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Abstract
Understanding how fluctuations continuously propagate across spatial scales is funda-
mental for our understanding of inanimate matter. This is exemplified by self-similar
fluctuations in critical phenomena and the propagation of energy fluctuations described
by the Kolmogorov-Law in turbulence. Our understanding is based on powerful theoret-
ical frameworks that integrate fluctuations on intermediary scales, as in renormalisation
group or coupled mode theory. In striking contrast to typical inanimate systems, living
matter is typically organised into a hierarchy of processes on a discrete set of spatial
scales: from biochemical processes embedded in dynamic subcellular compartments to
cells giving rise to tissues. Therefore, the understanding of living matter requires novel
theories that predict the interplay of fluctuations on multiple scales of biological organi-
sation and the ensuing emergent degrees of freedom. In this thesis, we derive a general
theory of the multi-scale propagation of fluctuations in non-equilibrium systems and show
that such processes underlie the regulation of cellular behaviour. Specifically, we draw on
paradigmatic systems comprising stochastic many-particle systems undergoing dynamic
compartmentalisation.

We first derive a theory for emergent degrees of freedom in open systems, where the
total mass is not conserved. We show that the compartment dynamics give rise to the
localisation of probability densities in phase space resembling quasi-particle behaviour.
This emergent quasi-particle exhibits fundamentally different response kinetics and steady
states compared to systems lacking compartment dynamics. In order to investigate a
potential biological function of such quasi-particle dynamics, we then apply this theory
to the regulation of cell death. We derive a model describing the subcellular processes
that regulate cell death and show that the quasi-particle dynamics gives rise to a kinetic
low-pass filter which suppresses the response of the cell to fast fluctuations in cellular
stress signals. We test our predictions experimentally by quantifying cell death in cell
cultures subject to stress stimuli varying in strength and duration.

In closed systems, where the total mass is conserved, the effect of dynamic compartmen-
talisation depends on details of the kinetics on the scale of the stochastic many-particle
dynamics. Using a second quantisation approach, we derive a commutator relation be-
tween the kinetic operators and the change in total entropy. Drawing on this, we show
that the compartment dynamics alters the total entropy if the kinetics of the stochastic
many-particle dynamics violate detailed balance. We apply this mechanism to the ac-
tivation of cellular immune responses to RNA-virus infections. We show that dynamic
compartmentalisation in closed systems gives rise to giant density fluctuations. This facil-
itates the emergence of gelation under conditions that violate theoretical gelation criteria
in the absence of compartment dynamics. We show that such multi-scale gelation of pro-
tein complexes on the membranes of dynamic mitochondria governs the innate immune
response.

Taken together, we provide a general theory describing the multi-scale propagation of
fluctuations in biological systems. Our work pioneers the development of a statistical
physics of such systems and highlights emergent degrees of freedom spanning different
scales of biological organisation. By demonstrating that cells manipulate how fluctuations
propagate across these scales, our work motivates a rethinking of how the behaviour of
cells is regulated.
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Zusammenfassung
Unser Verständnis von unbelebter Materie basiert auf der Schlussfolgerung von den Wech-
selwirkungen zwischen den Bestandteilen der Materie auf materielle Eigenschaften. Ins-
besondere, wie sich Fluktuationen kontinuierlich über räumliche Skalen ausbreiten, ist
grundlegend für unser Verständnis unbelebter Materie, was kritische Phänomene oder
das Kolmogorov-Gesetz in Turbulenz verdeutlichen. Die Beschreibung der Propagation
von Fluktuationen erfordet theoretische Formalismen, wie Renormierungsgruppentheorie
oder die Theorie gekoppelter Moden, welche Fluktuationen über auf alle Zwischenskalen
hinweg integrieren. Im Gegensatz dazu ist lebende Materie in einer Hierarchie von Pro-
zessen auf diskreten räumlichen Skalen organisiert, von biochemischen Prozessen, die in
dynamische subzelluläre Kompartimente eingebettet sind, bis hin zu Zellen, aus denen
Gewebe entstehen. Um lebende Materie zu verstehen, sind neue Theorien erforderlich, die
das emergente Verhalten vorhersagen, das sich aus dem Zusammenspiel von Fluktuatio-
nen über mehrere Skalen biologischer Organisation ergibt. In dieser Arbeit leiten wir eine
allgemeine Theorie der Ausbreitung von Fluktuationen in Nicht-Gleichgewichtssystemen
über mehrere Skalen hinweg ab und zeigen, dass solche Prozesse das Verhalten von Zel-
len regulieren. Anhand von paradigmatischen Systemen, die aus stochastischen Vielteil-
chensystemen mit dynamischer Kompartimentierung bestehen, leiten wir eine Theorie für
emergente Freiheitsgrade in offenen Systemen ab, in denen die Gesamtmasse nicht konser-
viert ist. Wir zeigen, dass Kompartimentdynamik zu einer Lokalisierung von Wahrschein-
lichkeitsdichten im Phasenraum führt, die einem Quasiteilchenverhalten ähnelt. Dieses
Quasiteilchen weist eine grundlegend andere Reaktionskinetik und einen anderen statio-
nären Zustand auf als Systeme ohne Kompartimentdynamik. Um die biologische Funkti-
on einer solchen Quasiteilchendynamik zu untersuchen, wenden wir die Theorie auf die
Regulierung des Zelltods an. Wir leiten ein Modell ab, das die subzellulären Prozesse be-
schreibt, die den Zelltod regulieren, und zeigen, dass die Quasiteilchendynamik zu einem
kinetischen Tiefpassfilter führt, der die Reaktion der Zelle auf schnelle Fluktuationen in
zellulären Stresssignalen unterdrückt. Um unsere Vorhersagen zu testen, quantifizieren wir
Apoptose in Zellkulturen, die Stressreizen unterschiedlicher Stärke und Dauer ausgesetzt
sind. In geschlossenen Systemen, in denen Masseerhaltung gilt, hängt die Wirkung der
dynamischen Kompartimentierung von Details der Kinetik auf der mikroskopischen Skala
ab. Mithilfe eines Besetzungszahldarstellungsansatzes leiten wir eine Kommutatorbezie-
hung zwischen den kinetischen Operatoren und der Änderung der Gesamtentropie ab. Die
Kompartimentdynamik beeinflusst die Gesamtentropie, wenn die Kinetik auf der kleinsten
Skala das detaillierte Gleichgewicht stört. Wir wenden diesen Mechanismus auf den Nach-
weis von RNA-Viren durch das angeborene Immunsystem an. Außerdem zeigen wir, dass
kompartimentierte Systeme extreme Dichtefluktuationen aufweisen, was das Entstehen
eines Gel unter Bedingungen ermöglicht, die gegen theoretische Gel-Bildungskriterien in
statisch kompartmentalisierten Systemen verstoßen . Wir belegen, dass eine solche mehrs-
kalige Gelierung von Proteinkomplexen auf der mitochondrialen Membran die angeborene
Immunantwort von Zellen reguliert. Zusammengefasst liefern wir eine allgemeine Theorie,
die die Ausbreitung von Fluktuationen in biologischen Systemen auf mehreren Skalen be-
schreibt. Unsere Arbeit leistet Pionierarbeit in der Entwicklung einer statistischen Physik
von multiskalen Systemen und beschreibt emergente Freiheitsgrade, die sich über ver-
schiedene Skalen der biologischen Organisation erstrecken. Wir zeigen, dass Zellen die
Ausbreitung von Fluktuationen über diese Skalen hinweg manipulieren können, was uns
herausfordert, die Frage nach der Regulation von Zellverhalten neu zu denken.
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1. Introduction

1.1. Propagation of fluctuations in inanimate matter
The Encyclopedia Britannica defines Physics as the "science that deals with the structure
of matter and the interactions between the fundamental constituents of the observable
universe" [1]. Our universe exhibits a large variety of structures of matter across a vast
range of spatial scales: atoms organised in lattice structures form solid crystal structures,
interacting water molecules constitute as ice, liquid, or gas depending on temperature,
and stars interact through gravitational forces to form galaxies. A key question in Physics
is to understand how the constituents of matter interact to give rise to phenomena on
much larger spatial scales. The advent of classical Physics can be attributed to the work of
Galileo Galilei, Johannes Kepler, and Nicolaus Copernicus [2], who described the mechan-
ics of our solar system by introducing mathematics as the language of physics, allowing
for measurable predictions [3]. The orbital mechanics of planets in the solar system can
be seen as an epitome of how seemingly simple laws can explain complex phenomena in
nature. This example has since been an inspiration to physicists to describe the inter-
actions of ever smaller constituents of matter by describing their interactions through
simple laws [4]. Yet, as one approaches the microscopic realm with an increasingly large
number of constituents, the complexity of predicting macroscopic behaviour from micro-
scopic interaction laws rises drastically. This effectively prohibited the understanding of
systems composed of more than a few tens of particles, [5], and required the development
of theories that were able to bridge the gap between microscopic interactions and their
consequences on the macroscopic properties of matter.

Statistical physics overcame this barrier by providing a statistical formalism to link
microscopic rules to macroscopic material properties, such as temperature, pressure, and
magnetisation [6, 7]. This is based on the idea that the behaviour of large numbers of
particles can be described by random variables with associated probabilities. Using this
approach, statistical physics makes predictions about the macroscopic properties of mat-
ter by calculating summary statistics such as averages from the random variables describ-
ing microscopic states. Random deviations of constituents from their average state are
termed fluctuations. How such fluctuations propagate in space, as encoded in correlation
functions, is central to understanding macroscopic material properties.

For example, the fluctuation-dissipation theorem, [8], is a fundamental principle in
statistical physics. In thermal equilibrium it relates the correlation of fluctuations of a
material to its response to external perturbations. As an example, Brownian motion is the
random movement of particles suspended in a fluid caused by collisions of these particles
with the molecules of the fluid. The fluctuation-dissipation theorem relates the velocity
fluctuations caused by Brownian motion to a drag as a body is moved through a fluid
[8, 9]. Another example is Johnson electronic noise related to the random thermal motion
of electrons in a conductor. The fluctuation-dissipation theorem relates Johnson noise to
electrical resistance in circuits [10, 11].

The fluctuation-dissipation theorem exemplifies the importance of understanding how

1



1. Introduction

(a) (b)

Fig. 1.1.: Our understanding of inanimate matter relies on how fluctuations propa-
gate through scales (a) The energy cascade describes how macro-scale fluctuations
introduced into an inertial fluid generate eddies which then break down into progres-
sively smaller structures until the energy is dissipated as thermal fluctuations on the
micro-scale. The image is adapted from [19]. (b) Renormalisation group theory is
used to understand how the behaviour of a system changes as its scale changes, and
to predict the behaviour of the system at different scales based on its behaviour at a
single scale. The theory is based on the idea of to summarise over and "renormalise"
the parameters of the system at different scales, so that they reflect the behaviour of
the system at that scale. The image is adapted from [20].

fluctuations propagate in space for understanding macroscopic properties of matter. Par-
ticularly striking examples for the importance of understanding the propagation of fluctu-
ations arise in the theories of phase transitions and non-equilibrium matter; compare also
with Fig. 1.1 for an illustration. In turbulent flow, macroscale perturbations are applied
to a viscous fluid, such as through stirring, which lifts the fluid into a non-equilibrium
state. This generates swirls which break down into progressively smaller structures until
the energy stored in these swirls is dissipated as thermal fluctuations on a smaller scale
[12–14]. This continuous propagation of velocity fluctuations down from the macroscopic
scale is termed the energy cascade.

Critical phenomena are another prominent example where the interplay between fluctu-
ations on vastly different spatial scales gives rise to macroscopic phenomenology [15–17].
Preparing a physical system at a critical point leads to two experimental observations [18]:
Firstly, the system is scale invariant, resulting in observations from different distances be-
ing statistically similar, and therefore all length scales being equally represented. Math-
ematically, this implies that fluctuations are correlated throughout the system, with the
correlation length being infinite. Secondly, as the critical point is approached, many ther-
modynamic properties, such as magnetic susceptibility, specific heat and compressibility,
change in accordance with a power law. Moreover, the same macroscopic behaviour can
be observed at critical points of different physical systems; this phenomenon is referred to
as universality. For example, magnets made of different materials may exhibit the same
power laws.

These phenomena have motivated the development of theoretical methods that allow
making predictions about macroscopic states of matter by integrating the effect of fluc-
tuations from a range of different length scales [15–18]. In the theory of phase transitions
and critical phenomena, renormalisation group theory has led to a general understand-

2



1.2. The multi-scale organisation of living matter

ing of the origins of scaling behaviour and universality in phase transitions. In order to
understand these observations, a naive approach of averaging over large length scales to
write down a macroscopic theory is not adequate, as all length scales are relevant at the
critical point. Consequently, a method which allows for the derivation of macroscopic
descriptions through the incorporation of all length scales is necessary. Renormalisation
group theory achieves this by systematically deriving a macroscopic description from a
microscopic description, length scale by length scale.

Underlying renormalisation is the fundamental idea of coarse graining. That is, at each
step we integrate out the smallest length scale from the partition function. For example,
in a magnetic lattice system, blocks of lattice points can be combined to represent a block
by an effective lattice point, a technique known as block spin renormalisation [17]. The
magnetic moment of this effective lattice point is usually taken to be the average of all
magnetic moments in the block. Following the averaging, the lengths are rescaled to their
original values and the fields are renormalised, so that the energy scale conforms to that
of the original system. If the original system is described by a Hamiltonian1, then these
three steps yield a new Hamiltonian that describes the system at the coarsened scale.
Because of scale invariance, the new Hamiltonian is assumed to be structurally identical,
but with changed parameters [16, 17].

Repeating this procedure leads to a renormalisation flow describing how the Hamilto-
nian changes continuously from the microscopic to the macroscopic level. Close to the
critical point, this renormalisation flow converges to the vicinity of fixed points which de-
scribe the macroscopic properties of the Hamiltonian. All microscopic systems that flow
into the same fixed point show the same macroscopic properties, which is the foundation
of universality [18]. The stability of the fixed point with respect to small changes in
model parameters is quantitatively associated with the exponents describing the pow-law
behaviour of the system in the vicinity of the critical point. In summary, how fluctuations
propagate through a continuous spectrum of spatial scales and theories describing these
processes have been fundamental to our understanding of inanimate matter.

In striking difference to inanimate matter, living matter is organised into a hierarchy
of non-equilibrium processes on a distinct set of spatial scales, ranging from biochem-
ical processes embedded in dynamic subcellular compartments to cells forming tissues.
This raises the question of whether the propagation of fluctuations within and across
these scales influences the properties of living matter. Thus, understanding living matter
necessitates developing novel theories that can predict the effective emergent behaviour
arising from the interplay of non-equilibrium fluctuations on multiple levels of biological
organisation.

1.2. The multi-scale organisation of living matter
Living matter is fundamentally different from many forms of inanimate matter in two
different ways: First, living matter operates far from thermal equilibrium. Thermody-
namics equilibrium describes states of a system in which the system is termed to be
balanced, as there is no net flow of energy or matter between subsystems [6, 21]. In
contrast, in a non-equilibrium state, the system changes between states or is subject to
steady transformation due to a non-vanishing net flow of energy or matter between sub-

1The Hamiltonian is the mathematical function that describes the total energy of the system in terms
of its position and momentum or position and spin, respectively [17].
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Fig. 1.2.: Organelles structure the interior of cells into highly dynamic compart-
ments Organelles are subcellular structures that form small compartments in cell
cytosol. These compartments exhibit altered chemical reaction environments which
is, for example, needed for the degradation or synthesis of some bio-molecules [37, 38].
(a) is adapted from [39] and shows a sketch of different types of organelles. (1) Nu-
cleolus, (2) nucleus, (3) ribosomes (dots on rough reticulum walls), (4) vesicle, (5)
rough endoplasmic reticulum, (6) golgi apparatus, (7) cytoskeleton, (8) smooth endo-
plasmic reticulum, (9) mitochondrion, (10) vacuole, (11) cytosol, (12) lysosome, (13)
centriole, (14) cell membrane. (b) shows a transmission electron microscopy image
of macrophage-tumor cell fusions. Dark lines are organelle membranes and extended
darker regions demonstrate the plethora of various organelles inside a cell. The image
is adapted from [40].

systems. Non-equilibrium states are realised if the system is externally perturbed from its
equilibrium state [22–24]. If a perturbation is removed after a transient time, the system
relaxes back to its equilibrium state. In order to investigate non-equilibrium systems,
the theories of classical thermodynamics were extended to discuss flows of energy and
matter in non-equilibrium states. For example, Onsager theory describes the relaxation
of weakly perturbed non-equilibrium systems by assuming that the perturbed state is
governed by the same fluctuations as in equilibrium [22]. Onsager relations are a set of
linear response relations that link the thermodynamic forces to the corresponding flows
in non-equilibrium systems. They are, however, limited to systems that are close to ther-
modynamic equilibrium and cannot account for far-from-equilibrium dynamics [22, 24].

If the system is subject to steady external outflow and inflow of energy or matter, the
system is driven to operate out of equilibrium [25]. The external driving can be applied
by inconsistent boundary conditions [17]. For example, a thermodynamic system can be
driven out of equilibrium by applying inconsistent boundary conditions on the macroscopic
level, for example by heating the walls of a container to different temperatures. In many
biological systems energy is dissipated on the level of individual components [26–29].
Examples range from motor proteins that transport cargo through the cell by converting
chemical fuel to active movement [30] to birds that migrate in flocks [31]. These systems
have inspired a novel field of research termed active matter [27–29, 32–34]. In recent
years, it was found that active systems exhibit a wide range of new dynamical phenomena
with examples ranging from swarming [31], to kinetic phase transitions [35], and motion-
induced phase separation [36]. By this, active matter provides fundamental insight in the
dynamics of living matter and it has opened up new theoretical and experimental roads
in non-equilibrium physics.

In addition to operating far from thermal equilibrium, living matter also fundamentally
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Fig. 1.3.: The functioning of living matter relies on the interplay between dynamics
on different spatial scales (a) The propagation of fluctuations through distinct
scales of biological organisation can be illustrated using the example of the regu-
lation of cell death [41]. Apoptosis is mediated by a protein termed Bax, which
stochastically binds and unbinds to the mitochondrial membrane, where it under-
goes oligomerisation dynamics. If the Bax membrane concentration is high, Bax
forms pores in the membrane and releases the apoptosis-inducing toxin cytochrome
c, thus evoking the degradation of individual mitochondria. However, by mitochon-
drial fusion and fragmentation, Bax is redistributed among mitochondria, suppressing
the spontaneous accumulation of Bax and, in turn, the degradation of mitochondria.
(b) This provides an abstract illustration of the propagation of fluctuations in com-
partmentalised systems, whereby the compartment dynamics induce fluctuations on
many-particle dynamics enclosed in the compartments, and by this alter the dynam-
ics on the molecular scale. The statistics of the fluctuations, in turn, depend on the
dynamics on the molecular scale, setting the basis of the propagation of fluctuations
between different scales of biological organisation.

differs in its spatial organisation from inanimate matter. Living matter is organised into
a hierarchy of non-equilibrium processes on a distinct set of spatial scales of biological
organisation: Biochemical processes on the molecular scale are embedded in dynamic
subcellular compartments, termed organelles. These organelles are highly dynamic and
thereby exchange molecules among each other. Cells interact and give rise to tissues,
which form individuals that interact in populations [42].

Since processes on each of these organisational scales are coupled, fluctuations on a
given scale induce fluctuations on other scales. We will refer to this interdependence of
fluctuations as the propagation of fluctuations across scales. The propagation of fluc-
tuations across spatial scales can be best illustrated by considering specific biological
examples. The development and maintenance of biological tissues relies on a tight co-
ordination between many cells. In order to give rise to complex and highly specialised
structures, such as the heart or the brain, the behaviour of each individual cell must be
tightly regulated. Signals from the cell’s environment need to be accurately interpreted
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and translated into appropriate cell behaviour in terms of proliferation, differentiation,
death or migration [43]. These behaviours are collectively referred to as cell fate. His-
torically, research on the processes underlying the regulation of cell fate has focussed on
molecular processes, such as the expression of genes in gene regulatory networks [44–46].
More recently, chemical modifications of the DNA and histones have been investigated in
the context of cell fate decision [47–49], i.e. the proteins the DNA is wrapped around.
The focus on the molecular scale has in recent years intensified with technological break-
throughs in sequencing technologies that allow probing a broad variety of molecular states
of cells with unprecedented detail [50–52].

Cells are, however, hierarchically structured into processes happening on different scales.
Many fundamental processes in cells occur in or on subcellular compartments termed
organelles [37, 38, 53]. Organelles serve as hubs for biomolecule synthesis, degradation,
and metabolic conversion, as well as a platform for various pathways involved in the
processing of internal and external signals; compare also with Fig. 1.2. These molecular
processes involve chemical reaction networks mediating the formation of protein complexes
[54, 55] and underlie central cellular functions, such as cell death [56] or the response to
viruses [57]. For example, cell death is triggered by the formation of protein complexes
on the outer membrane of organelles termed mitochondria [41, 56]. The concentration of
these complexes is increased if the cell is subjected to stress. If the complex concentration
extends beyond a threshold concentration, the complexes form pores in the mitochondrial
membrane [58], which mediate the release of toxins from the mitochondria that trigger
the disassembly of the cell.

Mitochondria themselves are highly dynamic compartments which actively migrate in
the cytosol of cells and undergo fusion and fragmentation dynamics on a timescale of
minutes [59–63]. These fusion and fragmentation events lead to the redistribution of pro-
tein complexes between mitochondria, such that the stochastic dynamics on the organelle
scale induce fluctuations in protein complex concentrations on the molecular scale. Vice
versa, the concentration of protein complexes on mitochondrial membranes influences the
rates of fusion and fragmentation processes, such that fluctuations on the molecular scale
also give rise to fluctuations on the organelle scale. Other examples that rely on the
formation of protein complexes on organelle membranes as central regulators of cellular
behaviour follow similar dynamics. Examples include the metabolic regulation of aerobic
metabolism [64, 65], the metabolic regulation of protein synthesis [66, 67], and the cel-
lular innate immune response to RNA-virus infection [57, 68]. These examples therefore
illustrate how fluctuations propagate across vastly different spatial scales in biological
systems.

Since copy numbers in biological systems are typically small, quantitative descriptions
usually must account for strong number fluctuations [69, 70]. Therefore, the dynamics on
a given spatial scale can be effectively described in the framework of non-equilibrium sta-
tistical physics in general and stochastic processes in particular. The theory of stochastic
processes provides a framework for describing the stochastic time evolution on a given
spatial scale either by stochastic differential equations, where the deterministic time evo-
lution is supplemented by noise summarising many inaccessible microscopic degrees of
freedom [17, 71]. Or by the determinist time evolution of probability distributions in
the form of Master equations [17]. The description of stochastic systems, where fluc-
tuations can propagate across a hierarchy of spatial scales, is, however, mathematically
cumbersome. Although attempts have been made in deriving mathematical expressions
for summary statistics [72–77], there is no understanding of the effective physical degrees
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of freedom emerging from the multi-scale propagation of fluctuations. Since, as in the
examples of critical phenomena and turbulence discussed above, these degrees of freedom
might determine macroscopic properties of living matter and, specifically, underlie the
regulation of cell fate behaviour. Therefore, understanding living matter requires a theo-
retical framework that is able to integrate the propagation of fluctuations across different
scales of biological organisation. Such a framework would extend beyond the notion of
emergence, as illustrated in Fig. 1.3.

1.3. Research question and main findings of the thesis
Just as for inanimate matter, understanding living matter requires novel theories that
predict the emergent degrees of freedom arising from the interplay between fluctuations
on multiple scales of biological organisation. In this thesis, we derive general theories
of the multi-scale propagation of fluctuations in non-equilibrium systems and provide
theoretical and empirical evidence for their biological function in the biological context of
cell death and the innate immune system. Specifically, we use the paradigmatic framework
of stochastic many-body systems subject to dynamic compartmentalisation. We follow
the approach taken in statistical physics and distinguish between open systems, where we
allow for the creation and annihilation of constituents, and closed systems, where mass is
conserved, see Fig. 1.4; While dynamic compartmentalisation is central for the systems we
study in this thesis, we will consider compartment dynamics as effectively imposed and
only mention in biological applications the non-equilibrium mechanisms that give rise to
compartment dynamics.

This thesis is structured as follows. In the chapters 2 and 3, we discuss open compart-
mentalised stochastic systems, while chapters 4 and 5 consider the dynamics of closed
compartmentalised systems. The chapters 2 and 4 are concept-driven and aim to establish
statistical physics concepts of compartmentalised systems, with an emphasis on analytic
investigations. In the chapters 3 and 5 we build on the preceding chapters and investigate
potential biological functions by deriving predictions for different biological contexts. We
test these predictions using perturbation experiments. This thesis approaches the prop-
agation of fluctuations in compartmentalised systems from four different perspectives,
each necessitating the introduction of related, yet distinct, mathematical frameworks and
biological concepts. To enhance the readability of this thesis, the mathematical and bi-
ological concepts required for each chapter are introduced at the start of the respective
chapter. Yet, the chapters of this thesis are not arranged in a juxtaposed manner and we
will build upon the insight gained from preceding chapters.

In chapter 2, we investigate the emergence of collective dynamics in open compart-
mentalised systems. We formally define compartment dynamics within the framework of
Master equations and derive effective dynamics for its temporal evolution. We introduce
a flux approximation for compartment fusion and fragmentation, which allows for analyt-
ical tractability and enables us to draw comparison to other physical systems. We find a
structural equivalence of the effective dynamics to McKean-Vlasov equations describing
collective resonance modes in plasma physics. We show that the combined effects of com-
partment fusion and fragmentation lead to the localisation of probability densities, which
describe the probability of an individual compartment occupying a specified position in
the concentration phase space. To capture the effective ensemble dynamics, we introduce
a collective degree of freedom, which characterises the collective motion of the localised
probability densities in the concentration phase space. Given that this motion closely
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(a) (b)
open system closed system

Fig. 1.4.: Illustration of open and closed compartmentalised stochastic systems. We
follow the approach taken in statistical physics and distinguish between open systems
(a) and closed systems (b). For open compartmentalised systems we do not impose
mass conservation. Instead, we explicitly allow for the creation and annihilation of
particles and compartment mass. This, for example, manifests by the binding and
unbinding of particles to containers from a reservoir, or the growth or degradation of
compartments. In contrast, for closed compartmentalised systems, we demand the
conservation of mass on the level of the stochastic many-body dynamics as well as on
the level of the compartments. Note that density fluctuations between compartments
are permitted in closed systems.

resembles that of an individual compartment in concentration phase space, we term this
degree of freedom ‘quasi-particle’. We derive effective equations of motion for this quasi-
particle and show how its kinetic properties differ qualitatively from the dynamics of a
single compartment. Furthermore, we demonstrate that the quasi-particle kinetics dif-
fer fundamentally from those of single-scale stochastic biochemical systems, raising the
question of whether and how they are used to perform functions in biological systems.

In chapter 3, we apply these findings in the biological context of the decisions of cells to
commit programmed cell death, which is a prominent biological example of an open sys-
tem exhibiting multi-scale fluctuations. We first review the biology of organelle dynamics
and signalling pathways in the context of cell death decision-making and then present a
model describing the regulation of the accumulation dynamics of Bax protein complexes
to the mitochondrial outer membrane. We apply the quasi-particle theory derived in
chapter 2 to this model and show that the response of the accumulation of Bax com-
plexes to stress signals shows a sigmoidal response. This gives rise to a kinetic low-pass
filter which suppresses transient noise fluctuations yet allows cells to respond to trends
in stress levels on long timescales. To experimentally test our theoretical predictions, we
predict a transition from sigmoidal to exponential-like responses with increasing apop-
totic stimulus strength, which is characteristic of the quasi-particle-like response kinetics.
Evidence of this kinetic behaviour is found in experiments conducted by our experimental
collaborators Philipp Mergenthaler and Lina Hellwig. Finally, we discuss the plausibil-
ity of our findings and their potential therapeutic implications, and consider the direct
translatability of our findings to other organelle-associated signalling pathways.

In chapter 4, we investigate the thermodynamics of closed compartmentalised systems,
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where the total mass of the system is conserved. Specifically, we focus on the total entropy
and demonstrate that the effect of dynamic compartmentalisation depends on details
of the kinetics on the scale of the stochastic many-particle dynamics. Using a second
quantisation approach, we derive a commutator relation between the kinetic operators
and the change in total entropy. We prove that, in particular, the total entropy of the ideal
gas is not affected by dynamic compartmentalisation. Turning to many-particle dynamics
that admit reactions among the particles, we demonstrate how specific compartment
fragmentation rules can act as implicit measurements and we show how compartment
fusion and fragmentation alter the total system’s entropy. Furthermore, we demonstrate
that the compartment dynamics alter the statistics of realised microstates if the kinetics of
the stochastic many-particle dynamics violate detailed balance. Importantly, we illustrate
how this can be used to facilitate or suppress reaction products of the stochastic reaction
dynamics by manipulating the compartment dynamics.

In chapter 5, we apply the theory of closed compartmentalised systems derived in
chapter 4 to the cellular innate immune response to RNA-virus infections. We provide
a brief overview of the Smoluchowski aggregation-fragmentation dynamics, and discuss
the concept of gelation and its connection to diverging moments in the aggregate size
distributions. Our simulations illustrate how compartment fusion and fragmentation can
facilitate the formation of large aggregates of MAVS proteins and augment their stability.
This also gives rise to a power-law decay in density fluctuations. We systematically
investigate different kernels describing the reversible aggregation and fragmentation of
MAVS protein complexes. We thereby show that compartmentalised systems can exhibit
giant density fluctuations. This facilitates the emergence of gelation under conditions
that violate theoretical gelation criteria in the absence of compartment dynamics. We
show that such multi-scale gelation of protein complexes on the membranes of dynamic
mitochondria governs the innate immune response. Finally, we discuss our findings in light
of the signalling pathway responsible for inflammation responses following infection of
cells with RNA-virus. Our findings suggest that mitochondrial dynamics are essential for
efficient inflammation responses. This is supported by previously published experimental
data.
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2. Theory of collective degrees of
freedom in open compartmentalised
systems

2.1. Introduction
The Nobel laureate Philip Warren Anderson is the founding father of modern condensed
matter physics and among the most influential physicists of the second half of the twentieth
century. He dedicated his life to the electronic structure of magnetic and disordered
systems and profoundly influenced how generations of physicists think about condensed
matter. One of his most influential papers was published in 1972 in Science with the
title ‘More is different’ [78]. In this paper, Anderson set the concept of emergence as a
cornerstone of how to describe (condensed) matter, which today has applications from
solid state physics [79–81] to complexity theory [82].

Emergence is the property of physical systems to exhibit phenomena that are not present
in the symmetries describing its individual components and the interactions between them
[79]. These properties emerge from the interactions between the components via quan-
titative to qualitative transitions, which are also referred to as symmetry breaking [78].
A hallmark of this theory is the discovery of emergent collective dynamics in many-body
systems which manifests as the localisations of wave packages, collective excitations of in-
teracting bosons, and quasi-particles formed by interacting fermions. Emergent collective
dynamics not only allow for a simplified description of the many-body system but show
qualitative new dynamics and behaviour [78, 79].

In this chapter, we ask whether multi-scale fluctuations in dynamically compartmen-
talised systems give rise to emergent or collective dynamics. To this end, we will use
the paradigmatic framework of compartmentalised stochastic systems, which comprise a
hierarchical organisation of interacting non-equilibrium dynamics on various distinct spa-
tial scales. As a minimal framework, we study many-body dynamics enclosed in dynamic
compartments. In the absence of dynamic compartmentalisation, we can conveniently
examine the dynamics of the stochastic many-body dynamics using Master equations.
We demonstrate in this chapter how compartment dynamics lead to collective dynamics,
which provides an intuitive way to understand multi-scale fluctuations in non-equilibrium
systems. We demonstrate how we gain an analytical handle on the collective dynamics
as we utilise the framework of population balance equations, as we describe the proba-
bility of an individual compartment occupying a specified position in the concentration
phase space. Specifically, we show that the combined effects of compartment fusion and
fragmentation lead to the localisation of probability densities in the concentration phase
space. We find the emergence of a collective degree of freedom, which characterises the
collective motion of the localised probability densities in the concentration phase space.
We show that this motion closely resembles that of an individual compartment in the con-
centration phase space. We discuss a conceptual equivalence of the collective ensemble
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dynamics with collective excitations and quasi-particle solutions in many-body theory. In
this chapter, we focus on deriving an effective description of emergent dynamics in open
compartmentalised systems, as we do not impose the conservation of mass. Consequently,
this chapter is mainly technical. In the following chapter 3, we will focus on an application
of our theory in the context of organelle-associated signalling pathways, with particular
emphasis on cell death decision-making.

This chapter is structured as follows. We begin this chapter by reviewing mathematical
frameworks to describe the dynamics of stochastic many-body dynamics and compartment
dynamics in section 2.2. We focus on the description of the stochastic many-body dynam-
ics in terms of reaction kinetics and the compartment dynamics within the framework of
population balance equations. In section 2.3, we formally define compartmentalised sys-
tems by giving a definition of the full stochastic dynamics within the framework of Master
equations. When we derive the ensemble dynamics, we will closely check the quality of
the approximations by comparing with the full-stochastic dynamics.

We start the derivation of the effective ensemble dynamics in section 2.4, where we de-
scribe the compartmentalised systems within the framework of population balance equa-
tions. In particular, we approximate compartment fusion and fragmentation by a flux
approximations in section 2.4.1. By marginalising over the compartment properties, we
arrive at an effective description in Eq. (2.55), with an approximation of the compartment
fusion and fragmentation in the flux approximation in Eq. (2.56). In section 2.5, we dis-
cuss the analogy of Eq. (2.55) to McKean-Vlasov equations, which are for example used
in plasma physics to describe collective excitations. We then demonstrate the emergence
of a collective degree of freedom due to steady compartment fusion and fragmentation
dynamics by qualitatively studying the dynamics encoded in Eq. (2.55). Here, we also
discuss how this collective degree of freedom resembles a quasi-particle. We proceed in
section 2.6 to assess the kinetics of the quasi-particle, by deriving effective equations of
motion. Finally, we conclude this chapter in section 2.7 by investigating the kinetic prop-
erties of the quasi-particle, and by comparing to the system’s dynamics in the absence of
compartment fusion and fragmentation dynamics.

2.2. Literature review of compartmentalised systems:
dynamics on distinct spatial scales

The defining characteristic of compartmentalised multi-scale systems is the scale hierar-
chy of dynamics being nested into each other. As such, the analysis of the dynamics of
compartmentalised multi-scale systems demands the explicit treatment of the dynamics
on different spatial scales as well as the studying of their interplay. Here, we in par-
ticular focus on compartmentalised multi-scale systems, which admit dynamics on two
spatial scales. For this, we focus on stochastic many-body dynamics enclosed in dynamic
compartments. Before we study the interplay between compartment dynamics and the
enclosed many-body dynamics, we first focus on the dynamics on specified scales sepa-
rately.

To this end, we investigate on the stochastic many-body dynamics in the context of
stochastic chemical reaction network kinetics. We review how chemical reaction network
kinetics are described within the framework of Master equations and review how system
size expansions allow for a description in the context of Fokker-Planck equations. For
the compartment dynamics, we review the framework of population balance equations.
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Allowing for the fusion and fragmentation of compartments as central for dynamic com-
partmentalisation, we discuss the Smoluchowski-coagulation formalism.

2.2.1. Mathematical framework for stochastic reaction network
kinetics

In this thesis, we in particular specify the enclosed stochastic many-body dynamics as
stochastic reaction kinetics system. In this subsection, we focus on stochastic chemical
reaction networks kinetics, accounting for low copy numbers and intrinsic and extrinsic
noises sources on the subcellular scale [70, 83–85] without explicitly discussing their spatial
evolution. Next, we closely follow [85]. We consider a well stirred mixture of of N ≥ 1
chemical species {S1, S2, ..., SN} inside a fixed volume Ω that chemically interact at a
constant temperature, through M ≥ 1 reaction channels {R1, R2, ..., RM}. We define
with Xi(t) the number of Si molecules in the system. Each reaction is defined by

Rj ≡
N∑
i

sijSi
kj−→

N∑
i

rijSi, (2.1)

where kj is the rate of the reaction, and sij and rij stoichiometric coefficients. The
state change vector V⃗j = (V1j, ..., VNj) is defined by its components Vij = rij − sij. While
{S1, S2, ..., SN} defines the molecules interacting in the signalling pathway, {R1, R2, ..., RM}
define the dynamics of the signalling pathway. We introduce the dependence on an ex-
ternal signal η(t) in this general definition of chemical reaction networks by setting a
dependence between the reaction rate and the signal kj(η(t)) to a subset j ∈ Rsig. This
formalism is equivalent to either externally manipulating the kinetic properties of chemical
reactions, or externally controlling the concentration of a chemical species. The propen-
sity of each reaction is given by aj(X⃗(t)) = kjh(X⃗(t)), where h(X⃗(t)) is the number of
distinct combinations of Rj. The time evolution of joint probability function P (X⃗, t) is
then given by

∂

∂t
P (X⃗, t) =

M∑
j

[
aj(X⃗ − V⃗j)P (X⃗ − V⃗j, t)− aj(X⃗)P (X⃗(t))

]
, (2.2)

see also the appendix on the Master equation formalism in A.1. We introduce a change of
variables, as we express the state of the system in terms of a concentration x⃗(t) = X⃗(t)/Ω
and formally v⃗ = V⃗ /Ω. By rescaling the propensity while omitting combinatorial factors
arising from identical species, we find ãj = Ωaj. The probability function is rescaled by
P̃ (x⃗, t) = ΩNP (X⃗, t). We series expand Eq. (2.2) around x⃗(t) with the small variable vij,
which is also referred to the Kramers-Moyal expansion [83, 84]

∂

∂t
P̃ (x⃗, t) =

∞∑
n=1

(−1)n
( 1

Ω

)n−1 ∑
m⃗∈Q(n)

1∏N
i mi!

∂n∏N
i ∂x

mi
i

 M∑
j=1

N∏
i

V mi
ij ãj(x⃗)

 P̃ (x⃗, t)
 .
(2.3)

For large volumes Ω−n+1 higher order terms vanish. The Fokker-Planck approximation
corresponds to the truncation of the Kramers-Moyal expansion at the second order. To
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this end, we define the drift vector F⃗ and the noise matrix D via

Fi(x⃗, t, η(t)) =
M∑
j=1

Vij ãj(x⃗, t, η(t)), Dik(x⃗, t, η(t)) = 1
Ω

M∑
j=1

VijVkjaj(x⃗, t, η(t)), (2.4)

where the subscript η(t) refers to the dependence of the reaction rate on the external
signal η(t). Note, that here the noise matrix Dη(t) describes dispersive dynamics in the
concentration phase space and not in a spatial sense, as we have excluded any spatial
notion from our analysis by assuming well-mixed conditions. Making use of the drift
vector F⃗η(t) and the noise matrix Dη(t), we find

∂

∂t
P̃ (x⃗, t) ≈ −

N∑
i=1

∂

∂xi

[
Fi(x⃗, t, η(t))P̃ (x⃗, t)

]
+ 1

2

N∑
i,k

∂

∂xi

∂

∂xk

[
Dik(x⃗, t, η(t))P̃ (x⃗, t)

]
.

= −∇ · F⃗ηP̃ (x⃗, t) + 1
2∇ ·

(
∇ ·Dη(t)

)⊤
P̃ (x⃗, t), (2.5)

where the second line is equal to the first line by making use of a vector notion. The
formulation in terms of a multi-dimensional Fokker-Planck Equation allows for an equiv-
alent formulation in terms of Itô stochastic differential equations. For this, we make use
of the Cholesky decomposition D(x⃗, t) = C(x⃗, t)C⊤(x⃗, t) to find

d

dt
x⃗ = F⃗ + Cξ⃗(t), (2.6)

where ξ⃗(t) is an (uncorrelated) Gaussian white noise vector. This set of coupled stochastic
differential equations is also referred to as Chemical Langevin Equations. In the thermo-
dynamic limit, Ω→∞, the noise vanishes and the system is described by a set of coupled
deterministic differential equations, which corresponds to a formulation on the basis of
reaction rates. Notably, both the drift vector F⃗ and the noise matrix D encode both the
chemical reaction rates kj and the current state of the system.

Here, we formally allowed for the creation and annihilation of species from a bath. As
such, our system is not mass-conserving. Note, that in general, the formulation in terms
of Langevin Equations or in terms of Fokker-Planck equations allows for the conservation
of the mass of the system if the system is specified accordingly [86]. Yet, caution should
be taken when reaction kinetics in a closed system are considered, where the total mass
is conserved. In this case, it is necessary to consider the full structure of the noise
diffusion matrix. In any case, the set of coupled Langevin Equations offers an intuitive
approach to the dynamics encoded in the stochastic reaction networks and allows for
straightforward numerical implementation. In contrast, the Fokker-Planck approximation
is more beneficial for statistical analysis.

2.2.2. Compartment dynamics within the framework of population
balance equations

Dynamic compartmentalisation is a fundamental aspect of the multi-scale organization
of biological systems. Dynamic compartmentalisation is displayed in numerous examples,
ranging from populations of interacting individuals to tissues composed of cells, to or-
ganelles that compartmentalise the cytosol. While the dynamics of each scale are driven
by different physical mechanisms, they can be effectively captured by the same statistical
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internal dynamics

movement

shape change

fusion fragmentation

creation degradation
growth
& shrinkage

Fig. 2.1.: Various compartment dynamics. This is schematic illustrates the multitude
of different compartment dynamics, ranging from compartment growth, degradation,
fusion, and shape change, up to internal dynamics. Note, that the list of compartment
dynamics illustrated here is not extensive. Squares, dots, and hexagons refer to
stochastic many-body dynamics associated with the compartments. In particular,
the framework of population balance equations, presented in section 2.2.2, is suited
to capture the effects of compartment dynamics.

description. In this section, we formalise the compartment dynamics.
While discrete population models suggest the framework of agent-based dynamics, or-

ganelle dynamics demand the temporal remodelling, merging, and splitting of compart-
ments. See for an illustration of compartment dynamics Fig. 2.1. These processes can be
addressed through population balance equations. Here, we distinguish two distinct levels
of population dynamics: a kinetic description through Master equations, and a statistical
description in terms of smooth distribution functions for large populations. This statis-
tical description is obtained through the Master equation when the population size limit
is correctly drawn [87]. Here, we focus on smooth distribution functions, as this formal-
ism facilitates analytical tractability and links compartment dynamics to Smoluchowski
aggregation-fragmentation dynamics1. Complementary to the approach presented in this
section, we presented a definition of the full stochastic dynamics of the system in sec-
tion 2.3.

Population balance equations are popular in different branches of science ranging from
chemical engineering [89], atmospheric modelling [90], to colloidal physics [91–93], and
biology [94–96]. Population balance equations describe the temporal evolution of pop-
ulations on a statistical level. Here, we closely follow [87] and define a phase space D
composed by the physical space of coordinates r⃗ and the property space ζ⃗ = (ξ1, ξ2, ...)
which refers to compartment properties like size, shape, or the state of the internal dynam-
ics. Here, we assume that compartment properties are described by continuous variables,
as xi ∈ R. We describe the ensemble of compartments by the number density distribution
function f(r⃗, ζ⃗ , t) in the phase space D, where f(r⃗, ζ⃗, t)dr⃗dζ⃗ refers to the ensemble of
entities in the range (dr⃗, dζ⃗) around (r⃗, ζ⃗). The conservation of mass then implies∫

D

D

Dt
f(r⃗, ζ⃗, t)dr⃗dζ⃗ =

∫
D

(ΣB − ΣD)dr⃗dζ⃗ , (2.7)

1This formalism is also referred to as Smoluchowski’s coagulation formalism [88].
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2. Theory of collective degrees of freedom in open compartmentalised systems

where D/Dt refers to the substantial derivative, ΣB and ΣD to birth and death term
respectively, and the integration was taken over an arbitrary volume D. Approximating
both the spatial dynamics and the internal dynamics of the compartments in terms of
Fokker-Planck equations, the drift and diffusive fluxes in both the real space and property
space read

d⃗r = F⃗rf −Dr∇rf and d⃗ζ = F⃗ζf −Dζ∇ζf, (2.8)

where the subscript refers to either the real space or the property space, d⃗ is the flux
displacement vector, F⃗ is the drift vector and the matrix D comprises the diffusion coef-
ficients. In a differential form, the conservation of mass then implies

∂f

∂t
+∇r · (F⃗rf)−∇r · (Dr∇rf) +∇ζ · (F⃗ζf)−∇ζ · (Dζ∇ζf) = ΣB − ΣD. (2.9)

In this formulation, we already account for the multi-scale character of dynamic com-
partmentalisation, as we explicitly account for both the dynamics of compartments, as
well as for the internal dynamics. Next, we will extend on birth and death terms, which
allows accounting for both the synthesis and degradation, as well as for the fusion and
fragmentation of compartments. To this end, we employ Smoluchowski’s coagulation for-
malism and start by focusing on the fusion of compartments. Formally, the fusion of two
compartments results in a removal of the two fusing compartments and the addition of
the fused compartments to the ensemble, and thus manifests in coupled birth and death
terms. For the birth term, we need to define how compartment properties ζ⃗ change upon
the fusion of compartments. We formally define ζ⃗ = Υ(ζ⃗ ′, ζ⃗ ′′) for the compartment prop-
erties ζ⃗ of a compartment resulting from the fusion of two compartments with ζ⃗ ′ and ζ⃗ ′′.
In the continuum limit, the birth and the death term yield

ΣD,fus(r⃗, ζ⃗, t) =
∫

dr⃗′dζ⃗ ′ a(r⃗′, ζ⃗ ′, r⃗, ζ⃗, t)f [2](r⃗′, ζ⃗ ′, r⃗, ζ⃗, t),

ΣB,fus(r⃗, ζ⃗, t) = 1
2

∫
dr⃗′dζ⃗ ′

∫
dζ⃗ ′′ a(r⃗′, ζ⃗ ′, r⃗, ζ⃗ ′′, t)f [2](r⃗′, ζ⃗ ′, r⃗, ζ⃗ ′′, t)δ(Υ(ζ⃗ ′, ζ⃗ ′′)− ζ⃗), (2.10)

where a(r⃗′, ζ⃗ ′, r⃗, ζ⃗, t) is the fusion rate of two compartments specified by (r⃗′, ζ⃗ ′) and (r⃗, ζ⃗),
and f [2](r⃗′, ζ⃗ ′, r⃗, ζ⃗, t) is the entity-pair distribution function. δ(x⃗) refers to the multi-
dimensional δ-function. The factor 1/2 in the birth term corrects for doubling counting.
Based on this formulation, a number of approximations are applied: A mean-field approx-
imation is applied as the entity-pair distribution is expressed as the product of the number
density f [2](r⃗′, ζ⃗ ′, r⃗, ζ⃗, t) ≈ f(r⃗′, ζ⃗ ′, t)f(r⃗, ζ⃗ , t). As compartments need to be in close spatial
proximity for a fusion, local homogeneity is assumed with f(r⃗′, ζ⃗ ′, t) ≈ f(r⃗, ζ⃗ ′, t). Car-
rying out the integration of r⃗′ over a(r⃗′, ζ⃗ ′, r⃗, ζ⃗, t) reduces the fusion rate to κ(r⃗, ζ⃗ ′, ζ⃗, t),
which is referred to as the collision kernel. This yields

ΣD,fus(r⃗, ζ⃗, t) =
∫

dζ⃗ ′ κ(r⃗, ζ⃗ ′, ζ⃗, t)f(r⃗, ζ⃗ ′, t)f(r⃗, ζ⃗, t),

ΣB,fus(r⃗, ζ⃗, t) = 1
2

∫
dζ⃗ ′dζ⃗ ′′ κ(r⃗, ζ⃗ ′, ζ⃗ ′′, t)f(r⃗, ζ⃗ ′, t)f(r⃗, ζ⃗ ′′, t)δ(Υ(ζ⃗ ′, ζ⃗ ′′)− ζ⃗). (2.11)

Analogously, the fragmentation of compartments also results in both birth and death
terms. Here, we define the break-up kernel b(r⃗, ζ⃗ ′, ζ⃗ ′′, t) as rate at which a compartment
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2.2. Literature review of compartmentalised systems: dynamics on distinct spatial scales

with properties ζ⃗ = Υ(ζ⃗ ′, ζ⃗ ′′) splits in compartments specified by ζ⃗ ′ and ζ⃗ ′′,

ΣD,frag(r⃗, ζ⃗, t) = f(r⃗, ζ⃗, t)
∫

dζ⃗ ′dζ⃗ ′′ b(r⃗, ζ⃗ ′, ζ⃗, t)δ(Υ(ζ⃗ ′, ζ⃗ ′′)− ζ⃗),

ΣB,frag(r⃗, ζ⃗, t) =
∫

dζ⃗ ′ b(r⃗, ζ⃗ ′, ζ⃗, t)f(r⃗,Υ(ζ⃗ ′, ζ⃗), t). (2.12)

Taken together, this formalism encompasses various compartment dynamics, such as
movement d⃗r, internal changes d⃗ζ , growth/shrinkage d⃗, degradation/synthesis ΣB and
ΣD and fusion/fragmentation, expressed as integral terms in ΣB and ΣD.

Concluding on this section, the description of compartmentalised stochastic reaction
kinetics systems in terms of population balance equations constitutes a statistical de-
scription in the continuum limit of infinitely many compartments using smooth distri-
bution functions. Additionally, a mean-field approximation and the assumption of local
homogeneity for the coagulation dynamics are assumed. As the framework of popula-
tion balance equations allows for analytical tractability there are a few examples, where
specific chemical reaction networks in dynamic compartments were analysed [75, 96–98].
Note that the noise contributions induced by the randomness of discrete compartment
dynamics and finite system size, as well as the spatial setting of compartments, are not
accounted for within the framework of population balance equations.

There are few examples where stochastic dynamics in compartments with a spatial set-
ting have been studied [74–77]. To account for the stochasticity induced by compartment
dynamics on a mesoscale description, compartment dynamics have been discussed in the
context of counting processes. While these models allow for the computational accessibil-
ity of the dynamics, analytical tractability is only recovered by assuming moment closure
approximations [72].

The full stochastic evolution of a finite system is when tracking the dynamics on the
basis of stochastic transition rates, as formalised the framework of Master equations, see
section 2.3. While this is a useful approach for numerical simulations, it lacks analytical
tractability. In this chapter, we thus consider both a full stochastic framework for nu-
merical simulations and the framework of population equations in order to gain analytical
insight. Specifically, we corroborate our analytical findings through finite-size full stochas-
tic simulations. For an intuitive understanding of the phenomenology of compartment
aggregation-fragmentation dynamics, we next provide a case example of Smoluchowski
aggregation dynamics.

2.2.3. Smoluchowski aggregation-fragmentation dynamics
To describe the fusion and fragmentation dynamics of compartments, we consider the
framework of reversible aggregation based on the seminal work of Marian Smulochwoski
[88]. Smulochwski developed this framework to describe the time evolution of the number
density f(s, t) of particles as they coagulate. Here, we follow closely the introduction
into the formalism provided by [99], who refer to it as reversible polymerisation due to its
predominate application in the context of the aggregation of molecules.

Smoluchowski aggregation-fragmentation dynamics are used to describe the aggrega-
tion and fragmentation processes through population balance equations in a mean-field
description. We refer to objects created by aggregation as aggregates and refer to ag-
gregates of unit size as building blocks. This formalism is applicable to describe the
aggregation of polymers, organelle dynamics and more generally, compartment dynamics.
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2. Theory of collective degrees of freedom in open compartmentalised systems

In particular, the formalism comprises two types of reactions

si + sj
Ki,j−−→ si+j and si+j

Fi,j−−→ si + sj, (2.13)

which describe the aggregation of two aggregates of size si and sj to an aggregate of the
size si+j and conversely its fragmentation. Within the framework of chemical reactions,
the aggregation and fragmentation processes are represented by the aggregation rate, Ki,j,
and the fragmentation rate, Fi,j, respectively. These rates are usually dependent on the
sizes of the respective aggregates and are thus referred to as aggregation and fragmentation
kernels. In this thesis, we focus on the symmetric case of reciprocal interactions, with
Ki,j = Kj,i and Fi,j = Fj,i.

The Smoluchowski aggregation-fragmentation formalism generally allows the descrip-
tion of the size distribution of aggregates in a continuous manner. In this study, however,
we consider the special case of discrete size distributions, as sizes are multiples of the
unit building block sk = ks1. This special case is particularly suited to the aggregation
of molecules to polymers and constitutes an approximation for compartment dynamics.
The primary benefit of this formalism is the restriction of the creation of arbitrarily small
aggregates, as well as its numerical and analytical tractability. In the discrete setting, the
set of coupled population balance equations is

df(sk, t)
dt

=1
2
∑
i+j=k

Ki,jf(si, t)f(sj, t)− f(sk, t)
∑
j

Kk,jf(sj, t)

+
∑
j

Fk,jf(sk+j, t)−
1
2f(sk, t)

∑
i+j=k

Fi,j. (2.14)

Note that these dynamics in general not fulfil the detailed balance condition

Ki,jf(si, t)f(sj, t) = Fi,jf(si+j, t) (2.15)

which demands a dependence between the aggregation and the fragmentation kernel.
Further note, that reversible aggregation dynamics are mass conserving and hence

N =
∑
k

kf(sk, t) (2.16)

is a conserved quantity.

There exist a multitude of different physics models for the aggregation and the fragmen-
tation kernels, with only a subset admitting analytic solutions. We will further elaborate
on this in section 5.2, where we also elaborate on general qualitative insights that can be
made by classifying the aggregation and fragmentation kernels. Here, we next focus on the
special case of constant aggregation and fragmentation kernels, Fi,j/Ki,j = φ/µ = λ−1.
This specific kernel choice was previously discussed in the context of organelle dynam-
ics [100], fragmentation dynamics, fulfils the detailed balance condition, and admits an
analytic solution. The analytic solution in steady state is of the type

fss(sk, t) = λ−1βk, (2.17)
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where β is derived by the normalisation condition N = 1 and evaluates to

β = 1 + 1
2λ −

√
1
λ

+ 1
4λ2 . (2.18)

The existence of an analytic solution allows us to verify the accuracy of our numerical
routines. Furthermore, we observe that the size distribution is approximately described
by an exponential decay in aggregate size. This will be utilised in section 2.4.2.3 to
derive effective ensemble dynamics. While we mostly consider constant and finite aggre-
gation and fragmentation kernels in this chapter 2, we focus on the derivation of general
aggregation and fragmentation kernels in chapter 5. Having provided a brief overview
of the mathematical concepts, we now move on to investigate the effective dynamics of
compartmentalised stochastic reaction kinetics systems.

2.3. Compartmentalised stochastic systems within the
framework of Master equations

In order to reflect on the multi-scale nature of compartmentalised stochastic reaction ki-
netics systems, we explicitly consider both the dynamics of the chemical reactions taking
place in (or on) the compartments, as well as the dynamics of the compartments them-
selves. At the molecular level, we describe the changes in concentrations of chemical
species over time within each compartment. At the compartment level, we account for
mesoscopic changes, such as the growth and shrinkage of compartments, or the fragmen-
tation and fusion of compartments. Here, we provide a microscopic model definition as
we employ the powerful framework of Master equations. We will in particular use this
framework of Master equations to investigate the phenomenology of the system through
numerical simulations.

We formally define the state of a compartmentalised stochastic reaction kinetics system
by a finite set of compartments S. Each compartment is characterised by a concentration
vector c⃗i and macroscopic compartment properties o⃗i,

S =


...

[⃗ci, o⃗i]
...

 . (2.19)

with a total number of n compartments. Compartment properties account for character-
istics like size, mass, shape, and spatial position. The size of a compartment is defined as
vi = o⃗1;i. The concentration vector c⃗i specifies the composition of molecular species in this
compartment, where c⃗ivi = n⃗i is the number of molecular species. We take into account
the density dependencies of chemical reactions by considering concentrations rather than
copy numbers. Moreover, we assume that molecular species diffuse quickly within the
compartment, disregarding concentration gradients and assuming well-mixed conditions.

We distinguish different classes of transitions between states TS→S′ , accounting for the
dynamics on the scale of stochastic reactions and compartment dynamics. On the scale of
stochastic reactions (molecular scale), changes in the concentration of molecular species
are due to chemical reactions, such as chemical modifications of proteins, complex forma-
tion and reversible oligomerisation processes, see also section 2.2.1. Formally, a chemical
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2. Theory of collective degrees of freedom in open compartmentalised systems

reaction Cj+Ck+Cl kα−→ Cn+Cm reduces the concentrations of reactant molecular species
ci;j, ci;k, and ci;l and increases the concentrations of product species ci;m and ci;n at a rate
kα on compartment i. The full dynamics are encoded in a chemical reaction network.
We associate each reaction with a transition rate Tkα,i. For an individual compartment,
the dynamics are described by a chemical Master equation, see Eq. (2.2) in section 2.2.1,
also compare for example with [17]. We formally collect transition rates only affecting
the molecular level as Q, and acknowledge external signals η⃗(t) perturbing the rates of
chemical reactions by writing Qη(t).

On top of stochastic chemical reaction dynamics in each compartment, compartments
can also undertake compartment dynamics, such as fusion, fragmentation, growth, move-
ment and degradation. These compartment processes are formally defined as those which
affect the properties o⃗i of compartments and can be further classified into two distinct
classes. Macroscopic compartment properties, such as shape and movement, can only
be changed by compartment dynamics, resulting in transitions between different states
To⃗i→o⃗′

i
.We summarise these processes formally with operator S.

Compartment processes such as compartment growth and shrinkage, degradation and
synthesis, or compartment fusion and fragmentation, however, affect both the macro-
scopic properties of compartments and the concentrations of molecular species (c⃗i, o⃗i).
For example, compartment growth leads to a decrease in the density of molecular species,
which is reflected in a change in concentrations. Consequently, the growth and shrink-
age of compartments affect the collision rates and thus the reaction rates. Such changes
in reaction rates are consistently taken into consideration when dealing with chemical
reactions by using concentration instead of occupation numbers.

In contrast, when a compartment is degraded, both the compartment itself and its con-
tent are removed from set S. This naturally affects both the compartment properties and
the number of molecular species. The fusion of two compartments with different concen-
trations c⃗i and c⃗j results in a single compartment with an averaged concentration. This
is supported by the assumption of well-mixed conditions, accounting for instantaneous
mixing. In analogous terms, also the synthesis of compartments and the fragmentation of
compartments changes both compartment properties o⃗i and the concentration composi-
tions c⃗i. Summarising all the transitions with respect to both macroscopic compartment
properties and the concentration of molecular species yields the operator R.

Accounting for the stochasticity of compartment dynamics and chemical reactions at
finite numbers, we define the probability of finding the system in a specified state P (S),
which evolves according to a Master equation ∂tP (S) = LP (S). L accounts for transi-
tions either due to chemical reactions or compartment dynamics; it is composed of the
transitions defined in the classes Qη(t), S, and R, and is in symbolic notation:

∂tP (S) =
(
Qη(t) + S +R

)
P (S). (2.20)

We distinguish intra-scale fluxes (Qη(t)P (S),SP (S)) and inter-scale fluxes (RP (S)), as de-
picted in Fig. 2.2. Intra-scale fluxes only affect the dynamics on the specified scale. While
we allow the dependence of inter-scale fluxes on the properties of the compartment on a
different scale2, inter-scale fluxes RP (S) directly set the dynamics on the different spa-
tial scales into an interplay. While we formally defined transitions in R as compartment

2For example, we account for the compartment size by considering concentrations. Vice versa, we could
set also a dependence of the compartment processes in S on the concentration compositions, for
example by linking the concentration to the motility of the compartment.
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reaction kinetics level

compartment level

      fusion,
    fragmentation,
  degradation,
...

stochastic reaction, ...

shape changes, ...(a) (b)

Fig. 2.2.: Illustration of the multi-scale organisation of compartmentalised systems
(a) A schematic illustrates the structure of Eq. (2.20). A list of the detailed form
of the terms of the Master equation is given in appendix A.2. (b) Illustration of an
open compartmentalised system, also illustrating that dynamics happen on different
spatial scales.

dynamics, these transitions not only depend on both compartment properties and the
chemical composition (c⃗i, o⃗i), but directly change the composition of chemical species c⃗i.
An analogy can be drawn to hybrid systems, wherein microscopic dynamics are perturbed
by jump perturbations. In the multi-scale setup, the stochastic reaction dynamics consti-
tute the level of microscopic dynamics which are perturbed by time-discrete compartment
dynamics.

Note, that here we refer to open compartmentalised systems, as we do not impose the
conservation of mass, neither on the level of compartment dynamics nor on the level of the
stochastic reaction kinetics dynamics. This, for example, allows for the continuous binding
and unbinding of molecules to and from a compartment, as illustrated in Fig. 2.2 (b),
where compartments are embedded and in contact with an external reservoir.

For further analysis, we specify how compartment fusion and fragmentation change
the concentrations within each compartment. With regard to compartment fusion, the
copy numbers of the molecular species n⃗i and n⃗j are added together to give n⃗l = n⃗i + n⃗j
and the compartments sizes vl = vi + vj, which induces changes in the concentration
vectors c⃗l = (vic⃗i + vj c⃗j)/(vi + vj). Conversely, for compartment fragmentation, the
number of molecular species is randomly distributed across each daughter compartment.
If the mother compartment is described by (c⃗l, o⃗l), we consider a random splitting into
the two daughter compartments, with vi + vj = vl, (vi, vj < vl), where vi B(vj) is a
random variable based on the initial size vj specified by a break-up distribution B(vj).
Furthermore, each molecular species is subjected to a binomial splitting procedure, with
ni;i = Binom(nl;i, vi/vj), where the success probability is proportional to the size of com-
partment i (p = vi/vj), and nj;i = nl;i − ni;i. The concentration compositions on each
daughter compartment then follow from scalar multiplication with the respective sizes of
the compartments.

While we have only presented a symbolic notation of the dynamics above, a full Master
equation can be directly translated from it. This Master equation, however, is lengthy. We
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detail out the terms in appendix A.2. Note, that this Master equation provides a formal
definition of the system’s dynamics. Its extensive form renders it difficult to inspect and
analyse further, hence, numerical routines for it are necessary. The numerical routines are
elucidated on in appendix B.1. In section 2.4, analytical approximations to the system’s
dynamics are presented in the form of population balance equations.

Concluding on this section, with the model presented in this section, we want to in-
vestigate if compartment dynamics can give rise to emergent degrees of freedom and if
compartment dynamics can qualitatively alter the dynamical behaviour and the response
of the system to external perturbations. To answer this question, we in the further of this
chapter, we will employ a combination of numerical investigates and analytic calculations.

2.4. Effective dynamics of open compartmentalised
systems

In this section, we derive effective equations for the dynamics of open compartmentalised
systems on the basis of population balance equations. We consider compartment fusion
and fragmentation in the context of a flux approximation and explain how the temporal
evolution of our system can be accurately described on an ensemble level. This effective
ensemble description offers physical interpretations, with its analysis revealing the emer-
gence of a collective degree of freedom due to compartment dynamics. The collective
degree of freedom, which resembles a quasi-particle state for the ensemble, will be stud-
ied in following section 2.5. Additionally, we will explore the kinetic properties of this
collective degree of freedom in section 2.7, in order to predict how compartmentalised
stochastic reaction kinetics systems respond to external perturbations.

The description of system dynamics in terms of Master equations facilitates direct imple-
mentation into numerical routines, see appendix B.1, however, the multitude of transition
rates in Eq. (2.20) impedes any analytic treatments of the dynamics. Analytical approx-
imations present the opportunity for an intuitive approach to system dynamics, granting
a qualitative description of the system without the need for large-scale simulations. In
this section, we utilise the population balance equations framework, as introduced in
section 2.2.2, to derive analytical approximations for compartment fusion and fragmenta-
tion in terms of probability fluxes. We effectively integrate out the compartment degrees
of freedom by marginalising over the compartment properties o⃗i and obtain an effective
description of the system at the molecular species level. This approach allows for an intu-
itive understanding of how the dynamics of open compartmentalised stochastic reaction
kinetics systems are impacted by compartment dynamics, with a simple calculation of the
qualitative dynamics of these systems. Note that this subsection is largely technical, with
the purpose of outlining the approximations taken to obtain effective equations for the
dynamics of open compartmentalised systems. Throughout this section, comparisons are
made between analytic approximations and numerical simulations for corroboration and
emphasis is given to the conditions under which approximations must be used cautiously
and require further refinement.

In line with the formalism of population balance equations presented in section 2.2.2,
we consider the continuum limit of an infinite number of compartments and describe the
compartments using a number density distribution function3. Recalling the structure of

3Note, that in this approximation, we make no assumption about the timescale of processes, but con-
tinuous fluxes arise due to the assumption of the continuum limit in the number of compartments.
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population balance equation Eq. (2.9), this yields

∂f

∂t
+∇r · (F⃗rf)−∇r · (Dr∇rf) +∇ζ · (F⃗ζf)−∇ζ · (Dζ∇ζf) = ΣB − ΣD.

We identify the property vector ζ⃗ = (c⃗, o⃗) as the combination of the concentration vector
and the compartment properties. In our analysis, we neglect the spatial evolution of
the system and move to a mean-field description. In the context of organelle-associated
signalling pathways, this approximation is motivated by the rapid movement of organelles
through the cytosol. The spatial translocation of organelles is facilitated by molecular
motors on the cytoskeleton, leading to rapid spatial reorganization and changes in the
neighbourhood of organelles. We assume independence between the chemical composition
and shape of compartments, thus formally marginalising over the compartment shape.
The compartment properties are then completely described by their size, o⃗i ≡ vi.

A key assumption of the subsequent analysis is that the chemical reactions network is
approximated as set of coupled stochastic differential equations, with the stochastic fluxes
described using a Fokker-Planck approximation, as outlined in section 2.2.1. To account
for variations in compartment size, the noise matrix Deff = D/vi is made to depend on
the size of the respective compartment. In particular, the drift and diffusion flux on the
left side of the population balance equation are associated with the chemical reaction
dynamics. This leads to the simplification of the population balance equation to

∂f

∂t
= −∇c(F⃗η(t)f) +∇c

((
∇cDη(t),eff

)⊤
f
)

+ ΣB − ΣD, (2.21)

where the number density distribution function f(c⃗, v, t) defines the frequency to find
compartments with a specified concentration composition c⃗ and size s at time t. The
birth and the death term (ΣB,ΣD) summarise the compartment dynamics.

Compartment degradation and synthesis are, by definition, birth and death terms. In
contrast, compartment growth involves both birth and death terms, as compartments are
formally removed and replaced with compartments containing the same chemical species
n⃗i, but with an altered size. If compartment growth is considered a continuous process, it
can be represented by an additional drift that changes both the concentration and size of
the compartments −∇c,v ·(F⃗growthf), which is elaborated on in more depth in section 2.4.4.
Similarly, fusion and fragmentation also contain coupled birth and death terms. Next, we
approximate the fusion and fragmentation terms by first focusing on a simplified system, in
which compartment dynamics are restricted to fusion and fragmentation, and the reaction
kinetics are reduced to 1-dimensional dynamics with c⃗ = c. Assessing the quality of the
approximation of the fusion and fragmentation flux first in this simplified setting, we
subsequently relax on the assumptions to account for the full complexity of Eq. (2.21).
This approach allows us to keep track of and assess the quality of the approximations we
make.

2.4.1. Flux approximation of compartment fusion
In order to build an intuitive understanding of how fusion and fragmentation affect one-
dimensional ensemble statistics, we simplify the population balance equation in Eq. 2.21
by neglecting compartment dynamics apart from fusion and fragmentation. We denote
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Fig. 2.3.: Graphically illustration of approximation steps made for in the flux ap-
proximation of compartment fusion (a) Schematic that illustrates the relation
between the flux formulation and the structure of a balancing equation. (b) Schematic
that illustrates the double integral using a geometric notion. Colour-coded are the
iso-lines of the product f(c1, t)f(c2, t). The two index sets subtracted against each
other are illustrated. The arc along g(r, θ, c, t) is represented as a grey line. (c)
Schematic of the triangulation approximation in Eq. (2.29).

the rate of compartment fusion by µ and the rate of compartment fragmentation by
φ. To begin, we consider the limit of fast compartment fragmentation, µ/φ ≪ 1. We
set a delta-distributed break-up probability B(v) = δ(v′− 0.5v), such that compartments
always split in equal-sized daughters. In order to prevent compartments from splitting into
infinitesimal dust, we limit the fragmentation kernel with a Heaviside step function Θ(v−
v0), so that only compartments larger than v0 undergo fragmentation. The compartment
dynamics are thus given by compartments that immediately fragment after a fusion event,
such that we effectively find a delta-peaked size distribution p(v, t0) = δ(v0). In this limit,
we neglect the compartment size and assume f(c⃗, v, t) ≡ f(c⃗, t). At the same time,
we still assume that the fused compartment state is preserved sufficiently long to allow
for a complete mixing in the fused compartment state. With these assumptions, we
symbolically write fusion and fragmentation in terms of two compartments as

(c⃗i, c⃗j)
fus. & frag.−−−−−−→ (c⃗l + ξ⃗, c⃗l − ξ⃗), with c⃗l = c⃗i + c⃗j

2 , (2.22)

where c⃗l is the averaged concentration and ξ account for the imperfect splitting. As-
suming a small Gaussian contribution ξ⃗ to be negligible4 in comparison with the noise
induced by chemical binding dynamics, we set it to zero in this subsection and elaborate
on its functional form and strength in section 2.4.3. Note that, however, the statistics
of fragmentation-induced noise plays a pivotal role in close compartmentalised systems,
which we investigate in chapter 4.

Setting the fusion kernel independent of compartment size and composition,

4By construction, the noise induced by imperfect splitting is following a binomial distribution, which
has a variance σ2 = np(1 − p) and vanishes like the chemical reaction noise with 1/

√
n. Assuming

that fusion and fragmentation happens on slower time-scales than chemical reactions renders noise
due to chemical reactions larger than noise induced by imperfect splitting.
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2.4. Effective dynamics of open compartmentalised systems

K(c⃗, c⃗′, v, v′) = µ, we initially focus on one-dimensional systems (c⃗ → c). We will relax
these assumptions in the subsequent analysis. Under this approximation, we find that
the fusion and subsequent fragmentation of compartments follows the Smoluchowski ag-
gregation formalism, with source and sink terms describing the respective jump into and
jump out of a state c by

∂f(c, t)
∂t

= ∂

∂c

(
−F (c, t, η(t))f(c, t) + 1

2
∂

∂c
(D(c, t, η(t))f(c, t))

)

+ µ

2

∫ ∞

0
dc1f(c1, t)

∫ ∞

0
dc2f(c2, t)δ

(1
2(c1 + c2)− c

)
− µf(c, t). (2.23)

By making use of a mean-field approximation, we assumed that the two-point number
density function, f(c1, c2, t) = f(c1, t)f(c2, t), is the product of the one-point number
density functions. Furthermore, we assumed that the processes of creation and removal
of compartments are coupled, as for every two removed due to fragmentation, two new
compartments are created. Therefore, instead of computing the jumps in and out of
points in phase space, we made use of Gauss’ theorem and considered the derivative of
the virtual flux Jfus, as illustrated in Fig. 2.3 (a). This yields

∂f(c, t)
∂t

= ∂

∂c

(
−F (c, t, η(t))f(c, t) + 1

2
∂

∂c
(D(c, t, η(t))f(c, t))

)
− ∂

∂c
Jfus(c), (2.24)

with the fusion flux Jfus(c) defined by

Jfus(c)
µ

= 1
2

∫
dc1

∫
dc2f(c1, t)f(c2, t)Θ((c1 − c)(c− c2))sgn (c′ − c) , (2.25)

where we defined c′ = (c1 + c2)/2. Here, Θ(c) refers to the Heaviside Theta function and
sgn(c) to the sign function. Next, we cast the definition of the Θ(c) and sgn(c) in two
index sets, over which the two-point number density is integrated

I+(c) = {(c1, c2)|c1 < c ∧ c1 + c2

2 > c},

I−(c) = {(c1, c2)|c1 > c ∧ c1 + c2

2 < c},

which yields

Jfus(c)
µ

=
∫
I+(c)

dc1dc2f(c1, t)f(c2, t)−
∫
I−(c)

dc1dc2f(c1, t)f(c2, t). (2.26)

We perform a variable transformation to spherical coordinates

c1 = cos(θ)r + c,

c2 = sin(θ)r + c,

as we express c1 and c2 as functions of radius coordinate r and an angle coordinate θ. In
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2. Theory of collective degrees of freedom in open compartmentalised systems

these coordinates, the fusion flux yields

Jfus(c)
µ

=
∫ 3π/4

π/2
dθ
∫ ∞

0
drrf(cos(θ)r + c, t)f(sin(θ)r + c, t)

− f(− cos(θ)r + c, t)f(− sin(θ)r + c, t). (2.27)

In this formulation, we find symmetries of double integral, as the integral over the radius
vanishes for θ = 3π/4. Conversely, if f(c̃+c, t)2 ≥ f(c̃+2c, t)f(c̃, t), ∀c̃, c ∈ D, the integral
over the radius has the maximal absolute value for θ = π/2 and decreases monotonically in
the range θ ∈ [π/2, 3π/4] by construction; Here D refers to the support of the distribution
f . Note, that this condition is in particular true for f(c) ∝ e−V (c), and V (c) a convex
function. This is illustrated in Fig. 2.3 (b). We next make use of these symmetries, as
we approximate the double integral. To this end, we perform the integral over the angle
before the integral radial coordinate. For brevity of notation, we introduce

g(r, θ, c, t) ≡ f(cos(θ)r + c, t)f(sin(θ)r + c, t)− f(− cos(θ)r + c, t)f(− sin(θ)r + c, t).
(2.28)

For the integral over θ, we linearise the g(r, θ, c, t) in θ for θ ∈ [π/2, 3π/4]. |g(r, θ, c, t)| is
a monotonically decreasing function in θ ∈ [π/2, 3π/4] by construction, if f(m+ x, t)2 ≥
f(m + 2x, t)f(m, t), ∀m,x ∈ D. We approximate the integral over θ ∈ [π/2, 3π/4] by
a triangle, as we linearise |g(r, θ, c, t)| at θ = π/2 and compute the intersection with
h(θ) = 0. This is illustrated in Fig. 2.3 (c). The intersection is approximately given by

∆θ ≈
∣∣∣∣∣ f(c, t)
f ′(c, t)

∣∣∣∣∣ r

r +
∣∣∣ f(c,t)
f ′(c,t)

∣∣∣ , (2.29)

where f ′(c, t) = ∂cf(c, t) refers to the derivative with respect to the concentration. This
approximation for ∆θ renders an approximation for the double integral as

Jfus(c)
µ
≈
∫ ∞

0
dr

1
2∆θg(r, π/2, c, t) = 1

2

∣∣∣∣∣ f(c, t)
f ′(c, t)

∣∣∣∣∣
∫ ∞

0
dr

r

r +
∣∣∣ f(c,t)
f ′(c,t)

∣∣∣g(r, π/2, c, t). (2.30)

We note, that for c a constant, the fraction in the integral over the radius renders a
constant.

Based on this, we next introduce three approximations of the fusion flux, which vary in
their quality in assessing either the fluxes close to the mean of the distribution or in the
tails of the distribution. While in the following we will mostly employ the approximation
assess the fusion flux close to the mean of the distribution, for completeness we also state
the approximation for the fusion flux in the tail of the distribution. We introduce the
short range approximation

Jfus, sr(c)
µ

≈ 1
2

∫ ∞

0
drrg(r, π/2, c, t) = 1

2f(c, t)
∫

D
dc′f(c′, t)(c′ − c), (2.31)

which is especially suited to estimate the flux close to the mean of the distribution f(c),
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2.4. Effective dynamics of open compartmentalised systems

and a long range approximation

Jfus, lr(c)
µ

≈
∣∣∣∣∣ f(c)
f ′(c)

∣∣∣∣∣ 1
2

∫ ∞

0
drg(r, π/2, c, t) = 1

2f(c, t)
∣∣∣∣∣ f(c, t)
f ′(c, t)

∣∣∣∣∣
∫

D
dc′f(c′, t) sgn(c′ − c),

(2.32)

which is especially suited to depict the correct behaviour in the tails of the distribution.
Note, that the fraction |f(c)/f ′(c)| vanishes in the tails of the distribution f(c), if f(c) is
exponentially decaying with f(c) ∝ exp(−c/k) for c→∞. Based on this, we additionally
introduce the stable tail long range approximation

Jfus, stlr(c)
µ

≈ k

2f(c, t)
∫

D
dc′f(c′, t) sgn(c′ − c), (2.33)

which we will show to be in particular useful for the estimation of tails in steady-state dis-
tributions. Note, that k can be determined by self-consistent steady-state solutions. By
comparing the Fokker-Planck equation for a many-body system with two-particle interac-
tion potentials, we note the structural equivalence, see appendix A.3 and [101]. We thus
identify the short-range approximation with an effective two-body interaction potential
wi,j;sr = (ci − cj)2 and the stable tail long-range approximation with wi,j;stlr = |ci − cj|.
Our findings suggest that the combination of compartment fusion and subsequent frag-
mentation act as a steady attractive force in the concentration phase-space between all
compartments. We will further explore the implications of this interpretation in sec-
tion 2.5.2.

In order to simplify the approximations further, we define a normalisation factor N(t) =∫
dcf(c, t). We normalise p(c, t) = f(c, t)/N(t) to a probability distribution, and define

N(t)⟨c(t)⟩ =
∫
dccf(c, t) as the mean of the distribution f(c, t). Furthermore, we define

the cumulative distribution Φ(c, t) =
∫ c

∞ dc′f(c′), and, by performing the integral in the
fusion flux approximations, we find that the short-range approximation describes a steady
attraction towards the mean

Jfus, sr(c) ≈
µ

2Nf(c, t)(⟨c⟩ − c), (2.34)

while the long range approximation describes a steady attraction to the median, as

Jfus, stlr(c) ≈
µk

2 f(c, t)
∣∣∣∣∣ f(c, t)
f ′(c, t)

∣∣∣∣∣N(2Φ(c, t)− 1). (2.35)

The compartments in the tail of the distribution x→∞ are attracted to the centre of the
distribution with different functional dependencies for the long-range and the short-range
approximations. Notably, the functional dependence in the long-range approximation has
a weaker effect on tails that decay slower than exponentially, and a stronger effect on tails
that decay faster than exponentially. Consequently, the fusion fluxes create exponentially
decaying tails in a steady state in the absence of compartment or additional drift terms.
This motivates the introduction of the stable tail long-range approximation in Eq. (2.35).

In the absence of drifts, Fη(t)(c, t) = 0, and constant diffusion, Dη(t)(c, t) = D, the
short-range approximation of the fusion flux and the stable tail long range approximation
admit analytical solutions. We make use of analytical solutions to test the goodness of
the approximations. To this end, we simulate a finite-sized ensemble of Brownian random
walkers, which undergo random averaging events due to fusion and subsequent immediate
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Fig. 2.4.: Corroboration of the fusion flux approximation by full stochastic numer-
ical simulations Numerical simulations are conducted by simulating random walk-
ers in a flat potential with constant diffusion coefficient using over-damped Langevin
equations. Random walkers are initialised at time t = 0 at position c0 = 0. Compart-
ment fusion and subsequent fragmentation is modelled as stochastic, time-discrete
averaging events between two randomly chosen random walkers. µ refers to the rate
of the averaging events. All results are present in simulation units, where τ refers to
the time-discrete updating step. (a) While the random walkers without "compart-
ment fusion and fragmentation" disperse, the random averaging events give rise to
steady state distribution with finite dispersion. (b) Eq. (2.34) and Eq. (2.35) predict
the variance of the steady state in simulation units. Note, that the estimates are
fully defined by the simulation parameters and admit no free fit parameter. Both
approximations correctly predict the functional dependence of the fusion rate µ. Fur-
thermore, the long-range approximations give a good quantitative assessment of the
variance. Errorbars show the standard deviation. (c) The short-range approxima-
tion furthermore captures the shape of the steady state well close to the mean of the
distribution. (d) The stable tail long-range approximation, in contrast, captures the
tail of the distribution with the correct function dependence on c.

fragmentation, as introduced above. With these approximations, the population balance
equation then yields

∂tf(c, t) = ∂c [−Jfus +D∂cf(c, t)] . (2.36)

Without any loss of generality, we normalise
∫∞

−∞ dcf(c) = 1 and initialise the random
walkers at p(c, t0) = δ(c) at the origin. Our analysis predicts that the ensemble statistics

28



2.4. Effective dynamics of open compartmentalised systems

will approach a steady state with finite variance, as opposed to an ensemble of random
walkers in the absence of fusion and fragment. The simulations reveal that the variance
increases linearly with time in the absence of compartment fusion and fragmentation,
whereas the variance reaches a fixed value if compartment fusion and fragmentation are
taken into consideration. The steady-state distribution for the short-range approximation
is

fsr; ss(c) =
√

µ

4πD exp
(
− µ

4Dc
2
)
, (2.37)

which predicts a variance σ2
sr = 2D/µ. The steady-state distribution for the stable tail

long-range approximation is

fstlr; ss(c) =
√

µ

8D
1

cosh
(
x
√

2D
µ

)2 , (2.38)

which predicts a variance σ2
stlr = π2/12·2D/µ. We test our theoretical predictions through

numerical simulations. We consider a finite set of random walkers which undergo pair-
wise averaging events at a rate of µ. Fig. 2.4 (a) shows that, in agreement with our
prediction, the dynamics approach a steady state when averaging is present, i.e. when
compartment fusion and fragmentation occurs. In contrast, the variance in the set of
random walkers without interactions shows the expected diffusive spreading and no steady
state is approached. Fig. 2.4 (b) demonstrates that we correctly predict the variance of
the steady state distribution as a function of the fusion rates. Note that our prediction
admits no free fit parameters. Fig. 2.4 (c,d) show that we correctly predict the shape
of the distribution f(c, t). The short-range approximation correctly describes the shape
close to the mean of the distribution, while the long-range stable tail approximation is
well-suited to assess the tail of the distribution.

2.4.2. Generalisations on the flux approximation of compartment
fusion

In the preceding section, we considered approximations of the fusion flux in order to
capture compartment fusion and the subsequent fragmentation. We focused on one-
dimensional systems, constant fusion kernels and a delta-peaks size distribution. Here,
we relax on these assumptions.

2.4.2.1. Accounting for general fusion kernels

We can straightforwardly relax the assumption of a constant fusion kernel, allowing for
arbitrary kernels dependent on the concentrations K(c, c′, t). To this end, we draw
K(c, c, t) initially into the double integral of the fusion flux and redefine g̃(r, θ, c, t) =
K(c, c, t)g(r, θ, c, t) in Eq. (2.28). However, arbitrary fusion fluxes potentially break the
symmetries of the double integral which were exploited in the approximation. For fu-
sion kernels of the form K(c, c′, t) = κ(c, t)κ(c′, t), with κ(c, t) an algebraic function, the
approximations still hold and the short range approximation yields

Jfus, sr(c) ≈
1
2f(c, t)κ(c, t)

∫
D
dxf(x, t)κ(x, t)(x− c). (2.39)
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2.4.2.2. Accounting for finite fragmentation rates

As we assume a fast fragmentation rate (φ ≫ µ), we account for compartments of vary-
ing sizes. Additionally, we relax the assumption on the break-up probability defining the
position where fragmentation is happening. Specifically, we assume that the break-up
probability is uniformly distributed over the compartment volume. This requires refine-
ment of the fusion flux integral in Eq. (2.23) by taking into account the number density
f(c, v, t), adjusting the averaging by rescaling the variable x′ accordingly, and tracking
the masses that move across position c:

J̃fus(c, v1, v2)
µ

=
∫
dc1

∫
dc2 v1

[
f(c1, v1, t)f(c2, v2, t)Θ((c− c1) (c′ − c))sgn(c′ − c)

]
,

(2.40)

with c′ = (v1c1 + v2c2)/(v1 + v2). Here, we kept the compartment masses v1 and v2 fixed.
The full fusion flux is then computed by integrating over the masses as

Jfus(c) =
∫
dv1

∫
dv2 J̃fus(c, v1, v2). (2.41)

Here, the subscript ’v’ refers to size, to distinguish this fusion flux approximation from the
approximation made in section 2.4.1. Accounting for different masses directly translates
into the two index sets

I+(c, v1, v2) = {(c1, c2)|c1 < c ∧ c1v1 + c2v2

v1 + v2
> c},

I−(c, v1, v2) = {(c1, c2)|c1 > c ∧ c1v1 + c2v2

v1 + v2
< c},

which yields

J̃fus(c)
µ

=
∫
I+
dc1dc2 v1f(c1, v1, t)f(c2, v2, t)−

∫
I−
dc1dc2 v1f(c1, v1, t)f(c2, v2, t). (2.42)

We thus find, that the approximation of the fusion flux accounting for different masses
follows the analogous structure as presented in section 2.4.1, if the two compartment
masses v1 and v2 are considered fixed. When converting to polar coordinates, we find
the analogous equation Eq. (2.27) with the integration boundary of the integral over the
angle varied to θ ∈ [π/2, π/2 + α], where the upper boundary is determined by α =
arctan(v2/v1). Analogous to the triangle approximation in section 2.4.1, we approximate
that both fractions v2/v1 > 1 and v2/v1 < 1 effectively reduce the value of the integral. In
the picture of the triangle, for v2/v1 < 1, we find that the upper boundary π/2+α < 3π/4.
In this case, the triangle is not integrated over the full baseline. Conversely, for v2/v1 > 1
the integration includes negative values. We approximate each integral Iθ(r, θ, c, v1, v2, t)
by

Iθ(r, θ, c, v1, v2, t) ≈Iθ(r, π/4, c, v1, v2, t)
(

1−
(

arctan
(
v2

v1

) 4
π
n− 1

)2)
= Iθ(r, π/4, c, v1, v2, t)Λ(v1, v2) (2.43)
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which describes an adjustment of the triangle area by the fraction of the reduced or ex-
tended baseline. With this, the approximation of the fusion flux shows the same structure
as in Eq. (2.30),

Jfus, v(c)
µ

≈
∫
dv1

∫
dv2 v1Λ(v1, v2)

1
2

∣∣∣∣∣ f(c, v2, t)
f ′(c, v2, t)

∣∣∣∣∣
∫ ∞

0
dr

r

r +
∣∣∣ f(c,v2,t)
f ′(c,v2,t)

∣∣∣g(r, π/2, c, v1, v2, t).

(2.44)

While this approximation show the same functional form as in the case of compartments of
the same size, the above equation is analytically difficult to capture if the joint distribution
f(c, v1, t) of mass and concentration is considered. In the next step, we further simplify
this expression by marginalising over the different compartment sizes.

2.4.2.3. Marginalising over compartment sizes

To allow for an analytic treatment of Eq. (2.44), we further approximate Jfus,v(c)
µ

by
marginalising over the different compartment sizes. To this end, we employ a mean-
field approximation, approximating f(c, v, t) = f(c, t)m(v, t). We assume compartment
fusion to be independent of the compartment sizes and the fragmentation rate to be pro-
portional to the size of the splitting compartment, as introduced in section 2.2.3. The
distribution f(c, t) thus describes the mass density, that is the number of compartments
with concentration c at time t in units of multiples of compartment building block mass.
Under these assumptions, the size distribution m(v, t) is approximately given by an expo-
nential distribution m(v, t) ∝ a2e−a(t)v, where a2 adjust for measuring the m(v, t) in terms
of multiples of the building blocks. With these assumptions, the fusion flux approximates
to

Jfus, mv(c)
µ

≈ a

3

∣∣∣∣∣ f(c, t)
f ′(c, t)

∣∣∣∣∣
∫ ∞

0
dr

r

r +
∣∣∣ f(c,t)
f ′(c,t)

∣∣∣g(r, π/2, c, t). (2.45)

Here the subscript ‘mv’ indicates the marginalisation over the compartment size. We find
that the fusion flux marginalised over different compartment sizes is proportional to the
fusion flux in the approximation of singular compartment size Jfus, mv(c) ∝ Jfus(c) and
rescaled only by a numerical factor γ(⟨v⟩) which is a function of the average mass.

To consistently account for the marginalisation of the number density f(c, v, t) →
f(c, t) =

∫
dvf(c, v, t) in the population balance equation in Eq. (2.55), it is necessary

to also marginalise the other terms. The drift term can be drawn out of the integral,
whereas the diffusion Dη(t)(c, v) has a size dependence of Dη(t)(c, v) = Dη(t)(c)/v. Tak-
ing advantage of the same size distribution as for the marginalisation of the fusion flux,
m(v, t) ∝ a2 exp [−a(t)v], and assuming a mean-field approximation, we obtain

Dη(t),eff(c) =
∫
dv m(v, t)Dη(t)(c)

v
≈
Dη(t)(c)
⟨v⟩

. (2.46)

Furthermore, the birth and death terms in Eq. (2.55), which take into account compart-
ment degradation, synthesis and growth, must be marginalised under the same assumption
in order to obtain a self-consistent approximation of the population balance equation.

We tested the approximations of marginalising over different sizes using the same model
considered in section 2.4.1 and Fig. 2.4. This model featured an absence of a drift term, a
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Fig. 2.5.: Corroboration of the fusion flux approximation accounting for the
marginalisation over compartment sizes Simulations are analogous to Fig. 2.4,
but additional finite fragmentation rates φ < ∞ are assumed, results in compart-
ments with various sizes. While the enclosed dynamics are modelled by Langevin
Equations, the compartment dynamics simulated as full stochastic processes, also
compare with appendix B.1. All results are present in simulation units, where τ refers
to the time-discrete updating step. (a) Considering the normalised mass density dis-
tribution function f(c, t)/

∫
f(c, t)dc, Eq. (2.34) and Eq. (2.35) still give qualitative

good estimates of the steady-state distribution. (b) Based on our analysis, we predict
the variance of the steady state to be independent of the average compartment size
⟨v⟩. Errorbars show the standard deviation. We verify this prediction with numeri-
cal simulations. Compartment size is evaluated in multiples of the compartment unit
size.

constant diffusion coefficient D(c) = D, a constant fusion kernel K(c′, c, v′, v, t) = µ, and
finite fragmentation rates ϕ <∞. We rescaled the diffusion coefficient to D(c, v, t) = D/v
and predicted an effective diffusion constant that scales inversely with the average system
size, i.e. Deff ∝ 1/⟨v⟩. Additionally, we defined an effective fusion rate which summarised
all the prefactors in front of the approximation of the fusion integral and found a recip-
rocal scaling µeff ∝ 1/⟨v⟩. Therefore, we predicted that the distribution f(c, v, t) should
remain fixed as the fragmentation rate φ was varied. As expected, our results demon-
strated that the short-range approximation and the stable-tail long-ranged approximation
in Eq. (2.34,2.35) accurately approximated the marginalised number density f(c, t), see
Fig. 2.5 (a). Furthermore, in line with our prediction, the variance remained approxi-
mately constant, see Fig. 2.5 (b).

The results of the marginalisation presented in this section rely upon the assumption
of a size distribution. Should other compartment fusion and fragmentation dynamics be
considered, the approximations made in the context of the marginalisation need to be
reviewed and adjusted accordingly. The approximation holds well in the model studied
in Fig. 2.5, however, additional processes which introduce a correlation between the con-
centration and the size distribution reduce the efficacy of the mean-field approximation.
This is especially true when fusion kernels with an explicit concentration dependence are
taken into account, in which case the size marginalisation should be applied with caution.
Thus far, we have only focused on effective one-dimensional models. In the next stage,
we will generalise the approximation to include d > 1 dimensional dynamics.
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2.4.2.4. Accounting for multi-variate concentration vectors

The approximation of the fusion flux in section 2.4.1, Eq. (2.34), relied on the assump-
tion of a 1-dimensional dynamics in the concentration c. We note, that the fusion of
two compartments creates the virtual displacement of compartment masses along a 1-
dimensional line in the concentration phase space. We used in the approximation of the
double integral, that this agrees with the dimension of the phase space for 1-dimensional
dynamics.

We note, that also in higher dimensional dynamics the fusion of two compartments
creates a virtual displacement along a one-dimensional line. To approximate the fusion
flux at a specified point J⃗fus(c⃗∗) in the concentration phase space, we hence need to account
for mass displacements due compartment fusion across c⃗∗⊤ in all possible directions. To
this end, we consider a parametrisation of a d-dimensional concentration phase space in
spherical coordinates, making use of a radial coordinate r and d − 1 angle coordinates
ϕ1, ..., ϕd−1, where r ∈ [0,∞), ϕ1, ..., ϕd−2 ∈ [0, π], and ϕd−1 ∈ [0, 2π), as

c1 = c∗
1 + r cos(ϕ1)

c2 = c∗
2 + r sin(ϕ1) cos(ϕ2)

...

cd−1 = c∗
d−1 + r sin(ϕ1) · · · cos(ϕd−1)

cd = c∗
d + r sin(ϕ1) · · · sin(ϕd−1).

We define a line in the multi-dimensional phase space, by fixing all angle variables
ϕ1, ..., ϕd−1 and allowing the radial coordinate to assume values in r ∈ (−∞,∞), as
l⃗(r, ϕ1, ..., ϕd−1). For the brevity of notation, we collect the angle variables in a vector
α⃗ = (ϕ1, ..., ϕd−1)⊤, and write l⃗α⃗(r). For every line, we define a unit vector e⃗α, which
points in the same direction as the line l⃗α⃗(r). Along every line l⃗α⃗(r), the virtual dis-
placement of compartments attribute to the total flux J⃗fus(c⃗∗). To account for this, we
define the fusion flux along a specified line as J⃗fus,α⃗(c⃗∗). Note, that the fusion flux along
the one-dimensional line can be approximated by Eq. (2.34). Instead of varying the co-
ordinated one-dimensional concentration c, here the radial coordinate r is varied, while
the angle variables a⃗ are considered fixed. By construction the flux decomposes into
J⃗fus,α⃗(c⃗∗) = Jfus,α⃗(c⃗∗) · e⃗α. The total flux is recovered by

J⃗fus(c⃗∗) =
∫
dα⃗ Jfus,α⃗(c⃗∗) · e⃗α, (2.47)

where all angles are integrated over the range ϕi ∈ [0, π] to cover the full phase space.
The definition in Eq. (2.47) correctly accounts for correlations in the different molecular

species in the concentration vector c⃗, yet it does not admit further analytical treatment.
We next approximate Eq. (2.47), by setting a mean-field approximation on the concen-
trations, such that f(c⃗, v, t) = ∏d

j fj(cj, v, t). In consistency with this approximation,
we set the formal independence of averaging events due to compartment fusion. In this
approximation, the fusion flux factorises, such that each component is

J⃗fus,i(c⃗∗) ≈ µ
1

3⟨v⟩

∣∣∣∣∣ f(c⃗∗, t)
f ′(c⃗∗, t)

∣∣∣∣∣
∫ ∞

0
dr

r

r +
∣∣∣ f(c⃗∗,t)
f ′(c⃗∗,t)

∣∣∣gi(r, π/2, c∗
i , t)

∏
j ̸=i

fj(c∗
j , t)

 (2.48)
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in analogy to Eq. (2.30), and gi(r, π/2, c⃗∗
i , t) constructed with the single component number

density fi(ci, t). Here, we made use of the marginalisation of different compartment
sizes introduced in section 2.4.2.3. Note, that this in particular allows for the simple
generalisation of the short-range approximation of the fusion flux in Eq. (2.34), which
yields

J⃗fus, sr(c⃗) ≈ −
µ

3⟨v⟩f(c⃗, t)∇c

∫
D
dx⃗ f(x⃗, t) (x⃗− c⃗)2 , (2.49)

and the stable tail long range approximation in Eq. (2.35) yields

J⃗fus, stlr(c⃗) ≈ −
µ

3⟨v⟩f(c⃗, t)∇c

∫
D
dx⃗ f(x⃗, t)

(
k⃗ · |x⃗− c⃗|

)
, (2.50)

where |x⃗| refers to the vector of absolute values and k⃗ specifies the exponential decay in
the different dimensions. Specifically, the short-range approximation is a straightforward
generalisation of the one-dimensional fusion flux approximation as the d-dimensional mean
is considered. Note, that the generalisation of the long-range approximation formally
defines a generalisation of the d-dimensional median.

With this, we have generalised the approximation of the fusion flux to include multi-
dimensional dynamics as we consider the multi-dimensional number density distribution
f(c⃗, v, t), general compartment fusion kernel K(c, c′, v, v′, t), and finite fragmentation rates
φ < ∞, which implies compartments of varies size over which we marginalised. In the
next section 2.4.3, briefly turn to fluxes induced by compartment fragmentation and com-
partment growth and shrinkage. After this, we summarise the technical steps we followed
to derive effective ensemble dynamics to grant an overview about the approximations
made in this section 2.4. We interpret the consequence of the effective ensemble dynamics
in the context of compartmentalised stochastic reaction kinetics systems in section 2.5.

2.4.3. Flux approximation of compartment fragmentation
In the previous section, we focused on a flux approximation for compartment fusion.
Compartment fusion constitutes an averaging process between two compartments. In
this section, we study compartment fragmentation, which we link to a binomial splitting
process, as introduced in section 2.4.1. As such, compartment fragmentation increases
differences between compartments and we link compartment fragmentation with a noise
contribution. In Eq. (2.22), we have introduced the notation ξ⃗frag to refer to the noise due
to compartment fragmentation. Next, we first discuss the strength of this noise component
and then investigate how this can be incorporated into a flux approximation.

Starting on the discussion of the strength of the noise component, we first note that frag-
mentation noise is proportional to the rate of compartment fragmentation. Further note,
that for compartment size distributions in steady state, the rate of compartment fusion
and fragmentation coincide. For this reason, we set ξ⃗frag ∝ µ. Furthermore, the definition
of compartment fragmentation as a binomial splitting process sets the full statistics of the
fragmentation noise. Let bi(n, p) ∼ Binom.(ni, p) refer to a set of independent binomial
random variables with parameter ni and success probability p. The fragmentation noise
is then given by ξ⃗frag = µ⃗b(n⃗, p), where n⃗ is the number of copy numbers, as n⃗ = c⃗s. We
approximate the binomial splitting noise with a Gaussian random variable, which allows
for further analytic treatment. To this end, we assess the variance of the binomial noise
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vector. We find

σ⃗2
c⃗ ≈

(
π

8

)2 c⃗

⟨v⟩
, (2.51)

where we already transformed to a notation in terms of concentration marginalised over
different compartment sizes. For this result, we assumed a uniform splitting probability.
By construction, the mean of the fragmentation noise is ⟨χ⃗frag⟩ = 0. Furthermore, we as-
sume that noise is temporally uncorrelated. With this, we have fully defined the statistics
of the Gaussian noise vector.

We note, that the noise vector has a square root dependence on the concentration, and
thus is multiplicative noise. As such, we here take the Itô-convention and associate with
compartment fragmentation a diffusion flux

J⃗frag ≈ −
µ

⟨v⟩
π

8 (∇cc⃗)f(c⃗, t)e⃗i, (2.52)

where ei are the orthonormal basis vectors. We find, that the fragmentation flux ap-
proximations has the same functional form as the diffusion flux in the enclosed stochastic
reaction kinetics. Yet, as we generally assume that the compartment dynamics happen
on a longer timescale than the enclosed reaction kinetics, we assume that for open com-
partmentalised systems, the diffusion term of the enclosed stochastic reaction kinetics is
dominating. We next turn to derive a flux approximation for compartment growth and
shrinkage.

2.4.4. Flux approximation of compartment growth and shrinkage
Similar to the approach of expressing compartment fusion and fragmentation as fluxes in
the phase space rather than through a formulation of birth and death terms, we note that
compartment growth and shrinkage can also be seen as a displacement of compartments
in the phase space rather than a removal and subsequent addition. While compartment
fusion and fragmentation are mass-conserving processes, this is not true for compartment
growth and shrinkage. Therefore, we need to take into account the changes in com-
partment mass when deriving the compartment growth and shrinkage fluxes. Generally
speaking, compartment growth and shrinkage can be defined as:

d

dt
vi = Gi(c⃗i, vi, t). (2.53)

Where we specified on compartment i. In the following, we drop the index i as we assume
that the dynamics governing compartment growth and shrinkage are identical for all
compartments. For deterministic, time-continuous function G(c⃗, v, t), and accounting for
the definition c⃗ = n⃗/s, where n⃗ is the copy number of molecular species unaffected by
compartment size, we can directly deduce:

−∇J⃗g ≈ +∇c c⃗
G(c⃗, v, t)

v
f(c⃗, v, t)− ∂vG(c⃗, v, t)f(c⃗, v, t). (2.54)

Note that by definition, the fluxes due to growth and shrinkage in generally admit no
simple marginalisation over the sizes due to the dependence of the growth rate on both
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size and compartment concentration G(c⃗, v, t).

2.4.5. Effective ensemble dynamics and their limitations
In sections 2.4.1 and 2.4.3 we investigated the approximation of the effects of compartment
fusion and fragmentation in the context of the population balance equation presented in
the beginning of section 2.4. In this section, we summarise the central approximations
in the derivation of the effective ensemble dynamics again, to grant a comprehensive
overview and allow us to assess situations in which the approximations break down.

We started this section 2.4 by approximating the dynamics of compartmentalised stochas-
tic reaction kinetics systems within the framework of population balance equations, as
seen in Eq. (2.21). In doing so, we have assumed a continuum approximation in the num-
ber of compartments, considering the continuous number density distribution function
f(c⃗, o⃗, t). This framework allows us to decompose the chemical reaction dynamics of the
signalling pathway and the effects of compartment dynamics into distinct components. We
have further assumed that the spatial position of compartments and their shape have no
influence on the chemical reaction kinetics of the signalling pathways, marginalising over
the compartment properties o⃗ and only accounting for the different sizes of compartments
through the number density distribution f(c⃗, v, t).

Making use of system size expansion on the level of the chemical reaction kinetics, we
derived drift and diffusion fluxes in the concentration phase space, see section 2.2.1. We
then applied a mean-field approximation, assuming a well-mixed system for the reaction
kinetics in each compartment. This enabled us to make a continuum approximation in the
concentration c⃗. The compartment dynamics were expressed by birth and death terms,
which account for, for example, degradation and synthesis, or fusion and fragmentation
of compartments. We left these terms unspecified to account for general compartment
dynamics. We noted that compartment growth and shrinkage, as well as fusion and frag-
mentation, are processes where compartment masses are displaced in the property phase
space (c⃗, v), as compartments are removed from the number density distribution function
f(c⃗, v, t) and subsequently compartments with changed properties are added. In the con-
tinuum limit of f(c⃗, v, t), this leads to continuous virtual displacement fluxes. Notably,
the continuous fluxes formally arise from the continuum approximation in the number
of compartments without making any assumptions on the timescale of the compartment
dynamics.

In section 2.4.1, we derived an approximation for the fluxes induced by compartment
fusion and fragmentation. In particular, the approximation of the fusion flux incorporated
several approximations. To ensure clarity of the argument, we first derived the flux in a
highly simplified model context, assuming one-dimensional dynamics in the concentration
c, constant fusion kernels K(c, c′, v, v′, t) = µ, and the limit of fast compartment fragmen-
tation rates φ→∞, where all compartments effectively have the same size. Additionally,
we assumed that the concentrations of fused compartments mix instantaneously, which
is consistent with the assumption of well-mixed conditions for the chemical reaction ki-
netics. In these limits, a geometrical interpretation of the fusion flux can be given by
assuming a mean-field approximation in which the two-point distribution f(c, c′, t) of two
compartments with concentration c and c′, factorises to f(c, t)f(c′, t). This resulted in
two approximations, referred to as the short range approximation (Eq. (2.34)) and the
stable tail long range approximation (Eq. (2.35)). The former is especially suited for cal-
culating the fusion flux close to the mode of the distribution f(c, t), while the latter is
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more appropriate for the tails of the distribution f(c, t). Furthermore, the geometrical
interpretation enables us to assess the accuracy of the approximations and identify the
conditions under which they are likely to fail. In particular, it can be observed that the
approximation of the fusion flux is valid for distributions f(c, v, t) with exponential tails,
although caution should be exercised when dealing with distributions with algebraic tails.

We corroborated the approximations of the fusion flux by numerical simulations, yield-
ing good qualitative and quantitative agreement when considering stochastic, time-discrete
compartment fusion and fragmentation dynamics, see Fig. 2.4. Importantly, we derived
estimates for the distribution f(c, t) with no free parameters. Building upon the in-
sight gained from the approximation of the fusion flux in this limit, we demonstrated
how to directly account for concentration-dependent fusion kernels. Next, we relaxed the
assumption of infinitely fast fragmentation rates φ < ∞, thereby allowing for various
compartment sizes.

By making a mean-field approximation, wherein f(c, v, t) = f(c, t)m(v, t) is factorised,
we presented an approximation of the marginalisation of the fusion flux approximation
across different compartment sizes. Assuming a particular compartment size distribution
m(v, t) for this approximation, the marginalisation yielded the functional form of the
fusion flux approximations found in the limit of fast fragmentation rates, φ → ∞. In
this approximation, the various compartment sizes had a numeric prefactor in front of
the integral fusion flux approximation, which was dependent on the average compartment
size. Furthermore, to be consistent in the description, we also introduced an approxima-
tion for the marginalisation of the diffusion flux of the chemical reaction dynamics. We
compared our analytical prediction with numerical simulations of finite-sized compart-
ment ensembles with stochastic, time-discrete compartment fusion and fragmentation
dynamics, finding good qualitative and quantitative agreement between our theoretical
predictions and the numerical results, see Fig. 2.5. Note, that also other terms of the com-
partment dynamics in the population balance equation Eq. (2.21) need to be consistently
marginalised, e.g. growth terms or degradations terms.

In the last step, we generalised the fusion flux to d-dimensional dynamics in the concen-
tration phase space. We derived a formal approximation of the fusion flux, accounting for
the correlations among molecular species in the concentration vector c⃗i. This was done
by making use of the one-dimensional fusion integrals and integrating over the phase
space dimensionality for each point. Whilst this formal definition is complex, we derived
a mean-field approximation, by factorising f(c⃗, v, t) = ∏d

j fj(cj, v, t). This approxima-
tion provides a straightforward generalisation of the physical insight that we gained on
the one-dimensional system in Eq. (2.34,2.35). In section 2.4.4, we demonstrated how
compartment growth and shrinkage can be represented as fluxes in the context of the
population balance equation.

Summarising our findings, we find size marginalised effective ensemble dynamics

∂f

∂t
=−∇c(F⃗η(t)f) +∇c

((
∇cDeff,η(t)

)⊤
f
)
−∇cJ⃗fus, eff[f ]

−∇cJ⃗frag, eff[f ] + Σ̃B[f ]− Σ̃D[f ], (2.55)

where Σ̃B and Σ̃D refer to the size-marginalised contributions of further compartment
dynamics like compartment degradation or synthesis, on which we have not specified.
Note, that here have formally included the growth and shrinkage fluxes in the birth
and death terms for brevity of notation. In the following, we will especially focus on
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an approximation of the fusion flux, which we termed short-range approximation and a
fragmentation flux approximation according to the Eq. (2.34,2.35),

J⃗fus, eff[f ] ≈ − µ

3⟨v⟩f(c⃗, t)∇c

∫
D
dx⃗ f(x⃗, t) (x⃗− c⃗)2 ,

J⃗frag, eff[f ] ≈ − µ

⟨v⟩
π

8 (∇cc⃗)f(c⃗, t)e⃗i

(2.56a)

(2.56b)

Here, we assume a compartment size marginalisation constant and compartment fusion
kernels proportional to the compartment size, as well as fragmentation rates proportional
to the compartment size. Furthermore, we employ a mean-field approximation on the
level of molecular species, factorising f (⃗(c), t) = ∏

j fj(cj, t). These effective ensemble
equations permit us to assess how the compartment dynamics influence the kinetics of
the reaction network.

2.5. Emergence of a single, collective degree of freedom
In section 2.4, we derived effective ensemble dynamics that allow us to directly assess
how compartment dynamics affect the dynamics of compartmentalised stochastic reac-
tion kinetics systems. In this section, we will qualitatively discuss the effects of different
compartment dynamics on the kinetics of compartmentalised stochastic systems in the
context of Eq. 2.55. We will start by discussing the qualitative effects of different com-
partment dynamics in section 2.5.1, and then focus on the effects of compartment fusion,
which we find to be qualitatively different from other compartment dynamics in sec-
tion 2.5.2. We will specifically discuss how compartment fusion and fragmentation give
rise to a quasi-particle-like, collective degree of freedom, which allows for an intuitive
approach to the kinetics of organelle-associated signalling pathways.

2.5.1. Qualitative effects of compartment dynamics
In order to assess the effects of different compartment dynamics qualitatively, we begin
by discussing the dynamics in the absence of compartment dynamics. The chemical
reaction kinetics on each compartment are described by the changes in the molecular
species c⃗ of the compartmentalised stochastic reaction kinetics system. As introduced
in section 2.4, on each compartment, we observe a stochastic trajectory that depicts
the change in the concentration of different molecular species as specified by a chemical
reaction network. In the approximation of chemical Langevin equations, the changes
in the trajectory are split into two qualitative contributions: the drift term describes
deterministic changes in the concentration vector c⃗, and the diffusion term accounts for
the intrinsic stochasticity of chemical reactions at small concentrations and deviations
from the deterministic trajectory. Having provided a description for the dynamics on each
compartment, we can now make a conceptual shift and consider an ensemble description.

As we consider an ensemble of several compartments, there are variations in the concen-
tration vector c⃗i due to the stochastic noise. To describe this ensemble, we use a number
density distribution function f(c⃗, t), which estimates the amount of compartment mass
with a specified concentration c⃗ at time t. The temporal changes in the number density
are described by a population balance equation, see Eq. (2.21) and Eq. (2.55). This noise
causes the distribution f(c⃗, t) to spread over the concentration phase space, the details of
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which are determined by the interplay of the drift and the diffusion flux. As the variance
among the compartments increases, the dynamics are said to explore the concentration
phase space. The collective configuration of the compartments as an ensemble gives the
state of the system S, so a full knowledge of the distribution function f(c⃗, t) is formally
needed to assess this state. In practice, when for example considering this model in the
context of organelle-associated signalling pathways, statistics of the distribution are often
considered, such as the mean, moments, mode, or quantiles, which still formally require
the full estimation of the distribution f(c⃗, t). Compartment dynamics may directly alter
f(c⃗, t) and, by extension, the dynamics of the stochastic reaction kinetics. We thus discuss
next the qualitative effect of different compartment dynamics.

As derived in Eq. 2.22, the fragmentation of compartments creates a binomial splitting
in every molecular species, thereby increasing the variance in the distribution f(c⃗, t) by
construction. We approximate the effects of compartment fragmentation by adding an
additional diffusion flux. Specifically, in a description where we have marginalised over
compartment sizes, we interpret the effects of compartment fragmentation as a correc-
tion to the diffusion flux of the chemical reaction dynamics. We thus assess that the
fragmentation flux yields no qualitatively different dynamics.

For compartment growth and shrinkage, we have derived a flux approximation that
depends on the specific growth and shrinkage dynamics in section 2.4.4. Notably, the
approximated flux has a deterministic character. Similar to the deterministic drift flux of
the chemical reaction kinetics, the growth flux is fully defined at the level of individual
compartments. We interpret fluxes due to the growth and shrinkage of compartments as
corrections to the drift flux of the chemical reaction kinetics. Also, we assess that these
compartment dynamics result in no qualitatively different dynamics.

Degradation and synthesis terms cannot be expressed within the framework of fluxes as
they are, by definition, birth and death terms. Note that by controlling source and sink
terms, the distribution f(c⃗, t) can be remodelled into any arbitrary shape. However, if the
distribution f(c⃗, t) is effectively determined by the fine-tuning of birth and death terms,
the dynamics of the system are dictated by the regulation of synthesis and degradation
of compartments, and the chemical reaction kinetics would only have marginal effects.
If the degradation and synthesis terms are found to dominate the dynamics, the model
assumptions should be carefully reconsidered. It is also worth noting that some specific
synthesis and degradation dynamics can be effectively modelled as boundary conditions of
the population balance equation: for example, the degradation of compartments upon the
accumulation of a critical amount of molecular species c⃗∗ can be treated as an absorbing
boundary condition. Here, we are in particular interested in homeostatic conditions,
where we have no explicit coupling between the characteristics of a compartment and its
synthesis or degradation. In this case, the synthesis and degradation yield no qualitative
effects on the dynamics of the system.

Compartment fusion affects the dynamics of the compartmentalised stochastic reaction
kinetics systems in a qualitatively different way. In section 2.4.1, we derived an approx-
imation of the fusion flux, which we termed the short range approximation of the fusion
flux, and which has the form of an effective two-body interaction potential, compare also
with appendix A.3. Identifying the fusion flux with a two-body interaction potential
allows us to interpret the effects of the fusion flux by drawing analogies to other phys-
ical systems. Furthermore, we can directly assess a qualitative difference between the
fusion flux and the drift flux due to the chemical reaction kinetics: while the drift flux
is determined by the molecular species of the chemical reactions in a specific compart-
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ment, the fusion flux depends on the full distribution f(c⃗, t), and therefore on the state of
the signalling pathway. Next, we will expand on the discussion of how the combination
of compartment fusion and fragmentation affect the dynamics of the compartmentalised
stochastic reaction kinetics systems qualitatively.

2.5.2. Compartment fusion and fragmentation give rise to a
collective degree of freedom

The effects of compartment fusion are qualitatively distinct to the other compartment dy-
namics, as this is a genuine two-body interaction. While the other compartment dynamics
can be effectively reduced to effects on individual compartments, a two-body interaction
adds qualitatively different dynamics to the compartmentalised stochastic reaction kinet-
ics system. The fusion of compartments sets individual compartments into contact with
the other compartments in the considered system. By this, we break the assumption of
statistical independence of the compartments as correlations among the different compart-
ments are established. Yet, importantly, in the absence of compartment fragmentation,
compartment fusion results in the creation of a single, big, fully-fused compartment.

For a fully-fused compartment system, we assume that the diffusion term is effectively
suppressed as s≫ 1. The kinetics of the fully-fused system can be described by a single
degree of freedom, which we interpret as point particle moving in the drift field F⃗ (c⃗, t). In
contrast, for an ensemble of fragmented compartments without fusion and fragmentation
dynamics, the individual compartments explore the concentration phase space. In this
case, dynamics of the ensemble distribution f(c⃗, t) cannot be described by a small number
of ensemble characteristics.

Qualitatively different dynamics arise when both compartment fusion and fragmenta-
tion are considered; this was presented in section 2.4.1, where the combined effects of
fusion and fragmentation were investigated. We find that the fusion and fragmentation
of compartments give rise to a steady attraction of individual compartments to the cen-
tre of the distribution f(c⃗, t). The centre of the distribution, in particular, refers to the
mean of the distribution, if the short-range approximation in Eq. (2.56) is considered.
This steady attraction counteracts the dispersion in the distribution, which is caused by
the diffusive flux and stochasticity in the chemical reaction kinetics. Although diffusivity
gives rise to an effective exploration of the concentration phase space as time progresses,
this exploration is counteracted by compartment fusion and fragmentation, which localise
the ensemble in the concentration phase space. These effects are illustrated in Fig. 2.6,
but also Fig. 2.4 and Fig. 2.5. The interplay between dispersive dynamics due to reaction
stochasticity and compartment fusion and fragmentation gives rise to an effectively fixed
ensemble variance. Notably, the localised ensemble moves collectively with approximated
fixed shape through the concentration phase space, see an illustration in Fig. 2.7.

We recognise that equations analogous to Eq. (2.55) in the absence of birth and death
terms, and using the approximation of the fusion flux with Eq. (2.56), have been con-
sidered in the literature under the name of McKean-Vlasov Equations [102–106]. These
equations have been particularly studied in the context of collective dynamics of stochas-
tic many-body physics, for example, to describe collective excitations in nuclei plasmas
[102, 107, 107–109], notice here also the relation to the Vlasov-Fokker-Planck equation.
The linkage to these physical systems is mainly due to the interpretation of compart-
ment fusion and fragmentation giving rise to an effective two-body interaction potential,
compare also with [101]. We will now further illustrate this connection by providing an
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Fig. 2.6.: Compartment fusion and fragmentation gives rise to a localised distri-
bution, which resembles a quasi-particle (a) For visualisation, 1-dimensional
dynamics in c are considered, which admit the express the dynamics as gradient
dynamics. Compartments are represented by red, particle-like dots. Dynamics are
dictated by an effective multi-welled potential. In the absence of compartment fusion
and fragmentation, the compartments stochastically hop between wells. Compart-
ment fusion and fragmentation qualitatively deform the potential, as they give rise
to an effective attraction to the mean. (b) The same dynamics as in (a) are pre-
sented, but here in terms of the mass density function f(c, t). While the distribution
is Boltzmann-like for the system with no compartment fusion and fragmentation, the
self-attraction between the compartments due to compartment fusion and fragmenta-
tion results in a localisation of the system in the concentration phase-space. Notably,
the localisation has finite dispersion. By analogy to other physical systems, we refer
to the localised distribution by a quasi-particle-like state, see also section 2.5.2.

analogy to self-gravitating systems [110, 111]. For illustrative purposes, we assume that
the chemical drift reactions can be described by gradient dynamics. While this is not
generally true, see appendix A.4 and [112], here we consider effective 1-dimensional, inte-
grable dynamics. Note that the insight still applies to general drift kinetics, albeit with
the disadvantage of multi-dimensional vector fields being not visually easily approachable.

In Fig. 2.6, we schematically illustrate the effective two-body interaction potential V (c).
For the drift kinetics, we consider intricate dynamics with a multi-welled potential land-
scape, wherein each potential well corresponds to a stable fixed point. Compartments
are described by the state of the enclosed stochastic dynamics. Compartments, illus-
trated as red dots, stochastically escape potential wells and hop between them, and by
this explore the concentration phase space. The steady-state distribution over the com-
partments in a set of indefinitely many compartments is a Boltzmann-like distribution,
fss(c, t) ∼ exp(−β−1V (c)). Here, β−1 quantifies the inverse diffusivity of the stochastic
dynamics in the compartments. This is illustrated by simulations in Fig. 2.6 (b).

The effective interaction potential gives rise to a local deformation of the potential
landscape. This is analogous to self-gravitating systems, where the analogy to a rubber-
plane landscape is drawn in which balls deform the landscape. This picture is translated
to our system in Fig. 2.6 (a). The localisation in the concentration phase space here is as
an analogue to the coalescence dynamics in the self-attracting physical systems. However,
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Fig. 2.7.: The quasi-particle moves with a fixed functional shape through the con-
centration phase space Here, full stochastic simulations over a finite set of com-
partments are conducted. On the microscopic level, the dynamics are given by over-
damped Langevin Equations with constant diffusion and a potential specified in the
plot. Compartment dynamics are taken as full stochastic process, also compare with
appendix B.1. The simulations are evaluated in simulation units, where the time is
rescaled to fit the relaxation time of the ensemble in absence of compartment fusion
and fragmentation. ‘Quasi-particle’ refers to the ensemble with compartment fusion
and fragmentation (red), while ‘no compartment dynamics’ refers to the ensemble
with no compartment fusion and fragmentation (blue). The rate of compartment
fusion is set to µ−1/τ = 0.05 and the average compartment size is ⟨v⟩ = 2 in mul-
tiples of the compartment unit size. (a) Sliding in a skewed potential. The initial
configuration is given by a positively skewed distribution. In blue, a system with
no compartment fusion and fragmentation shows dispersive dynamics. In contrast,
the quasi-particle state emerges due to compartment fusion and fragmentation and
slides down the potential in a fixed functional shape. We find that the median of the
distribution is effectively attracted to the mean, as the quasi-particle state emerges.
(b) Response in a double-well potential. The old potential is represented by a grey
dotted line. Also in more complex potentials, the quasi-particle admits an approx-
imately fixed shape as moves through the concentration phase space. Notably, the
quasi-particle admits altered response kinetics, which we elucidate in section 2.6.
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2.5. Emergence of a single, collective degree of freedom

we want to emphasise that here the collective dynamics arise in the concentration phase
space and not in the real (spatial) space, as the compartment further

2.5.3. Discussion on how the collective degree of freedom resembles
a quasi-particle

In this section, we discuss how the collective degree of freedom resembles a quasi-particle.
To this end, focus on the characterisation of the collective degree of freedom and also
discuss related concepts, such as collective modes and condensates.

Importantly, as we investigate compartmentalised stochastic systems, we consider clas-
sical systems and not a quantum-mechanical framework. In the preceding section 2.5.2,
a comparison was made to self-aggregating systems [110, 111], which are also in the do-
main of classical physics. It should, however, be emphasised that the collective degree of
freedom is fundamentally different from a condensed form of matter [79]. We want to em-
phasise that collective dynamics emerge in the concentration phase space and not in the
real (spatial) space. The compartments do not aggregate to form a single large aggregate,
as the collective degree of freedom emerges. Quasi-particles and collective modes offer a
more general way to describe collective dynamics in many-body dynamics.

A quasi-particle in many-body theory is a concept used to describe the behaviour of
large numbers of interacting particles [17, 79]. It is conceptualised as an individual particle
with clearly defined properties such as mass, charge, and energy. This notion is a practical
way of interpreting complex many-body systems, allowing simple models and analytical
tools to be employed for analysing their respective properties. Particularly in the field of
condensed matter physics, quasi-particles5 are used to model the behaviour of electrons,
phonons, and other types of excitations in solids. Quasi-particles are mostly studied
in the realm of quantum mechanics. Collective modes [114–117], however, differ from
quasi-particles in that they describe the coordinated motion of in particles in many-
body systems. Collective modes affect the system as a whole, yet preserve its overall
properties such as particle number, energy, or momentum. Collective modes can manifest
both in quantum systems, such as phonons, and classical systems, as acoustic waves, and
are often associated by the wave-like spreading of perturbations. Therefore, collective
modes emphasise the coordinated motion of particles, while quasi-particles emphasise the
emergent collective dynamics that are ‘particle-like’.

In section 2.5.2, we discussed how compartment fusion and fragmentation can lead
to the localisation of probability densities in the concentration phase space. The emer-
gent collective degree of freedom describes the collective movement of the compartments
through this concentration phase space. We found that this collective degree of freedom
can be characterised in a similar way to that of an individual compartment. In sections 2.6
and 2.7, we will demonstrate that this collective degree of freedom exhibits qualitatively
different kinetic properties compared to individual compartments in the absence of com-
partment fusion and fragmentation. Furthermore, the collective degree of freedom does
not display wave-like spreading of perturbations, suggesting that it more closely resembles
a quasi-particle than a collective mode.

Quasi-particles are formally characterised by a dispersion relation [17], which describes
the relationship between the course of a physical process and the properties of the quan-
tities describing it. In a quantum-mechanical framework, this manifests as a relation

5Note that in a part of the literature, quasi-particles are associated with fermionic systems, while their
bosonic analogous are referred to as collective excitations [113].
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2. Theory of collective degrees of freedom in open compartmentalised systems

between the energy and momentum of the quasi-particle. In this study, we consider over-
damped dynamics in the concentration phase space, and thus cannot formally derive a
relation between the energy and momentum of the collective degree of freedom. However,
we can link the characteristics of the collective degree of freedom to its kinetics in the
phase space. In section 2.6, we demonstrate how the variance of the localised compart-
ment ensemble, whose motion is described by the collective degree of freedom, can be
linked to an effective drift on the collective degree of freedom. For this, we derive effective
equations of motion, which we argue to serve as an analogue to the dispersion relation.

We emphasise that a mean-field approximation was assumed and that the collective
ensemble dynamics are a consequence of this. We anticipate that, when considering a
spatial setting of our dynamics, spatially localised collective dynamics will be observed
within small neighbourhoods. In the application of our findings to a physical system,
a mean-field approximation is suitable if compartments frequently exchange their neigh-
bours; an example of this is organelles which are actively transported through the cytosol
by molecular motors attached to the cytoskeleton.

While our collective degree of freedom does not formally originate from a quantum-
mechanical framework, but rather from a classical one, we find that it is reminiscent
of a quasi-particle in quantum mechanics. We acknowledge the semantic limitations of
referring to the collective degree of freedom as a quasi-particle, yet we deem that it empha-
sises the particle-like motion of the collective degree of freedom in the concentration phase
space. Furthermore, we emphasise the fact that the collective degree of freedom displays
qualitatively different kinetic properties to the dynamics of individual compartments in
the absence of compartment fusion and fragmentation. As such, like the quasi-particle,
the collective degree of freedom is inherently a many-body phenomenon. In the following
we will refer to the collective degree of freedom as a quasi-particle. Specifically, we will
next derive effective equations of motion for the quasi-particle.

2.6. Equations of motion for the quasi-particle
In section 2.5, we have discussed how the compartment dynamics give rise to a collective
degree of freedom. We semantically discussed how this collective degree of freedom re-
sembles a quasi-particle state of the system, as the distribution of the compartments is
localised in the concentration phase space. Notably, this quasi-particle allows the char-
acterisation of the ensemble distribution f(c⃗, t) with a reduced number of variables, pro-
viding a simple characterisation of the state of the system. We are particularly interested
in how the state of the system changes in response to external perturbations η(t) applied
on the molecular level. To assess the kinetic properties of the quasi-particle, we derive
effective equations of motion in this section. We then investigate on the kinetic properties
of the quasi-particle on the basis of these equations in the subsequent section 2.7.

In order to analyse the kinetic properties of the quasi-particle, we begin by recalling
that the short-range approximation of the fusion flux, as stated in Eq. (2.56), describes the
steady attraction to the mean of the distribution. We will demonstrate that characterising
the quasi-particle in terms of the mean, the multivariate generalisation of the median, and
the variance of the distribution f(c⃗, t) is useful in characterising its kinetic properties. We
will focus on the statistics of the collective ensemble state close to the centre of the
distribution f(c⃗, t) and make use of the short-range approximation of the fusion flux.
Additionally, we assume that the further compartment dynamics are independent of c⃗,
homeostatic conditions hold such that the total compartment mass is conserved and that
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2.6. Equations of motion for the quasi-particle

the diffusion coefficients Deff,η(t) = Deff,η(t) remain constant.
For brevity of notation, we summarise the population balance equation to

∂tf(c⃗, t|⃗c0, t0) = ∇[−F⃗ [⃗c, f(c⃗, t|⃗c0, t0)]f(c⃗, t|⃗c0, t0)] +D∇2f(c⃗, t|⃗c0, t0), (2.57)

where (c⃗0, t0) refers to the initial condition of the distribution. Here, F⃗ refers to the com-
posite of the approximation of the fusion flux and the deterministic drift component of
the stochastic chemical reaction kinetics, whilst the diffusion term accounts for both the
diffusion noise in the stochastic reactions and the noise induced by compartment fragmen-
tation. For brevity of notation, we set f(c⃗, t|⃗c0, t0) ≡ f(c⃗, t). We define the multivariate
generalisation of the median m⃗, as the point in the concentration phase space where the
stable tail long-range approximation of the fusion flux vanishes. Furthermore, we define
a multivariate generalisation of the cumulative distribution Φ⃗, where each component is

Φi(x⃗) =
∫ ∞

−∞

d∏
j ̸=i

dcj

∫ x

∞
dcif(c⃗, t) =

∫ x

∞
dciqi(ci, t). (2.58)

In the second equation, we introduced the marginalised density per component qi(ci, t) and
d refers to the dimensionality of c⃗. As Φi is by construction a monotonically increasing
function, we define the inverse function of the generalised cumulative distribution as
Φ⃗−1. We define the multi-variate generalisation of the median m⃗ = Φ⃗−1(N/2e⃗1), where
N =

∫
dc⃗f(c⃗, t) and e⃗1 is the vector of ones. Applying a mean-field approximation on the

flux F⃗ in line with section 2.4, the integration of the population balance equation yields

∂tΦi(c⃗, t) ≈ −Fi [⃗c, f(c⃗, t)]qi(ci, t) +D∂ci
qi(ci, t). (2.59)

We note that m⃗ is a function of the distribution f(c⃗, t). We next derive how m⃗ changes
as f(c⃗, t) evolves,

∂tm⃗ = ∂tΦ⃗−1
(
N

2d e⃗1

)
. (2.60)

Let m⃗0 refer to the multi-variate generalised median at time t0. To obtain the temporal
derivative of m⃗, we linearise Φ⃗(c⃗, t) around a point m⃗0 and obtain for each component

Φi(m⃗, t) =Φi(m⃗0, t0) +∇cΦi(m⃗0, t0) · (m⃗− m⃗0)
+ ∂tΦi(m⃗0, t0) · (t− t0) +O(c⃗2, t2). (2.61)

Not that by construction ∂ci
Φj = 0 if i ̸= j. Solving the equation component-wise, mi is

mi ≈ −
∂tΦi(m⃗0, t0) · (t− t0)

qi(m0,i)
+m0,i, (2.62)

which directly yields

∂tmi ≈ −
∂tΦi(m⃗0, tm,0)

qi(m0,i)
. (2.63)

This temporal derivative gives the instantaneous response for m⃗0 at time tm,0, and is an
approximation for later time points. Using the approximation for ∂tΦi(c⃗, t), the temporal
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2. Theory of collective degrees of freedom in open compartmentalised systems

derivative of the generalised median further simplifies to

∂tmi ≈ Fi[m⃗, f(m⃗, t)] + D∂mi
qi(mi, t)

qi(mi, t)
. (2.64)

For ||Fi|| ≫ ||D||, the first term on the right-hand side of the equation dominates. Note,
that D vanishes for large systems sizes due to the rescaling by the system size; Compare
for this with section 2.2.1. Inserting the definition of the drift flux due to the chemical
reaction kinetics and the fusion flux, the effective equation of motion for the generalised
median is

∂tm⃗ = F⃗η(t)(m⃗) + Λ(⟨c⃗⟩ − m⃗). (2.65)

The drift term F⃗η(t) refers to the chemical reaction kinetics, where η(t) denotes the external
signal. The short-range approximation is used for the fusion flux and all prefactors are
collected in Λ. The difference between the mean ⟨c⃗⟩ and the multivariate generalisation of
the median m⃗ quantifies the skewness of the distribution f(c⃗, t) as an analogue to a rescaled
version of the non-parametric skew in one-dimension. This skewness parameter is referred
to as s⃗ = ⟨c⃗⟩−m⃗ and the fusion flux gives rise to an additional force that pulls the median
in the direction of s⃗. The rate of compartment fusion Λ ∝ µ is directly proportional to
the strength of this force. We now proceed to derive the temporal derivative ∂⟨m⟩ of s⃗
over time.

By integration of the population balance equation in Eq. (2.55), we assume that f(c⃗, t)
decay exponentially or faster in c⃗→∞ and find the temporal evolution of the mean is

∂t⟨c⟩ =
∫ ∞

−∞
dc⃗ F⃗ [⃗c, f(c⃗, t)]f(c⃗, t) =

∑
α

Dαf(⟨c⃗⟩, t)
α!

∫ ∞

−∞
dc⃗ (c⃗− ⟨c⃗⟩)α . (2.66)

Making use of the series expansion of F⃗ around ⟨c⃗⟩ with the multi-index notation x⃗α =
xα1

1 · · · xαd
d and the mixed partial derivatives Dα = ∂xα1

1
· · · ∂xαd

d
, we assume the existence

of a localised ensemble state with finite dispersion. We approximate that the vector field
spanned by the drift term F⃗ is well-approximated around ⟨c⃗⟩ on the scale of the finite
dispersion of the localised ensemble state by a second-order expansion of F⃗ . With this,
∂t⟨c⃗⟩ approximates to

∂t⟨c⃗⟩i ≈ Fi(⟨c⃗⟩, t) + 1
2 tr

(
HFi

K⊤
c⃗,⃗c

)
. (2.67)

Note that the first-order derivative vanishes due to the definition of ⟨c⃗⟩. Here, we made
use of the Hessian matrix HFi

of the i-component of F⃗ and the variance matrix Kc⃗,⃗c.
Assuming a mean-field approximation analogous the approximations made for ∂tm⃗ in
Eq. (2.65), the expression simplifies to

∂t⟨c⃗⟩ ≈ F⃗ (⟨c⃗⟩, t) + 1
2(∇2

c)F⃗ (⟨c⃗⟩, t)
∑
i

σ2
ii, (2.68)

where σ2
ii refers to the variance of the marginalised distribution qi(ci, t). Note, that the

sum ∑
i σ

2
ii refers to the variance of f(c⃗, t), which we approximated as fixed for the localised

ensemble state. For brevity of notation, we define γ = ∑
i σ

2
ii. The motion of the mean is

thus driven by the interplay of the force field and its second derivative.
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2.6. Equations of motion for the quasi-particle

Assuming the existence of a localised ensemble state, we find that the multi-variate
generalisation of the median m⃗ is steadily attracted to the mean ⟨c⃗⟩. We hence consider
s⃗ a small parameter and further approximate

F⃗ (⟨c⃗⟩, t) ≈ F⃗ (m⃗, t) + (s⃗∇c)F⃗ (m⃗, t), and (2.69)
γ

2 (∇2
c)F⃗ (⟨c⃗⟩, t) ≈ γ

2 (∇2
c)F⃗ (⟨m⃗⟩, t) + γ

2 (s⃗∇c)(∇2
c)F⃗ (⟨m⃗⟩, t). (2.70)

With this, we find for the temporal evolution of the skewness of the distribution

∂ts⃗ = −Λs⃗+ (s⃗∇c)F⃗ (m⃗, t) + γ

2 (s⃗∇c)(∇2
c)F⃗ (⟨m⃗⟩, t) + γ

2 (∇2
c)F⃗ (⟨m⃗⟩, t). (2.71)

In the limit of fast compartment fusion and fragmentation, Λ > ||F⃗ ||, implying that
macroscopic concentration changes happen on slower or similar timescales as compartment
fusion and fragmentation, we derive a set of two simple coupled differential equation
describing the kinetics of the quasi-particle

∂tm⃗ = F⃗η(t)(m⃗) + Λs⃗

∂ts⃗ = −Λs⃗+ γ

2 (∇2
c)F⃗ (m⃗, t).

(2.72a)

(2.72b)

For one-dimensional dynamics in the concentration phase space, the equations further
simplify to

∂m = Fη(t) + Λs
∂s = −Λs+ γ(∂ccFη(t)).

(2.73a)
(2.73b)

We interpret m⃗ as the position of the quasi-particle and s⃗ as the internal deformation
of the localised ensemble state, which we will elaborate on in the next section. While,
the motion of a point particle is dictated solely by the value of F⃗η(t)(m⃗, t), the motion
of the quasi-particle is additionally affected by a force proportional to the skewness s⃗.
This skewness s⃗ is driven by the second derivative of the vector field F⃗η(t), which can
be linked to the curvature of F⃗η(t). As the quasi-particle degree of freedom has a finite
dispersion, it not only responds to the local value of F⃗η(t)(m⃗, t), but also to the local
neighbourhood of m⃗, the size of which is determined by the dispersion of the localised
ensemble state. This further sets the dynamics of the quasi-particle apart from ensemble
dynamics without compartment fusion and fragmentation, where the generalised median
or the mean formally depends on the full distribution f(c⃗, t). Finally, we assume the limit
of fast relaxation in ∂ts⃗ = 0, which yields:

∂tm⃗ = F⃗η(t)(m⃗) + γ

2 (∇2
c)F⃗ (m⃗, t). (2.74)

This simple differential equation allows for the qualitative inference of the dynamics of
the quasi-particle through graphical analysis, provided that the dynamics of the force
field are qualitatively known. We will demonstrate an example of this graphical analysis
in section 3.4. Next, we proceed with a general discussion of the phenomenology of the
kinetics encoded by Eq. (2.72) in section 2.7.
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Fig. 2.8.: Illustration of the mechanic analogue to the quasi-particle A system of three
coupled, over-damped point-masses recreates the dynamics of the quasi-particle in 1-
dimension. The springs are analogous to the steady attraction between compartments
due to compartment fusion and fragmentation. We here illustrate how the second
derivative on the forces arises in the simple analogue of three coupled point-masses.
This in particular renders some minima of a potential unstable.

2.7. Kinetic properties of the quasi-particle
In the preceding section, we derived an effective equation of motion for the quasi-particle,
which was introduced in the section before. In this section, we investigate the kinetics
of this degree of freedom by introducing a simple, one-dimensional mechanical analogue
which provides an intuitive approach to the kinetics. We begin by demonstrating the
formal equivalence of this analogue to the set of coupled differential equations in Eq. (2.72).
Following this, we discuss the kinetic properties of the analogue and offer an intuitive
insight, before considering how this insight translates to the general dynamics of the
quasi-particle.

2.7.1. Mechanic analogue of the quasi-particle

In order to facilitate an intuitive approach to the kinetics described by the effective equa-
tions of motion for the quasi-particle, we present a one-dimensional, mechanic analogue,
which is described by equivalent equations of motion to Eq. (2.73). For this, we consider
three point-masses which move with an over-damped motion in a one-dimensional force
field and are coupled by ideal springs. For simplicity, we take the one-dimensional force
field to be given by a gradient dynamics F (x) = −V ′(x). The position of the three point-
masses, from left to right, are labelled xl,xc, and xr, as shown in Fig. 2.8. We set the point
masses to have equal mass m and the two springs to have rest length l0. The over-damped
motion of the three point-masses is then described by the equations of motion:

νẋl +mẍl = F̃ (xl) + k̃(xl − xc − l0)
νẋc +mẍc = F̃ (xc) + k̃(xc − xr − l0)− k̃(xl − xc − l0)
νẋr +mẍr = F̃ (xr)− k̃(xc − xr − l0),

where we used the friction coefficient ν, the rescaled force field F̃ and the spring constant
k̃ We define F = F̃ /ν and k = 3k̃/ν. In the over-damped limit m/ν ≪ 1, the motion of
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2.7. Kinetic properties of the quasi-particle

the centre mass xc is

ẋc = F (xc) + k(⟨x⟩ − xc), (2.75)

where ⟨x⟩ = (xl+xc+x+xr) is the centre of mass of the system. We define the deviation of
the centre mass to the centre of mass s = ⟨x⟩−xc, which we call the internal deformation
of the system, as this deviation is associated with the asymmetric extension of the two
ideal springs. In turn, s changes according to

ṡ = −k(⟨x⟩ − xc)− F (xc) + 1
3(F (xl) + F (xc) + F (xr))

= −ks+ 1
3(F (xr) + F (xl)− 2F (xc))

≈ −ks+ l20∂xxF (xc). (2.76)

We note the formal equivalence between the system of three point masses and the ef-
fective equations of motion for the quasi-particle degree of freedom in Eq. (2.72), as the
centre mass xc corresponds to the median and the deviation s is linked to the skewness.
Analogous to the quasi-particle, the system of three spring masses accounts for the local
curvature of the force field, as the deviation s depends on the second derivative, which is
weighted by l20. It is worth noting that

√
l20 gives an estimate of the width of the three

spring masses, which is analogous to taking the root of the summed variances √γ in
Eq. (2.72), which is an estimate for the width of the localised ensemble state. Focusing
on k, we find a correspondence between the strength of the springs and the rate of com-
partment fusion, which sets the strength of attraction between the median and mean for
the quasi-particle. We next study the response kinetics to external perturbations that
alter the force field F .

2.7.2. Response kinetics of the quasi-particle
In section 2.7.1, the mechanic analogue was introduced in order to illustrate how the
kinetics of the quasi-particle differs qualitatively from that of a single point mass. In
this section, we make use of this analogue to discuss the response of the quasi-particle to
external perturbations. For this, we consider a force field generated by a gradient dynamics
F (x) = −V ′(x) and restrict our focus to one-dimensional dynamics. Nonetheless, the
insights acquired in this section may be readily translated to multi-variate dynamics and
general force-fields.

First, we note that the kinetic properties of the three-point mass system are altered in
comparison to those of a point particle: The system has different steady states and fixed
points, and different response dynamics on long and short timescales. To understand
why the three-point mass system has different steady states, consider the asymmetric
double-well potential illustrated in Fig. 2.9. For point masses, both wells of the system
are fixed points. However, for the three coupled spring masses, the higher well is not
a fixed point of the system. Although the centre mass is located at the bottom of the
higher potential well, and experiences no force F (xc) = 0, it still experiences a force due
to s ̸= 0. The left mass slides down the potential and pushes xc towards the potential
barrier at x∗, while the right mass pulls the centre mass down into the next potential.
From Eq. (2.73), we find that, in steady state, s typically has finite values of |s| > 0, thus
perturbing the fixed points of the force field F (xc,ss) = 0. This allows for the vanishing
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Fig. 2.9.: The quasi-particle exhibits altered kinetic properties (a) The stable fixed
points of the quasi-particle are altered compared to the analysis of the deterministic
system F⃗ (c⃗, t). This is illustrated as the phase-portrait of Eq. (2.73) is exemplified
for a multi-stable potential. Stable fixed points of the quasi-particle are plotted
as red dots, and fixed points of F⃗ (c⃗, t) are plotted as black dots. Note, that we
formally set s = 0 for the fixed points of F⃗ (c⃗, t). (b) The quasi-particle exhibits
altered response kinetics on different timescales, as represented by a schematic. The
dotted line shows the transition between a linear response regime, to a regime where
effective dynamics arise due to the drift in the direction of the skew. The inset shows
simulations analogous to Fig. 2.7, which shows the response to a perturbation at
t = 0. Red refers to the quasi-particle while black refers to a compartment ensemble
with no fusion and fragmentation dynamics. Note, that both mean and median
initially evolve as in the independent ensemble and we see effective dynamics on
large time-scales.

of fixed points, resulting in the three point-masses typically having a smaller number of
stable fixed points than a single point-mass.

The altered fixed points imply changes in the long-term dynamics, as the three-point-
mass system approaches different states compared to those of single point-masses. Fur-
thermore, the response kinetics on short timescales are also affected. To investigate the
response kinetics, we focus on the relaxation dynamics following a general perturbation
from V (x) → Ṽ (x). For the linearised response, we approximate the new potential as
follows:

−F̃ (x) = Ṽ ′(x) = Ṽ ′(m) + Ṽ ′′(m)(x−m) +O((x−m)2) ≈ β1,0 + β1,1(x−m) (2.77)
−F̃ ′′(x) = Ṽ ′′′(x) = Ṽ ′′′(m) + Ṽ ′′′′(m)(x−m) +O((x−m)2) ≈ β3,0 + β3,1(x−m).

(2.78)

With this, Eq. (2.73) simplifies to

∂

∂t

(
m
s

)
≈
(
−β1,1 +k
−γβ3,1 −k

)(
m
s

)
−
(
β1,0
γβ3,0

)
(2.79)
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This matrix equations admits results of the general form
(
m(t)
s(t)

)
= c1e

λ1tu⃗1 + c2e
λ2tu⃗2 − b⃗t, (2.80)

where u⃗1, u⃗2 are eigenvectors of the matrix in Eq. (2.79) and b⃗t refers to the particular
solution of Eq. (2.80). In the limit of strong spring constants, k ≫ |β1,1|, |γβ3,1|, we
observe two distinct eigenvalues: λ1 ≈ k+ γβ3,1 and λ2 ≈ β1,1− γβ3,1, which indicate two
different relaxation scales. On short timescales, τ < k−1, the point masses behave as if
they are uncoupled, resulting in a new value of s. On longer timescales, τ > k−1, a finite
value of s gives rise to an additional drift of m.

By comparing to the quasi-particle in the context of compartmentalised stochastic sys-
tems, we conclude that the kinetics are altered analogously. Concentration compositions
c⃗∗ that render stable steady states according to the deterministic analysis of the chem-
ical reaction network, F⃗ (c⃗∗) = 0, are not necessarily steady states of the quasi-particle.
Furthermore, the dynamics on short timescales follow different response kinetics: Com-
partments respond independently to an external perturbation on timescales shorter than
the timescale of compartment fusion and fragmentation. With this, we conclude on the
characterisation of the emergent, quasi-particle.

2.8. Discussion
In this chapter, we have demonstrated how compartment dynamics give rise to an emer-
gent, collective degrees of freedom in open compartmentalised stochastic systems. Specif-
ically, compartment fusion and fragmentation counteract the dispersive dynamics of the
enclosed stochastic reaction dynamics. In this section, we reflect on our findings and
consider their potential technical and biological applications. While this chapter was to
a large extent technical, we apply our findings in the following chapter 3 in the context
of organelle-associated signalling pathways and cell death decision-making.

We started this section by providing a formal definition of compartmentalised stochas-
tic systems in section 2.3. We showed how the dynamics of the system can be expressed
in the formalism of Master equations. While this approach allows for full stochastic nu-
merical simulations, the complexity of the system makes it difficult to analyse the Master
equation. To gain a mechanistic understanding of the system, we employed the framework
of population-balance equations in section 2.4. We considered two main approximations:
assuming a mean-field approximation and formally describing the compartment dynam-
ics in the thermodynamic continuum limit of infinitely many compartments, using the
smooth number density function f(c⃗, o⃗, t). Due to the mean-field approximation, we do
not account for the spatial evolution of the system, while the continuum limit approxima-
tion formally demands us to investigate large systems. This precludes us from estimating
additional noise due to the stochasticity of compartment dynamics. When applying our
findings to specified systems, we should be aware of the limitations of our approach and
reconcile them with the specific research question asked. Note that there have been at-
tempts in the literature to account for spatial placement and stochasticity in population
dynamics [72, 118, 119].

A further qualitative restriction of our analysis is that we assume open compartmen-
talised systems in which we do not impose mass conservation of the enclosed stochastic
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2. Theory of collective degrees of freedom in open compartmentalised systems

many-body dynamics. This is primarily due to the stochastic many-body dynamics intro-
duced in section 2.2.1, which allows for the creation and annihilation of molecular species
from and to a reservoir. However, if the dynamics of the system is specified accordingly,
mass conservation can be accounted for in terms of the chemical Langevin equation, as
presented in section 2.2.1. Additionally, in closed compartmentalised systems, we also
need to constrain the compartment dynamics to be mass conserving, which effectively
prohibits birth and death terms, as well as compartment growth and shrinkage dynamics.
As we derived approximations of the fusion and fragmentation fluxes, we did not formally
impose mass conservation. Thus, in order to apply Eq. (2.55), we need to refine the
approximation scheme applied in this chapter.

Furthermore, note that we, in general, expect very different systems dynamics when
considering closed or open compartmentalised systems, as the dynamics are strictly con-
strained in closed compartmentalised systems. Additionally, we need to take into account
correlations between the compartments. This will result in different tail statistics. More-
over, the nature of fluctuations between compartments varies depending on whether the
system is open or closed. For open compartmentalised systems, the fluctuations between
compartments are induced by the contact with a reservoir, whereas the fluctuations are
induced purely by the stochastic binomial splitting procedure during compartment frag-
mentation for closed compartmentalised systems. These considerations are investigated
in more detail in chapters 4 and 5, where we also elaborate on the usefulness of deriving
equations similar to Eq. (2.55) for closed compartmentalised systems.

When deriving the flux approximations in Eq. (2.56), we applied mean-field approxi-
mations and approximations on the tail statistics of the ensemble. When applying these
approximations to specific systems, it is important to evaluate if they are valid or need to
be refined, see section 2.4.5. This is particularly relevant for dynamics in which algebraic
tails occur, as the triangulation approximation in section 2.4.1 is likely to be inadequate.
The same applies for multi-modal distributions; the triangulation approximation in the
flux approximations between modes is likely to be inadequate. In cases of multi-variate
dynamics in c⃗, note that Eq. (2.56) does not accurately account for correlations between
components in c⃗. If these correlations are found to be essential for the system dynamics,
the full multi-variate formulation in Eq. (2.47) should be used.

When we derived the emergence of the collective degree of freedom in section 2.5 and
discussed how it resembles a quasi-particle in section 2.5.3. We emphasised that the com-
bined action of compartment fusion and fragmentation are a prerequisite for the emergence
of the quasi-particle. We also presented how our findings are robust to other compartment
dynamics. However, if compartment fusion and fragmentation occur on timescales much
longer than those of other dynamics, their imprint on the system’s dynamics is likely to be
small. This is particularly the case if the dynamics of the stochastic many-body system
enclosed in the compartments changes on timescales faster than those of compartment
fusion and fragmentation. Conversely, if dispersive dynamics play a central role in the
system’s dynamics, we expect to observe the qualitative effects of compartment fusion
and fragmentation on the system’s dynamics.

Having derived the effective equations of motion in Eq. (2.72) for the quasi-particle in
section 2.6, we assumed that the dispersive spreading dynamics were slow compared to
the drift dynamics, and that the drift dynamics only changed marginally over the width of
the quasi-particle dynamics. We can relax these assumptions with a more refined analysis
of effective equations of motion. Here, we suggest that a first refinement should allow
for variations in the variance of the localised ensemble configuration, which can be easily
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accounted for by considering higher-order corrections. When we investigated the altered
kinetic properties of the quasi-particle in section 2.7, we based our findings on the effective
equations of motion in Eq. (2.72). Hence, the same assessments hold, however, we expect
the qualitative results of altered steady states and altered response kinetics to be generally
valid.

We suggest that our findings have direct implications for applications in biological
and technical realisations of open compartmentalised systems. In chapter 3, we will in-
vestigate in depth the application to organelle-associated signalling pathways, with a
particular focus on the cell death decision-making intrinsic apoptotic signalling pathway.
We will also briefly discuss to what extent our findings can be directly translated to
other organelle-associated signalling pathways. Compartment fusion and fragmentation
are central ingredients of our dynamics, but we suggest that general exchange dynamics
between compartments or agents can also be treated in the context of the flux approxi-
mation presented in Section 2.4.1. Note a structural similarity to the effective equation
in [120], which investigated the dynamics of social wasps, and where re-engineering of the
exchange dynamics could give us new insight into the system dynamics. In addition to
biological applications, technical applications may be found in the fields of finance, where
depot fusion and splitting and the assessment of tail statistics are of pivotal interest.
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3. Application to multi-scale
fluctuations in the regulation of cell
death

3.1. Introduction
Our theoretical results concerning open compartmentalised systems provoke two ques-
tions: firstly, is there any experimental evidence of quasi-particle1 kinetics? Secondly, do
biological systems make use of such kinetics to perform functions, such as signal process-
ing? In this chapter, we will seek to address these questions in the context of cell fate
decisions.

In order to self-organise into complex tissue structures, the fate of cells needs to be
precisely regulated. Therefore, the question of how biological systems - and cells in
particular - interpret and respond to their environment is a central question in biol-
ogy. From a biochemical perspective, the central mechanisms by which cells perceive,
interpret, and respond to changes in their environment are signalling pathways [121].
In this chapter, we apply our findings from chapter 2 to organelle-associated signalling
pathways. These pathways involve biochemical reaction kinetics that occur at dynamic
structures that compartmentalise the cytosol of the cell, called organelles, see for example
[37, 38, 54]. Organelle-associated signalling pathways are a prime example of compartmen-
talised stochastic systems. Here, we consider steady binding and binding-release dynamics
from the cytosol to organelles and thus consider open compartmentalised systems.

In this chapter, we use the theoretical insights developed in chapter 2 to understand how
compartment dynamics qualitatively affect the response kinetics of organelle-associated
signalling pathways and examine the functional implications for cell fate decision-making.
The binary decision of cells whether or not to initiate programmed death is a prime
example of a cell fate decision. We focus on the cell death decision and analyse how the
interplay between organelle dynamics and protein complex formation dynamics affects
response kinetics to cellular stress signals. We show how the quasi-particle kinetics leads
to a low-pass kinetic filter for transient stress signals, thereby significantly improving the
quality of the cell death decision. We then explore how our theoretical predictions can
be tested experimentally, consider the potential medical applications of our findings, and
evaluate the extent to which our findings can be applied to other organelle-associated
signalling pathways.

This chapter is structured as follows. We start by giving a brief introduction to the bio-
logical concepts of signalling pathways and organelles in section 3.2. We then focus in the
same section also on organelle-associated signalling pathways with particular emphasis on

1In section 2.5.2 we discussed how compartment fusion and fragmentation gives rise to a single, collective
degree of freedom, which is reminiscent of a quasi-particle state of the ensemble dynamics. Throughout
this chapter, we refer to the collective degree of freedom as a quasi-particle.
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cell-death decision-making. We discuss the intrinsic apoptotic signalling pathway in sec-
tion 3.2.3 and consider the reaction network of Bcl-2 proteins, which act as a bottleneck in
apoptotic signalling. In section 3.2.3.2, we explore how the effective dynamics of the pro-
tein Bax translocating to the mitochondrial membrane can reduce the complexity of the
Bcl-2 reaction network. We then propose an effective model for the organelle-associated
signalling pathways of apoptosis, taking into account the stochasticity of Bax translo-
cating and explicitly accounting for the stochastic fusion and fragmentation dynamics of
mitochondria. Doing so, we specify on the model dynamics we introduced in section 2.3.
We then turn to investigate the response of the system to fixed apoptotic stress stimuli
in section 3.4.

Specifically, in section 3.4, we demonstrate that for physiologically plausible parame-
ters, the quasi-particle investigated in chapter 2 is observed. In chapter 2, we investigated
the quasi-particle in a general context. Referring to this, section 3.4 considers the kinetics
of the quasi-particle within a specified setup of cell death regulation. We find that the
quasi-particle shows sigmoidal response kinetics when an apoptotic stress perturbation
is applied. This response is initially suppressed on short timescales and facilitated on
long timescales when compared to mitochondrial ensembles that show no fusion and frag-
mentation dynamics. section 3.5 generalises our findings to fluctuating stress signals and
concludes that the sigmoidal response kinetics give rise to a kinetic low-pass filter, which
suppresses the system’s response to short, transient stress fluctuations. The quality of
apoptotic decision-making is then assessed by quantifying the specificity and sensitivity
of a response in section 3.6. We conclude our investigation of the effect of mitochondrial
dynamics on the apoptotic signalling pathway by challenging our theoretical predictions
in comparison with experiments in section 3.7. We show that our findings are robust to
additional effects in the apoptotic signalling pathway in section 3.7.3. We consolidate
our theoretical predictions through experiments performed by our experimental collabo-
rators Philipp Mergenthaler and Lina Hellwig. Finally, we discuss how our findings can
be translated to other signalling pathways in section 3.9 and conclude this chapter.

3.2. Literature review on organelle and signalling
pathway dynamics

In chapter 2, we adopted a theoretical approach. In this chapter, we study the application
of our findings as we study organelle-associated signalling pathways as prime examples
of compartmentalised stochastic reaction kinetics systems. To this end, we first provide
a general definition of signalling pathways, followed by a brief description of organelles.
We then focus specifically on the organelle-associated signalling pathways centred around
cell-death decision-making: the intrinsic apoptotic signalling pathway.

3.2.1. Cell signalling pathways
The National Cancer Institute of the United States defines signalling pathways [121] as
"a series of chemical reactions in which a group of molecules in a cell work together to
control a cell function." These pathways involve a wide range of protein complexes that
transmit and translate signals from the environment to changes in cell behaviour. Signals
are received as molecules - such as hormones, toxins, or drugs - bind to and modify specific
protein receptors in or on the cell. The modification of receptor proteins then activates
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external
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cellular
function

Fig. 3.1.: Schematic of a signalling pathway. Signals can be either intra- or extracellular.
By binding and modifying bio-molecules in the signalling pathway, the signal is prop-
agated through a signalling cascade. The signalling cascade generally constitutes as
a reaction network, which allows for the integration of various stimuli. At the end of
the signalling pathway, changes in the cellular phenotype and cellular behaviour are
evoked.

and modifies molecules downstream in the pathway, which in turn again modify other
proteins downstream in the signalling pathway. This initiates a signalling cascade, which
culminates in changes in gene expression and changes in the behaviour and phenotype
of the cell [121]. As signalling pathways describe the complex interplay between various
protein complexes and molecules, the concept of signalling pathways is often described
with varying levels of detail depending on the specific research question being investigated.
This ambiguity in the concept of signalling pathways necessitates a precise definition of
constituents and dynamics when discussing them.

Ambiguity in signalling pathways arises from the extent to which molecules are consid-
ered part of a signalling cascade. While a signalling pathway formally describes a cascade
of events from receptor molecules to a change in cell function, it is common practice to
refer to excerpts of full signalling pathways as signalling pathways. This necessitates a
precise definition of all constituent molecules. Furthermore, there are various levels of
description of signalling pathway dynamics, each with its own level of detail and purpose.
For instance, at the coarsest level, signalling pathways can be described using Boolean
networks [122, 123], which only focus on the involvement of proteins, while at a more re-
fined level, the qualitative effect of overexpressing a protein species is included [124, 125].
A biophysical understanding of signalling pathways often involves the investigation of
temporal changes, which can be described in terms of chemical reaction networks under
the assumptions of well-mixed conditions and macroscopic concentrations [126–129]. Re-
laxing the assumption of well-mixed conditions requires a full spatiotemporal description
of signalling pathways [118], while relaxing the assumption of macroscopic concentrations
requires the consideration of the stochasticity of individual chemical reactions [85]. In
this thesis, we describe excerpts of full signalling cascades as stochastic chemical reaction
networks, as introduced in section 2.2.1.

3.2.2. Biology of organelles
Organelles are defined as subcellular structures that perform a specific function within
a cell and include a wide range of structures, such as mitochondria, the endoplasmic
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reticulum, ribosomes, flagella, and intracellular condensates like stress granules [37, 38,
130]. The term organelles is inspired by the idea that these structures inside a cell are
similar to organs in the bodies of multicellular organisms. Organelles can be divided
into two categories: membrane-bound and membrane-less organelles [130]. Examples of
membrane-bound organelles include mitochondria, the endoplasmic reticulum, and lipid
vesicles, which are involved in energy production by oxidative phosphorylation, protein
translation, and intracellular material transport, respectively. Examples of membrane-
less organelles include flagella, ribosomes, and stress granules, which are associated with
cellular locomotion, protein translation, and the storage of mRNA, respectively. In this
thesis, we focus on membrane-bound organelles.

Membrane-bound organelles are enclosed by lipid bilayers, which restrict the transport
of biomolecules across their membranes, thus creating intracellular compartments that
separate bio-molecular reaction processes from the rest of the cytosol. These organelles
can vary in terms of function, size, shape, and number [53]; some are involved in the degra-
dation and synthesis of biomolecules (e.g. lysosomes, mitochondria, and the endoplasmic
reticulum), while others are involved in the protection of biomolecules (e.g. the nucleus).
Generally, they are composed of several discrete compartments, with the exception of
the nucleus and endoplasmic reticulum, which display as single organelles within the cell.
Additionally, they can take a range of shapes, from small spheres (e.g. lysosomes) to
interconnected network-like clusters (e.g. mitochondria). Importantly, membrane-bound
organelles are highly dynamic structures, constantly being synthesised, degraded, fused,
and actively transported through the cytosol [53]. Moreover, their morphology typically
varies between different cell types, under different environmental conditions, and during
the cell cycle. Organelles thus structure the interior of the cell into dynamic compart-
ments.

When we investigate the dynamic compartmentalisation of the cytosol in relation to
membrane-bound organelles, we exclude the dynamics of singular organelles, such as the
nucleus and the endoplasmic reticulum, and refer instead to those organelles which are
present in large numbers in the same cell. Such organelles undergo a range of dynamic
processes, such as transport through the cytosol, biogenesis and growth, degradation, as
well as cycles of fusion and fragmentation [53]. The remodelling of their morphologies is
often mediated by the constant fusion and fission of organelles [131–133]. Moreover, these
dynamics are active processes, requiring the conversion of chemical energy. Membrane-
bound organelles are often linked to the cytoskeleton by molecular motors which actively
transport them through the cell; while the fusion and fission of lipid membranes is typically
regulated by GTPases and ATPases, such as SNARE proteins or proteins of the dynamin
superfamily. Consequently, organelle dynamics should be viewed as active processes that
rely on the constant consumption of energy and are regulated by the abundance of proteins
specific to the dynamics of the organelle in question.

Understanding organelle dynamics as active processes yields questions on the biological
function of dynamic compartmentalisation. What are the benefits of steadily remodelling
organelle morphology? In this thesis, we investigate this question by deriving general
theoretical insight into how dynamic compartmentalisation affects the ensemble statistics
of organelles with a special focus on the dynamics of signalling pathways associated with
dynamic organelles. We in particular formalise organelle dynamics in the context of
dynamic compartmentalisation using either population balance equations, as introduced
in section 2.2.2, or by Master equations, as introduced in section 2.3.
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3.2.3. Biology of cell death decision-making
In the subsequent sections of this chapter, we will examine the application of our find-
ings concerning quasi-particle kinetics in compartmentalised stochastic reaction kinetics
systems in the context of cellular death decision-making. For this, we will briefly review
the intrinsic apoptotic signalling pathway, with particular emphasis on the interactions
within the Bcl-2 protein family and the specifics of mitochondrial dynamics.

3.2.3.1. Biology of mitochondrial dynamics

Mitochondria are membrane-bound organelles that are present in most eukaryotic cells
and are strongly associated with aerobic respiration and the production of adenosine
triphosphate [53, 132–134]. As opposed to the ‘bean-shaped’ form often depicted in car-
toons, mitochondria have different morphologies depending on the type and state of the
cell and are commonly found as reticulated clusters of varying sizes [53]. They consist
of a double-membraned structure, containing an outer membrane (MOM) and an inner
membrane (MIM). The space between the MOM and the MIM is known as the inter-
membrane space, while the MIM encloses the matrix. The MIM is highly folded to form
cristae, which increases its surface area. It also houses the proteins of the respiratory
chain, and its activity generates a membrane potential across the MIM [64]. Further-
more, mitochondrial DNA and ribosomes are located within the matrix, allowing for the
transcription of proteins that form part of the respiratory chain [135]. However, the ma-
jority of proteins that make up the structure of mitochondria are synthesised in the cell
nucleus. The OMM binds a variety of trans-membrane proteins associated with different
signalling pathways, making mitochondria not only important for metabolic regulation in
cells, but also for apoptosis, inflammation signalling in response to viral infections, and
hormonal signalling [54].

Mitochondria are highly dynamic organelles[59, 60, 138–141], actively traversing the
cytosol and undergoing rapid cycles of fusion and fragmentation, commonly referred to as
mitochondrial fission. Through this process, they are able to remodel their morphology
[59]. Mitochondrial motility relies on the active translocation by molecular motors along
the microtubule cytoskeleton, with dynein motors driving the mitochondria towards the
minus-end of microtubules, and kinesin motors towards the plus-end, creating a tug-of-war
scenario for individual mitochondria [142]. This results in a high degree of mixing, with
mitochondria in some cell types exploring up to approximately 80% of the cell content in
just 15 minutes [143]. The linkage to the cytoskeleton is also responsible for the observed
network-like structures of mitochondrial clusters. Mitochondria are also subject to steady
growth and degradation, resulting in a turnover rate with a half-life between nine and 24
days for different tissues in rats [144].

In comparison to the timescale of mitochondrial turnover, rapid events of fusion and
fission take place in mitochondria on the timescale of minutes. Mitochondrial fusion is
composed of two steps, outer-membrane fusion and inner-membrane fusion, both of which
are mediated by GTPases that hydrolyse guanosine triphosphate (GTP) to guanosine
diphosphate (GDP). Mnf1 and Mnf2 are responsible for the fusion of the outer mito-
chondrial membrane while Opa1 is responsible for the fusion of the inner mitochondrial
membrane [133, 138]. As outer and inner membrane fusion are two separate events, only
partial fusion of mitochondria can occur, in which only the outer membrane fuses. In the
context of apoptosis, fusion of the outer membrane is sufficient for the mixing of Bcl-2
proteins; however, depending on the experimental assays, only full fusion events are de-

59



3. Application to multi-scale fluctuations in the regulation of cell death
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Fig. 3.2.: Mitochondria inside a cell shows as multiple compartments. (a) Fluorescent
microscopy image of cell nucleus (DAPI, blue) and mitochondria (TMRE, red) of hu-
man induced pluripotent stem cell (hiPSC). Image courtesy Lina Hellwig and Philipp
Mergenthaler. (b) Image is adapted from [136] Fig. 1 A. The cell nucleus (DAPI,
blue) and mitochondria are dyed (Cyt c antibody, red). (c) Image from [63] from
Fig. 2 C demonstrating mitochondrial dynamics. Individual mitochondria are fluo-
rescently labelled (green) and tracked by fluorescent microscopy. When mitochondria
fuse, the fluorescent dye spreads in the intermembrane space and thus colours both
mitochondria. This experimental setup allows for the quantification of mitochondrial
fusion rates. White numbers are the time steps after activation of the fluorescent dye
in seconds. This setup demonstrates that mitochondria undergo cycles of fusion and
fragmentation on the timescale of minutes. The width of a black strip is 10 µm. (d)
Transmission electron microscope image of a mitochondrion showing the membrane
structure of the outer and the inner membrane. Image adapted from [137].

tectable, thus underestimating the rate of mitochondrial fusion in the context of apoptotic
decision-making [62, 145, 146]. Similarly to mitochondrial fusion, fission is also mediated
by the GTPase Drp1 for the outer mitochondrial membrane [133, 138]. By regulating
the abundance of functional mitochondrial fusion and fission events, the mitochondrial
morphology can be modified. Increasing the abundance of fission proteins, or the inhibi-
tion of fusion proteins leads to the formation of many small, separated mitochondria with
predominantly spherical and tubular shapes, referred to as a fragmented state [59]. Con-
versely, the suppression of fission proteins, or the increase in fusion proteins, results in the
formation of large network-like structures, up to the formation of a single, fully-connected
mitochondrion, referred to as a hyperfused morphology.

Mitochondrial morphology is closely related to the number of mitochondria present. In
physiological conditions, typically several hundred for morphologies of intermediate and
fragmented forms are present inside a mammalian cell [59]. Rates of mitochondrial fusion
and fission balance each other in a steady state, resulting in a consistent distribution of
mitochondrial sizes [147]. Studies suggest that mitochondrial fusion rate is independent
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Fig. 3.3.: Schematic of the Bcl-2 reaction network with focus on the Bax activation
and pore formation kinetics. This schematic illustrates a coarse-grained version
of Blc-2 reaction network. Here, the central kinetics include the facilitated activation
and membrane insertion of inactive Bax by activators and autocatalytic binding. Bax
unbinding is facilitated by hetero-dimer formation with inhibitors. Bax homo-dimers
accumulate to form pores in the outer mitochondrial membrane, which allow for the
release of the cytotoxin Cytochrome c. Compare with [128, 129, 150, 151].

of size, while mitochondrial fission rate is directly proportional to the size of mitochondria
[61]. Estimates of mitochondrial fusion rates can range from as low as 0.05 events per
minute per mitochondrion in human axons [61], where mitochondrial density is low, to as
high as 1.3 events per minute per mitochondrion in HeLa cells [62, 148]. Based on these
experimental findings, we consider mitochondria as highly dynamic organelles, which
undergo fusion and fission/fragmentation events on the timescale of minutes.

3.2.3.2. Biology of apoptosis (Bcl-2 signalling pathway)

Apoptosis is a form of programmed cell death, by which a cell is fragmented into small
vesicles where biomolecules are degraded. By this, apoptosis differs from necrosis, which
involves cell rupture and the release of cytotoxic material [149]. It is a highly regulated
process that, once initiated, cannot be stopped [41]. The intrinsic apoptotic pathway is
activated in response to cell stress and the extrinsic pathway is initiated by external sig-
nals via the death receptors (TNF receptor family). Regulation of the intrinsic pathway
is achieved by proteins from the Bcl-2 family, which mediate the release of cytochrome
c (Cyt c) from mitochondria [41, 150]. Both pathways lead to the activation of cas-
pases, which degrade proteins and mRNA within the cytosol, and trigger the destruction
of chromosomal DNA by DNase. In the following, we focus on the intrinsic apoptotic
pathway.

The intrinsic apoptotic signalling pathway is initiated by a variety of stress signals,
which converge in the regulation of the abundance of proteins of the Bcl-2 family. Proteins
of the Bcl-2 family mediate the initiation of apoptosis through the release of Cyt c from
mitochondria [150]. Bcl-2 proteins form a pore in the mitochondrial outer membrane
[151], facilitating the release of Cyt c, which is a bottle-neck of the intrinsic pathway
and inhibition of its release results in inhibition of apoptosis initiation [149]. Cyt c
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in the cytosol then enables the formation of the apoptosome protein complex, which
activates different caspases that conduct apoptosis. In this work, we consider the apoptotic
signalling pathway with particular emphasis on Bcl-2 protein interaction up to the release
of Cyt c.

The Bcl-2 protein family comprises a number of proteins that share Bcl-2 homology
(BH) domains. Variations in the number of homology regions are observed amongst
family members, while four distinct BH domains (BH1, BH2, BH3, and BH4) are dis-
tinguished; compare for the following paragraph with [150]. Additionally, some family
members contain trans-membrane domains, which facilitate binding to the mitochondrial
outer membrane. The Bcl-2 family is divided into three groups, based on primary func-
tion: anti-apoptotic proteins (Bcl-2, Bcl-XL, Bcl-W, Mcl-1), pro-apoptotic pore-formers
(Bax, Bak), and pro-apoptotic BH3-only proteins (Bid, Bad, Noxa, Puma). Notably, Bax
and Bak both exist in active and inactive forms; homo-dimerisation is inhibited in the
inactive form. While Bak is anchored to the mitochondrial outer membrane in both active
and inactive forms, Bax is located in the cytosol when inactive and binds to the mito-
chondrial outer membrane upon activation. Pro-apoptotic BH3-only proteins activate Bax
and Bak, while anti-apoptotic proteins deactivate them, form hetero-dimers, and/or bind
pro-apoptotic BH3-only proteins. The various anti-apoptotic and pro-apoptotic BH3-only
proteins differ in terms of binding affinities, preferred localisation (cytosol or mitochon-
drial outer membrane), and abundance. Abundance is subject to a variety of cellular
signals, such as metabolic conditions, nutrient deprivation, DNA damage and radiation,
as well as several toxins. Mitochondrial outer membrane permeabilisation (MOMP) is
the process of forming pores in the mitochondrial outer membrane, which leads to the
leakage of mitochondrial content into the cytosol; this is linked to mitochondrial lysis and
degradation.

We consider the accumulation of Bax or Bak in their active form on the outer mito-
chondrial membrane to be a hallmark of apoptosis induction, leading to the release of Cyt
c into the cytosol [41, 149, 150]. As mitochondria are typically found as a set of clusters
of varying sizes, the release of Cyt c for weak apoptotic stimuli might happen only in
a subset of the clusters [56, 152–155]. We refer to apoptotic decision-making, as a cell
regulates the accumulation of active Bax or Bak over the set of different mitochondria.
Specifically, we consider the concentration of activated Bax and Bak overall mitochondria
as a proxy for the state of the apoptotic signalling pathway.

3.3. The regulation of cell death in the framework of
compartmentalised systems

In order to apply our finding of chapter 2 to cell death decision-making, we next specify
on the stochastic reaction dynamics and compartment dynamics. For the stochastic reac-
tion dynamics, we discuss the Bcl-2 reaction network in the context of chemical reaction
kinetics, as introduced in section 2.2.1. Based on this formalism, we then specify on the
microscopic model introduced in section 2.3, as we consider the dynamics of the intrin-
sic apoptotic signalling pathway by both accounting for the Bcl-2 reaction kinetics and
mitochondrial dynamics. To this end, we specify also on the effective population balance
equation Eq. 2.55 in section 2.4.
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3.3.1. Modelling the Bcl2 reaction network

In this section, we focus on models for the kinetics of the Bcl-2 protein signalling pathway
reaction network. We propose a simple model of how Bcl-2 protein interactions mediate
the release of Cyt c and set this in relation to the current literature. We then place this
model into the context of the population balance equation and specify the qualitative form
of deterministic drift vector Fη(t)(c⃗) and reaction binding noise diffusion matrix Dη(t)(c⃗)
in Eq. (2.55).

The temporal progression of mitochondrial outer membrane permeabilisation (MOMP),
the dynamics of Bax pore formation mechanism, and the details of the Bcl-2 interaction
network are today still subjects of active research [150]. Several models have been pro-
posed to capture the qualitative dynamics of the apoptotic signalling pathway, which
mainly focus on the interaction between proteins in the Bcl-2 family [129, 150, 156].
Central to these models is the link between increased concentrations of Bax-Bax and
Bak-Bak homo-dimers and increased pore-formation [58, 157]. Here, we briefly study the
simplest of such models, which accounts for the auto-catalytic self-activation of Bax by
Bax-Bax homo-dimers, and the role of anti-apoptotic proteins and pro-apoptotic BH3-
only proteins, as shown in Fig. 3.3. We do not distinguish between various pro-apoptotic
BH3-only proteins and anti-apoptotic proteins, and collectively refer to the concentration
of pro-apoptotic BH3-only proteins as [Act], and to the concentration of anti-apoptotic
proteins as [Inhib]. For the sake of simplification, we exclusively focus on Bax proteins
and do not consider Bak proteins explicitly. Inactive, cytosolic Baxc is activated, and
is transformed to active, membrane-bound Baxm, which then forms membrane-bound
homo-dimers BaxD:

Baxc
k1[Act]+k2[BaxD]−−−−−−−−−−⇀↽−−−−−−−−−−

k3[Inhib]
Baxm and 2Baxm

k4−⇀↽−
k5

BaxD, (3.1)

where [X] refers to concentrations and we assume well-mixed conditions. Accounting for
the conservation of mass for Bax with [Baxtot] = [Baxc] + [Baxm] + 2[BaxD], the steady
state solution in the thermodynamic limit yields

0 = k1[Act]
(

[Baxtot]− [Baxm]− 2k4

k5
[Baxm]2

)

+ k2k5

k4
[Baxm]2

(
[Baxtot]− [Baxm]− 2k4

k5
[Baxm]2

)
− k3[Inhib][Baxm], (3.2)

which is for given k1, k2, k3, k4, k5, and [Baxtot] a quartic equation in [Baxm]. Notably, this
quartic equation admits analytic solutions. Yet, as the analytic solution is convoluted, we
here restrict to investiagting a graphical analysis to emphasize the general features of the
solution.

We normalise the concentrations to [Baxtot] ≡ 1 [conc.], where [conc.] refers to a
rescaled concentration unit. τ refers to a time unit. Fixing the reaction rates k4/k5 =
0.1 [conc.]−1τ−1, k2 = 80 τ−1 and k1 = k3 = 1 τ−1, we find regions of bistability, as we
vary the concentration of pro-apoptotic and anti-apoptotic proteins, see Fig. 3.4. For this
effective one-dimensional dynamics, we interpret the temporal evolutions of Baxm as an
effective gradient dynamics ∂t[Baxm] = −∇BaxmV ([Baxm]). This interpretation allows for
an intuitive approach to the kinetics of the membrane-bound Bax concentration [Baxm].
We find that [Baxm] effectively evolves in a bistable potential, in which the concentration
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Fig. 3.4.: The Bax accumulation dynamics are effectively captured by a bistable
potential. For the parameters specified in section 3.3.1, we systematically vary the
concentration of activator (a,b) and inhibitor concentration (c,d). In (a) and (c),
we find that the bifurcation diagram shows a cusp-bifurcation. Stable fixed points
are indicated by a bold line, while the unstable fixed points are represented by a
dashed line. The one-dimensional effective dynamics in [Baxm] allows for tracking
the dynamics as gradient dynamics. With dt[Baxm] = −dcVeff([Baxm]), the effective
potential is plotted in (b) and (d). We find that the effective potential is a bistable
potential. Changing the activator and the inhibitor concentration changes the skew
of the potential. Different colours correspond to different activator and inhibitor
concentrations, accordingly indicated also in (a) and (c). All concentrations are in
the effective units [conc.], and Veff in [conc.]2/τ , as introduced in section 3.3.1.

of pro-apoptotic and anti-apoptotic proteins sets the skew of the potential. We link the
two wells of the bistable potential with two different steady-states of the kinetics, which
describe two different functional operating states of the signalling pathway. We refer to
the state with low [Baxm] concentration as physiological Bax concentration state, while
we term the high concentration state as apoptotic state. We associate the apoptotic state
with the increased formation of pores in the mitochondrial membrane and the release
of Cyt c. In the context of apoptotic decision-making, we are interested in the transi-
tion from the physiological to the apoptotic state. This translates in the picture of the
effective bistable potential to a transition from the low-concentration well to the high
concentrations state.

Extensive apoptotic models that take into account varying affinities of different pro-
apoptotic and anti-apoptotic proteins have qualitatively agreed with the finding of a bista-
bility for membrane-bound Bax [129, 141, 156]. This qualitative result is also robust when
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3.3. The regulation of cell death in the framework of compartmentalised systems

subjected to a refined analysis considering the preferential spatial location of proteins of
the Bcl-2 family in either the cytosol or the mitochondrial outer membrane. A precise
measurement of reaction rates and total concentrations is experimentally challenging and
prone to error. Order of magnitude estimates demonstrated that bistability can occur
for a physiologically plausible parameter choice [129, 141], and footage of bistability for
membrane-bound Bax was observed in experiments [141, 156]. Furthermore, the concen-
trations of Bcl-2 proteins estimated on individual mitochondria is approximately ∼ 20 nM
[158] for the physiological state, which is in agreement with measured estimates of a few
hundred Bax proteins per mitochondrion [159]. These estimates suggest that the apop-
tosis reaction pathway should be treated in a stochastic framework, as introduced in
section 2.2.1, compare also to [70]. This formally sets the basis for the estimation of the
drift term Fη(t)(c⃗) and the diffusion term Dη(t)(c⃗) within the context of the population
balance equation in Eq. (2.55).

Estimating the membrane diffusion of proteins of size ∼ 25 kDa with ∼ 10 µm2 s−1 [160],
results in a membrane mixing on the order of seconds. This leads us to consider mitochon-
dria as a well-mixed reaction compartment. We assume fast diffusion of the cytosolic Bcl-2
family proteins with higher molecular copy numbers than on individual mitochondria and
model them as a fluctuating signal η(t). We neglect spatial correlation between organelles
through diffusion of the cytosolic Bcl-2 proteins and consider independent realisations of
stochastic apoptotic dynamics on separated, not-fused mitochondria. Molecular binding
noise induces stochastic transitions of individual mitochondria from the low to the high
membrane-bound Bax concentration state. Conversely, the transition from the high to
the low concentration state is inhibited by the occurrence of MOMP and the subsequent
lysis and degradation of mitochondria. Although we can formally extract estimates for
the drift term Fη(t)(c⃗) and the diffusion term Dη(t)(c⃗) from reaction network models, this
requires the precise estimation of reaction rates and physiological concentrations of Bcl-2
family proteins by experimental measurements. Alternatively, a qualitative discussion of
the signalling pathway kinetics can be used to estimate how different model refinements
qualitatively affect the kinetics. We will investigate this in the next section.

3.3.2. Effective model of the apoptotic signalling pathway
We are interested in investigating how mitochondrial dynamics qualitatively affect the
kinetics of the Bcl-2 signalling pathway. Quantitative analysis of apoptosis quickly be-
comes analytically intractable, is highly specific for given cell types and can be prone to
errors due to the estimation of a large number of reaction rates and physiological con-
centrations, compare for example with [159]. In contrast, a qualitative analysis allows us
to evaluate the influence of various parameters and the general effects of mitochondrial
dynamics on apoptotic signalling. Therefore, we introduce an effective model for the
temporal evolution of the concentration of membrane-bound Bax on each mitochondrion.
Our motivation for using an effective model is to enable analytic tractability, which allows
us to estimate how model refinements qualitatively affect our findings, as we will show in
section 3.4. To ensure plausible results, we estimate the parameters of the effective model
by comparison with experiments

In the effective model, each mitochondrion is characterised by the membrane-bound Bax
concentration [Baxm] ≡ c̃ and its size s, where we introduced c̃ for notational simplicity.
Recall, that the membrane-bound Bax concentration c̃ evolves stochastically in a bistable
potential, where the skew of the potential is set by the level of stress metabolites in the cell
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3. Application to multi-scale fluctuations in the regulation of cell death

cytosol, as discussed in section 3.3.1. Consistent with the picture of a bistable potential,
two attractive fixed points of the kinetics for c̃ can be distinguished: a low and a high
potential well. These concentrations fixed points represent two different equilibrium states
of the signalling pathway and are denoted by c̃∗

l and c̃∗
h, respectively. The potential well

with the higher Bax concentration, c̃∗
h > c̃∗

l , corresponds to the release of Cyt c from the
mitochondrion. We define the effective potential

Veff(c̃) = a(c̃− c̃0)4 − b(c̃− c̃)2 + α(c̃− c̃0), (3.3)

where we used a constant c̃0 to centre the potential around the origin for notational
simplicity. a, b ∈ R+ are positive real-valued parameters of the bistable potential. α ∈ R
refers to the initial skew of the potential, which is the initial apoptotic priming.

The exact functional form of D(c̃) requires precise estimation of molecular concentration
and chemical reaction rates in the Bcl-2 signalling pathway, making estimates of D(c̃)
highly prone to errors and sensitive to model details. Here, we make use of a strong
approximation of D(c̃), which grants analytical tractability and allows us to study how
variations in D(c̃) can affect the findings qualitatively. As c̃∗

h is associated with the release
of Cyt c, we are mainly interested in fluctuations around c̃∗

l and the escape into the high
concentration state. Consequently, we approximate D(c̃) around c̃∗

l . As a rule of thumb,
the diffusion coefficient is proportional to the total amount of proteins, such that D(c̃) ∼ c̃.
Assuming that the low concentration well and the barrier of the potential, c̃∗

l ∼ c̃∗
b, are

on the same order of magnitude, we approximate to zeroth order D(c̃) ≈ D(c̃∗
l ) ≡ D.

Note that generalisations to higher orders can be incorporated into further analysis. The
effects of multiplicative noise will be discussed at the end of section 3.4. Additionally, we
account for external signals η(t), in which we incorporate changes in pro-apoptotic and
anti-apoptotic proteins with. Together, the effective model shows as

∂tc̃ = −∂c̃Veff(c̃) + D√
v
ξ(t) + η(t), (3.4)

where ξ(t) refers to white Gaussian noise and we correct for the size of mitochondria
by
√
v in agreement with the approximation presented in section 2.2.1. We discuss how

modifications of the potential or the noise affect our qualitative findings in section 3.4.
For fixed η(t) = η, we rescale the potential, such that the low concentration state is c∗

l ≡ 0
and c∗

h ≡ 1. In the notation of Eq. (3.4), we define weak as stimuli η(t) which let the
system predominantly remain in a bistable configuration. Conversely, we define strong
apoptotic stimuli as stimuli in which the high concentration state c∗

h is the only stable
fixed point of the system. In particular, we only speak of apoptotic decision-making in
the context of weak apoptotic stimuli, as the system necessarily evolves quickly into the
high Bax-concentration state for strong apoptotic stimuli.

To include also on the mitochondrial dynamics, we adapt the notion of hybrid systems
as we numerically implement a trajectory version of the multi-scale dynamics. To this
end, we define the state of the system analogous to Eq. (2.19) in section 2.3, as

S =


...

[ci, vi]
...

 . (3.5)
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mitochondrial dynamics induce concentrations fluctuations 
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tation rate φ

membrane-bound Bax changes the statistics of fusing mitochondria

t

η(t)

η(t) Bax

Fig. 3.5.: Effective model of the intrinsic apoptotic signalling pathway. We investigate
the response kinetics of the intrinsic apoptotic signalling pathway to fluctuating stress
stimuli η(t) by explicitly accounting for the Bax binding dynamics and mitochondrial
fusion and fragmentation. Increased stress levels translate into a increased binding
of Bax to the mitochondrial membrane. Mitochondrial fusion and fragmentation dy-
namics result in the steady redistribution of proteins among mitochondria. By this
mitochondrial dynamics induce concentration fluctuations in membrane-bound Bax.
Conversely, mitochondrial binding and unbinding dynamics induce concentration dif-
ferences between mitochondria. By this, Bax dynamics affect the statistics of fusing
mitochondria, with regard to what the concentrations of the two fusing mitochondria
are. Moreover, the accumulation of Bax results in the formation of pores on the
mitochondria membrane. the release of toxin Cyt c and the subsequent lysis of cells.
By this, Bax dynamics directly affect the statistics of mitochondria with regard to
their membrane-bound Bax concentration at the population level.

We define that mitochondria are fully described by their size vi and the Bax concentration
ci on their membranes. Symbolically, we define stochastic trajectories of the system as

d

dt
S(t) = LBax[S(t)] + Ffus+frag[S(t)]. (3.6)

Here, LBax[S(t)] refers to the stochastic dynamics in Eq. (3.4) that happen in parallel
and independently on the different mitochondria. Ffus+frag[S(t)] refers to stochastic, time-
discrete events of mitochondrial fusion and fragmentation that alter the system. For the
stochastic compartment fusion and fragmentation dynamics, we consider the stochastic
rates defined in the context of Smoluchowski aggregation-fragmentation dynamics defined
in section 2.2.3. We consider this model for the numerical simulation of the system, in line
with the numerical routine described in section B.1. [100, 147] have demonstrated that the
Smoluchowski aggregation-fragmentation dynamics adequately capture the mitochondrial
size distribution, as size-independent fusion kernels and fission kernels proportional to the
mitochondrial size are considered. We assume that mitochondrial dynamics happen on
the timescales of minutes, as measured in [61, 62, 145, 148]. With this model, we want to
investigate if we can also identify in the context of apoptosis the predicted quasi-particle
kinetics discussed in chapter 2. Moreover, we want to assess how mitochondrial dynamics
qualitatively affect the response kinetics of the apoptotic signalling pathway and possibly
assess the biological functions of mitochondrial dynamics.
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Fig. 3.6.: Comparison of Blc-2 reaction kinetics between simulated and experimen-
tal timescales. By comparing with experimental data, we adjust the timescale for
the translocation from the low to high Bax concentration state on the mitochondrial
membrane. (a) Shows the collective translocation from the low to the high Bax con-
centration state in simulations of the effective model Eq. (3.4) in response to a strong
apoptotic stimulus. Plotted is the mean Bax concentration on the mitochondrial
membrane ⟨[Baxm]⟩, where the average is drawn over the ensemble of mitochondria.
(b) is a Figure presented in [161] in Fig. 2E. Here, they track the Bax accumulation
dynamics with fluorescent microscopy of individual mitochondria. The presented line
represents an ensemble average. We rescaled (a) to visually fit to (b). By comparison,
we estimate the characteristic timescale tr = 15 min as the translocation timescale.
We fix all other physiological timescales of the effective model accordingly.

For a qualitative analysis, we are interested in order-of-magnitude estimates of the
parameters in Eq. (3.4), which we find by comparison with experiments. We adjust a and
b according to the time-scale of Bax accumulation on the mitochondrial membrane upon
a strong apoptotic stimulus. [161] measured the duration of the transition from the low
to the high Bax-membrane concentration state in response to the poisoning of the cell
with apoptosis-inducing drug STS and found an estimate of δt ∼ 15 min, as illustrated in
Fig. 3.6. By this, we also define the characteristic timescale of our system as tr = 15 min.
This timescale gives an order of magnitude estimate for the movement c∗

l to c∗
h if the

bistability is demolished by a negative skew α≪ 0. This timescale coincides roughly with
the measurement that Bax translocates to mitochondria at a rate of 4.7±0.2×10−3 s−1, as
obtained by fluorescent recovery after photo-bleaching (FRAP) experiments [162]. This
is consistent with an equilibrium between the on and off rates of Bax.

While an estimate of D based on molecular concentrations and reaction rates is error-
prone, we estimate the order of magnitude of this parameter by the escape rate of indi-
vidual mitochondria from c∗

l to c∗
h in the presence of weak apoptotic stimuli, as done in

experiments by [153, 155]. In particular, [155] showed that over a time span of 4h only
a subset of < 10% mitochondrial mass underwent mitochondrial outer membrane perme-
abilisation in response to weak apoptotic stimuli, which gives an order of magnitude for
D for a given potential Veff(c).

In the following section, we compare numerical modelling with the qualitative pre-
dictions of quasi-particle kinetics, see section 2.5, in the context of apoptosis. For the
numerical simulations, we employ the kinetics of the effective model in Eq. (3.4). Addi-
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tionally, we consider a finite set of organelles of different sizes vi, which undergo discrete
events of organelle fusion and fragmentation. As investigated in section 2.4.5, the effects
of organelle fusion and fragmentation are likely to dominate the effects of organelle dy-
namics, if we consider homeostatic conditions in the absence of apoptotic stimuli and no
explicit dependence of the organelle dynamics on the Bax concentration c. Furthermore,
we assume that the kinetics of the signalling pathway are fast compared to the lysis of
mitochondria. In section 3.4, we will relax on this assumption and explore how the inclu-
sion of the lysis of mitochondria due to pore formation on the mitochondrial membrane
affects our qualitative findings.

3.4. Quasi-particle kinetics in the regulation of cell death
In section 2.6, we elucidated on how the dynamics of compartmentalised stochastic reac-
tion systems can be captured by simple equations of motion for a quasi-particle. To apply
this to the specific organelle-associated signalling pathway of cell death decision-making,
we discussed the specifics of mitochondrial dynamics in section 3.2.3.1, the kinetics of the
Bcl-2 reaction network in section 3.2.3.2, and an effective model in Section 3.3.2. Based
on the effective model, Eq. (3.6), we qualitatively study the effects of mitochondrial fusion
and fragmentation on the response kinetics of the apoptotic signalling pathway to apop-
totic stimuli. In this section, we display the benefit of the effective equation of motion
Eq. (2.73) for an intuitive approach to the kinetics of a compartmentalised stochastic
system, as we perform a graphical analysis of Eq. (2.73). Subsequently, we compare nu-
merical simulations with semi-analytic solutions of the effective equations of motion, as
we consider physiologically plausible parameter estimates. We focus on fixed apoptotic
stimuli η(t) = η in this section and generalise our findings to fluctuating stimuli in the
subsequent section 3.5

In section 3.3.1, we discussed how the membrane-bound Bax concentration c is quali-
tatively described by stochastic movement in a bistable potential. We use c following a
gradient dynamics to increase our understanding of the effective kinetics of c. We consider
fixed apoptotic stimuli η(t) = η and a time-invariant effective potential Veff(t) = Veff. In
the absence of apoptotic signals, the potential is skewed to a stable fixed point at low
Bax membrane concentrations, c∗

l . An apoptotic stimulus will drive it into the bistable
region, where both the high and low concentration states, c∗

h and c∗
l , are stable fixed

points. Recall, that we refer to weak and strong apoptotic stimuli depending on whether
the potential is skewed towards the bistable or monostable region, respectively. Of par-
ticular interest in the context of apoptotic decision-making are weak apoptotic stimuli,
where deregulation of the apoptotic signalling pathway can lead to abnormal cell death
or carcinogenic effects.

We start our qualitative analysis by examining numerical simulations of the compart-
mentalised stochastic reaction kinetics system. In accordance with the model outlined
in section 3.3, we observe that following the application of a weak apoptotic stimulus,
two qualitatively distinct distributions emerge, as depicted in Fig. 3.7. Fig. 3.7 illus-
trates schematically the dispersion of the mitochondrial ensemble in the concentration
phase space, with and without mitochondrial fusion and fragmentation. At the bottom
of Fig. 3.7, we provide an illustration of the distributions in the concentration phase
space, with mitochondria of varying concentrations depicted in different colours. No-
tably, when fusion and fragmentation processes are absent, the mitochondrial ensemble
dispersed throughout the concentration phase space, with organelles occupying both the
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Fig. 3.7.: Mitochondrial dynamics give rise to a localisation of the apoptotic sig-
nalling pathway in the concentration phase space. We conduct numerical
simulations to assess qualitatively the effect of mitochondrial fusion and fragmenta-
tion of the simulation. For this we choose physiological parameter conditions, as we
match the translocation time-scale to tr = 15 min and set the rate of mitochondrial
fusion and fragment to µtr = 3.3. We adjusted the effective (molecular) diffusion
coefficient to Dtr = 6 × 103 in rescaled concentration units, which results in the
absence of mitochondrial fusion and fragmentation to the stochastic switching of a
subset < 10% from the low to the high concentration state, in line with the observa-
tion in [155]. In the top plot, we have an illustration of the effective potential, where
individual mitochondria are represented as red dots. In the middle, a histogram il-
lustrates the frequency statistics of the mitochondrial ensemble in one-dimensional
[Baxm] concentration space. The bottom illustrates that ensemble statistics in the
concentration phase space and the real space are distinctly different. The identical
mitochondrial size distributions are considered in (a) and (b). While we see the
random accumulation of Bax on mitochondria in ensembles with no mitochondrial
fusion and fragmentation dynamics in (a), we find in (b) that mitochondrial fusion
and fragmentation dynamics give rise to a localisation of the mitochondrial ensem-
ble in the concentration phase space. The stochastic accumulation of Bax and the
subsequent release of the toxin Cyt c is suppressed.

high and low Bax concentration states. Conversely, when mitochondria fusion and frag-
mentation are present, the ensemble of mitochondria remains as a collective in the low
concentration state, consistent with experimental evidence of limited mitochondrial outer
membrane permeabilisation (MOMP) [153–155].

Next, we perform a graphical analysis of the effective equations of motion, Eq. (2.73).
For weak apoptotic stimuli, we are interested in the transition from the low Bax concen-
tration state c∗

l to the high Bax concentration state c∗
h. In order to qualitatively examine

this, we illustrate the kinetics of the quasi-particle in a bistable potential. We do not
specify the details of the potential, as this analysis is purely qualitative. Our findings
will be refined by considering physiologically plausible parameter estimates after study-
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Fig. 3.8.: Graphical analysis of the equations of motion for the quasi-particle in
the context of apoptotic decision-making. The simple equations of motion in
Eq. (2.73) allow for graphical analysis, which we applied to the simple qualitative
model in Eq. (3.4). From this, we can directly read off the qualitative response
kinetics of the apoptotic signalling pathway to fixed, weak apoptotic stimuli. Here, we
present a qualitative analysis with parameter choices in arbitrary units. (a) Plotted
are the effective potential, its gradient and its third derivative. (b) phase-portrait of
n Eq. (2.73) in a bistable potential. Red lines are the nullclines of the dynamics. The
stable fixed point is indicated by a black star. the grey start refers to the ensemble
mean at time t = 0. (c) Eq. (2.65) gives an estimate for the dynamics along the central
manifold. (d) Graphical integration of the rates in (c) predicts sigmoidal response
kinetics of the localised mitochondrial ensemble in the concentration phase space.
There here presented analysis only has a qualitative character and emphasises that
our analysis allows us to qualitatively assess the kinetics of the multi-scale system
sketched in section 2.3 by a simple graphical analysis.

ing the dynamics qualitatively. In Fig. 3.8 (a), the bistable potential subjected to a weak
apoptotic stimulus is shown, along with its gradient and third derivative. The grey line
indicates zero-crossings, which correspond to the fixed points of the kinetics for point
particles in the case where γ = 0. The third derivative of the potential in the example
shown is a linear function. The third derivative γ/2 · V ′′′(c) reduces the barrier between
the two stable fixed points for the quasi-particle kinetics, and thus acts like a perturba-
tion. Note, that the strength of the perturbation is proportional to the variance over all
mitochondrial compartments. This effectively reduces the region of attraction of the fixed
point at low Bax concentrations for the quasi-particle.

Fig. 3.8 (b) displays the phase portrait of the equations in Eq. (2.73). The red lines
represent the nullclines, where both differential equations independently vanish. The
crossings of the nullclines indicate fixed points. For finite dispersion above a critical value
(γ > γ∗), only the high concentration state (c∗

h) remains as a stable fixed point, even
though the potential Veff(c) is still in the bistable region. The stable fixed point is indicated
by a black star, and the position of the mitochondrial ensemble in the low-concentration

71



3. Application to multi-scale fluctuations in the regulation of cell death

state is indicated by a grey star. Blue arrows show the flow in the concentration phase
space. We observe the emergence of a slow centre manifold, which the flows rapidly
decay towards. The centre manifold is well approximated by the nullcline where ∂ts = 0.
Consequently, the dynamics of m along the centre manifold are well approximated by
Eq. (2.74). In Fig. 3.8 (c), we sketch Eq. (2.74) from the grey star to the black star. We
observe that the rate increases as the position of the mitochondrial ensemble m approaches
the stable steady state. By performing a graphical integration, we find that the quasi-
particle relaxes to the stable steady state following a sigmoidal relaxation, as shown in
Fig. 3.8 (d). The transition into the high Bax concentration state is initially suppressed
on short timescales and facilitated on long timescales after the ensemble has crossed the
potential barrier between the two states. Note, however, that this qualitative analysis
does not enable us to further assess the timescales which would correspond to short and
long timescales. We elaborate on these timescales by a semi-analytic approach after we
study the qualitative differences we expect in the response kinetics due to mitochondrial
fusion and fragmentation.

As demonstrated in section 2.7, we expect altered fixed points for the quasi-particle
in contrast to a hyper-fused mitochondrial network or mitochondria with no fusion and
fragmentation. To this end, we compare four different hypothetical mitochondrial ensem-
bles, which differ in their dynamics. First, we consider an ensemble with mitochondrial
fusion and fragmentation, which exhibits the emergent collective, quasi-particle degree of
freedom. Second, we consider an ensemble with no mitochondrial fusion and fragmenta-
tion, which has the same mitochondrial size distribution as the ensemble with fusion and
fragmentation. We consider as a third ensemble, an organelle ensemble with no fusion and
fragmentation, again the same size distribution, but with a rescaled diffusivity, Drs < D.
Here, we rescale the diffusivity such that both the organelle ensemble with fusion and
fragmentation and this organelle ensemble show the same variance in dispersion in the
absence of apoptotic stimuli. As a fourth model, we consider an ensemble where all mito-
chondria are hyper-fused to build a big, percolated mitochondrial network. We formally
set s → ∞, and hence D → 0. We refer to this ensemble as a point particle in analogy
to the quasi-particle. For the case of vanishing diffusivity (D → 0), both states c∗

h and c∗
l

are stable fixed points, and transition between the two states is only achieved when the
bistable region is left in response to strong apoptotic stimuli. In contrast, when diffusiv-
ity is finite, D > 0, an ensemble of mitochondria with absent fusion and fragmentation,
mitochondria are expected to randomly switch between the high and low concentration
states.

We next compare our qualitative predictions of the response kinetics with numerical
simulations, as shown in Fig. 3.9. For this, we again consider the four hypothetical mi-
tochondrial ensembles. Here, we compare the changes in the mean amount of membrane-
bound Bax over the mitochondrial ensemble (⟨c⟩) in response to apoptotic stimuli and turn
to physiologically plausible parameter choices. Note, that we obtained the physiologically
plausible parameter choices by comparing with experimentally measured timescales of the
systems, as outlined above. Specifically, we find that the response kinetics for the four
different ensembles are qualitatively similar for strong apoptotic stimuli, Fig. 3.9 (a), but
differ for weak apoptotic stimuli, Fig. 3.9 (b). While the ensemble with no mitochondrial
fusion and fragmentation and vanishing diffusivity is stable in low-concentration states,
the two ensembles with finite diffusivity show an approximately exponential relaxation.
Notably, even on short timescales, a small proportion of mitochondria switch into the
high-concentration state in response to weak apoptotic stimuli. This is in contrast to the

72



3.4. Quasi-particle kinetics in the regulation of cell death

������

0 5 10 15 20 25 30
time  t/tr

0.0

0.2

0.4

0.6

0.8

1.0
 a

ve
ra

ge
 B

ax
m

 〈c
〉 [

au
]

 μ · tr = 3 . 3

 μ · tr = 0 . 0

 μ · tr = 0 . 0 ,  Dres

 μ · tr = 0 . 0 , D = 0

0 5 10 15 20 25 30
time  t/tr

0.0

0.2

0.4

0.6

0.8

1.0

 a
ve

ra
ge

 B
ax

m
 〈c
〉 [

au
]

 μ · tr = 3 . 3

 μ · tr = 0 . 0

 μ · tr = 0 . 0 ,  Dres

 μ · tr = 0 . 0 , D = 0strong
stimulus weak

stimulus

Fig. 3.9.: Accounting for mitochondrial dynamics results in qualitative different re-
sponse kinetics in full stochastic simulations. In full stochastic simulations
following the model in Eq. 3.6 are evaluated to show the response kinetics to a strong
(a) and weak (b) apoptotic stimulus. The physiological plausible simulation parame-
ters for (b) are identical to Fig. 3.7. For (a) the skew of the potential is chosen, such
that the bistable region is left. the stimulus is applied at time t = 9/tr. The mean
Bax concentration ⟨c⟩ is tracked, where the mean is computed over the finite-sized
mitochondrial ensemble. Four different ensembles are distinguished, where all ensem-
bles show identical mitochondrial size distribution. Besides an ensemble with and an
ensemble without fusion and fragmentation dynamics, we also consider mitochondrial
ensemble without fusion and fragmentation dynamics and rescaled (molecular) diffu-
sion constant. See section 3.4 for details. While we find that all ensembles show the
same response kinetics for the strong apoptotic stimulus. For weak apoptotic stimuli,
we find that the response kinetics are distinctly different. Moreover, we find the full
stochastic simulations of the system and the sigmoidal response kinetics, which we
predicted by the graphical analysis in Fig. 3.8.

response of the quasi-particle, where the response to the apoptotic stimulus is suppressed
on short timescales and facilitated on long timescales. This is in qualitative agreement
with our graphical analysis presented in Fig. 3.8. In particular, the response is initially
inhibited compared to the ensemble with matched ensemble variance and facilitated on
long timescales compared to the ensemble in the absence of mitochondrial fusion and frag-
mentation. On short timescales, the steady fusion and fragmentation dynamics impede
the stochastic escape of individual mitochondria to the high-concentration state. On long
timescales, after the mean and the median of the ensemble have crossed the potential
barrier, mitochondrial fusion and fragmentation facilitate the crossing of the barrier for
individual mitochondria.

Further corroborating our qualitative findings, we next examine how well we can cap-
ture the qualitative dynamics by solving the effective equations of motion in Eq. (2.65).
semi-analytically by numerical integration. For this, we compare the result of Eq. (2.65)
with the full stochastic simulations following Eq. (3.6). We test our results with different
parametrisations of the potential and different estimates of system parameters. Addition-
ally, we consider a finite ensemble of mitochondria with different sizes, which undergo
stochastic, time-discrete events of fusion and fragmentation.

The effective equation Eq. (2.74) has one free parameter γ, which is linked to the vari-
ance over the mitochondrial compartment ensemble. We fix this parameter by a single,
independent simulation, from which we assess the ensemble variance in the absence of an
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3. Application to multi-scale fluctuations in the regulation of cell death

apoptotic stimulus. Our semi-analytic prediction is thus parameter-free. As Eq. (2.74) is
a non-linear differential equation, we solve it by direct numerical integration using odeint
in python. The theoretical prediction for the ensemble dynamics, in the absence of mi-
tochondrial fusion and fragmentation, follows Kramer’s escape problem for mitochondria
of different sizes, see appendix A.6. Assuming that mean and median are close in the
ensemble of interacting mitochondria, we map out the average Bax concentration ⟨c⟩ and
consider Eq. (2.74) as an approximation of the mean Bax concentration.

Figures 3.10 (a) and (b) compare the ensemble response for two different potential
parametrisations with and without mitochondrial fusion and fragmentation. Physiologi-
cally plausible parameter choices were made, with the timescale of macroscopic concentra-
tion changes linked to experimentally observed timescale, Fig. 3.6, and the time-scale of
mitochondrial fusion and fragmentation set on a timescale of minutes. Time was rescaled
consistently with the timescale of macroscopic concentration changes tr = 15 min. A
qualitative agreement is observed between the theoretical prediction and the numerical
simulations, with the sigmoidal response kinetics correctly predicted by the full stochastic
simulations and the numerical integration of Equation (2.74).

By systematically altering the simulation parameters, we investigate how the results are
qualitatively affected. In Fig. 3.10 (c), we systematically increase the rate of mitochondrial
fusion and fragmentation, while by keeping the size distribution fixed. We predict that the
variance over the mitochondrial compartment ensemble will be inversely proportional to
the rate of mitochondrial fusion, γ ∝ µ−1. Our simulation and the semi-analytic solution
confirm that a decrease in the fusion rate leads to a decrease in the sigmoidal shape.
However, we find that the simulation and the semi-analytic solution begin to deviate at
small fusion rates, thus necessitating refinement of Eq. (2.74). We improve the quality
of the semi-analytic solution again by decreasing the diffusivity D, which strengthens
the sigmoidal shape and delays the shift from the low concentration state to the high
concentration state, see Fig. 3.10 (d). Lastly, we consider the cases of changing the skew
of the potential in Fig. 3.10 (e) and reducing the strength of the potential globally in
Fig. 3.10 (f). Our findings indicate that lower potential barriers correspond to weaker
sigmoidal shapes with a faster transition between the low and the high concentration
states, whilst increased potential barriers have the opposite effect. Note, that for all
different setups, Eq. (2.74) yields reasonable good estimates. Further recall, that the
semi-analytic prediction admits no free fit-parameters!

This systematic scan of parameters enables us to generalise our qualitative insight into
the sigmoidal translocation dynamics in steady state to general bistable potentials. We
find that the qualitative insight for suppressing a response to weak apoptotic stimuli on
short timescales and facilitating the response on long timescales is not a result of specifics
of the Veff(c), but is a general feature of the switching between two stable steady states.
Additionally, it should be noted that the sigmoidal response is only invoked above a criti-
cal value of stimulus strength, as the sigmoidal response requires the vanishing of the fixed
point at low Bax membrane concentrations, see Fig. 3.8 (b). Furthermore, we conclude
that the exact time-point of the transition between low and high-concentration states de-
pends on the specifics of the potential, and a quantitative prediction of the transition time
requires a precise estimate of the physiological reaction rates and concentrations, which
cannot be obtained from the effective model. Nonetheless, we can make a rough estimate
of the order of magnitude of the timescales on which the response is suppressed. Linking
the timescale of suppression with the timescale of escaping from the lower potential well,
we expect this timescale to be of the same order of magnitude, yet several times larger
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Fig. 3.10.: The equations of motion for the quasi-particle agrees with full stochas-
tic simulations. We compare the equations of motion in Eq. (2.65) with full
stochastic simulations (solid lines) and find quantitative good agreement. We
obtain the solution of Eq. (2.65) by numerical integration. A single fit param-
eter is fixed by independent measurement of the ensemble variance in the ab-
sence of apoptotic stimuli. The other parameters are read off from the simula-
tion. Both the simulation (solid line) and the semi-analytic result (dotted line) are
rescaled by tr. Two different potential parametrisations are considered in (a) with
V ′(c)tr = 0.01(c(2.5−3.6c+0.25c2)) and in (b) with V ′(c)tr = 0.1(c(5−1.5c+0.1c2)).
For (a), the molecular diffusivity is Dtr = 6× 10−3 and (b) is Dtr = 2× 10−2. All
simulation parameters are in units of the rescaled concentration. Find the model for
µ = 0 in appendix A.6. The simulation parameters in (a) are the same as in Fig. 3.7
and 3.9. The average mitochondrial size is ⟨v⟩ = 2. For(c-f) identical parameters to
(a). (c) With reducing mitochondrial fusion and fragmentation rate µ the sigmoidal
shape gets less distinct. (d) For µtr = 1.5 the sigmoidalness is more emphasised
for lower molecular diffusion constant. (e,f) Increasing the potential barrier gives
more distinct sigmoidal responses. For (e) a skew is applied. For (f) the potential
is multiplied with the strength parameter α.
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Fig. 3.11.: The sigmoidal relaxation dynamics are robust if additionally the degra-
dation of mitochondria in response to Bax accumulation are considered.
Absorbing boundaries are considered as specified by the sketches. Plotted is one
the y-axis the mass fraction of absorbed mitochondria. Numerical simulations are
shown in dotted lines, the theoretical predictions are shown in solid lines. For (a)
the identical simulation parameters as in Fig. 3.10 (a) are considered. Also (b)
the same potential parametrisation is chosen, but Dtr = 9 × 10−4 and µtr = 4 is
chosen. While we used the effective equations of motion in Eq. (2.65) for (a) and
find still a good agreement. For (b) we used the model in appendix A.5. This
model admits one free fit parameter, that we determined by visual inspection. We
find that the sigmoidal relaxation dynamics are robust additionally the degrada-
tion of mitochondria is considered. Furthermore, our theory yields well qualitative
agreement.

than the translocation time tr, see Fig. 3.10.
For the analysis in Fig. 3.10, we neglected the lysis of mitochondria as they reach the

high concentration state. We now relax this assumption by investigating two different sce-
narios to account for our current ignorance of the exact temporal dynamics of cytochrome
c release and its effects on mitochondrial dynamics [41]. In the first scenario, we assume
that mitochondria stop undergoing fusion and fission dynamics and release cytochrome
c as they reach the high concentration state c∗

h. In the second scenario, we assume that
mitochondria release cytochrome c after crossing the potential barrier and cease their
fusion and fission activities. For both scenarios, we model the lysis of mitochondria as
an absorbing boundary condition in our system. Instead of tracking the mean amount
of membrane-bound Bax, we directly quantify the mass fraction of Cyt c releasing mi-
tochondria mc. Recall that the effective attraction to the mean in the approximation
Eq. (2.56) formally requires us to exclude absorbed mitochondria from the computation
of the mean.

In accordance with the framework of Smoluchowski aggregation-fragmentation dynam-
ics, see section 2.2.3, we set the rate of mitochondrial fusion proportional to the mass of
mitochondria not releasing Cyt c, µ ∝ m0−mc. This can be made intuitive by assuming
that, with a reduced number of mitochondria, the mitochondrial density and the rate at
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3.4. Quasi-particle kinetics in the regulation of cell death

which two mitochondria meet decrease. In the case of absorption in the high concentra-
tion state, Fig. 3.11 (a), we find a qualitative agreement with the semi-analytic solution
of Eq. (2.74) and observe that the absorbing boundary condition only marginally alters
the dynamics compared to Fig. (3.10). When absorption is considered at the barrier of
the potential, the ensemble mean excluding the fraction of absorbed mitochondria is by
construction stable in the low concentration state and the approximations for Eq. (2.74)
fails. Returning to Eq. (2.55), we can treat the problem as a modified Kramer’s escape
problem, which also allows for a semi-analytic treatment with one free fit parameter, see
appendix A.5. We find well qualitative and quantitative agreement between the simula-
tions and the theory that admits one free fit parameter in Fig. 3.11 (b). Furthermore, in
both the simulation and the semi-analytical prediction, we observe a sigmoidal response
dynamics to a weak apoptotic stimulus when the absorbing boundary condition is placed
at the potential barrier; however, the sigmoidal shape is less pronounced and the dynamics
occur on longer timescales.

Intuitively, we can understand the sigmoidal response dynamics by tracking the dy-
namics from the perspective of individual mitochondria. Initially, the stochastic escape
is suppressed as mitochondria are effectively pulled back to the low-concentration state
on short timescales. As the mean and median of the distribution have crossed the poten-
tial, the dynamics shift and mitochondria remaining in the low concentration state are
now actively pulled across the potential barrier by mitochondria compartment fusion and
subsequent fragmentation. Also in the case of an absorbing boundary condition at the
potential barrier, the stochastic escape is initially suppressed on short timescales, yet the
active pulling over the barrier is absent on long timescales. Instead, the sigmoidal shape
results from the steady decrease of the mitochondrial fusion rate µ as the mitochondrial
mass are reduced. Consequently, the suppression of the stochastic escape vanishes as the
mitochondrial compartments get absorbed.

As previously demonstrated, the sigmoidal response dynamics is a general feature
of compartmentalised stochastic reaction kinetics systems when subjected to dynamics
in bistable potentials. Our qualitative findings are not affected by the details of the
parametrisation of the model in Eq. (3.4). We now conclude this chapter by discussing
the effects of multiplicative noise. In the case of absorption at the potential barrier, cor-
rections due to multiplicative noise [163, 164] can be straightforwardly accounted for as
corrections of the Kramer’s escape rate. We do not anticipate that multiplicative noise
will qualitatively impact the sigmoidal relaxation. In the absence of absorption, a more
refined analysis can formally account for multiplicative noise in Eq. (2.72). Nevertheless,
we expect that multiplicative noise will have qualitative effects similar to those of an
additional drift on the system. For the quasi-particle, the assumption of fixed dispersion
should be carefully re-evaluated, as the variance should reflect the multiplicative character
of the noise. While multiplicative noise complicates the analysis, we anticipate that the
sigmoidal response dynamics will remain in the presence of multiplicative noise.

Concluding, we find that a sigmoidal response is a qualitative characteristic of com-
partmentalised stochastic reaction kinetics systems if the transition between two stable
states is evoked by an external stimulus. In the case of apoptotic decision-making, this
results in the initially suppressed response to weak apoptotic stimuli on a short timescale.
Yet, conversely, on longer timescales, compartment fusion and fragmentation help to fa-
cilitate the response to the kinetics on longer timescales. This section has focused on the
response to constant, non-fluctuating external stimuli. The next section will generalise
the qualitative insights gained to general, fluctuating signals η(t)
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3.5. Fluctuating stimuli and the emergence of a kinetic
low-pass filter

In section 3.4, we studied the response dynamics of compartmentalised stochastic reaction
kinetics systems applied to the context of apoptotic decision-making for constant apop-
totic stimuli. While the response dynamics for strong apoptotic stimuli are only slightly
affected by mitochondrial (compartment) dynamics, the kinetics differ strongly when con-
sidering mitochondrial dynamics in the context of weak apoptotic stimuli. We depicted
the collective ensemble dynamics in the presence of mitochondrial fusion and fragmenta-
tion with a quasi-particle-like ensemble configuration and observed sigmoidal relaxation
dynamics to the high Bax concentration state in response to weak apoptotic stimuli. We
further established that the shape and timing of the transition between low and high
Bax concentration states depend on the reaction network kinetics and require detailed
quantification of reaction rates and concentrations under physiological conditions.

Considering that the interior of cells constitutes a highly stochastic environment, where
proteins are continually synthesised and degraded, we generalise in this section to fluctu-
ating stimuli and show that the interplay of protein complex dynamics and mitochondrial
fusion and fragmentation act as a kinetic low-pass filter. This allows cells to suppress
responses to fast noise fluctuations while allowing for responses to slow, biologically rel-
evant changes in their environment. We examine the implications of this for the quality
of apoptotic decision-making in the following section 3.6.

At the molecular level, the reaction network among proteins in the Bcl-2 family mediates
the release of the toxin Cyt c for individual mitochondria. As discussed in section 3.2.3.2,
this family includes a variety of pro-apoptotic and anti-apoptotic species, which collec-
tively constitute the cell’s stress level and set the strength of an apoptotic stimulus. This,
in particular, enables the cell to respond to a wide range of different stress triggers, such
as oxidative stress, radiation stress, metabolic stress, toxin-induced stress and DNA dam-
age. Recognising the interior of the cell as a highly stochastic environment, we anticipate
that the level of pro- and anti-apoptotic species will vary over time.

To investigate the effects of fluctuating stimuli, we consider that the collective stress
level η(t) follows a Gaussian stochastic process. We set η(t) to follow an Ornstein-
Uhlenbeck process, dη = θOU(η0 − η)dt +

√
DOUdW , where W is a standard Wiener

process. We scale θOU ∝ τ−1 and DOU ∝ τ−1, with τ the timescale of the Ornstein-
Uhlenbeck process. This scaling allows us to systematically vary how fast η(t) fluctuates
while keeping the amplitude of the fluctuations constant, as limt→∞ Var(η(t)τ ) = const..
We assume that the average of η(t) is at the level of a weak-apoptotic stimulus and√

Vart(η(t)) + ⟨η(t)⟩t < ηs so that the amplitude of η(t) remains in the region of weak
apoptotic stimuli in a σ-environment. Nevertheless, this allows for the stochastic occur-
rence of stress levels η which correspond to strong apoptotic stimuli.

In Fig. 3.12 (a), we qualitatively compare the responses of two ensembles with and
without fusion and fragmentation dynamics to a fluctuating stimulus η(t). The parameter
choice here is identical to that in Fig. 3.12 (b), but η(t) follows an Ornstein-Uhlenbeck-
process. For technical reasons, we neglect the lysis of mitochondria subsequent to the
accumulation of membrane-bound Bax. Experimentally, this can be achieved by inhibiting
Bax homo-oligomerisation [149]. We study the relaxation of this assumption later in
this section. The realisation of the fluctuating stress level η(t) is presented as a grey
profile line. For the ensemble with no fusion and fragmentation, we find that the mean
Bax-membrane concentration in the ensemble ⟨c⟩ closely follows the fluctuations of the
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Fig. 3.12.: Sigmoidal relaxation kinetics give rise to a kinetic low-pass filter. We
perform full stochastic simulations to investigate the response to fluctuating stimuli
η(t). We use the same simulation parameter as in Fig. 3.10 b for η(t) = 0 and
consider the noise as linear skew on the potential. We consider as noise amplitude a
variation of ση = 0.25∆E of the barrier height. (a) The mean of the mitochondrial
ensemble without mitochondrial dynamics closely follows every fluctuation in stress
level η(t). This is in contrast to the mitochondrial ensemble with mitochondrial
fusion and fragmentation dynamics. Here, we see that the response is suppressed
for fast fluctuations and facilitated for persistent stress levels. This generalises the
sigmoidal response kinetics. (c) Schematic to illustrate how the time-scale of the
stress level (τin) and the systems response (τout) is computed. (d) Systematically
varying the timescale τin we check for the ratio of τ−1

out/τ−1
in to quantify how frequently

fluctuations in the stress level are translated into a systems’ response. We find
that the fast noise fluctuations are filtered out by orders of magnitude, while still
allowing the system to respond to slow biological relevant changes in the stress
level. Mitochondrial dynamics give rise to a kinetic low-pass filter. We expect the
quantitative features of the filter to depend on specifics of the potential and the
strength of the noise amplitude.
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stress level. This corresponds to an intermediate level of mitochondria in the high Bax
concentration state. The situation is different for an ensemble with mitochondrial fusion
and fragmentation, where we observe that the Bax concentration predominantly resides
in the low Bax membrane concentration state, with only a small subset of mitochondria
in the Bax concentration state. When the stress level η(t) is persistent on an increased
level, we find an abrupt change from the low to the high Bax concentration state and a
strong response of the system. This qualitatively generalises the idea of sigmoidal response
kinetics for fixed apoptotic stimuli, as demonstrated in section 3.4.

Next, we formalise the observations by systematically varying the timescale of the
fluctuating apoptotic stimulus and setting it in relation to the timescale of the ensemble
response. We determine the timescale by measuring the auto-correlation time of both
the stimulus η(t) and the fluctuating mean Bax concentration ⟨c(t)⟩. Specifically, the
autocorrelation with a lag ∆t is

ρ∆t = Cov[Xt, Xt+∆t]
Var[Xt]

(3.7)

and we define the auto-correlation time τ by approximating ρ∆t ≈ exp(−∆t/τ−1), this
is illustrated in Fig. 3.12 (b). Here, we use the same definition to determine both the
auto-correlation time of the stimulus τη and the ensemble response τc. Note that macro-
scopic changes in the time signal dominate the auto-correlation time, which renders it
particularly suitable for the detection of an ensemble transition from the low to the high
concentration state. We interpret the ratio R = τη/τc as a measure of the responsiveness
of the system. If fluctuations in the stimulus η(t) are readily translated into a response of
the ensemble ⟨c(t)⟩, both the stimulus and the ensemble show macroscopic changes on the
same timescale, with the ratio close to unity, R ≈ 1. Conversely, for R≪ 1, the timescale
of macroscopic concentration changes in the ensemble is much larger than macroscopic
changes in the stimulus, implying that fluctuations in the stimulus η(t) are translated
into a system’s response only with a low frequency. In this case, the fluctuations are
filtered out, as they are suppressed by the ensemble dynamics. For the case R ≫ 1,
macroscopic concentration changes in the ensemble happen more frequently compared to
the changes in the stimulus. In this case, the stimulus has only a marginal effect on the
progression of apoptosis. Note that we expect to occlude the last case by construction2.
By construction, the timescale of the stimulus η(t) is given by τη = θ−1

OU. By rescaling the
diffusivity in the Ornstein-Uhlenbeck process accordingly to receive a constant variance
scaling, we guarantee that changes in the auto-correlation τc are purely evoked by how
fast the stimulus is fluctuating.

In Fig. 3.12 (c), we systematically map the responsiveness R over the inverse timescale of
the fluctuating stimulus η(t) for different rates of mitochondrial fusion and fragmentation
µ. Here, we keep the size distribution of mitochondria fixed for all different mitochon-
drial fusion rates µ. Fast noise fluctuations in η(t) correspond to low values of τ and
are shown on right side of the x-axis, while slow changes in η(t) are shown on the left
side. We find that for all mitochondrial fusion and fragmentation rates considered here,
the responsiveness approaches R = 1 for slowly varying stimuli η(t). In contrast, a mi-
tochondrial ensemble with higher fusion and fragmentation rates approaches lower values
in the responsiveness Rµ ≪ Rµ′ for higher fusion rates µ > µ′. We find that mitochon-
drial dynamics facilitate the suppression of fast noise fluctuations of the stimulus with an

2In experimental setups, R≫ 1 hints towards the fact that the wrong stimulus was measured.
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order-of-magnitude effect.
Qualitatively, this is in line with the visual observation we made on the trajectory

pictures, as the response to stimulus η(t) is suppressed on short timescales and facilitated
on long timescales. In agreement with the observation that faster rates of mitochondrial
fusion correspond to stronger suppression of the response, we find that Rµ < Rµ′ for µ < µ′

on all timescales τη. As demonstrated for the response to fixed apoptotic stimuli, the
filtering capacity of the system should be viewed as a qualitative result, as the quantitative
values are strongly dependent on the specifics of the Bcl-2 reaction network. Additionally,
the transition from the responsive dynamics R(τη) ≈ 1 to R(τ ′

η) ≪ 1 is sensitive to the
strength of fluctuations Vart(η(t)). An order of magnitude estimate suggests that the
transition τ ∗

η lies on the order of magnitude of the Bax translocation time tr, as illustrated
in Fig. 3.12 (c). We conclude that mitochondrial dynamics give rise to a kinetic low-pass
filter, allowing cells to repress the response to short, transient stress fluctuations.

For the analysis presented here, we considered the absence of mitochondrial lysis fol-
lowing the release of Cyt c, and allowed for the recovery of individual mitochondria from
the high Bax concentration state back to the low Bax concentration state. This formally
prevents apoptosis in cells, enabling us to create a large dataset on how Bax accumulation
dynamics are affected by mitochondrial fusion and fragmentation. Note that the auto-
correlation time is sensitive to macroscopic concentration changes. As such, the kinetic
low pass filter quantifies both the accumulation and retro-translocation dynamics of Bax.
If mitochondrial lysis is included, only the accumulation dynamics of Bax are quantifi-
able; however, as discussed in Fig. 3.11, we anticipate that this will still yield a sigmoidal
response kinetics. Consequently, we expect the qualitative finding of mitochondrial fusion
and fragmentation giving rise to a kinetic low-pass filter to be robust in the presence of
the progression of the mitochondrial signalling pathway. Next, we interpret this finding
in the context of apoptotic decision-making, focusing on the sensitivity and specificity of
the response dynamics.

3.6. Improvement of the sensitivity and specificity of
apoptotic decision-making

Having investigated in sections 3.4 and 3.5 how the fusion and fragmentation of mito-
chondrial compartments suppress the response to apoptotic stimuli on short timescales
and facilitate the response to apoptotic stimuli on long timescales, we now interpret these
findings in the context of the quality of apoptotic decision-making. To this end, we focus
on the sensitivity and specificity of the ensemble responses, which quantify the degree of
facilitation and suppression of the system’s response. By doing so, we can draw conclu-
sions on the qualitative responses of how apoptotic signalling is affected by mitochondrial
dynamics.

In a physiological context, we are interested in the decision-making process of apoptosis
in the context of a binary decision: whether cells undergo apoptosis in response to a stress
stimulus, or whether they suppress the response. Misregulation of this apoptotic pathway
can lead to severe diseases, which present two different scenarios. If it induces cells to
more frequently conduct apoptosis in response to weak or transient stimuli, this results in
increased cell death rates, potentially damaging organs and impeding their functionality.
In layman’s terms, cells are dying when they should not be. We refer to this misregulation
as an increased rate of false positives. Conversely, misregulation of the apoptosis pathway
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Fig. 3.13.: Mitochondrial dynamics improve the quality of apoptotic decision-
making. We perform full stochastic simulations to investigate the quality of apop-
totic decision-making. We use the same simulation parameter as in Fig. 3.10 b for
η(t) = 0 and consider the noise as linear skew on the potential. We specify the noise
as outlined in section 3.6. (a) Illustrates the noisy, transient fluctuation upon which
the response of the system is evaluated. As we do not consider absorbing boundary
conditions and track the mass fraction of mitochondria in high Bax concentration
state. We next consider the maximum of this mass fraction as the response value of
the system. (b) We compute the specificity and sensitivity as outlined in section 3.6.
In particular, we assess the sensitivity and the specificity scores as fold-increases in
contrast to the ensemble with no fusion an fragmentation dynamics. We set the
decision time to where the ensemble with no fusion and fragmentation yields on
average an ensemble response of 50% mitochondria in the high-concentration state.
We find that mitochondrial dynamics increase the sensitivity and specificity score by
orders of magnitude. Notably, the sensitivity score decreases for large µ, reflecting
the suppression of responses by mitochondrial fusion and fragmentation.

which impedes apoptosis leads to the accumulation of cells, a hallmark of cancer. Here,
cells are not dying when they should be, and we refer to this as false negatives. To assess
the quality of decision-making, we quantify the rate of false positives and false negatives
in terms of the sensitivity and specificity of a response.

We assess how mitochondrial dynamics affect the quality of decision-making by com-
paring mitochondrial ensembles undergoing fusion and fragmentation dynamics, with an
ensemble without mitochondrial dynamics. We will, in particular, consider the ensemble
with no mitochondrial dynamics as the ground truth of our assessment.

In accordance with the investigation of the kinetic low-pass filter in section 3.5, we
are interested in how the timescale of stimuli affects the sensitivity and specificity of the
response. To model the occurrence of a transient weak apoptotic signal, we refine the
apoptotic signal η(t) by superimposing a bell-shaped curve, as illustrated in Fig. 3.13 (a).
We set the transient to reach 75% of the bistable region and the σ-environment to cover
25% of the width of the bistable region. As the timescale of the system is altered, both
the timescale of the transient and the timescale of the fluctuations are rescaled. The
response is measured by the maximum of the mitochondria mass fraction accumulated in
the high-concentration state over the course of the stimulus.

Conceptually, we evaluate how the sensitivity and specificity change in comparison to
the mitochondrial ensemble in the absence of mitochondrial fusion and fragmentation.
We consider this ensemble as the ground truth of our investigations. We set the timescale
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separating the regime of preferential suppression and preferential conductance of apoptosis
at the time point, where the mitochondrial ensemble in the absence of mitochondrial fusion
and fragmentation shows on average maximally half of its mitochondrial mass switched
to the high Bax concentration state. We refer to this time point as τ ∗. We quantify
with the specificity the absence of false positives, and hence the effective repression of the
response for timescales τ < τ ∗. We quantify a specificity score sµ with the probability of
a response smaller than 5%. Analogously, we consider for the sensitivity the rate of true
positives as a measure for the facilitation of a response on timescales τ > τ ∗. We quantify
a sensitivity score nµ with the probability of a response larger than 95%. We assess the
probability of true and false positives by computing 105 independent simulation runs for
each time point.

In Fig. 3.13 (b), we map out the specificity and sensitivity scores as fold-increases
compared to the organelle ensemble with no mitochondrial fusion and fragmentation,
sµ/s0 and nµ/n0 respectively. We find that mitochondrial fusion and fragmentation lead
to orders of magnitude increases in both sensitivity and specificity. For the specificity,
we observe a steady increase with an increasing rate of mitochondrial fusion and frag-
mentation. In contrast, sensitivity is maximal for intermediate fusion and fragmentation
rates and decreases for higher rates. These findings are consistent with the observation
that mitochondrial fusion and fragmentation suppress the response on short timescales
but facilitate the response on long timescales. Moreover, specificity and sensitivity also
quantify the localisation of the mitochondrial ensemble in the concentration phase space,
which effectively reduces the probability of finding mitochondrial ensembles intermixed
in the high and the low Bax concentration state. It follows also that the sensitivity score
decreases for high mitochondrial fusion and fragmentation rates, in line with the qualita-
tive observation that the response is strongly suppressed for larger rates of mitochondrial
fusion and fragmentation, as for example illustrated in Fig. 3.10 (b).

With this, we conclude our qualitative analysis of how mitochondrial fusion and frag-
mentation affect the response kinetics of apoptotic signalling. Our findings demonstrate
that if the dynamics of mitochondria is accounted for, the response on short timescales
is suppressed and the response on long timescales is facilitated. This provides a kinetic
low-pass filter, which allows cells to suppress the response to short, transient fluctuations
in their stress level, see Fig. 3.12 (c). We quantified the quality of decision-making in
terms of the specificity and the sensitivity of the result and found an order-of-magnitude
increase for both. We considered physiological plausible parameters and performed a qual-
itative analysis, which allowed us to discuss model refinements and the qualitative effect
of various model parameters. Furthermore, our findings suggest that organelle fusion and
fragmentation can lead to measurable predictions in cell-culture experiments.

3.7. Testing for the predicted quasi-particle kinetics in
experiments

In sections 3.4, 3.5 and 3.6, we have examined, in a theoretical context, how organelle
dynamics can qualitatively affect the kinetics of organelle-associated signalling path-
ways. Specifically, we have analysed how mitochondrial fusion and fragmentation can
homogenise the concentration of Bax across the mitochondrial ensemble, thus reducing
the variance among individual mitochondria. This homogenisation results in collective
responses of the organelle ensemble to fixed, weak apoptotic stimuli: these responses are
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suppressed on short timescales and facilitated on long timescales for the effective ensemble
dynamics, compared to an ensemble of mitochondria without fusion and fragmentation
dynamics. We then generalised this insight to fluctuating, weak apoptotic stimuli and
deduced that mitochondrial fusion and fragmentation can give rise to a kinetic low-pass
filter and increase the sensitivity and specificity of apoptotic decision-making by orders
of magnitude. Thus far, we have only studied these findings theoretically and through
numerical simulations. In this section, we consider how our theoretical considerations can
be tested experimentally. Doing so, we emphasise the experimental challenges to manip-
ulate the mitochondrial dynamics and to precisely measure low protein concentrations
without interfering with the system.

Mitochondrial dynamics can be impaired by either the treatment with chemical sub-
stance or by using genetic knockout strains [59, 60, 140]. In both cases, either the fu-
sion or the fragmentation dynamics of mitochondria are impeded to alter the mitochon-
drial dynamics. The effect on mitochondrial dynamics is often quantified by the change
in the mitochondrial size distribution instead of direct quantification of the fusion rate
[59, 154, 155]. As a consequence, the effects of altered mitochondrial dynamics and altered
mitochondrial size distribution are experimentally often intermingled. To disentangle the
effects of mitochondrial fusion and fragmentation dynamics from the effects of altered
mitochondrial size distributions, formally perturbations both on the fusion and on the
fragmentation rate need to be performed, which result in size distributions with decreased
and increased average mitochondrial size respectively. Yet, the perturbation of mitochon-
drial dynamics is not equally possible for all cell types. Either two different knock-out
linages need to be grown, or chemicals are not readily available or have additional side
effects influencing and weakening the observation. Here, theoretical considerations can
assist the interpretation by considering the additional effects of altered mitochondrial size
distributions.

Besides manipulating mitochondrial dynamics, also the measuring of membrane protein
concentrations without interfering with the dynamics is a challenge for experiments. As
the direct observation of protein kinetics is prevented by the resolution limit of optical
microscopy3, only indirect measurements using fluorescent protein analogues or chemical
dyes can be performed [161, 165, 166]. Yet, careful cross-validation of additional mea-
surements is required to ensure that the kinetics of the fluorescent proteins and dyes
accurately reflect the physiological operations of the cells. Furthermore, the determina-
tion of concentration through quantification of fluorescence is generally subject to error
due to the need for precise calibration, photo-bleaching effects, and the inability to reflect
absolute concentration values [161]. In our discussion of experimental setups and compar-
ison of our theoretical predictions with findings in the literature, we will critically assess
the extent to which the experiments have validating character.

In section 3.5, we argued that apoptotic stimuli η(t) can only be considered fixed in
well-controlled laboratory conditions, while physiological stimuli are stochastically fluctu-
ating. Experimentally, the exact strength of apoptotic stimuli is difficult to precisely con-
trol. Prominent choices include the tumour necrosis factor alpha (TNF-α), staurosporine
(STS), actinomycin D (Act D) or the chemical ABT-737 [167–169]. TNF-α activates cas-
pases [41] and thus potentially allows for the precise control of perturbations; however,

3Though the resolution limit can be lowered by reducing the wavelength of the illumination source
by, for example, considering electron transmission microscopy, these measurements yield a strong
physiological perturbation on the cell and measurement of reaction dynamics cannot be claimed to
reflect physiological conditions.
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it may also activate the extrinsic apoptotic signalling pathway, which renders TNF-α an
unsuitable inducer of apoptosis in this context. STS and Act D are specific inducers of
the intrinsic apoptotic signalling pathway but do not act directly on the Bcl-2 interaction
network. Therefore, the level of apoptotic signalling can only be discussed on the basis
of qualitative comparisons of different toxin concentrations. Furthermore, the degree of
fluctuations in the signalling can only be determined through additional measurements.
ABT-737 is a biomimetic molecule which mimics the effects of pro-apoptotic BH3-only
proteins. This chemical is still experimental [153, 169]. Yet, ABT-737 it offers the pos-
sibility to precisely perturb the apoptotic signalling bath by interfering with the Bcl-2
reaction network in a controlled manner. As our analysis remains qualitatively valid both
for static and fluctuating apoptotic stimuli, see sections 3.4 and 3.5, we consider STS, Act
D, and ABT-737 suitable apoptosis inducers in experimental setups.

From a theoretical perspective, we can make various qualitative predictions regarding
the effects of mitochondrial fusion and fragmentation dynamics on the kinetics of apoptotic
signalling. These predictions range from statistical to qualitative changes in the temporal
evolution and response kinetics, as well as how parameter changes can qualitatively affect
the dynamics of cell death. However, the challenge of experimentally testing our findings
in this context lies in the difficulty of applying precise system perturbations and measuring
without interfering with the system. As the dynamics at a subcellular scale cannot be
directly inferred from microscopy videos with arbitrary spatial and temporal resolution,
it is not possible to conduct experiments in direct analogy to the simulations in the
sections 3.4, 3.5 and 3.6, see also [161, 166]. Therefore, in this section we will go through
the different theoretical predictions individually and discuss possible experimental setups
to test them. We will refer to the relevant experimental observations in the literature
that have motivated our modelling choices in section 3.3, and discuss which experimental
setups would be conclusive for verifying the collective organelle dynamics.

3.7.1. Test for the localisation of mitochondria in the concentration
phase space

Our central prediction regarding the effects of mitochondrial fusion and fragmentation on
apoptotic decision-making is that they result in a homogenisation of the mitochondrial
ensemble with respect to the variance in Bcl-2 concentrations. Specifically, we predict that
the variance in mitochondrial outer membrane concentration is reduced in the presence
of mitochondrial fusion and fragmentation, even in the absence of apoptotic stimuli. To
test this prediction, it is necessary to impair mitochondrial dynamics and determine the
concentration of membrane proteins.

Weaver et al., [146], investigated the effect of mitochondrial fusion and fragmentation
on the variability of mitochondrial outer membrane protein concentrations. To do so, they
compared fibroblast cell lines with a genetic knock-out of the mitochondrial fusion proteins
MFN 1/2. The variance in the mitochondrial membrane concentration was assessed by
measuring the release of fluorescent Cyt c from mitochondria in response to a strong
apoptotic stimulus. It was argued that the variability in mitochondrial outer membrane
protein concentrations directly impacts the variability of individual mitochondria at the
time point of Cyt c release. Indeed, the authors observe a significant decrease in steepness
and an increase in variance when mitochondrial dynamics were impaired.

Our observations are in agreement with the theoretical predictions regarding the ef-
fects of mitochondrial fusion and fragmentation on protein concentration variance. The
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authors of the study suggest that the variance reduction in cells with functional Mnf1/2
may be due to protein exchange among mitochondria. To verify this conclusion, further
quantification of the altered mitochondrial size distribution and additional measurements
with different size alterations would be necessary. Additional clarity could be achieved
by comparing the observation to the predicted effects from equation Eq. (2.55), provided
the size distribution had been experimentally obtained. Therefore, the experiments in
[146] provide evidence of the potential for collective ensemble dynamic. From a different
perspective, these experiments effectively illustrate the need for a stochastic framework
when modelling apoptotic signalling due to the chemical binding noise at low protein copy
numbers. Moreover, they effectively demonstrate that, at the very least, the heterogeneity
of the mitochondrial size distribution, if not mitochondrial dynamics, must be taken into
consideration when studying the kinetics of the apoptotic signalling pathway.

In this study, Cao et al., [155], investigated the effects of mitochondrial fusion and frag-
mentation on the random switching of individual mitochondria to the high Bax concen-
tration state in response to weak apoptotic stimuli. To do so, mouse embryonic fibroblast
cells were used, with knockout strains created for both MNF 1/2, impeding mitochondrial
fusion, and DRP1, impeding mitochondrial fragmentation. Weak, sublethal apoptotic
stimuli were applied and the amount of lysed mitochondria measured by initially dyeing
the mitochondrial membrane space and then quantifying the number that had lost their
fluorescent signal. Qualitative analysis revealed strongly altered mitochondrial size dis-
tributions; those with impaired mitochondrial fusion had an increased number of small,
fragmented mitochondria, while those with impaired mitochondrial fission had elongated
mitochondria. This was in line with Smoluchowski aggregation dynamics, see 2.2.3. Fur-
thermore, the authors observed that predominantly small, fragmented mitochondria were
prone to stochastic lysis in response to weak apoptotic stimuli, which was also consistent
with modelling predictions and numerical observation, see e.g. Fig. 3.9. Notably, only
an increase in the number of stochastically lysed mitochondria was observed when mito-
chondrial fusion was impaired, but not when mitochondrial fission was impaired. This
is also in line with our theoretical findings, as also an increase in mitochondrial size re-
duces the level of stochastically dedicative mitochondria. Also here, the authors argue
that mitochondrial fusion and fragmentation dynamics induce the observed effects due to
the intermixing of mitochondrial outer membrane proteins. Yet, to make this statement
conclusive, additional experiments would be necessary to exclude that the effect is only
due to a change in mitochondrial sizes.

Fig. 3.9 showed that stochastic deactivation is also suppressed in organelle ensembles
with reduced molecular noise Dres. However, the suppression is weaker than in an or-
ganelle ensemble with mitochondrial fusion and fragmentation dynamics. To corroborate
the results presented in [155], we suggest measurements with longer intoxication times
for DRP1 knockout cell lines, which are likely to show qualitative differences in the sup-
pression kinetics. A quantitative analysis of the mitochondrial size distribution could
also serve to corroborate their conclusion. Therefore, we summarise that the results of
[155] support the plausibility of the qualitative results of the effective model introduced
in section 3.3, while they are not conclusive on our theoretical prediction of quasi-particle
kinetics. While in this section we focused on static properties, we consider possible ex-
perimental setups to measure the temporal kinetics of apoptotic decision-making in the
next section.
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3.7.2. Observing sigmoidal response kinetics of the quasi-particle in
experiments

In section 3.4, we further investigated this by comparing the effective equations of motion
with numerical simulations and found that sigmoidal response kinetics is a qualitative
feature of the time-evolution of the apoptotic signalling pathway when mitochondrial
fusion and fragmentation are taken into account. To directly observe the quasi-particle-
like, collective ensemble kinetics, one would need to track the evolution of the distribution
over time and measure observables in a manner analogous to the analysis presented in
section 3.4. However, this is challenging to accomplish experimentally for various reasons.

To investigate the temporal evolution of Bax concentration changes in individual mito-
chondria within the same cell, we must utilise fluorescent microscopy techniques. However,
continuous time-lapse observation can be impeded by photo-toxicity [161, 166]. Decreasing
the temporal resolution reduces photo-toxic effects but worsens the tracking of individ-
ual mitochondria as they move actively within the cytosol. Moreover, the movement of
individual mitochondria out of the focal plane can also impede tracking. The apoptotic
dynamics themselves present a challenge on experimental timescales. We predict that the
sigmoidal dynamics will proceed with little change until an abrupt switch from low to high
Bax concentration state occurs [165]. In this situation, increased temporal resolution for
the brief interval of transition dynamics would be desirable, but this would necessitate
self-adaptation of the microscopy process and parallel evaluation of microscopy data to
the measurement process.

Furthermore, it is difficult to detect the stochastic switching of individual mitochondria,
due to the rapid lysis and degradation of those in the high Bax concentration state. This
means that the observation of these mitochondria effectively involves detecting ‘holes’ in
the mitochondrial ensemble. There are very few experimental observations which indicate
that the ’pulling of mitochondria across the potential barrier’, and therefore the sigmoidal
dynamics, may be observable, see for example the supplemental videos in [161]. However,
this evidence is not statistically conclusive. Comparing the time traces of different cells is
difficult as they present as different stochastic realisations and so, to gain further insight
into the temporal evolution, it is necessary to analyse ensembles of cells.

3.7.3. Testing for the sigmoidal progression of apoptosis in cell
culture experiments

The central qualitative prediction we make in this chapter is that mitochondrial fusion
and fragmentation dynamics will generate a kinetic low-pass filter in apoptotic decision-
making. However, measuring this prediction experimentally presents a conceptual chal-
lenge. As discussed previously, obtaining statistically significant results from tracking
individual cells is a difficult undertaking. On the other hand, observing the dynamics
on the molecular level for a large cell culture is not feasible, so we would prefer to mea-
sure the effects of apoptotic decision-making, i.e. measuring the percentage of apoptotic
cells. Furthermore, we cannot directly determine the filtering capacity in experiments,
as we cannot precisely control the fluctuating stimuli and test for different timescales in
experiments.

To circumvent these problems, we notice that the sigmoidal relaxation dynamics are a
hallmark of the quasi-particle kinetics we expect to find in the apoptotic signalling path-
way. Furthermore, we interpret these sigmoidal relaxation dynamics as the mechanistic
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basis of the kinetic low-pass filter. In order to assess the validity of the quasi-particle
kinetics concept experimentally, we make use of the characteristic finding that the sig-
moidal relaxation dynamics are more accentuated for weak apoptotic stimuli, while we
expect the sigmoidal shape to shift towards exponential-like relaxations for strong apop-
totic stimuli. Compare for this for example with Fig. 3.9, Fig. 3.10, and Fig. 3.14 (d).
In the absence of mitochondrial fusion and fragmentation dynamics, we would anticipate
a scaling and stretching of the response. As such, when we assess different stimuli with
various duration and strength, we anticipate to find sigmoidal relaxation kinetics. This
prediction, however, is formally based on Cyt c release and assumes that the stimulus is
applied directly and accurately. This consequently sets the challenge to consider pre- and
post-modifications in the apoptotic signalling pathway from a theoretical standpoint.

While both STS and Act D are specific inducers of apoptosis via the intrinsic pathway,
they do not directly act on the Bcl-2 protein network. By changing the duration that
cells are exposed to varying concentrations of Act D or STS, we can control the strength
and duration of an apoptotic stimulus. However, this additionally leads to stochastic
variations in the apoptotic stimulus η(t) for different cells in the same cell culture, resulting
in increased apoptotic variability and varying release times of Cyt c. Note, that we
have also not specified the progression of apoptosis after the release of Cyt c. However,
because the release of Cyt c is a bottleneck in the apoptotic pathway, we expect that the
effects of sigmoidal relaxation dynamics will translate to the entire pathway, including the
disappearance of sigmoidals when the stimulus is increased. To corroborate our qualitative
argument, we conduct stochastic models and find that the sigmoidal relaxation is indeed
robust towards variation in the time-point of apoptosis stimulus application, variability
in the bistable potential, and post-modifications by assuming threshold values of released
Cyt c for the induction of apoptosis. These results are presented in Fig. 3.14 (e,f) and
detailed out in the appendix A.7.

While other sigmoidal processes are commonly observed in biological systems, we ar-
gue that the change in functional shape from sigmoidal to exponential dynamics is a
characteristic of quasi-particle kinetics. Note that, for example, Hill functions used to
describe gene activation have a sigmoidal dependence on concentration, but not temporal
dependence. On the other hand, sigmoidal relaxation dynamics demand autocatalytic
mechanisms, which are usually fixed in their functional shape and thus do not permit a
shift to exponential-like relaxation dynamics. Note that our theory predicts a significant
inhibition of the response to weak apoptotic stimuli on short timescales, yet allows for
responses on later timescales. This presents a qualitative difference which can be used
to evaluate the quasi-particle kinetics experimentally; see Fig. 3.14 (e,f) and the black
arrows.

Experiments tracking the predicted sigmoidal dynamics were performed in the group
of Philipp Mergenthaler at the Charité research hospital in Berlin by Lina Hellwig. To
this end, Lina Hellwig developed an apoptosis assay, which allows subjecting cell cultures
to varying apoptosis inducer concentrations for varying time periods. For this, Lina
Hellwig grew neural stem cell cultures (NSC) and induced pluripotent stem cells cultures
(iPSC), subjected them to varying Act D concentrations, and evaluated the progression of
apoptosis in the cell culture by flow cytometry (FACS). To specify for apoptotic cell death,
cells are died with Annexin V and DAPI, which allows distinguishing in experiments
apoptosis from unspecific cell death. NSC cell cultures were grown for 3 days before
inducing apoptosis, while iPSC cell cultures were grown for 2 days. Before evaluation by
flow cytometry, the cells are washed, fixed, and dyed. Thus, by design, the progression
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Fig. 3.14.: Observing the sigmoidal progression of apoptosis in cell culture experi-
ments. (a) Schematic representation of the experimental setup. (b) To test for the
sigmoidal progression, the strength and duration of apoptotic stimuli are system-
atically varied. (c) Microscopy image of apoptotic hiPSCs. Image courtesy Lina
Hellwig and Philipp Mergenthaler. (d) We qualitatively predict a characteristic shift
from sigmoidal to exponential progression statistics as the strength of the apoptotic
stimulus is increased. (e,f) We corroborate our qualitative argument by numerical
simulations, see appendix A.7 for details. The suppression of apoptosis for weak
stimuli at low concentrations is qualitative characteristic, for which we test in ex-
periments. (g,h) Experiments performed by Lina Hellwig in the group of Philipp
Mergenthaler on NSC can iPSC cell cultures. Errobars show the standard deviation
over three technical replicates.
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of apoptosis needs to be evaluated by comparing different replicas, as the cell culture
sample is destroyed in the measurement processes. For each measurement point, three
technical replicas are considered. Two experiments are presented in Fig. 3.14 (g,h). Here,
Lina Hellwig and Philipp Mergenthaler find the characteristic suppression of apoptosis
for low Act D concentrations, resulting in a sigmoidal progression of apoptosis, and thus
in line with our theoretical prediction. Note that here we only performed a qualitative
comparison, as we did not fit the experimental data.

Note, that the results strongly hint towards our theory of effective ensemble kinetics.
However, they remain so far inconclusive, as a sigmoidal progression of apoptosis may
also be attributable to pre- or post-modifications in the signalling pathway that has not
been taken into consideration theoretically. We currently plan to corroborate our findings
by experimentally interfering with the mitochondrial dynamics.

3.8. Discussion of applying quasi-particle kinetics to
apoptotic decision-making

In this section, we reconcile our model assumptions and findings by critically assessing
the plausibility of separating timescales when discussing organelle-associated signalling
pathways. Specifically, we consider the extent to which mitochondrial dynamics could
affect the kinetics of the signalling pathway as mitochondrial fusion and fragmentation
often occur within minutes. Following this discussion, we consider the potential relevance
of our findings for therapeutic approaches to mitigate or facilitate cell death in medical
applications.

3.8.1. Is a separation of timescales a plausible choice for
organelle-associated signalling pathways?

One central objection that may be raised against the theory presented in this chapter is,
that the dynamics at the chemical reaction level occur on a much faster timescale than
the dynamics of organelle fusion and fragmentation. While this objection is in general
valid, it does not imply that organelle dynamics play a negligible role in the kinetics of
organelle-associated signalling pathways. Indeed, the extent to which organelle dynam-
ics fundamentally alter response kinetics depends on the specific research question being
asked. Note, that the effective ensemble dynamics derived in Eq. (2.55) were obtained
without assuming fast organelle dynamics, but by considering a continuum limit in the
number of organelles. This formally limits our analysis to large organelle ensembles, yet it
also allows us to examine the effect of arbitrarily slow interaction rates. Notably, we find
that the additional interaction potential, which serves as a perturbation on the determinis-
tic dynamics dictated by molecular reactions, becomes weaker as the rate of mitochondrial
interaction decreases. Depending on the system parameters and the research question at
hand, this additional interaction potential may be treated as a negligible perturbation on
the kinetics of the signalling pathway. However, it is important to emphasise that our
analysis enables us to assess the strength of this effect a posteriori, thereby allowing us
to determine in which contexts organelle dynamics are central to the kinetics with strong
qualitative effects. Before discussing potential objections to not performing a separation
of timescales, note that we have already used physiologically plausible parameter choices
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In sections 3.4, 3.5 and 3.6, where we observed qualitatively strong effects. Here, we will
now discuss why we consider strong effects plausible.

In the beginning of section 3.4, we discussed the significant impact organelle fusion
and fragmentation have on the kinetics of signalling pathways in a static picture. While
the dynamics a priori allow the exploration of the full phase space; organelle fusion and
fragmentation counteract this dispersion and result in localisation in the concentration
phase space. This qualitative result is independent of the timescale and is corroborated
by the experimental findings of [146]. Yet, the qualitative effects vanish if the kinetics of
the reaction network is already characterised by a single, stable fixed point in the concen-
tration phase space, as this formally already represents a localisation in the concentration
phase space. However, it should be noted that, in general, signalling pathways with non-
linear reactions cannot be characterised by a single stable fixed point in the concentration
phase space. This is consistent with the altered fixed points observed in section 2.7.2 and
Fig. 2.9.

We find that there are certain parameter regimes in which organelle fusion and frag-
mentation have, admittedly, little effect on the kinetics of the response. We also discuss
the plausibility of such a parameter regime in the context of apoptotic signalling, as we
discuss, in particular, the response to strong apoptotic stimuli shown in Fig. 3.9 (a). On a
heuristic level, we suggest that organelle dynamics can significantly impact the kinetics of
signalling pathways when macroscopic concentration changes occur on a timescale similar
to or longer than organelle dynamics. This in particular the case as we consider weak, sub-
lethal apoptotic stimuli [153, 155]. To further understand the influence of timescales on
chemical reactions, it is instructive to consider the effective Bax model with an absorbing
boundary condition at the potential barrier. In this context, macroscopic concentration
changes correspond to the stochastic escape rate from the potential well, as depicted in
Fig. 3.11 (b). As demonstrated in appendix A.5, the interaction potential can be directly
related to a modification of the effective potential barrier. This allows us to evaluate the
strength of the interaction potential as a perturbation on the stochastic escape rate.

As rule of thumb, we find that organelle dynamics can qualitatively suppress the
stochastic response when the rate of organelle fusion and fragmentation is faster than
the rate of escape from the potential well. In this context, it is instructive to consider or-
ganelle fusion and fragmentation as perturbations that reset organelles back to the bottom
of the potential well and thus inhibit escape events. Although the molecular dynamics of
relaxation within the potential well may be fast compared to the rate of organelle fusion
and fragmentation, the relevant timescale for chemical reactions is Kramer’s escape rate,
which may be slower than organelle dynamics and thus let organelle dynamics play a
significant role in the response.

The parameter regimes for the application of the effective equation of motion for col-
lective organelle dynamics in Eq. (2.73) are restricted by the explicit assumption that s
in Eq. (2.73) is small compared to macroscopic concentration changes. This effectively
sets the timescale of macroscopic concentration changes and the effective interaction po-
tential at the same order of magnitude, F⃗η(t) ∼ ϕ[f(c⃗, t)]. However, note that this choice
of parameters reflects a physiological situation. Note that the time-scale or experimental
concentration changes is estimated on the timescale of ∼ 10 min [161, 162] with mitochon-
drial fusion and fission dynamics happening on timescales ∼ 2−20 min [61, 62, 148]. While
this may seem like a slow timescale for chemical reactions, note that the binding process
requires the insertion of the protein’s transmembrane domain into the lipid bilayer of the
outer mitochondrial membrane; A molecular process that involves crossing potential bar-
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riers at the molecular scale. This heuristic explanation for the observed slow timescales
further suggests that our analysis may be well-suited for the study of organelle-associated
signalling pathways in which translocation and binding to a membrane-enclosed organelle
are central steps in the pathway.

Additionally, the experimental evidence presented in sections 3.7 supports the idea that
mitochondrial dynamics can affect the kinetics of the apoptotic signalling pathway. Based
on this, we conclude that it is plausible that a separation of timescales may not be gen-
erally applicable when analysing the kinetics of organelle-associated signalling pathways.
However, it is important to bear in mind that we made certain assumptions in deriving the
effective model and that it is always necessary to carefully verify that these assumptions
are satisfied when applying the model to specific systems. It may also be necessary to
refine the modelling assumptions in certain cases. In section 3.9, we will next discuss the
extent to which the qualitative findings we made in the context of apoptotic signalling
may be instructive for other organelle-associated signalling pathways. Before doing so,
we will briefly discuss the potential therapeutic implications of our qualitative findings.

3.8.2. Potential therapeutic strategies for facilitating and mitigating
apoptosis by mitochondrial dynamics

The control of apoptosis is of fundamental therapeutic importance in cases ranging from
treating genetic dispositions resulting in the misregulation of the apoptotic signalling
pathway, the mitigating of strokes, and in increasing the efficiency and mitigating of the
side effects of cancer treatments [170, 171]. Here, we discussed mitochondrial morphology
and mitochondrial dynamics as potential control parameters to suppress or facilitate cell
death. As notably the mitochondrial morphology and dynamics are strongly affected
by the metabolic environment of cells [172], manipulation of mitochondrial dynamics
represents a potential orthogonal target for biochemical drugs that may increase the
efficiency, sensitivity, and specificity of treatments. In the following, we briefly speculate
on potential implications for therapeutic application.

The connection between the mutation of mitochondrial proteins, their functional impor-
tance, and the symptoms they cause in the context of genetic diseases affecting mitochon-
dria is often phenomenological in nature [173]. To investigate links between mutations
and their functional effects, and to target mitigating the symptoms of mitochondrial dis-
eases, the investigation of mitochondrial dynamics may provide an invaluable means of
elucidating such correlations. In the context of stroke, altering mitochondrial dynamics
to increase fusion is a potential strategy to limit the regions affected by stroke [174]. This
approach may be especially advantageous, as the vascular system in the brain restruc-
tures its transport dynamics in response to ischaemia, whereby strokes transiently stress
cells in a wider neighbourhood. Furthermore, in regards to cancer therapies, the analysis
of mitochondrial dynamics may offer a target for the analysis of personalised treatments
[175]. In such cases, the measurement of mitochondrial dynamics could provide instruc-
tive insights into how cancer treatments could be metabolically supplemented to improve
their efficacy and reduce their side effects. While the therapeutic applications based on
qualitative findings remain purely speculative, we conclude that organelle dynamics, in
general, are a highly promising research area with as-yet-unappreciated potential. Conse-
quently, we suggest that further experimental and modelling efforts should be undertaken
to translate conceptual insights into practical applications.
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3.9. Discussion on quasi-particle kinetics in signalling
pathways beyond apoptosis

In a previous section, we illustrated how organelle dynamics influence the kinetics of
organelle-associated signalling pathways in the context of the intrinsic apoptotic pathway
involving Bcl-2 proteins. In this section, we will explore selected examples of how the ki-
netics deviate from the dynamics of the intrinsic apoptotic signalling pathway. Specifically,
we will examine the metabolic regulation of oxidative species by the oxidative phospho-
rylation pathway (OXPHOS), the metabolic regulation of the activity of the mammalian
target of rapamycin complex 1 (mTORC1) on lysosomes, the organization of Rab pro-
teins on endosomes, and the regulation of cellular anti-viral inflammation responses by
the pathway centred around mitochondrial anti-viral signalling proteins (MAVS).

3.9.1. Application to the regulation of oxidative phosphorylation

Oxidative phosphorylation is one of the two main metabolic pathways in eukaryotes, with
the other pathway being glycolysis [176]. Energy is produced through the oxidation of
nutrients by respiratory enzymes of the eukaryotic electron transport chain located on the
inner membrane of mitochondria. The process of respiratory energy production is referred
to as oxidative phosphorylation (OXPHOS) [64]. In addition to the synthesis of adenosine
triphosphate (ATP), oxidative phosphorylation produces reactive oxygen species (ROS),
such as superoxide or hydrogen peroxide, which act as free radicals and cause cellular
damage through their non-specific reactions with other biomolecules. The central chal-
lenge for oxidative phosphorylation is balancing ATP synthesis with the production of
ROS. To this end, the respiratory chain consists of a series of complexes that allow for the
consumption of synthesized ATP to reduce the amount of ROS produced. [64, 65, 177]
demonstrated that the reaction network centred around complex III of the respiratory
chain can operate in two different modes, which differ in whether ATP is consumed and
ROS production is reduced or the yield of ATP synthesis is increased. In particular, the
concentration of succinate in mitochondria was shown to be a bifurcation parameter, and
bistable regions and hysteresis were experimentally measured. This suggests a qualitative
similarity to the apoptotic signalling pathway discussed in section 3.4.

Similar to the apoptotic signalling pathway, the oxidative phosphorylation pathway is
located in mitochondria that are subject to ongoing fusion and fragmentation dynamics.
Note that we presented the effective bistability of Bax membrane concentration on mito-
chondria as a central prerequisite for sigmoidal response kinetics. Based on this, we would
expect to see analogous kinetics in the metabolic regulation of oxidative phosphorylation.
In particular, we expect that mitochondria will synchronize their metabolic function in
response to altered environmental conditions that demand increased ATP synthesis. We
expect that an orchestrated response can increase the efficiency of intracellular energy
production. To date, the role of mitochondrial fusion and fission in the adaptability of
aerobic metabolism has not been experimentally examined. Based on our theoretical
investigations, we suggest that focusing on mitochondrial dynamics may be a potential
target for the treatment of metabolic misregulation and aberrant ROS production, with
potential applications ranging from the control of ageing to the reduction of carcinogenic
potential.
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3.9.2. Application to the regulation of protein synthesis (mTORC1
pathway)

The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of
cellular protein homeostasis, growth, and proliferation through its mediation of protein
translation [66]. As such, the regulation of the activation and deactivation of mTORC1
is crucial for the proliferative fate of cells. A key step in the activation of mTORC1 is its
translocation to lysosomes and its complex formation with the protein Rheb, which also
localises on the lysosomal membrane [67, 178].

Similar to mitochondria, lysosomes are intracellular, membrane-enclosed organelles that
organize central metabolic processes within their interior and serve as signalling plat-
forms on their membrane. In layman’s terms, the interior of lysosomes is associated with
the cellular waste disposal system, as it is enriched with hydrolytic enzymes that break
down and degrade a wide variety of biomolecules. Similar to mitochondria, lysosomes are
constantly undergoing cycles of fusion and fragmentation [179] and are therefore highly
dynamic organelles. On their membrane, lysosomes serve as the signalling hub for the
mTORC1 pathway. In particular, the translocation of inactive mTORC1 from the cytosol
to the lysosomal membrane is a well-accepted prerequisite for the activation of mTORC1
[67, 178]. On the lysosomal membrane, the complex formation with the GTP-binding
protein Rheb is the central step in mTORC1 activation. The concentration of monomeric
Rheb proteins, in turn, is controlled by the localization of the Tuberous sclerosis complex
(TSC) on the lysosomal membrane [178, 180, 181]. The formation and translocation of
the TSC complex is controlled by a variety of different cellular signals, including growth
factor availability, amino acid abundance, oxidative stress prevalence, and the prevalence
of stress granules [181]. The dynamics controlling TSC complex formation and membrane
translocation kinetics is subject to current research and have not yet been conclusively
elucidated by experiments. Note that the existence of positive feedback loops has been
speculated on by independent studies [181–183]. A positive feedback loop would be the
prerequisite for bistability in the binding dynamics [184].

Yet, a bistable switching mechanism analogous to the accumulation of Bax on mi-
tochondrial membranes has not been investigated in the context TSC accumulation on
lysosomal membranes so far. We thus can not conclusively predict analogous response
kinetics in the context of the regulation of the mTorc1 pathway. Furthermore, the role of
lysosomal dynamics has not been discussed for the regulation of mTorc1 activity, yet. Our
theoretical investigations suggest that lysosomal dynamics might be a central element to
affect mTorc1 regulation and we suggest experimental investigations.

3.9.3. Application to endosomal maturation
Endosomes are part of the endocytic membrane transport pathway that enables the trans-
port of molecules from the plasma membrane or the trans-Golgi network to lysosomes
[185]. Like lysosomes, endosomes are organelles enclosed by a single membrane and un-
dergo frequent dynamics of fusion and maturation. The maturation of endosomes is
particularly associated with a switch from the accumulation of Rab5 proteins on early en-
dosomes to Rab7 protein accumulation on late endosomes [73, 186]. In addition, feedback
between the Rab concentration composition on endosomes and their fusion dynamics has
been suggested [186]. While the transition from Rab5 accumulation to Rab7 accumula-
tion has been discussed in the context of a bistable situation, the feedback of the Rab
membrane concentration with endosomal dynamics is expected to introduce additional
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dynamic effects compared to the response kinetics observed in the context of apoptotic
signalling. A further central difference to mitochondrial dynamics is the central impor-
tance of endosomal synthesis and degradation/fusion with lysosomal vesicles. This de-
mands the explicit accounting for birth and death terms in the context of the population
balance equation in Eq. (2.55). The specific boundary conditions and feedback with the
endosomal maturation process might lead to the suppression of the ensemble localisation
in phase space. As consequence, we do not expect to find the analogous response kinetics
for the endosomal maturation pathway as we presented for the apoptotic signalling path-
way. Nonetheless, we speculate, that a profound analysis of the endosomal dynamics in
the framework of Eq. (2.55) with an explicit accounting for the fusion flux approximation
in equation (2.56) might provide new insight in endosomal signalling dynamics.

3.9.4. Application to cellular innate immune signalling (MAVS
pathway)

In section 3.2.3.1, we have extensively discussed the outer mitochondrial membrane as a
hub for the signalling pathway involved in apoptosis. In addition to its role in apoptosis
and metabolic regulation, the outer mitochondrial membrane is also a central hub for
immune signalling [57]. The Rig-I signalling pathway detects double-stranded viral mRNA
in the cytosol of cells and ultimately leads to the synthesis of NF-κB, a transcription
factor that initiates cellular inflammation responses [187]. Central to the Rig-I signalling
pathway is the accumulation of mitochondrial anti-viral signalling proteins (MAVS) on the
outer mitochondrial membrane into large aggregates, which serve as platforms for the IKK
complex that synthesizes NF-κB [188]. In contrast to the accumulation of Bax proteins
into homo-oligomers during apoptotic signalling, MAVS complexes are estimated to be
much larger [189, 190] and no translocation of MAVS to the mitochondrial membrane has
been observed experimentally. Unlike Bax, MAVS is considered to only exist in an active
form that is steadily localised on the mitochondrial membrane [191, 192]. It is speculated
that the aggregation dynamics of MAVS are catalyzed by Rig-I bound to viral RNA [187].
No bistability for the MAVS membrane concentration has been observed, yet.

A central aspect of the molecular dynamics considered in Eq. (2.55)) is the mapping of
the chemical reaction dynamics of the signalling pathway onto a set of effective coupled
stochastic differential equations. This formalism is particularly suited for describing chem-
ical reaction dynamics that are subject to steady binding and unbinding from a membrane,
such as the translocation dynamics of Bax to the mitochondrial membrane. In contrast,
the central dynamics of MAVS complex formation are the intricate reversible aggregation
dynamics, which require the careful treatment of correlated noise in the framework intro-
duced in section 2.2.1, while tracking the dynamics in the high-dimensional aggregate size
distribution space. As introduced in section 1.3, this suggests the treatment of MAVS
signalling in the context of closed systems rather than effective dynamics in open systems,
as presented here in chapter 3 for the apoptotic signalling pathway and Bax translocation
kinetics. As a result, we expect different kinetics for the signalling pathway. We will
extensively study the dynamics of the MAVS signalling pathway in chapter 5 after gener-
ally discussing an effective description of the effects of compartment dynamics in closed
systems in chapter 4.
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3.10. Conclusion
In this chapter, we have explored the application of the quasi-particle described in chap-
ter 2 to organelle-associated signalling pathways. We focused particularly on the intrinsic
apoptotic signalling pathway within cell death decision-making. We found that mito-
chondrial fusion and fragmentation can suppress the system’s response to weak, transient
stress perturbations, yet facilitate the response to persistent stress perturbations, see sec-
tion 3.4. By this, the mitochondrial dynamics act as a kinetic low-pass filter on stress
fluctuations, see section 3.5, and lead to improved quality of apoptotic decision-making,
see section 3.6. Although we cannot track the motion of the quasi-particle experimentally,
we argued in section 3.7.3 that the sigmoidal response kinetics are unaffected by pre- and
post-modifications in the apoptotic signalling pathway. Our predictions were corroborated
by experiments performed by our experimental collaborators Philipp Mergenthaler and
Lina Hellwig. Our findings suggest that the rate of mitochondrial fusion and fragmen-
tation allows cells to regulate to what degree stress fluctuations are suppressed. In this
context, it is interesting to note that the timescale of mitochondrial dynamics has been
observed to depend on the metabolic conditions of the cell [60, 138, 172]. It is interesting
to speculate that by this cells could adjust their proneness to cell death to the availability
of nutrients.

We have previously discussed the plausibility of our findings in this chapter in sec-
tion 3.8, with particular emphasis on the timescale of the Bcl-2 reaction kinetics and
the timescale of mitochondrial dynamics. In addition, we have considered the potential
implications of our findings on therapeutic approaches. In section 3.7, we have presented
cumulative evidence that suggests our theory correctly predicts quasi-particle kinetics
in organelle-associated signalling pathways, though the experimental evidence is yet in-
conclusive. In this context, we suggest that experimentally manipulating mitochondrial
dynamics could serve to verify our predictions. Moreover, in section 3.9, we have discussed
the direct translation of our findings of the intrinsic apoptotic signalling pathway to other
signalling pathways.

In this chapter, we did not attempt to model the dynamics of organelle-associated sig-
nalling pathways but have instead sought to determine the effects of organelle dynamics
on the response kinetics, with a particular emphasis on the qualitative effects of or-
ganelle fusion and fragmentation. We highlighted the importance of considering both the
timescale of organelle dynamics and the timescale of macroscopic concentration changes
when it comes to signalling pathways. Furthermore, we suggest that strong, orchestrated
responses may be of biological relevance, and that organelle dynamics should be consid-
ered as a central factor in understanding the kinetics of organelle-associated signalling
pathways. We acknowledge that organelle dynamics have further levels of regulation,
which we did not account for in our theoretical approach. Yet, we argue that our findings
nonetheless have a significant impact on the dynamics of organelle-associated signalling
pathways and we propose organelle dynamics as central players to understand the kinetics
of organelle-associated signalling pathways. We propose that future experimental research
focused on assessing the biological function of organelle dynamics may provide a fruitful
avenue for identifying novel therapeutic strategies.
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4. Towards a thermodynamics of closed
compartmentalised systems

4.1. Introduction
The Encyclopedia Britannica defines thermodynamics as the "science of the relationship
between heat, work, temperature, and energy" [193]. Thermodynamics was initially de-
veloped to study the performance of steam engines and is thus primarily concerned with
macroscopic observables [21]. Yet, in order to determine the general applicability of the
concepts of work, temperature, and energy to other systems, it became necessary to un-
derstand the relationship between thermodynamics and the microscopic dynamics of the
constituting elements that form a physical system. This, however, constitutes a signif-
icant challenge, as the analysis of systems with many interacting constituents becomes
impractical due to the large number of terms generated by interactions among individual
constituents. Statistical physics was instrumental in providing a bridge between macro-
scopic thermodynamics and microscopic dynamics, particularly through the analysis of
the thermodynamics of gases using statistical methods [6]. Besides contributing to the
development of more efficient engines, thermodynamics has been applied to the analysis
and optimization of chemical reactions and is now a fundamental aspect of physical chem-
istry [194]. In the 20th century, the concept of thermodynamics was expanded to include
the relationship between entropy and information content [195]. Based on this concept,
and motivated by the goal of estimating the energy budgeting of engines, thermodynamic
theories experienced a renaissance in the field of biological physics as biological systems,
particularly cells, were interpreted as biological engines. This yielded the question if the
energy consumed by living systems can be linked to the work they perform, including both
mechanical work and information processing. As biological systems inherently operate out
of equilibrium, theories need to be extended to capture non-equilibrium thermodynam-
ics. Undoubtedly, deriving a general theory of non-equilibrium thermodynamics in the
context of biological systems is a challenging task. However, the analysis of biologically
inspired systems from the perspective of statistical physics offers a promising approach to
expanding our understanding of non-equilibrium thermodynamics.

In the chapters 2 and 3, we have demonstrated the emergence of a collective degree of
freedom in open compartmentalised stochastic systems arising from the interplay between
stochastic particle dynamics and compartment fusion and fragmentation. The ensuing
dynamic degree of freedom is reminiscent of quasi-particles and it gives rise to a kinetic
low-pass filter on cellular stress fluctuations in the context of apoptotic decision-making.
The phenomenology of closed compartmentalised systems, in which we impose mass con-
servation both on the level of the stochastic many-body dynamics as well as on the level
of the compartment mass, differs fundamentally from the dynamics of open compartmen-
talised systems. In chapter 2 we found that the emergence of the quasi-particle resides on
compartment fusion and fragmentation dynamics that effectively counteract the disper-
sive dynamics in the concentration phase space induced by the contact to a particle bath.
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Fig. 4.1.: Schematic of how dynamic compartmentalisation gives rise to the cre-
ation and preservation density fluctuation A fully-connected system (left) is
contrasted with a system subject to compartment fusion and fragmentation dynam-
ics (right). The fluctuations between compartments are illustrated by density fluc-
tuations, with areas of above-average density being coloured red and below-average
density being coloured blue. These fluctuations arise spontaneously as a result of the
stochastic movement of particles. In a fully-connected compartment system, den-
sity fluctuations rapidly dissipate. However, in a system subject to compartment
fragmentation, density fluctuations are preserved until the next compartment fusion
event occurs. Do compartment fusion and fragmentation by this change the statistics
of the realised system states?

As we prohibit contact with a particle bath, fluctuations between compartments are fully
dictated by the compartment dynamics. As detailed out in section 2.4.3, the fluctuations
induced by compartment fragmentation play a dominating role in the dynamics of closed
compartmentalised systems. We will demonstrate in this chapter, that the effects of com-
partment dynamics on macroscopic properties thus depend on the kinetic details of the
stochastic many-body dynamics. Thermodynamics provides a general set of observables,
such as work and entropy, that elucidate the macroscopic properties of both equilibrium
and non-equilibrium systems. For example, in chapter 2 the characterising phenomenol-
ogy was a localisation of probability distributions in phase-space. The concept of entropy
provides a general quantification of the effect that dynamic compartmentalisation has on
the microscopic degrees of freedom.

Focusing on closed compartmentalised systems we evoke a central difference regarding
the statistics of fluctuations among the open and closed compartmentalised system: In
closed compartmentalised systems, compartment fusion and fragmentation give rise to
the creation and preservation of fluctuations among the compartments. This is exempli-
fied for density fluctuations in Fig. 4.1. In this example, the stochastic spatial dynamics
of particles give rise to the spontaneous accumulation of particles, which manifests in
density fluctuations. While density fluctuations rapidly decay in connected systems, the
fragmentation of compartments preserves the density fluctuations until the next compart-
ment fusion event occurs. The new constraints within a compartment cause the enclosed
dynamics to relax into a new steady state, which in turn affects the statistics of density
fluctuations. In this chapter, we investigate how this mechanism alters the statistics of the
realised system states and thus the total entropy of the system. Specifically, we examine
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whether we can assign a notion of work to processes of compartment fusion and fragmen-
tation. In the following chapter 5, we will further explore how our findings contribute to
our understanding of cellular immune responses to RNA virus infections.

We start this chapter by providing a brief literature review on the statistical physics of
dynamic compartmentalisation, with a specific focus on the insertion and removal of par-
titions in isolated systems. We then introduce a scheme that we term Gergesian demons,
which enables us to study a wide range of stochastic microscopic dynamics enclosed in
dynamic compartments, and allows us to deepen and challenge our understanding of the
thermodynamics of multi-scale systems. As a next step, we specify the enclosed micro-
scopic dynamics as a stochastic version of the ideal gas to gain intuitive mechanistic
insight. Based on our findings, we ask how widely applicable insight gained from study-
ing the ideal gas is to arbitrary stochastic many-body dynamics enclosed in dynamic
compartments. To generalise to stochastic many-body dynamics, we utilise the powerful
formalism of the Second quantisation. We demonstrate that a simple operator condition
can be used to assess the strength by which compartment fusion and fragmentation affect
the total entropy. Specifically, this allows for the assessment of whether compartment
fusion and fragmentation affect the total entropy by performing a simple algebraic cal-
culation, without the need to analytically solve or numerically simulate the system. We
discuss our findings in the context of the scheme of "Gergesian demons" and exorcise ther-
modynamic inconsistencies by identifying the subtle notion of how compartment fusion
and fragmentation performs work on systems. We conclude the chapter by discussing the
technological and biological relevance of our findings. This work was developed in collab-
oration with Rushikesh Shinde, whose Master’s thesis I co-supervised. Rushikesh Shinde
particularly worked on how an ideal gas is affected by dynamic compartmentalisation.

4.2. Literature review on the thermodynamics of
compartmentalisation

In this section, we introduce several thermodynamic concepts that we will frequently
employ in this chapter. We maintain a close connection with the historic foundations
of thermodynamics to provide guidance on the thermodynamic properties of multi-scale
systems that we wish to investigate. Inspired by organelles, we focus on compartments
enclosing internal dynamics and consider the thermodynamic implications of modifying
these compartments, with a particular focus on compartment fusion and fragmentation.

As mentioned in the previous section, the development of statistical physics and ther-
modynamics is closely tied to the study of gases enclosed in compartments. Since the
early days of thermodynamics, operations manipulating compartments show as concep-
tual challenges and led to a number of significant insights that deepened our understanding
of thermodynamics. To gain insight into the thermodynamics of dynamic compartmen-
talisation, we revisit the historic advances that were achieved by externally modifying
compartments through the insertion and removal of partitions. Next, we discuss the
concepts of entropy and reversibility, Gibbs’ paradox, and Maxwell’s demon.

4.2.1. The definition of entropy
Compartment fusion and fragmentation result in the creation and preservation of density
and energy fluctuations among compartments. As the stochastic many-body dynamics
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enclosed in the compartments relax to new steady states, we expect compartment dy-
namics to directly affect the statistics of the realised system states. In this subsection,
we review some definitions of entropy to the extent necessary to investigate the thermo-
dynamics of systems subject to dynamic compartmentalisation. Despite its importance
to thermodynamics and statistical physics, entropy is an abstract quantity. This has led
to debates about the correct definition of entropy in the early days of thermodynamics,
which continue to this day for specific systems [196–198]. After providing a formal defini-
tion of entropy, we demonstrate, using a small example system, how the Gibbs-Shannon
entropy is particularly well-suited for assessing dynamic compartmentalisation systems.

The Encyclopedia Britannica defines entropy as "the measure of a system’s thermal
energy per unit temperature that is unavailable for doing useful work" [199]. While this
definition does not provide a formal, mathematical definition of entropy, it highlights the
practical purpose of entropy in the context of steam engines. This definition is also useful
in the motivation to study the thermodynamics of biological systems, as we are interested
in the functioning of biological engines. Conceptually, this definition lays the groundwork
for a fundamental definition of entropy through the second law of thermodynamics, which,
in Planck’s version, reads [200]:

Every process occurring in nature proceeds in the sense in which the sum of
the entropies of all bodies taking part in the process is increased. In the limit,
i.e. for reversible processes, the sum of the entropies remains unchanged.

This statement formally defines entropy by its functional purpose. The second law states
that not all conceivable processes are realisable in physical systems. For example, heat
will only flow from a hot to a cold object. The change in entropy is the quantity that
determines whether a process can only occur in a forward temporal direction (irreversible)
or in both forward and backward directions (reversible). While the total entropy of all
bodies involved in a process increases for irreversible processes, the entropy of individual
bodies (subsystems) is allowed to decrease. This implies that bringing a system back to
its initial state - i.e., the state before the process started - requires the exertion of work
on the system for irreversible processes. As a small corollary, this also implies that cyclic
processes must show no change in entropy between the different states of the cycle.

While this verbatim definition of entropy gives precise information about the desired
function of entropy, it does not provide information on how entropy is connected to the
dynamics of systems. There are several competing formulations of entropy, which can
be evaluated for their thermodynamic consistency through reconciliation with the laws
of thermodynamics, particularly the second law. Here, we focus on the formulations of
Ludwig Boltzmann and Josiah Gibbs, who made significant contributions to the devel-
opment of general laws linking statistical physics with the desired function of entropy
in a thermodynamic context. It is worth noting that both definitions result in different
entropies for small systems, which we will discuss in more detail after formally defining
the Boltzmann and Gibbs entropies.

To define the Boltzmann and Gibbs entropies, we introduce the concept of microstates
and macrostates of statistical ensembles, cf., for example, [201]. A microstate is a specific
microscopic configuration of a thermodynamic system, while the macrostate of a system
refers to the macroscopic observables of an ensemble. Several microstates belong to the
same macrostate if they yield identical macroscopic observable values upon measurement.
We postulate that the microstates belonging to a macrostate are indistinguishable. Let A
be the set of different macrostates a ∈ A. The macrostate a can be in W (a) possible con-
figurations, denoted by ia = 1, ...,W (a). We call W (a) the multiplicity of the macrostate
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a. We postulate that all configurations ia have the same probability pia = p(a). Therefore,
the probability of a macrostate is given by P (a) = W (a)p(a). The Boltzmann entropy of
a macrostate is

SB = log(W (a)), (4.1)

while the equivalent definition for the system’s entropy is the average Boltzmann entropy
[21, 201]

S̄B =
∑
a

P (a) log(W (a)). (4.2)

In contrast, Gibbs’ definition of entropy is given on the basis of probability distribution
of microstates [21, 201]

SG = −
n∑
i

pi log(pi), (4.3)

where the index i runs over all microstates of the system and pi as defined above1. As
Gibbs’ definition of entropy shares the same functional form as Shannon’s definition of
the information content of a message, the definition of the entropy above is often referred
to as Gibbs-Shannon entropy. Notably, the Gibbs-Shannon entropy demands knowledge
about the microscopic dynamics and measurements of microstates. However, precise
measurements of the microstates cannot be accessed for all systems.

While both the Gibbs entropy and the average Boltzmann entropy give estimates of
the entropy of the system, the definitions are not equivalent. [201] showed that Gibbs-
Shannon entropy can be recovered from the averaged Boltzmann entropy by account for
the entropy of fluctuations of the macrostates :

SG = S̄B −
∑
a∈A

P (a) log(P (a)). (4.4)

Note, that this equality resides on the assumption that microstates summarised into a
macrostate in the averaged Boltzmann entropy have the identical probability of occurring
and hence the same weight in the Gibbs-Shannon entropy. We next illustrate with a
simple example the difference between the averaged Boltzmann entropy and the Gibbs-
Shannon entropy and learn important lessons on the choice of macro-states when turning
to dynamic compartmentalisation later in this chapter.

Consider a simple system with total volume V = 4V0 in which a single particle is
enclosed. We now consider a cyclic process where we insert and remove partitions on two
different positions. Specifically, we consider

• configuration C1: All compartments are connected

• configuration C2: A partition is inserted between compartments 2 and 3

• configuration C3: The partition is removed and all compartments are connected

• configuration C4: A partition is inserted between compartments 3 and 4,

1Note, that in this formulation we can relax on the assumption pia
= p(a).
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Con�guration1

Con�guration 2

Con�guration 3

Con�guration 4
4V0 4V0

2V0 2V0

1V03V0

Fig. 4.2.: A single particle system subject to a cyclic process. By inserting and removing
a partition in different places of an isolated system, a cyclic process is created. The
insertion and removal of the partition performs no work on the system.

see also the illustration in Fig. 4.2. We now calculate the averaged Boltzmann entropy
and the Gibbs-Shannon entropy in every state. Starting with the averaged Boltzmann
entropy, we find

• C1: We only have one compartment with a multiplicity W (a) = 4. Hence, we have
S̄B = 1 · log(4).

• C2: We have two compartment with each a multiplicity W (ai) = 2. Hence, we have
S̄B = 1/2 log(2) + 1/2 log(2) = log(2)

• C3: We only have one compartment with a multiplicity W (a) = 4. Hence, we have
S̄B = 1 · log(4)

• C4: We have one compartment with a multiplicity W (a1) = 3 and one compartment
with W (a2) = 1 . Hence we have S̄B = 3/4 · log(3) + 1/4 · log(1).

Note, that the average Boltzmann entropy is different for each state. This contradicts the
definition of entropy as we have a cyclic process in which no work is performed on the
system. However, we have considered different macrostates over the course of the cycle by
considering different compartment volume distributions. The average Boltzmann entropy
is sensitive to these inconsistencies in observable macrostates. If we calculate the Gibbs-
Shannon entropy instead, we obtain the summation of the microstate probability: SG =
−∑4

i 1/4 · log(1/4) = log(4) for all states C1, C2, C3, C4. It is only by accounting for the
entropy of fluctuations of the macrostates that we find that the average Boltzmann entropy
is consistent with the second law. Importantly, the inconsistency in the average Boltzmann
entropy in the above example arose due to switching the definition of macrostates between
different configurations, as a result of varying volume distributions. This is a general pitfall
to be aware of when studying entropy in the context of dynamic compartmentalisation.
When we consider dynamic compartmentalisation later in this chapter, we will pay special
attention to being consistent in the definition of macrostates by only comparing identical
volume distributions.
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(a)

(b)

Fig. 4.3.: Illustration of Gibbs’ paradox (a) Two distinguishable gases are separated in
two subsystems. After removing a partition between the two compartments, the
gases mix. Reinserting the barrier results in the creation of two indistinguishable
subsystems. (b) Two indistinguishable gases undergo the same processes as in (a).
While for (a) the initial and the final configuration differ, the initial and the final
configuration appears identical for (b), though the same processes occurring for both
(a) and (b).

4.2.2. Gibbs’ paradox

The central motif of dynamic compartmentalisation is the separation and fusion of sub-
systems, as the thermodynamics of setting subsystems into contact and releasing them
out of contact again is historically discussed in the context of Gibbs’ paradox. Exam-
ining Gibbs’ paradox provides us with direct insight on the thermodynamics of binary
compartment fusion and fragmentation.

To understand Gibbs’ paradox [202], we consider two isolated compartments, A and
B, separated by an isolating partition. Both compartments contain an ideal gas, which
is defined as a gas that exhibits no chemical reactions with itself, the other gas, or the
walls of the compartments. The volume, pressure, and temperature of the gases in both
compartments are identical. We refer to the two compartments as subsystems A and B,
enclosing gas A and gas B respectively. As the partition between the two compartments is
removed and the gases are allowed to mix, we will find that, in the thermodynamic limit,
half of gas A will move to subvolume B and half of gas B will move to subvolume A. After
this process, we can re-insert the partition, creating two separated subsystems once again.
This process is illustrated in Fig. 4.3. If gas A from gas B can initially be distinguished,
we will find that the two compartments are in a different configuration after the mixing
process than they were before the partition was removed. The system’s entropy has
increased due to the mixing of the gases. However, if we cannot distinguish gas A from
gas B, the two subsystems will appear unchanged from the initial configuration, and the
system’s entropy will not have changed, despite the fact that a mixing of the gases has
occurred. This paradox is deeply connected to entropy being subjective to an observer.
One observer might detect a change in entropy, while another observer finds no change,
despite the fact that entropy is a state function of the system.

From a semantic perspective, Gibbs’ paradox arises from a non-rigorous treatment of
the concepts of reversibility and recoverability, and a flawed application of the concepts of
macrostates. It is important to recall that macrostates are defined as containing several
indistinguishable microstates. A vanishing mixing entropy for two indistinguishable gases
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A and B does not imply that gas A and gas B are separated again in the two subsystems
after the partition is re-inserted, as the concept of reversibility might suggest. As gas A
and gas B are indistinguishable, the observer cannot assess if gas A and gas B are separated
or mixed after the system is separated again. Both the initial state and the state after
partition re-insertion are different microstate, but belong to the same macrostate for an
observer who cannot distinguish gas A and gas B. A vanishing mixing entropy allows the
system to visit different microstates, but only if all of these microstates belong to the same
macrostate. It is possible that two different observers might consider different macrostates
of the system and, as a result, measure the system’s entropy differently. However, there is
no paradoxical notion involved if the same measurement abilities are consistently applied
and not intermixed when formulating the problem, as noted by [200, 203].

A more subtle understanding of the paradox emerges when considering Gibbs’ thought
experiment at a scale below the thermodynamic limit and taking into account the stochas-
tic dynamics of a finite system, as noted by [21]. In this context, subsystems A and B
differ after the partition is re-inserted. For the purpose of clarifying how Gibbs’ paradox
can be generalised to finite stochastic dynamics, we focus here on the configurational en-
tropy, that is the distribution of indistinguishable gas particles between two subsystems
A and B, while ignoring their energies. It is straightforward to extend this analysis to
include energies as well. We assign two volumes, VA and VB, to the two subsystems and
consider a total of N particles. We assume that the momentum and position of each
particle are statistically independent and that the positions of any two particles, i and j,
are also statistically independent. This implies that the probability of finding a particle
in subvolume A is pA = VA/(VA + VB). We define the number of particles in volume VA
as a macrostate describing the state of the system. The probability of finding the system
in a specified state is given by

P (NA, N −NA) = N !
NA!(N −NA)!

(
VA

VA + VB

)NA ( VB
VA + VB

)N−NA

. (4.5)

Note, that this binomial distribution fully defines the statistics of the system. Based on
these statistics, we define an entropy, which takes above probability distribution as an
argument to compute the entropy of the system, see for further explanations section 4.2.1.
If we insert a partition between the two subsystems, we prevent the exchange of parti-
cles between them. However, as we are unaware of the state that the system is in when
we insert the partition, the newly isolated system is also described by a probability dis-
tribution. In fact, the probability distribution for this case is equal to the probability
distribution describing the system in the absence of the partition, as given by Eq. (4.5).
As a result, both systems have the same entropy. [21] provides a further generalization
of this argument, taking into account the energy of the particles as well. In the same
work, he also presents a generalization to multiple compartments, where the binomial
probability distribution is replaced by the multinomial distribution.

In summary, we find that inserting a partition into a system of non-interacting parti-
cles leaves the system’s entropy unchanged, as the macrostate statistics are unchanged.
However, it is important to note that the reverse process, namely bringing two systems
into contact by removing a partition, generally increases the entropy. If we start from a
specified initial configuration, the initial probability distribution is not given by a bino-
mial distribution, as given by Eq. (4.5), but rather by a delta distribution. In this case,
the macrostate statistics change, and the entropy increases.

For dynamic compartmentalisation systems, we conclude that we in general expect
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changes in the systems’ entropy when we allow for the fusing of compartments. We only
expect the fusion of two compartments not to cause an increase in entropy, if the two
fusing compartments are characterised before fusion with statistics that are identical to
the compartments after the binary fragmentation of the compartments. We conclude that
assessing the statistics of fragmented compartments is a central task when quantifying how
compartment fusion and fragmentation perform work on dynamic compartmentalisation
systems.

4.2.3. Maxwell’s demon
Maxwell’s demon is a striking example of a thought experiment that has troubled the
scientific community over decades2 [204]. James Clerk Maxwell formulated this thought
experiment to challenge the concept of entropy. He considered two isolated compartments,
both filled with an ideal gas at the same temperature, separated by an isolating wall with
a small trapdoor built into it. When the trapdoor is closed, the wall is perfectly isolating.
When it is open, it allows for the passage of individual particles. It is important to
note that opening and closing the trapdoor performs no volume work on the system by
definition.

Maxwell introduced an intelligent being that can observe and measure the velocity of
every particle and is in control of the trapdoor [204]. This being allows the passage of
particles that are faster than average from the left compartment to the right, and slower
than average from the right to the left. In doing so, the being sorts the particles such
that the right compartment increases in terms of the enclosed energy and therefore tem-
perature, while the left compartment cools down, see Fig. 4.4 for an illustration. This
results in a heat flux against the temperature gradient. Furthermore, the final configura-
tion is different from the initial configuration. However, if the partition is removed and
re-inserted in the final state, the system returns to its initial state while increasing the
entropy, as discussed in the context of Gibbs’ paradox. The sorted state hence shows a
decreased entropy, while no volume work was performed on the system.

Maxwell constructed with his thought experiment a seemingly microcanonical system
in which the entropy is increased without performing volume work on the system. This,
however, contradicts the second law. Depending on one’s point of view, Maxwell’s thought
experiment disproved the second law or hints towards an incomplete definition of entropy.
Setting aside the question of the realisability of such a demonic system, the conceptual
possibility of such a system exposed a major caveat in the connection between the statisti-
cal physics of gases and thermodynamics. Notably, the seminal work of Leo Szillard [205]
and later Landauer [206, 207] exorcised the demon, [208, 209]. To this end, they linked
the lost change in entropy to an increase of entropy of the demon as it performes measure-
ments and creates memory when operating the trapdoor. By exorcising Maxwell’s demon,
they introduced the notion of information processing into the realm of thermodynamic
theories.

Szilard’s demon is a simplification of Maxwell’s demon, as it involves a gas composed
of a single particle [204, 205]. By inserting a partition in the middle of a compartment,
the system is split into two asymmetric subsystems: one subsystem contains the particle,
while the other subsystem is empty. Allowing the partition to move freely, the subsys-
tem containing the particle expands while the empty subsystem shrinks until the empty

2Maxwell originally coined the term of an intelligent being. Yet, since Maxwell’s intelligent being
challenged the scientific community, Lord Kelvin coined the term of Maxwell’s demon [204].

105



4. Towards a thermodynamics of closed compartmentalised systems
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Fig. 4.4.: Schematic of Maxwell’s demon. (a) Maxwell’s demon performs sorting of hot
and cold particles into separate subsystems by controlling a trapdoor. (b) Illustration
of the trapdoor opening and closing policy.

subsystem disappears. At this point, the partition is moved to the walls of the formerly
empty compartment. While the partition is moving, a weight attached to it can extract
work from the system. However, in order to extract work, we need to know in which
direction the partition will be moving so that the weight can be attached to the correct
side of the partition. This requires measuring the system after inserting the partition and
memorizing this measurement. This suggests a strong connection between the informa-
tion gained from the system and the extractable work. The key insight that "exorcises the
demon" is that the system is not in the same position at the end of the "cycle" as it was at
the beginning: the memory created in the measurement process still exists. Landauer’s
erasure principle states that every bit of information erasure costs −kBT log(2) [206, 207],
which is equal to the amount of work extractable from one cycle.

By now, several generalisations of Szilard’s demon has been studied including extensions
to N -particle systems and q partitions [210]. Notably, these generalisations only consider
particle number fluctuations and demand the intermediate contact to heat baths as well
as the synchronous insertion of partitions. In more general terms, in the recent literature
several types of thermodynamics demons are distinguished, such as Maxwell’s demon [211],
Szillard’s demon [210], or gambling demons [212]. We refrain from a detailed discussion of
thermodynamic demons but instead refer to a vast literature on these systems [204, 210–
214].

In summary, the study of demons3 can be useful in challenging our understanding of
thermodynamics. To this end, it is helpful to consider a conceptual definition of demons:
thermodynamic demons appear as paradoxical outcomes of protocols applied to systems
that seemingly contradict the second law of thermodynamics. These paradoxes highlight
limitations in our thermodynamic and statistical physics theories, challenge our intuition
about thermodynamic systems and reveal imprecise and superficial formulations in our
theories. As a result, studying thermodynamic demons can deepen our understanding of
the physical laws and symmetries that shape our reality.

3It should be emphasised again that the author of this thesis does not believe in the existence of either
supernatural or thermodynamic demons.
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Fig. 4.5.: Schematic illustration of the equivalence of dynamic compartmentalisation
and partition insertion and removal

4.3. Model definition: How compartment dynamics
induce temporal ordering

Building upon the concepts introduced in the literature review in section 4.2, we aim
to describe the thermodynamics of compartmentalised systems. In this section, we will
establish the formal basis for this investigation. We begin by investigating the link be-
tween dynamic compartmentalisation and modifications of system boundaries, focusing
on how compartment fusion and fragmentation can be linked to the insertion and removal
of partitions. Next, we will use this analogy to investigate how dynamic compartmental-
isation introduces a notion of temporal order in multi-scale systems. Specifically, we will
consider a simple scheme that allows us to rigorously determine the extent to which we
need to adjust our thermodynamic concepts when studying multi-scale systems subject
to dynamic compartmentalisation. There, we also explicitly state the research question
we investigate in this chapter 4.

4.3.1. The connection between dynamic compartmentalisation and
the modification of system constraints

As discussed in section 1.3, dynamic compartmentalisation is inherently a multi-scale
setup, as it involves dynamics on two different spatial scales. On a mesoscopic level, we
define compartments that change over time, enclosing microscopic dynamics that stochas-
tically evolve inside them. Most generally, we consider stochastic many-body dynamics as
being enclosed in dynamic compartments. The two central assumptions of our approach
are that the microscopic dynamics in separated compartments evolve independently of
each other and that the microscopic dynamics are independent of the spatial coordinates
of the compartment. We next study the compartment dynamics in the context of a
thermodynamic framework.

From the perspective of an individual compartment, changing the compartment changes
the constraints placed on the microscopic dynamics enclosed within it. This can be best
illustrated by assuming that each compartment is a perfectly isolating box enclosing a
gas, such that each compartment is a microcanonical ensemble characterized by the com-
partment volume, number of gas particles, and total energy of the gas particles. Some
compartment dynamics, such as compartment growth, change the volume. It is clear that
this process performs volume work on the enclosed microscopic dynamics. As discussed
in section 2.2.2, there are many different compartment processes, including compartment
growth and shrinkage, changes in compartment shape, compartment creation and anni-
hilation, and compartment fusion and fragmentation.
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While the thermodynamic implications of processes such as compartment volume changes
and compartment creation and degradation can be directly assessed in terms of work
performed or energy injected into the system, the processes of compartment fusion and
fragmentation require more careful consideration. To this end, we make a conceptual
link between compartment fusion and fragmentation and the removal and insertion of
partitions into a system, as illustrated in Fig 4.5. Both compartment fusion and frag-
mentation, as well as partition insertion and removal, are binary processes involving two
compartments. For both compartment fusion and partition removal, two previously sep-
arated compartments are brought into contact, allowing particles of the enclosed micro-
scopic dynamics to freely interact with each other and be exchanged between the two
compartments. Conversely, for compartment fragmentation and partition insertion, two
compartments previously in contact are separated, such that the enclosed microscopic
dynamics evolve independently of each other upon separation.

Here, we assume that both the fusion and fragmentation of compartments are instan-
taneous processes, as well as the insertion and removal of partitions. A notable difference
is that partition insertion maintains the spatial position of compartments, which is not
necessarily the case for compartment fragmentation. However, the microscopic dynamics
are independent of the spatial coordinates of the compartment. The compartments can
be separated by partition insertion and subsequently spatially separated with no effect
on the enclosed microscopic dynamics within the partition. The compartments can also
be spatially moved after partition insertion, similar to compartment fragmentation. How-
ever, the spatial position of compartments becomes important in the context of which
compartments are allowed to fuse. In the remainder of this chapter, we make the approx-
imation that compartment fusion and fragmentation is equivalent to partition insertion
and removal.

As discussed in the context of Gibbs’ paradox, the insertion and removal of partitions
demand careful thermodynamic analysis. While in the context of Gibbs’ paradox, a
binary situation with two compartments is discussed, we want to study an arbitrary
number of compartments in the context of dynamic compartmentalisation. When we
study the thermodynamic effects of dynamic compartmentalisation in the remainder of
this chapter, we put an exclusive focus on compartment fusion and fragmentation, which
we consider the hallmarks of dynamic compartmentalisation. We will briefly touch on
other compartment dynamics again in section 4.6.4.

4.3.2. Temporal order induced by compartment fragmentation

In the study of dynamic compartmentalisation systems, we examine composite systems
that typically have multiple compartments. While the analysis of a binary system with two
compartments was the focus of Gibbs’ paradox, the generalization to systems with more
compartments allows for additional degrees of freedom when examining the insertion and
removal of partitions. For systems with N ≥ 2 compartments, it is necessary to consider
the temporal order in which partitions are inserted and removed. Here, we will delve into
how this impacts the enclosed microscopic dynamics.

We define our compartment system in analogy to Eq. (2.20) in section 2.3 as a full
stochastic system on the basis of a transition rate matrices in the formalism of Master
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Equations. To this end, we define the compartmentalised system as

S =


...

[n⃗i, vi]
...

 . (4.6)

We consider the system to be described by a list of compartments, each specified by
the state of the internal stochastic many-body system and compartment properties, as
in chapter 2. We specify on the compartment properties to be fully described by the
compartment volumes vi. For notational simplicity later in this chapter, we define the
state of the enclosed dynamics in terms of the occupation number vector n⃗i, which counts
how many particles are in specified states xi. With N(S) we refer to the total number of
compartments in a given realisation of the system S.

In a semi-symbolic notation, the dynamics of the system are given in the Master-
Equation framework by

d

dt
P (S) =

N(S)∑
i

 ∑
n⃗′

i ̸=n⃗i

Qi (n⃗′
i → n⃗i, vi)P




...
[n⃗′
i, vi]
...





− P (S)
N(S)∑
i

 ∑
n⃗′

i ̸=n⃗i

Qi (n⃗i → n⃗′
i, vi)

+R(t) [P (S)] . (4.7)

We refer to the transition rates of the enclosed stochastic many-body dynamics in com-
partment i with Qi (n⃗′

i → n⃗i, vi) and to the compartment dynamics with the symbolic
operator R(t) [P (S)]. Note, that whether a system is considered closed or open, as intro-
duced in section 1.3, is specified by the details of enclosed dynamics and the compartment
dynamics. We specify the microscopic dynamics in section 4.4.1 and section 4.5.1, and
focus in further of this section on the compartment dynamics.

The multi-scale nature of dynamic compartmentalisation systems makes the analysis of
their dynamics complex, both in terms of analytical tractability and numerical feasibility.
In order to gain an understanding of the thermodynamic effects of dynamic compartmen-
talisation, we simplify the dynamics in this study to a minimal example. This allows us to
investigate how the creation and preservation of fluctuations among compartments affect
the statistics of realised system states. In similarity to Maxwell’s demon, we next intro-
duce a simple scheme that provides insight into the thermodynamic effects of dynamic
compartmentalisation. Using this scheme, we then address the general research question
we investigate in this chapter 4.

We consider a chain of N compartments, C = ci|i = 1, ..., N , each with equal volume
v, that encloses stochastic many-body dynamics. Between each pair of compartments,
ci, ci+1, an immobile partition may be inserted or removed. These partitions are in one of
two states, Pi ∈ 0, 1, which denote the absence or presence of the partition, respectively.
The set of all partition configurations is defined as P = Pi|i = 1, ..., N − 1. Inspired by
Maxwell’s demon, we assume that each partition is controlled by a "dumb" demonic being
that has access to an external time protocol but cannot observe the system itself. This
time protocol dictates when the demon should connect or separate two compartments,
regardless of the microscopic dynamics within the compartments. We consider a micro-
canonical setup in which all walls and partitions are isolating, and assume that partitions
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Fig. 4.6.: Introducing Gergesian demons: Does an external time protocol of parti-
tion insertion and removal affect the macrostate statistics of the system?
We consider a system with a fixed number of compartments that are individually
inserted and removed according to an external time protocol. In particular, we de-
fine the process of synchronous fragmentation, where all partitions are inserted at
the same point in time. In contrast, partitions are inserted one after the other for
sequential fragmentation. Both synchronous and sequential fragmentation results in
the same distribution of compartment volumes. By removing all partitions, tran-
sitions from the synchronous to the sequentially fragmented state and vice versa
are possible without performing volume work on the system. For which conditions
do the synchronous to the sequentially fragmented state show identical macrostate
statistics?

are inserted and removed without performing work on the system. Will different time
protocols result in different macrostate statistics and hence different system entropies?
As in this setup every partition is individually controlled, we term the legion of demons
in this setup Gergesian demons, as they are many.

In the following, we focus on two specific time protocols, which we term synchronous and
sequential fragmentation. We define an initial state P0 = {Pi = 0|i = 1, ..., N−1} and we
assume that the microscopic dynamics enclosed in the system relaxed to an equilibrium
state. We define a time protocol of partition insertion and removal as a sequence (s⃗t)t∈T ,
where s⃗t ∈ {0, 1}N−1 indicates for sit = 1 a change in the configuration of the ith partition
from its current configuration to the other configuration and no change for sit = 0 at time
t. T is the list of time points at which barrier modifications happen. Starting from P0 at
a time t0, we define the synchronous fragmentation time protocol

ssyn = (s⃗0), s⃗0 = (1, ..., 1)⊤, T = {0} (4.8)

as a process where all partitions are inserted in the system at the same time. This formally
agrees with a generalisation of Gibbs paradox as discussed by [21], see also section 4.2,
if the stochastic many-dynamics is an ideal gas. For the second compartmentalisation
process, we define a time interval ∆t ≫ τ which is greater than the internal relaxation
time of the stochastic many-body dynamics enclosed in the system. We define sequential
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fragmentation as

sseq = (s⃗0, ..., s⃗N−1), s⃗i = (0, ..., i︸︷︷︸
ith index

, ..., 0)⊤, T = {t0, t0 + ∆t, ..., t0 + (N − 2)∆t}.

(4.9)

In this process, partitions are inserted one after each other with a time difference ∆t,
such that in every step a small compartment of volume v is separated from the remaining
system. By construction, we allow the system in this process to relax to a new equilibrium
state after splitting a small part from the system. Both synchronous fragmentation and
sequential fragmentation yield the same final distribution of compartment volumes. We
thus consider the same macrostates, if we evaluate the enclosed dynamics per compart-
ment, as we for example track the energy per compartment. We conclude, that different
compartment content statistics imply different total system entropies. Note, that while
synchronous fragmentation is an instantaneous process, sequential fragmentation has the
notion of an arrow of time. For sseq the compartments in the final configuration are cre-
ated at different instances in time, with a clear correlation between the creation time and
position in the system. This is illustrated in Fig. 4.6.

As we consider finite system sizes and stochastic dynamics for the many-body dynamics
enclosed in the compartments, after applying a fragmentation time protocol, we find a
stochastic realisation of the system. Here, we are not interested in specific realisations of
macrostates but in the statistics of the macrostates after executing a time protocol. For
the synchronous fragmentation protocol, we expect all compartments to have the same
statistics, as we have by definition no dependency on space in our system. The situation
is a priori different for sequential fragmentation. After inserting a barrier, the system
evolves in time and fluctuations from the partitioning process potentially add up over
time.

We formally define the macrostate statistics of the system in the initial configuration
P0 as P (S0). We define the macrostate statistics obtained by synchronous fragmentation
as P (Ssyn) and by sequential fragmentation as P (Sseq). Recall, that we allow for both the
insertion and removal of partitions such that we can cyclically interchange between state
S0 → Sseq → S0 → Sseq → S0. If we consider the compartmentalised system as isolated
system, and P (Sseq) ̸= P (Ssyn), the second law of thermodynamics allows us to assess the
work performed by compartment fusion and fragmentation.

Comparing synchronous and sequential fragmentation constitutes a minimal model to
assess the effects of compartment fusion and fragmentation dynamics on statistics of the
realised system states. The sequential fragmentation protocol manifests the heuristic
idea of creating and preserving density fluctuations, while the synchronous fragmenta-
tion protocol constitutes a benchmark. The synchronous fragmentation protocol results
in a compartment configuration with identical size distribution as for synchronous frag-
mentation, but, by construction, all compartments show identical statistics. Notably,
this minimal system allows for analytical tractability. In the following chapter 4, we
investigate how creating and preserving fluctuations due to compartment fragmentation
and fusion change the system statistics. We in particular approach this problem from
a thermodynamic perspective, and asses the changes in the system entropy induced by
compartment fusion and fragmentation. Based on this, we interpret the notion of work
performed on the system by compartment dynamics. In order to investigate this system,
we will first study the ideal gas subject to synchronous and sequential fragmentation pro-
cesses in section 4.4 and then turn to a generalisation by making use of the formalism of
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the Second quantisation in section 4.5. We next briefly elucidate compartment dynamics
beyond the synchronous and sequential fragmentation processes.

4.3.3. Compartment fusion and fragmentation dynamics
In section 4.3.2, we introduced two specific compartment dynamic protocols: synchronous
and sequential fragmentation. There are infinitely many other time protocols that could
be constructed to investigate dynamic compartmentalisation. Additionally, in Fig. 4.6,
we have assumed a preserved spatial setting. Relaxing this constraint allows for further
compartment dynamics as the connectivity between compartments is allowed to vary over
time, potentially resulting in macrostate statistics that are different from those achievable
through fragmentation processes.

Although there is a wide range of processes to investigate, we have chosen to focus on
two simple, analytically tractable compartment dynamic processes, which give insight on
compartment fusion and fragmentation dynamics. If synchronous and sequential frag-
mentation show different macrostate statistics, we conclude that compartment fusion and
fragmentation dynamics in general alter the macrostate statistics. On the other hand, if
both synchronous and sequential fragmentation produce identical macrostate statistics,
we conclude that there exist no compartment fusion and fragmentation protocols that in-
duce different macrostate statistics. We will provide a proof of this in section 4.4.4, when
we study the ideal gas subject to synchronous and sequential compartment fragmenta-
tion. In the following, when we refer to dynamic compartmentalisation, we compare the
synchronous and sequential fragmentation protocol.

4.4. The ideal gas subject to dynamic
compartmentalisation

In section 4.2, we briefly reviewed a historic perspective on the insertion and removal of
partitions, which set the foundation to analyse binary merging and binary fragmentation
of compartments. In this context, we built a lot of our physics intuition of thermodynam-
ics and statistical physics on the behaviour of the ideal gas. In this section, we take the
ideal gas a paradigmatic model system to study the thermodynamics of dynamic com-
partmentalisation by analysing the setup of Gergesian demons introduced in section 4.3.2.
Notably, in this chapter, we present an analytical proof structure, which allows for direct
generalisation to arbitrary stochastic many-body dynamics. We investigate here the ideal
gas to exemplify the structure of the proof. At the end of this subchapter, in section 4.4.5,
we will discuss the generalisability of the ideal gas as a model system.

4.4.1. Understanding the ideal gas as stochastic many-body
dynamics

Before we investigate the ideal gas under dynamic compartmentalisation, we need to pre-
cisely define the model under consideration. To this end, we refine the model presented
in section 4.3.2, where we introduced the scheme of Gergesian demons. While the com-
partment dynamics are fully defined by the two fragmentation processes sseq and ssyn, we
need to further specify the microscopic enclosed many-particle dynamics, which we here
set to be the ideal gas.
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4.4. The ideal gas subject to dynamic compartmentalisation

We are considering a microcanonical system in which no fluxes of energy or particles are
allowed through the system’s boundaries or partitions. Each gas particle i is characterised
by a position vector and a momentum vector, (r⃗i, p⃗i). When particles collide, they ex-
change momentum in a stochastic manner. We assume that the position and momentum
of the particles are independent variables and that the momentums of two colliding par-
ticles are statistically independent, which corresponds to the molecular chaos hypothesis
[215]. For simplicity, we consider particles of the same mass, m. Instead of analysing the
momentum vector, we focus on the kinetic energy per particle, Ei = p⃗i

2/2m. We consider
a finite number of particles, N , enclosed in our system. As we assume the particles to
be randomly and uniformly distributed in space, we neglect the position dependence and
define the full state of the system as the vector E⃗ = E1, E2, ..., EN . Note that, as we
defined a microcanonical setup, the total sum of E = ∑

iEi is a conserved quantity. In
this setup, inserting a single partition corresponds to a binomial splitting of the particles
into the two newly created subsystems, with the probability of being assigned to each
subsystem equal to its volume fraction.

Recall that the compartment configuration resulting from either sequential or syn-
chronous fragmentation is identical. In the final configuration, each compartment is
described by a tuple (E⃗ , N⃗ ), where E⃗ = E1, ..., EN is the vector of total energies and
N⃗ = N1, ...,NN is the number of particles per compartment. Similar to E⃗, the total
energy is conserved, such that E = ∑

i Ei. Similarly, the total number of particles is also
conserved, as N = ∑

iNi. Note that every compartment in the final configuration is itself
a microcanonical ensemble, each characterised by (Ei,Ni, v).

The dynamics of the ideal gas are defined by how momentum is exchanged upon particle
collision. Here, we approximate the ideal gas as a hard sphere gas and invoke the molecular
chaos hypothesis. Given that particles i and j collided with energies Ei and Ej, the
probability for new energies E ′

i and E ′
j is

p(E ′
i, E

′
j|Ei, Ej) = 1

Ei + Ej
(4.10)

for a two-dimensional system. The dynamics of such a gas are thoroughly explained in
various textbooks, such as [6, 21]. A simple numerical exercise is to implement the dy-
namics of a hard sphere gas in simulations. However, we are not interested in a qualitative
description of the ideal gas dynamics here. Instead, we seek efficient implementations that
allow for fast computations and analytical treatment. For this reason, we will study the
ideal gas as a multivariate random variable in the next section.

4.4.2. Finite-sized ideal gas ensembles as a multi-variate random
variables

For further analysis, it is necessary to know about fluctuations and the full ensemble
probability distribution in order to correctly assess the effect of dynamic compartmen-
talisation. To this end, we turn to a statistical description of the ideal gas, treating the
state of the system E⃗ as a multivariate random variable and deriving the probability
distribution pE(E⃗). In this section, we closely follow [216] to demonstrate that Dirichlet
distributions are suitable to describe the ensemble statistics of an ideal gas.

Let an ideal gas be defined by N particles confined in a volume V in d dimensions
with identical mass m. Let r⃗i be the position of the particle i and p⃗i its momentum. We
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4. Towards a thermodynamics of closed compartmentalised systems

consider only full elastic collisions among the particles and with the walls of the volume.
Furthermore, we consider the walls to be isolating, such that

E = 1
2m

∑
i

p⃗2
i , (4.11)

the total energy is conserved. With this, the microscopic state of the system is fully
defined. For simplicity, we change from momentum coordinates to velocity coordinates
p⃗i = mv⃗i. Let v⃗ the composite vector over all velocity vectors v⃗i. The velocity vector v⃗
is constrained on the hypersphere with radius R =

√
2E/m. The total phase space hence

has a dimension of g = 2dN − 1. We introduce the notation v⃗ and r⃗ as vectors over all
particle velocities and positions, respectively.

Here, we do not derive the statistics from the collision dynamics solving Boltzmann’s
kinetic equations but assume molecular chaos, such that every accessible state in the g-
dimensional phase has equal probability. 4 We find that the total volume of the accessible
phase space is given by

Ω = V N 2πdN/2

Γ(dN/2)R
dN−1, (4.12)

where we made use of the Gamma-function Γ. This phase space volume is typically the
starting point to define the Boltzmann entropy. Here, we take a different route, as we
need a description in terms of probability distributions. In particular, making use of the
molecular chaos hypothesis, we find the probability distribution

fr⃗,v⃗(x⃗, y⃗) = 1
Ω1V (x⃗)1y=R(y⃗) (4.13)

for the system to be in any accessible state of the phase space. Here, we made use
of indicator functions 1A(x⃗), which counts whether a state x⃗ ∈ A in a set A. The first
indicator function checks whether the state is inside the confined volume, while the second
term checks if the total energy is conserved. We integrate out the positional degrees of
freedom and show that the probability to find a specified velocity vector for our system v⃗
is uniformly distributed on the hypersphere with radius R defined above.

Next, we apply two variable transformations. In a first step, we normalise to dimen-
sionless variables ui,α = vi,α/R, which yields

fu⃗(x⃗) = Γ(dN/2)
2πdN/2 1x=1(x⃗). (4.14)

Next, we shift to the squared version wi,α = u2
i,α such that the constraint on the sum

simplifies to ∑N
i

∑d
αwi,α = 1. The Jacobian of this transformation is given by∣∣∣∣∣ ∂u⃗∂w⃗

∣∣∣∣∣ = 1
2dN

N∏
i=1

d∏
α=1

w
−1/2
i,α . (4.15)

4Indeed, while this assumption is central in statistical physics, it is not rigorously proven [6, 7, 216].
However, note that this assumption is also the basis for the Boltzmann entropy on which a large
portion of the statistical physics of gases is built [21].
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4.4. The ideal gas subject to dynamic compartmentalisation

Note that for wi,α the accessible space in the phase space is given by the unit simplex

S =
{
x⃗ ∈ Rn : ∀i xi ≥ 0 ∧

∑
i

= 1nx1 = 1
}
. (4.16)

With this, the probability distribution reads

fw⃗(x⃗) = Γ(dN/2)
[Γ(1/2)]dN

N∏
i=1

d∏
α=1

x
1/2−1
i,α , (4.17)

which is a symmetric Dirichlet distribution. In a final step, we define the normalised
energy per particle

εi = Ei
E

=
d∑
α

v2
i,α

R2 =
d∑
α

wi,α, (4.18)

and make use of the aggregation law of Dirichlet distribution, to find the symmetric
Dirichlet distribution of the energy per particle vector

fε⃗(x⃗) = Γ(dN/2)
[Γ(1/2)]dN

N∏
i=1

d∏
α=1

x
d/2−1
i,α . (4.19)

Note, that this distribution reduces to a uniform distribution for d = 2, but does not
reduce to a uniform distribution for general dimensions d > 2. While this result is typi-
cally not discussed in standard textbooks, indeed the well-known statistical distributions
of the ideal gas can be extracted from the Dirichlet distribution, such as the gamma dis-
tribution for the energy and the Maxwell-Boltzmann distribution for the particle velocity
as marginalised distributions in the thermodynamic limit, see for example [216]. Note,
that the Dirichlet distribution has several specific statistical characteristics, which set this
multi-variate distribution special. Most notably, the Dirichlet distribution is characterised
as only continuous multi-variate probability distribution yielding complete neutrality.

We define a random vector x⃗ = (x1, x2, ..., xN) on the unit simplex S defined above.
Recall that the elements of the vector are globally coupled by the constraint ∑i xi = 1.
Formally, x1 is termed neutral if and only if x1 is statistically independent from the
rescaled vector

x1∗ =
(

x2

1− x1
,

x3

1− x1
, ...,

xN
1− x1

)
. (4.20)

In turn, x2 is termed neutral if and only if x2 is statistically independent of the rescaled
vector

x2∗ =
(

x3

1− x1 − x2
,

x4

1− x1 − x2
, ...,

xN
1− x1 − x2

)
, (4.21)

and so on. If all xi are neutral, then the vector is termed completely neutral. A distri-
bution that only yields completely neutral vectors is called completely neutral. Applying
this concept to the ideal gas, we find an exotic type of statistical dependence. Formally,
all particles are globally coupled due to the global constraint of energy conservation. If we
sample and extract an arbitrary number of particles from the ideal gas and measure the
total energy of this sample, then add this energy back to the remaining particles in the
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4. Towards a thermodynamics of closed compartmentalised systems

ideal gas to create a second sample, complete neutrality predicts that both samples are
now statistically independent. In layman’s terms, we can scale the global coupling away
for the ideal gas. This gives us a hint of what to expect for the thermodynamics of the
ideal gas under dynamic compartmentalisation, which we will investigate after presenting
evidence from numerical experiments.

4.4.3. Simulation of the ideal gas subject to sequential and
synchronous compartment fragmentation

In our numerical routines, outlined in appendix B.3, we in particular make use of describ-
ing a finite-sized ideal gas ensemble by a Dirichlet distributed random variable. Note that
also In the following chapter 4.4.4 we will make use of the Dirichlet distributed random
variables. Using the numerical routine, we can effectively sample systems of arbitrary
size. However, we focus on small systems in this case, as we need both a lower number
of repetitions to find reliable statistics and a decrease in simulation time. It is important
to note that we are interested in precise statistics, as we cannot yet estimate the strength
of the effects induced by compartment dynamics. In this section, we consider statistics
derived from 2× 106 independent runs.

First, we directly contrast synchronous fragmentation with sequential fragmentation.
We consider an ensemble of 30 ideal gas particles with an initial energy of Ẽ enclosed
in a 5-compartment system. Here, we normalize the energy scale such that the average
energy per particle is Ẽ/N = 1. For the evaluation of the statistics, we consider the total
enclosed energy per compartment Ei. For an ideal gas in two dimensions (2Dd), we find
that all compartments show the same distribution psynEi(ε) of energy per compartment
after synchronous fragmentation, as shown in Fig.4.7 (a). This result is expected, as by
construction all compartments are indistinguishable.

For sequential fragmentation, we also find that all compartments show the same dis-
tribution pseq

Ei
(ε) of energy per compartment, see Fig. 4.7 (b). As the first compart-

ment created by either synchronous or sequential fragmentation has the same distribu-
tion psyn

E1 (ε) = pseq
E1 (ε), we find that both synchronous and sequential fragmentation show

the same statistics psyn
Ei

(ε) = pseq
Ei

(ε for the 2d ideal gas. The analogous analysis for a
three-dimensional ideal gas (3d), see Fig. 4.7 (c) and (d), shows the same result of syn-
chronous and sequential fragmentation being equivalent, as both processes result in the
same macrostate statistics. Note that due to equivalence of psyn

E1 (ε) = pseq
E1 (ε), it is suffi-

cient to only investigate the sequential fragmentation process to asses an equivalence of
synchronous and sequential fragmentation. If sequential and synchronous are not equiv-
alent, this implies that the compartments resulting from sequential fragmentation show
different macrostate statistics.

Next, we test whether we started our numerical investigations in a parameter regime
where differences for the sequential fragmentation are vanishingly small and thus were
undetectable by our numerical simulations. We thus want to systematically check for other
system sizes. To begin with, we investigate whether the initial number of particles in the
system has any impact on possible deviations between compartments when subjected to
a sequential fragmentation process. In Fig. 4.8, we systematically vary the initial number
of particles in a 3-compartment system from N = 10 to N = 200. All compartments
show the same macrostate statistics.

Finally, we consider systems with a varying number of compartments. It is possible that
fluctuations may accumulate over the course of sequential fragmentation, resulting in more
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Fig. 4.7.: Comparing synchronous and sequential fragmentation for an ideal gas
enclosed in a 5-compartment system in two and three dimensions. An
ensemble of ideal gas particles with initial size N = 30 and initial energy Ẽ is enclosed
in a 5-compartment system. Shown is the statistics over the total energy enclosed per
compartment Ei. The energy is measured in units of the average energy per particle,
E = 30Ẽ/N . The 5-compartment system is fragmented by both a sequential and a
synchronous fragmentation process. Ideal gas dynamics in two and three dimensions
are both investigated. Ideal gas dynamics are simulated following Algorithm 2 and
Algorithm 1. A total number of 2× 106 independent runs were performed to create
the statistics. As by construction, the statistics of the total enclosed energy Ei per
compartment is identical for all compartments for synchronous fragmentation in both
2d, (a), and 3d, (c). Also for sequential fragmentation, all compartments show the
same statistics for Ei in both 2d, (b), and 3d, (d). As the statistics of the first
compartment are identical for both synchronous and sequential fragmentation by
construction, synchronous and sequential fragmentation yield identical statistics in
both 2d and 3d.
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Fig. 4.8.: Sequential fragmentation of an ideal gas with varying total particle num-
ber An ideal gas in 2d enclosed in a 3-compartment system is subjected to sequential
fragmentation. Shown is the statistics over the total energy enclosed per compart-
ment Ei. The total number of enclosed particles is systematically increased from
(a) N = 10, (a) N = 20, (a) N = 100, to (a) N = 200. The enclosed energy is
measured in units of the average energy per particle. A total number of 2 × 106

independent runs were performed to create the statistics. Sequential fragmentation
shows no differences in the statistics of the total enclosed energy Ei independent of
the total number of enclosed particles N .

pronounced differences in macrostate statistics when more compartments are present. In
Fig.4.9, we systematically increase the number of compartments while keeping the initial
number of particles fixed at N = 30. Again, we find that the macrostate statistics are
unchanged by sequential fragmentation, as all compartments display identical macrostate
statistics regardless of when they are created. These numerical results suggest that the
ideal gas in a microcanonical setup is unaffected by dynamic compartmentalisation. To
corroborate our findings, we next present an analytical argument, where we proof that
dynamic compartmentalisation shows no effect on the ideal gas.

4.4.4. Proof of entropic neutrality under dynamic
compartmentalisation

The numerical experiments presented in the previous section suggest that the ideal gas is
unaffected by the timing of partition insertion. In this section, we provide an analytical
proof of this observation using specific properties of the Dirichlet distribution. This proof
was initially presented in the Master’s thesis of Rushikesh Shinde. This work formally
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Fig. 4.9.: Sequential fragmentation of an ideal gas in systems with varying total com-
partment number An ideal gas in 2d enclosed with an initial number of N = 30
particles is subjected to sequential fragmentation. Shown is the statistics over the
total energy enclosed per compartment Ei. The total number of considered compart-
ments is systematically increased from (a) N = 3, (a) N = 5, (a) N = 10, to (a)
N = 20. The enclosed energy is measured in units of the average energy per particle.
A total number of 2× 106 independent runs were performed to create the statistics.
Sequential fragmentation shows no differences in the statistics of the total enclosed
energy Ei independent of the total number of considered compartments N = 20.

shows an extension to the Gibbs paradox, as we consider multiple compartments and
discuss the notion of time in this context. While investigating an ideal gas subject to
dynamic compartmentalisation is a constructed example with little practical relevance,
we introduce with the following proof a structure which allows for a direct generalisation
to arbitrary stochastic many-body dynamics, that we will employ again in section 4.5.

In section 4.4.2, we demonstrated how an ideal gas ensemble can be described as a mul-
tivariate random variable following a Dirichlet distribution and briefly mentioned special
statistical properties of this distribution. In this section, we provide a formal proof of
the invariance of the ideal gas under dynamic compartmentalisation. To do so, we first
review the identities between the Dirichlet, Gamma, and Beta distributions. Using these
relationships, we consider the specific case of sampling a subset from an ensemble and
removing it, followed by allowing the remaining ensemble to relax to a new equilibrium
and comparing the statistics of the new equilibrium to those of the extracted sample.
From this, we generalize to the cases of synchronous versus sequential fragmentation, and
subsequently to general compartment fusion and fragmentation processes.
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4. Towards a thermodynamics of closed compartmentalised systems

Sampling a Dirichlet distribution Let X⃗ ∈ Rn+ be a random vector on the unit simplex∑n
i Xi = 1 whose distribution is given by

f(X⃗|α⃗) = Γ (∑n
i αi)∏n

i Γ(αi)

n∏
i

xαi−1
i , (4.22)

where α⃗ ∈ Rn+. Then X⃗ ∼ Dir(α⃗) is distributed according to a Dirichlet distribution with
parameter vector α⃗ [217]. If αi = α ∀i, then the Dirichlet distribution is a symmetric
Dirichlet distribution. A Dirichlet distributed random vector of size n can be obtained
by sampling n independent Gamma variables. Let Yi ∼ Gamma(αi, θ), i = 1, ..., n be
independent Gamma distributed random variables with different shape parameter αi and
identical scale parameter θ. Defining the sum Z = ∑n

i Yi, the normalised vector

Y⃗ ′ =
(
Y1

Z
,
Y2

Z
, ...,

Yn
Z

)
∼ Dir(α⃗) (4.23)

follows a Dirichlet distribution [217].

Relations between the Beta and the Gamma distribution Let X ∼ Gamma(α, θ) and
Y ∼ Gamma(β, θ) be two independent Gamma distributed random variables. Then the
sum Z1 = X + Y is also given by a Gamma distribution [217]

Z1 ∼ Gamma(α + β, θ). (4.24)

On similar terms, the quotient Z2 = X/(X + Y ) is distributed like a Beta distribution
[217]

Z2 ∼ Beta(α, β). (4.25)

Let now X ∼ Gamma(α+β, θ) and Y ∼ Beta(α, β) be two independent random variables.
Then the product Z = XY is distributed like a Gamma distribution

Z ∼ Gamma(α, θ). (4.26)

In the following, we will make use of these identities to prove the invariance of the ideal
gas under dynamic compartmentalisation.

Proof of entropic neutrality We now proceed to prove that partial sample removal
and subsequent resampling leave the Dirichlet distribution invariant. To this end, we
prove that the sum of energy extracted by a n particle sampling in two time-separated
steps follows the same distribution. Following this proof, we demonstrate how this bi-
nary sampling implies invariance under dynamic compartmentalisation using a proof by
induction.

We begin by defining a random vector of size N sampled from a symmetric Dirichlet
distribution

X⃗ ∼ Dir(α⃗), αi = d

2 ∀i = 1, 2, ..., N. (4.27)

Next, we extract a sample from X⃗. To this end, we first define the set N = {1, 2, ..., N}.
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4.4. The ideal gas subject to dynamic compartmentalisation

We randomly sample n ≤ N/2 elements from the random vector X⃗. We define the index
set I1 with total size #I1 = n and i ∈ I1 unique, which encodes the extracted sample.
With this, we define the sum

σ1 =
∑
i∈I1

Xi (4.28)

over the sample. We define the subset I−1
1 = N\I1 as the remainder of the sampling. The

size of the set is #I−1
1 = N−n and the sum over its elements is given by ∑i∈I−1

1
Xi = 1−σ1.

Next, we draw a new random vector from a Dirichlet distribution Y⃗ ′ ∼ Dir(α) of size N−n
and normalize Y⃗ = Y⃗ ′(1− σ1), such that ∑N−n

i Yi = 1− σ1. Note, that Y⃗ ′ is independent
of X⃗. We define a new random subset I2 = n and define the sum σ2 = ∑

i∈I2 Yi. In the
following, we will prove that

σ1 ∼ σ2 (4.29)

are identically distributed random variables.

To prove the above statement, we begin by constructing X⃗ by N independent Gamma
variables Ui ∼ Gamma(α, θ):

Xi = Ui∑N
i Ui

. (4.30)

Using this construction, the sum σ1 is given by

σ1 =
∑
i∈I1 Ui∑N
j Uj

. (4.31)

Analogously, we make use of N − n additional independent Gamma variables U ′
i ∼

Gamma(α, θ) to define σ2:

σ2 =
∑
i∈I2 U

′
i∑N−n

j U ′
j

(
1−

∑
i∈I1 Ui∑N
j Uj

)
=
∑
i∈I2 U

′
i∑N−n

j U ′
j

(∑
i∈I−1

1
Ui∑N

j Uj

)
. (4.32)

We realise that both σ1 and σ2 share the identical denominator ∑N
j Uj. We simplify to

σ′
1 =

∑
i∈I1

Ui (4.33)

σ′
2 =

∑
i∈I2 U

′
i∑N−n

j U ′
j

 ∑
i∈I−1

1

Ui

 . (4.34)

From this definition, we can directly read off

σ′
1 ∼ Gamma(nd/2, θ). (4.35)

121



4. Towards a thermodynamics of closed compartmentalised systems

For readability, we define Z1 = ∑
i∈I2 U

′
i and Z2 = ∑

i∈I−1
2
U ′
i , such that

σ′
2 = Z1

Z1 + Z2

 ∑
i∈I−1

1

Ui

 = Z

 ∑
i∈I−1

1

Ui

 . (4.36)

We can directly read off, that Z ∼ Beta(nd/2, (N − 2n)d/2). As the sum in the brackets
is distributed like Gamma((N − n)d/2, θ), we find that

σ′
2 ∼ Gamma(nd/2, θ). (4.37)

As σ′
1 and σ′

2 are identically distributed, we also find that σ1 and σ2 are identically
distributed. Note, that the two samples σ1 and σ2 are only identically distributed if both
samples are of the same size.

After having provided a mathematical proof of the invariance of the Dirichlet distribu-
tion under random sample extraction, we consider the implications of this proof for the
thermodynamics of ideal gases, before turning to generalisations of the proof account for
random sample sizes. As previously established in section 4.4.2, starting with a Dirichlet
distributed random vector corresponds to considering an ensemble of an ideal gas in an
isolated compartment at equilibrium. There is a formal equality between the Dirichlet
random vector X⃗ and the state vector E⃗ describing the energy per particle, as we normal-
ize the ensemble energy E = 1 through initial rescaling. The creation of a sub-sample I1
corresponds to randomly moving a subset of gas particles to a new isolated compartment.
Summing over this sub-sample corresponds to measuring the macrostate of the newly
created subsystem in terms of the number of particles N1 = n and total energy E1 = σ1 it
contains. This also determines the macrostate of the other subsystem as N ′

2 = N −n and
E ′

2 = 1− σ1. Sequential and synchronous fragmentation differ in the timing between the
insertion of subsequent partitions. For sequential fragmentation, we let a time difference
∆t≫ τ pass. Yet, importantly, we find that both newly created subsystems are directly
at time ∆t = 0 already in a new equilibrium, characterised by (E ′

2,N ′
2) and (E1,N1).

This is due to the special property of the Dirichlet distribution. From subsystem (E ′
2,N ′

2)
we extract a new sample with (E2,N2). In the proof above we demonstrated that both
newly created subsystems 1 and 2 with an ideal gas have identical statistical properties
if N⃗2 = N⃗1.

When creating subsystems by inserting partitions, the sample size is a random variable
following a binomial distribution. By construction of the binomial splitting, the first
and second separated compartments have the same particle distribution N1 ∼ N2 if the
compartment volumes v1 = v2 are identical. Using this and the results above, we find
that the macrostate statistics in both compartments 1 and 2 are identically distributed if
they are created by partition insertion. Following the same line of argument, separating
off a third compartment also yields identical macrostate statistics, if v1 = v2 = v3. By
induction, we find that this holds true for all further compartments of identical volume
size. Note, that these findings are based on the special statistical properties of the Dirichlet
distribution.

Focusing next on synchronous fragmentation, there is no step of resampling and the
samples are drawn from the same random vector X⃗. Hence σ1 and σ2 are trivially iden-
tically distributed due to the construction of X⃗ by ui ∼ Gamma(α, θ). Hence, also if
separated by synchronous fragmentation, all compartments show identical macrostate
statistics. Indeed, we already expected the later result by following the arguments given
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4.4. The ideal gas subject to dynamic compartmentalisation

by [21] in chapter 6.
Note, that by construction, the set I−1

1 forms a Dirichlet distributed random vector with
the constraints σ2 = 1− σ1. As a consequence, the sub-set I−1

1 is already in equilibrium.
As a consequence, the equilibration time is formally vanishing, τ = 0. This implies that
all fragmentation time protocols that result in the same compartment volume distribution
will show identical macrostate statistics.

Next, we extend our findings to time protocols that involve removing partitions, i.e.
fusion of compartments. In the first step, we argue that we can reverse any time protocol
without changing the macrostate statistics of the system and then turn to the general re-
moval of compartments. Without loss of generality, we consider a system consisting of two
compartments in contact, i.e., with no partition separating them. Following the construc-
tion of the Dirichlet distribution, we find that splitting the Dirichlet distributed random
vector results in two random vectors that are themselves distributed like a Dirichlet dis-
tribution rescaled by the sum of their components. The two newly created subsystems
are already in steady-state configurations. Note, that the conjecture of the two Dirichlet
distributions in the subsystems describes again a Dirichlet distribution. Analogous to
the argument given in section 4.2.2, both the system with the partition removed and the
partition inserted are described by the same statistics.

By tracking transitions between the system’s microstates, we find that all transitions
created by resampling the two random vectors in the subsystems are also allowed tran-
sitions in the system without the partition inserted. It is important to note that this is
a special property of the Dirichlet distribution, as the splitting of a Dirichlet-distributed
random vector results in two rescaled Dirichlet-distributed random vectors. Conversely,
not all transitions between microstates possible in the system without a partition can
be realised in the system with the partition inserted. However, if the two subsystems
are randomly distributed with macrostate statistics identical to those created by a par-
tition insertion, their conjecture gives the same probability distribution of the system’s
microstates as for the system with no partition inserted. Generalizing to an arbitrary
number of compartments, this implies that we can revert any partition insertion and thus
we can invert any fragmentation protocol.

Note, however, that for dynamic compartmentalisation, we are particularly interested
in fusion processes of compartments, which are not simply the reversal of fragmentation
protocols. To make this final generalization, we make use of the formal equivalence of
sequential and synchronous fragmentation. For synchronous fragmentation, all compart-
ments have the same macrostate statistics by construction. In particular, we cannot
distinguish any order of the compartments. This implies that we can rearrange the com-
partments in an arbitrary order. For sequential fragmentation, we have demonstrated
that we can in particular revert the division of the last two connected compartments by
binary fusion. We refer to these two fused compartments as the last fused compartment.
As synchronous fragmentation and sequential fragmentation yield the same macrostate
statistics, we can also rearrange the compartments created by sequential fragmentation.
The fusion of any two compartments recreates the statistics of the last fused compartment.

In a final step, we now make use of the equivalence of synchronous and sequential
fragmentation to conclude on arbitrary compartment fusion and fragmentation dynam-
ics: If synchronous and sequential fragmentation show the same macrostate statistics and
hence the dynamics are entropically neutral, then any compartment fusion and fragmen-
tation process is entropically neutral. With this, we conclude a formal extension of Gibbs’
paradox, as we have extended the vanishing system entropy to an arbitrary number of
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partitions and arbitrary partition insertion and removal protocols, and more importantly
to any aggregation fragmentation process when investigating the ideal gas.

4.4.5. The ideal gas as a special case?
In section 4.4.4, we proved that the system’s entropy of an ideal gas is not affected by
dynamic compartmentalisation. From this, we gain first insight into the general ther-
modynamics of dynamic compartmentalisation, as the random insertion and removal of
partitions do not affect the internal dynamics enclosed in the compartments. We proved
that the heuristic idea of creating and preserving density fluctuations averages out and
hence has no effect if the stochastic many-body dynamics is specified to be an ideal gas.

We have seen that this entropic neutrality under compartment fusion and fragmentation
relies fundamentally on the statistics of the Dirichlet distribution, which captures the
ensemble statistics of the ideal gas. This raises the question of how special the ideal gas
is in this respect. Our initial inspiration for studying the thermodynamics of dynamic
compartmentalisation came from living matter and specifically from organelle dynamics.
In this context, the study of low number gases in compartments is a rather artificial
example. This leaves the question of how applicable the ideal gas is as a model for
gaining general thermodynamic understanding unanswered.

A straightforward extension of our findings to a larger class of stochastic many-particle
dynamics is given directly by the Dirichlet distribution: if the equilibrium distribution of
the statistics is described by a Dirichlet distribution, then the dynamics - and more gen-
erally the system’s entropy - is unaffected by dynamic compartmentalisation. However,
this raises the question of which processes, aside from the ideal gas, are described by a
Dirichlet distribution. We gain insight into this by recalling the derivation of the Dirichlet
distribution in the context of the ideal gas in section 4.4.2. There, the fundamental as-
sumption yielding the Dirichlet distribution is the assumption of a uniform distribution of
states in the phase space as a result of the molecular chaos hypothesis. Consequently, we
find that our intuitive understanding of " entropic neutrality under compartment fusion
and fragmentation so far is based on an assumption. While the assumption of molecular
chaos is well-suited to capturing the dynamics of the ideal gas, a generalization to stochas-
tic many-body dynamics is not straightforward. In particular, it is preferable to connect
the finding of entropic neutrality under compartment fusion and fragmentation directly
to microscopic interaction rules, rather than basing it on an assumption about the distri-
bution of realised microstates in the phase space. In the following section 4.5, we give a
formal generalization to stochastic many-body dynamics based on Master equations. For
this, we follow the structure of the proof presented in section 4.4.4.

4.5. Stochastic many-body dynamics subject to dynamic
compartmentalisation

In Section 4.4, we demonstrated that the entropy of an ideal gas system is invariant under
dynamic compartmentalisation: partitions can be inserted and removed in an arbitrary
order without affecting the macrostate statistics of the ideal gas. By proving this prop-
erty analytically, we showed that this entropic neutrality under compartment fusion and
fragmentation is deeply connected to special statistical identities of the Dirichlet distri-
bution. We chose to focus on the ideal gas to develop an intuition for how compartment
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fusion and fragmentation affect stochastic many-body dynamics enclosed in the dynamic
compartments. However, we have yet to determine the extent to which this insight gained
by studying the ideal gas is generalizable, as we proved its entropic neutrality to be rooted
in the special statistical properties of the Dirichlet distribution.

Our main motivation for studying this topic stems from the study of biological matter.
In this context, we are interested in exploring general many-body dynamics that include
chemical reactions, rather than just studying the ideal gas. In this chapter, we present
a general framework based on the formalism of Master Equations, which allows studying
dynamical systems from a kinetic perspective [17]. We extend the formalism of Master
Equations to be applicable to dynamic compartmentalisation. Specifically, we start by re-
fining the model definition previously given in section 4.3.2 by specifying how we account
for arbitrary stochastic many-body dynamics describable by Master Equation. Next, we
introduce the formalism of Second quantisation, which enables us to describe the ensem-
ble statistics of stochastic many-body dynamics with Master Equations in a convenient
manner. Based on this, we quantify the extent to which compartment dynamics perform
a generalised form of work on the system. We illustrate this concept with two case exam-
ples and conclude by investigating general properties of stochastic many-body dynamics
that are necessary for entropic neutrality under compartment fusion and fragmentation.

4.5.1. Refinement on boundary conditions
When studying the ideal gas under dynamic compartmentalisation, we investigated micro-
canonical (N, V,E)-ensembles and in particular reduced the description of the system’s
state to an energy vector E⃗. As we turn to a generalisation of the dynamics, we need to
extend on this definition. In particular, we want to investigate the general properties of
the particles that extend beyond the notion of energy. The most placative extension in the
context of biological systems is to study the chemical states of particles, e.g. changes from
monomeric to dimeric and to oligomeric states. In more general terms, we consider agents
that distribute an abstract quantity among themselves. We generalise our definition from
N particles enclosed in the system each with a specified energy Ei to a total mass of
N monomeric particles in the system and state that every particle complex is described
by an element ξ ∈ Ξ, where Ξ is a countable set. An example of this generalisation
is to consider the total size of homo-oligomeric complexes in units of monomers. The
condition of forming a countable set will allow us to apply the formalism of the Second
quantisation later in this chapter. Due to this condition, we are formally restricted to
discrete dynamics. Note, however, that taking suited continuity limits offers a route for
generalisations to continuous dynamics.

As we have generalised the notion of energy above, we need to refine the boundary
conditions of the system with respect to external energy fluxes. With the formalism of
the Master Equation, both equilibrium and non-equilibrium dynamics can be described.
As the Master Equation is based on kinetic rules, the steady states of the Master Equation
are not necessarily equilibrium solutions. Yet, non-equilibrium steady states demand a
steady flux of energy to obtain the dynamics. As a consequence, when we prohibit energy
and heat fluxes into the system and impose that no work is performed on the system, not
all conceivable dynamics in terms of kinetic rules are physically realisable. Here we focus
in particular on kinetic rules that fulfil detailed balance in steady states, i.e. equilibrium
dynamics. This restriction allows us to precisely disentangle different contributions of
work that we perform on the system.
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4.5.2. Describing compartment dynamics in the formalism of the
Second quantisation

Describing particle interaction models based on kinetic interaction rules offers an intu-
itive approach to understanding complex stochastic many-body dynamics. These models
can be directly translated into algorithmic rules for numerical simulations. However,
we aim to corroborate the findings of these numerical experiments with analytic proofs.
This formally requires connecting the particle interaction rules to the resulting ensemble
statistics.

In this section, we demonstrate that the formalism of the Second quantisation provides a
powerful framework for describing particle interaction dynamics in the context of dynamic
compartmentalisation. Specifically, we show that the Second quantisation allows us to
prove the presence or absence of entropic neutrality under dynamic compartmentalisation
directly from the imposed kinetic rules of particle interaction, without having to explicitly
compute the ensemble statistics.

The central gist of the Second quantisation is to track the statistics of the ensemble
dynamics in the Fock space. For this, we set the indistinguishability between particles,
as we count how many particles are in a designated particle state |ni⟩. A realisation of a
system’s state is given by |n0, n1, ..., nNs⟩ = |n⃗⟩, which describes for the whole ensemble
how many particles are in which particle state. Here, Ns is the number of particle states.
Each realisation is associated with a realisation probability P (n0, n1, ..., nNs ; t). We define
the state vector of the system with

|ψ(t)⟩ =
∑
n⃗

P (n⃗; t) |n⃗⟩ , (4.38)

summarizing the probability distribution over different realisations. We define the linear
map ⟨n⃗|, such that ⟨n′

0, n
′
1, ..., n

′
N |n0, n1, ..., nN⟩ = ∏

i δn′
i,ni

. We define a contraction vector
⟨n⃗0| = ∑

j ⟨n⃗j| as a sum over the set of normalised orthogonal basis vectors. Note, that
the state |ψ(t)⟩ is properly normalised ⟨n⃗0|ψ(t)⟩ = 1, as the probabilities P (n⃗j; t) are
normalised. We describe the particle interactions in terms of transition rates between
realisations Tn⃗→n⃗′ . This allows translating the dynamics of particle interactions to a
Master Equation formalism, as detailed in the appendix A.1.

Specifically, the Master equation is defined as

d

dt
P (n⃗, t) =

∑
n⃗′

[Tn⃗′→n⃗P (n⃗′, t)− Tn⃗→n⃗′P (n⃗, t)] . (4.39)

Using the state vector |n⃗⟩, we recast the Master Equation in the form of a Hamiltonian

d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩ . (4.40)

With this, we find the symbolic solution of the differential equation as

|ψ(t)⟩ = etĤ |ψ0⟩ , (4.41)

where |ψ0⟩ denotes the initial conditions. We identify etĤ as the time-evolution operator.
The Hamiltonian Ĥ entails all transition rates T . We find that the steady states of the
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dynamics

0 |ψss(t)⟩ = d

dt
|ψss(t)⟩ = Ĥ |ψss(t)⟩ (4.42)

are the kernel of the Hamiltonian. In the next step, we expand the Hamiltonian in terms
of annihilation and creation operators, which will become useful in further analysis.

We define the annihilation operator âi, which acts on the i-th element of the Fock
space and describes the annihilation of a particle in state xi following âi |..., ni, ...⟩ =
n |..., ni − 1, ...⟩. The creation operator â†

i |..., ni, ...⟩ = |..., ni + 1, ...⟩ is the complex con-
jugate of the annihilation operator. Combining these two operators, we define the number
operator

n̂i |..., ni, ...⟩ = â†
i âi |..., ni, ...⟩ = ni |..., ni, ...⟩ (4.43)

as the product of creation and annihilation operator. This operator gives the occupation
number of the i-th element of the Fock space for a given realisation |n⃗⟩. Additionally, we
define the normalisation operator R̂, such that

R̂ |..., ni, ...⟩ = 1∑Ns
i wini

|..., ni, ...⟩ = 1
N
|..., ni, ...⟩ , (4.44)

where we define R̂
∣∣∣⃗0〉 = 1

∣∣∣⃗0〉. We define with wi the weight of the state i. In absence
of aggregation dynamics, all particle states have the same weight wi = 1. In the case
of aggregation dynamics, a dimer state would, for example, have a weight w2 = 2. N
is the total number of particles in the system. The commutator of two operators is
defined as [p̂, q̂] = p̂q̂ − p̂q̂. In general, operators do not commute. The commutator for
the annihilation and creation operators is given by [âi, â†

j] = δi,j. Here, we express the
commutation relation of the normalisation operator R̂ with the annihilation and creation
operator in a multiplicative form as R̂âi = N

N −1 âiR̂ and R̂â†
i = N

N +1 â
†
iR̂, which will

be useful in the further analysis. Following this general definition of operators, we next
study the thermodynamics of dynamic compartmentalisation by first focussing on the
fragmentation of compartments.

4.5.2.1. Fragmentation of compartments in the framework of the Second
quantisation

In analogy to the proof given in section 4.4.4, we are interested in how the temporal
evolution of the ensemble is affected by sample extraction. Note, that with this we
formally investigate how the stochastic many-body dynamic enclosed in the compartment
responds to the perturbation of sample extraction. First, we focus on the special case of a
sample extraction of size n = 1 and subsequently conclude on arbitrary sample extraction
sizes. To this end, we define the probability of finding a single particle in a particle
state xi as pi. We next make use of the closed compartmentalised system being mass
conserving. In the absence of aggregation dynamics, all realisations |n⃗j⟩ of a system with
fixed constraints have the same number of particles. We directly extract the probability
vector p⃗ for sampling a single random particle from the system in state |ψ(t)⟩ using

p⃗(t) = ⟨n⃗0|
(∑

i

e⃗in̂i

)
R̂ |ψ(t)⟩ = 1

N
⟨n⃗0|

∑
i

e⃗in̂i |ψ(t)⟩ . (4.45)
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Using this, we define the sample extraction operator Ŝ making use

Ŝ =
(∑

i

âi

)
R̂ = Q̂R̂, (4.46)

where a single particle in state xi is removed. Note that by construction a particle in
state xi is removed with a probability pi = ni/N . For abbreviation purpose, we defined
Q̂ = ∑

i âi.

We are interested in the difference of two samples taken subsequently with a time
difference ∆t = t− t0 between the two sample extractions. We define the statistics of the
first sampling as p⃗1

p⃗1 = ⟨n⃗0|
(∑

i

e⃗in̂i

)
R̂ |ψss(t0)⟩ = 1

N
⟨n⃗0|

∑
i

e⃗in̂i |ψss(t0)⟩ (4.47)

as the sample extraction from the steady state vector. By construction, the sample
extraction perturbs the state such that Ŝ |ψss(t)⟩ ̸= |ψss(t)⟩. Next, we let the system
evolve for a sufficient time to reach the new equilibrium and we extract the second sample

p⃗′
2 = ⟨n⃗0|

(∑
i

e⃗in̂i

)
R̂etĤŜ |ψss(t0)⟩ , (4.48)

similar to the idea of sequential fragmentation defined in section 4.3.2. Note, that we
define the probability vector p⃗2 using the proper normalisation p⃗2 = p⃗′

2 ·N /(N −1). This
yields

0⃗ = p⃗1 −
1
γ
p⃗2 = ⟨n⃗0|

(∑
i

e⃗in̂i

)
R̂
(

1− 1
γ
etĤŜ

)
|ψss(t0)⟩ (4.49)

with γ = N /(N − 1) ∈ R a real number and 1 the identity operator. This implies(
1− 1

γ
etĤŜ

)
|ψss(t)⟩ = 0 |ψss(t)⟩ = 0, (4.50)

Notably, we find an intrinsic symmetry of the system’s states |ψ(t)⟩, which constitutes as
self-similarity of sample extraction probabilities p⃗ differing only by a rescaling. Note, that
due to this self-similarity, the argument of removing a randomly sampled single particle
can be iteratively applied. This allows a straightforward generalisation to arbitrary sample
sizes. We emphasize, that proofing the equivalence of p⃗2 = p⃗1 follows the analogous proof
structure as presented in the proof of entropic neutrality of the ideal gas in section 4.4.4.

Note, that by using the framework of the Second quantisation, there is no need to
compute specific statical distributions and identities between distributions. Using the
formalism of the Second quantisation, the whole proof boils down to the computation of
the commutator of the sampling operator Ŝ and the time evolution operator etĤ. Yet,
since the Hamiltonian is usually a sum of non-commuting products of operators, the
direct computation of the commutator with the exponential of the Hamiltonian is of
major complicatedness. To circumvent this computation, we take the derivative of the
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time evolution operator

0 = d

dt
|ψss(t)⟩ = 1

γ
etĤĤŜ |ψss(t)⟩ . (4.51)

As Ĥ |ψss(t)⟩ = 0 |ψss(t)⟩ for steady states by definition, we find that p⃗2 = p⃗1 iff
[Ĥ, Ŝ] |ψss(t)⟩ = 0 |ψss(t)⟩, which we denote as [Ĥ, Ŝ]ss = 0 to stress the dependence
on the evaluation of steady-state solutions. This additional simplification allows us to
predict entropic neutrality under dynamic compartmentalisation by performing the simple
calculation of a commutator relation between the sampling operator and the Hamiltonian
of the dynamics.

In a final step, we now extend the formalism from one particle sample extraction to
extracting a random number of particles. To this end, we introduce the simplified notation
of state |ψ(t)⟩ = ∑

j bj |n⃗j(t)⟩, where the index j runs over all possible system realizations
|n⃗j(t)⟩ and bj is an abbreviation for the probability to find the system in state |n⃗j(t)⟩.
We further abbreviate the binomial probability

pn(k) =
(
n

k

)
pk(1− p)n−k, (4.52)

with the success probability for a particle to be extracted. Finally, we introduce the
generalised normalisation operator

R̂(k) = 1∏k
l=1 (N − (l − 1))

, (4.53)

where we made use of the mass conservation property of closed compartmentalised sys-
tems.

A sample extraction due to the insertion of a partition corresponds to K̂, with

K̂ |ψ(t)⟩ =
∑
j

bj

Nj∑
k

Q̂kR̂(k)pNj
(k) |n⃗j(t)⟩ , (4.54)

where Nj is the number of particles in state |n⃗j(t)⟩. The sampling success probability
is given by the volume ratio separated from the system by partition insertion, with p =
vs/v0. As we are interested in the commutator relation of K̂ with H, we are interested
in commuting the relation ĤQ̂k. We here restrict ourselves to only consider dynamics
where transitions between states originate from either two-body or one-body particle
interaction, like the exchange of energy quanta, the binary aggregation of complexes,
or the fragmentation of complexes. However, note that a generalisation to arbitrary
dynamics entailing multi-body interactions is straightforward. We formally define the
commutator [Ĥ, Q̂] = Ĥ1 and [Ĥ1, Q̂] = Ĥ2. Note that due to restriction to at maximal
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two-body interaction [Ĥ2, Q̂] = 0 Then commuting Ĥ and Q̂k results in the hierarchy

ĤQ̂0 = Ĥ
ĤQ̂1 = Q̂Ĥ + Ĥ1

ĤQ̂2 = Q̂2Ĥ + 2Q̂Ĥ1 + Ĥ2

...

ĤQ̂k = Q̂kĤ + kQ̂k−1Ĥ1 + Tk−1Q̂k−2Ĥ2, ∀k > 2, (4.55)

where Tk is the k-th triangular number. For the dynamics to be entropically neutral under
the random insertions of partitions, the application of the random sampling operator K̂
and subsequently the Hamiltonian Ĥ must vanish in steady state,

ĤK̂ |ψs(0)⟩ = 0 |ψs(0)⟩ . (4.56)

Note, that if we have proven the equivalence of p⃗1 and p⃗2 after random sampling due
to particle insertion, we follow the identical proof structure as given in section 4.4.4 for
the ideal gas to show that synchronous and sequential fragmentation yield the identical
macrostate statistics. Next, we focus on the fusion of two compartments to asses if the
dynamics are entropically neutral under dynamic compartmentalisation. Following this,
we discuss our findings in the context of a generalised notion of work in section 4.5.2.3.

4.5.2.2. Fusion of compartments in the framework of the Second quantisation

In section 4.5.2.1, we have demonstrated how the formalism of Second quantisation can be
utilised to describe the impact of compartment fragmentation on the statistical properties
of enclosed stochastic many-body dynamics. Specifically, we have shown that fragmen-
tation of compartments is represented by a fragmentation operator K̂ that acts on the
system state |ψ⟩. We have considered the fragmentation of a compartment as a perturba-
tion to the state |ψ⟩. In section 4.5.2.3, we discuss this perturbation in the context of a
generalised notion of work performed on the system by fragmentation. In this subsection,
we will now proceed to explain how compartment fusion can be represented within the
framework of Second quantisation. As in the case of compartment fragmentation, we
regard compartment fusion as a perturbation to a given compartment.

The central difference between compartment fragmentation and compartment fusion is
that the latter is a two-body process: Whereas the statistics of fragmenting a compart-
ment are fully defined by the statistics of the compartment subject to fragmentation, the
statistics of fusion depend on the statistics of the two fusing compartments. To this end,
we consider one compartment to be perturbed and the other compartment to supply the
fusion statistics. This approach is analogous to considering only one of the two daughter
compartments in the perturbation approach of the fragmentation operator presented in
section 4.5.2.1. We define the fusion statistics as |ψ′⟩ = ∑

l bl |n⃗l⟩ and the fusion operator

Ĵ|ψ′⟩ |ψ⟩ =
∑
l

bl
Ns∏
j

(
â†
)nl;j |ψ⟩ , a (4.57)

where we made use of the product over all components of the n⃗j vector.
The argument for investigating whether compartment fusion affects the dynamics fol-

lows the same structure as that for compartment fragmentation presented in section 4.5.2.1.
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Specifically, we use the same reasoning and make use of the sample extraction vectors p⃗1
and p⃗2. We conclude that compartment fusion does not affect the macro-state statistics
of the system only if the single-particle sampling shows the same statistics. Following the
arguments presented in section 4.5.2.1, we find the analogous condition

ĤĴ|ψ′⟩ |ψs(0)⟩ = 0 |ψs(0)⟩ (4.58)

for fusion not to affect the statistics of the system.
Note, that in contrast to compartment fragmentation, we in general expect the fusion

of the compartment to change the statistics of the system. As previously discussed in
the literature review of Gibbs’ paradox in section 4.2.2, the fusion of compartments typi-
cally leads to a non-vanishing mixing entropy. However, there is a special case where the
statistics of the system do not change: That is when the two compartments being fused
have the same statistics as if they were created by a previous fragmentation process. As
we demonstrated in section 4.4.4 while studying the ideal gas, we expect that compart-
ment fusion vanishes in Eq. (4.58), if the two fusing compartments are created by the
fragmentation process of a larger system that is in a steady state. A mathematical proof
based on the operators still needs to be provided. However, it is worth noting that the
fusion operator Ĵ|ψ′⟩ is not the inverse of the fragmentation operator K̂, as reversing a
fragmentation process requires keeping track of the correlation between |ψ⟩ and |ψ′⟩. In
the next section, we interpret the processes of compartment fusion and fragmentation in
terms of a generalised notion of work.

4.5.2.3. Entropy changes induced by compartment fusion and fragmentation

In sections 4.5.2.1 and 4.5.2.2, we derived the fragmentation operator K̂ and the fusion
operator Ĵ|ψ′⟩ applied to a specified compartment state |ψ⟩ to formalize the processes
of compartment fragmentation and fusion within the framework of Second quantisation.
Specifically, we have linked the vanishing of the iterative application of the fusion and
fragmentation followed by the Hamiltonian Ĥ operator with compartment fusion and
fragmentation not affecting the macrostate statistics of the system. In this section, we
will quantify the perturbation of Ĵ|ψ′⟩ and K̂ performed on states |ψ⟩.

When we fuse or fragment a compartment, we alter the constraints on the stochastic
dynamics enclosed within the compartment. Let |n⃗j⟩ refer to possible realizations of mi-
croscopic dynamics in a compartment before a compartment process, and |m⃗j⟩ refer to
possible realizations of microscopic dynamics in the compartment after fusing or frag-
menting the compartment. |n⃗j⟩ and |m⃗j⟩ form non-overlapping sets in a common phase
space. As a consequence, the phase space of |ψn⟩ and |ψm⟩, which describe system states
before and after a compartment process, are not overlapping in phase space. We thus
understand the operators Ĵ|ψ′⟩ and K̂ as maps between different regions in phase space.

When we test for the vanishing relations in Eq. (4.56,4.58) we inquire whether Ĵ|ψ′⟩

and K̂ map steady states of |ψn,ss⟩ to steady states of |ψm,ss⟩. If the relation in Eq. (4.56)
and Eq. (4.58) is not vanishing, we find that the system relaxes to a steady state after
the compartment process. In this case, compartment fusion or fragmentation alter the
statistics of the system. We state that compartment fusion or fragmentation has not
been perturbed, if the Ĵ|ψ′⟩ and K̂ map steady states of |ψn,ss⟩ to steady states of |ψm,ss⟩.
Conversely, if the relation in Eq. (4.56) and Eq. (4.58) is not vanishing, we state that
compartment fusion or fragmentation has perturbed the system.
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4. Towards a thermodynamics of closed compartmentalised systems

We next quantify to what extent the statistics of the system are altered in response
to a compartment process. We propose to quantify the strength of the perturbation
by ⟨n⃗0| ĤĴ|ψ′⟩ |ψn⟩ = Wa and ⟨n⃗0| ĤK̂ |ψn⟩ = Wf. Due to the mapping to a different
region in the phase space, we additionally consider the normalisation as we consider the
commutator

⟨n⃗0| [Ĥ, Ĵ|ψ′⟩] |ψn⟩ = ∆Wa

⟨n⃗0| [Ĥ, K̂] |ψn⟩ = ∆Wf.

(4.59a)
(4.59b)

Note that the additional normalisation is by construction vanishing as the steady states
are considered. ∆Wa has the same units as the eigenvalues of the Hamiltonian Ĥ of the
system. We link the non-vanishing commutator relation to changes in entropy, as the
perturbed system is relaxing to a new steady state.

Recalling Maxwell’s demon, we find that the demon was formally performing work
on the system, as the entropy was altered. We suggest interpreting ∆Wa and ∆Wf as
generalised notions of work. Furthermore, if the relations Eq. (4.56) and Eq. (4.58)
are vanishing in steady state, we also find ∆Wa = 0 and ∆Wf = 0, and we find that
compartment fusion and fragmentation does not affect the system’s statistics. This further
argues towards a connection between ∆Wa and work performed on the system.

Note, however, that we have employed a kinetic perspective in this discussion, as we
defined the dynamics of the stochastic many-body dynamics based on transition rates,
without formally stating the thermodynamic ensemble of the dynamics. As a consequence,
the eigenvalues of Ĥ are not necessarily in units of energy, which dilutes the notion of
work for ∆Wf. Furthermore, it should be noted that work is precisely defined by the
first and second laws of thermodynamics. To further consolidate ∆Wa and ∆Wf as in
a generalised notion of work performed on the system, additional proofs are necessary.
Next, we investigate two case examples which allow us to further illuminate the general
question of under which conditions the statistics of stochastic many-body dynamics are
unaffected by dynamic compartmentalisation.

4.5.3. Quantised gases subject to sequential compartment
fragmentation

Before delving into the application of the formalism of Second quantisation to a quantised
version of the ideal gas in this subsection, we revisit the dynamics of quantised ideal
gases from a kinetic perspective. In this context, an isolated compartment containing
a quantised gas is described by a state vector ε = (ε1, ε2, ....εN ), where N denotes the
total number of particles and εi ∈ N0 represents energy on particles in state i. We
consider quantised energies, such that εj = jε1. We adhere to the methodology previously
employed in section 4.4.1 for the ideal gas and neglect the spatial positions of each particle,
assuming that particles collide with equal probability regardless of their state, i.e., the
number of energy quanta carried by each particle. This corresponds to the molecular
chaos hypothesis.

The collision of particles results in the redistribution of energy quanta among the
two colliding particles. The particle redistribution dynamics are characterised by rates
f((εi, εj) → (ε′

i, ε
′
j)), which describe that particle i and j carrying the energy εi and εj

collide and after the collision carry ε′
i and ε′

j with εi + εj = ε′
i + εj. Specifically, we refine
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4.5. Stochastic many-body dynamics subject to dynamic compartmentalisation

the collision rates

f((εi, εj)→ (ε′
i, ε

′
j)) = fI(εi, εj)pE(ε′

i, ε
′
j|εi + εj). (4.60)

Here, we utilise a combination of an interaction rate fI and an exchange probability pE. In
the case of the quantised analogue of the ideal gas, the interaction probability is unbiased,
fI(εi, εj) = const., such that the probability for any two particles to interact is equally
likely and independent of the particle state. For the exchange probability, we consider
symmetric probability distributions centred around (εi+εj)/2 on the finite support [0, εi+
εj], pE(ε′

i, ε
′
j|εi + εj) = g[0,εi+εj ](ε′

i). In particular, we consider g[0,εi+εj ]((εi + εj)/2− y) =
g[0,εi+εj ]((εi + εj)/2 + y), ∀y ≤ (εi + εj)/2 and g[0,1](ε) = g[0,a](aε), ∀a ∈ R+. Here, we
find for the quantised version of the ideal gas in two dimensions, that pE(ε′

i, ε
′
j|εi + εj) =

1/(εi + εj)δ((ε′
i + ε′

j) − (εi + εj)) as the exchange probability is uniformly distributed.
Distinguishing between the interaction and the exchange probability allows for simple
generalisations of the ideal gas with an intuitive understanding of the implication for its
dynamics.

To derive the Hamiltonian for the quantised ideal gas, we first note that all transi-
tions follow the same functional form. As introduced in section 4.5.2, we translate the
dynamics to the Fock space, where the index i refers to the energy levels rather than
individual particles. Notably, ni now refers to the number of particles with energy level
i. State transitions in |n⃗⟩ are caused by two-particle interactions. In line with the kinetic
perspective on the particle dynamics, we find the transition rates

T(i,j)→(i′,j′) = ninjf((i, j)→ (i′, j′)), (4.61)
T(i,j)→(i′,j′) = f((i, j)→ (i′, j′))â†

j+lâ
†
i−lâj âi, (4.62)

The rate f((i, j) → (i′, j′)) encodes both the interaction rates as well as the exchange
probabilities. In particular, if f((i, j) → (i′, j′)) = f((j, i) → (i′, j′)) and the exchange
probability pE(ε′

i, ε
′
j|εi + εj) following the definitions above, the dynamics fulfil detailed

balance by construction. This implies, that the dynamics of the quantised version of the
ideal gas presented here are physically realisable in a micro-canonical setup5.

In the remainder of this section, we leave f((i, j) → (i′, j′)) unspecified, which corre-
sponds to probing models for arbitrary interaction rates and exchange probabilities ful-
filling the detailed balance condition. We introduce the abbreviated notation f((i, j) →
(i′, j′)) ≡ fi,j,i′,j′ . The Hamiltonian is given by the sum over all particles i, j,

Ĥqg =
∑

i,j,i′,j′
fi,j,i′,j′

(
â†
j′ â

†
i′ − â

†
j â

†
i

)
âj âi, (4.63)

see also appendix A.1. The subscript "qg" is an abbreviation for "quantised gas". We
probe the commutator relation of this Hamiltonian Ĥqg with the sampling operator Ŝ.
This yields

[Ĥqg, Ŝ] |ψs(t)⟩ =
(
ĤqgŜ − ŜĤqg

)
|ψs(t)⟩ = ĤqgŜ |ψs(t)⟩ , (4.64)

where the second term in the second equation vanishes by definition of the steady state
|ψs(t)⟩. Both Ĥqg and Ŝ are sums of products of annihilation, creation, and normalisation

5Here, we go with the notion of physically realisable systems, as "not being in contradiction with
fundamental laws of physics".
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4. Towards a thermodynamics of closed compartmentalised systems

operators, for which the commutator relations are known. We find ∑
i,j,i′,j′

fi,j,i′,j′

(
â†
j′ â

†
i′ − â

†
j â

†
i

)
âj âi

(∑
i

âi

)
R̂ |ψs(t)⟩ = L̂R̂ |ψs(t)⟩ (4.65)

and see that we need to commute both ∑i âi and R̂ through the Hamiltonian. In a first
step, we first neglect R̂ and find

L̂ =
(∑

i

âi

)
Ĥqg −

∑
i,j,i′,j′

fi,j,i′,j′

(
â†
j′ + â†

i′ − â
†
j − â

†
i

)
âj âi. (4.66)

Note, that the second term refers to the commutator [Ĥqg, Q̂] = Ĥqg,1, as

Ĥqg,1 =
∑

i,j,i′,j′
fi,j,i′,j′

(
â†
j′ + â†

i′ − â
†
j − â

†
i

)
âj âi. (4.67)

Furthermore, [Ĥqg,1, Q̂] = 0 vanishes by construction of Ĥqg. Commuting the normalisa-
tion operator R̂ and L̂ in a next step, we find

L̂R̂ =
(∑

i

âi

)
R̂Ĥqg −

N − 1
N
R̂Ĥqg,1. (4.68)

The first term on the right-hand side vanishes by definition. The second term cannot be
reduced to the Hamiltonian Ĥqg, as Ĥqg and Ĥqg,1 are distinctly different. However, note
that for the state |ψs(t)⟩ detailed balance holds, as |ψs(t)⟩ is an equilibrium state. Detailed
balance implies that two realisations |n⃗i⟩ and |n⃗j⟩ connected by a balanced transition with
respect to their rates P (n⃗i)Tn⃗i→n⃗j

= P (n⃗j)Tn⃗j→n⃗i
. Note, that by the construction of the

Hamiltonian, each realisation |n⃗i⟩, which is mapped with a rate Tn⃗i→n⃗j
to state |n⃗j⟩, is

also mapped with the same rate and a negative sign to itself. If detailed balance holds,
Ĥqg maps |n⃗i⟩ at the same rate to |n⃗j⟩ as |n⃗j⟩ is mapped to itself with negative sign. This
is the mechanism by which |ψs⟩ (t) is mapped to the kernel of Ĥqg . Careful inspection
shows that if detailed balance is fulfilled for Ĥqg with a state |ψs(t)⟩, then |ψs(t)⟩ is also
in the kernel of Ĥqg,1. Thus, the second term vanishes due to the fulfilled detailed balance
condition. This can be proven by lengthy calculations, or directly spotted by a reader
with a trained eye. Concluding, we proved

[Ĥqg, Ŝ] |ψs(t)⟩ = 0 |ψs(t)⟩ , (4.69)

implying that indeed the sample extraction operator and time evolution operator commute
for the quantised gas, if the system is initially in equilibrium and detailed balance is
fulfilled. Note, that this in particular also implies that [Ĥqg, Ŝk] |ψs(t)⟩ = 0 |ψs(t)⟩ ∀k > 0.
We want to emphasize, that the commutator only vanishes if |ψ(t)⟩ has already relaxed
to equilibrium. This condition is in general not true for arbitrarily prepared initial states
of the system!

In the final step, we generalise to the sampling of a random number of particles by
investigating if also K̂ and Ĥqg commute when applied to the equilibrium state |ψs(t)⟩.
We note, that the dynamics preserve the particle number such that every realisation |n⃗j⟩
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Fig. 4.10.: Quantised gases with two body interaction rules respecting detailed bal-
ance are unaffected by sequential fragmentation Quantised gas models as
introduced in section 4.5.3 are enclosed in a 3-compartment system subject to se-
quential fragmentation. Four different interaction rules are implemented in (a)-(d).
The interaction rates fI are proportional to fI ∝ εαi , εαj , where εi, εj are the energies
of the two interacting particles i and j. The exchange probability is a discretised ver-
sion of the beta distribution, where beta(3, 3) is used for (a) and (b), while beta(0, 0)
is used for (c) and (d). These dynamics preserve detailed balance in their steady
state by construction. The total number of independent iteration runs is 5×105 for
each simulation (a)-(d). The simulation time was chosen long enough to grant relax-
ation to equilibrium. The total number of particles is N = 12 with an initial total
energy E = 60ε in discretised simulation units ε. The average state ⟨n⃗⟩ describes an
average number of particles with energy level εi in a specified compartment. The
error bars indicate a 5σ environment. The effects of dynamic compartmentalisation
vanish for all dynamics (a)-(d) in agreement with our theoretical prediction, see also
section 4.5.3 .
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4. Towards a thermodynamics of closed compartmentalised systems

has the same total number of particles N . Hence, we simplify

K̂ |ψ(t)⟩ =
∑
j

bj

Nj∑
k

Q̂kR̂(k)pNj
(k) |n⃗j(t)⟩ =

Nj∑
k

Q̂kR̂(k)pNj
(k) |ψ(t)⟩ . (4.70)

Next, we notice that K̂Ĥqg |ψs(t)⟩ = 0 |ψs(t)⟩ vanishes by construction. For ĤqgK̂ |ψs(t)⟩,
we need to commute Ĥqg through every summand. Noting that R̂(k) commutes up to
a rescaling factor with Ĥqg, and since [Ĥqg, Q̂k] |ψs(t)⟩ = 0 |ψs(t)⟩ ∀k > 0, we find that
[K̂, Ĥqg]s = 0. In analogy to the line of argument in section 4.4 for the classical ideal gas,
we conclude that also the removal of partitions, and thus the fusion of compartments,
thus not affect the statistics of the system. We conclude that stochastic gases that fulfil
detailed balance are entropically neutral under dynamic compartmentalisation.

We corroborate this theoretical prediction by numerical simulations. We insert quan-
tised gases with different interaction rules into 3-compartment systems and perform se-
quential fragmentation processes. To analyze the dynamics of the system, we compute
statistics from 5× 105 independent runs. For this, we compute the averaged state vectors
⟨n⃗i⟩ per compartment i and plot histograms of single-particle sampling experiments for
each compartment. We consider small systems with initially N = 12 particles, as we
expect to find differences between compartments stronger pronounced in the statistics for
smaller systems. We start with an initial configuration where all 12 particle are in the 5th
energy level |ψ0⟩ = |0, 0, 0, 0, 12, 0, 0, ...⟩. Before fragmenting the system, we give sufficient
time for the system to relax into equilibrium. We estimate the relaxation time τrel with ap-
proximately 2000 two-particle interactions to have happened. In Fig. 4.10 (a) we consider
that collision rate is independent of the particle states, fI = const.. For the exchange prob-
ability, we consider a discretised version of the beta distribution pE(i′|i+j) = int(u·(i+j)),
where

∫
(x) is the function rounding x to the nearest integer and u beta(3, 3) is a beta

distributed random variable. We find no difference in the statistics of the averaged state
vectors ⟨n⃗1⟩ = ⟨n⃗2⟩ = ⟨n⃗3⟩ between the compartments. This indicates that this model of
a quantised gas is entropically neutral under dynamic compartmentalisation.

In Fig. 4.10 (b)-(d), we check other quantised gas models with simulation parameters
analogous to Fig. 4.10 (a). For (b), we consider the collision rate to be proportional
to the squares energy levels, as fI(εi, εj) ∝ ε2

i ε
2
j . For (c) and (d), we consider that

the collision rate is inversely proportional to the squares energy levels, as fI(εi, εj) ∝
ε−2
i ε−2

j . For (c), we consider a discretised beta distribution with u beta(1, 1), which
corresponds to a uniform distribution. For (d), we consider a discretised beta distribution
with u beta(0.5, 0.5). For all Fig. 4.10 (b)-(d), we find that the statistics of the averaged
state vectors ⟨n⃗1⟩ = ⟨n⃗2⟩ = ⟨n⃗3⟩ between the compartments are identical. Hence, we find
in accordance with our theoretical predictions that all quantised gas models are unaffected
by sequential compartmentalisation.

As the numerical simulations are in full agreement with our analytical predictions, we
conclude that all stochastic gas models, that are based on two-particle interactions and ful-
fil detailed balance are entropically neutral under dynamic compartmentalisation. Next,
we turn to a second case example, as we focus on reversible polymerisation dynamics.
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4.5. Stochastic many-body dynamics subject to dynamic compartmentalisation

4.5.4. Reversible polymerisation dynamics subject to sequential
compartment fragmentation

Having studied the quantised version of the ideal gas in section 4.5.3, we now turn away
from stochastic gases and study processes closer to biology by focussing on chemical re-
actions. Specifically, we start by studying the paradigmatic example of reversible dimeri-
sation

A1 + A1 ⇌ A2, (4.71)

where A1 refers to a monomeric building blocks and A2 to dimer configuration. After
we study this specific model under dynamic compartmentalisation, we will generalise to
general dynamics entailing chemical reactions in a next step.

For reversible dimerisation, we are interested in the amount of monomers and dimers in
the system. A realisation of the systems dynamic in a compartment is given by |n1, n2⟩,
with the total number of monomers and dimers respectively. In analogy to the energy
conservation in the case of the ideal gas, the total mass over all particles is conserved to
n1 + 2n2 = N . We define a constant aggregation rate k and dimer-dissociation rate k−1.
The Hamiltonian is given by

Ĥdi = k ·
(
â†

2 − â
†
1â

†
1

)
â1â1 + k−1 ·

(
â†

1â
†
1 − â

†
2

)
â2. (4.72)

Analogous to the example of the quantised ideal gas, we compute the commutator with
the sampling operator Ŝ. To this end, we perform the same separation L̂ = Ĥdi(â1 + â2)
and initially neglect R̂ as

L̂ = (â1 + â2)Ĥdi − k ·
(
1− â†

1 − â
†
1

)
â1â1 − k−1 ·

(
â†

1 + â†
1 − 1

)
â2, (4.73)

Ĥdi,1 = +k ·
(
1− â†

1 − â
†
1

)
â1â1 + k−1 ·

(
â†

1 + â†
1 − 1

)
â2. (4.74)

Notably, we find that [Ĥdi,1, Q̂] = Ĥdi,2 is not vanishing

Ĥdi,2 = −2kâ1â1 + k−1â2. (4.75)

Next commuting the normalisation operator R̂ through L̂, we find

[Ĥdi, Ŝ] |n⃗j⟩ =(â1 + â2)R̂
(
k ·
(N − 1
N

â†
2 − â

†
1â

†
1

)
â1â1 + k−1 ·

(N + 1
N

â†
1â

†
1 − â

†
2

)
â2

)
− R̂N − 1

N

(
k ·
(N − 2
N − 1 − 2â†

1

)
â1â1 + k−1 ·

(
2â†

1
N
N − 1 − 1

)
â2

)
|n⃗j⟩ .
(4.76)

We find that transition rates are altered with respect to the Hamiltonian Ĥdi. As a
consequence, terms that have vanished in the Hamiltonian due to detailed balance, do
not vanish for [Ĥdi, Ŝ]ss ̸= 0. Hence, we expect dimerisation reactions with fixed reaction
rates k to show effects under dynamic compartmentalisation.

Before we check our theoretical prediction with numerical experiments, we first gener-
alise to arbitrary chemical reaction networks. Recall, that the state of such networks can
be represented in terms of the system realizations |n⃗j⟩, where the particle state xi refers
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4. Towards a thermodynamics of closed compartmentalised systems

to a specific chemical species, and ni denotes the total number of particles in state xi
present in the system. Some reactions between chemical species result in the formation
of a new species, thereby rendering the total number of chemical objects not conserved.
However, we maintain the conservation of total mass in the system by ensuring that the
number of monomeric building blocks remains constant. We now proceed to formalise
chemical reaction networks, in order to simplify the notation in the framework of the
Second quantisation.

To this end, we distinguish three classes of chemical reactions. First, we consider
reactions that alter the configuration of chemical species, such as A⇌ B. This conserves
the total number of chemical objects in the system. Second, we examine aggregation
reactions, in which two chemical species merge, for example, A + B ⇀ C. This results
in a decrease of the total number of chemical objects in the system. Last, we consider
dissociation reactions, in which a single chemical species split into two species, for example,
C ⇀ A + B, which leads to an increase in the total number of chemical objects in the
system. A generalisation to include chemical reactions of higher order or the dissociation
into multiple chemical species is straightforward. Here, we refer to these three classes as I,
II, and III, respectively. For a given reaction network, we define a set of index lists, which
encode the chemical species involved in each reaction, i.e. CI = {(i; j)}, CII = {(i, j; k)},
and CIII = {(k; i, j)}. We restrict our consideration to chemical reaction networks in
which all reactions are reversible, meaning that there is a one-to-one correspondence
between every reaction in CII and CIII . Specifically, we refer to reactions in CII with
ki,j;k and CIII with k−1

i,j;k. With this naming convention, the Hamiltonian is

ĤCRN =
∑

(i,j)∈CI

ki,j(â†
j − â

†
i )âi + k−1

i,j (â†
i − â

†
j)âj

+
∑

(i,j;k)∈CII

ki,j;k(â†
k − â

†
j â

†
i )âj âi +

∑
(k;i,j)∈CIII

k−1
i,j;k(â

†
j â

†
i − â

†
k)âk. (4.77)

For this Hamiltonian, we can directly compute its commutators [ĤCRN, Q̂] = ĤCRN,1 and
[ĤCRN,1, Q̂] = ĤCRN,2

ĤCRN,1 =
∑

(i,j;k)∈CII

ki,j;k(1− â†
j + â†

i )âj âi +
∑

(k;i,j)∈CIII

k−1
i,j;k(â

†
j + â†

i − 1)âk, (4.78)

ĤCRN,2 =− 2
∑

(i,j;k)∈CII

ki,j;kâj âi + 2
∑

(k;i,j)∈CIII

k−1
i,j;kâk. (4.79)

Analogous to the case of the dimers, we find that aggregation rates from reactions of
class CII and dissociation rates from reactions in class CIII do not commute with R̂,
as commuting with R̂ leaves a numeric prefactor before the rates that breaks detailed
balance. This implies that also [ĤCRN, K̂]ss ̸= 0 is not vanishing. Hence, we expect
chemical reaction networks entailing aggregation and dissociation reactions to be affected
by dynamic compartmentalisation.

We corroborate our theoretical prediction by simulating chemical reaction networks in
3-compartment systems subject to sequential fragmentation, see Fig. 4.11. Here, we do
not simulate the chemical reactions by molecular dynamics simulations, but directly by
simulating the rates of the Master Equation. To this end, we consider 4 different models,
that are specified in Tab. 4.1, which all fulfil detailed balance. The fulfilment of detailed
balance refers here both to the chemical reaction network in the thermodynamic limit, as
well as to the Markov chain transition network that results from considering the chemi-
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Fig. 4.11.: Sequential fragmentation affects chemical reaction systems with reaction
rates independent of the fragmentation process. Four different chemical
reaction systems entailing reversible aggregation dynamics are enclosed in a three-
compartment system subject to sequential fragmentation. (a) shows a dimerisation
system, (b) Tetramer complex formation kinetics, (c) quadrilateral complex forma-
tion, (d) reversible polymerisation up to order 16. The reaction rates are detailed
in tab 4.1. All reaction schemes fulfil detailed balance in their steady-state configu-
rations. In agreement with the theoretical prediction in section 4.5.4, the statistics
of polymers of different order in the first versus the second and third compartment
differs. The total number of independent iteration runs is 5 × 105 for each simu-
lation (a)-(d). The simulation time was chosen long enough to grant relaxation to
equilibrium with t = 40τ , τ the simulation timescale. The total number of initial
monomers is N = 60 for (a)-(c) and N = 16 for (d). Polymer order refers to the
length of the build polymer, with monomers being of order 1 and dimers of order 2.
’triang.’ and ’quadri.’ refer to triangular and quadrilateral complexes, respectively.
The averaged state ⟨n⃗⟩ describes the average amount of polymers of expected in a
compartment.
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Dimer model

A1 + A1
k1,1−−⇀↽−−
k−1

1,1

A2 k1,1 = 1 k−1
1,1 = 1

Tetramer model

A1 + A1
k1,1−−⇀↽−−
k−1

1,1

A2 k1,1 = 1 k−1
1,1 = 1

A1 + A2
k1,2−−⇀↽−−
k−1

1,2

A3 k1,2 = 1 k−1
1,2 = 2

A1 + A3
k1,3−−⇀↽−−
k−1

1,3

A4 k1,3 = 1 k−1
1,3 = 2

A2 + A2
k2,2−−⇀↽−−
k−1

2,2

A4 k2,2 = 1 k−1
2,2 = 4

Quadrilateral model

A1 + A1
k1,1−−⇀↽−−
k−1

1,1

A2 k1,1 = 1 k−1
1,1 = 1

A1 + A2
k1,2−−⇀↽−−
k−1

1,2

A3 k1,2 = 1 k−1
1,2 = 2

A1 + A3
k1,3−−⇀↽−−
k−1

1,3

A4 k1,3 = 1 k−1
1,3 = 2

A2 + A2
k2,2−−⇀↽−−
k−1

2,2

A4 k2,2 = 1 k−1
2,2 = 4

A3
kTri−−⇀↽−−
k−1

Tri

Tri. kTri = 2 k−1
Tri = 2

A4
kQuad−−−⇀↽−−−
k−1

Quad

Quad. kQuad = 2 k−1
Quad = 2

Reversible polymerisation

Ai + Aj
ki,j−−⇀↽−−
k−1

i,j

Ai+j ki,j = ij k−1
i,j = i+ j

Table 4.1.: List of reactions and rate constants used for the chemical models ful-
filling detailed balance. All reaction rates are in units of[k] = 1/τ , where τ is
the simulation timescale. For the quadrilateral model, trimers can react to a tri-
angle complex configuration (Tri.), which is resistant to decay and inert to further
aggregation. Analogous, tetramers react to a quadrilateral complex configuration
(Quad.), which is inert. All reaction schemes fulfil detailed balance.
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4.5. Stochastic many-body dynamics subject to dynamic compartmentalisation

cal reaction network with a finite number of species. For the statistics, we consider for
each model 55 independent runs. For the statistics, we evaluate the averaged state vector
⟨n⃗⟩. For the simulations, we grant sufficiently long simulation times between compart-
ment fragmentation events, to grant relaxation into equilibrium states, as we allow for
a temporal evolution of t = 40τ , τ the simulation timescale, between subsequent com-
partment events. This grants for more than 1x104 chemical reaction events per model.
We consider initially N = 60 monomers for Fig. 4.11 (a)-(c) and N = 16 for (d). In
agreement with our theory, we find that the second and third compartments show the
same statistics ⟨n⃗2⟩ = ⟨n⃗3⟩ for all considered reaction models (a)-(d). In contrast to
this, but also in agreement with our theoretical prediction, we find that the first frag-
mented compartment shows different statistics ⟨n⃗1⟩ ≠ ⟨n⃗2,3⟩. We conclude that despite
the chemical reaction network fulfilling detailed balance, the microscopic dynamics are
affected by dynamic compartmentalisation. In particular, this implies that the external
protocol of partition insertion and removal evokes a change in the system entropy of the
3-compartment system. Recall in this context the introduction of the concept of Gerge-
sian demons in section 4.3.2. It is not clear to what extent we performed work on the
chemical reaction network system, as we insert partition, just from the inspection of the
microscopic interaction rules in the Hamiltonian. In the next section, we will discuss the
exorcism of Gergesian demons in the context of chemical reaction networks.

We corroborate our theoretical prediction by simulating chemical reaction networks
in 3-compartment systems subject to sequential fragmentation, see Fig. 4.11. Rather
than simulating the chemical reactions using molecular dynamics simulations, we directly
simulated the system based on stochastic transition rates. Here, we examine four different
models, which are detailed out in Tab. 4.1, all of which satisfy the principle of detailed
balance. The satisfaction of detailed balance refers here both to the chemical reaction
network in the thermodynamic limit and to the Markov chain transition network that
arises from considering the chemical reaction network with a finite number of species. For
each model, we conduct 5×105 independent runs for statistical analysis. We evaluate the
average state vector ⟨n⃗⟩, and simulate for sufficiently long periods between compartment
fragmentation events to allow for relaxation into the equilibrium states. We consider a
runtime of t = 40τ , where τ is the simulation timescale, between subsequent compartment
fragmentation events. This corresponds to more than 1x104 chemical reaction events
between fragmentation events.

We consider initially N = 60 monomers for Fig. 4.11 (a)-(c) and N = 16 for (d). In
agreement with our theory, we find that the second and third compartments show the
same statistics ⟨n⃗2⟩ = ⟨n⃗3⟩ for all considered reaction models (a)-(d). In contrast to this,
but also in agreement with our theoretical prediction, we find that the first fragmented
compartment shows different statistics ⟨n⃗1⟩ ≠ ⟨n⃗2,3⟩. We conclude that despite the chem-
ical reaction network fulfilling detailed balance, the microscopic dynamics are affected
by dynamic compartmentalisation. In particular, this implies that the external proto-
col of partition insertion and removal alters the system’s entropy of the 3-compartment
system. Recall in this context the introduction of the concept of Gergesian demons in
section 4.3.2. It is not clear from inspection of the microscopic interaction rules in the
Hamiltonian alone to what extent work is performed on the chemical reaction network
system as we insert the partition. In the next section, we will discuss the exorcism of
Gergesian demons in the context of chemical reaction networks.
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4. Towards a thermodynamics of closed compartmentalised systems

4.6. Effects of dynamic compartmentalisation on the
total system’s entropy

In sections 4.5.3 and 4.5.4, we examined the examples of quantised stochastic gases and
reversible polymerisation dynamics under sequential fragmentation. We found that quan-
tised stochastic gases exhibit entropic neutrality under dynamic compartmentalisation,
while reversible polymerisation dynamics result in different macrostate statistics per com-
partment when subjected to a sequential fragmentation process. By explicitly calculating
the commutator relation between the sampling operator and the Hamiltonian [K̂, Ĥ]s, we
were able to predict the behaviour of model dynamics under dynamic compartmentali-
sation dynamics; which we then validated through numerical experiments by simulating
the dynamics. However, the dependence of the macrostate statistics of chemical reaction
networks on the specific compartment dynamics raises issues of thermodynamic consis-
tency, as discussed in the context of Gergesian demons in section4.3.2. In the following,
we address this issue by discussing ways to exorcise the Gergesian demons. Following
this discussion, we provide a general overview of how to deviate from entropic neutrality
and connect the notion of entropic neutrality directly to symmetries in the microscopic
interaction rules. This connection will enable us to investigate general routes to non-
equilibrium thermodynamics in the context of compartmentalised multi-scale systems.
Concluding this section, we briefly examine the entropic effects of compartment dynamics
beyond compartment fusion and fission.

4.6.1. Discussing thermodynamic inconsistencies
Our analysis and simulations have demonstrated that the statistics of chemical reaction
kinetics are affected when subjected to dynamic compartmentalisation, implying that the
system’s entropy varies depending on whether the system was subjected to synchronous
or sequential fragmentation. However, we can revert between these states by removing all
partitions and subsequently inserting them following the alternate fragmentation protocol.
This thermodynamic inconsistency, referred to as Gergesian demons in section 4.3.2, can
be addressed by considering the type of work performed on the system. To this end, we
adopt a mathematical approach, examining whether entropic neutrality can be achieved
by modifying the transition rates in the Hamiltonian after a fragmentation event. We
also discuss the physical implications of modifying or not modifying the Hamiltonian.

We now ask whether we can find a simple rule on how to modify ĤCRN in such that the
steady states of ĤCRN |ψss(t)⟩ = 0 |ψss(t)⟩ are in the kernel of Ĥ′

CRNK̂ |ψss(t)⟩ = 0 |ψss(t)⟩.
To this end, we make use of the abbreviated notion of |ψss(t)⟩ and find

Ĥ′
CRNK̂ |ψ(t)⟩ =

∑
j

bj

Nj∑
m

(
Ĥ′

CRNQ̂m
)
R̂(m)pNj

(m) |n⃗j(t)⟩ . (4.80)

Note, that we changed the index in the second sum from k to m in order to avoid confusion
with the notation when considering systems involving chemical reactions. In the analysis
of the quantised gases, we were able to simplify this expression by noting that all states
|n⃗j⟩ had the same number of particles, N = const. However, as we showed in section 4.5.4,
we cannot use the same simplification for chemical reaction networks, as the number of
particles in different realisations is not a conserved quantity. On the other hand, the
varying number of particles per state |n⃗j⟩ was the mathematical reason that the sampling
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4.6. Effects of dynamic compartmentalisation on the total system’s entropy

operator Ŝ and the Hamiltonian ĤCRN do not commute, resulting in a dependence of
the dynamics on the specifics of the compartment dynamics. By examining Ĥ′

CRNQ̂m, we
find that the individual orders of m need to vanish, as Q̂m maps to states with a reduced
number of monomeric building blocks. Therefore, we next seek modifications of Ĥ′

CRN
that result in the individual vanishing of the summands in the hierarchy in Eq. (4.55).

To this end, we first simplify the relation of R̂(k) and pNj
(k). We find

R̂(m)pNj
(m) |n⃗j⟩ = (N −m)!

N !
N !

(N −m)!k!p
m(1− p)(N −m) |n⃗j⟩ = αmβN ,m |n⃗j⟩ (4.81)

Recall, that we are interested in the vanishing of summands with the same order of m.
We find, that each realisation |n⃗j⟩ is multiplied with two factors, one solemnly depending
on m and one depending on both the total number of particles N and m. As we demand
each order in m to vanish individually, we note that each realisation |n⃗j⟩ is multiplied by
the same αm but different βN ,m |n⃗j⟩. Note, that the multiplication with βN ,m causes the
breakdown of detailed balance.

To fix this breakdown, we consider two realisations |n⃗v⟩ and |n⃗w⟩ linked by a reversible
aggregation reaction. Without loss of generality, we consider that |n⃗v⟩ transitions to |n⃗w⟩
via an aggregation reaction with rate ki, j; k, while |n⃗w⟩ transitions to |n⃗v⟩ through a
dissociation reaction with the rate ki, j; k−1. Note that the total number of particles
in |n⃗v⟩ is one greater than in |n⃗w⟩, with Nv = Nw + 1 by construction. For the state
|ψss(t)⟩ to be in detailed balance, we must have bvki,j;kâ†

kâj âi |n⃗v⟩ = bwki, j; k−1â†kâk |n⃗w⟩.
However, upon accounting for βN ,m, it becomes apparent that this equality no longer
holds: bvki, j; kβNv,mâ†

kâj âi |n⃗v⟩ ≠ bwki, j; k−1βNw,mâ†
kâk |n⃗w⟩. Note that the ratio

βNv,m/βNw,m = (1−p) is connected to the success probability of sampling. As such, by
rescaling all aggregation rates to ki, j; k → ki,j;k/(1− p) = k′

i,j;k, detailed balance can be
re-established. As a result, all summands in the hierarchy created by [ĤCRN, Q̂m] vanish
individually, and

Ĥ′
CRNK̂ |ψss(t)⟩ = 0 |ψss(t)⟩ . (4.82)

Hence, rescaling all aggregation reaction rates k′
i,j;k after a compartment fragmentation

according to the sampling success probability p yields entropic neutrality. Before we next
discuss the physical implication of considering rescaled Hamiltonians after compartment
fusion, we first turn to numerical simulations to corroborate our theoretical prediction.

We set up the simulations analogous to the simulations of the chemical reaction net-
works subject to dynamic compartmentalisation without rescaling the aggregation rate,
as detailed out in Fig. 4.11. In Fig. 4.12 we considered the same chemical reaction network
models, using the same simulation parameters. In this particular case, we examined a
three-compartment system, in which the success probability of being sampled in the first
room is p = 1/3. As per our theoretical predictions, we rescaled the aggregation rates
for the dynamics within the still connected compartments 2, 3 to ki,j;k → ki,j;k · 3/2. Our
results indicate that, in accordance with our theoretical predictions, all compartments
exhibit identical averaged state vectors, with ⟨n⃗1⟩ = ⟨n⃗2⟩ = ⟨n⃗3⟩.

We find that if there would a physical reason to consider a rescaled Hamiltonian, we
would exorcise thermodynamic inconsistencies and find that compartment fragmentation
performs no work on the system. To make physical sense of rescaling the Hamiltonian,
we argue for an intrinsic connection between the volume of the fragmented compartment
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Fig. 4.12.: The effects of sequential fragmentation on chemical reaction systems van-
ishes for rescaled aggregation rates. The system and simulation parameters
are identical to the simulations presented in Fig 4.12, the difference that the ag-
gregation rates are rescaled after the fragmentation of the first compartment by
v0/v2+3 = 3/2. As a consequence, the effects of sequential fragmentation is vanish-
ing, in agreement with our analytical findings presented in section 4.6.1.

and the success probability p. Without loss of generality, consider a composite system of
two compartments with volume v1 and v2. Starting in a configuration with no partition
inserted, we find that the dynamics are spread over the full volume v0 = v1 + v2. As we
insert a partition, there is a probability p = v1/v0 that a particle resides in compartment 1
after partition insertion. Rescaling the aggregation rates in compartment 2 with ki,j;k/(1−
p) = ki,j;k · v0/v2 corresponds to rescaling the aggregation rates with the new volume
available for the dynamics in compartment 2. This suggests a density dependence of the
aggregation reactions.

Heuristically, a volume dependence of the aggregation reactions can be derived by con-
sidering dynamics within a physical space. In contrast to chemical reactions in category
CI or CIII , as introduced in Section 4.5.4, aggregation reactions result from two-body
interactions. In order for an aggregation reaction to occur, two chemical entities must
collide in physical space. As the accessible volume within a compartment is increased,
the average distance between chemical entities also increases, thus reducing the rate of
collisions between them. We find that if the dynamics contain reaction from all types CI ,
CII , and CIII , the rescaling the aggregation rates is a non-uniform rescaling of the Hamil-
tonian. Recall that for the case of the quantised gas, this rescaling would be uniform.

Notably, in our calculations, we do not need to rely on a heuristic explanation for
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4.6. Effects of dynamic compartmentalisation on the total system’s entropy

the volume rescaling. In particular, as we induce fluctuations in the number of particles
due to partition insertion, it is not a priori clear how density fluctuations should be
correctly accounted for. However, if we postulate that any dependence of the chemical
reactions on the compartment dynamics should vanish in a micro-canonical setup, in
order to exorcise the Gergesian demons, then the volume dependence of the aggregation
reaction rates drops out as a consequence. This is insightful, as we find the volume
rescaling as a thermodynamic consequence without the need of justification from actual
physical microscopic models of chemical reactions. From this perspective, not rescaling
the aggregation rates corresponds to first restricting the volume by partition insertion and
subsequently expanding the volume to regain the initially available volume. Note that
the volume work does not originate from microscopic models, but rather as a consequence
of thermodynamic consistency.

As a corollary, this analysis also reveals subtle differences between the procedures of
sample extraction by removal of chemical objects from the system and sample extrac-
tion by separation of subsystems. While for the former, we consider the extraction of a
fixed number of chemical objects, for the latter we consider the extraction of a random
number of chemical objects. Note that in the case of sample extraction by removal, the
Hamiltonian cannot be rescaled by a volume notion. This implies that sample extraction
by removal performs work on chemical reaction network systems that entail aggregation
reactions. In the next section, we delve deeper into these discussions by exploring how
entropic neutrality under dynamic compartmentalisation can be broken. This will give us
insight into how work can be performed on compartmentalised multi-scale systems.

4.6.2. Linking microscopic interaction rules with entropic neutrality
under dynamic compartmentalisation

The fact, that the microscopic interaction rules dictate whether compartment fusion and
fission effects the macrostate statistics teaches us valuable lessons about the thermody-
namics of multi-scale systems. We made use of the concept of Gergesian demons in
section 4.3.2 to introduce a notion of temporal order into our system. Recall, that in
the scheme implemented here no notion of a measurement of the system was considered.
Naïvely, however, one could wonder if a measurement of time, which is needed to imple-
ment an external time protocol, would be imprinted in the statistics of the system. While
this idea might sound superficially intriguing, the fact that different microscopic interac-
tion rules set different behaviours under dynamic compartmentalisation hints towards a
different direction.

In section 4.5.2.3, we discussed how the commutator relations in Eq. (4.59) can be
linked to assess the strength of perturbation of compartment fusion and fragmentation
on the systems dynamics and interpreted this in the context of a generalised notion of
work. In particular, if we set the system dynamics to happen in an isolated system, steady
states of the Hamiltonian Ĥ are equilibrium states. Formally, we then tested whether the
sampled state |ψ′⟩ Ŝ |ψss⟩ is in the kernel of the Hamiltonian and thus also an equilibrium
state. Conversely, if the commutator relation is not vanishing, the new state |ψ′⟩ is not an
equilibrium state. In this case, the processes of the insertion of a partition and removal
are genuine non-equilibrium processes. In this light, we indeed expect time protocols to
affect the macro-state statistics.
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4. Towards a thermodynamics of closed compartmentalised systems

Quadrilateral model

A1 + A1
k1,1−−⇀↽−−
k−1

1,1

A2 k1,1 = 1 k−1
1,1 = 1

A1 + A2
k1,2−−⇀↽−−
k−1

1,2

A3 k1,2 = 1 k−1
1,2 = 2

A1 + A3
k1,3−−⇀↽−−
k−1

1,3

A4 k1,3 = 1 k−1
1,3 = 0.01 (sup.)
k−1

1,3 = 12 (fac.)

A2 + A2
k2,2−−⇀↽−−
k−1

2,2

A4 k2,2 = 1 k−1
2,2 = 4

A3
kTri−−⇀↽−−
k−1

Tri

Tri. kTri = 4 k−1
Tri = 1

A4
kQuad−−−⇀↽−−−
k−1

Quad

Quad. kQuad = 4 k−1
Quad = 1

Reversible polymerisation

Ai + Aj
ki,j−−⇀↽−−
k−1

i,j

Ai+j ki,j = λ · ij k−1
i,j = 1

(i+j) (sup.)
k−1
i,j = (i+ j)2 (fac.)

Table 4.2.: List of reactions and rate constants used for the chemical models break-
ing detailed balance. All reaction rates are in units of[k] = 1/τ , where τ is
the simulation timescale. For the Quadrilateral model, detailed balance is broken
by either suppressing or facilitating the dissociation of tetramers into a monomer
and a trimer. For the reversible polymerisation model, stabilizing or facilitating
the decay of larger oligomers breaks detailed balance. Changing the parameter λ
does not affect the breaking of detailed balance. Here λ = 0.02 was chosen for the
suppression of the polymer dissociation and λ = 40 in the model with facilitation.

4.6.3. Breaking entropic neutrality by performing work on the system
In section 4.6.1, we have exorcised the Gergesian demons from systems entailing reversible
aggregation dynamics embedded in compartments subject to dynamic compartmentalisa-
tion by accounting for a rescaling of the reaction rates with the available compartment
volume. In this section, we adopt a contrasting perspective and consider how entropic
neutrality under dynamic compartmentalisation can be broken. In investigating this ques-
tion, we do not evoke thermodynamic demons but instead, learn about how we can per-
form work on multi-scale systems. To this end, we will distinguish four different types of
work contributions, which we directly link to the internal dynamics or the compartment
dynamics.

While investigating the quantised gas and the chemical reaction systems, we have em-
ployed detailed balance to demonstrate entropic neutrality under dynamic compartmental-
isation. Detailed balance is widely regarded as a signature of equilibrium, as it stipulates
that each process is in equilibrium with its inverse process. Thus any trajectory of the
system has an equal forward and backward probability, implying that entropy produc-
tion is nullified [17]. The breaking of detailed balance implies that the system cannot
be considered in a micro-canonical setup. As a result, the system’s entropy is permitted
to change in accordance with the time protocol used for dynamic compartmentalisation.
Without detailed balance, there is no a priori reason to assume that sequential and syn-
chronous fragmentation will yield identical macrostate statistics. In this context, it is
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Fig. 4.13.: The effects of sequential fragmentation on chemical reaction systems with
broken detailed balance do not vanish for rescaled aggregation rates A
three-compartment system is subject to a sequential fragmentation. Analogous
to Fig. 4.12, the aggregation rates are rescaled after the fragmentation of the
first compartment. The enclosed chemical reaction systems are deviations from
Fig. 4.11 (c),(d) breaking detailed balance by changing rates. The specific reaction
rates for the modified quadrilateral complex formation (a,b) and reversible poly-
merisation kinetics (c,d) are given in Tab. 4.2. The total number of independent
iteration runs is 5 × 105 for both (a) and (b). The simulation time was chosen
long enough to grant relaxation into a steady state with t = 40τ , τ the simulation
timescale. The total number of initial monomers is N = 12 for (a,b) and N = 16 for
(c,d). While deviations in the statistics of the first compartment versus the second
and third compartment is small for the quadrilateral system, it is not vanishing in
contrast to Fig. 4.12 (c,d). The deviations are small in (b) and more pronounced
for the reversible polymerisation system in (c,d).

worth recalling the calculations presented in sections 4.5.3 and 4.5.4.
An important way of breaking detailed balance is by externally fuelling chemical reac-

tions. From the calculations presented in section 4.6.1, we expect that breaking detailed
balance will break entropic neutrality under sequential fragmentation, even if we rescale
the aggregation rates. We test this prediction in numerical simulations, see Fig. 4.13.
Here, we consider variations of the chemical models used in Fig. 4.12 (c,d), namely a vari-
ation of the quadrilateral model and the reversible polymerisation. The new rates are de-
tailed out in Tab. 4.2. For the quadrilateral model, we consider breaking detailed balance
by manipulating a single reaction, namely either by suppressing the decay of tetramers
into a monomer and a tetramer, Fig. 4.13 (a), or by facilitating this decay Fig. 4.13 (b).
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For the reversible polymerisation model, we alter the kinetic rule for oligomer dissocia-
tion, which breaks detailed balance by construction. Also here, we consider a suppression
of the dissociation, Fig. 4.13 (c), or a facilitation, Fig. 4.13 (d). We consider small sys-
tems of N = 12 monomeric building blocks for the quadrilateral and N = 16 monomeric
building blocks for the reversible polymerisation simulations. The remaining simulation
parameters are identical to the ones used in Fig. 4.12. For the evaluation we considered
26 independent simulation runs. We find that the macrostate statistics in the first com-
partment differ from the statistics in the second and third compartment, ⟨n⃗1⟩ ̸= ⟨n⃗2,3⟩,
which is in agreement with our theoretical predictions. We note, that the differences in
the statistics are small in the case of quadrilateral model, in particular for Fig. 4.13 (b),
but we find that the differences are not vanishing, see Fig.4.13 (c). For Fig.4.13 (c,d) the
differences are more pronounced, particularly in the probability of sampling monomers.

Notably, we find that breaking detailed balance also affects the abundance of the largest
aggregate. Suppressing the dissociation of tetramers results in an increase of the abun-
dance of quadrilateral aggregates by 2% in the second and third compartments compared
to the first compartment. Conversely, for the facilitation of the dissociation of tetramers,
the abundance of quadrilaterals is reduced by 0.5%. For the reversible polymerisation
dynamics, we also find that suppression of the dissociation reactions results in an increase
in the abundance of the polymer of highest order, here the 16mer, by 4%. Conversely, for
the facilitation of the dissociation reactions, we also find a decrease in 16mer abundance
by 1.5%. While the effect in the here presented system is small, these findings suggest
that dynamic compartmentalisation amplifies the effects of breaking detailed balance. We
further explore this in chapter 5, where we study larger reversible polymerisation dynam-
ics in larger systems. Note, the amplifying of detailed balance by compartment dynamics
is currently a numerical observation that needs to be further corroborated by a proof in
the framework of the Second quantisation.

Next, we ask to what extent the effect observed in Fig. 4.13 persists when we consider
larger systems. In Fig. 4.14, we systematically increase the system size by increasing both
the initial number of monomeric building blocks N and the number of compartments
N considered, such that the initial number of monomeric building blocks per compart-
ment is constant, N /N = const.. With otherwise identical simulation parameters as
for Fig. 4.13, we find that the difference between the first and the last fragmented com-
partment increases with system size but levels off for large systems. We track how the
number of expected monomers, Fig. 4.13 (a), and the number of expected quadrilateral
aggregates, Fig. 4.13 (b), changes for sequentially fragmented compartments. Here, we see
how the fluctuations created by fragmentation add up over time to yield a stronger effect
for compartments that are separated later. Here, we see that the differences in statistics
induced are small, as deviations are in the range of a few percent, but not vanishing.

While further investigations are required to examine how systems with broken detailed
balance are affected by dynamic compartmentalisation, we here turn to a different ap-
proach to affect the statistics of realised system states through compartment fusion and
fragmentation. To do this, we again consider the quantised gas models introduced in
section 4.5.3. There, we considered stochastic dynamics dictated by transition rates. We
next map these dynamics to Markov chain dynamics by converting from transition rates
to transition probabilities. Note that these Markov chain dynamics also fulfil detailed
balance by construction. Note that by using the Second quantisation formalism, we take
a kinetic perspective on the dynamics of the system. The here presented formalism allows
us to link the kinetic perspective with physical notions of performing work on the system
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Fig. 4.14.: System size dependence of the effect of sequential fragmentation on
chemical reaction systems with broken detailed balance The number of
compartments considered in a sequential fragmentation protocol is increased from
6 compartments to 15 compartments while keeping the average number of initial
monomer mass over the initial volume constant. The investigated enclosed dynam-
ics is the quadrilateral complex formation with one broken detailed balance reaction
as shown in Fig. 4.13 (a). The total number of independent iteration runs is 6×106.
(a) Shown is the average state of p1 of monomers in different compartments created
by sequential fragmentation. Analogously, (b) shows the average state of pquad of
quadrilateral aggregates. The compartment number gives the order at which the
respective compartment was separated from the system. Error bars indicate a 2σ
environment. The simulations suggest that the effect of dynamic compartmentali-
sation converges with increasing system size.

Numerically, this mapping is achieved by evaluating the dynamics after a fixed number
of evolution steps instead of a fixed evolution time. Mathematically, this mapping de-
mands the rescaling of each two-particle transition rate by all possible rates of leaving a
realisation |n⃗i⟩ to any other system realisation |n⃗i⟩. An additional system state normalisa-
tion operator in the Hamiltonian Ĥqg breaks the commutator relation [Ĥqg, K̂]ss = 0. Note
that here we are not just changing timescales, but fundamentally changing the transition
rates between realisations. Testing this prediction in simulations, we find in Fig. 4.15,
that we break entropic neutrality with this mapping. For the simulation, we consider
the same simulation parameters as in Fig. 4.10 as introduced in section 4.5.3, with the
simulation evaluated after s = 2000 simulation steps instead of an evaluation after a fixed
time. We notice no deviations in Fig. 4.15 (a) between the compartments, which is in
agreement with our expectations, as Fig. 4.15 (a) and Fig. 4.10 (a) are by construction
formally equivalent. We find differences in the averaged state vectors ⟨n⃗1⟩ ≠ ⟨n⃗2⟩ = ⟨n⃗3⟩
for Fig. 4.15 (b-d). In Fig. 4.16 we show that the stochastic gas models Fig. 4.15 (c,d)
also produce a visually identifiable difference in the macrostates statistics of the total
enclosed energy per compartment. While the mean energy per compartment is constant,
the variance of the energy enclosed in a compartment is increased in the second and third
compartments.

For the simulations in Fig. 4.15, detailed balance is fulfilled and no volume work is
performed on the system. The notion of work in this example arises from the normalisation
of the rates. Translating the mapping back to an interpretation in terms of transition
rates, the rate for two particles with energy levels εi and εj to interact was independent
in the model in section 4.5.3. However, as we introduced the normalisation, the rate for
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Fig. 4.15.: Quantised gases with globally coupled reaction rates are affected by se-
quential fragmentation processes The dynamics are analogous to Fig. 4.10, with
transition rates rescaled with the total rate of escape from a specified state, which is
formally analogous to a mapping to Markov chain dynamics, see also section 4.6.3.
This implies a change from interaction rates fI to interaction probabilities pI. This
mapping preserves the detailed balance conditions but induces a global coupling.
The simulation parameters are identical to Fig. 4.10. The error bars indicate a
5σ environment. As Fig. 4.10 (a) and (a) in this figure are formally equivalent,
the effect of sequential fragmentation vanishes in accordance with our theoretical
prediction. In contrast, the sequential fragmentation process induces non-vanishing
differences in the statistics for the first versus the second and third compartments
for (b). Here, the arrow points to systematic deviations. These deviations are more
pronounced for (c) and (d).
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4.6. Effects of dynamic compartmentalisation on the total system’s entropy
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Fig. 4.16.: Sequential compartmentalisation affects the statistics of total energy per
compartment. For Fig. 4.15 (c), (d) the total enclosed energy per compartment Ei
is computed. Difference in the averaged state ⟨n⃗⟩ translate into different statistics
for E1 versus E2 and E3. While all distributions p(Ei) show the same mean ⟨Ei⟩ =
⟨Ei⟩ = ⟨Ei⟩, for the specific examples presented here, the variance of the second and
third room is increased.

two particles to interact is a function of the full current ensemble realisation |n⃗j⟩ and
thus a global coupling between all particles was introduced. While we can argue from
a mathematical perspective how this results in a non-vanishing commutator, we next
interpret our results.

When a partition is inserted in this system, and two subsystems are separated, the
global coupling is broken. While the normalisation of rates can be easily implemented
numerically, the physical implications of these dynamics are obscured, and a realisation
of the kinetic rules in a physical system is not straightforward. Setting aside the question
of a possible realisation, we find that work is performed on the system by a partition
insertion as correlations between particles are broken. By breaking the correlations, the
internal energy of the system is modified. In models with a global coupling between the
particles, the assumption that the insertion of a partition is done without performing
work breaks down.

We touched on a fourth notion of work performed on the system already at the end
of section 4.6.1. There, we discussed the subtle difference between extracting a random
number of chemical objects and extracting a fixed number of chemical objects from a
system with reversible aggregation reactions. If the compartment dynamics depend on
the current realisation of the system, we break the assumption of randomly splitting
particles between subsystems. This implies an implicit measurement of the system state
and is thus connected to the thought experiment of Maxwell’s demon. Additionally, by
setting the fusion of compartments dependent on the enclosed macrostate, the condition
that fused compartments show the same statistics as obtainable from a fragmentation
process is broken. By setting the dynamics of the compartments in dependence on the
current realisation of the system, the assumption of dumb demons made in section 4.3.2 is
broken, opening the realm to discuss true Gergesian demons in the context of multi-scale
systems. Note that for a careful analysis of such demonic systems, other notions of work
must be carefully excluded.

In conclusion, in this section, we distinguished four different notions of how work is
performed on systems subject to dynamic compartmentalisation, namely through volume
work, the establishment or breaking of particle correlations due to global couplings, the
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4. Towards a thermodynamics of closed compartmentalised systems

dependence of compartment dynamics on the current state of the system, or the breaking
of detailed balance in the enclosed microscopic dynamics. These four different notions
of work offer a range of opportunities to investigate non-equilibrium thermodynamics in
the context of multi-scale systems. Notably, our approach allows assessing the notion of
work by inspecting the definition of the microscopic dynamics in conjunction with the
definition of the compartment dynamics. We will discuss the relevance of our findings for
both technical and biological applications after briefly extending our discussion on the
entropic effects of dynamic compartmentalisation by including compartment dynamics
apart from compartment fusion and fission.

4.6.4. Effect of compartment dynamics beyond compartment fusion
and fragmentation on the total entropy

In this chapter, we have set a predominant focus on the fusion and fission of compartments,
and thus far we have neglected other compartment dynamics. However, the treatment
of compartment growth and shrinkage, for instance, is less intricate and its thermody-
namic implications are straightforward. The modification of the volume of a compartment
performs volume work on the enclosed dynamics. These effects can be calculated using
standard thermodynamic methods. Similarly, the erasure or creation of compartments are
directly related to the thermodynamic costs of destroying or creating a micro-canonical
ensemble from the void. We assume that the spatial positioning and shape of compart-
ments do not affect the intrinsic dynamics and thus these compartment dynamics have no
thermodynamic effect on the enclosed dynamics. To summarise, compartment dynamics
provide a versatile toolbox to directly perform work on the dynamics enclosed in dynamic
compartments, with compartment fusion and fragmentation being more subtle in their
work contribution than other compartment dynamics. Notable, the careless application of
compartment dynamics can lead to apparent thermodynamic inconsistencies. Thus, the
study of dynamic compartmentalisation teaches us valuable lessons in the non-equilibrium
physics of multi-scale systems.

4.7. Technical and biological relevance of dynamic
compartmentalisation

.
In this chapter, we have presented a detailed analysis of the effects of compartment

dynamics on the statistics of realised system states for closed compartmentalised stochas-
tic systems. By considering equilibrium dynamics in micro-canonical setups, we have
identified a system property that we term entropic neutrality under dynamic compart-
mentalisation, which refers to macrostate statistics being unaffected by the specifics of
compartment dynamics. Through an examination of different models, including the ideal
gas, quantised gas models, and chemical reaction networks, we have highlighted four
distinct routes to investigate the non-equilibrium thermodynamics of compartmentalised
multi-scale systems. In this section, we proposed a possible experimental setup in the
context of microfluidics to verify our theoretical and numerical predictions and discuss
the potential implications of dynamic compartmentalisation on sample preparation tech-
niques and measurement procedures. This idea was developed in a discussion with Nico
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Fig. 4.17.: Experimental setups for investigating dynamic compartmentalisation (a)
Experimental setup for the generation of lipid vesicles enclosing biomolecules as
used in synthetic biology; The image is adapted from [218]. An aqueous solu-
tion is attributed with biomolecules and inserted into a microfluidic device. By
adding oil enriched with a surfactant, and adding an additional aqueous solution,
the biomolecules are compartmentalised into lipid vesicles. This corresponds to a
sequential fragmentation procedure. (b) Schematic illustration of patchy colloids.
Mesoscopic colloidal particles are physically or chemically patterned by a finite and
small number of attractive sites arranged in precise geometries on the particle’s
surface. Allowing the tractability of dynamics with florescent microscopy, patchy
colloids are used to study self-organisation dynamics [219]. A combination of both
techniques might be suited to investigate the effects of sequential fragmentation on
non-equilibrium chemical reaction systems.

Schrammar. Subsequent to discussing an experimental setup, we conclude by discussing
the implications of dynamic compartmentalisation in biological systems.

In this chapter, we have placed a particular emphasis on the analysis of sequential com-
partment fragmentation processes. These processes are particularly amenable to both
analytical and numerical study, and are also relatively straightforward to replicate ex-
perimentally. In designing experimental setups, it is crucial to be guided by numerical
simulations, as these can provide estimates of the strength of effects and the statistics
required to distinguish them from noise, particularly if there are no external sources of
noise. Based on this, we find that experimental realisations demand the repetition of
independent runs on the order of 104 to 105. This, however, presents a significant con-
straint on experimental setup. It is worth noting that by carefully selecting dynamics, it
may be possible to reduce the number necessary of runs to gain statistical significance by
orders of magnitude. Besides a large number of runs, we find that low particle numbers
are required for the system to show large statistical effects. The small system sizes should
be easily observable in examples and the microscopic dynamics should be experimentally
trackable. Given these constraints, we propose that microfluidic devices may be a suitable
candidate for experimental realisation.

Microfluidic devices have been used in high-throughput experiments, where large sam-
ple sizes were evaluated quickly [220]. Furthermore, devices for sequential fragmentation
dynamics for in vitro lipid vesicle production were designed, as illustrated schematically in
Fig. 4.17 (a). This process involves coating an aqueous solution with oil and another aque-
ous solution to create small lipids. By this, the initial aqueous phase is fragmented into
vesicles in a sequential fragmentation process. To realise the internal dynamics, patchy
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4. Towards a thermodynamics of closed compartmentalised systems

colloids may be a suitable choice. These are mesoscopic colloidal particles with a finite and
small number of attractive sites arranged in precise geometries on the surface, as shown
in Fig. 4.17 (b). Patchy colloids are used to study self-organisation dynamics of reversible
aggregation processes, as they are observable by fluorescent microscopy [219, 221]. By
designing patchy colloids, different reaction dynamics can be realised, including the con-
trollable implementation of reversible aggregation dynamics that break detailed balance.
To verify our theoretical predictions experimentally, a careful design is required, along
with close collaboration between theorists and experiments in order to avoid inconclusive
statistics.

Experimental setup as Fig. 4.17 (a) are an experimental realisation of sequential frag-
mentation processes. We thus predict direct implications of our theory on the generation
of lipid vesicles with such a setup. The in vitro creation of lipid vesicles is especially used
in the context of synthetic biology [218, 222]. Here, biomolecules are separated into small
compartments, to study their interplay in a restricted volume. This specifically serves as
an experimental playground for the development of synthetic cells. Furthermore, in this
context often fuelled chemical reactions are investigated, that break detailed balance, with
the poster child example being the equipment of lipid vesicles with cytoskeleton fibres.
For example, the synthesis and degradation of microtubules constantly consume energy in
the form of GTP [223]. In such a setup we predict to have varying content distributions
depending on the order the vesicles are created. How strong content statistics deviate
between compartments needs to be assessed by modelling specific aggregation dynamics,
which is beyond the work considered in this thesis. Yet, assessing effects in the context
of building synthetic cells by sequential fragmentation offers a fruitful route for further
investigations.

In addition to the microfluidic devices previously discussed, it is worth noting that se-
quential fragmentation processes are a common feature of measurement procedures. By
extracting a subsystem for analysis, and subsequently repeating the process to increase
sampling statistics, the measurement procedure becomes a realisation of a sequential
fragmentation process. Furthermore, our study of reversible polymerisation dynamics has
demonstrated that different sampling statistics may be observed depending on whether a
subsystem or a defined number of objects is extracted from the system. This is particu-
larly relevant when considering biological systems, where subsystems may be chemically
modified or destroyed during the measurement procedure. It is thus crucial to verify that
the enclosed dynamics are entropically neutral under dynamic compartmentalisation prior
to conducting the measurement.

Notably, as demonstrated in Section 4.6.3, steady states are not sufficient to conclude
on entropic neutrality under dynamics compartmentalisation. Sequential fragmentation
processes can produce compartments with different macrostate statistics if the enclosed
chemical reaction network dynamics break detailed balance. Furthermore, correlations
between constituents can bias the measurement in a non-trivial manner. Additionally,
the simple difference between extracting a random number or a fixed number of particles
from the system can constitute performing work on the system. Consequently, caution
is required when analysing sample statistics produced by iteratively sampling a system,
where samples are discarded after measurement. This emphasises the need for a close
interconnection between measurements and model development. While model develop-
ment relies on measurements, a model can be used to assess systematic deviations in the
sampling procedure, enabling refinement of the measurement, which in turn can lead to
refined models. Note that a model is initially needed to assess the strength of deviations
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potentially created by the measurement procedure.
Complementarily, the generation of distinct compartments could also be advantageous,

depending on the nature of a task. We initiated this model with the aim of investigating
dynamic compartmentalisation in the context of biological applications. As introduced
in section 1.3, dynamic compartmentalisation is a common feature in biological systems.
Exploring the thermodynamics of these systems could provide a productive approach
to assessing the biological role of dynamic compartmentalisation in biological systems.
Furthermore, dynamic compartmentalisation combined with detailed balance could be
used to control the abundance of oligomer structures in the context of cell signalling.
In Chapter 5, we will consider how dynamic compartmentalisation alters the abundance
of MAVS aggregates, which are essential components in the innate immune response to
viral infections in mammals. Generally, the analysis of broken detailed balance chemical
reaction networks subject to dynamic compartmentalisation could enhance the signalling
capabilities of cells, thus presenting a promising area for further investigation.

4.8. Discussion
In this chapter, we have considered the implications of compartment dynamics for closed
compartmentalised systems from a thermodynamic perspective. We have paid particular
attention to the issue of whether compartment fusion and fragmentation involve the per-
formance of work on the system. We have compared two compartment protocols, which
we have termed synchronous and sequential fragmentation, in order to determine whether
compartment dynamics have an effect on the statistics of the realised system states, and
therefore on the system’s entropy. We have demonstrated that the ideal gas is entropically
neutral under dynamic compartmentalisation, as compartment dynamics have no effect
on the entropy of the system. Making use of the formalism of the Second quantisation, we
have generalised our findings, proving a simple operator relation which allows the entropic
neutrality to be determined by a simple algebraic condition. Along the same lines, we
have proposed a generalised notion of work performed by compartment dynamics. We
have discussed the thermodynamic consistency of our findings, demonstrating that our
formalism is effective in detecting subtle notions of work performed on the system by
compartment dynamics. We have concluded by discussing the biological and technical
relevance of our findings. In the following chapter 5, we will consider our findings in the
context of gelation and organelle-associated signalling pathways, with a particular focus
on cellular immune responses to RNA-virus infections.

The motivation for our investigations in this chapter stems from the fact that the physics
by which fluctuations are induced among compartments differs significantly between open
and closed compartmentalised systems. Fluctuations in open compartments are induced
by contact with an external reservoir, while in closed compartmentalised systems they
are solely due to the creation and preservation of density fluctuations as a result of com-
partment fragmentation, as illustrated in Fig. 4.1. In this chapter, we have set out to
investigate whether this mechanism could lead to a fundamental alteration of the statistics
of realised system states. In section 4.3.2, we introduced the Gergesian demons scheme,
which allows testing the extent to which the mechanism of preserved density fluctuations
allows us to imprint a time-protocol on the system’s statistics. In particular, as we im-
pose isolated conditions on the compartments and demand that no work is performed
by the demons as the partition is inserted, we expect that synchronous and sequential
fragmentation will yield the same system state statistics. If this is not the case, we infer
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4. Towards a thermodynamics of closed compartmentalised systems

that the Gergesian demons must have performed work on the system so as not to create
thermodynamic inconsistencies. Thus, we find the scheme of Gergesian demons to be a
useful framework for assessing work performed by compartment dynamics.

In agreement with our thermodynamic considerations, we observe that an ideal gas in
isolated compartments is entropically neutral upon dynamic compartmentalisation. This
is evidenced by numerical simulations in section 4.4.3, which are subsequently supported
by a formal proof in section 4.4.4. Here, we find that the statistical property of the
ideal gas responsible for entropic neutrality is closely related to describing the ensemble
of the ideal gas using Dirichlet distributed random variables. We find that entropic
neutrality of the ideal gas is fundamentally based on the assumption of the molecular
chaos hypothesis and a uniform distribution of states in the momentum phase space,
and not the energy phase space. This hints towards yet unappreciated special statistical
properties and statistical identities of the ideal gas.

Having established a close connection between the entropic neutrality of the ideal gas
and special statistical properties of the Dirichlet distribution in section 4.4, we sought
in section 4.5 to extend our findings to other stochastic many-body dynamics subjected
to dynamic compartmentalisation. We found that the Second quantisation framework
provided a convenient tool for this purpose. By following the sketch of the proof in
section 4.4.4, we reduced the analysis of the compartment fusion and fragmentation effect
to calculating the commutator between the Hamiltonian and the fragmentation or fusion
operator, as shown in Eq. (4.56) and Eq. (4.58), respectively. The Hamiltonian operator
characterises the temporal evolution of the system. If the commutator is zero, we conclude
that the compartment dynamics leave no imprint on the system’s statistics. Consequently,
we proposed that a non-vanishing commutator could be associated with a generalised
notion of work performed on the system by the fusion or fragmentation of compartments.
To confirm this proposition, it is necessary to formally prove that this connection is
thermodynamically consistent in future research.

In sections 4.5.3 and 4.5.4, we studied a quantised version and chemical reactions within
our derived formalism and demonstrated how our commutator relation can be used to de-
tect subtle notions of work performed on the system. In section 4.6.3, we particularly
examined the case of chemical reactions with broken detailed balance conditions, which
are inconsistent with the assumption of isolated compartments. Thus, the fact that differ-
ent system statistics are found for the synchronous and sequential fragmentation protocols
does not imply thermodynamic inconsistencies. Nonetheless, the question of the type of
work performed by the compartment fusion and fragmentation on the system remains
unanswered. To gain insight into this relationship, an insightful approach could be to
explicitly analyse the interplay between broken detailed balance and compartment frag-
mentation in a simple example.

We found that the effects of compartment dynamics are not vanishing but appeared
to be small in the systems considered in this chapter. In the next chapter 5, we will ex-
plore whether the combined action of compartment fusion and fragmentation for systems
larger by orders of magnitude can strengthen these effects. Furthermore, we will consider
the implications of our findings in relation to cellular immune responses to RNA-virus
infections.

In section 4.7, we discussed possible experimental setups and the technical relevance of
our findings. Specifically, we suggested that micro-fluidic high-throughput measurements
of patchy colloid dynamics could serve as a fruitful experimental setup for challenging
our analytical predictions in experiments. We considered our findings to be particularly
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relevant for the design of measurement procedures. We demonstrated that subtleties
in the extraction of precise or average numbers can yield varying measurement results.
We proposed that our theoretical findings may be applicable whenever measurements of
interacting systems are performed iteratively by extracting constituents of the system and
altering or destroying the sample in the measurement process. Furthermore, we suggested
that our framework could be used to evaluate the thermodynamic consistency of coarse-
grained lattice simulations, for example, those used to analyse the thermodynamics of
phase separation.

From a conceptual standpoint, the analysis in this section allows for a new perspective
on the fundamental statistical symmetries that shape our world. We deem our framework
powerful to further investigate the (non)-equilibrium thermodynamics of compartmen-
talised systems. Through our analysis, we have demonstrated that compartmentalised
systems are a class of systems that necessitates an extension of our thermodynamic con-
siderations. We hypothesise that further analysis of the notion of work performed by
compartment dynamics in a non-equilibrium context requires us to reconsider the current
link between work and information processing in our thermodynamic frameworks.
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5. Multi-scale fluctuations facilitate
gelation in the innate immune
response

5.1. Introduction
In 2020 the global COVID-19 pandemic had a disruptive impact on the global scale. The
World Health Organisation’s 2019 report ‘World at Risk’ [224] had already highlighted
the strategies necessary to counter pandemics. This illustrates the importance of accu-
rately assessing the statistics of rare events. Extreme value theory is a branch of statistics
which formalises the evaluation of extreme deviations from the median of probability dis-
tributions. A key result of extreme value theory is that the occurrence of extreme values
follows different functional statistics, depending on whether the probability distributions
of deviations display exponential or power-law tails [225]. As a general mathematical the-
ory, extreme value statistics not only finds application when assessing economic risks but
also predicts the occurrence of giant fluctuations in physical systems. As such, assessing
if correlations in physical systems decay algebraically or exponentially is a central char-
acteristic of how fluctuations propagate in the system. Classically, algebraic decays are
associated with critical behaviour, long-ranged correlations, diverging system properties,
and phase transitions [17].

In this chapter, we extend the findings of chapter 4 and investigate to what extent
dynamic compartmentalisation influences the statistics of extreme fluctuations. This leads
to the observation of statistical gelation in regimes that do not allow for gelation following
classical criteria. We will investigate the biological relevance or our findings by applying
them in the context of cellular immune responses to RNA-virus infections. Motivated by
this biological example, we will focus on reversible polymerisation dynamics with broken
detailed balance relations, as we have investigated in section 4.6.1. Doing so, we apply
the insight we gained in the previous section in a biological context.

This chapter is structured as follows. We begin this chapter with a brief literature review
of Smoluchowski aggregation-fragmentation dynamics, which is a convenient mathemati-
cal framework to study reversible polymerisation dynamics. Building on section 2.2.3, we
examine physical models for the aggregation and fragmentation kernels. We also explore
how the emergence of giant aggregates in reversible polymerisation is linked to the concept
of gelation. Employing Smoluchowski aggregation-fragmentation dynamics, we refine the
model system in section 5.3. As introduced in chapter 4, we consider closed compart-
mentalised systems, as the total aggregate mass and the total compartment mass con-
served. We investigate general compartment fusion and fragmentation dynamics thereby
restricted to to mass-conserving dynamics. We then present our numerical investigations
in section 5.4.

We will investigate a system with specified kernel choices for the reversible polymeri-
sation kinetics in section 5.4.1. By doing so, we introduce the methodology we use to
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investigate the phenomenology of the systems and establish how we assess the statistics
of giant aggregates formation. Specifically, we find that steady compartment fusion and
fragmentation dynamics facilitate the formation of aggregates larger than the average.
Comparing compartments with one another, we find a power-law decay in density fluc-
tuations. In section 5.4.2, we then generalise the reversible polymerisation dynamics.
Here, we find that compartment fusion and fragmentation dynamics only facilitate ag-
gregate formation if the kernels of the aggregation-fragmentation dynamics meet certain
criteria that we specify in this section. We also elaborate on the mechanism by which
the compartment dynamics give rise to giant aggregates and power-law statistics in the
density fluctuations. For this, we reconcile with the idea of creating and preserving den-
sity fluctuations. In section 5.4.3, we the investigate the faciliation of the formation or
large aggregates, as we systemtically scale the system size. We examine a phenomenon
that we term multi-scale gelation, as we find diverging moments in the aggregate size
distribution of the system. We conclude this chapter by applying our findings to cellu-
lar immune responses to RNA-virus infections in section 5.5. For this, we focus on the
organelle-signalling pathway around the protein MAVS, which we have briefly mentioned
in section 3.9. This signalling pathway mediates inflammation responses when viral RNA
is found in the cell cytosol. Our findings in this chapter highlight the importance of mito-
chondrial fusion and fragmentation dynamics for strong and efficient immune responses.
The numerical routine used in this section was to a large extent developed in the Bachelor
thesis project of Josef Kaenders, whose project I co-supervised.

5.2. Literature review on gelation in reversible
polymerisation kinetics

In section 2.2.3, we introduced the concept of Smoluchowski aggregation-fragmentation
dynamics in the context of population balance equations. We discussed its usefulness
for modelling organelle fusion and fragmentation, and, in particular, the case of constant
fusion and fragmentation kernels, which has been previously used in the literature [100,
147]. Additionally, we mentioned that Smoluchowski aggregation-fragmentation dynamics
are also employed in the context of molecular reversible polymerisation reaction kinetics.
In section 4.6.3, we investigated the case of reversible reaction kinetics and concluded
that compartment dynamics can affect the statistics of the aggregate size distribution if
detailed balance at the level of molecular reaction kinetics is broken.

In this section 5.2, we focus on Smoluchowski aggregation-fragmentation dynamics in
more general terms and review specific kernel choices and their connection to physical
models. We will then turn to the non-equilibrium formalism of gelation in Section 5.2.2.
Gelation is, in particular, relevant to assess the statistics of large aggregates1. We will
exemplify in section 5.5 how the statistics of large aggregates play a central biological
function in the cellular immune responses to RNA-virus infections.

1We formally define large aggregates as aggregates larger than the mean aggregate size. Further note
that here we refer to objects which are subject to Smoluchowski aggregation-fragmentation dynamics
as aggregates.
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5.2.1. Physical modelling of fusion and fragmentation kernels

Beginning with Smoluchowski’s seminal work [88], the physics of the aggregation dynam-
ics has been described by the specific aggregate size dependence of the aggregation and
fragmentation kernels. Here, we review some of the specific choices for molecular aggre-
gation and fragmentation kernels and put a special focus on kernel choices that admit
solutions fulfilling detailed balance.

Different kernel choices are employed to investigate aggregation kinetics, depending on
the governing physics. In engineering applications, a variety of aggregation kernels are
used to examine aggregation dynamics from molecular aggregation [226–228] to aerosol
coalescence [90]. Furthermore, in engineering contexts, aggregation-fragmentation dy-
namics are commonly analysed in terms of derived moment equations [72, 229, 230].
Homogeneity classes of kernels can provide direct information regarding the qualitative
temporal evolution of the system [229]. The homogeneity class of the aggregation and the
fragmentation kernel is defined by

Kai,aj = aαaKi,j and Fai,aj = aαfFi,j. (5.1)

Based on the homogeneity classes of αa and αf different kernels are differently classified.
We will regularly refer to the homogeneity classes of kernels when we next present a small
subset of the popular aggregation kernel choices.

A prominent Kernel choice for aggregation dynamics was initially derived by Smolu-
chowski and is commonly referred as Brownian aggregation kernel [229, 231, 232],

Ki,j = Deff
(
i1/3 + j1/3

) (
i−1/3j−1/3

)
(5.2)

which sets the aggregation rate of two aggregates of size i and j in the dependence of
the collision rate of both aggregates assuming motion due to Brownian diffusion in 3 di-
mensions. Deff refers to an effective spatial diffusion coefficient and is rescaled to set the
correct physical units of the aggregation kernel. The first term of the Brownian aggrega-
tion kernel grows monotonically with increasing aggregate sizes of i and j, as the surface
area, and thus the target area, of the aggregates increases. Note that this assumes the
formation of spherical aggregates upon fusion, and that fusion occurs independent of the
contact point of the two fusing aggregates. The second term is monotonically decreas-
ing with the aggregate size, reflecting the fact that the diffusion coefficient of spherical
objects decreases with size. Note that, consistent with the Smoluchowski aggregation-
fragmentation formalism in Eq. (2.14), the derivation of the Brownian aggregation kernel
involves mean-field approximations. It is not possible to find an analytical solution for
the Brownian aggregation kernel. Its homogeneity class is αa = 0, which is identical to
the homogeneity class of constant aggregation kernels Ki,j = µ. As the constant aggrega-
tion kernel admits analytic closed solutions for specific fragmentation kernels, it is used
to approximate the kinetics of the Brownian aggregation kernel, in accordance with the
heuristics of moment closures arguments [99, 229].

In the context of molecular polymerisation aggregation, the product kernel Ki,j ∝ ij
is a popular choice for studying the merging of aggregates, only allowing aggregation
via contact of functional groups [229]. This ansatz typically neglects the size depen-
dence of the diffusivity, with a homogeneity class of αa = 2. It is specifically used to
study gel-forming solutions, which are elaborated on in section 5.2.2. For the study of
branched-chain polymerisation, the sum kernel Ki,j ∝ i+j is also studied, allowing for an-
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alytic closed solutions for specific fragmentation kernels. More detailed kernels reflecting
physical principles better are typically not amenable to analytic solutions [233].

Aggregation kernels are often derived from physical principles by estimating collision
rates [232, 233]; however, due to the need for specific knowledge of the internal organisation
of aggregates, the derivation of fragmentation rates is more complex. Consequently, a wide
range of physically derived aggregation kernels can be found in the literature, see [234]
and references therein, yet only a few qualitative derived fragmentation kernels have been
considered. Examples of such kernels include the parabolic fragmentation kernel and the
power-law fragmentation kernel:

Fpb(i, j) ∝ ib−2j

i+ j
and Fpl(i, j) ∝

(i+ j)b
(i+ j)v+1 i

v, (5.3)

where b > 0 and −2 < v ≤ 0 [229]. In particular, the choice b = 3 for the parabolic frag-
mentation kernel favours the breakage of aggregates in the middle, while the power-law
fragmentation kernel favours the breakage of aggregates on the side. A detailed deriva-
tion of the fragmentation kernel can only be achieved if the detailed internal dynamics
aggregates are known.

Of special interest is the combination of aggregation and fragmentation kernels, which
in combination fulfil the detailed balance condition. [231] showed that the detailed balance
condition presented in Eq. (2.14) using ϕi,j = Ki,j/Fi,j is reduced to

ϕi,j =
∏i+j−1
n=j ϕ1,n∏i−1
n=1 ϕ1,n

. (5.4)

With this condition, the solution in a steady state is readily determined by

f(s, t) =
(
s−1∏
n=1

ϕ1,n

)
f(1, t)s, (5.5)

with the monomer concentration given by the identity

N =
∞∑
s=1

sf(s, t), (5.6)

where N quantifies the total mass of monomers, which is conserved by construction.
This relationship is of particular interest when the fulfilment of detailed balance and the
physics of the aggregation kernel are imposed. In such cases, the choice of the fragmenta-
tion kernel is restricted and only qualitative adjustments are possible, regarding whether
fragmentation into equal or unequal daughters is favoured. The specific derivation of
the aggregation-fragmentation kinetics for specific biomolecules is usually a major obsta-
cle demanding quantum-chemical computation models and detailed understanding of the
protein structure [191, 192]. Yet, discussing the general properties of the solutions to
aggregation-fragmentation dynamics enables qualitative discussions and the estimation of
extreme value statistics. We next focus in particular on the qualitative statistics of large
aggregates, by considering gel forming solutions.
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5.2.2. Gel-forming solutions to the Smoluchowski
aggregation-fragmentation equation

In section 5.2.1, we discussed the aggregation-fragmentation dynamics from a kinetics
perspective, specifying the choices of the aggregation and fragmentation kernel based
on physical principles. In this section, we focus on the characteristics of the solutions,
noting that aggregation and fragmentation dynamics balance each other: the absence of
fragmentation leads to the formation of larger and larger clusters, whilst the absence of
aggregation and infinite divisibility leads to smaller and smaller aggregates. If a moment
of the size distribution diverges or vanishes, we refer to this as the appearance of gelation
or shattering transitions. Throughout this chapter 5, we take monomers as minimal
building blocks, thereby inhibiting shattering transitions. In this section, we will discuss
the qualitative effects of gelation and specify on the definition of large aggregates. Recall,
that we here formally defined large aggregates as aggregates larger than the average
aggregate size. For this, we will first focus on a specific example, in which we illustrate the
concept of gelation. Following this, we illustrate how the concept of gelation is generalised
and briefly state the Carr-DaCosta criterion for non-gelling solutions.

To exemplify the concept of gelation, we closely follow [99], where a simple analytic ex-
ample of aggregation-fragmentation dynamics showing gelation is presented. For this, we
make use of the Konecker-delta notation to consider the specific kernel choices of Ki,j = 2λ
and Fi,j = 2(δi,1+δj, 1−δij,1), where fragmentation only allows the break-off of monomers,
while aggregates of arbitrary sizes can merge. This kernel choice is not motivated by phys-
ical principles, but by its mathematical solvability. The polymer density, defined as the
total number of aggregates, is denoted by N = ∑

s f(s, t). Using the generating function
C(z, t) = ∑

j(zj − 1)f(j, t), the steady state solution of the aggregation-fragmentation
dynamics according to Eq (2.14), are given by non-linear Riccati differential equation

∂C

∂t
= C2 + 2λ−1 1− z

z
+ 2λ−1 (1− z)2

z
N. (5.7)

This equation admits two different functional solutions depending on whether λ is greater
or smaller than one. We define the gel mass fraction

g = 1−
∑
j

jf(j, t), (5.8)

which specifies the condition of mass conservation. While the solution for f(j, t) is given
in [99], we here only discuss asymptotic solutions and focus on the polymer density N
and the gel mass fraction g, which are

N =
1− λ

2 λ ≤ 1,
1

2λ λ > 1
(5.9)

and

g =
0 λ ≤ 1,

1− λ−1 λ > 1.
(5.10)

Here, λ is an order parameter describing a kinetic phase transition. While we find that
the mass is conserved for λ ≤ 1 as g = 0, the total mass in the distribution is reduced as
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5. Multi-scale fluctuations facilitate gelation in the innate immune response

g > 0 for λ > 1. Conversely, the total number of aggregates remains constant for λ > 1.
This can be made intuitive, by thinking of an excess mass, which accumulates in a single,
big aggregate above a critical density λ > λc = 1. This picture is further illustrated
considering the asymptotic solutions for s≫ 1 with

f(s, t) ∝


(λ−1−1)2

λ−1 s−3/2e−s(2 log λ−1−log(2λ−1−1)) λ ≤ 1,
λ−1s−5/2 λ > 1.

(5.11)

Here, the size distribution shows an exponential cut-off for λ ≤ 1. As λ approaches
1, the cut-off disappears. For λ > 1, the size distribution displays a power-law decay,
with a single large aggregate accounting for the extra mass being referred to as a gel,
and the species that constitute the power-law distribution being referred to as sol. This
nomenclature is linked to the percolation threshold, although it does not have an obvious
connection to an experimentally measurable viscosity. Instead, the emergence of a gel
should be related to changes in extreme value statistics for large aggregates.

Recall that we derived a solution for gel under the assumption of only monomeric
break-offs from the gel. This renders the gel a stable structure, exhibiting only small
fluctuations. However, if we retain all Fi,j > 0 at finite values, then the gel structure is
allowed to transiently decay into clusters of arbitrary size. This is illustrated by [235, 236],
who demonstrated the appearance of extremal fluctuations if a critical value λ > λc is
crossed in a different aggregation-fragmentation dynamics. Without specifying the details
of these dynamics, λ here refers to a general quantification of the timescale of aggregation
versus the timescale of fragmentation. Inspired by the observation of a special kinetic
phase transition, which alters the extreme value statistics, [237] investigate a classification
of aggregation-fragmentation dynamics on the basis of the aggregation and fragmentation
kernel.

The Carr-DaCosta criterion, presented in [237] and [238], provides conditions for the
aggregation and fragmentation kernel, for which the moments of the size distribution con-
verge, regardless of the value of λ, which quantifies the timescale of aggregation relative
to the timescale of fragmentation. [237] refer to this regime as the strong fragmentation
regime, where fragmentation predominates over aggregation and thus prevents the forma-
tion of gels. Specifically, the non-gelling is here specified as the absence of the divergence
of moments

Sn =
∞∑
j=1

jnf(j, t) <∞, ∀n > 0, t > 0. (5.12)

The aggregation-fragmentation dynamics are in the strong fragmentation regime if

Ki,j ≤ Ka(i+ j) (5.13)

the aggregation kernel is bound by the summation kernel. Here Ka > 0 is a positive, real
constant. Further, the fragmentation kernel needs to fulfil the condition

[(r−1)/2]∑
j=1

jmFj,r−m ≥ C(m)rγ+m. (5.14)

Here [x] refers to rounding to the floor of x ∈ R+. The equation needs to hold for a
γ > 0 with a constant C(m) for all m ≥ 0 and r > 3. Formally, this criterion holds
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only in the limit N → ∞, where the strong fragmentation implies an exponential cut-
off in the aggregate size distribution. This directly implies that all moments of the size
distribution Sn = ∑

j=1 j
nf(j, t) converge. Conversely, [237] also proves that critical

densities, upon which moments of the size distributions Sn diverge, occur in the weak
fragmentation limit. The Carr-DaCosta criterion is widely referred to in the applied
mathematics literature focusing on the question of the compactness and uniqueness of
solutions to aggregation-fragmentation differential equations. A similar criterion exists
in the engineering literature, known as the Vigil-Ziff criterion [229], which states that
gelation occurs when αa − αf > 2. Note that these two criteria are not identical and
that the Vigil-Ziff criterion was derived heuristically after studying 15 special cases with
log-normal moment closure approximations.

From a numerical perspective, the detection of gel formation is challenging, as large
gels only transiently occur. Here, we test gel formation by testing the aggregate size
distribution for diverging moments in the aggregate size distribution. In simulations,
we are bound to investigate finite-sized systems. We study the divergence of moments
by tracking how moments change as the system size is steadily increased. Observing
different cut-off statistics in the aggregate size distributions motivates us to refer to large
aggregates, as those aggregates which form either the exponential or power-law tail. For
practical considerations, we refer to large aggregates as aggregates larger than the mean
aggregate size.

5.3. Reversible polymerisation subject to dynamic
compartmentalisation

In chapter 2 and 3, we showed how organelle dynamics affect the response kinetics of
organelle-associated signalling pathways. Here, we further specify the model presented
in section 2.3. Specifically, in this chapter, we restrict the compartment dynamics, as
specify the organelle dynamics to include only fusion and fragmentation. On the level of
chemical reaction, we only consider reversible polymerisation kinetics. As a consequence,
the dynamics in this section conserve the total compartment mass and the total mass of
the aggregates summed over all compartments.

We thus consider the system as a closed compartmentalised system. This is in contrast
to the dynamics investigated in chapter 2, where we considered the steady binding and
unbinding of biomolecules to and from the organelle membranes. The conservation of
the total aggregate mass does not, however, necessarily imply that the total mass of ag-
gregates per organelle is conserved. Analogous to Eq. (2.20), we symbolically define the
dynamics of the system with a Master Equation. We consider Smoluchowski aggregation-
fragmentation dynamics on both the level of organelle dynamics and for reversible poly-
merisation kinetics. To distinguish between the dynamics on the two different spatial
scales, we introduce the superscript ‘o’ for compartment dynamics2 and ‘p’ for chemical
reaction kinetics.

We define our compartment system in analogy to Eq. (2.19) in section 2.3 and Eq. (4.7)

2We here use ‘o’ as an abbreviation for organelle as we take inspiration by the application to organelle-
associated signalling pathways. We avoid any potential misunderstandings with ‘c’ standing for com-
partment and not concentration.
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in section 4.3.2 as

S =


...

[s⃗i, vi]
...

 . (5.15)

The system is characterised by a list of compartments, each of which is specified by the
state of the internal stochastic many-body system and its compartment properties. The
latter are fully described by the corresponding volumes, vi. Moreover, the state of the
enclosed dynamics is defined in terms of a concentration vector s⃗i, which expresses the
concentration of aggregates of s as s⃗i = n⃗i/vi. Note that by this we introduced a change
in notation from c⃗ to s⃗, to reflect that the molecular species are all aggregates, which vary
in their size. Finally, the total number of compartments in the realisation of the system
S is denoted by N(S). In a semi-symbolic notation, the dynamics of the system are given
in the Master-Equation framework by

d

dt
P (S) =

N(S)∑
i

(
Fp

fus,i [P (S)] + Fp
frag,i [P (S)]

)
+ Fo

fus [P (S)] + Fo
frag [P (S)] (5.16)

Here, we refer to the aggregation-fragmentation dynamics on the level of protein polymeri-
sation with Fp

fus,i and Fp
frag,i. The index i indicates that the dynamics happen in parallel

in all compartments. With Fo
fus and Fo

frag, we refer to the dynamics of compartment fusion
and fragmentation. The exact transition rates for the reversible polymerisation dynamics
are specified in accordance to the formalism in section 2.2.3 and section 5.2. We adopted
the symbolic notation introduced in section 2.3 and detailed out in the appendix A.2 for
compartment fusion and fragmentation.

We treat the dynamics in a full stochastic framework, taking into account both reversible
polymerisation kinetics and compartment dynamics as stochastic processes. As introduced
and formalised in section 2.3, we consider the fragmentation of compartments as processes
that introduce fluctuations in the total aggregate density per compartment, as we consider
a binomial splitting process between the two daughter compartment upon fragmentation.
This leads to fluctuations in the total aggregate mass per compartment. As discussed in
section 4.6.1, we rescale the aggregation rate to reflect the changes in the total aggregate
mass concentration per compartment.

As introduced in section 2.3, we consider the compartment dynamics to be discrete;
Only fragmentation into natural multiples of a unit compartment size is possible. In
appendix B.1, we argued how this approximation allows for a speed-up of the numerical
simulation routine. To track the system’s time evolution, we define the number density
fi(s, t), which gives the abundance of molecular aggregates of size s in compartment i.
The marginalised size distribution is f̃(s, t) = ∑

i fi(s, t), to which we will refer to as
aggregate size distribution. The total molecular aggregate mass is denoted by N p, and
the total aggregate mass in compartment i is N p

i . For notational simplicity, the total
compartment mass is N o = N , and the size of the compartment is vi. The aggregate
density per organelle compartment is ρi = N p

i /vi, with distribution pi(ρ). Note that the
distributions are in general coupled.

In consistency with chapter 2, we specify on the choice for the aggregation kernel and
the fragmentation kernel for the compartment dynamics. We set the aggregation kernel
to be constant and independent of the compartment size and as well as independent of the
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aggregate composition in the compartments, which is specified by the concentration vector
s⃗i for each compartment. We set the compartment fragmentation rate to be proportional
to compartment size, while the position of fragmentation is uniformly distributed over
the length of the compartment.

Note that these compartment dynamics are a generalisation of the compartment dy-
namics described in chapter 4, in which we considered how the statistics of reversible
polymerisation processes are affected by either synchronous or sequential compartment
fragmentation protocols. We refer to an ensemble with compartments undergoing Smolu-
chowski aggregation-fragmentation dynamics as a dynamic ensemble. We approximate
the fusion and fragmentation processes, as well as subsequent mixing, we assume that
they happen instantaneously, analogous to the description of the compartment dynamics
in section 2.3. Between compartment fusion and fragmentation events, we consider the
time evolution of the reversible polymerisation kinetics.

We contrast the dynamic ensemble with two compartment dynamics that do not un-
dergo Smoluchowski aggregation-fragmentation dynamics, which we refer to static and
synchronous ensembles. For the static compartment ensemble, we consider fragmented,
independent compartments. We set all compartments to have the same total aggregate
mass and compartment size, pi(ρ) = δ(ρ − N p/N). There is no exchange of aggregates
among the compartments. The reversible polymerisation kinetics evolve independently in
the different compartments. In this ensemble, we have a strongly restricted possibility of
aggregates reacting with each other. In the synchronous compartment ensemble, we evalu-
ate how the reversible polymerisation evolves in a fully fused ensemble. To allow a direct
comparison to the effects with the dynamic compartment and the static compartment
ensemble, before an evaluation, we synchronously fragment the system as introduced in
section 4.3.2.To record time traces, we fuse all compartments subsequent to the evaluation
again.

Contrasting the dynamic, static, and synchronous ensemble allows us to both distin-
guish the effects of compartmentalising the dynamics and the effects of dynamic compart-
mentalisation. With this model system, we investigate the question, of to what extent
compartment dynamics can alter the tail statistics of the aggregate size distribution and
if compartment dynamics can effectively suppress or facilitate the formation of large
aggregates. We next investigate how compartment dynamics affect the aggregate size
distribution.

5.4. Dynamic compartmentalisation facilitates the
formation of giant aggregates

In section 4.6.3, we demonstrated that the compartmental dynamics in general influence
the aggregate size distribution of reversible polymerisation kinetics, if the polymerisa-
tion kinetics break detailed balance. We studied examples of small reaction networks
which displayed differences in the aggregate size distribution if either a sequential or a
synchronous fragmentation procedure was applied. While we found that the differences
were not negligible, the difference between the aggregate size distributions was only a few
per cent and thus marginal. Here, we explore phenomenologically the effects of dynamic
compartmentalisation on reversible polymerisation dynamics in larger systems by numer-
ical simulations, to test if the effects are strengthened or vanishing. For this, we start by
investigating a specific choice of the polymerisation aggregation and fragmentation kernel
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and then generalise our findings by systematically scanning other kernel choices. In the
next section 5.5 we will then apply the findings of this chapter in the context of cellular
anti-viral immune responses.

5.4.1. Dynamic compartmentalisation increases the frequency of
large aggregates

To investigate how dynamic compartmentalisation affects the frequency of aggregates
of different sizes, we first consider a specific kernel choice for the aggregation and the
fragmentation kernel. With the specific kernel choice, we illustrate the effects of dynamic
compartmentalisation of reversible polymerisation dynamics, as we introduce different
observables. This allows us to build a first intuition about the phenomenology. We
extend our investigation to other kernel choices in section 5.4.2.

In chapter 4, we gained the heuristic insight that differences induced by compartment
dynamics rely on the creation of density fluctuation between compartments. For this
reason, we start our investigation by focusing on aggregation-fragmentation kinetics that
create large aggregations. In section 5.2.2, we introduced the concept of gel formation in
the context of Smoluchowski aggregation-fragmentation dynamics. Here, we restrict to
the investigation of kernel choices that fulfil the strong fragmentation criterion by Carr
and DaCosta [237]. For kernel choices that fulfil the strong fragmentation criterion, we
expect the absence of gel formation. Specifically, we start by investigating the kernel
choices

Kp
i,j = µp(i0.9 + j0.9) and F p

i,j = φp
(

1
i0.9

+ 1
j0.9

)
, (5.17)

which fulfil the strong fragmentation criterion by Carr and DaCosta [237]. µ and φ
are dimensional units specifying the timescale of aggregation and fragmentation, with
λ = µ/φ the aggregation parameter. The aggregation kernel has the homogeneity class
αa = 0.9, while the fragmentation kernel is in the homogeneity class αf = −0.9. Here, the
kernel choice is motivated by allowing for a simple modification of the homogeneity class.
We discuss how our insight translates to kernel choices motivated by physical models in
section 5.4.2.

In the following, we only analyse the ensembles after they have reached a steady-state
configuration. To determine if the steady state is reached, we measured moments of the
aggregate size distribution f(s, t). As we consider full stochastic simulation, the system
fluctuates around the steady state. We compute the temporal mean of the variance
⟨Var[f(s, t)]⟩t. As the system reached ⟨Var[f(s, t)]⟩t for the first time, we consider the
system to have reached a steady state.

We begin our numerical investigation with an ensemble ofN o = N = 200 compartments
and a total aggregate mass of N p = 5000 monomeric building blocks. The aggregation
parameter for the reversible polymerisation dynamics is set to µp/φp = λp = 1.5, with the
generalised collision rate being defined as µ̃o,p = µo,p/N o,p. The molecular aggregation
dynamics occur on much faster timescales with µ̃p/µ̃o ≡ τ̃µ = 5 × 103 · λp. Here, we
refer to τ̃µ as the compartment fusion time, which gives a dimensional estimate of how
long the reversible polymerisation kinetics progress between two compartment events
inside a compartment. We compare the steady-state aggregate size distribution of the
dynamic, static, and synchronous ensembles, as introduced in section 5.3. For the dynamic
ensemble, the compartment fragmentation rate is much larger than the aggregation rate,
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Fig. 5.1.: Compartment fusion and fragmentation facilitate the formation of large
aggregates We conducted full stochastic stimulations of reversible polymerisation
dynamics subject to compartment fusion and fragmentation. The system has N o =
N = 200 compartments and a total aggregate mass of N p = 5000. The aggregation
parameter for the reversible polymerisation dynamics is set to λp = 1.5 . The molec-
ular aggregation dynamics occur on much faster timescales with µ̃p/µ̃o = 5×103 ·λp.
The system is motivated in section 5.4.1. All changes in the system are modelled as
stochastic transitions. We compare three different compartment dynamics, as speci-
fied in section 5.3. The aggregate size is in multiples of the monomeric building block.
(a) The histogram shows the aggregate size distribution normalised by the expected
of organelle mass per compartment. All different compartment dynamics yield dif-
ferent aggregate size statistics. Only the small aggregate sizes can be analysed. (b)
Plotting the histogram in a log-log scale does not make conclusions on the statistics
of large aggregates. (c) The empirical cumulative distribution indicates different tail
statistics when comparing the dynamic and synchronous compartment ensembles.
The statistics of large aggregates are reflected in how ϕp approaches 1. (d) The
complementary empirical cumulative distribution function allows for graphically as-
sessing the statistics of large aggregates by using a logarithmic y-scale. We find that
compartment fusion and fragmentation facilitate the formation of large aggregates.

being set to λo = 0.001, such that compartments are predominantly found in a fragmented
state. For the static and synchronous ensembles, we consider for the evaluation the state
where the compartments are fully fragmented. For presentation, we marginalise the size
distribution over all compartments and normalise it such that ∑s sf

p(s, t) = N p/N .
In Fig. 5.1 (a), we show the marginalised aggregate size distributions up to an aggregate

size of s = 12. We find that the steady-state aggregate size distributions differ between
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all three ensembles. While all distributions peak at s = 1 and rapidly fall off, we find the
highest frequency of small aggregates in the static ensemble and the lowest frequency of
small aggregates in the synchronous ensemble. Yet, visual inspection of the histogram is
insufficient to make statements about the abundance of larger aggregates. In Fig. 5.1 (b),
we plot the histogram in a log-log scale, without rescaling the bins, which each represent
the abundance of aggregates of specified, discretised size s. We plot the abundance of
aggregate mass with s · f(s, t). We find, that the static ensemble shows a qualitative
different aggregate size distribution, where the formation of large aggregates s > 25
is suppressed. This is a consequence of setting a uniform aggregate mass density and
inhibiting the exchange of aggregates between compartments. Contrasting the dynamic
and synchronous ensemble, we find the formation of large aggregates, while assessing the
statistics of the tail of the distribution is not possible from visual inspection.

We introduce the cumulative distribution function ϕp(k) = ∑k
s f(s, t)/N p which is con-

strained to the interval ϕp(k) ∈ [0, 1]. This function gives, for each aggregate size s, the
mass fraction of mass in aggregates of smaller or equal size. ϕp(s) is a monotonically
increasing function which approaches ϕp(s → ∞) → 1, making it particularly useful for
evaluating the tails of the distribution f(s, t). As we have no access to the true distribu-
tion f(s, t), we evaluate the empirical cumulative distribution function [239], as illustrated
in Fig. 5.1 (c). Here, we find that the static ensemble rapidly approaches ϕp

st(s)→ 1, in-
dicating a large abundance of small aggregates, in line with our findings in Fig. 5.1 (b).
In contrast, the cumulative distribution functions for the dynamic and synchronous en-
sembles cross. While there is more mass in small aggregates for the dynamic ensemble,
ϕp

dy(s)→ 1 saturates more slowly for large aggregates, ϕp
dy(s) < ϕp

sy(s) for s≫ 1.
We assess the decay by evaluating the complementary cumulative distribution function

ϕ̄p(s) = 1 − ϕp(s), as shown in Fig. 5.1 (d). Setting the y-axis to a logarithmic scale,
we observe an exponential tail in ϕ̄p

sy(s), which is expected in the strong fragmentation
limit. Compartment fragmentation and aggregation, on the other hand, lead to a more
frequent formation of large aggregates, with an order-of-magnitude effect. We also note
deviations from the exponential decay in ϕ̄p

dy(s). To determine whether these deviations
are caused by fluctuations or a true effect, we examine the density distribution p(ρ) over
the different compartments.

We expect that changes in the aggregate size distribution will be linked to modified
density fluctuation statistics in the compartments, caused by frequent compartment fusion
and fragmentation. To further investigate the density fluctuations, we analyse pi(ρ) from
the simulation shown in Fig. 5.1. We compute the histograms of the different ρi, as shown
in Fig. 5.2 (a), in order to obtain an estimate for p(ρ). Here, we only compare the dynamic
and synchronous ensembles, as pst(ρ) is delta-peaked by design. We find that both pdy(ρ)
and psy(ρ) are strongly skewed distributions. The mode of pdy(ρ) is shifted towards the
mean of the distribution when compared to psy(ρ), as the number of compartments with
strongly reduced density is reduced. This qualitatively resembles the emergent collective
ensemble kinetics we described in section 2.5.

We expect the statistics of large aggregates examined in Fig. 5.1 (d) to coincide with
the occurrence of large density fluctuations. Consequently, we are interested in the statis-
tics of the tail of the distribution of p(ρ) for large ρ ≫ 1. However, as for the aggregate
size distribution f(s, t), we cannot evaluate the statistics of large fluctuations by visual
inspection of the histogram. Therefore, we compute the complementary empirical cumu-
lative distribution function for p(ρ), which we refer to as ζ̄ρ. In Fig. 5.2 (b) we find that
the distribution over density fluctuations is shifted towards the occurrence of large fluc-
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Fig. 5.2.: The density fluctuations among compartments show a power-law decay
The same simulations as in Fig. 5.1. Here, we analyse the statistics of density fluctua-
tions, as we approximate p(ρ) by building the a histogram over all ρi. We compare the
dynamic and synchronous ensembles, as defined in section 5.3. ‘c-eCDF’ stands for
the complementary empirical cumulative distribution function. (a) We find that the
system has a strongly skewed distribution in p(ρ) towards large density fluctuations.
As the system is mass conserving, the mode of the distribution is shifted towards
below-average densities ρmode < ⟨ρ⟩. For the dynamic and synchronous we find dif-
ferent distributions, with fewer compartments with strongly below-average densities.
(b) To inspect the statistics of large above-average density fluctuations, we consider
the complementary empirical cumulative distribution functions of the density fluc-
tuations. We find different statistics for large density fluctuations. Specifically, the
dynamic ensemble gives rise to a power-law decay with an exponent close to ∼ ρ−1.3.

tuations. In comparison to ζ̄ρsy, we observe that the occurrence of low-density fluctuations
is reduced while the occurrence of large density fluctuations ρ≫ 1 is increased. Notably,
Fig. 5.1 (d) suggests that ζ̄ρdy decays with a power-law tail, in contrast to ζ̄ρsy which shows
a characteristic exponential decay in a log-log plot. We estimate the power-law decay
to ∼ ρ−1.3, which was evaluated by visual fitting. We find the power-law behaviour to
extend over one order of magnitude in ρ. This tail behaviour is in contrast to the emer-
gent collective ensemble kinetics described in chapters 2 and 3. We investigate how the
deviations in the tail statistics originate from creating and preserving density fluctuations
in section 5.4.2.2. Here, we continue to investigate the phenomenology of the system.

We next test if the results are specific to the choice λp = 1.5. To do so, we repeat the
identical analysis to Figs. 5.1 and 5.2 for λp = 1, λp = 0.5, and λp = 0.1, as shown in
Fig. 5.3. We find qualitatively the same results for all tested values of λp = 1.5, with
the aggregate size distribution displaying an increased abundance of large aggregates
s ≫ ⟨s⟩ and the tail of the density fluctuations suggesting a power-law decay if the
compartments undergo fusion and fragmentation dynamics. We observe that the increase
in the abundance of large aggregates is more pronounced for larger λp, which is consistent
with the difference in the density fluctuation statistics decreasing with decreasing λp, as
shown by ζ̄ρdy and ζ̄ρdy in Fig. 5.3 (b), (d) and (f). Moreover, we find that the exponent of
the power-law decreases as λp is decreased. By visual fitting, we estimate ∼ ρ−2.2

1 , ∼ ρ−6
0.5,

and ∼ ρ−15
0.1 , where the subscript refers to the value of the aggregation parameter λp. It

should be noted, however, that for λp < 1 the power-law decay does not extend over one
order of magnitude in ρ due to the rapid decay and the finiteness of the simulated system,
so the estimates of the power-laws should be treated with caution.

171



5. Multi-scale fluctuations facilitate gelation in the innate immune response

Fig. 5.3.: The qualitative findings are not specific to the choice of the aggregation
parameter λp Analogous simulations to Fig. 5.1 are considered with different ag-
gregation parameters: (a,b) for λp = 1.0, (c,d) for λp = 0.5, and (e,f) with λp = 0.1.
While we obtain the qualitative identical findings to Fig. 5.1 and Fig. 5.2, the dif-
ference in the statistics is less pronounced for lower values of λp. We find that the
apparent power-law decays show smaller exponents for smaller values of λp. Note,
that the decay for λp = 0.5 and λp = 0.1 extent over less than one decade and should
thus be interpreted with caution. The aggregate size is in multiples of the monomeric
building block. ‘c-eCDF’ stands for the complementary empirical cumulative distri-
bution function.
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Fig. 5.4.: Compartment fusion and fragmentation affect the stability of aggregates
Simulations are analogous to Fig. 5.1 with aggregation parameters for λp = 1.0. We
track the size of the largest aggregate smax for the dynamics and synchronous en-
semble dynamics. We determine the autocorrelation time as described in section 3.5.
We normalise by the autocorrelation time of the largest aggregate in the synchronous
ensemble dynamics, τsy. The aggregate size is shown in multiples of the monomeric
building block. (a) Visual comparison between the dynamics and synchronous en-
semble dynamics. We visually obtain that the largest aggregate is more stable in the
dynamic ensemble, where density fluctuations are preserved. (b) We systematically
change the timescale of compartment dynamics while keeping the compartment size
distribution fixed. We find two different regimes which are characterised by different
functional dependencies of the autocorrelation time smax on the compartment fusion
time τ̃µ. Slow compartment dynamics are on the right and fast compartment dynam-
ics are on the left. Error bars are the fit errors from measuring the autocorrelation
time.

We identified that compartment fusion and fragmentation dynamics give rise to the
creation and preservation of density fluctuations, which ultimately lead to altered density
fluctuation statistics p(ρ) and aggregate size distributions f(s, t). Apart from changing
the steady state distributions, we find that the aggregation and fragmentation dynamics
also modify the temporal persistence of aggregates, as density fluctuations are preserved in
the dynamic ensemble in contrast to a fully fused compartment configuration. This is ex-
emplified in Fig. 5.4 (a), where we display a time-trace of the size of the largest aggregate,
using the same simulation parameters as in Fig. 5.3 (a) and (b). We calculate the auto-
correlation time τmax of the time-trace and systematically change the ratio µ̃p/µ̃o = τ̃µ
while keeping the other simulation parameters fixed. In Fig. 5.4 (b), it is evident that the
auto-correlation time increases with increasing µ̃. Plotting the auto-correlation time in a
log-log scale, we detect two different regimes. For µ̃ > µ̃∗, the auto-correlation time in-
creases linearly τmax(µ̃) ∼ τ̃µ. Conversely, for µ̃ < µ̃∗, the auto-correlation time increases
sub-linearly τmax(µ̃) ∼ τ̃ 0.5

µ . We identify the regime with the linear increase µ̃ > µ̃∗ as the
regime where the reversible polymerisation dynamics inside a compartment relax faster
than the rate at which compartments undergo fusion events, m̃uo ≪ 1/τp

rel. In this regime,
the stability of large aggregates is governed by how long density fluctuations are main-
tained. In contrast, the regime µ̃ < µ̃∗ requires a more thorough analysis, which is also
connected to an investigation of how µ∗ depends on the system parameters. Note that
in Fig. 5.1, Fig. 5.2 and Fig. 5.3 we considered the system parameters which are in the
regime µ̃ > µ̃∗, which we deem as the more physiologically probable regime.
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Fig. 5.5.: Increasing the aggregation parameter λp results in larger aggregates Anal-
ogous simulations to Fig. 5.1 are considered, by for a larger system with N p = 5×105.
The aggregation parameter λp is systemically increased. The abundance of large ag-
gregates is quantified by considering the mass fraction m(s > 150) in (a) and the
quantile of the mass fraction s(m = 0.75) in (b). We qualitatively test for different
timescales of the compartment dynamics. Error bars are the standard error of the
mean over 5 independent realisations. We find larger aggregates and for the dynamic
mitochondrial ensemble with larger aggregates for smaller compartment fusion rates.
The findings do not depend on the specific choices of the mass fraction threshold and
the quantile [data not shown]. The aggregate size is in multiples of the monomeric
building block.

Next, we quantify how variation in λp affects the abundance of large aggregates. To
do this, we increase the system size to N p = 5 × 105 whilst keeping N = 200 fixed.
Fig. 5.5 compares the static and dynamic ensembles. To measure the abundance of large
aggregates, we consider two different measures: the mass fraction greater than a specified
aggregate size m(s > 150), Fig. 5.5 (a), and the aggregate size that corresponds to a
quantile of the mass fraction s(m = 0.75), Fig. 5.5 (b). For both measures, we find qual-
itatively similar results, with larger aggregates observed when compartments are subject
to fusion and fragmentation dynamics. This is consistent with the findings of Fig. 5.3,
which demonstrates larger aggregates with increasing λp and µ̃.

In this section, we have explored phenomenologically how compartment fusion and frag-
mentation affect the aggregate size distribution of the reversible polymerisation kinetics.
For this, we considered specific system parameters and carried out numerical simulations.
Our findings are not conclusive, but they provide us with initial insight into how com-
partment fusion and fragmentation can facilitate the formation of larger aggregates while
shifting the statistics of density fluctuations to a power-law decay. In section 5.5, we will
interpret these findings in the context of cellular anti-viral immune responses. We next
generalise the findings of this section, by phenomenologically investigating other kernel
choices for the reversible polymerisation kinetics. Subsequently, we will discuss the mech-
anisms underlying the facilitation of large aggregate formation, as well as the implications
of the power-law decay in ζ̄ρdy. We will also consider how the results are affected by scaling
of the system size, and the potential connection to gelation, in section 5.4.3.
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5.4.2. Testing different aggregation and fragmentation kernels
In section 5.4.1, we explored the effect of compartment fusion and fragmentation on the
aggregate size distribution of reversible polymerisation dynamics using numerical simula-
tions. For this, we made specific choices for the aggregation and fragmentation kernel of
the polymerisation dynamics, see Eq. (5.17). In this section, we generalise on the findings
of section 5.4.1 by systematically scanning other kernel choices. Our results demonstrate
that the facilitation of the formation of large aggregates is dependent on certain conditions
for the aggregation and fragmentation kernels. Following our numerical investigations, we
will discuss the mechanism behind this facilitation and the deviation from the steady state
configuration described in chapter 2.

5.4.2.1. The facilitation of the formation of giant aggregates is specific to kernel
choices

In section 5.4.1, we focused on a specific kernel choice for reversible polymerisation kinet-
ics, with homogeneity classes of αa = 0.9 for the aggregation kernel and αf = −0.9 for the
fragmentation kernel. These kernel choices are prone to the formation of large aggregates
while still fulfilling the strong fragmentation criterion proposed by Carr and DaCosta
[237], which predicts the absence of gel formation. Here, we systematically vary the ho-
mogeneity classes of the aggregation and fragmentation kernels to determine whether the
phenomenology discussed in Section 5.4.1 is general or only valid for a particular region
of the model space (αa, αf). We generalise the kernel choice in Eq. (5.17) to

Kp
i,j = µp(iαa + jαa) and F p

i,j = φp(iαf + jαf). (5.18)

Only Kernel choices with αa < 1 and αf > −1 fulfil the strong fragmentation criterion by
Carr and DaCosta [237]. We expect a different phenomenology for reversible polymerisa-
tion kinetics that show the formation of gels. Here, we restrict the analysis of the model
space to (αa, αf) ∈ (−1, 1)× (−1, 1).

Before conducting a systematic scan of the parameter region through numerical experi-
ments, we first investigate the impact of a second specific kernel choice, setting αa = −0.9
and αf = 0.9. We expect this kernel choice to suppress the formation of large aggre-
gates. We simulate a system with N = 800 compartments and a total aggregate mass of
N p = 4×103, setting the aggregation parameter λp = 2 and the ratio of timescales between
the polymerisation and compartment dynamics to τ̃µ = 103. As shown in Fig. 5.6 (a),
the formation of large aggregates is suppressed, as aggregates of size s > 10 are scarce.
When comparing the dynamic and synchronous ensembles, as introduced at the end of
section 5.3, we find that the compartment dynamics appear to suppress the formation of
large aggregates. Note that, however, the effect is smaller than the facilitation observed in
section 5.4.1. The inset of Fig. 5.6 (a) shows that compartment fusion and fragmentation
also affect the distribution of density fluctuations p(ρ). This further supports the validity
of the observed deviation in Fig. 5.6 (a) as a true effect rather than a consequence of
fluctuations.

From this finding, we already conclude, that the facilitation of the formation of large
aggregates is not a general property of reversible polymerisation kinetics, but specific
to the kernels of the reversible polymerisation dynamics. As we conduct the parameter
scan in (αa, αf), we test if the compartment dynamics facilitate the formation of large
aggregates. To assess if the formation of large aggregates is facilitated, we compare the
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Fig. 5.6.: Systematic scanning of polymerisation kernels reveals region in the model
space where compartment dynamics facilitate the formation of large ag-
gregates (a) Test for an ensemble with αa = −0.9 and αf = 0.9 in simulations
analogous to Fig. 5.1. The system parameters are specified in section 5.4.2.1 . We
find that the formation of large aggregates s ≫ ⟨s⟩ is suppressed by compartment
fusion and fragmentation. The inset shows the density fluctuations analogous to
Fig. 5.2. Density fluctuations are also affected by the compartment dynamics. The
aggregate size is in multiples of the monomeric building block. ‘c-eCDF’ stands for
the complementary empirical cumulative distribution function. (b) Systematic scan
over different aggregation and fragmentation kernels for the reversible polymerisation
dynamics, as defined in Eq. (5.18). We evaluate the maximum of ratio of the cumu-
lative distribution functions in the tail s > ⟨s⟩, qmax. If qmax > 1.1, we define to have
observed the facilitated formation of large aggregates. We find that the formation of
large aggregates is specific to a region in the parameter phase space.

dynamic and synchronous ensembles. We compute the ratio of the cumulative distribution
functions and evaluate its maximum qmax = max(ϕ̄p

sy(s)/ϕ̄p
dy(s)) in the tail for s > ⟨s⟩. To

ensure that the observed effect is not due to fluctuations in the tail of the distribution, we
define an increase in the abundance of large aggregates as greater than 10%, or qmax > 1.1.
For our scan, we consider systems with N = 200 compartments and a total aggregate mass
of N p = 3× 105. The compartment dynamics are set to occur at a much lower rate, with
µ̃ = 8 × 105λp. Scanning the exponents in the range (αa, αf) ∈ (−1, 1) × (−1, 1), we
find that the facilitation of large aggregate formation is not specific to the kernel choice
(αa, αf) = (0.9,−0.9), but is observable in a wider region of the model space, as shown
in Fig. 5.6 (b). In particular, we observe facilitation when aggregation is facilitated and
fragmentation is suppressed, with αa > 0 and αf < 0. It should be noted that this is
a purely computational result at this point. Additionally, we only test for a facilitating
effect. We do not make any statements about the formation of large aggregates in the
region where we do not observe facilitation, as it could potentially be suppressed or
compartment dynamics could have no effect. We will next discuss the mechanism that
gives rise to the facilitation of large aggregate formation for the dynamic ensemble.

5.4.2.2. Mechanism underlying the formation of giant aggregates

In section 5.4.2.1, we conducted numerical investigations into the impact of dynamic com-
partmentalisation on the aggregate size distribution of reversible polymerisation dynam-
ics. Our findings revealed an extended parameter region in which compartment dynamics
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density �uctuations formation of 
large aggregates

facilitates

gives rise to
larger

Fig. 5.7.: Schematic of a feedback loop giving rise to the facilitated formation of
large aggregates Larger aggregates give rise to larger noise in the binomial splitting
procedure performed during compartment fragmentation. As density fluctuations are
persevered, the above-average density fluctuations give rise to larger aggregates. In
turn, larger aggregates give rise to larger density fluctuations. This sets the basis
of a feedback loop. The feedback loop is counteracted by compartment fusion. The
combination of compartment fusion and fragmentation gives rise to a steady-state
configuration of the compartmentalised system.

facilitate the formation of large aggregates, as illustrated in Fig. 5.6 (b). In this section,
we discuss the physical mechanisms through which dynamic compartmentalisation affects
the steady-state aggregate size distribution. We begin by comparing the dynamic and
synchronous compartment ensembles. We then discuss our findings of this chapter also
in light of the effective ensemble dynamics presented in chapter 2.

From the perspective of a single aggregate, there are substantial qualitative differences
in the polymerisation reaction kinetics, depending on whether we consider the dynamic or
synchronous ensemble. Recall that within the synchronous ensemble, the reaction kinetics
are performed in the fully fused compartment configuration. The large compartment is
synchronously fragmented for evaluation and then fused again, meaning that in a mean-
field setting, an individual aggregate can potentially fuse with every other aggregate in
the system and the aggregate mass density is conserved and constant. Conversely, for
compartment fusion and fragmentation, the reaction partners of an individual aggregate
are restricted to those within the same compartment. Moreover, as previously demon-
strated in section 5.4.1, the steady fusion and fragmentation result in fluctuations in the
total aggregate density, which affect the aggregate size distribution within each compart-
ment. Specifically, compartments with higher-than-average density shift the aggregation
dynamics towards the formation of larger aggregates due to an increased collision rate
µ̃p. On the other hand, compartments with lower-than-average density tend to suppress
the formation of larger aggregates. We thus anticipate altered steady state aggregate size
distributions if pdy(ρ) and psy(ρ) differ. We thus find that the density fluctuations have
direct feedback on the aggregate size distribution.

Conversely, the aggregate size distribution within a compartment also directly impacts
the statistics of density fluctuations. This is due to the binomial splitting process that
occurs during fragmentation, which involves the random assignment of each aggregate
to one of two daughter compartments. Larger aggregates contribute more mass to a
daughter compartment, leading to larger density fluctuations between the two daughter
compartments.

We find that this gives rise to a feedback mechanism. Larger aggregate sizes give rise
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to larger density fluctuations and larger density fluctuations facilitate the formation of
larger aggregates. This feedback-loop is illustrated in Fig. 5.7. Note, that this heuris-
tic is similar to the demonic scheme introduced in section 4.3.2, compare in particular
with Fig. 4.1 and Fig. 4.6. There, we have also argued that density fluctuations po-
tentially add up in the sequential fragmentation protocol. Recalling on the findings in
chapter 4 further argues that the finding of facilitation of the formation of large aggregates
is not a universal feature for reversible polymerisation systems subjected to dynamic com-
partmentalisation. In section 4.6.1, we proved that we expect no effect if the reversible
polymerisation dynamics fulfils detailed balance. Furthermore, we suggested in Fig. 4.13,
that the dynamic compartmentalisation further amplifies facilitation or suppression of
large aggregate formation if detailed balance is broken. For further corroboration of the
findings of the parameter scan in (αa, αf), we thus need additional thermodynamic insight
into how breaking detailed balance is amplified by compartment dynamics. While a mi-
croscopic approach can provide further insight into the thermodynamics of the system, a
qualitative approach similar to the effective ensemble dynamics in section 2.5, where it
described the emergence of a quasi-particle, may help to understand the power-law decay
in pdy(ρ).

In Fig. 5.2 (a), we observed that the mode of the distribution pdy(ρ) is shifted towards
the mean of ⟨ρ⟩dy compared to psy(ρ). This aligns with the phenomenology of the quasi-
particle described in section 2.5. However, we also find that the steady-state distribution
of pdy(ρ) is heavily skewed and exhibits a power-law decay, which is at odds with the
characteristics of the collective degree of freedom discussed in section 2.5. To better
understand this discrepancy, it is useful to emphasise the differences with the dynamics
in chapter 2 and re-examine the approximations made in the derivation of the localised
collective ensemble state.

As previously mentioned in section 1.3, we interpret the dynamics in chapter 2 as an
open system, while we consider the dynamics in this chapter as a closed system. This
produces fundamentally different mechanisms for inducing fluctuations between the com-
partments. In an open system, fluctuations arise due to contact with an external reservoir,
for instance, in the form of continual binding and unbinding of molecules to organelle com-
partments. On the other hand, in a closed system, fluctuations are purely a consequence
of compartment fragmentation. Note that the fusion rate and the fragmentation rates
are of the same order of magnitude for a system that exhibits a steady compartment size
distribution under steady compartment fusion and fragmentation dynamics. This implies
that compartment fusion cannot overpower the noise generated by fragmentation if the
compartment size distribution is fixed.

We emphasise that for closed systems with mass conservation, the multiplicative noise
contribution of the compartment fragmentation noise cannot be neglected, as the density
fluctuations are not dominated by contact with an external reservoir. In fact, the mul-
tiplicative noise due to fragmentation is closely linked to the feedback-loop mechanism
motivated in Fig. 5.7. In section 2.4.3, we have derived the multiplicative character of the
fragmentation noise. Here, we refine the approximation of the fragmentation noise in the
context of a closed system. While we have suggested a contribution of the fragmentation
noise to every species in c⃗ in Eq. (2.51), we here want to study density fluctuations in p(ρ).
For this, we marginalise the over s⃗ to arrive to an effective one-dimensional dynamics in
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ρi. To this end, we summarise the fragmentation noise to

ξ̄frag(t) ≈
µ

⟨v′⟩
π

8

(∑
s

sfi(s, t)
)
ξ0(t), (5.19)

where ⟨ξ0(t)⟩ = and ⟨ξ0(t)ξ0(t′)⟩ = δ(t − t′) is uncorrelated white Gaussian noise. We
observe a direct correlation between the intensity of noise and the size distribution fi(s, t),
which in turn depends on the density ρi. This alters the functional dependence of the
fragmentation noise ξ̄frag(t) on ρi. Notably, this multiplicative noise induces a skew in p(ρ).
To accurately determine the functional noise, we need to track how the size distribution
depends on the density and so is modulated by the aggregation parameter λp. This
necessitates solving the reversible polymerization dynamics analytically in the absence of
dynamic compartmentalization, which presents its own challenges.

This suggests that deriving effective ensemble dynamics, in analogy to the effective
ensemble kinetics presented in section 2.4 in Eq. (2.55), could be a potential way to
approximate the power laws in pdy(ρ). However, Eq. (2.55) does not account for mass
conservation, which is a defining characteristic of closed systems. It is important to
carefully evaluate the extent to which mass conservation is necessary for the power law
of pdy(ρ) in future research. We present the explanation of the algebraic tails of pdy(ρ) as
an open question and consider next in section 5.4.3 how the system changes under system
size scaling given the observed the power law decay in pdy(ρ) .

5.4.3. System size scaling shows characteristics of gelation
In section 5.4.1, we have observed that a power-law decay in the statistics of the density
fluctuations pdy(ρ) arises due to compartment fusion and fragmentation. While, we dis-
cussed in section 5.4.2.2 the physical mechanism underlying the power-law decay in pdy(ρ),
in this section we investigate the phenomenological consequences of this decay. For this,
we study how a system size scaling affects the density fluctuation statistics pdy(ρ) and the
steady state of the aggregate size distribution fdy(s, t).

We begin by considering a system size scaling, whereby we increase the number of
compartments N but keep the total aggregate mass N p fixed. Consequently, the aver-
age density ⟨ρ⟩ decreases as the number of compartments grows and, as investigated in
Eq. (5.19), the noise contribution of the fragmentation noise increases. We investigate
this scaling through numerical simulations, using the same simulation parameters as in
Fig. 5.3 (a,b), with a total aggregate mass of N p = 5 × 103, an aggregation parameter
λ = 1, and the polymerisation dynamics µ̃ = 5 × 103 times faster than the fusion and
fragmentation of compartments. Fig. 5.8 (a) reveals an increase in the abundance of large
aggregates and a decrease in the abundance of small aggregates, while the statistics of
the density fluctuations pdy(ρ) in Fig. 5.8 (b) shows a power-law decay with a decreasing
exponent for an increasing number of compartments N . This suggests that the exponent
in pdy(ρ) is a function of the average density ⟨ρ⟩ and consequently the strength of noise
in the system.

We next investigate how pdy(ρ) and fdy(s, t) change as the number of compartments N
and the total aggregate mass N p increase, while keeping the average density ⟨ρ⟩ fixed. As
Eq. (2.55) is derived in the continuum limit of infinitely many compartments, the exponent
of the power-law decay in pdy(ρ) should not be affected by this system size scaling. To
numerically test this, we consider the specific kernel choices (αa, αf) = (0.9,−0.9) for
the polymerisation dynamics, with ⟨ρ⟩ = 200, λp = 1, and µ̃ = 8 × 104. The results,
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Fig. 5.8.: Increasing the number of compartments facilitates the formation of large
aggregates. Simulations analogous to Fig. 5.1 with identical system parameters are
performed. The system is scaled by keeping the total aggregate mass fixed, while
increasing the number of compartments N . The aggregate size is in multiples of
the monomeric building block. ‘c-eCDF’ stands for the complementary empirical
cumulative distribution function. (a) We find that the abundance of large aggregates
is increased as the number of compartments is increased. The inset shows that the
abundance of small aggregates is reduced as the number of compartments is increased.
(b) The density fluctuations show different power-law decay exponents. The decay
component decreases as the number of compartments increases.

shown in Fig. 5.9 (a), demonstrate that the power-law exponent of the decay in pdy(ρ)
is indeed unaffected by this system size scaling. The range over which the power-law
decay is observable increases with the system size. To quantify the effect of this system
size scaling on the abundance of large aggregates in fdy(s, t), we calculate the variance
Var[fdy(s, t)] = σ2

dy. This is shown in Fig. 5.9 (b), where it is evident that the variance
increases with the system size. In contrast, the aggregate size distribution in the static
ensemble, which is defined in section 5.3, does not show this dependence on system size,
with the variance remaining fixed. We speculate that the increase in the variance with
system size is a consequence of the power-law decay in pdy(ρ), although this hypothesis
still demands analytical confirmation.

In section 5.2.2, we elaborated on how the absence of diverging moments Sn is a defin-
ing characteristic of reversible polymerisation kinetics in the strong fragmentation limit.
However, here we find that the variance of the distribution increases with system size,
suggesting the diverging of moments. We observe a statistical property of the aggregate
size distribution which is the defining property of gelation. It occurrs in a region of the
model space (αa, αf) where gelation is formally prohibited. This position in the model
space is determined by the physical mechanisms underlying the aggregation and fragmen-
tation dynamics of the reversible polymerisation kinetics. To move in the model space
(αa, αf) implies that the physics of the aggregation-fragmentation dynamics are altered.
For molecular polymerisation, such a modification demands strong manipulations of the
system and is not plausible to occur in a biological context to control the emergence of
gels.

Yet, here we observe that by subjecting reversible polymerisation dynamics to dynamic
compartmentalisation, the statistics of large aggregates can be significantly altered, dis-
playing gelation-like characteristics. Moreover, the extreme value statistics of finding large
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Fig. 5.9.: Increasing the system size while keeping ⟨ρ⟩ shows charactersitics of gela-
tion Simulations analogous to Fig. 5.1 are performed. We consider the specific ker-
nel choices (αa, αf) = (0.9,−0.9) for the polymerisation dynamics, with ⟨ρ⟩ = 200,
λp = 1, and µ̃ = 8 × 104. ‘c-eCDF’ stands for the complementary empirical cumu-
lative distribution function. (a) We find no change in the power-law exponent when
analysing the tail statistics of the density fluctuations. (b) We analyse moments of
the aggregate size distribution f(s, t) and compare the dynamics and static ensem-
ble configurations in steady state. Dotted lines are visually fitted trend lines. The
variance ⟨Var[f(s, t)]⟩t ≡ σ2 increases with system size, which hints at diverging mo-
ments of the distribution. Notably, the Carr-DaCosta criterion states the absence of
diverging moments in a strong fragmentation limit. We find here, that the apparent
diverging of moments are caused by compartment dynamics. We refer to this as
multi-scale gelation.

aggregates can be modified in a manner that cannot be replicated by simply altering the
aggregation parameter λp. To substantiate our assertion of multi-scale induced gelation,
further numerical simulations and an analytical theory are necessary. We next discuss
our findings in the context of innate immune signalling.

5.5. Application to the cellular immune response to
RNA-virus infections

While we have investigated how dynamic compartmentalisation can qualitatively alter
the aggregate size distribution of reversible polymerisation dynamics, in this section we
apply our findings in the context of cellular immune responses to RNA-virus infections.
For this, we will first review on the biology of cellular inflammation responses to virus
infection. To this end, we in particular focus on the MAVS-signalling pathway, which
we have briefly introduced in section 3.9. We then apply our qualitative findings in the
context of this signalling pathway in section 5.5.2.

5.5.1. Innate immune signalling
In vertebrates, the immune system is divided into the innate immune system and the
adaptive immune system [240]. While the adaptive immune system can adapt and improve
its response through training, the innate immune system is non-specific and responds to
general characteristics of pathogens, providing the first line of defence against them. The
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innate and adaptive immune systems are closely interconnected, with the proper function
of the innate immune system being necessary for the adequate activation of the adaptive
immune system. In the following, we will focus exclusively on the innate immune system.

The innate immune system employs a variety of cellular and multi-cellular mechanisms
to prevent the infection and spread of pathogens in vertebrates. These mechanisms in-
clude the recruitment of immune cells to the site of infection, the activation of the adaptive
immune system through antigen presentation, and the formation of physical and chemical
barriers to block the spread of pathogens [240]. A central aspect of the innate immune
response is the activation of inflammatory programs within cells. These programs are trig-
gered when pattern recognition receptors (PRRs) detect molecules that are widely shared
by pathogens but distinguishable from host bio-molecules [187]. There are various types
of pattern recognition receptors that have specialized in detecting different pathogens. In
this section, we will particularly focus on viral defence mechanisms [241]. For innate viral
detection, toll-like receptors, which detect viral transmembrane proteins, and Rig-I-like
receptors, which detect viral RNA in the cytosol, are particularly important [187]. No-
tably, these receptors are expressed in most cells, rather than being specific to certain cell
types. Upon the detection of a virus, a type-1 interferon (IFN1) response is activated,
leading to the inhibition of RNA translation, the release of cytokines that attract T-cells,
and ultimately the induction of apoptosis.

Examples for Rig-I-like receptors are the proteins Rig-I and MDA-5 [187]. Both proteins
detect different features of viral RNA but share the same pathway once activated by
the binding to viral RNA. Upon binding to viral RNA, the activated receptors expose
CARD domains, which allow for interaction with the CARD domains of the mitochondrial
anti-viral signalling protein (MAVS) [189, 242, 243]. MAVS is anchored to the outer
membrane of mitochondria, and the increased concentration of CARD domains leads to
the accumulation of MAVS proteins to form large clusters, which function as signalling
platforms for the formation of the IKK complex [187, 189, 244, 245]. This complex,
in turn, synthesizes the nuclear transcription factor NF-κB, which activates the cellular
inflammation response. While the structural basis for how MAVS catalyses the formation
of the IKK complex has not yet been resolved, it has been experimentally demonstrated
that the formation of large MAVS protein oligomers is necessary for the IKK complex
[189, 242, 243]. This pathway is illustrated in Fig. 5.10.

The formation of MAVS complexes has been extensively studied through structural
biology techniques [191, 192]. It has been found that MAVS oligomers are stable in non-
reducing environments [189], suggesting that their oligomerisation may be mediated by
the formation of disulphide bridges. Despite being referred to as prion-like protein ag-
gregates, X-Ray tomography measurements have shown that there are no conformational
changes in the protein structure. In particular, no formation of beta-sheets in MAVS
aggregates has been detected [191, 192]. This argues against a prion-like mechanism and
instead suggests that MAVS undergoes reversible polymerisation processes on the outer
mitochondrial membrane. Recall for this, that the cytosol is a reducing environment.
From a thermodynamic perspective, the stabilisation of MAVS aggregates through disul-
phide bridge formation hints towards a deviation from detailed balance conditions in the
polymerisation process of MAVS proteins. Yet, the details of the MAVS aggregation
dynamics have to be thoroughly investigated in future research.

It has been observed that the oligomerisation of MAVS can be disrupted by interfering
with the localisation of MAVS to the mitochondrial outer membrane. The NS3/4A pro-
tease expressed by Hepatitis C virus cleaves the transmembrane domain of MAVS, leading
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Fig. 5.10.: Schematic of signalling pathway demonstrating how inflammation re-
sponses are activated following the detection of viral RNA Figure is adapted
from [242]. Rig-I-like receptors are activated following the detection of viral RNA
and interact via CARD domains with MAVS proteins. MAVS proteins form ag-
gregation on the mitochondrial membrane, h on which the NF-κB synthesising
IKK-complex forms. The formation of MAVS is pivotal for the activation of inflam-
mation responses. Hepatitis C viruses produce the NS3/A4 protease which cleaves
MAVS from the membrane. MAVS forms smaller aggregates in the cytosol, which
are insufficient for activating an inflammation response.

to translocation of MAVS into the cytosol [242, 243]. While MAVS still forms clusters
in the cytosol, the size distribution is shifted to smaller aggregates, which impairs an
efficient immune response [242] . Similarly, in vivo experiments have demonstrated that
the inhibition of mitochondrial fusion effectively prevents the formation of large MAVS
aggregates and subsequently impedes the induction of inflammatory responses [68].

Next, we elucidate the effects of organelle dynamics on the formation of large protein
aggregates. As we are ignorant about the actual reaction kinetics of MAVS activation, we
take the MAVS-signalling pathway as an inspiration and do not claim that we adequately
modelled the MAVS aggregation dynamics in section 5.4.

5.5.2. Discussion on how multi-scale gelation facilitates cellular
anti-viral responses

We now proceed to interpret our findings regarding the dynamic compartmentalisation
of reversible polymerisation dynamics in the context of cellular immune signalling, with
a particular focus on the Rig-I pathway and the aggregation dynamics of MAVS proteins
on the mitochondrial outer membrane. In section 5.5.1, we have discussed the biology of
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Fig. 5.11.: Inhibition of mitochondrial fusion prevents MAVS mediated ant-viral
responses (a) is adapted from Fig. 11 D and (b) is adapted from Fig. 10 B from
[68]. (a) IPS-1-HeLa cells transfected with negative control (N.C.) or hMFN1-
targeted siRNA2 for 48 h. Cells were infected with SeV for 12 h and stained with
anti-FLAG antibody (dyes MAVS) (green) , MitoTracker (Mitochondria) (red), and
DAPI (blue). (b) Cells transfected with siRNA were infected with Newcastle disease
virus (NDV) for 12 h, and endogenous IFNB1 mRNA expression was quantified by
qRT-PCR. Data represent means ± s.d. (n=3).

innate immune signalling in response to RNA-virus infections, and have established that
the formation of large MAVS aggregates is pivotal for the cellular inflammation response
to detect viral RNA in the cytoplasm.

The MAVS aggregation dynamics must fulfil two biological tasks: in the absence of
viral RNA, the formation of large aggregates needs to be inhibited, while the increase of a
small number of activated Rig-I homo-dimer complexes must be sufficient to activate the
formation of large aggregates. In this section, we show how our findings from section 5.4
can further our understanding of immune response signalling.

The major obstacle in directly applying our findings to the Rig-I innate immune sig-
nalling pathway is our lack of knowledge concerning the details of polymerisation kinetics
of MAVS aggregation. Experimentally measuring the individual kinetic rates of MAVS
aggregation is unfeasible, as the reaction kinetics cannot be live-tracked by in vivo mi-
croscopy. Additionally, deriving the MAVS aggregation kinetics from structural biology is
also not possible. Further insight is also needed concerning the details of MAVS aggregate
stabilisation mechanisms, which may be due to disulphide bridge formation and the for-
mation of the IKK-complex. Furthermore, the details of how RIG-I facilitates aggregate
formation have yet to be conclusively investigated. Consequently, we can only speculate
as to whether our findings are plausible. We consider it plausible that MAVS performs
reversible polymerisation dynamics, and that the aggregation parameters (αa, αf) are in
the region of the model space where we expect facilitation of large aggregate formation
by organelle fusion and fragmentation.

The over-expression of MAVS has been observed to induce the formation of MAVS ag-
gregates sufficient for an inflammation response in the absence of activated RIG-I homo-
dimers [245]. Moreover, in an in-vitro setup, MAVS aggregates have been demonstrated
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to induce further aggregation of MAVS in the absence of RIG-I and mitochondrial mem-
branes [189]. Consequently, it can be concluded that MAVS aggregate formation does
not require activated RIG-I homo-dimers as a nucleation centre. Rather, the dynamics
appear to hint at the formation of large MAVS aggregates based on the density, which is
in agreement with the framework of reversible polymerisation. Upon virus detection, the
additional CARD domains of the activated RIG-I complexes could lead to an increase in
the density of CARD domains, resulting in the formation of large aggregates. According
to the framework of reversible polymerisation dynamics, this translates to an effective
increase of the aggregation parameter λp.

In Fig. 5.2, we have demonstrated that compartment fusion and fragmentation facili-
tates the formation of large aggregates on a subset of compartments. This in agreement
with the experimental observation that large MAVS aggregates only form on a subset of
organelles. In the literature, it speculated, that mitochondrial fusion and fission dynam-
ics grant the exchange of MAVS among the organelles, which results in the accumulation
of MAVS on some organelles [68]. We formalised this heuristic in Fig. 5.5, where we
demonstrated that organelle dynamics strongly facilitate the formation of large aggre-
gates. This is further corroborated by the finding that inhibiting mitochondrial fusion
impedes sufficient inflammation responses to viral infections Fig. 5.11.

We compared the differences between static and dynamic ensembles, which were intro-
duced in section 5.3. Note that fully fused mitochondrial network is deemed to be an
unphysiological state. Yet, such physiological perturbations that lead to such a configura-
tion can be achieved by cleaving MAVS proteins from the mitochondrial outer membrane,
as it happens after infection with Hepatitis C virus due to the NS3/4A protease. As
demonstrated by [242], even after cleavage, MAVS can still form aggregates, albeit with
an altered size distribution. This could either be due to a reduced density in the cytosol
or suggest the importance of organelle dynamics in creating density fluctuations.

Our findings in Fig. 5.4 suggest that density fluctuation stabilises large aggregates.
This might facilitate the function of MAVS aggregates as a signalling platform and lead
to an increased formation of IKK complexes, even if the marginal aggregate size is hardly
increased by organelle dynamics. Note that this stabilisation of aggregates due to den-
sity fluctuations is an effect that holds both for a fully fused and a fully fragmented
compartment configuration.

To further investigate whether the mechanism of creating and preserving density fluctu-
ations plays a central role in the formation of MAVS aggregates, additional experimental
research is needed. Experimental studies focusing on the structural properties of MAVS
can grant further insight into the dynamics of MAVS aggregations and its activation by
Rig-I-like receptors, compare for example with [191, 192]. Reconciling with our theory,
this can provide estimates of whether the expected effects of organelle fusion and frag-
mentation are of strong qualitative or just marginal effects. Alternatively, we suggest
perturbations of the mitochondrial dynamics to assess our theory directly in experimen-
tal setups. Here, we in particular suggest investigating fused mitochondrial configurations
and additional variation of MAVS concentration by setting it under the control of tunable
transcription regulators.

5.6. Discussion
In this chapter, we have demonstrated how compartment dynamics can lead to extreme
fluctuations in closed compartmentalised systems. We considered reversible polymerisa-
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tion kinetics contained within compartments subject to stochastic fusion and fragmenta-
tion dynamics. In chapter 4, we demonstrated that breaking detailed balance on the level
of the reversible polymerisation dynamics, in general, implies changed system’s statistics
when additionally subjecting the system to compartment dynamics. However, the effects
were marginal in Fig. 4.13 as we studied small compartmentalised systems subjected to
sequential fragmentation protocols. In this section, we examined systems of several orders
of magnitude larger, subject to both fusion and fragmentation dynamics. Our findings
showed that these dynamics can significantly increase the abundance of aggregates larger
than the mean aggregate size. Our numerical results suggest altered extreme value statis-
tics and power-law scaling of the density fluctuations. We further suggested that our
findings could help elucidate the functional role of mitochondrial dynamics in cellular
anti-viral immune responses.

In this chapter, we build upon the theoretical investigation of chapter 4 and pursued
a phenomenological approach. We sought to identify whether the effect of compart-
ment fusion and fragmentation dynamics on the enclosed many-body dynamics in closed
compartmentalised systems vanishes or is strengthened. Our large-scale full stochastic
numerical simulations suggest that compartment dynamics can have a substantial effect
on the occurrence of very large aggregates, as demonstrated in cection 5.4.1. Specifi-
cally, we focused on a qualitative investigation of specified reaction kinetics of a reversible
polymerisation. Having chosen the kernel dynamics such that they fulfil the strong frag-
mentation criterion of Carr and DaCosta [237], we expected the aggregate size distribution
to exhibit an exponential tail. Yet, we found that steady compartment fusion and frag-
mentation give rise to an increased abundance of large aggregates, a power-law decay of
large density fluctuations, and increased stability of large aggregates. In section 5.4.3, we
observed increasing moments of the size distribution f(s, t) with increasing system size,
which hints towards diverging moments of the size distribution. This is a sign of gelation
formally prohibited by the strong fragmentation criterion in a mean-field description. We
conclude that this effect is due to a multi-scale organisation of the dynamics. We hence
refer to this observation as multi-scale gelation. However, as we have yet to provide ana-
lytical confirmation of our numerical findings, the multi-scale gelation is only of suggestive
character. We plan to consolidate on our findings by conducting larger simulations and
progressing with our analytical theories.

In section 5.4.2, we investigated whether our qualitative findings would generally hold
for reversible polymerisation dynamics. We found that, when compared with reversible
polymerisation dynamics that conserve detailed balance, the facilitation of the formation
of large aggregates is specific to kernel choices where both aggregation of large aggregates
and the fragmentation of large aggregates are suppressed. In this section, we also discussed
a possible mechanism to explain the power-law decay of the density fluctuations. We
suggest a feedback-loop mechanism, as illustrated in Fig. 5.7. We propose that an effective
ensemble description analogous to Eq. (2.55) could be useful in providing an analytical
corroboration of the observed power-law dynamics, thus posing the derivation of the
power-law as an open question.

The mechanism of creating and preserving density fluctuations through compartment
fusion and fragmentation dynamics has been found to be a fruitful approach to alter
the statistics of closed compartmentalised systems. We have observed strong qualitative
effects and, to assess a notion of work performed on the system, it may be beneficial to
reconcile our theoretical findings from chapter 4 with this approach. A combined approach
of detailed work contributions and phenomenology-driven analytical investigation could
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be particularly insightful for further elucidating the physics of the power-law decay in the
density fluctuations.

In section 5.5, we then discussed possible implications of our findings in the context of
the cellular immune responses to RNA-virus infections via the signalling pathway around
the MAVS proteins. Unlike the apoptotic decision-making outlined in chapter 3, MAVS
proteins remain anchored to the mitochondrial membrane and there is no evidence of
bi-stability. On the contrary, MAVS forms large aggregates in response to an RNA-virus
infection. The mechanisms of MAVS aggregation are still under active investigation, yet it
has been demonstrated that mitochondrial fusion dynamics are essential for the formation
of such aggregates. Our numerical investigations presented in Fig. 5.5 corroborate this
finding. Additionally, we suggest that the large aggregates are more stable due to the
mechanism of preserved density fluctuations, as illustrated in Fig. 5.4.

Note, however, that we do not model the dynamics of the MAVS signalling pathway,
but that we investigate on the qualitative effects of mitochondrial fusion and fragmen-
tation dynamics on reversible polymerisation. We have not considered physiologically
plausible parameter choices, as this would demand an increase in system size and further
optimisation of the simulations. Additionally, there is still a lack of knowledge about
the detailed aggregation dynamics of MAVS. Therefore, our numerical investigations are
mostly of inspirational character. We suggest further experiments to investigate the role
of mitochondrial dynamics on MAVS aggregate formation, such as altering the rates of
mitochondrial fusion and fragmentation dynamics in combination with changing the ex-
pression level of MAVS. This could help to further elucidate the biological function of
mitochondrial fusion and fragmentation dynamics.

We have restricted our numerical investigations to polymerisation kinetics that fulfil the
strong fragmentation criterion by Carr and DaCosta [237]. This restriction was largely due
to theoretical considerations; however, the MAVS aggregation dynamics could also occur
under the weak fragmentation regime. This suggests further investigation, particularly in
relation to the stability of gels.

Our findings have implications beyond cellular immune responses and organelle-associated
signalling pathways, extending to the realms of the origin of life, where the formation of
large biopolymers is of pivotal interest [246, 247]. We found that compartment fusion
and fragmentation dynamics can fundamentally alter the extreme values statistics and
the observed density fluctuations in the systems. This has been extensively studied in the
past in connection with aerosol fusion and fragmentation in clouds [248–250]. Being sub-
ject to temperature gradients and steady forces, analysing aerosol systems may provide
an interesting setup to study the formation and stabilisation of bio-molecules both in the
context of the origin of life as well as in technical applications.
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In this thesis, we have explored the dynamics of compartmentalised stochastic systems as
the epitome of non-equilibrium multi-scale systems. In particular, we have investigated
how active compartment dynamics affect the fluctuations in the system, with a particular
focus on the effects of compartment fusion and fragmentation dynamics. We have distin-
guished between open and closed compartmentalised systems, and have demonstrated that
they exhibit qualitatively different dynamic behaviour. In the case of open systems, we
found that compartment fusion and fragmentation counteract dispersive dynamics, which
are induced by contact with an external reservoir. In closed systems, on the other hand,
we determined that compartment fusion and fragmentation create and preserve density
fluctuations. Consequently, we consider compartment fusion and fragmentation to be a
key mechanism for controlling fluctuations in compartmentalised stochastic systems.

We approached the characterisation of the dynamics of compartmentalised stochastic
systems from four perspectives, dedicating chapters to the concepts of emergence, re-
sponse to perturbations, work and entropy, and giant fluctuations. This demonstrated
the richness of the dynamic behaviour of dynamically compartmentalised stochastic sys-
tems, which is distinct from that of statically compartmentalised systems that show no
compartment dynamics. We have argued the biological relevance of our results by ap-
plying our analytical findings in the context of organelle-associated signalling pathways,
which are a prime example of compartmentalized stochastic systems. Studying the ex-
ample of cell death, we demonstrated how mitochondrial dynamics give rise to a kinetic
low-pass filter, which allows cells to suppress responses to weak, transient stress stimuli
while facilitating the response to persistent stress perturbation. Focusing on extremal
fluctuations, we showed in the context of cellular innate immune responses to RNA-virus
infections that mitochondrial dynamics are central for efficient immune responses.

With the findings in this thesis, we demonstrate the central importance of considering
the multi-scale organisation of biological systems for gaining a mechanistic understand-
ing of biological function. Specifically, we suggest that fundamental cell fate decisions
are not controlled on a single scale of spatial organisation, but that cells rely on the in-
terplay between dynamics on different scales of spatial organisation. To investigate the
biological function of the multi-scale organisation of living matter, we suggest that com-
bined approaches of theoretical analysis and experimental investigations can advance our
understanding of living matter and identify new therapeutic strategies.

The findings in this thesis motivate further research in both the domain of physics,
regarding the non-equilibrium statistical physics of compartmentalised systems, and in
the domain of biology, regarding the system’s biology of cell fate decisions as multi-scale
processes. Next, we briefly summarise the main findings of this thesis, discussing general
insights we gained on the dynamics of compartmentalised stochastic systems. After this,
we argue about potential future research and the biological and technical relevance of our
findings.
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6.1. Discussion of the main findings of this thesis

6.1.1. Deriving effective dynamics of open compartmentalised
systems

In chapter 2, we investigated the emergence of collective dynamics in open compartmen-
talised systems induced by compartment dynamics, which we formally defined within
the framework of Master Equations. We derived effective dynamics for how the sys-
tem temporally evolves and introduced a flux approximation for compartment fusion and
fragmentation, which permits analytical tractability. This enables us to draw compar-
isons to other physical systems, and we observe an analogy to self-gravitating systems
and a structural equivalence of the effective dynamics to McKean-Vlasov equations. We
found that the combined action of compartment fusion and fragmentation gives rise to
the emergence of a collective degree of freedom. We discussed that the collective degree
of freedom is reminiscent of a quasi-particle. We derived effective equations of motion for
the quasi-particle and studied its kinetic properties.

The benefit of analytical investigations is that they allow us to draw general insights
into dynamics of systems without the need to solve the full dynamics explicitly or by
large-scale numerical simulations. In chapter 3 we exemplified this, as we investigated the
effective dynamics in the context of apoptotic decision-making. On a conceptual level,
we found that compartment fusion and fragmentation counteract dispersive spread. In
this context, it might be instructive to further discuss the non-equilibrium character of
the collective ensemble dynamics. In particular, in light of our analysis in chapter 4, it is
instructive to evaluate the work done by compartmental fusion and fragmentation and to
assess the entropy production of compartmental dynamics.

Our analysis offers new perspectives on the research of resetting random walks. This
connection can be best illustrated by reconsidering the one-dimensional simplification
studied in section 2.4.1. In this case, the position of the random resetting is a function of
the realisation of the system, as opposed to being externally implemented [251–253]. Anal-
ogous to our findings, resetting random walks show the phenomenology of approaching
steady-state distributions with bound variance [251], as resetting counteracts the disper-
sive spread. As presented in Fig. 2.4, we have found an analytical approximation of the
steady state distribution for our variation of random walks, which can qualitatively predict
the shape of the distribution, give quantitative estimates for the variance and correctly
predict the tail statistics, which is of central interest in the research of resetting random
walks [251, 252]. More recently, interest has grown in the stochastic thermodynamics of
resetting random walkers [253]; our model offers new opportunities for investigating this
question, with the potential of finding general insight for the non-equilibrium thermody-
namics of the resetting random walkers.

Having considered the dynamics of compartmentalised systems from a conceptual and
abstract perspective, we may also discuss the applicability of our findings in a wider
context. In chapter 2, we have provided a general framework and introduced an ap-
proximation scheme which allows for straightforward generalisations. We consider this
framework to be useful in scenarios where the random encounter of two agents leads to
a change in their internal states, regardless of whether those agents are compartments,
individuals, or other entities. It is possible to modify the approximation of the fusion flux
to account for modified dynamics, although the bigger challenge may lie in determining
how the internal states of the interacting agents change upon an encounter. This gener-
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alisation is further motivated by the structural equivalence of the effective dynamics of
interacting social wasps [120].

In chapter 2, we gained a physical understanding of the effective ensemble dynamics
by drawing an analogy to the effective two-body interaction potentials. Specifically, we
could assign an equivalent effective interaction potential. This analogy is not only a
theoretical tool but can fundamentally advance our mechanistic understanding of the
dynamics and help us to gain insight into the qualitative dynamics. We, therefore, suggest
that the approximation scheme introduced in this chapter can provide a fruitful approach
to gaining a mechanistic understanding of multi-scale systems. Our theoretical framework
has potential applications in various domains, such as in biological systems at different
spatial scales or in the physics of finance when considering the fusion and splitting of
deposits. Yet, we find that the prime example of compartmentalised stochastic systems is
given by organelle-associated signalling pathways, which are fundamental for the functions
performed by cells. We investigated this application in depth in chapter 3.

6.1.2. Collective response kinetics in the regulation of cell death
In chapter 3, we examined the quasi-particle degree of freedom in the context of the re-
sponse kinetics of organelle-associated signalling pathways, using the example of cell death
decisions. We reviewed the biology of organelle dynamics and signalling pathways, before
presenting an effective model focusing on the regulation of the accumulation dynamics
of Bax to the mitochondrial outer membrane. We demonstrated how mitochondrial dy-
namics gave rise to sigmoidal response kinetics to weak apoptotic stimuli and how this
gave rise to a kinetic low-pass filter which suppressed transient noise fluctuations yet al-
lowed the system to respond to changes in the environment on long timescales. To test
our theoretical predictions experimentally, we explained why our predictions could not be
tested one-to-one and investigated the robustness of our predictions towards non-linear
pre- or post-modifications in the apoptotic signalling pathway. We predicted a transition
from sigmoidal to exponential-like responses with increasing apoptotic stimulus strength,
which is characteristic of the quasi-particle kinetics we derived in chapter 2. Evidence of
this kinetic behaviour was found in experiments conducted by our experimental collabora-
tors. Finally, we discussed the plausibility of our findings and their potential therapeutic
implications and considered the direct translatability of our findings to other organelle-
associated signalling pathways.

In section 3.8, we discussed the biological plausibility of our findings with regard to
the potential separation of timescales. We emphasised that we expect different ensemble
statistics for the organelles with and without fusion and fragmentation dynamics. This is
a qualitative, static result that holds regardless of the specific timescales of the molecular
reaction kinetics and of the organelle dynamics. Yet, we highlighted that a general dis-
cussion of the timescales of the chemical reaction kinetics and the organelle dynamics is
necessary in order to assess the impact on the dynamic behaviour of the system. Depend-
ing on the specific timescales and the research question at hand, the organelle dynamics
may display negligible. This, however, can only be asses after the dynamics of the system
including the organelle dynamics has been carefully discussed.

We have discussed the extent to which the findings in the context of apoptotic signalling
can be generalised to other signalling pathways in section 3.9. In particular, we have
assessed that the metabolic regulation of the aerobic metabolism [64] may be strongly
affected by mitochondrial fusion and fragmentation dynamics, leading to a reduction in
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variance and potentially a sigmoidal response dynamics - analogous to the dynamics we
demonstrate for the regulation of apoptosis. We suggest that a further investigation
of the lysosomal dynamics for mTorc-1 signalling [66] could be a useful experimental
endeavour. Moreover, for application to endosomal maturation [186], our theoretical
framework should be extended to include additional synthesis and degradation dynamics.
We suggest that our theory developed in chapter 2 as suited, yet the emergence of a
‘quasi-particles’ and their kinetics need to be carefully reassessed.

In our modelling approach, we have neglected explicit feedback between the state of
the signalling pathway and the organelle dynamics. However, our theoretical approach
in Section 2.4.2.1 generally allows for the extension to consider this feedback. To do
so, the effective equations motion in Eq. 2.72 need to be modified. This analysis will
follow an analogous structure as presented in this thesis. We anticipate that explicit
feedback between the state of the signalling pathway and the organelle dynamics allows
for additional intricate dynamic behaviour. Note, that we considered implicit feedback on
the compartment dynamics when we studied absorbing boundary conditions in Fig. 3.11,
see also Appendix A.5.

While we have studied the sigmoidal response dynamics within the context of an effec-
tive bistable potential, we expect that our findings are also applicable to the transition
between states in effective multi-stable potentials. We identified that the underlying
mechanism of the sigmoidal response dynamics is the initial suppression of the escape
dynamics, followed by the facilitation of the collective transitions, as the mean of the
ensemble crosses the potential barrier. This mechanism also holds for multi-stable po-
tentials. Throughout our analysis, we refrained from an exploration of the effects of curl
fluxes on the dynamics of the signalling pathway. We anticipate that, while our analysis
is also likely to be valid in the presence of stable fixed points, qualitatively new dynam-
ics could arise if the escape from stable limit cycles or strange attractors is considered.
Additionally, the emergence of single degree of freedom should be reconciled, and special
attention should be paid to the correlation between the components of c⃗ in section 2.4.2.4.

In section 3.8.2, we discussed potential therapeutic implications of our findings in the
context of apoptotic decision-making. We highlighted that mitochondrial dynamics can
play a central role in mitigating the side effects of therapies and improving the efficiency of
cancer treatments. Moreover, we proposed that focusing on mitochondrial dynamics may
be an orthogonal approach to more established therapeutic approaches. In broader terms,
we consider the investigation of organelle dynamics to be instructive for future medical
and biological research aimed at uncovering the systems biology of living systems. More
broadly, with our findings, we have emphasised the importance of considering cell fate
decisions as processes that crucially rely on the regulation of dynamics on different spatial
scales of biological organisation.

6.1.3. Thermodynamics of closed compartmentalised systems
In chapter 4, we studied the thermodynamics of closed compartmentalised systems and
how compartment dynamics changed the statistics of the realised system states. Specifi-
cally, we demonstrated that the extend to which compartment dynamics affect the total
entropy of the system depends on the detailed of the enclosed stochastic many-body dy-
namics. To this end, we introduced a simple scheme to assess the work performed by
compartment fusion and fragmentation, and provided a proof that the total entropy of
the ideal gas is not affected by dynamic compartmentalisation. We generalised this proof
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to arbitrary discrete stochastic many-body dynamics using the framework of the Second
quantisation. This enabled us to predict the changes in total entropy of the system by
algebraically computing a commutator relation, without the need for explicit solutions or
extensive simulations. To illustrate our findings, we considered quantised ideal gas models
and reversibly polymerisation dynamics and corroborated our theoretical predictions with
full stochastic simulations. We investigated under which conditions compartment dynam-
ics affected the statistics of realised system states. In this context, we demonstrated how
specific fragmentation protocols preform implicit measurements on the system. More-
over, we showed that compartment dynamics generally affect the statistics of realised
microstates of the system when the stochastic many-body dynamics show relations that
violated detailed balance. This yields the possibility to facilitate or suppress particu-
lar particle states in the stochastic many-body dynamics by altering the compartment
dynamics.

With the analysis in this chapter, we just glimpsed a peak at the non-equilibrium
thermodynamics of closed compartmentalised systems. Focusing on the ideal gas, we
formally presented a generalisation of Gibbs’ paradox, as we introduced the notion of time
by considering multiple compartments. We proofed the entropic neutrality of the ideal
gas under dynamic compartmentalisation by discussing special statistical properties of
the Dirichlet distribution. By this analysis, we strengthened the position of the Dirichlet
distribution as the central distribution by which the stochastic ensemble dynamics of
finite ideal gas systems should be characterised. Recall, that the Maxwell-Boltzmann
distributions is derived as marginal distribution in the continuum limit, see section 4.4.4
and [216].

We demonstrated the Second quantisation as a powerful framework for investigating the
thermodynamics of compartment fusion and fragmentation in general stochastic many-
body dynamics. This framework links a kinetic perspective with the thermodynamics of
compartment fusion and fragmentation. chapter 4.5 outlines a structured approach for
investigating the effects of compartment dynamics, and offers insight into the symmetries
of the stochastic dynamics in phase space and the resulting statistical properties. As an
example, we find that fragmentation of compartments maps between equilibrium solu-
tions. This framework thus enables us to gain insight into the underlying mathematical
regularity of the world.

In section 4.5.2.3, we proposed a commutator relation which quantified the strength of
the perturbation due to compartment fusion and fragmentation. We suggested to interpret
the strength of the perturbation with a notion of work performed on the system, which
requires further corroborative research. Moreover, it is possible to calculate the entropy
production in the framework of Second quantisation [254]. A deeper understanding of the
non-equilibrium thermodynamics of compartmentalised systems can be gained by further
investigating the way in which compartment fusion and fragmentation perform work.

We have demonstrated in section 4.6.3 that compartment dynamics can have an effect
on the statistics or realised system states when the stochastic many-body dynamics are out
of equilibrium due to broken detailed balance relations. An analysis of how compartment
fusion and fragmentation perform work on the system necessitates an understanding of
these non-equilibrium processes on a fundamental level of altered stochastic fluxes in
the phase space dynamics, rather than a phenomenological approach quantifying the
entropy production alone. Consequently, the mechanisms by how compartment fusion
and fragmentation performs work on a system require further investigation. This could
potentially provide new insights into the mechanisms of non-equilibrium thermodynamics.
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Furthermore, we speculate that a feedback between the compartment dynamics and the
state of the enclosed many-body dynamics could introduce additional dynamics. Notably,
this would constitute a full generalisation of Maxwell’s demon.

We want to emphasise that our approach is similar in spirit to the approach of stochastic
thermodynamics but follows formally an orthogonal approach. Stochastic thermodynam-
ics is fundamentally centred around the investigation of canonical systems with a strong
focus on the study the thermodynamics of systems described by Langevin-dynamics. Our
approach of studying the non-equilibrium thermodynamics of closed compartmentalised
systems follows the conceptual ideal of starting from isolated, microcanonical setups and
gradually relaxing on the isolated setup. Moreover, we here find that the formalism
of the Second quantisations is powerful in the sense, as it allows to investigate the full
stochasticity and the many-body dynamics and by this gives a complete insight into how
thermodynamics and the many-body dynamics in the phase-space are interrelated.

In this chapter 4, we considered mostly conceptual aspects concerning the non-equilibrium
thermodynamics of closed compartmentalised systems. We discussed the experimental
verifiability of our predictions and its technical and biological relevance in section 4.7,
where we proposed to investigate them in micro-fluidic high through-put measurements
of the reversible polymerisation dynamics of patchy colloids [218, 219]. We also sug-
gested that our findings have direct implications for experimental setups which are a
direct realisation of sequential fragmentation protocols, such as those used for building
small vesicles filled with active biochemical reaction dynamics, as employed in the con-
text of synthetic cells [222]. Moreover, we speculated that our findings have direct impact
on organelle-associated signalling pathways, if the bio-molecules are anchored to the or-
ganelle membrane. We discussed a potential application of our findings in the context
of the cellular immune response to RNA-virus infections in chapter 5. Here, we focus
on reversible polymerisation dynamics subject to compartment fusion and fragmentation
dynamics in systems several orders of magnitude larger than considered in chapter 4.

6.1.4. Extremal fluctuations and multi-scale gelation
In chapter 5, we considered systems several orders of magnitude larger than in chapter 4
and demonstrated how compartment fusion and fragmentation fortify the effects of aggre-
gation and fragmentation. We provided a brief review of the Smoluchowski aggregation-
fragmentation dynamics, and discussed the concept of gelation and its link to diverging
moments in the aggregate size distributions. Our simulations illustrated how compart-
ment fusion and fragmentation can facilitate the formation of large aggregates and in-
crease the stability of these aggregates, as well as lead to a power-law decay in density
fluctuations. We systematically scanned different aggregation and fragmentation kernels,
characterising a subset of polymerisation dynamics where compartment dynamics facili-
tate the formation of large aggregates. We speculated that this phenomenology was due
to a feedback loop created by the mechanism of creating and preserving density fluctua-
tions by compartment fusion and fragmentation. We further observed that the variance of
the aggregate size distribution increased with system size, suggesting diverging moments
and multi-scale gelation. Finally, we applied our findings to the context of the signalling
pathway causing inflammation responses after the infection of cells with RNA-virus. Our
qualitative findings suggested that mitochondrial fusion and fragmentation dynamics are
pivotal for efficient inflammation responses, as previously observed in experiments.

The investigations undertaken in this chapter were mainly numerical. Our findings,
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therefore, require corroboration by analytical investigations in future research projects.
Notably, the numerical simulations suggest that compartment fusion and fragmentation
dynamics lead to a power-law decay in the density fluctuations. We proposed a mecha-
nism, as discussed in section 5.4.2.2, for how this power-law might arise from a feedback-
loop mechanism. However, this heuristic needs to be verified by analytical calculations.
We anticipate that with this analytical investigation, we can gain a general understanding
of how compartment dynamics affect the correlation statistics between the compartments.
In addition, we speculate on the potential value of a description of effective ensemble dy-
namics, as introduced in chapter 2, and of studying the effects of mass conservation.

Our observation of multi-scale gelation necessitates further consolidation, which can be
accomplished through additional numerical and analytical simulations. We hypothesise
that the emergence of multi-scale gelation is a result of the power-law decay in the density
fluctuations. Consequently, we anticipate that an analytical corroboration of the density
fluctuations will be useful for elucidating the conditions of the aggregation and frag-
mentation kernels of the reversible polymerisation dynamics that give rise to multi-scale
gelation.

In section 5.5, we investigated on the application of our qualitative findings to cellular
immune responses to RNA-virus infections. Importantly, we did not model the immune
response in this chapter, as we did not consider physiologically plausible parameter choices
for the simulations. Nonetheless, we have demonstrated a mechanism showing how com-
partment dynamics can fundamentally affect the abundance of large aggregates. This
leads us to speculate that mitochondrial dynamics may be pivotal for effective innate
immune responses, which has also been observed in experiments [68]. Our findings may
also be relevant in technical applications for the synthesis of protein aggregates, as well
as in the context of the origins of life, where changes in the extreme values statistics of
aggregate occurrence could have a profound impact on the emergence of self-organised
structures [247].

6.2. Outlook and future research perspectives
The central aim of physics is to describe all observable phenomena in the universe by
means of simple laws that explain its mechanisms and functioning. Despite physicists
having striven for this objective for several centuries, we have yet to succeed in uncovering
a unified theory. A major difficulty in this endeavour is the drastic complexity of systems
when the number of constituents is increased. Characterising living matter from the
perspective of physics thus is a challenging endeavour that demands research for more
than a lifetime. Providing only a brief glimpse into the physics of multi-scale fluctuations
in non-equilibrium systems. To this end, we focused on systems comprising stochastic
many-body dynamics nested inside dynamic compartments. We demonstrated that the
dynamic behaviour of these systems is fundamentally dictated by the interaction between
dynamics on different spatial scales. We demonstrated how the paradigmatic example of
a compartmentalised stochastic system can give us first insight into the physics of living
matter. We demonstrated how compartment dynamics can give rise to collective degrees
of freedom, and we studied the thermodynamics of compartmentalised stochastic systems.
We found that the studying of compartmentalised systems necessitates an extension of
our statistical physics methodology and a reconsideration of thermodynamic concepts that
formally strictly separate between dynamics on a microscopic scale and manipulations on
the constraints of systems.
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Focusing on open systems, we proposed a flux approximation which not only allows us
to derive effective dynamics for the system but also allows us to build effective analogues
to the physics of inanimate matter. We linked compartment fusion and fragmentation to
an effective steady attraction between compartments in the concentration phase space.
Although the exact functional form of the effective attraction relies upon perfect mixing
between fusing compartments, we argue that our approximation is more general. We
suggest that deriving effective forces from the interplay between dynamics on different
spatial scales is a powerful methodology for not only analytically treating and gaining
mechanistic insight but for linking the dynamics of hierarchical multi-scale systems with
the physics of inanimate matter.

Complementing to the effective description of multi-scale dynamics by deriving effective
forces, we also followed the approach to elucidate the thermodynamics of compartmen-
talised stochastic systems. Traditionally, thermodynamic operations, which are the con-
straints on a sub-system, and thermodynamic processes, which describe the subsequent
adaption of the system, have been distinguished. However, with the multi-scale organisa-
tion of compartmentalised stochastic systems, the combined treatment of thermodynamic
operations and processes is necessary. Furthermore, the compartment operations are di-
rectly affected by the outcome of previous thermodynamic processes in the system, when
it comes to general compartment fusion and fragmentation protocols. We have demon-
strated that the central mechanism of creating and preserving density fluctuations is the
mechanism by which compartment fusion and fragmentation affect many-body dynam-
ics. We were able to identify a special class of stochastic-many-body dynamics which
are neutral to compartment fusion and fragmentation dynamics: If the stochastic many-
body dynamics fulfils detailed balance relations, subsystems can be split and recombined
without effects on the system’s statistics and, consequently, on its entropy. Notably, we
have found that detailed balance is sufficient but not a necessary prerequisite of entropic
neutrality under dynamic compartmentalisation.

Our approach to studying the thermodynamics of compartmentalised systems offers two
different perspectives on the heuristic mechanism of the creation and preservation of den-
sity fluctuations: a physical thermodynamic perspective and a mathematical statistical
perspective. We argue that combining these two approaches enables a deeper understand-
ing of the statistical symmetries of stochastic many-body dynamics in the phase space.
With regard to the ideal gas, we elaborated on the special statistical properties of the
Dirichlet distribution. We noted that hat the random splitting and rescaling of Dirichlet-
distributed random variables resulted in new independent Dirichlet-distributed random
variables. We argue that this statistical property is more general, as it characterises a
class of probability distributions, which describe ensemble statistics of equilibrium pro-
cesses. In conclusion, we suggest that further investigations could significantly advance
our comprehension of the link between thermodynamic equilibrium and statistical sym-
metries. Furthermore, it could be instructive to also observe the fluxes of non-equilibrium
stochastic many-body dynamics from the perspective of broken statistical symmetries in
the concentration phase space.

In this work, we have gained theoretical insight and suggested that our findings have
direct implications for understanding the dynamics of compartmentalised stochastic sys-
tems, with applications from biology to technical applications. A crucial next step would
be to further examine specific applications and discuss their dynamics within the frame-
works we have presented. This would enable us to corroborate our theoretical insights and
determine how technical applications can be optimised, and diseases in biological systems
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can be mitigated. Our findings provide a mathematical framework to discuss the dynam-
ics of compartmentalised stochastic systems and thus propose approaches to investigate
the physics of living matter. We suggest that our findings have profound implications for
future research on the physics of living matter organised on multiple scales of biological
organisation.

197





A. Mathematical concepts

A.1. Master Equation

Markov processes are processes lacking memory and are of central interest in describing a
variety of systems in physics. As such, the passage to a state (an+1, tn+1) depends only on
the current state (an, tn), but not on the history of the path. Of central interest for this
processes is the transition probability to change from one state to another. In this context
it is useful to consider the Chapman-Kolmogorov relation. In the following, we closely fol-
low [17]. Consider the probability to observe a state a at time t and an intermediate state
a′ at time t′ given some initial state ai at an initial time ti < t′ < t, p(a, t; a′, t′; ai, ti). From
this, we obtain the transition probability p(a, t; ai, ti) by integration over the intermediate
states:

p(a, t; ai, ti) =
∫
da′p(a, t; a′, t′; ai, ti) =

∫
da′p(a, t|a′, t′; ai, ti) · p(a′, t′; ai, ti), (A.1)

which reduces for Markov processes to the Chapman-Kolmogorov relation

p(a, t; ai, ti) =
∫
da′p(a, t|a′, t′) · p(a′, t′; ai, ti). (A.2)

This description in terms of an intermediate state becomes useful. Consider the time
difference t− t′ = δt infinitesimally small. Denoting the transition rate from a state a′ to
a state a′′ during the time interval δt′ as W (a′′, a′), we find the transition probability as
W (a′′, a′)δt. Using this, we may write to linear order

p(a, t|a′, t− δt) = δ(a′ − a)− δtδ(a′ − a)
∫
da′′W (a′′, a′) + δtW (a, a′) +O(δt2), (A.3)

where the third term describes transition from state a′ to state a and the second term
describes losses from state a′ to some other state a′′. Substituting this expression in the
Chapman-Kolmogorov relation, and suppressing the dependence on the initial time, we
find

p(a, t) = p(a, t′)(1− δt
∫
da′′W (a′′, a′)) + δt

∫
da′W (a, a′) · p(a′, t′), (A.4)

which simplifies to

p(a, t)− p(a, t− δt)
δt

= −(
∫
da′′W (a′′, a)p(a, t′)) +

∫
da′W (a, a′) · p(a′, t′). (A.5)

Taking the limit δt→ 0 we find the Master Equation

∂tp(a, t) =
∫
da′ [W (a, a′)p(a′, t)−W (a′, a)p(a, t)] . (A.6)
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Here, the first term on the right hand side describes the gain of probability by transitions
into the state a, while the second term describes transitions out of the state a. This
balancing type of equation offers an intuitive approach to the dynamics underlying the
master equation, especially if the states follow a spatial ordering.

A useful extension of this formalism arises in the context of the second quantisation, as
discussed in section 4.5. In this context, it’s useful to write the Master equation in form
of a Matrix equation. To this end, we define the normalised, orthogonal basis vector e⃗a
for each accessible state of the the Master equation, such |e⃗a · e⃗a′| = δa− a′. We define
the probability vector p⃗(t) = ∑

a p(a, t)e⃗a and write the Master equation

∂tp⃗(t) = Ap⃗(t), (A.7)

using the transition matrix A. The entry Ai,j = W (i, j) is given by transition rate from
state j into state i for all i ̸= j. The diagonal elements are given by Ai,i = −∑j ̸=iAj,i, such
that each column sums to zero ∑j Aj,i = 0. For a given initial condition, the solution
of the master equation is given by the matrix exponential of A. For the application
to the second quantisation, a superficial complication of this formalism becomes useful.
To this end, we avoid the matrix notation and instead define basis exchange operators
ôj,ie⃗l = δ(l − i)e⃗j which maps the basis vector of state i to state j. Using this, we write

∂tp⃗i(t) =
∑
j

Ai,j ôi,j p⃗(t)

and summing over all states i, we find

∂tp⃗(t) =
∑
i

∑
j

Ai,j ôi,j p⃗(t). (A.8)

We can further simplify the equation above by directly writing it in terms of the the
transition rate W (i, j)

∂tp⃗(t) =
∑
i

∑
j

(ôi,j − ôj,j)W (i, j)p⃗(t). (A.9)

We see in section 4.5 that this notation comes in particular handy in the context of the
Second quantisation, where the rate transition rate W (i, j) depends on the occupation
number of state j.

A.2. Compartment dynamics in the framework of Master
equations

In this section, we specify on the semi-symbolical notion used to define the compartment
dynamics in the framework of Master Equations, compare in particular with section 2.3.

We start by defining the stochastic dynamics inside the compartments. We refer to
these dynamics as intra-scale fluxes on the microscopic level. We define the operator
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Qη(t)

Qη(t) [P (S)] =
N(S)∑
i

 ∑
c⃗′

i ̸=c⃗i

Qi

(
c⃗′
i → c⃗i, o⃗i

)
P




...[
c⃗′
i, o⃗i

]
...





− P (S)
N(S)∑
i

 ∑
c⃗′

i ̸=c⃗i

Qi

(
c⃗i → c⃗′

i, o⃗i
) . (A.10)

We refer to the transition rates of the enclosed stochastic many body dynamics in compart-
ment i with Qi

(
n⃗′
i → n⃗i, vi

)
. We specify on the stochastic transition rates in particular

in the context of stochastic chemical reactions, as detailed out in section 2.2.1. Recall
that the index η(t) refers to the dependence of an external signal. Here, N(S) refers to
the number of compartments in the system S.

In analogy, we define the intra-scale fluxes on the level of compartment dynamics with

S [P (S)] =
N(S)∑
i

 ∑
o⃗′

i ̸=o⃗i

Si
(
o⃗′
i → o⃗i, c⃗i

)
P




...[
c⃗i, o⃗′

i

]
...





− P (S)
N(S)∑
i

 ∑
o⃗′

i ̸=o⃗i

Si
(
o⃗i → o⃗′

i, c⃗i
) . (A.11)

These processes leave the concentration composition in the compartments unchanged. As
for the reaction kinetics Qi, Si are rates happening on individual compartments, without
information about the state of other compartments. Examples for these processes are
compartment shape changes or the spatial translocation of compartments.

Next, we focus on inter-scale fluxes, which change both the concentration vector c⃗i
and compartment properties o⃗i but leave the number of compartments unchanged. The
prominent example of this class of processes is compartment growth, we hence define

Rgro [P (S)] =
N(S)∑
i

 ∑
(c⃗′

i,o⃗′
i )̸=(c⃗i,o⃗i)

Rgro
i

(
(c⃗′

i, o⃗′
i)→ (c⃗i, o⃗i)

)
P




...[
c⃗′
i, o⃗′

i

]
...





− P (S)
N(S)∑
i

 ∑
(c⃗′

i,o⃗′
i )̸=(c⃗i,o⃗i)

Rgro
i

(
(c⃗i, o⃗i)→ (c⃗′

i, o⃗′
i)
) . (A.12)

Note, that by definition the majority of the transition rates are equal to zero for growth
processes, as here the coupling between compartment property and concentration stems
from the definition of the concentration as c⃗i = n⃗i/si, where si refers to the size of the
compartment and n⃗i to the number of chemical species in the compartment. Here, we
generalised on the notation of the dynamics.

For compartment creation and degradation, both the compartment with properties
o⃗ and a concentration c⃗ are to be considered. We introduce notation to refer to the
admissible states that can accessed by compartment degradation processes. We define
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the set Jdeg(S) = {S′|N(S′)− 1 = N(S) ∧ S1:N = S1:N}. By definition, we demand that
S′ has one compartment more, and that 1 : N compartments coincide. Without loss of
generality, we refer to the one compartment in S′ which is not present in S with the index
N + 1. With this notation, we find for the birth term:

RD [P (S)] =
∑

S′∈Jdeg(S)
RD([⃗cN+1, o⃗N+1]→ ∅)P (S′)− P (S)

N(S)∑
i

RD([⃗ci, o⃗i]→ ∅). (A.13)

Here, RD([⃗ci, o⃗i] → ∅) refers to the rate with which a compartment with characteris-
tics [⃗ci, o⃗i] is degraded. In analogy, for the compartment creation we define the set
Jcre(S) = {S′|N(S′) + 1 = N(S) ∧ S1:N−1 = S1:N−1}. Again, we consider all admissible
permutations, such that without loss of generality we refer to the created compartment
with the index N . This yields

RB [P (S)] =
∑

S′∈Jcre(S)
RB(∅ → [⃗cN+1, o⃗N+1])P (S′)− P (S)

∑
[⃗c,o⃗]

RB(∅ → [⃗c, o⃗]). (A.14)

Here, RB(∅ → [⃗ci, o⃗i]) refers to the rate with which a compartment with characteristics
[⃗ci, o⃗i] is created from the void.

As discussed in depth in section 2.3, we understand that compartment fusion and frag-
mentation pose as inter-scale fluxes, as these processes alter both the compartment prop-
erties and the concentration composition. As for the creation and degradation terms, we
define a set for compartment fusion Jfus(S) = {S′|N(S′)− 1 = N(S) ∧ S1:N−1 = S1:N−1}.
Here, we again state that N−1 compartments between the two systems must be identical.
Without loss of generality, we refer to the compartments not coinciding, with index N
and for S and N,N + 1 for S′. This yields

Rfus [P (S)] =
∑

S′∈Jfus(S)
Rfus(([c⃗′

N , o⃗′
N ], [c⃗′

N+1, o⃗′
N+1])→ [⃗cN , o⃗N ])P (S′)

− P (S)
N(S)∑
i,j

∑
[⃗c,o⃗]

Rfus(([⃗ci, o⃗i], [⃗cj, o⃗j])→ [⃗c, o⃗]), (A.15)

where we symbolically defined the rate for two compartments to fuse. We define also for
the fragmentation an a set Jfrag(S) = {S′|N(S′) + 1 = N(S) ∧ S1:N−1 = S1:N−1} and also
allow for all possible permutations such that we refer to the non-coinciding compartments
with index N − 1, N and for S and N for S′. This yields

Rfrag [P (S)] =
∑

S′∈Jfrag(S)
Rfrag([c⃗′

N , o⃗′
N ]→ ([⃗cN−1, o⃗N−1], [⃗cN+1, o⃗N+1]))P (S′)

− P (S)
N(S)∑
i

∑
([⃗ck,o⃗k],[⃗cl,o⃗l])

Rfrag([⃗c, o⃗]→ ([⃗ck, o⃗k], [⃗cl, o⃗l])), (A.16)

where we symbolically defined the rate for the fragmentation of compartments.
We do not claim that the list of compartment dynamics is extensive, but rather a

selection of compartment processes inspired by the dynamics of organelles. Also note, that
the complexity of the terms above effectively hinder further analytical treatment of the
compartment dynamics on the basis of the Master Equation framework. In section 2.4.1
we thus proceeded to further investigate the dynamics in the continuum limit of infinitely
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large system sizes in the framework of population balance equations.

A.3. Stochastic two-body interaction dynamics

In this section, we derive a Fokker-Planck approximation for a many-body system of
particle performing Brownian motion while being subject to two-body interaction. Here,
we closely follow [101]. Consider N interacting particles performing Brownian motion with
a two-body interaction. x⃗ denotes the N positions of the particles xi, and the two-body
interactions create a potential

V (x⃗) = 1
2
∑
i ̸=j

v(xi − xj),

where the two body interactions are symmetric with v(x) = v(−x). µ denotes the mobility
and D denotes the diffusion constant. The Fokker-Planck equation describing this system
is

∂tP (x⃗, t) =
∑
i

∂xi
(D∂xi

P (x⃗, t) + µP (x̄, t)∂xi
V (x⃗)) .

We are interested in the one-particle density and the pair-particle density defined by

P (1)(x, t) =
∫
dx2 · · · dxNP (x, x2, ..., xN)

P (2)(x, x′, t) =
∫
dx3 · · · dxNP (x, x′, x3, ..., xN).

The many-body Fokker-Planck equation obeys a BBGKY hierarchy. The first equation
of the hierarchy reads

∂tP
(1)(x, t) = ∂x

(
D∂xP

(1)(x, t) + (N − 1)µ
∫
dx′P (2)(x, x′, t)∂x′v(x− x′)

)
. (A.17)

Using a mean field approximation and scaling µ accordingly, we find:

∂tP (x, t) = ∂x

(
D∂xP (x, t) + µ̃P (x, t)

∫
dx′P (x′, t)∂x′v(x− x′)

)
. (A.18)

Note, that the derivative of the two-body interaction potential −∂xv(x−x′) enters into the
integral. We draw the derivative out of the integral and define the interaction potential

Φ[P (x, t)] = µ̃
∫
dx′P (x′, t)∂x′v(x− x′), (A.19)

such that

∂tP (x, t) = ∂x

(
D∂xP (x, t)− (∂xΦ[P (x, t)])P (x, t)

∫
dx′P (x′, t)∂x′v(x− x′)

)
. (A.20)

This allows to link interaction potentials Φ[P (x, t)] with elementary two-body interac-
tion potential v(x− x′) and hence serves as a guide to establish correspondence between
dynamics.
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A.4. Waddington’s epigentic landscape as a metaphor for
signalling pathways

The chemical Master Equation, its Fokker-Planck approximation and the chemical Langevin
Equation provide a general framework for describing the dynamics of signalling pathways,
taking into account the stochastic nature of chemical reactions at small copy numbers. In
this general framework, we have not specified chemical reactions and hence left the drift
vector F⃗ and the diffusion matrix D generic. Notably, the drift vector F⃗ is associated
with highly non-linear dynamics, which renders intuitive understanding of the dynamics
difficult and necessitates detailed analysis of the model for the purpose of predicting the
qualitative dynamics. Fixed point analysis can be employed as a useful toolbox for char-
acterising the dynamics encoded by the drift vector F⃗ in a specified region of the phase
space.

Particularly important from a biological perspective is the description of stable fixed
points and limit cycles. While fixed points are individual points in the phase space,
limit cycles represent periodic solutions of the non-linear dynamics. Stable fixed points
and limit cycles are characterised by a ’region of attraction’, meaning that the dynamics
within this region relax to the fixed point, making them stable against small fluctuations
[5]. However, alterations in system parameters can cause changes in the position of fixed
points, regions of attraction and the presence of fixed points themselves. Catastrophe
theory, which is a branch of mathematics concerned with the study of dynamical systems,
provides formalisation of how fixed points change as system parameters are altered [255].

The connection between catastrophe theory and biological systems was first discussed
by biologist Conrad Hal Waddington and mathematician René Thom in the context of
Waddington’s epigenetic landscape. Waddington developed the notion of an epigenetic
landscape in the context of cell type evolution, and this picture has been frequently
employed in the context of gene regulatory networks [256–258] and signalling pathways
to provide an intuitive approach to non-linear dynamics encoded in reaction networks.
However, it is important to acknowledge the limitations of Waddington’s landscape and
to interpret it cautiously. We give a brief discussion on Waddington’s landscape and
related concepts, highlighting the situations in which it offers a useful illustration of the
dynamics of reaction networks and wherein it can be a misleading picture.

Conrad Hal Waddington proposed the concept of an epigenetic landscape as a qualita-
tive model to describe the dedifferentiation dynamics of stem cells [256]. In this model,
cells are represented as a ball sliding down a landscape of bifurcating valleys. Different
valleys correspond to different cell states, with the sliding of the ball symbolising the tem-
poral evolution of the cell. At bifurcation points, the ball randomly continues in one of
the two branching valleys. Waddington’s landscape illustrates how cells of the same stem
cell type differentiate into various cell types and suggests that differentiation is a uni-
directional process. This metaphor implies that the development of a biological system
is given by a gradient descent dynamics. Whilst the y-axis in Waddington’s landscape
can be linked to the progression of time, the x-axis and the potential landscape have only
an abstract, qualitative notion. Specifically, the x-axis displays a scalar quantity which
allows for the distinction between different cell types, which may not have a measurable
biological analogue, and the height of the potential is arbitrary. In terms of the analy-
sis of dynamical systems using fixed points, the bottom of a valley denoting a cell type
corresponds to stable fixed points. As the ball rolls down to the bottom of valleys in
this landscape picture, valleys represent the regions of attraction around the stable fixed
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points. The bifurcation of valleys corresponds to a change in the number of stable fixed
points as system parameters change over time. The greatest advantage of Waddington’s
landscape is its capacity to illustrate intricate dynamics in a captivating and intuitive
manner.

In the context of reaction networks, stable fixed points correspond to protein composi-
tions associated with biological states of signalling networks [259]. Variations in system
parameter can include changes in chemical reaction rates kj(η(t)) over time, as induced by
signals η(t). Consequently, these signals η(t) allow for transitions between stable states of
the signalling pathway, leading to changes in a cell’s function. Investigating the dynamics
of signalling pathways thus requires an analysis of transitions between states. To this end,
the metaphor of Waddington’s landscape provides an intuitive approach.

The notion of Waddington’s landscape as gradient dynamics is generally misleading.
Although an extension to include stochastic transition between states due to barrier cross-
ing events can be considered, this is not the case for high-dimensional systems, which
require rotational flows to be taken into account. The metaphor of Waddington’s land-
scape only includes singular fixed points, but ignores other attractors such as limit cycles
and strange attractors, which cannot be represented adequately in a landscape picture.
Quasi-potentials have been proposed as a means of incorporating rotational flows into
landscape metaphors [256], however, these have not been followed as literal interpreta-
tions of Waddington’s metaphor are avoided.

Similar to the notion of Waddington’s landscape, which shows as potential, Lyapunov
functions which are commonly employed in dynamical systems analysis to asses the sta-
bility of fixed points. Lyapunov functions are scalar functions V (x⃗) defined on a region
D around some stable fixed point x⃗s which are semi-definite and have a continuos first
derivative [5]. If there exists a function V (x) such that ∇V (x⃗)F⃗ (x⃗) ≤ 0 the fixed point
x⃗s is called asymptotically stable. Note that all stable singular fixed points are asymptot-
ically stable. The condition ∇V (x⃗)F⃗ (x⃗) ≤ 0 implies that V (x⃗(t)) is steadily decreasing
along every deterministic trajectory following d/dtx⃗ = F⃗ (x⃗), such that V (x) is scalar
function with a minimum at x⃗s . While this suggests, that a potential function can be
locally defined around every fixed point, the condition ∇V (x⃗)F⃗ (x⃗) ≤ 0 does not imply
that trajectories x⃗(t) follow the steepest descent of V (x⃗) and hence does not imply the
dynamics are gradient dynamics around stable fixed points. As rotational fluxes are not
excluded, such as the spiralling into a stable fixed point, Lyapunov functions grants the
existence of so called generalised gradient dynamics. If all fixed points of a system can
be described by the same Lyapunov function, V (x⃗) is called a global Lyapunov func-
tions. For d/dtx⃗ = −∇Φ(x⃗), the potential Φ(x⃗) is by construction a global Lyapunov
function. Note, that conversely the existence of a global Lyapunov V (x⃗) function is not
implying ⇏ d/dtx⃗ = −∇V (x⃗). Analysis of chemical reaction networks fulfilling detailed
balance in steady states proofed that stable fixed points are necessary singular points in
the phase space and hence proofed the absence of limit cycles and strange attractors in
these dynamical systems. Furthermore, it has been proofed that these systems allow for
global Lyapunov functions characterising a potential landscape, without implying actual
gradient dynamics. In the context of signalling pathways which fulfil detailed balance in
steady states of the dynamics, Lyapunov functions represent a formalisation of Wadding-
ton’s landscape metaphor.

Concluding this section, the metaphor of Waddington’s landscape can serve as an illus-
tration to provide an intuitive approach to the dynamics encoded in signalling pathways.
However, potential landscapes only adequately describe dynamical systems if the system
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can conform to a gradient dynamics, which is generally not true for chemical reaction net-
works. As such, the illustration of dynamics using potential landscapes, such as Wadding-
ton’s landscape picture or global Lyapunov functions, can be misleading. In this thesis,
analysis will only be performed on the level of drift vectors F⃗ and care will be taken to
indicate and comment when potential dynamics are used for illustrative purposes.

A.5. Modification of Kramer’s escape rate due to
compartment dynamics

In section 3.4, we elaborated that the effective dynamics demand modifications to account
for absorbing boundary condition placed at the separatrix of regions of attraction. Here,
we discuss how in particular the stable-tail-long-range approximation of the fusion flux,
Eq. (2.35), allows to map effects of organelle fusion and fragmentation to a simple modi-
fication of the barrier escape rate. For this, we make use of the interpretation presented
in appendix A.3, where we discussed the interpretation of the fusion flux in terms of ef-
fective two-body interaction potentials, ϕeff[f(c⃗, t), c⃗]. Here, we will in particular focus on
the stable-tail-long-range approximation, which we have shown to approximation in par-
ticular the tail of the distribution f(c⃗, t) well in steady state. To derive effective dynamics
in the context of an absorbing boundary condition, we make use of mathematical proof
presented in [104].

[104] Proofed mathematically that the stochastic escape of individual, stochastic parti-
cles subject to diffusion, drift, and an effective two-body interaction potential, is captured
by a Kramer’s escape in an effective potential. While [104] discuss also the special case
of general drift dynamics, here, we focus for didactic reasons on gradient dynamics where
F⃗ (c⃗, t) = −∇V c⃗. We define c⃗s as a stable fixed point from which compute the stochas-
tic escape rate through the absorbing boundary D. Setting the diffusivity to D, the
expectation of the mean first passage time ⟨τD⟩ of a single particle is given by

lim
D→0

D log(⟨τD⟩) = inf
z⃗∈D

2 (V (z⃗)− V (c⃗s) + ϕeff[fss(c⃗, t), z⃗ − c⃗s]) , (A.21)

where we made use of the steady state solution of the distribution fss(c⃗, t). Note that this
approximation of the Kramer’s escape rate is only valid for vanishing D → 0, hence the
barrier position is located in the tail of the distribution and we a posteriori justify the use
of the stable tail long-range approximation of the fusion flux. To the knowledge of the
authors a generalisation of multiplicative noise has not been mathematically proven, yet.
Generalisation of the Kramer’s escape to account for multiplicative noise has, however,
been discussed in the literature [164]. Next, we use this modification of the Kramer’s rate
to compute the escape from a simple quadratic potential well.

To this end, we consider effective one-dimensional dynamics. We letδη(t) = ηt − η(0)
be the fluctuating extrinsic signal. We define the steepness of the potential k and define
η(0) = csk. The effective potential is

Veff(c) = 1
2kc

2 − η(t)c (A.22)
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and the effective potential in the modified Karmer’s rate with an absorption at z > cs

Q(z) = kz2 − 2zη(t) + δη(t)2

k
+ 2µeff

(
z − η(t)

k

)
. (A.23)

The Kramer’s escape rate τ−1
z in the limit D → 0 is

τ−1
z = ω̃0 exp

(
−kz

2

D

)
· exp

−µeff z − η(t)
k

D

 · exp
− δη(t)2

k
− 2zη(t)
D

 , (A.24)

where accounted for the dimensional prefactor ω̃0, see for example [164]. According to the
Smoluchowski aggregation dynamics discussed in section 2.2.3, we account for the fusion
flux to be a linear function of the total organelle mass m, and define µeff(m) ≡ µ0m. We
next introduce the abbreviated notation

τ−1
z (Veff,m, η(t)) = ω̃0 exp (−ΓKramer) · exp (−mΓInt) · exp

(
−Γη(t)

)
. (A.25)

With this modified Kramer’s escape rate, we find a simple differential equation quanti-
fying the mass of absorbed mitochondria in the picture of Fig. 3.11 (b). To account for
fluctuating signals η(t) we in particular assume that the quasi-statistic approximation,
such that τz > τη. We normalise the initial organelle mass to m(t = 0) = 1, which yields

∂m = −τ−1
z (Veff,m, η(t))m = −ω(Veff, η(t)) · exp (−mΓInt)m. (A.26)

This differential equation admit analytic solutions in terms of the inverse of the expo-
nential integral function Ei−1, making use of the effective Kramer’s rate ω(Veff, η(t)) and
the rescaled interaction potential evaluated at the position of the absorbing boundary
condition, with

m(t) = 1
ΓInt

Ei−1(−ω(Veff, η(t))t+ Ei(ΓInt)). (A.27)

By construction, the amount of mitochondrial mass absorbed is given by m̄(t) = 1−m(t).
This solution in particular nicely illustrates how organelle fusion and fission effectively
suppresses the stochastic switching to the high concentration state and illustrates how
the vanishing suppression with the progression of time gives rise to sigmoidal response
kinetics.

A.6. Modification of Kramer’s escape rate due to
heterogeneous size distributions

Heterogeneous size distributions of organelle ensembles without organelle dynamics chang-
ing the sizes of individual organelles suggest treating organelle subpopulations of identical
sizes independently, rather than marginalising over organelle sizes. In the context of the
random switching dynamics due to apoptotic stimuli, as presented in Section 3.4, sepa-
rate Kramer’s escape problems can be considered for each subpopulation of a specified
organelle size. The backward reaction from the high concentration state to the low con-
centration state is assumed to be negligible. The Kramer’s rate can be computed using
standard methods, such as those outlined in [260]. The Kramer’s escape rate for the
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subpopulation of size s is symbolically denoted by ω(s), and the total mass in a sub-
population is defined as ms. Then, the time evolution of mitochondrial mass in the low
concentration state yields

m(t) =
∑
s

ms exp(−ω(s)t). (A.28)

Defining the high concentration state at ch and the low concentration state at cl, and
assuming that the Kramer’s limit is met for all s, we approximate the mean of the distri-
butions in response to an apoptotic stimulus

⟨c(t)⟩ ≈ cl ·
(∑

s

ms

m(0) exp(−ω(s)t)
)

+ ch ·
(

1−
∑
s

ms

m(0) exp(−ω(s)t)
)
. (A.29)

For given potentials, this equation yields analytic solutions with no free fit parameter.

A.7. Pre- and post-modifications in apoptotic signalling
pathway

In section 3.7, the predicted kinetics of the quasi-particle in cell culture experiments were
elaborated on, discussing the extent to which the sigmoidal dynamics are robust towards
the including of additional dynamics before and after the release of Cyt c. This section
provides a brief description of how qualitative arguments are corroborated by numerical
simulations.

As we consider not direct inducers of apoptosis, we assume that the apoptotic stimulus
applied to the cell is already the consequence of stochastic processes. To account for
this pre-modification, we assume that the start of the apoptotic stimulus is a random
variable. Specifically, we assume that the onset of the apoptotic stimulus is exponentially
distributed. Furthermore, we assume that also the strength of the stimulus is subject
to variations. We capture this by assuming fixed stimuli, but with the strength of the
stimulus distributed like a Gaussian variable around a specified mean. This translates to
our model, as we assume the skew of the bistable potential to be Gaussian distributed.
To account for the post-modification, we note that a partial release of Cyt c from a mi-
tochondrial subpopulation > 10% has so far not been observed experimentally [153–155].
We translate this insight to our model, as we assume that a release from a mitochondrial
ensemble > 10% to be sufficient for a cell to undergo apoptosis.

We translate these conditions into a model, taking into account the theoretical models
from Fig. 3.10 (a) with the associated parameters and averaging over many realisations.
Specifically, we consider for the variable apoptotic onset an exponential distribution with
t0 ∼ Exp(60tr) and a variation of the skew of ση ≈ 20%EB, where EB is the height
of the potential barrier. We then digitalise the predicted trajectory at the threshold
values Θ(⟨c⟩/c∗

h > 0.1). Finally, we compare the solution for the equations of motion
for the quasi-particle with the modified Karmer’s escape dynamics in the absence of
mitochondrial fusion and fragmentation. The results are shown in Fig. 3.14 (e,f).
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B.1. Numerical routine for the simulation of
compartmentalised systems

In order to investigate the multi-scale dynamics of compartmentalised stochastic reac-
tion kinetics systems, we sample random trajectories of the dynamics specified by the
Master equation (2.20). For this purpose, we employ the direct method of the stochastic
simulation algorithm [261, 262]. This formulation enables us to implement the dynamics
straightforwardly. However, due to the multi-scale nature of the dynamics, the computa-
tional costs tend to become prohibitively high when large systems with large concentration
vectors c⃗i are simulated, as this drastically slows down the run time. Therefore, we in-
troduce additional approximations, which allow for a drastic reduction in computational
time by assuming that compartmental dynamics typically proceed at slower timescales
than chemical reactions.

In order to implement the dynamics specified by the Master equation Eq. (2.20), we
associate each possible transition with a rate TS→S′ ≡ Tj, which is commonly referred to
as the propensity of transition j [262]. The ratio Tj/

∑
l Tl represents the probability of

taking transition j in order to move to the subsequent step, with the sum running over
all possible transitions between state S and another state S′. By drawing two random
uniform numbers r1 and r2 the system changes its state after the time step

τ = 1∑
l Tl

log
( 1
r1

)
(B.1)

according to the transition specified by the j, which fulfils being the smallest integer
satisfying

j∑
l

Tl > r2

j∑
l

Tl. (B.2)

This routine updates the system in sequential order without making any assumption on
the timescale of the specific reactions. Due to the large number of possible transitions, the
stochastic evolution of this dynamics typically shows long run times prohibiting extensive
simulations of large systems.

In order to enhance the efficiency of our code, we account explicitly for the multi-
scale organisation of compartmentalised stochastic reaction kinetics systems. We make a
distinction between compartment dynamics and inter-scale fluxes resulting from chemical
reactions. The compartment dynamics are simulated using the Master equation, along
with a stochastic simulation algorithm, while the concentration c⃗i in each compartment
is evolved parallel to this, at intervals of duration τo. By splitting the code in this way,
it can be parallelised, thus significantly reducing the execution time. This is especially
beneficial when the dynamics of the compartments are often slower than those on the

209



B. Numerical routines

molecular level.
We might further optimise the run time of the algorithm by additionally parallelis-

ing the compartment dynamics. To do this, we discretise the evolution steps of the
compartment dynamics to a fixed τo, and assign for each compartment probabilities for
undergoing compartment dynamics after the next step, for example fusion with another
compartment. This routine accurately recreates the size distribution predicted by the
compartment aggregation-fragmentation dynamics presented section 2.2.3. Additionally,
for large systems with large concentration vectors c⃗i, memory management is optimised
by assigning compartments of discrete sizes. For each elementary compartment block,
memory capacities are pre-allocated, in which the composition vector and the transition
matrix of the chemical reaction network are stored and updated. We have implemented
the multi-scale dynamics both in Python and C++; while Python allows for simple and
intuitive exploration of the phenomena encoded in the multi-scale dynamics, C++ provides
opportunities for efficiency optimisation of the code through controlling and pre-allocating
the memory demands.

B.2. Optimisation of the numerical routine to account
for gelation dynamics

In Eq. (5.16) we gave a description of the system’s dynamics in terms of a Master Equation,
analogous to the dynamics described in section 2.3. Here, we simulate both the organelle
dynamics and chemical reaction kinetics explicitly on the level of stochastic transitions.
For this, we extend on the numerical routine introduced in appendix B.1 and additionally
focus on how to allocation of memory, which allows for the optimisation of the run time.

We simulate the organelle kinetics and the reversible polymerisation kinetics using
stochastic simulation algorithms (SSAs) with the direct method [261, 262]. The time-step
between stochastic compartment fusion and fragmentation events is determined on the
level of compartments, and the stochastic reversible polymerisation kinetics is evolved on
all compartments in parallel for the duration of the time-step. Following this, compart-
ment fusion or fragmentation is performed before the time-step to the next compartment
fusion and fragmentation event is determined. This time-evolution procedure is repeated
until the final simulation time is reached, making this numerical routine especially suited
to handling organelle compartments of varying sizes.

By simulating all chemical reaction steps explicitly, the simulation quickly increases in
run time and memory demands. We implemented the algorithm in C++ which enables
us to manage memory allocation. A significant slow-down of the algorithm is caused
by the handling of the individual reaction rate propensities of the aggregation reactions
for accounting for all aggregates of different sizes. The total number of possible reactions
scales as N2

max, where Nmax is the size of the largest aggregate, and the reaction rates must
be re-calculated between individual update steps of the SSA. However, only those rates
that are affected by the previous update step are re-calculated, reducing the computation
of the duration of the time-step. This also results in updating individual columns and rows
of a reaction propensity matrix. In order to store the reaction rate propensity matrices,
memory is pre-allocated for each compartment at the start of the simulation. To prevent
frequent copying of the large reaction propensity matrices, the fusion and fragmentation of
compartments are simulated using pointer variables. This approximation of compartment
dynamics as discrete Smoluchowski aggregation-fragmentation dynamics, combined with
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the conservation of total organelle mass, provides a substantial speed up of the simulation
run time. While allowing the full stochastic simulation of Master-Equation Eq. (5.16), this
numerical routine has a poor scaling with the system size, setting bounds on the numerical
investigation of systems with large total aggregate mass. As the total aggregate mass
increases, the number of possible reactions is increased and the time-step of an individual
update step is reduced. The former effect increases the run time for each update step,
while the latter necessitates the increase in total number of updating steps required to
reach a specified final time, thus resulting in strongly increased run times when larger
systems are analysed.

We initiate a dynamic and synchronous ensemble by first performing temporal evolution
in the configuration of fully fused compartments. To improve the statistics, we create
multiple sets of data from simulations runs, combining the statistics from different time
points with a difference of ∆t≫ τr that is much larger than the system’s auto-correlation
time. We pay particular attention to ensure that the statistics are not quantitatively
affected by this procedure.

B.3. Routine for the efficient numerical investigation of
finite-sized ideal gas ensembles

There are different options for simulating an ideal gas in the context of dynamic com-
partmentalisation. The most prominent choice is simulating a 2D hard disk gas in a
rectangular chamber by solving the equations of motion for each particle in the ensemble.
While coding this implementation of the problem is feasible, the model does indeed show
the full dynamics in both the concentration and volume phase space and provides beauti-
ful visualizations as a bonus. However, these simulations quickly become computationally
expensive and require a long run time to ensure relaxation to equilibrium. Furthermore,
as we want to map out the statistics of the ensemble, we need a large number of repeti-
tions of these simulations. Under these constraints, simulating the full dynamics is not
an ideal choice.

As we introduced in section 4.3.2, for sequential fragmentation sseq, we set the timescale
of partition insertion be much larger than the relaxation timescale ,∆tτ . To speed up the
simulations by orders of magnitude, we make use of the statistics derived in the previous
section 4.4.2: instead of simulating the time evolution, we directly sample the statis-
tics from a Dirichlet distribution. In fact, [216] showed that the statistics of molecular
dynamics simulations of hard sphere gases can be captured by the statistics derived in
section 4.4.2. The algorithms for sequential fragmentation (sseq) and synchronous frag-

Algorithm 1 Synchronous fragmentation
1: function FragSync(E⃗,N) ▷ E⃗: energy vector of size N ; N : number of rooms.
2: M ← {(Ei,Ni)← (0, 0)} ▷ Initialise the system. M : list of compartments.
3: for i← 1 to N do ▷ Assign particles to random compartments.
4: u ∼ U(0, 1)
5: find µ the smallest integer, such that u < ∑µ

k=1
1
N

6: Nµ ← Nµ + 1
7: Eµ ← Eµ + Ei

8: return M
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Algorithm 2 Sequential fragmentation
1: function BinomSplit(E⃗, p ) ▷ E⃗: energy vector; p: splitting probability.
2: (E1,N1), (E2,N2)← (0, 0), (0, 0) ▷ Initialise the system.
3: for i← 1 to N do ▷ Assign particles to random compartments.
4: u ∼ U(0, 1)
5: if u ≤ p then
6: N1 ← N1 + 1
7: E1 ← E1 + Ei
8: else
9: N2 ← N2 + 1

10: E2 ← E2 + Ei
11: return (E1,N1), (E2,N2)
12:
13: function FragSequ(E⃗,N) ▷ E⃗: energy vector of size N ; N : number of rooms.
14: M ← {(Ei,Ni)← (0, 0)} ▷ Initialise the system. M : list of compartments.
15: (EI ,NI)← (E,N ) ▷ Initialise the intermediate macrostate I
16: for i← 1 to N do
17: p← i

N

18: sample a microstate E⃗ that corresponds to macrostate I
19: (Ei,Ni), (EI ,NI)← BinomSplit(E⃗,p)
20: return M

mentation (ssyn) are given in Alg.1 and Alg.2, respectively. Note, that both algorithms
can be straightforwardly generalised from the setting of the ideal gas to general stochastic
many-body dynamics.
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