . L and they
interact on the metric and categorical space, with dynamics described by Eq. (5.8).

The two-body potential has a similar form as the intermediate-range potential and
so, for sake of simplicity we neglect it in favour of the non-conservative process. We do
the same for the infinite range interaction term, as it would have been possible to add a
term as ∇2

[∑
j 6=i Lijρiρj

]
. An equally feasible approach would have been to neglect the

intermediate and global range interactions in the non conservative processes in favour
of the conservative ones. We argue that for scalar fields there is not a zero-range scale
associated to conservative processes whilst in case of vectorial fields such processes can
be, for example, rotational diffusion [177]. A more detailed study of the effect of these
terms on such systems will be done in further studies. Here, we set Lij = 0 and V = 0
everywhere.
We begin by considering the most simple, but yet instructive case, in which we

neglect global space components such that ρ → ρ. As explained in the introduction
of this chapter we first study the stationary solution of the deterministic part of Eq.
(5.8). We find only two stationary solutions: (ρ∗, φ∗) =

(
0, ν

α

)
and

(
2ν−α

2γ , 1
2

)
, the latter

being meaningful only for ν > α/2. We then ask whether these solutions are stable
against a local perturbation. In the small noise limit, we perform a linear stability
analysis of Eq. (5.8). By dropping the index i (as there is no global component), we set
ρ(~z, t) = ρ∗+δρei

~k~zeωt+c.c. and similarly for φ(~z, t). The (0, ν/α) steady state solution
is stable whenever ν < α/2 and the stability of the non-trivial fixed point leads to the
condition

ω = λ(2φ∗ − 1)−Dρk
2 − 2λρ∗ γ

Dφk2 + α
> 0 . (5.10)
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As the sign of the terms in k are always negative, there might be a Type III instability in
the Cross-Hoenberg classification [109] only when ν < α

2 . However, the latter inequality
would violate the condition of existence of the fixed point. As a consequence, when this
solution exists it is always stable.
In the following, we give an intuitive explanation of the possible consequences on

the stability due to global components. Later, we will give a more detailed analysis
of the dynamics of the system governed by Eq. (5.8). In the presence of the global
components, there might be multiple stationary solutions such that φ∗ 6= 1

2 . If one such
fixed point exists and they contribute to the stability for some range of parameters,
then the instability condition is satisfied for some kc if φ∗ > 1/2 , ρ∗ > 0, Fig. 5.2.

Figure 5.2.: (A) Phase portrait of the one category simplified model derived from
Eq. (5.8). Streamlines around the stable and unstable fixed point. (B) Dispersion rela-
tion from the stability of the simplified model (green) which shows no instability for any
wavevector k. Dispersion relation in case another non-trivial fixed point exists (dashed
gray). In the latter case, a non-zero wavevector associated with the fastest growing
mode exists suggesting that a pattern is possible when infinite range interactions are
included in the model.

5.2.1. Stationary distributions

In order to obtain further analytical insights into the dynamics of (5.8), we consider
the effect of global components Kijρi(~z)ρj(~z) on the dynamics of Eq. (5.8). We take
disorder into account, embodying it into Kij, which is in turn taken to be Gaussian
distributed with mean µ/L, variance σ2/L and covariance equal to εσ2/L. With this
choice, we can interpret the dynamics of Eq. (5.8) as the one of a soft spin glass where
the site is given by i. Upon writing the Martin-Siggia-Rose-Jannsen-De Dominicis field
theoretical representation of the Langevin equation (5.8) [178, 179] (Sec. 1.3.1), we
arrive at the following representation of the dynamics of individual densities
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5.2. Field theory of multiscale processes

∂tρi = L [ρi] + εσ2ρi

∫
t′,~z′

χi(t, t′, ~z, ~z′)ρi(~z′, t′) +Wi . (5.11)

L [ρi] encodes all the terms associated with the local space ~z. Wi is a Gaussian col-
ored noise with zero mean and 〈Wi(~z, t)Wj(~z′, t′)〉 = σ2Ci(~z, ~z′, t, t′). The response
and correlation functions of the individual densities are respectively, χi(~z, ~z′, t, t′) =
〈 ∂ρi(~z,t)
∂Wi(~z′,t′)

〉, Ci(~z, ~z′, t, t′) = 〈ρ(~z, t)ρ(~z′, t′)〉. We further define M(~z, t) as the average
density of individuals, which will come in hand later. MRSJD path integral formula-
tion has the advantages of passing from 2L coupled equations to only L groups of two
coupled equations at the price of adding a coloured noise Wi. We look for a station-
ary homogeneous solution of Eq.(5.11) such that we can set

∫
dt′ χi(t, t′) = χ∗i and

Ci(t, t′) = 〈ρ∗2〉 = ci, consequentially W ∗ =
√
σ2ciw [180, 181], where w is a Gaus-

sian random variable with unitary variance and zero mean. We initially focus on the
deterministic part of Eq.(5.11), where multiplicative noise contributions coming from
density fluctuations and birth-death processes are neglected. On the other hand, the
noise stemming from the infinite range interactions is retained as it is dominant and
it comes from the reduction of the deterministic part of systems of equations (5.8).
In this regime, there are two pairs of homogeneous solutions of Eq. (5.11), namely
(ρ∗, φ∗) = (0, ν/α) and

ρ∗ = α
wσ
√
c+ r

∆(χ∗) Θ
(
wσ
√
c+ r

∆(χ∗)

)
, (5.12)

with ∆(χ∗) = 2λν−αεσ2χ∗, r = λ(2ν−α−1) and Θ(x) the Heaviside theta. We dropped
the index i by assuming delta distribution of the parameters. As w is a Gaussian random
variable ρ∗ are distributed according to a truncated Gaussian. Eq. (5.12) is supported by
the self-consistency equation of stationary response, correlation functions and average
density. Assuming that ∆(χ∗) > 0, which will be justified at posteriori, they are written
as:

ρs =
∫ ∞
−κ

Dw

χ∗ = α

∆(χ∗)

∫ ∞
−κ

Dw

M∗ = ασ
√
c

∆(χ∗)

∫ ∞
−κ

Dw (w + κ)

1 = α2σ2

∆(χ∗)2

∫ ∞
−κ

Dw (w + κ)2 ,

(5.13)

where Dw = dwe−w
2/2/
√

2π and κ = r/σ
√
c . These are a set of four closed equations

which can be self-consistently solved for different values of the parameters.
We simply reason that due to the form of the non-conservative processes, there is no
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spontaneous creation of particles such that the stationary state (ρ∗, φ∗) = (0, ν/α) is an
absorbing state [102]. Heuristically, the probability that k out of L global spaces are not
null is given by a binomial with parameter ρs. This is possible thanks to representation
of Eq. (5.4) in the form of Eq. (5.11) as the equations for single particles are decoupled.
We are then left with the original question: how does the stability of the systems changes
due to the presence of global and local components? It must not come as a surprise
that the analysis of correlation functions will come in hand to address this question.

5.2.2. Spatial correlation functions and density fluctuations

To conclude this chapter, we want to analyse the role of non-locality in correlation
functions of individual densities in the local space, 〈δρ(~z, t)δρ(~z ′, t′)〉. A linear equation
for a spatio-temporal perturbation satisfies

∂tδρ(~z, t) =ρ∗
[
g(~z)δρ(~z) + εσ2

∫
t′
χ(t, t′, ~z, ~z ′)δρ(~z ′, t′)

]
+

+∇ ·
√

2Dρρ∗ξ(~z, t) + δW (~z, t) +
√
λρ∗η(~z, t) ,

(5.14)

where g(~k) is the Fourier transform of g(~z): g(~k) = −
(
Dρ
ρ∗
~k2 + 2λγ

α+Dφ~k2

)
and

δW (~z, t) = σ2〈δρ(~z, t)δρ(~0, 0)〉. Upon Fourier transforming the previous equation, cor-
relation function are written in Fourier components as

C(~k,~k′, ω, ω′) = Λ(~k)δ(~k + ~k′)δ(ω + ω′)〈
|iω/ρ∗ − Ω(k)|−2

〉−1

+
− ρsσ2

, (5.15)

where Λ(~k, ω) = ρs(λ + k2
√

2Dρ)ρ∗,Ω(~k, ω) = g(~k) + εσ2χ(~k, ω) and 〈. . . 〉+ is the
average over the noise performed only on the expected fraction of survived particles
ρs. In order to justify the last statement we need to study how correlations around the
absorbing state (no agents) behave. Specifically, the stability of Eq.(5.11) around the
absorbing state (ρ0) are given by

∂tρ0(~z, t) = λ
(2ν
α
− 1

)
ρ0(~z, t) + 2λγ

Dφ

ρ0(~z, t)∇−2ρ0(~z, t) +Dρ∇2ρ0(~z, t) , (5.16)

which has the form of s chemotactic equation [107]. When the sign of the linear term
in Eq. (5.16) is negative, the extinct states do not contribute, at linear order, to the
fluctuations of correlation functions. The stability of the homogenous state is obtained
by noticing that the correlation functions Eq. (5.15), in the limit of ω,~k → 0, are
diverging whenever Ω(0, 0)2 = ρsσ

2. The solution of this last equation coupled to

136



5.2. Field theory of multiscale processes

(5.13) gives the critical value σc = 2
√

2λν
/
α(1 + ε) . For σ < σc the homogeneous

state is stable against linear perturbations and unstable otherwise. Interestingly, this
relationship encodes all the scales in a compact form: λ regulates the local potential,
ν and α are related to the strength and the length scale of the intermidiate range
interaction and ε and σ encode the structure of the matrix K̂. Following [180, 182], the
small ω expansion of correlation functions hence gives

C(~k, ω) =
λ+ ~k2

√
2Dρ

Ω(~k)2

ρs
+ π|ω|p+(0)ρsχ∗ − σ2

. (5.17)

The decay of correlated fluctuations are given at the critical boundary by an asymptotic
expansion of Eq. (5.17) such that C(~k, ω) ∼ 1

~k2|ω| . Correlation functions thus slowly
decay in time ∼ |t− t′|−2 and in space ∼ |~z − ~z ′|−(d−2) for dimensions d > 2. There is
no critical transition for ε = −1 as it implies σc → ∞, meaning that in this case the
non trivial solution is always stable. Once the value of χ∗ = α(ε+ 1)/4λν is found, we
go back to the linear stability and look at how perturbations grow in the local space.
In particular, as 〈ρ∗〉+ = M , we get

ω

M
= −Dρ

~k2

M
− 2λγ
α +Dφ

~k2
+ ε(1 + ε)σ2α

4λν . (5.18)

This dispersion relationship admits a value of ~kc, such that
ω(~k)|~k=kc = 0 and d2ω

dk2 |~k=~kc = 0, signaling a pattern instability for a certain combi-
nation of the parameters. Whenever −1 ≤ ε ≤ 0, the homogeneous stochastic state
is stable against any perturbation in the local scale ~z as the dispersion relationship is
always non-positive for any value of ~k. This results shows that a small asymmetry in
the infinite range scale of interaction is able to destroy local order that may arise from
the other scales. Moreover, Eq. (5.18) has a similar form as the May bound [171] for
which only the categorical variable was considered. wiith the addition of a metric com-
ponents that the May bound is lacking. In Fig. 3, we show the resulting pattern and
distribution of individuals for two different values of σ above and beyond the critical
line. When σ > σc we observe multi-modality where one mode is centered around zero
(extinction) and the higher modes are related instead to pattern instabilities. When
σ < σc higher modes disappear, but the effect of giant density fluctuations make the
spatial pattern still non trivial and typical of birth-death like processes [183]. Giant
density fluctuations arise even in the case of a spatially stable solution due to the ef-
fect of multiplicative noise [184]. Indeed, an expansion of Eq. (5.15), even far from the
critical point, shows fat tails as correlations decay asympotically as 1/~k2 .
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5.3. Summary and discussion

The previous chapters raised the questions of how to properly incorporate multiple
interactions scales in a stochastic system. In this chapter we addressed this questions
starting with a general description which can later be applied to specific cases. In
Sec. 5.1 we introduced the work of May on the study of stability of complex systems,
composed of many interacting components. The May stability criterion is an powerful
tool for systems interacting on a single scale, but doesn’t incorporate multiple scales of
interaction. In Sec. 5.2, starting from a microscopic description of a process interacting
on multiple scales and upon identifying local and global components, we were able to
write down a field theory for such processes. In Sec. 5.2.2 we analyse the stability of such
systems, identifying the main parameters that drive different regions and the role of the
combination of scales. In particular, the phase diagram showed that in addition to the
May stability criterion, a new phase arises when global scale interactions are sufficiently
high compared to the local scales. In this phase, different local patterns arise for the
multiple components, namely a pattern instability in the local space. Interestingly, the
phase where these patterns do not emerge is not trivial as it is governed by giant density
fluctuations driven by the different sources of noise.
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5.3. Summary and discussion

Figure 5.3.: (A) The phase diagram of Eq. (5.11) divides the phase space in three
different regions depending on the value of the parameter α (strength of local in-
teractions) and σ (strength of non-local interactions). (B) Numerical simulation of
the deterministic part of Eq. (5.8). (Top) Giant density fluctuations arise even when
σ < σc. The distribution of particles densities ρi is bimodal and exhibit giant fluctua-
tions. (Bottom) When σ > σc, there is a pattern instability and multi-modality of the
distribution of particle densities. All the simulations are performed in two dimensions
using the Euler-Mayorana alogrithm and finite central difference with integration steps
dt = 10−3, dx = 1. The other parameters are L = 50 (number of categorical variables)
and 64 lattice sizes per dimension.
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6. Conclusions and future
perspectives

We said goodbye before we said hello

Richard Wright, Pink Floyd

Biological systems rely on the interactions between several layers spanning over mul-
tiple scales. Understanding how different layers are tightly regulated and how interac-
tions lead to collective behaviour is thus key to understand biological functions in living
organisms. Nowadays, due to technological breakthroughs in single-cell sequencing, we
are able to profile detailed molecular measurements of many of these layers with un-
precedented detail. In particular, via single-cell multi-omics technologies, we are able
to profile chemical modifications of the DNA, the expression of genes and the struc-
ture of chromatin at the same time for individual cells. However, a direct inference of
biological functions from direct sequencing measurements remain not well understood.
In this thesis, by applying and developing theories in non equilbrium statistical

physics we provided a rigorous framework to infer collective process in biological sys-
tems from detailed molecular sequencing measurements, thus overcoming limitations
of single-cell technologies. Within our framework, we were able to fully understand key
molecular processes leading to gastrulation and cellular symmetry breaking in vivo and
in vitro spanning from nanometer to genomic scales.
In Chapter 2 we formalised our theoretical and conceptual framework drawing on

original sequencing data of epigenetic modifications of the DNA (DNA methylation)
during early embryonic development. DNA methylation marks are established during
gastrulation before one of the first cell fate decision. We initially quantify statistical
observables - average DNA methylation and spatial correlation between DNA methy-
lation marks - that capture local and global changes of DNA methylation across single
cell from DNA methylation sequencing data (BS-Seq). Specifically, we showed that the
increase of average de novo DNA methylation with respect to time during early devel-
opment does not depend on the specific genomic region, but the functional relationship
is the same genome wide and follows a power law with an exponent of 5/2. The surpris-
ing emergence of scaling suggest that the establishment of DNA methylation marks is
caused by a collective mechanism, involving genome-wide interactions and it is further
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strengthened by a scale free decay of connected correlation functions, which encode the
spatial arrangement of DNA methylation marks. Taken together, these findings point
out that nonequilibrium physics is a natural framework to infer changes of epigenetic
modifications. We then developed a theory of out of equilibrium kinetics of enzymes,
which epigenetically modify the DNA encoding unknown long range and non local
interactions kernel. The theory is general and can be applied to different epigenetic
processes and we showed how to gain mechanistic understanding of DNA methyla-
tion. Upon mapping the theory to path-integrals typical of hard bosons problems in
quantum mechanics, we were able to infer the shape of the interaction kernel between
enzymes from the average DNA methylation. Upon using methods of perturbation the-
ory and renormalization group we found that the theory predicts scale free behaviour
of connected correlation functions in two different spatial regimes dominated by active
or passive influence of chromatin structure (topology) on DNA methylation. In order
to characterize the interplay between topological and epigenetic modifications, we de-
veloped a geometric field theoretical approach to relate theories in one dimension to a
projected three dimensional space, such that we can infer structures on higher dimen-
sion from lower dimensional data and we found that condensates of few thousands of
base pairs are formed via DNA methylation kinetics.
Within this framework all the theoretical predictions are in excellent agreement with

several experimental sequencing data for several genomic regions (promoters, CpG is-
lands, H3K4me1, introns and exons) of mouse embryonic stem cells in vitro and with
stochastic numerical simulations. We then challenged our theory with in vivo experi-
ments of mouse embryonic cells during gastrulation. The spatial arrangement of DNA
methylation of several genomic regions follows our prediction, but gene bodies (introns
and exons) DNA methylation patterns have systematic deviations from the theory, thus
breaking the general mechanism that we proposed. We found that deviations from the
theory are specific for genes that are going to be downregulated and we can surprisingly
detect them via DNA methylation patterns two days prior their downregulation.
Within our theoretical framework, for the first time, we connected epigenetic layers

of regulation at different spatial scales during early embryonic development via novel
theories of nonequilibrium systems. Our framework is general and can be extended to
study different layers of regulation.
In Chapter 3 we applied our theoretical framework to understand how gene body

DNA methylation and physical properties influence transcription of genes as their in-
terplay is fundamental to understand cellular behaviour. Drawing on sequencing data
of mouse cells cultured in serum in vitro, we found that transcription is negatively
correlated, in a scale free manner, to the length of the gene body. On the other hand,
the average DNA methylation of gene bodies is positively correlated to its length with
a stretched exponential dependency. Upon developing a theory incorporating the tran-
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scription of genes by RNA polymerases and methyl binding enzymes, we found that
the observed scaling relationships are observed only if the binding energy of enzymes
is proportional to the three-dimensional structure of the chromatin. We then asked
whether the specific spatial arrangement of DNA methylation marks, irrespective of
the average, plays a role in the transcription of a gene as observed in the previous
chapter. Upon introducing a memory in transcription of RNA polymerases, we pre-
dicted the experimentally observed changes of expression with respect to the spatial
correlation length of DNA methylation marks.
However, gene expression is determined by other factors: for example, their interac-

tions in gene regulatory networks (GRNs). With scRNA-Seq we can profile the expres-
sion of thousands of genes, but these measurements are influenced by batch effects and
technical biases, such that even the identification of statistically relevant observables
is lacking.
In Chapter 4 we developed a theory of gene expression fluctuations incorporating

mRNA and protein, as well as unknown interactions between genes in order to over-
come limitations of RNA-Seq experiments. Upon mapping the dynamic of fluctuations
in GRNs to the ones of asymmetric bipartite spin glasses, we were able to identify a
measure of similarities between cells stable against batch and technical effects, namely
overlaps. Secondly, theoretical predictions highlighted the possibilities that different
cell types may exhibit different scenarios where fluctuations are either long-lived and
strongly correlated (glassy) or uncorrelated (paramagnetic). Drawing on RNA-Seq ex-
periments of the mouse brain we found that progenitor cells are consistently more
glassy than immature and neuroblast cells. Taken together we developed a framework
which accounts for the propagation of fluctuations in GRNs and their correlation. We
found that a possible biological relevance of correlated fluctuations is to make the state
of GRNs stable and thus avoiding transition between different steady states. At the
end of the chapter, we studied correlation between mRNA fluctuations, which are a
measures of gene interactions and found that they show a global increase during cell
state transitions. With simple paradigmatic models we identified intrinsic factors as
the sources of this variation.
Our work thus lead to a comprehensive study of cell states and fluctuations of gene

expression that are robust against technical effects of sequencing experiments. We
provided a framework to identify different biological states and roles of fluctuations for
cell states and how information in cells can be stored in gene expression fluctuations.
In Chapter 5 we derived a general framework to incorporate interactions for local

and non-local spatial scales into a field theoretical description. In particular, we de-
scribe fields that are interacting with disorders on a categorical space and with multiple
scale interactions on a metric space. Relying on the path integral formulations of the
resulting stochastic dynamics of the fields, we were able to find the analytical phase
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diagram in the space of the parameters. The complex system is divided into a region
where there is a pattern instability in the metric space, a region dominated by giant
density fluctuations but without any length scales of the patterns and a last region
where interactions lead to unstable growth of the fields. We then found how the inter-
play between different parameters shape the phase diagram and give possible ways to
incorporate different physical processes in the field theoretical framework.
In this thesis we systematically derived theories which allow us to infer emergent

macroscopic behaviour from microscopic measurements, that are governed by noise
and technical variability. We apply the derived theories in the context of cellular sym-
metry breaking, in particular studying early embryonic development. Our theories can
give mechanistic and predictive understanding and, as more technologies are being de-
veloping and more data will be available, we think that extensions of this work may
be used to describe other biological processes. As we showed, such processes rely on
interactions between many different scales and a comprehensive understanding of the
interplay between all these scales is only in its beginnings. As an example: how does
the spatial organisation of cells play a role in cellular symmetry breaking and how it
is coupled to epigenetic factors and gene expression? Moreover, we have shown that
scaling behaviour and scale free correlations in biological systems are not necessarily
connected to their criticality, but rather to a systematic understanding of their fluc-
tuations. It would be interesting in the future to develop theories that can correctly
capture scaling properties without the need of strong assumptions on the parameters.
It is hard to draw a clear boundary between phenomena that we might unveil with our
current theoretical, technological and statistical tools to phenomena in which we need
to develop new theories, which are possibly very far to what we know. This change was
made in theoretical physics at the beginning of the 20th century. We will need a lot of
courage to again doubt what we think we have learned, but it is likely the only way
to explore complex systems. It is definitely a good time to stop and add infinitesimal
modifications or more data to already fully studied theories [185], but especially, it is
a good time to think about new theories which could be risky or wrong, but have the
potential to bring new directions to explore.
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A. Construction of Doi-Peliti path
integrals

Starting from Eq. (1.13) we can rewrite it as

〈O(D, t)〉 = 〈0|
∏
i

eaiO(D) |P (t)〉 , (A.1)

where we introduced a coherent state basis 〈0| ea, which has the property to be the left
eigenstate of the creation operator a†,

〈0| eaa† =
∞∑
n=1

〈0|
n! a

na† = 〈0| ea. (A.2)

Within this basis, it is possible to write the field theory associated with the stochastic
process after introducing the identity

1 =
∫
dφdφ̂e−φ̂φeφa

† |0〉 〈0| eφ̂a . (A.3)

In order to derive the field theoretical representation of the master equation we need
to understand how the delta terms in H act on the coherent state basis. We can first
formally write a solution of the master equation Eq. (1.12) as

|P (t)〉 = e−Ht|P (0)〉 , (A.4)

where |P (0)〉 is the initial state (i.e. the probability distribution of enzymes binding
profiles at time t = 0). The exponential is expanded for small ∆t as

e−Ht = (1−∆tH) t
∆t = (1−∆tH) · (1−∆tH) · . . . . (A.5)

Upon inserting the identity (A.3) in the coherent state basis between every factor on
the right hand side of Eq. (A.4), the solution at any time t1 can be written as

|P (t1)〉 =
∫ ∏

i

dφi(t1 + ∆t)dφ̂i(t1 + ∆t)dφ(t1)dφ̂i(t1)e−φ̂i(t1)φ(t1)i

e−φ̂i(t1+∆t)φ(t1+∆t)ieφi(t1+∆t)a†

|0〉 〈0| eφ̂i(t1+∆t)a (1−∆tH) eφi(t1)a† |0〉 〈0| eφ̂i(t1)a .

(A.6)
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In this equation we have to evaluate quantities in the coherent state basis between the
bra and the ket,

〈0| eφ̂i(t1+∆t)a (1−∆tH) eφi(t1)a† |0〉 = eφ̂i(t1+∆t)eφi(t1) −∆t 〈0| eφ̂i(t1+∆t)a (H) eφi(t1)a† |0〉

≈ eφ̂i(t1+∆t)eφi(t1)e−∆tH(φ̂i(t1),φi(t1)) ,

(A.7)

where H(φ̂i, φi) is obtained by replacing all ai with φi and a†i with φ̂i. Repeating this
procedure t/∆t times for each factor (1−∆tH) we end up with an integral, P1, over
a product of three terms P2, P3, P4. The integral is given by

P1 =
∫ ∏

i

dφ̂i(t)dφi(t)dφ̂i(t−∆t)dφi(t−∆t) · · · · · dφ̂i(∆t)dφi(∆t)dφ̂i(0)dφi(0) . . . ,

(A.8)
which can be rewritten compactly as a functional integral

P1 =
∫
D[φ]D[φ̂] . . . . (A.9)

P2 is composed of a product of terms which can be rewritten by means of Riemann
integration as

P2 =
t∏

t1=∆t
eφ̂(t1+∆t)φ(t1)−φ̂(t1)φ(t1) ≈ e−

∫
dt∂tφ̂φ. (A.10)

Finally there are further t/∆t terms coming from the Hamiltonian evaluated at each
time step which are simplified as

P3 =
t∏

t1=∆t
e−∆tH(φ̂(t1),φ(t1)) ≈ e−

∫
dtH(φ̂(t),φ(t)) . (A.11)

The final factor, P4, represents initial conditions and we refer to [75] for a discussion
of this term. Putting all the terms together we arrive to Eq. (1.14).
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B. Analysis of sequencing
experiments

B.1. Bulk bisulphite sequencing

Whole genome bisulfite sequencing data was processed identically to [32]. Raw sequence
reads were trimmed to remove both poor-quality calls and adapters using Trim Galore
(v0.4.1, Cutadapt version 1.8.1, parameters: –paired) [186]. Trimmed reads were first
aligned to the mouse genome in paired-end mode to be able to use overlapping parts
of the reads only once while writing out unmapped singleton reads; in a second step
remaining singleton reads were aligned in single-end mode. Alignments were carried out
with Bismark v0.14.4 [187] with the following set of parameters: a) paired-end mode:
–pbat; b) single-end mode for Read 1: –pbat; c) single-end mode for Read 2: defaults.
Reads were then deduplicated with deduplicate_bismark selecting a random alignment
for position that were covered more than once. CpG methylation calls were extracted
from the deduplicated mapping output ignoring the first 6 bp of each read (corre-
sponding to the 6N random priming oligos) using the Bismark methylation extractor
(v0.14.4) with the following parameters: a) paired-end mode: –ignore 6 –ignore_r2 6;
b) single-end mode: –ignore 6. SeqMonk version 0.32 was used to compute methylation
rates and coverage in annotation genomic regions. To QC BS-Seq data, pairwise Pear-
son correlation coefficients were calculated using methylation levels averaged over 10kb
tiles. Replicates within the same time point were on average more highly correlated
than between time points (r=0.885 versus 0.866). For subsequent analyses, replicates
were merged. Further statistical analysis was performed by custom scripts in R. We
calculated average DNAme levels for a given set of genomic regions defined by their
functional annotation and average CpG density using the “Bisulfite methylation over
feature” pipeline in Seqmonk. To be able to identify the functional form of average
methylation over time only feature sets that had genome-wide more than 1500 reads
at a given time point are shown. Averages over genomic regions were weighted by the
average number of reads per CpG. To collapse the time series onto a scaling form,
we made a scaling ansatz of the form m = a + bt5/2 and determined a and b using
nonlinear least squares estimate as implemented in the R function nls. With this, the
rescaled time, τ , was defined as τ = t b2/5. The exponent was estimated using nonlinear
least squares. To verify the robustness of the exponent in the presence of negative data
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points with respect to log transformation of both axes we estimated the exponent for
different values of an offset parameter, c, such that the rescaled average DNA methy-
lation reads 〈m〉 = c + τ 5/2 and all values of the time course are positive. We found
that under these transformations the estimation of the exponent was robust.

B.2. scNMT-Seq 2i release data

B.2.1. BS-Seq

Alignments of the single-cell bisulfite sequencing were performed using Bismark as well
as subsequent CpG methylation and GpC accessibility calling. Cells with more than
105 reads, less than 15% CHH methylation and a mapping efficiency larger than 10%
were kept for downstream analysis. Following (46) average DNA methylation in a given
genomic interval was calculated as m = p+1

p+n+2 , where p and n signify the number of
positive or negative reads in a given genomic interval, respectively.

B.2.2. RNA-Seq

scRNA-Seq alignments were performed using Hisat 2 [188]. 226 cells with mitochondrial
RNA < 0.15%, > 200000 reads and > 2000 detected genes were kept for downstream
analysis. Reads were log normalised using the LogNormalise function of the Seurat
package version 3.2.0 with standard parameters. For dimensionality reduction, the top
1000 most highly variable genes were selected and a principal component analysis with
default parameters of the Seurat package was performed. Uniform Manifold Approxi-
mation was performed on the 15 principal components with the highest variance and
with a minimum distance of 0.2.

B.3. sn-m3C-seq data

Following [111] we retained cells with more than 5000 cis contacts at distances longer
than 10000bp and more than 100000 covered CpGs. We tiled the genome into windows
of 100kbp and, for each tile, calculated average DNAme and cis contact histograms
with respect to the genomic distance. We then pooled these histograms for genomic
windows of similar DNAme levels and normalized by the total number of cis contacts.
While contacts are expected to be technically enriched in GC rich regions, which are
typically associated with low DNAme levels, we observe an opposite effect in Fig. 3f.
This suggests a biological rather than technical origin of the increasing number of
cis-contacts with DNAme level.
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B.4. scNMT-Seq embryo data

B.4.1. BS-Seq

Data was processed identically to [6]. Genome-wide correlation and cross-correlation
functions were computed by dividing samples with respect to the stage (E4.5, E5.5,
E6.5) and lineage (E7.5 Mesoderm, Endoderm, Ectoderm).

B.4.2. RNA-Seq

Cells which had a percentage of mitochondrial RNA <0.15%, nCount_RNA>1e5 and
more than 2500 genes with at least one read were kept for downstream analysis. Nor-
malisation was performed using the function LogNormalize from the Seurat package
(version 3.2.9). The least and most highly expressed genes were determined based on
their log-normalised expression value. Differentially expressed genes between pairs of
stages were determined using a t-test. To ensure that the statistical sample size was
identical for each comparison the top 2000 genes based on p-value were selected for
further analysis. This number was chosen to achieve a balance between the biological
significance of selected genes and the sample size necessary to calculate correlation
functions. Correlation functions for a given set of genes were computed by first ob-
taining the coordinates of the corresponding gene bodies using biomart 2.44.1, then
computing correlation functions for each gene and finally averaging over all the genes
in a given stage or lineage. To compare predictions made by our method to the embryo
data we used stochastic simulations of the inferred model taking into account the ge-
nomic distribution of CpG sites in the mouse genome. Differences between theory and
experiment were rescaled by the experimental standard error of the correlation function
at a given genomic distance. Differences were considered significant if p < 0.05 using a
t-test.
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C. Path integral representation of de
novo DNA methylation

C.1. Connected correlation functions

C.1.1. Short tail

By considering a perturbation h(s, t) around the mean field solution φ0(t), φ(s, t) =
φ0(t) + h(s, t), Eq. (2.41) can be expressed to first order as

∂tφ0(t) + ∂th(s, t) = e−φ0(t)
∫ s

0
dy φ0(t)|s− y|−λ

[
1−

∫ s−y

z=0
dz h(z)

]
+

e−φ0(t)
∫ s

0
dy h(y)|s− y|−λ

[
1−

∫ s−y

z=0
dz h(z)

]
+ h.o. .

(C.1)

The first two terms on the right hand side cancel with the first one on the left hand
side, which is the dynamical mean field solution. Taken together, we find

∂th(s, t) = e−φ0(t)
∫ s

0
dyh(y)|s− y|−λ

[
1−

∫ s−y

z=0
dz h(z)

]
+ h.o. . (C.2)

After a change of variables, w = z + y, we obtain

∂th(s, t) =e−φ0(t)
∫ s

0
dy h(y)|s− y|−λ

− e−φ0(t)
∫ s

0
dy
∫ s

y
dw h(y)|s− y|−λh(w − y) + ξ(s, t) .

(C.3)

In this expression we recognize a convolution of a fractional integral of a function and
the function itself and the noise, ξ(s, t) for the perturbation h(s, t) has both conservative
and non-conservative contributions, 〈ξ(s, t)ξ(s′, t′)〉 = δ(t − t′)(2ΓNC − 2ΓC∂2

s )δ(s −
s′). ΓC and ΓNC are the noise strengths for conservative and non conservative noise,
respectively. As a side remark, in the case of only conservative noise the non-local and
non-linear term becomes relevant under renormalization below a critical dimension
dc = 2(2 − λ), while in case of only non conservative noise the critical dimension is
dc = 2(3− λ). The non linear term is identified as a fractional integral,

Iαf = 1
Γ(α)

∫
(x− y)α−1f(y) (C.4)
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where Γ(α) is the gamma function. Upon identifying α− 1 = −λ in Fourier space the
value of this integral scales as qλ−1.
In order to regularise the theory we introduce an auxiliary process. The lowest order

spatial derivative consistent with the symmetries of the theory is ∂2
sφ. Taken together,

taking into account interactions with the right nearest bound site we obtain in Fourier
space

∂th(q, t) =
(
e−φ0(t)qλ−1 − q2

)
h(q, t)− qλ−1e−φ0(t)h(q, t)2 + ξ(q, t) . (C.5)

From the dynamical mean field solution of the first moment, Eq. (2.20), we know that
e−φ0(t) = e[−t 1/(1−λ) ]. In the frequency domain we obtain for small times

iωh(q, ω) = (qλ−1 − q2)h(q, ω)− qλ−1h(q, ω)2 + ξ(q, ω) . (C.6)

As a side remark, the inverse free propagator is G−1
0 = iω+ q2− qλ−1, which is defined

based on the linear part of Eq. (C.6) as

(
iω + q2 − qλ−1

)
h(q, ω) = ξ(q, ω) , (C.7)

and the correlator can be written as

C0 =
(
2ΓNC + 2ΓCq2

)
|G0|2 . (C.8)

Taken together, the general solution of Eq. (C.6) is given by

h(q, ω) = q1−λ

2J

(
−q2 + q1−λ +

√
4q1−λξ + (q2 − q1−λ) + iω − iω

)
. (C.9)

C.1.2. Long tail

Before proceeding with renormalization, we have to take into account other possi-
ble non-linearities. We started by considering the linear order in φ and we obtained
Eq. (2.44) involving quadratic terms, φ2, due to the expansion of the integral. We must
therefore come back to the field theory Eq. (2.17) and keep quadratic terms as well.
The only quadratic term in the field theory is

− φ(s) ˆφ(s)
(
1− φ̂(s)

) ∫ s

0
dy φ̂(s− y)φ(s− y)

yλ
e−
∫ y
z=0 dzφ̂(s−z)φ(s−z)

 . (C.10)

After functional minimization it with an opposite sign, such that both terms cancel
out. This is not surprising, because the symmetry of the system we are studying would
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C.2. Geometrical field theory

not allow a term that breaks the space reversal symmetry s→ −s. Taken together, we
find

∂th(s) = ∂2
sh(s) +

∫ s

0
dyh(y)|s− y|−λ + 1

2

∫ s

0
dyh(y)|s− y|2−λ∂sh(s) + ξ(s, t) . (C.11)

Considering both right and left nearest neighbour interactions, the advective terms
cancel out. Including the next highest order term we obtain

∂th(s) = ∂2
sh(s) +

∫ x

0
dyh(y)|s− y|−λ + 1

2∂
2
sh(s)

∫ s

0
dyh(y)|s− y|2−λ + ξ(s) . (C.12)

We can generalize to any spatial dimension by considering the previous equation with
a spatial coordinate in vector form, s. In Fourier space the previous equation can then
be written in compact form,

G0(q, ω)−1h(q, ω) = ξ(q, ω)− ν
∫

k,ω′
W (q,k)h(k, ω)h(q − k, ω′ − ω) , (C.13)

where h(q, ω) =
∫
ds
∫
dth (s, t) eiqseiωt, G−1

0 =
(
iω +D0q2 + J |q|−λ

)
and,

W (q,k) = 1
2

[
k(q − k)
|k− q|3−λ

+ (q − k)k
|q|3−λ

]
. (C.14)

We reintroduced the dimensional parameters from the adimensional Eq. (C.13) as we
are interested in how they scale under renormalization.

C.2. Geometrical field theory

The master equation (2.55) can be rewritten in terms of lowering and raising operators
such that

∂tP (ρ, t) =
∑
i

[
L
−rρi−1
i L

rρi−1
i−1 + L

−rρi+1
i L

rρi+1
i+1 − 2

]
W (ρi)P (ρ, t) , (C.15)

where the operators L±ρi act on functions on their right as L±ρif(mi) = f(mi ± ρi).
The operator L−ρi can be identically written as L−rρi−1

i = e−rρi−1∂ρi and expanded as
L
−rρi−1
i = 1− rρi−1∂ρi +O(r2). We now proceed with a linear noise approximation of

the master equation, where the observable ρi is split into two components

ρi = Nφi +
√
Nηi , (C.16)

where N is the system size. Written in this form the operators become L−rρi−1
i =

1− rN−1/2ρi−1∂ηi +O(N−1). The terms on the right hand side of the master equation
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are then to lowest order in N , O(1/
√
N),

∑
i

r
[
φi−1(−∂ηi + ∂ηi−1) + φi+1(−∂ηi + ∂ηi+1)

]
W (φ)Π(η) . (C.17)

As fluctuations in ρ are given by fluctuations in η we have dP (ρ) = dΠ(η), i.e. the
probability distribution of the entire process is solely determined by its stochastic
part. We now take a continuum approximation such that ∂ηi+1 ≈ ∂η(x) ± a0∂x∂η(x) and
the same for φi+1, where a0 is the lattice spacing. After these steps we obtain for the
right hand side of the master equation,

∫
dx ra3

0∂xφ(x, t)∂x
[
W (φ(x))δΠ(η)

δη

]
. (C.18)

By applying the same steps to the left hand side of the master equation to the same
order in N we obtain

∂tP (ρ, t) = ∂tΠ−
√
Na0

∫
dx

dφ(x, t)
dt

δΠ
δη

. (C.19)

Upon integrating by parts the right hand side and taking equal orders on both side
of the expanded master equation, we obtain the partial differential equation (2.56)
describing the time evolution of the density field φ(x, t).
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D. Oscillations in DNA methylation

D.1. Discrete phase expansion

In this section we give details for the Van Kampen expansion of the master equation
(2.69). After rewriting the phase of the clock as in Eq. (2.70), the l.h.s of the master
equation becomes ∑

i

dP (φ, t)
dφi

= dΠ
dt
−
∑
i

[
Ω1/2dφi

dt

dΠ
dξi

]
. (D.1)

We rewrite the term in the r.h.s of the master equation as

∑
i

[(ωi + ki(φ, φi − 1)]P (φ, φi − 1) =
∑
i

E−1
i [(ωi + ki(φ, φi)]P (φ, φi), (D.2)

where the introduced operator E±i acting on everything to the right as

E±i G(φ) = G(φ, φi ± 1), (D.3)

where G(φ) is a general function of the phase. The operators E±i in the system size
expansion are approximated to highest order in Ω as

E±i ∼ 1± Ω1/2 ∂

∂ξi
+ 1

2Ω−1/2 ∂
2

∂ξ2
i

. (D.4)

Upon using the expansion of the operators and to higher order terms in Ω we get

dΠ
dt
−
∑
i

[
Ω1/2dΦi

dt

∂Π
∂ξi

]
=
∑
i

{
−wi

[
Ω1/2 ∂

∂ξi
− 1

2
∂2

∂ξ2
i

]
Π−Ω1/2 ∂

∂ξi

[
k(Φi) + Ω−1/2 ∂k

∂Φi

ξi

]
Π
}
.

(D.5)
Collecting terms in power of Ω1/2, and using the chain rule we get

dΦi

dt
= w0

i + f1(Φi)
N∑
k=1

J1e
−ρ2|k−i|

|k − i|λ
f2(Φk), (D.6)

which is the mean field equation and where we simply made k(Φ) explicit. The next
order Ω0 encodes the dynamics of fluctuations

∂Π
∂t

=
∑
i

[
(w0

i + k(Φ))∂
2Π
∂ξ2

i

− w0
L

∂k(Φ)
∂Φi

∂(ξiΠi)
∂ξi

]
. (D.7)
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For small values of k(Φ) the noise is dominated by ωi and it is a gaussian white noise
arriving to Eq. (2.71).

D.2. Derivation of the Fokker Planck equation

In Eq. (2.73) we introduced the moment generating function for ωi with respect to
both stochastic noise and intrinsic noise given by the possible non-delta distribution of
intrinsic frequencies. In Ito convention the dynamics of an arbitrary function F (.) of a
certain stochastic process φi ( i = 1, ..., N) and with noise amplitude

√
2Di is

∂tF (φ) =
∑
j

[
∂φjF (φ)∂tφj +

∑
k

∂2F (φ)
∂φj∂φk

√
DjDk

]
. (D.8)

As the previous equation holds true or every function F we compute now ∂t〈eikφjeiqj〉.
We then substitute in Eq. (D.8) the stochastic process which trajectory is given by
Eq. (2.71) hence obtaining (after using standard property of stochastic calculus)

∂〈eikφjeiqj〉
∂t

= ikeikφjeiqjG(φj)− k2eikφjeiqjDj . (D.9)

We then multiply the previous equation by ωmj , sum over all j = 1, ...N , divide by N
and average over the frequency distribution,

1
N

∑
j

∂〈eikφjeiqj〉ωmj
∂t

= 1
N

∑
j

ωmj [ikeikφjeiqjG(φj)− k2eikφjeiqjDj], (D.10)

With G(φj) = ωj + f1(φj)
∑N
w=1

Je−ρ2|w−j|

|w−j|λ f2(φw). The l.h.s of the previous equation is
simply ∂tHm

k,q as defined in Eq. (2.73). The r.h.s is slightly more complicated. First we
introduce the Fourier representation of f1, f2 as

f1(φj) =
∞∑

n=−∞
ane

inφj

f2(φw) =
∞∑

l=−∞
ble

ilφw

(D.11)

Being e−ρ2|w−j|

|w−j|λ just a function of the difference we can define its Fourier transform as

e−ρ2|w−j|

|w − j|λ
=

∞∑
s=−∞

rse
is(w−j) . (D.12)
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The first term on the r.h.s of Eq. (D.10) is given by

J

N

∑
j

∑
n,l,s

∑
w

anblrsike
i(k+n)φjei(q−s)jeilφweiswωmj . (D.13)

Upon noticing that 1
N

∑
w e

ilφweisw = H0
l,s, the previous equation simplifies to

(ik)JN
∑
n,l,s

anblrsH
m
k+n,q−sH

0
l,s . (D.14)

The other terms can be computed in a similar way and the resulting dynamical equation
for the moments is

∂tH
m
k,q = (ik)JN

∑
n,l,s

anblrsH
m
k+n,q−sH

0
l,s + (ik)Hm+1

k,q − k2Hm+1
k,q . (D.15)

In order to obtain a simpler expression we define the generating function

χ(θ, y, z, t) =
∞∑

k=−∞

∞∑
m=∞

∞∑
q=−∞

e−ikθe−iqz
ym

2πm!H
m
k,q , (D.16)

and we have to show how all the terms of Eq. (D.15) can be rewritten in term of this
function. We will analyse, at first, the second term on the r.h.s of (D.15), which can
be rewritten as (upon summing over m, k, q and multiplying by ym

2πm!)

∑
k,m,q

(ik)e−ikθe−iqz ym

2πm!H
m+1
k,q , (D.17)

and further simplifying as

− ∂

∂θ

∑
k,m,q

e−ikθe−iqz
∂

∂y

ym+1

2πm!H
m+1
k,q . (D.18)

In term of the function χ the previous equation is simply

− ∂2

∂θ∂y
χ(θ, y, z, t) . (D.19)

Following the same procedure, the third term on the r.h.s of Eq. (D.15) is rewritten as

1
2
∂

∂y

∂

∂θ
D(y) ∂

∂θ
χ(θ, y, z, t) . (D.20)

A little more cumbersome is the first term. Initially, we can rewrite it as

− JN ∂

∂θ

∑
n,l,s

anblrse
inxeiszχ(θ, y, z, t)H0

l,s

 , (D.21)
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where we multiplied and divide by einxeisz so that Hk,q → Hk+n,q−s. We now define a
term

ν(θ, y = 0, z, t) = JN

∑
n,l,s

anblrse
inxeiszH0

l,s

 (D.22)

and we can read Eq. (D.11) inversely and go back to the space of function defined on
φ (θ in this notation)

ν(θ, y = 0, z, t) = JN

f1(θ)
∑
l,s

blrse
iszH0

l,s

 . (D.23)

We then simply explicit all the other terms in the same way as

ν = J

[
f1(θ)

∫
dθ̂
∫
dẑ
e−ρ2ẑ

|ẑ|λ
f2(θ̂)χ(θ̂, y = 0, z − ẑ, t)

]
z ∈ (0, 1) . (D.24)

All together we arrive to Eq. (2.75).
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E.1. System size expansion

Upon inserting the system size expansion into the master equation (4.1) and by equat-
ing order of Ω in the r.h.s and l.h.s to order Ω1 we find the mean field dynamics of the
fields

∂φi
∂t

= giψi − diφi ,

∂ψi
∂t

= pi − γiψi +
∑
j∈a(i)

faji (φj) +
∑
j∈r(i)

f rji (φj) .
(E.1)

Systems of equation like (E.1) may exhibit multiple attractors which are defined by
mRNA and protein concentrations such that ∂tφ = ∂tψi = 0∀i = 1, . . . , N . In particu-
lar, close to one of such attractors, the Fokker Planck equation describing protein and
mRNA fluctuations takes the form (equating the next lowest order terms in Ω)

∂P (ξ, η)
∂t

=
N∑
i=1

[
Dn
i

∂2

∂ξ2
i

+Dm
i

∂2

∂η2
i

+ ∂

∂ξi
vni + ∂

∂ηi
vmi

]
P (ξ, η) , (E.2)

with Dn
i = diφ

∗
i + giψ

∗
i , Dm

i = γiψ
∗
i + p + ∑

j∈e(i) fji(φ∗j),vni = diξi − γiηi, vmi =
−∑j∈e(i) f

′(φ∗j)ξj+γiηi. The Fokker Planck equation (E.2) is equivalent to the dynamics
of the coupled Langevin equations

∂tξi = giηi − diξ +
√
DnW ξ ,

∂tηi = −γiηi +
∑
j∈e(i)

f ′j,i(φ∗j)ξj +
√
DmW η ,

(E.3)

where W ξ and W η are unitary uncorrelated Gaussian white noises. In the limit of
fast degradation γi � 1 the two coupled equations reduce to a single equation for the
protein fluctuations

∂tξi = −diξi + bi
∑
j∈e(i)

f ′j,i(φ∗j)ξj/γj +
√
DnW ξ . (E.4)

This fast degradation limit is valid in bacteria [45], but does not hold in eukaryotic
systems. As the Fokker Planck equation (E.2) cannot be solved analytically, we look
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E. Spin glass theories of GRN

for approximate solutions of the form: P = P (ξ)P (η). The approximate stationary
solution follows P = e−H/Z, where the ”Hamiltonian“ H is

H =
Nξ∑
i=1

1
Dn
i

(
diξ

2
i

2 − giξiηi
)

+
Nη∑
j=1

γη2
j

2Dm
i

+
∑
ij

1
Dm
i

Jijξiηj . (E.5)

The previous solution is approximate as the term in ξiηi would give rise to a contribution
in the Langevin dynamics of ξi and ηj which are not originally present in (E.3) ,

∂tξi = giηi − diξ +
∑
j∈e(i)

f ′j,i(φ∗j)Dn
i

Dm
i

ηj +
√
DnW ξ

∂tηi = −γiηi +
∑
j∈e(i)

f ′j,i(φ∗j)ξj + gi
Dm
i

Dn
i

ξ +
√
DmW η .

(E.6)

If fluctuations in mRNA are dominant then Dm
i � Dn

i - this as to be expected as
mRNA has more sources of fluctuations compared to protein - and the first equation
is reduced to the exact Langevin equation, whilst the second one has still a term in
ξi which is not originally present. If Dm

i � Dn
i for high mRNA abundance this term

scales as, Dmi
Dni
∼ γi

gi
, which makes the term in the second equation scale as γiξi. We

can then rescale the term in i inside ∑j∈e(i) f
′(φ∗j)ξj (corresponding to self-activation

or repression) and the dynamics is fully described by the Hamiltonian (E.5). When Jij
are Gaussian distributed, the Hamiltonian is the one of a bipartite spin-glass. We can
then use techniques introduce in Sec. 1.3.3 to study how the probability distribution
of fluctuations behave with respect to the parameters of the system.

E.2. Derivation of the bipartite spin glass

The Hamiltonian (4.7) can be rewritten as

H =
N∑
i=1

V ξ(ξi) +
N∑
j=1

V η(ηj) +
∑
ij

Jijξiηj +
N∑
i=1

K̃ξ,ηξiηi , (E.7)

with Jij = N(0,W ) and V ξ(ξi) = K̃ξ ξ
2/2 and similarly for V η. We define the quantity

W = σ
/
N1/2 . This ensures the extensivity of the Hamiltonian in the large N limit.

We perform the quenched average

[Z]n =
∫
D [Jij]D [ξ]D [η]P (Jij) exp(−Hr) , (E.8)
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where Hr is the replicated Hamiltonian. Separating diagonal and off-diagonal terms

∫ ∏
ij

dJije
−

J2
ij

2W2 e−
∑

a
Jijξ

a
i η
a
j , (E.9)

the result of the Gaussian integration over the couplings Jij, leads to

[Zn] = Trn exp
W 2

2
∑
a,b,i,j

ξai ξ
b
i η
a
j η

b
j +

∑
i,a

V ξ(ξai ) +
∑
j,a

V η(ηaj ) +
∑
i,a

K̃ξ,ηξ
a
i η

a
i

 , (E.10)

where Tr in case of non-binary variables is
∫ ∏

c,d dξcdξd.
We further introduce the integral transformation

e
BC√

2ω ∼
∫
dxdx̃dydỹe−ω(x2−

√
2xy+y2+ 1

2 x̃
2+ 1

2 ỹ
2)eB(x+ix̃)+C(y+iỹ) (E.11)

in order to simplify the quartic term in Eq.(E.10). Using this transformation to the
Hamiltonian with the following variables

ω = N
σ2

2
√

2
, B = σ2

2
∑
i

ξai ξ
b
i , C = σ2

2
∑
j

ηaj η
b
j , (E.12)

the quenched average partition function is

[Zn] =
∫ ∏

a,b

dxabdx̃abdyabdỹabe
−NnFn ,

nFn = σ2

2
∑
a6=b

(
x2
ab√
2

+ y2
ab√
2

+ x̃2
ab

2
√

2
+ ỹ2

ab

2
√

2
− xabyab

)

+σ
2

2
∑
a

(
x2
aa√
2

+ y2
aa√
2

+ x̃2
aa

2
√

2
+ ỹ2

aa

2
√

2
− xaayaa

)
− log Trn,ξ,ηΨξΨηΨη,ξ ,

(E.13)

where

Ψξ = exp
∑
a6=b

σ2

2 (xab + ix̃ab) ξaξb +
∑
a,i

σ2

2 (xaa + ix̃aa) ξaξa +
∑
a,i

V ξ(ξa)+


Ψη = exp
∑
a6=b

σ2

2 (yab + iỹab) ηaηb +
∑
a,i

σ2

2 (yaa + iỹaa) ηaηa +
∑
a,i

V η(ηa)


Ψη,ξ = exp
[∑
a

K̃ξ,ηξ
aηa

]
.

(E.14)

As the the exponential term carries a factor N we can evaluate the trace and the
saddle point equations in the limit N →∞. To do so, we perform a change of variables
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(we already summed over i neglecting variability in local parameters)

Qξ
ab = (xab + ix̃ab) Qη

ab = (yab + iỹab) ,

Q̂ξ
ab = (xab − ix̃ab) Q̂η

ab = (yab − iỹab) .
(E.15)

Rewriting the free energy and performing the saddle point over the hatted variables
(which do not enter into the traces) the resulting free energy is

nFn = σ2

2
∑
a6=b

(
Qξ
abQ

η
ab

)
+ σ2

2
∑
a

(
Qξ
aaQ

η
aa

)
− log Trn,η,ξΨη,ξΨηΨξ , (E.16)

with

Ψξ = exp
∑
a6=b

σ2

2 Q
ξ
abξ

aξb +
∑
a

σ2

2 Q
ξ
aaξ

aξa +
∑
a

V ξ(ξa)


Ψη = exp
∑
a6=b

σ2

2 Q
η
abη

aηb +
∑
a

σ2

2 Q
η
aaη

aηa +
∑
a

V η(ηa)
 .

(E.17)

E.3. Replica symmetric solution

In this section we provide detailed calculation leading to the phase diagram Eq. (4.11).
Starting from Eq. (4.9), we consider the replica symmetric ansatz

Qξ
ab = qξ0 Q

ξ
aa = qξDQ

η
ab = qη0 Q

η
aa = qηD . (E.18)

Plugging the previous ansatz into the free energy results in

nFn = σ2

2
∑
a6=b

(
qξ0q

η
0

)
+ σ2

2
∑
a

(
qξDq

η
D

)
− log Trn,η,ξΨηΨξΨη,ξ , (E.19)

where

Ψξ = exp
σ2

2 q
ξ
0

(∑
a

ξa
)2

+ σ2

2
(
qξD − q

ξ
0

)∑
a

(ξa)2 +
∑
a

V ξ(ξa)


Ψη = exp
σ2

2 q
η
0

(∑
a

ηa
)2

+ σ2

2 (qηD − q
η
0)
∑
a

(ηa)2 +
∑
a

V η(ηa)
 .

(E.20)

The replicated quenched averaged partition function is

[Zn] =
∫
dqξ0dq

η
0dq

ξ
Ddq

η
D exp

{[
N

(
σ2qξ0q

η
0
n(n− 1)

2 + σ2

2 nq
ξ
Dq

η
D

)]}

exp
{[
−
(

log
∫ ∏

a

dξadηaΨη,ξΨη ,Ψξ

)]} (E.21)
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where Tr is made explicit. Ψξ and Ψη factorize and we are left to compute

∫ ∏
a

dξa exp

σ2

2 q
ξ
0

(∑
a

ξa
)2

+ σ2

2
(
qξD − q

ξ
0

)∑
a

(ξa)2 +
∑
a

V ξ(ξa)
 . (E.22)

Performing and Hubbard Stratonovich transform to S = ∑
a ξa,

e−
b2
4aS

2 =
∫ ∞
−∞

dze−az
2+bSz , (E.23)

we obtain ∫
dze−z

2/2
∫ ∏

a

dξa exp
{[
−
∑
a

Hξ
RS(ξa, z)

]}
, (E.24)

with
Hξ
RS(ξa) = −σ

√
qξ0zξ

a − σ2

2
(
qξD − q

ξ
0

)
(ξa)2 + V a(ξa) , (E.25)

and similarly for Hη
RS.

We can write the free energy to minimized as

nFn = σ2

2 n(n− 1)qξ0qη0 + σ2

2 nq
ξ
Dq

η
D −

(
log TrΨξΨηΨη,ξ

)
. (E.26)

As fluctuations are typically of order
√
N , we add a spherical constraint to the

previous equation by requiring

1
N

∑
i

ξ2
i = 1 , 1

N

∑
i

η2
i = 1 . (E.27)

The spherical constraints implies qD = 1. We then add 2nN Lagrange multipliers
(λξa, ληa) in (E.21) in terms of the integral representation of the delta functions

1 =
∫
dξai δ(

∑
i

(ξai )2 −N) , , (E.28)

and similarly for η. The free energy is

nFn = σ2

2 n(n− 1)qξ0qη0 + σ2

2 n+
∑
a

(λξa + ληa)−
(
log TrΨξΨηΨη,ξ

)
, (E.29)

where

Hξ
RS(ξa) = −σ

√
qξ0zξ

a − σ2

2
(
1− qξ0

)
(ξa)2 + V a(ξa)− λξa(ξa)2 , (E.30)

and similarly for Hη
RS. Moreover, V (ξa) and V (ηa) are quadratic in ηa, ξa and their

sum over replicas is a constant that we can safely neglect for the future computations.
Consistently, we consider the replica symmetric ansatz for the multipliers: λξa = λξ0 λ

ξ
a =
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λη0

E.3.1. Overlaps of spherically constrained fluctuations

In order to find the value of the overlaps that minimize the free energy we take the
saddle point equations

δF

δqξ0
= 0 , δF

δλξ0
= 0 , δF

δqη0
= 0 , δF

δλη0
= 0 . (E.31)

The last equations reduce to the integral solution of four coupled equations

qξ0 = 1
N

∑
i

〈ξai ξbi 〉 =
∫
DzDw

∏c dξcdηcξaξbe−
∑

c
HRS(ξc,ηc,z)∫

DzDw
∏
c dξcdηce

−
∑

c
HRS(ξc,ηc,z) ,

1 = 1
N

∑
i

〈(ξai )2〉 =
∫
DzDw

∏
c dξ

cdηc(ξa)2e−
∑

c
HRS(ξc,ηc,z)∫

DzDw
∏
c dξcdηce

−
∑

c
HRS(ξc,ηc,z) ,

qη0 = 1
N

∑
i

〈ηai ηbi 〉 =
∫
DzDw

∏
c dξ

cdηcηaηbe−
∑

c
HRS(ξc,ηc,z)∫

DzDw
∏
c dξcdηce

−
∑

c
HRS(ξc,ηc,z) ,

1 = 1
N

∑
i

〈(ηai )2〉 =
∫
DzDw

∏
c dξ

cdηc(ηa)2e−
∑

c
HRS(ξc,ηc,z)∫

DzDw
∏
c dξcdηce

−
∑

c
HRS(ξc,ηc,z) ,

(E.32)

where Dz = dze−
z2
2 , Dw = dwe−

w2
2 and

HRS(ξa, ηa, z, w) = −zσ
√
qξ0ξ

a − wσ
√
qη0η

a + K̃ξ,ηη
aξa

− σ2
(
1− qξ0

) (ξa)2

2 − σ2 (1− qη0) (ηa)2

2 + λξ0(ξa)2 + λη0(ηa)2 .
(E.33)

In the limit of strong interactions (σ → ∞) we can solve the internal integral with
the saddle point method. We then replace the integral with ξ∗a, η

∗
a that satisfies the

equations ∂HRS
∂ξa
|ξ∗a,η∗a = 0, ∂HRS

∂ηa
|ξ∗a,η∗a = 0. In case of RS solution we simplify to

qξ0 =
∫
DzDwη∗a2 . (E.34)

As an example, when K̃ξ,η = 0

qξ0 =
(

σ
√
q0

σ2(1− q0)

)2 ∫
dze−

z2
2 z2 , (E.35)

with the known solution [79]
qξ0 = 1− 1

σ
= qη0 . (E.36)

The replica symmetric Hamiltonian has the symmetry under the exchange ξ ←→ η,
which simplifies the next computation as it implies that qξ0 = qη0 = q0. The exact solu-
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tion of the coupled equations for the overlap and Lagrange multiplier can be recasted
as [156],

1
N

∑
i

〈ξai ξbi 〉 =
∫
DzDw

∫ dξadηaξae−∑c
HRS(ξc,ηc,z)∫

dξadηae−HRS(ξa,ηa,z)

2

1
N

∑
i

〈ξa2

i 〉 =
∫
DzDw

∫
dξadηaξa

2
e−
∑

c
HRS(ξc,ηc,z)∫

dξadηae−HRS(ξa,ηa,z) ,

(E.37)

and the solution is

q0 = 1−
1
σ

(√
8
σ2 K̃2

ξ,η + 1 + 3
)

2
√

2
√

2
σ2 K̃2

ξ,η +
√

8
σ2 K̃2

ξ,η + 1 + 1
. (E.38)

Moreover, we found consistently that 〈ξi〉 = 0, where . . . indicates the average over the
disorder Jij. Indeed,

〈ξi〉 =
∫
DzDw

∏
c dξcdηcξae

−
∑

c
HRS(ξc,ηc,z)∫

DzDw
∏
c dξcdηce

−
∑

c
HRS(ξc,ηc,z)

(E.39)

in the limit σ → 0, we substitute the internal integral with the saddle point and giving
that ξ∗ is an odd function of z, w the result of the external integral is zero. The same
results apply to 〈ηi〉.

Alternative calculation

For a generical 2-spin hamiltonian, we could have started from (E.13) and following
[155] inserting the definition of the overlaps as well as the spherical constraints as delta
distributions with Lagrange multipliers λab. The resulting free energy is

nFn = σ2

2
∑
a,b

qξabq
η
ab +

∑
ab

λξabqab +
∑
ab

ληabqab − log Trn,η,ξΨηΨξΨη,ξ, (E.40)

where

Trn,η,ξΨηΨξΨη,ξ =
∫
dξdηexp

∑
a,b

λξabξ
aξb +

∑
a,b

ληabη
aηb +

∑
a

K̃ξ,η

 . (E.41)

We omitted the potential due to the spherical constraint. The argument of the ex-
ponential in the last expression can be rewritten as

(ξ,η)
 λη

K̃ξ,η
2 I

K̃ξ,η
2 I λη

ξ
η

 , (E.42)
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and the free energy is

nFn = σ2

2
∑
a,b

qξabq
η
ab +

∑
ab

λξabqab +
∑
ab

ληabqab −
1
2 log det(ληλξ − K̃2

ξ,η

4 I) . (E.43)

When K̃ξ,η � 1 (ignoring constants)

log det(ληλξ − K̃2
ξ,η

4 I) = log
[(
−K̃

2
ξ,η

4

)n
det(I − 4

K̃2
ξ,η

ληλξ)
]
≈ Tr(ληλξ 4

K̃2
ξ,η

) .

(E.44)
In order to find the value of the overlaps that minimize the free energy we take the
saddle point equations

δF

δqξab
= 0 , δF

δλξab
= 0 , δF

δqηab
= 0 , δF

δληab
= 0 . (E.45)

The extremization with respect to λ leads to

qξab = 2
K̃2

ξ,η

ληba , ξ ↔ η , (E.46)

and
σ2

2 q
ξ
ab − q

η
ab = 0 , ξ ↔ η . (E.47)

A part from the paramagnetic solution qab = 0, a, b = 1 . . . n, the last equation is always
solved if σ =

√
2. The calculation can be carried similarly for K̃ξ,η � 1 and we found

a limiting value σ = 1, as in the previous derivation.

E.3.2. Overlaps of binary fluctuations

We may remove the spherical constraint and consider binary fluctuations, in this case
the free energy reduces to the one of a classical bipartite Sherrington-Kirkpatrick model
with an additional term that couples ξi and ηi, namely K̃ξ,η,

nFn = σ2

2
∑
a6=b

(
Qξ
abQ

η
ab

)
+ σ2

2 n

− log Trn,η,ξΨη,ξΨηΨξ ,

(E.48)
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where

Ψξ = exp
∑
a6=b

σ2

2 Q
ξ
abξaξb

 ,
Ψη = exp

∑
a6=b

σ2

2 Q
η
abηaηb

 ,
Ψη,ξ = exp

[∑
a

K̃ξ,ηξaηa

]
.

(E.49)

We perform again a Hubbard-Stratonovich transformation and taking the RS solution
we arrive to (f = Fn),

f = −σ
2

2 (qξ0 − 1)(qη0 − 1)− 〈
[
4ch(σ

√
qξ0z)ch(σ

√
qη0w)ch(K̃ξ,η)+

4sh(σ
√
qξ0z)sh(σ

√
qη0w)sh(K̃ξ,η)

]
〉z,w .

(E.50)

Upon finding the saddle point as done previously and expanding the self-consistency
equations, we find that the phase boundary between the paramagnetic and glassy phase
is given by

σ2(1 + tanh
(
K̃ξ,η

)
) = 1 . (E.51)

E.4. MSRJD path integral of spin glass dynamics

A generating function for the coupled Langevin equations (4.15) is (Sec. 1.3.1),

Z[hξ,hη] =
∫

D[ξ]D[η]D[ξ̂]D[η̂]ei
∫
dt
∑

j(hξjξj+hηj ηj)

ei
∫
dt
∑

j
ξ̂j[∂tξj−gjηj+djξ−Dnj ξ̂j]ei

∫
dt
∑

j
η̂j

[
∂tηj+γjηj−

∑
k∈e(j) f

′
k,j(φ

∗
k)ξk−γjbj−Dmj η̂j

]
.

(E.52)

We initially isolate the part which includes disorder by replacing Gj = ∑
k∈e(j) f

′(φ∗k)ξk.
By doing so, we formally introduce a new delta

Z[hξ,hη] =
∫

D[ξ]D[η]D[ξ̂]D[η̂]D[Ĝ]D[G]ei
∫
dt
∑

j(hξjξj+hηj ηj)

e
i
∫
dt
∑

j
Ĝξj

(
Gj−

∑
k∈e(j) f

′
k,j(φ

∗
k)ξk

)
ei
∫
dt
∑

j
ξ̂j[∂tξj−gjηj+djξ−Dnj ξ̂j]ei

∫
dt
∑

j
η̂j[∂tηj+γjηj−Gj−γjbj−Dmj η̂j] .

(E.53)

In the dynamical representation of glassy fluctuations time plays a similar role as the
replica index in the equilibrium regime. We now integrate over the couplings f ′k,j(φ∗k) =
Jkj with statistics, Jkj = 0, J2

kj = σ2/N , and JkjJjk = λσ2/N . We then integrate over
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Jkj (. . .) in the exponential

e
−i
∑

j

∫
dtĜj(t)

∑
k∈e(j) Jkjξk(t)

, (E.54)

which results in

e−
σ2
2 N

∫
dtdt′(L(t,t′)Cξ(t,t′)+λK(t,t′)K(t′,t)) ,

L(t, t′) = 1
N

∑
j

Ĝj(t)Ĝj(t′) ,

Cξ(t, t′) = 1
N

∑
j

ξj(t)ξj(t′) ,

K(t, t′) = 1
N

∑
j

ξj(t)Ĝj(t′) .

(E.55)

From now on we can follow [179] and arrive to (4.16) .

E.5. Out of equilibrium dynamics of p-spin spherical
asymmetric bipartite spin glasses

Starting from Eq. (4.21),

∂tC
ξ(t, t′) = giC

ξ,η
i (t, t′)− diCξ

i (t, t′)− µξ(t)C
ξ
i (t, t′) +Dn

i 〈W ξ(t)ξ(t′)〉 ,

∂tC
η
i (t, t′) = −γiCη

i (t, t′)− µηi(t)Cη
i (t, t′) + 〈W ηi

c (t)η(t′)〉 ,
(E.56)

the spherical constraint impose Cξ/η
i (t, t′)|t′→t = 1. µξ/ηi (t) can be evaluated by the

relationship ∂tCξ/η
i (t, t′)|t′→t + ∂t′C

ξ/η
i (t, t′)|t→t′ = 1

µξ(t) = (giCξ,η
i (t, t)− di) +Dn

i 〈W
ξ
i (t)ξi(t)〉 ,

µη(t) = −γi + 〈W ηi
c (t)ηi(t)〉 .

(E.57)

We are then just left to compute the terms in the brackets. In particular with Novikov’s
theorem [189] the first one is

〈W ξ
i (t)ξi(t′)〉 =

∫
ds〈W ξ

i (t)W ξ
i (s)〉χξi (t′, s) = χξi (t, t′) , (E.58)

where the propagator χξi (t, t′) = 〈 δξi(t)
δW ξ

i (t′)
〉. We take t′ > t and so χ(t, t′) = 0 for t′ > t

due to causality and limt′→t χ(t, t′) = 1. We then find µξi (t) = giC
ξ,η
i (t, t) − di + Dni

2 .
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The second average is

〈W η
i (t)η(t′)i〉 =

∫
ds〈W η

i (t)W η
i (s)〉χηi (t′, s) = Dm

i χ
η
i (t, t′) + σ2

∫ t′

−∞
dsCξ

i (s, t)χ
η
i (t′, s) .

(E.59)

Assuming again t′ > t we arrive to µηi (t) = −γi + σ2 ∫ t′
−∞ dsC

ξ
i (s, t)χ

η
i (t, s) + Dmi

2 . We
have only to evaluate equal time cross correlations, which are given by

∂tC
ξ,η
i (t, t′) = giC

η
i (t, t′)− diCξ,η

i (t, t′)− µξi (t)C
ξ,η
i (t, t′) ,

∂tC
ξ,η
i (t, t′) = −γiCξ,η

i (t, t′)− µηi (t)C
ξ,η
i (t, t′) ,

(E.60)

and subtracting the two equations we arrive to

Cξ,η
i (t, t′) = giC

η
i (t, t′)

di − γi + µξ(t)− µηi (t)
. (E.61)

It has to be noticed that µξ(t) depends on the equal cross-correlation,

Cξ,η
i (t, t′) = giC

η
i (t, t′)

giC
ξ,η
i (t, t) + Dni

2 − σ2 ∫ t′
−∞ dsC

ξ
i (s, t)χ

η
i (t, s)−

Dmi
2

. (E.62)

We close the equation for the spherical constraints upon solving the equation for the
response of mRNA fluctuations,

∂tχ
η
i (t, t′) = −(γi + µηi (t))χ

η
i (t, t′) + δ(t, t′) . (E.63)

Once we found the equation for the spherical constraint the equation for the correlations
are compactly given by

∂tC
ξ
i (t, t′) = gi(Cξ,η(t, t′)− Cξ,η

i (t, t)Cξ(t, t′))− Dn
i

2 Cξ
i (t, t′) +Dn

i χ
ξ(t, t′) ,

∂tC
η
i (t, t′) = −D

m
i

2 Cη(t, t′) +Dm
i χ

η(t, t′)i + σ2(1− Cη
i (t, t′))

∫ t′

−∞
dsCξ

i (s, t)χ
η
i (t, s) ,

(E.64)

In the following we drop the index i and take delta distributions of the parameters.
For long enough times, we look for solutions such that the FDT holds, and so the last
equation is (t′ > t, t′ − t = τ),

∂tC
ξ(τ) = g

(
Cξ,η(τ)− Cξ,η(0)Cξ(τ)

)
− Dn

2 Cξ(τ) ,

∂tC
η(τ) = −D

m

2 Cη(τ)− 2σ2

Dm
(1− Cη(τ))

∫ τ

0
duCξ(τ − u)∂uCη(u) .

(E.65)
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The last integral can be approximated for τ � 1 ,

∂τC
ξ(τ) = g

(
Cξ,η(τ)− Cξ,η(0)Cξ(τ)

)
− Dn

2 Cξ(τ) ,

∂τC
η(τ) = −D

m

2 Cη(τ) + 2σ2

Dm
(1− Cη(τ))2Cξ(τ) .

(E.66)

As we are looking at a relaxation problem we expect ∂τCξ\η(τ) ≤ 0 and find Cξ,η(0) ≈ 1.
The inequalities in this regime are given by (upon substituting the solution of Cξ,η)

4σ2

Dm2C
ξ(τ)(1− Cη(τ)) > 2g +Dn −Dm

Dm
or

4Cη(τ)g2 + Cξ(τ)(Dn + 2g)
(
Dm −Dn − 2g + 2σ2

Dm
Cξ(τ) (1− Cη(τ))

)
≤ 0 ,

(E.67)

Being Dm � Dn, g the second inequality is always satisfied. The first inequality for
∂τC

η(τ) is
4σ2

Dm2C
ξ(τ)(1− Cη(τ))2 ≤ Cη(τ) . (E.68)

In the same condition Dm � Dn, g we find a dynamical transition at

σc = Dm/2 . (E.69)

If we want to compare these results with the phase diagram (4.11) (Fig. 4.2) we have
to divide σ2 by Dm and the critical line is defined by σc = 1/2.
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