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Abstract
Embryonic development, regeneration, and tissue renewal are spectacular tissue-pat-

terning events. Tissue patterning requires information. This information is often

provided by signalling molecules that form graded concentration profiles in space, re-

ferred to as signalling gradients or morphogen gradients. Planarian flatworms are an

ideal model organism to study tissue patterning as they constantly turn over all of their

tissues and are able to regenerate from arbitrary amputation fragments. At a body

length of up to 2 cm, planarians are orders of magnitudes larger than tissues organ-

ised during embryonic development in other species. Yet, flatworms employ signalling

gradients for tissue patterning. Like in other organisms throughout the animal king-

dom, their main body axis is patterned by a Wnt signalling gradient. Experiments

have suggested a positive feedback mechanism of Wnt-mediated Wnt expression to be

implicated in the formation of this Wnt signalling gradient in planarians. Inspired by

these observations, in this thesis we present a cell-to-cell relay mechanism based on pos-

itive feedback to explain long-ranged signalling gradient formation. To account for the

cellular nature of the relay, we built a discrete model, that considers individual cells and

extracellular spaces. The relay is generated by a positive feedback loop in which extra-

cellular signalling levels positively regulate intracellular effector concentrations which

in turn leads to production of more extracellular signalling molecules. We show that a

cell-to-cell relay gives rise to steady-state gradients reaching length scales of the order

of hundreds of cells, corresponding to millimetres. The length scale is regulated by the

strength of the feedback, which allows scaling the steady-state gradient to tissue size by

adapting the feedback strength. Polarised secretion of signalling molecules in response

to the positive feedback leads to an effective drift of signalling molecule concentration

through the system. This allows the formation of signalling gradients with a length

scale of tens to hundreds of cells (millimetres) within hours to days for a physiologically

relevant diffusion coefficient and degradation rate of the signalling molecules. Thus,

in contrast to a diffusion/degradation-based mechanism that is widely used to explain

signalling gradient formation during embryonic development, the relay mechanism re-

quires neither extraordinarily quickly-diffusing nor very long-lived signalling molecules

to explain the formation of long-ranged signalling gradients on biologically relevant time

scales. The cell-to-cell relay mechanism is therefore an attractive concept to explain the

long-ranged patterning effects of poorly diffusive morphogens.
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Zusammenfassung
Die räumliche und zeitliche Organisation von Zellen während Embryonalentwicklung,

Regeneration oder Erneuerung von Geweben ist eine faszinierende Fähigkeit lebender

Organismen. Dazu benötigen die Zellen Informationen über ihre Position im Organis-

mus. Diese Informationen werden oft in Form von Signal- oder Morphogengradienten

bereitgestellt, also von Signalmolekülen, die Konzentrationsprofile im Raum bilden.

Plattwürmer (Planarien) sind ein sehr geeigneter Modellorganismus, um solche Gewe-

beorganisationsprozesse zu erforschen, weil sie kontinuierlich alle Zellen ihres Körpers

erneuern und aus kleinsten Gewebestücken regenerieren können. Bei einer Körperlänge

von bis zu 2 cm muss Gewebe auf größeren Längenskalen organisiert werden, als es

für die Embryonalentwicklung in anderen Spezies nötig ist. Trotzdem treten auch in

Planarien Signalgradienten auf. Ihre Hauptkörperachse wird, wie bei anderen Tieren

auch, von einem Wnt-Signalgradienten organisiert. Experimentelle Beobachtungen le-

gen nahe, dass ein positiver Feedbackmechanismus, in dem ein Wnt-Signal zur Erzeu-

gung von mehr Wnt-Molekülen führt, wesentlich zur Bildung dieses Gradienten beiträgt.

Inspiriert durch diese Beobachtungen stellen wir in dieser Arbeit einen Mechanismus zur

Ausbildung von Signalgradienten vor, der auf positivem Feedback basiert. Um die be-

sondere Bedeutung der Zellen für dieses Feedback berücksichtigen zu können, ist das

hier präsentierte Modell diskret und besteht aus Zellen und Extrazellularräumen. Das

positive Feedback sorgt für eine Signalübertragung von Zelle zu Zelle, wobei die Konzen-

tration der extrazellulären Signalmoleküle die Konzentration des intrazellulären Effek-

tors positiv reguliert, was wiederum zur Bildung von mehr Signalmolekülen führt. Wir

zeigen, dass dieser Signalübertragungsmechanismus langreichweitige Signalgradienten

mit einer Längenskala von mehreren hundert Zellen, also in der Größenordnung von

Millimetern, ausbildet. Die Längenskala wird durch die Stärke des positiven Feed-

backs reguliert. Eine entsprechende Regulation der Feedbackstärke ermöglicht es, die

Längenskala des Signalgradienten an die Größe des Systems anzupassen. Erfolgt die

Sekretion der Signalmoleküle, die die Zellen als Antwort auf das Feedback produzieren,

gerichtet, führt das zu einer gerichteten Ausbreitung der Signalmolekülkonzentration

im System, also zu Drift. Auf diese Weise können bei biologisch relevanten Wer-

ten des Diffusionskoeffizienten und der Degradationsrate der Signalmoleküle Signal-

gradienten mit einer Längenskala von mehreren zehn bis hundert Zellen in Stunden bis

Tagen gebildet werden. Im Unterschied zum Diffusions/Degradations-Mechanismus,

der häufig zur Erklärung von Gradientenbildung im Kontext von Embryonalentwick-

lung herangezogen wird, benötigt der in dieser Arbeit präsentierte Signalübertragungs-

mechanismus also weder sehr schnell diffundierende noch sehr langlebige Moleküle, um



die Bildung von langreichweitigen Signalgradienten auf biologisch relevanten Zeitskalen

zu erklären. Da viele Morphogene langsam diffundieren, macht das den Zell-zu-Zell-

Signalübertragungsmechanismus zu einem attraktiven Konzept, um die Bildung von

langreichweitigen Morphogengradienten zu erklären.
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1. Introduction

1.1. Organising tissues - a patterning challenge

The vast majority of cells in our body has the same genetic information [3]. They
can nevertheless be very different from each other: skin cells, nerve cells, cells
that give rise to our internal organs are just a few examples of the different cell
types, characterised by distinct morphology, contents and function. The reason
for this is that different cell types use different subsets of the genetic informa-
tion they have. Thus, the question is how the distinct cell types ’know’ which
parts of the DNA to read out, i.e. how to regulate their gene expression. The
challenge becomes even more obvious, when taking into account that virtually
all cells of the body are derived from a single one: the fertilised egg. Thus, the
individual cell fate choices in the forming embryo have to be coordinated both
in space and in time, ensuring that the right cells are formed at the right place.
At its heart, this is a patterning challenge. This intricate challenge of patterning
newly-formed tissue is however not restricted to development: animals capable of
regenerating missing body parts after amputation or even of whole-body regen-
eration from fragments are faced with this patterning challenge throughout their
lives. Development and regeneration are similar in that during both new tissue
is generated and organised. They are different in that development always starts
from a fertilised egg and goes down a specific path that is seemingly invariant
between individuals. Regeneration, on the other hand, poses the additional chal-
lenge of a variable starting point, starting from whatever is left after injury and
rebuilding the missing part. Lizards, for instance, can shed their tail if threatened
or as a predator defence mechanism and regenerate it [70], salamanders can re-
build an entire limb after amputation [35], zebra fish can regenerate their caudal
fin, eyes, liver, pancreas, kidney, bones, sensory hair and even their heart and
central nervous system [35]. Certain planarian flatworm species and the fresh
water polyp hydra can even undergo whole-body regeneration, reforming their
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1. Introduction

whole body from a tiny amputation fragment in the case of planarians [84], or
even re-aggregating individual cells into a new organism in the case of hydra [34].
In addition to the variable initial condition, regeneration also requires the new
structure to match the size and proportions of the regenerating organism. Since
regeneration also happens in fully grown adult organisms, the structures to be
formed are typically much larger than those formed during embryonic develop-
ment. Taken together, this poses the challenge of generating large-scale, scalable
patterning information.

New tissue is formed from existing tissue by division of resident cells, both
during embryonic development and during regeneration. The fertilised egg is to-
tipotent, able to give rise to all tissues of the body and all the extra embryonic
tissue required for development [35]. It divides, generating pluripotent embryonic
stem cells that are able to give rise to all cell types of the body. Over the course
of development, these produce more specialised, multipotent stem cells that can
give rise to a certain subset of tissues. Those are also still present in the adult
organism as adult stem cells that replenish the respective tissues they reside in
over the course of the animal’s life [35]. Replenishing tissue during regeneration
requires generating cells of all missing types. It thus requires either stem cells of
sufficient potency or body cells to first de-differentiate and then to re-differentiate
into the required cell types [35]. In particular, whole-body regeneration observed
in planarians is enabled by pluripotent stem cells in the adult organism that are
also present in the absence of injury. In this case, they contribute to homeo-
static tissue renewal (reviewed e.g. in [84], [50]). Thus, cell division gives rise to
the newly-forming embryo, in case of development, or to the newly-formed body
part(s) in case of regeneration. But how is this newly-formed tissue organised?
How do the cells adopt different cell fates and how is the physical shape of the
organism generated?

These questions have fascinated people for centuries and because of the shared
tissue-organisation challenge in both development and regeneration it may not
come as a surprise that we have learned from one for the other and vice versa.
Since all bilaterians, i.e. animals having a mirror-symmetric body plan, and thus
the majority of animals, are characterised by three body axes, (the anteropos-
terior - AP or main body axis, the dorsoventral - DV, and mediolateral - ML

2



1.1 Organising tissues - a patterning challenge

Figure 1.1.: Bilaterians have three body axes. Bilaterians have a mirror-
symmetric body plan with the main body axis or anteroposterior
(AP, head to tail) axis as the symmetry axis. Perpendicular to this
axis, the dorsoventral (DV, belly to back), and mediolateral (ML,
centre to left and to right) axes are defined.

axes, Fig. 1.1), a lot of work has been dedicated to deciphering tissue organisa-
tion along theses axes. Signalling, often in form of morphogen gradients, has
been found to organise these body axes both during embryonic development and
regeneration [15, 16, 40, 44, 45, 46, 49, 53, 58, 77, 79].

In this thesis, we introduce a relay mechanism for the formation of long-ranged
morphogen gradients, in which the signal is passed on from one cell to the next
by positive feedback. This idea is inspired by observations on the Wnt signalling
gradient patterning the main body axis of planarian flatworms [99, 98]. In order
to put this project onto context, we introduce the history of pattern formation
with a special emphasis on how the concept of morphogen gradient arose and how
they where identified experimentally (Section 1.2). Subsequently, we summarise
how morphogen gradients are employed to pattern body axes with a special focus
on canonical Wnt signalling patterning the main body axis (Section 1.3). We
then introduce planarian flatworms, that are true masters of regeneration and self-
renewal and thus a great model system to study patterning (Section 1.4). Finally,
we present the current physical understanding of morphogen gradient formation
based on diffusion and degradation (Section 1.5) and conclude by stating the
specific aim of this thesis (Section 1.6).

3



1. Introduction

1.2. The concept of morphogen gradients arises

In 1898, Morgan observed that the rate at which flatworms regenerated is de-
pendent on the position of the amputation fragment along their main body axis
[68]. He deduced that there were ’formative substances’ present in a graded man-
ner along the body axis that led to this behaviour ([69] as cited in [109]). The
chemical nature of signals capable of organising tissue, and their origin from a
localised source inside the tissue, was shown by fascinating surgical experiments
during embryonic development. A famous example is the Spemann organiser,
discovered by transplanting a piece of tissue from the dorsal lip tissue of a de-
veloping newt embryo at gastrula stage into the region that gives rise to the
ventral epidermis of an embryo at the same stage of a newt species with a dif-
ferent pigmentation (Fig. 1.2, [93]). This prompted the latter to form a second
embryonic axis, eventually leading to an additional embryo joined belly-to-belly
to the host. Due to the different histological properties of the two species used for
tissue grafting in this experiment, it was obvious that the secondary embryo was
comprised both of graft and donor tissue [93]. Mangold and Spemann concluded
that formation of the secondary body axis was induced by the organiser [93].

In addition to the experimental investigation of tissue patterning, there were
also purely theoretical considerations. In 1952, Alan Turing asked how a ’form
producer’, that he termed ’morphogen’ obtains its spatial organisation [104]. He
realised that diffusion, normally known to even out any concentration differences,
can, under specific conditions, give rise to spatial patterns when combined with
chemical reactions (Fig. 1.3, [104]). In the self-organised reaction/diffusion system
he suggested, a slowly diffusing molecule that activates its own net production
and a quickly diffusing molecule that inhibits its own net production mutually
activate and repress each other’s net production. This leads to spontaneous,
stable pattern formation after a local perturbation of a homogeneous steady state.
When introducing the term ’morphogen’, which was ’not intended to have any
very exact meaning’ [104], he probably did not foresee that we would still be
using this term decades later to refer to a diffusible substance acting away from
its origin of production to induce cell fate decisions in a concentration-dependent
manner [35]. In his work, he also stressed the importance of mechanical forces in
tissue organisation and suggested that there was an interplay between chemical
patterning processes by reaction and diffusion and mechanical processes.

4



1.2 The concept of morphogen gradients arises

Figure 1.2.: The Spemann organiser. A piece of tissue from the the dorsal
blastopore lip of a pigmented donor newt embryo (rose) is trans-
planted into the presumptive epidermis of another un-pigmented
newt embryo (host, yellow). The latter forms a secondary invagina-
tion at the site of tissue transfer, that develops into induced second-
ary structures. Eventually, an additional embryo is formed joined
belly-to-belly to the host. Figure reproduced with permission from
Ref. [88].

Focussing on the chemical signals, Lewis Wolpert introduced the concept of
’positional information’ in 1969 [118]. The idea is, that a cell ’knows’ where it
is in space and adopts a cell fate appropriate to this position. In line with the
experiments of Morgan [68], Mangold, and Spemann [93] described above, he
suggested that a concentration gradient of a substance could induce cell fate in
a concentration-dependent manner [118]. His illustrative example of a system
generating different colors based on their positional information gave this idea
the name ’French flag model’1 (Fig. 1.4).

1Note that Wolpert originally introduced the ’French flag problem’ to conceptualise the chal-
lenge of pattern formation in face of growth and regeneration: The pattern had to be scaled
to tissue size and reform after amputation ([118], [117] as cited in [92]). The concept of the
’French flag model’ as we use it today developed over the years based the idea of ’positional
information’ that he introduced as one of the possible ways to solve this problem [92].

5



1. Introduction

Figure 1.3.: Turing patterns. Two molecules species can form self-organised
patterns based on reaction and diffusion. Example of a quickly dif-
fusing inhibitor (red) and a more slowly diffusing activator (blue)
that inhibit and activate their own and each-other’s production, re-
spectively, is shown.

In 1970, Francis Crick introduced a model for the formation of concentration
gradients of a diffusive substance based on a local source and a local sink, giving
rise to a linearly decaying steady-state profile (Fig. 1.5, [23]). Two years later,
Gierer and Meinhardt suggested a refinement of Turing’s idea of mutual activa-
tion and inhibition of two diffusive substances implicated in pattern formation:
given a shallow source gradient, two initial distributions of a quickly diffusing in-
hibitor and a slowly diffusing activator self-organise into a pattern that can even
roughly scale with system size if activator concentration is limited, e.g. by sat-
uration in production [34]. It is remarkable that all of these considerations were
made before a morphogen gradient had actually been shown to induce different
cell fates in a concentration-dependent manner in a biological system. The first
experimental proof of a morphogen gradient was accomplished years later, when
Nüsslein-Volhard and co-workers discovered Bicoid2 [32, 24, 25].

Cytoplasmic transplantation experiments using cytoplasm of Bicoid knock-out,

2Note that, in an attempt to unify notation conventions between different species, we will
follow the convention introduced in Alberts et al. and refer to genes and RNAs in italics,
starting with an upper case letter, e.g. Bicoid, whereas we will refer to proteins in roman
font, starting with a capital letter, e.g. ’Bicoid’, unless they traditionally have a lower case
name such as e.g. ’actin’ [3].

6



1.2 The concept of morphogen gradients arises

Figure 1.4.: The French flag model. Cells (squares) exposed to a morphogen
concentration (C) above a certain threshold C1 differentiate in a cer-
tain way (depicted as blue), those exposed to concentrations between
C1 and C2 differentiate differently (depicted as white) and those ex-
posed to concentration below C2 attain yet another fate (depicted as
red).

knock-in, and wild-type embryos revealed that Bicoid specifies anterior fate and
represses posterior fate in a concentration-dependant manner [32]. Strikingly, its
mRNA was shown to be localised at the anterior pole [31, 14]. The visualisation
of the Bicoid protein gradient decaying away from the anterior pole [24] as well
as the finding that Bicoid does indeed induce different fates in the anterior half
of the fly embryo in a concentration-dependent manner [25] provided the first
molecular evidence for, and thus confirmed the idea of, a morphogen gradient
(Fig. 1.6). Moreover, the Bicoid protein gradient was shown to have an exponen-
tially decaying profile [25].

Equivalently compelling evidence for a morphogen in vertebrate development
stems from investigations of Activin (TGF-β superfamily) signalling in develop-
ing Xenopus laevis : different Activin concentrations led to differential gene ex-
pression in a concentration-dependent manner in unspecified Xenopus cells [38].
This finding was confirmed and refined in vivo by introducing an Activin source
into the developing tissue [42]. Close to the Activin source, i.e. at high Activin
concentrations, Goosecoid was expressed, whereas at a medium distance, i.e. at
lower concentrations Xbra was expressed. Neither of these two genes was ex-
pressed even further away at very low Activin concentrations (Fig. 1.7, [42]). In
particular, Activin was found to act by diffusion, as revealed by inserting a patch
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1. Introduction

Figure 1.5.: Crick’s model for gradient formation. A linear steady-state
profile of morphogen concentration (C) is generated if the morphogen
is exclusively produced by a local source cell and exclusively degraded
by a local sink cell. The molecule spreads via diffusion. Figure based
on [23].

of tissue blocked for protein synthesis [42]. These findings further strengthened
the notion of a morphogen as a diffusible substance regulating gene expression in
a concentration-dependent manner [42].

In general, morphogens are signalling molecules. Signalling molecules elicit an
intracellular response by binding to a receptor on the cell surface. This binding
activates an intracellular signalling cascade, called a signalling pathway [3, 35].
These signalling pathways can have a variety of effects on the cell. In particu-
lar, they can evoke changes in gene expression in the receiving cell [35]. Graded
concentration profiles of signalling molecules are often referred to as ’signalling
gradients’ rather than ’morphogen gradients’. While the term ’morphogen gradi-
ent’ stresses the diffusive and cell fate-inducing properties of the molecule, the
term ’signalling gradient’ stresses the concept of the cellular response induced by
the binding of the molecule. Interestingly, it is not only the concept of a morpho-
gen, but also the signalling pathways employed for patterning that are highly
conserved across the tree of life.

The questions of how morphogen gradients are formed and how they are then
read out in order to induce cell fates appropriate to the cell’s position has con-
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1.2 The concept of morphogen gradients arises

Figure 1.6.: The first observation of a morphogen gradient. A) The Bicoid
protein gradient visualised by horse-radish peroxidase reaction in a
whole mount of a wild-type Drosophila embryo in syncytial blasto-
derm stage. Modified with permission from Ref. [24]. B) Quanti-
fication of the Bicoid protein gradient in embryos at early nuclear
cycle 14. Average immunostaining intensity along the AP axis of
ten embryos ± standard deviation. Modified with permission from
Ref. [24]. C) eve mRNA is expressed in response to Bicoid. The
spatial onset of the expression pattern is moved posteriorly when the
number of Bicoid gene copies in the mother is increased. Modified
with permission from Ref. [25]. Anterior to the left in all panels.

tinued to fascinate researchers ever since the morphogen concept was introduced.
Improving methods of molecular biology and genetics, including fluorescently tag-
ging proteins of interest to investigate their spatial distribution and even their
dynamics in vivo has helped this endeavour substantially. This allowed for a
continued intertwined theoretical and experimental analysis of gradient forma-
tion and interpretation. The fruit fly Drosophila has proven an invaluable model
system to this end. The first discovered morphogen gradient, the Bicoid gradi-
ent, has been studied extensively both experimentally and theoretically [39, 94].
Note that Bicoid is a transcription factor [26, 97] rather than a signalling mo-
lecule. It can still act as a morphogen since the early fly embryo is a syncytium,
where all nuclei share a common cytoplasm [35]. Thus, a concentration gradient
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1. Introduction

Figure 1.7.: Experimental evidence for concentration-dependent gene
expression. Introducing an Activin source in form of beads into
developing Xenopus embryos leads to expression of the Goosecoid
gene in the vicinity of the beads at high Activin concentration and
expression of the Xbra gene further away at lower Activin concre-
tions. Neither gene is expressed far away from the beads. Based on
[42], illustration inspired by [35].

in this common cytoplasm can regulate gene expression in a concentration and
thus position-dependent way [26, 97]. Bicoid regulates the expression of gap genes
[72, 26, 97, 22, 29, 41]. Their spatially distinct expression further patterns the AP
axis in the developing fly embryo [72, 26, 97, 22, 29, 41]. Analysing the expression
patterns of gap genes, the concept of positional information has been quantified
[27]. Positional information provided by four gap genes is sufficient to specify the
position of a cell along the anteroposterior axis with an error of approximately
1% [27]. Moreover, analysing the response of the gap gene Hunchback to Bicoid,
the dilemma of the requirement for robustness as testified by the well-patterned
organisms in nature and the stochasticity of gene expression underlying both the
formation and readout of morphogen gradients has been addressed [103]. Further-
more, it has been debated whether the Bicoid protein gradient is indeed formed
by diffusion or laid out by an mRNA gradient that is then translated [94]. It has
also been suggested that the Bicoid gradient is read out before it has reached its
steady state [13].

Another morphogen gradient that has been heavily studied in the fly embryo
is the Dpp gradient (Fig. 1.8). It patterns the anteroposterior axis of the fly
wing imaginal disk, the structure that will give rise to the wing in the adult fly
[86, 10]. Dpp is produced locally in a stripe of cells at the boundary between
the anterior and posterior compartments of the wing imaginal disk and spreads
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1.3 Body axes organisation by signalling gradients

Figure 1.8.: The Dpp gradient in the Drosophila wing imaginal disk. A
The fly wing imaginal disk. Anterior to the left, dorsal up. Dpp
is expressed at the anterior-posterior compartment boundary (green
stripe). Reproduced according to the Creative Commons CC BY li-
cence (https://creativecommons.org/licenses/by/4.0/) from [10]. B
Dpp-GFP (green) forms a concentration gradient around its (en-
dogenous) source (double arrow). Modified with permission from
Ref. [54]. C) Normalised average Dpp-GFP fluorescence intensity
in the tissue outside of the source region of five wing disks. Black
curve: exponential fit to black trace. Reproduced with permission
from Ref. [54].

into the tissue. The formation of the gradient has been quantitatively explained
by effective diffusion, with the diffusion constant, degradation rate and produc-
tion rate measured by fluorescence recovery after photobleaching (FRAP) [54].
Endocytosis has been found to be essential for the formation of this gradient
[54]. Therefore, transcytosis, that is molecule spreading through cells via re-
peated rounds of endocytosis and exocytosis, has been discussed as a mechanism
of the spreading of signalling molecules in addition to their extracellular diffu-
sion [17, 121, 2].

In the next section, we introduce the major signalling pathways patterning the
body axes.

1.3. Body axes organisation by signalling

gradients

Four major families of signalling molecules have been found to be implicated
in organising differential gene expression and often act as morphogens, regulat-
ing gene expression in a concentration-dependent manner: The fibroblast growth
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factor (FGF) family, the Hedgehog family, the Wnt family and the TGF-β super-
family [35]. All of these signalling pathways consist of an extracellular signalling
molecule that binds to a receptor on the cell membrane and subsequently elicits
a signalling cascade inside the cell. Typically, the signalling molecules carry post-
translational modifications, such as glycosylations and lipid modifications in order
to be fully functional. These can be required both for correct secretion of the
signalling molecule and for binding to the extracellular receptors [8, 35]. During
development, these signalling pathways serve many purposes including patterning
the body axes. Interestingly, which pathway is used to pattern which body axis
is highly conserved throughout the animal kingdom. The anteroposterior axis is
organised by canonical Wnt signalling (reviewed in [79]). The dorsoventral axis is
organised by Bmp signalling (a branch of the TGF-β superfamily) (reviewed in
[15]). For the ML axis, patterning strategies and mechanisms are more variant,
but conservation of signalling pathways is still observed (e.g., Bmp, Slit) [62, 35].

Signalling gradients have also been found to be instrumental for tissue organisa-
tion during regeneration. In particular, the anteroposterior axis is also patterned
by a Wnt signalling gradient during whole-body regeneration in hydra [46] as
well as in planarians (Fig. 1.16 [44, 49, 77]). We will focus on the Wnt signalling
pathway in this thesis and thus introduce both the pathway and its function in
organising the main body axis in more detail in the following two sections.

1.3.1. The canonical Wnt signalling pathway

The signalling pathways, initiated upon binding of a Wnt ligand to a receptor
on the cell membrane, are separated into the canonical, β-catenin-mediated Wnt
signalling pathway and so called non-canonical, β-catenin-independent Wnt sig-
nalling pathways. The latter include the planar cell polarity pathway, and the
Wnt/calcium pathway [35]. We will focus on the canonical Wnt signalling path-
way (reviewed e.g. in [114, 36]) in this thesis because one of its many functions
is to pattern the main (AP) body axis of planarians and other animals. We will
refer to it as the Wnt signalling pathway for short and specify when discussing
other forms of Wnt signalling.

The intracellular effector to canonical Wnt signalling (reviewed e.g. in [114]
and [36]) is β-catenin. In many organisms, β-catenin has a dual role as co-
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1.3 Body axes organisation by signalling gradients

transcription factor as well as in cell-cell contacts as an integral part of adherens
junctions [3]. In this section, we focus on its role as co-transcription factor, reg-
ulated by Wnt signalling. In the absence of a Wnt signal, β-catenin is constantly
produced and turned over by the cells (Fig. 1.9 left). β-catenin degradation is me-
diated by a so-called ’destruction complex’, consisting of the scaffold proteins axin
and APC, as well as the kinases CK1 and GSK3. The two kinases phosphorylate
β-catenin in a sequential manner starting with CK1. These phosphorylations
target β-catenin for ubiquitination by β-TrCP, leading to degradation by the
proteasome. In the nucleus, Wnt-responsive elements (Wres) on the DNA are
bound by transcription factors of the Tcf/Lef1 family which in turn are bound by
transcriptional repressors such as Groucho and transducin-like enhancer (TLE).
Thus, the expression of Wnt-responsive genes is suppressed.

Wnt binds to a receptor complex on the cell membrane that consists of Frizzled
and LRP5/6 (Fig. 1.9 right). This binding requires a lipid modification of the
Wnt with a palmitic acid [36, 8]. Note that in most organisms, there are several
different Wnt proteins and Fzd receptors and the respective specificity of binding
is a subject of current investigation [36]. When Wnt is bound to the receptor
complex, parts of the destruction complex also bind to the receptor complex via
Dishevelled (Fig. 1.9 right). This leads to disruption of the degradation complex
and thus accumulation of β-catenin in the cytoplasm [114]. Elevated levels of
cytoplasmic β-catenin allow for β-catenin translocation to the nucleus. In the
nucleus, β-catenin binds transcription factors of the Tcf/Lef1 family, replacing
the transcriptional repressors. β-catenin thus acts as a transcriptional activator
leading to the expression of Wnt signalling target genes [114, 36]. These expres-
sion changes can lead to cell fate specification and cell differentiation as well as
to proliferation [114].

The level of Wnt signalling activity, often roughly proportional to nuclear β-
catenin concentrations in the cell, are not only influenced by the amount of Wnt
ligands in the extracellular environment. Wnt signalling is additionally fine-tuned
extracellularly by both soluble and membrane-bound modulators (reviewed e.g.
in [36, 61]). These include secreted inhibitors such as sFRPs (secreted frizzled
related proteins), WIF1 (Wnt inhibitory factor), and Cerebus (Cer) that act by
directly binding to Wnt proteins, blocking their ability to bind to receptors [36].
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Figure 1.9.: The canonical Wnt signalling pathway. In the absence of a
signal (left panel), β-catenin is bound by its destruction complex,
marked for degradation and degraded by the proteasome. Wnt-
responsive elements (Wre’s) on the DNA are bound by transcription
factors of the Tcf/Lef1 family. These bind transcriptional repressors
such as Groucho and transducin-like enhancer (TLE), repressing the
expression of Wnt signalling target genes. In the presence of a Wnt
signal (right panel), the degradation complex is bound to the re-
ceptor, freeing β-catenin to accumulate in the cell, to translocate to
the nucleus. There, β-catenin replaces the transcriptional repressors
and acts as a transcriptional activator. This leads to the expression
of Wnt signalling target genes.

Moreover, Notum, Tiki1, and Tiki2 inactivate Wnt enzymatically, by cleaving of
the palmitoyl group and the N-terminus of the Wnt protein, respectively [36].
The secreted Wnt signalling inhibitors Dkk (Dickkopf) and Sost bind to LRP5/6,
preventing complex formation with Fzd and thus successful Wnt signalling [36].
Moreover, Wnt signalling is positively regulated by several R-spondin proteins.
These secreted proteins indirectly foster a higher density of Fzd receptors on the
cell membrane and thus make the cell more susceptible to Wnt signalling [36].

A common feature of signalling pathways, also found in Wnt signalling, is neg-
ative feedback. In particular, several Wnt signalling inhibitors, including Dkk,
sFRPs, Notum, Cer, and Sp5, are direct targets of Wnt signalling [36]. Moreover,
parts of the intracellular β-catenin-destruction machinery, such as Axin2 are up-
regulated in response to Wnt signalling [36].

Wnt signalling is prevalent in many contexts including development, regenera-
tion, ageing and cancer [114]. Moreover, it has important functions during tissue
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1.3 Body axes organisation by signalling gradients

homeostasis, for instance in stem cell regulation [114]. In the next section, we
discuss the role of Wnt signalling during embryonic development and regeneration.

1.3.2. Wnt signalling during embryonic development and

regeneration

All bilaterians are faced with the challenge of patterning their main body axis
during development. The vast majority of them employs Wnt signalling for this
purpose [79]. Across all branches of bilaterians, the posterior end is character-
ised by high levels of Wnt signalling, that is, high levels of nuclear β-catenin, as
well as by domains of Wnt gene expression [79]. In contrast, the anterior end
is often characterised by the expression of Wnt inhibitors [79]. We will cite a
few specific examples across the range of bilaterians here and refer to Ref. [79]
for an extensive review of the subject. In early gastrulation stage of the mouse
embryo, nuclear β-catenin protein as well as expression of Wnt3 are found at
the prospective primitive streak at the posterior end of the embryo, whereas the
Wnt inhibitor Dkk1 is expressed in the anterior visceral endoderm [79]. In the
tailbud stage of zebrafish, Wnt8 and Wnt3a are expressed posteriorly and the
Wnt inhibitor Sfrp3/frzb is expressed anteriorly [79]. In adult planarians, Wnt1,
Wnt11-1, Wnt11-2, Wnt11-5 are expressed posteriorly [43], whereas the Wnt in-
hibitors Sfrp-1 and -2 [43], as well as Notum [80] are expressed anteriorly. In
the larval stage of C. elegans, the C. elegans Wnt genes Lin-44/Wnt, Egl-20/Wnt
and Cwn-1/Wnt are expressed posteriorly [79].

Wnt signalling organises the main body axis of animals beyond bilaterians:
Cnidarians such as the fresh water polyp hydra and the sea anemone Nematostella
vectensis are characterised by an oral-aboral axis that has been likened to the AP
axis in bilaterians [79]. This axis is also characterised by high levels of nuclear
β-catenin and expression of Wnt genes close to the oral pole and the expression
of Wnt inhibitors such as Dkk aborally [79]. Even in poriferans there is evidence
for polarised Wnt expression: The free swimming larvae of the demosponge Am-
phimedon queenslandica express Wnt at their pigmented pole pointing away from
the direction of movement [79]. Thus, the role of Wnt signalling in patterning
the main body axis during embryonic development is highly conserved across the
animal kingdom.
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The importance of Wnt signalling for patterning the main body axis is not
restricted to embryonic development. It is also instrumental for AP axis pat-
tering during regeneration [79]. As discussed above (Section 1.1), some animals
are capable of varying degrees of regeneration. In zebrafish fin regeneration,
Wnt signalling is the master regulator of all signalling pathways implicated in
coordinating regeneration [35]. Hydra and some planarian species are capable of
whole-body regeneration from tiny amputation fragments [35]. Both employ Wnt
signalling to re-organise their main body axis after amputation [46, 44, 49, 77].

The widespread and profound patterning functions of Wnt, together with its
spatially distinct pattern of action gave rise to the notion of Wnt acting as a
morphogen. However, it has been heavily debated to what extent it can act as
one. While it is certain that Wnt is able to influence cell fate decisions, it is
unclear whether Wnt is a diffusible molecule. We summarise this controversy in
the next section.

1.3.3. Wnt - a morphogen?

Several signalling molecules, including Wnt proteins [115], but also Hedgehog
[82, 75], carry lipid modifications that are essential for their signalling function.
Those lipid modifications render them hydrophobic. It is questionable whether
hydrophobic molecules can spread via diffusion in an aqueous environment like the
extracellular space [37, 73, 8]. Based on evidence in the imaginal fly wing disk,
argosomes have been suggested to ’carry’ Wnt through the extracellular space
[37]. Initially described as membrane exovesicles [37], they were later found to
be exogeneously derived lipoproteins [73]. Moreover, chaperones such as Swim
(secreted Wnt-interacting molecule) associating with Wnt and shielding their lipid
modification have been identified [36]. Additionally, Wnt proteins have been sug-
gested to spread bound to sFRPs in Xenopus embryos, introducing a potential
positively regulatory role for these secreted Wnt inhibitors [63].

Alternately, Wnt proteins have been shown to travel in actin-based filipodia,
also called cytonemes [95]. In cytoneme-based transport, Wnt proteins are trans-
ported intracellularly to the tip of the membrane protrusion. The protrusion can
extend across more than one cell diameter and contact neighbouring cells like an
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arm that reaches out. This way, the Wnt protein can be directly applied to the
receiving cell at the cell-cell contact [95].

A piece of evidence questioning the necessity of Wnt diffusion stems from Dro-
sophila development. Wingless, the main Drosophila Wnt protein, is able to exert
its functions in the absence of diffusion: Alexandre et al. blocked wingless dif-
fusion by genetically engineering it to be membrane-tethered. They observed an
approximate 10 hour delay in the development of the flies and a 10-12% reduc-
tion of wing area in otherwise normally developing flies. Cells in close proximity
to cells that express the membrane-tethered Wnt were found to express Wnt re-
sponse genes. Hence, Wnt is able to signal to neighbouring cells when membrane-
bound [4].

Evidence in favour of the idea of Wnt acting as a morphogen, has been provided
in C.elegans [74]. A 200 µm long posterior to anterior Egl20/Wnt protein gradient
has been observed in vivo [74]. It has been shown to be formed by free Wnt dif-
fusion [74]. Free diffusion was shown by fast recovery after photo bleaching and a
markedly reduced gradient range when tethering the Wnt to the membrane of the
body wall musculature using a ’morphotrap’: An anti-GFP nanobody that could
bind the fluorescently tagged Wnt and was tethered to a transmembrane domain
(of CD8a) which was fluorescently labelled intracellularly [74]. Physiological rel-
evance of the resultant change in gradient shape was assayed by the migration
of Q neurons. The morphotrapped Egl-20/Wnt phenocopies Wnt/Egl-20 loss of
function mutants [74].

In light of this debate, it is interesting to investigate other potential means of
morphogen spreading aside from diffusion. In this thesis, we present a cell-to-cell
relay mechanism for signalling gradient formation. This relay is based on positive
feedback that can lead to effective morphogen spreading even in the absence of
diffusion. The model that we introduce in this thesis is inspired by observations
of positive feedback in Wnt signalling in planarians [98]. In the next section, we
introduce planarian flatworms.
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1.4. Planarian flatworms - Masters of

regeneration

1.4.1. An introduction to planarians

Planarians are free-living flatworms. Various planarian species can be found in
fresh water, marine and terrestrial habitats. They are bilaterians, more specific-
ally protostomes. They belong to the superphylum Lophotrochozoa, and within
that to the phylum of Platyhelminthes, forming the clade Tricladida [50]. Ar-
guably, their most fascinating feature is their amazing regeneration capability.
It varies between different species, ranging all the way from robust whole-body
regeneration to hardly any regenerative capacities in some marine species [106].
Many species reproduce sexually, like other organisms do, other species comprise
sexual and asexual strains [106]. Asexual strains often reproduce by fissioning.
That is, the animals rip off the posterior part of their body. Subsequently, both
pieces regenerate into a complete animal. They thus critically depend on their
regenerative capacity in order to reproduce [106].

The model presented in this thesis is inspired by observations in the planarian
model species Schmidtea mediterranea. These fresh water planarians show very
robust whole-body regeneration, regenerating from arbitrary amputation frag-
ments [50, 106, 84]. That is, a worm cut into small pieces will regenerate an entire
organism from each of the pieces. The wound is closed by muscle contraction and
new tissue starts to form as early as one day post amputation with the whole
worm being regenerated within two weeks (Fig. 1.10 A, [84, 50]). Planarian body
size varies between 0.5 and 20 mm in length depending on their feeding status
(Fig. 1.10 B, [102]). In particular, the worms grow when fed and shrink when
starved [102].

The complex anatomy of planarians (Fig. 1.11) includes a set of photoreceptors
that looks like eyes clearly distinguishing their wider head end from the pointier
tail end. They glide across surfaces using the cilia on their ventral side [96],
and feed using a muscular tube, the pharynx (see number 4 in Fig. 1.11), that
they can extrude through a ventral mouth opening from the middle of their body
[50]. For a large part, their inside consists of gut, forming one major branch
anterior to the pharynx and two major branches around the pharynx extending
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Figure 1.10.: Regeneration and dynamic growth of the flatworm
Schmidtea mediterranea. A The flatworm fully regenerates
within two weeks when cut as indicated by the red lines in the
left panel. The regeneration time course of the head piece (top)
trunk piece (middle) and tail piece (bottom) is shown, dpa: days
post amputation. Reproduced with permission from Ref. [50]. B)
Flatworms dynamically grow and shrink depending on the quantity
of food available. Scale bar: 1 mm. Reproduced with permission
from Ref. [102].

posteriorly. A complex gut network extends from these major branches (see
number 2 in Fig. 1.11). The pharynx (see number 4 in Fig. 1.11) connects the
gut to the outside and is used both for the uptake of food and the excretion of
faeces. It can be retracted into the body. A network of protonephridia performs
excretory functions similar to our kidneys (see number 3 in Fig. 1.11, [101]).
Their central nervous system consists of a brain (cephalic ganglia) in the head
region and two ventral nerve cords ranging from the ganglia to the posterior
ends (see number 1 in Fig. 1.11, [1]). The two ventral nerve cords are bridged
by transverse axons that form a peripheral nerve net [1]. The internal organs
are embedded in loosely packed mesenchyme consisting of mesenchymal cells.
This is where the proliferative planarian cells, the neoblasts, reside (see number
5 in Fig. 1.11, [50]). This cell population contains pluripotent stem cells [108].
They are small, round cells characterised by a large nucleus and a small amount
of cytoplasm [6]. There are different classes of neoblasts including pluripotent
cNeoblasts (clonogenic neoblasts, [108]) and multipotent stem cells that give rise
to multiple lineages [105, 28, 67, 81, 120]. All of this is surrounded by a shell-like
body wall musculature, comprised of four layers of muscle fibres: From inside to
outside a layer of longitudinal fibres, a layer of diagonal fibres, a thin layer of
longitudinal fibres and an outer layer of circular fibres (see number 6 in Fig. 1.11,
[20]). On top of the body wall musculature, there is the basement membrane and
an epidermal cell layer, which is covered by a thick layer of mucus.
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Figure 1.11.: Planarian anatomy. Overview (top) and microscopy (bottom)
images of the main organ systems. 1) Central nervous system: two
cephalic ganglia (red, PC2 in situ hybridisation and two ventral
nerve cords (green, α-tubulin immunostaining, also labels pharynx).
2) Gut: branched network consisting of three major branches - one
anterior to the pharynx and two around the pharynx (residing in
the part that appears blue in the middle) in the posterior half of
the worm (red, PorcupineA in situ hybridisation; green, Sufu in
situ hybridisation; blue, nuclear counterstaining with DAPI). 3)
Protonephridia: excretory functions similar to out kidneys. Depth-
coded confocal microscopy maximum projection (acetylated-tubulin
immunostaining). 4) Pharynx: muscular tube for feeding and ex-
cretion (red, phalloidin staining of muscle actin; green, acetylated-
tubulin immunostaining of cilia; blue- nuclear counter staining). 5)
Neoblasts: diverse population of proliferating cells, containing pluri-
potent stem cells (red, confocal microscopy maximum projection of
Piwi-1 in situ hybridisation in tail area). 6) Body wall muscu-
lature: longitudinal, diagonal and circular fibres (depth-coded con-
focal maximum projection of 6G10 immunostaining). Reproduced
with permission from Ref. [50].
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The worms constantly turn over all of these complex tissues, replacing old
and dying cells with new cells derived from neoblasts. Fascinating experiments
showed that a single neoblast is enough to repopulate a lethally irradiated worm
that would otherwise die due to a lack of neoblasts replenishing dying cells [108].
This confirms both that cell turnover is necessary to keep planarians alive and
that there is a subpopulation of neoblasts, the cNeoblasts, that is pluripotent and
thus capable of repopulating the entire worm (Fig. 1.12, [108]). The neoblasts
also enable tissue replacement during regeneration from arbitrary amputation
fragments [84]. The newly-formed cells have to differentiate into the cell type ap-
propriate for their position in the body. The constant turn-over of cells (Fig. 1.12)
along with the ability to dynamically change body size in response to the amount
of food available (Fig. 1.10), and the extensive regenerative capacity of the worms
(Fig. 1.10) require for patterning systems to be in place in the adult organism.

Taken together, flatworms set three major challenges to their patterning sys-
tems (Fig. 1.13): The patterning systems have to operate at adult length scales
of up to 2 cm. They have to be able to dynamically scale 40-fold over 1.5 orders
of magnitude with changes in body size. They have to be able to re-form in
case of amputation to organise the regeneration of tissue. Thus, the patterning
mechanisms have to be long-ranged, scalable and self-organised.

In the next section, we introduce the pattering systems of the worm with a
special focus on the role of Wnt signalling in organising the main body axis.

1.4.2. The patterning system of planarians

In light of the extensive regenerative and scaling capabilities of flatworms, a lot
of work has been dedicated to deciphering their patterning mechanisms. Well-
conserved signalling pathways have been found to organise their body axes: As
in other organisms [79], their anteroposterior axis is organised by Wnt signalling
[44, 49, 77, 100, 99, 98]. Again, as observed in other organisms [15], their dorsov-
entral axis is organised by Bmp signalling [85, 66, 65, 33]. The mediolateral axis
of the worms is organised by Wnt5 and Slit1 [19, 43].

Graft experiments between irradiated and non-irradiated worms have shown
that the patterning information resides in differentiated, non-neoblast cells [89,
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Figure 1.12.: Cell renewal in planarians. The population of neoblasts con-
sists of pluripotent cNeoblasts (top) and several subpopulations of
lineage-committed progenitors (middle) that can together give rise
to all the cell types (bottom) in planarians throughout their lives.
Reproduced with permission from Ref. [50].

52, 116]. Subsequently, the body wall musculature has been identified as the
physical location of this coordinate system, where many of the genes important for
patterning the worm are expressed [116, 90, 60]. Thus, the body wall musculature
is thought to set up a coordinate system instructing the differentiation of stem
cells in a position-dependent manner [116]. As discussed above, the body wall
musculature comes in layers: two longitudinal ones, a circular one and a diagonal
one (see number 6 in Fig. 1.11, [20, 60]). Interestingly, some genes involved in
patterning the DV axis, such as Admp, or in patterning the ML axis, such as Slit,
have been found to mainly be expressed in the longitudinal muscle fibres [60]. On
the other hand, some genes involved in patterning the AP axis, such as Wnt11-
1 have been found to mainly be expressed in circular muscle fibres [60]. Thus,
the patterning genes seem to mainly be expressed in the muscle fibres that run
orthogonally to the axis to be patterned. Individual muscle fibres are 5-10 µm
wide and 150-200 µm long [6]. With these expression patterns, there are therefore
many fibres ’stacked’ along the axis to be patterned, potentially allowing for a
more fine-grained concentration profile of patterning gene expression along the
respective axes. In the next section, we focus on patterning along the main body
axis.
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Figure 1.13.: Patterning challenges posed by planarians. 1) The patterning
system has to work on a long length scale of up to 2 cm. 2) The
patterning system has to scale with reversible changes in body size
arising dynamically in response to the amount of food available. 3)
The patterning system has to be self-organised in order to reform
after amputation to organise the regenerating tissue.

1.4.3. Wnt signalling along the main body axis of

planarians

Before describing the pivotal importance of Wnt signalling for correct AP pattern-
ing in flatworms, it is important to stress a few particularities of Wnt signalling in
the worms that facilitate the interpretation of the results: In planarians, the two
functions of β-catenin are divided between two different isoforms of the protein:
β-catenin-1 is a co-transcription factor binding Lef1/Tcf1 transcription factors
and thus the effector of Wnt signalling [21]. β-catenin-2 is a part of adherens
junctions, where it interacts with α-catenin and E-cadherin [21]. We will focus
on β-catenin-1 in this work and refer to it as β-catenin from here on. The Wnt
signalling inhibitors Cer, and Dkk [44], as well as the Wnt signalling activator
R-spondin are not present in planarians. With this in mind, we discuss the spec-
tacular patterning phenotypes induced by disturbed Wnt signalling in both intact
and regenerating planarians.

Wnt signalling during homeostasis

Consistent with the expression patterns of Wnt signalling components across the
animal kingdom, the posterior end of the worm is characterised by the expres-
sion of Wnt genes, whereas the anterior end of the worm is characterised by the
expression of Wnt inhibitors [79]. In particular, Wnt1 is expressed in a stripe
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Figure 1.14.: Wnt expression in planarians. In situ hybridisation of indicated
Wnt mRNAs. From left to right: Wnt1 is expressed in the pole
cells, a row of around 10 cells along the posterior dorsal midline
(drs mdln). Wnt11-1 is expressed in a posterior gradient (post)
and around the mouth (mth). Wnt11-2 is expressed in a posterior
gradient (post) and along the posterior midline (mdln). Wnt11-5 is
expressed in a long posterior-to-anterior gradient (post grd) and at
the esophagus (esph). Modified with permission from Ref. [43].

of around 10 cells, called pole cells, along the posterior dorsal midline ([78, 43],
Fig. 1.14, left panel). Moreover, several Wnt genes show tail-to-head graded ex-
pression gradients ([77, 43, 87, 98, 100], Fig. 1.14). At the very anterior tip of
the animal, a small population of cells expresses the Wnt inhibitor Notum [80].
Moreover, some Wnt inhibitors such as Sfrps (secreted frizzled-related proteins)
show head-to-tail graded expression patterns [77, 43]. The pole cells at the tip
of the tail and the head have been strongly implicated in head and tail fate spe-
cification, respectively and are thought to initiate the graded expression patterns
of patterning genes observed in the head and in the tail [50].

A gradient of Wnt signalling along the AP axis of flatworms has been shown
in the form of a β-catenin protein gradient [99, 98]. β-catenin concentrations
decrease from the tail tip to the middle of the animal [99, 98]. In quantitative
western blot analysis in Schmidtea mediterranea, a plateau in β-catenin levels
is seen in most of the anterior half of the animal with another dip at the head
(Fig. 1.15 left, [98]). Immunostaining in Schmidtea polychroa on the other hand
revealed an increase in β-catenin concentration in the head region [99]. In this

24



1.4 Planarian flatworms - Masters of regeneration

thesis, we focus on the decreasing part of the gradient spanning the posterior half
of the animal, observed in both species [98, 99].

The observed β-catenin protein gradient is attributed to Wnt signalling, as β-
catenin mRNA levels are constant along the body axis [44, 98] and knock down of
Wnt1, Wnt 11-1, Wnt 11-2, Wnt11-4, Wnt11-5 by RNAi3 reduces the measured
β-catenin gradient. Moreover, knock down of a part of the β-catenin degradation
complex, APC (RNAi), leads to high levels of β-catenin throughout the worm, i.e.
to a high but flat ’gradient’. Thus, low levels of Wnt signalling lead to low levels
of β-catenin protein, whereas high levels of Wnt signalling lead to high levels of
β-catenin protein, see Fig. 1.15.

The gradient of β-catenin protein has a patterning function, as changes in
the global Wnt signalling level firstly change the phenotype of the intact worm
(Fig. 1.15), and secondly the AP expression pattern of many genes [98].

Phenotypically, worms with ubiquitously highWnt signalling levels (Apc(RNAi))
turn into a disorganised structure, expressing tail markers such as Wnt11-5 and
Fzd4-1 in an unspecific manner across the body (Fig. 1.15 upper right panel,
[98]). Worms with ubiquitously low Wnt signalling levels (β-catenin (RNAi)),
on the other hand, form organised headlets all around their body margin, as
demonstrated by the expression of head markers such as Sfrp-1 (Fig. 1.15, lower
right panel, [98]). Thus, high levels of Wnt signalling specify tail fate whereas
low levels of Wnt signalling specify head fate.

3RNAi (RNA interference) is the natural response of cells to double-stranded RNA, leading
to the degradation of mRNA with the same sequence [91], implicated in the defence against
viruses, but also in regulating gene expression post-transcriptionally [3]. This response is
used experimentally to degrade mRNA of a specified sequence, referred to as ’knock down’
[76]: Introducing a double-stranded RNA of a specific sequence into the organism leads to
targeted degradation of mRNA with the same sequence via RNAi [76].
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Figure 1.15.: Wnt signalling in planarians during homeostasis. A β-
catenin protein gradient is present in the posterior half of in-
tact animals (left panel, β-catenin protein gradient modified with
permission from [98], obtained by quantitative western blotting
from serial sections along the AP axis, dots: mean of ≥ 3 tech-
nical replicates, error bars: SEM, see [98] for details). Uniformly
high β-catenin levels as generated by Apc transforms the whole
worm to posterior identity (upper right panel). Uniformly low β-
catenin levels as generated by β-catenin (RNAi) lead to the form-
ation of small headlets all around the animal (marked by in situ
hybridisation for Sfrp-1, lower right panel). Phenotype images re-
produced with permission from Ref. [50].
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Many genes are expressed in a manner correlated or anti-correlated with the
β-catenin protein profile. Importantly, they change their expression patterns
in an (anti-)correlated way when the β-catenin protein profile is changed by
ubiquitously changing β-catenin levels (decrease: β-catenin(RNAi), increase:
Apc(RNAi)) [98, 87, 55]. The expression of many genes encoding elements of the
Wnt signalling pathway changes in a way that is highly correlated with changes
in β-catenin levels [98, 87, 55]. Like in other organisms [36], this includes the
negative regulators Axin2 and Sp5. However, there are also several components
of the Wnt pathway positively affecting signalling that change their expression in
a manner highly correlated with the levels of β-catenin. These include the ’tail
Wnts’, Wnt11-1, -2, -5, as well as the Frizzled receptor Fzd4-1 [98]. Furthermore,
the expression of these and other Wnt signalling components is down-regulated
when Wnt1, Wnt11-1, and Wnt11-5 expression is knocked down by RNAi [98].

The expression of components of the Wnt-signalling pathway, in particular of
the ’tail-Wnts’, is largely restricted to irradiation-insensitive cells in planarians
[98], consistent with the muscle-coordinate-system idea. The β-catenin protein is
present in both neoblasts and differentiated cells [98, 99]. Immunostaining sug-
gests its presence in the nuclei of the body wall musculature [99] consistent with
the idea of this tissue expressing patterning genes [116, 90, 60]. However, the
β-catenin gradient is sensitive to irradiation, suggesting that neoblasts account
for a non-negligible portion of the measured β-catenin gradient [98]. This can be
interpreted as the neoblasts reading out the Wnt signalling gradient established
in the body wall musculature. Postulating that the signalling gradient has a pat-
terning function makes it indispensable that it be interpreted by cells that are in
the process of differentiation. The neoblast population in the worm consists of
stem cells of varying degrees of cell-fate specification [108, 105, 28, 67, 81, 120]
and is thus the population that needs to read out the patterning signals in the
worm. Accordingly, we interpret the irradiation-sensitivity of the gradient [98]
as the gradient being read out by the neoblasts leading to increased intracellular
β-catenin levels in the neoblasts.

The anterior half of the worm has been suggested to be organised by an ad-
ditional patterning system, the molecular specifics of which are not clear yet
[98, 99, 50]. Importantly, the β-catenin protein gradient depends on neither the
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anterior pole nor the anterior pattering system to form [98]. This is shown by an
unchanged β-catenin gradient shape in both Notum(RNAi) and Sfrp(RNAi) con-
ditions [98]. Moreover, regenerated trunk pieces from Ptc(RNAi) animals form
two tails and the β-catenin gradient forms from both ends [98].

Wnt signalling is not only important in specifying head vs. tail cell fates in the
intact animal but also instrumental in patterning the worm during regeneration
as we will discuss in the next section.

Wnt signalling during regeneration

Low Wnt signalling, induced by β-catenin(RNAi), leads to worms regenerat-
ing two heads upon amputation of head and tail (Fig. 1.16 middle column,
[44, 77, 49]). The precise manifestation of the β-catenin(RNAi) phenotypes de-
pends on the RNAi-dose and ranges from ’tailless’ to ’radial-like hypercephalized’
with no posterior identity [49]. In contrast, high Wnt signalling levels induced
by Apc(RNAi) lead to the formation of two tails in the equivalent amputation
experiment (Fig. 1.16 right column, [44]). Thus, also during regeneration, low
levels of Wnt signalling lead to head formation, whereas high levels of Wnt sig-
nalling lead to tail-formation.

In D. lacteum, tail pieces cannot regenerate a head whereas head pieces are
perfectly able to regenerate a tail [59]. The fact that head regeneration in tail
pieces can be rescued by β-catenin(RNAi) [59], is in line with low levels of Wnt
signalling corresponding to head-formation whereas high levels of Wnt signalling
correspond to tail formation.

One Wnt gene, Wnt1, has been found to be part of the initial wound response
[78, 43]. In this capacity, it is expressed at any wound, ranging from small wounds
as induced for instance by needle poking to large wounds and tissue removal e.g.
after amputation [78, 43]. In case of amputation, it is expressed along the en-
tire wound - irrespective of the position of the wound along the body axis and
of whether the wound is facing anteriorly or posteriorly (Fig. 1.16 second row,
[78, 43]). This is interesting, because as discussed above, high Wnt signalling
levels are associated with tail-formation. Wnt1 expression as a generic wound
response is detected between 6 and 24 hours after the amputation occurs [78].
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Afterwards, its expression becomes restricted to the future posterior end, where
it becomes restricted to the newly forming pole cells [78]. This is in line with
high levels of Wnt signalling corresponding to posterior cell fate. Exclusively at
anterior-facing wounds, Wnt1 is counteracted by expression of the Wnt inhibitor
Notum that starts 6 hours post amputation [80]. Thus, after an initial phase
of Wnt1 expression at all wounds [78], the new anterior and posterior poles are
formed by localised expression of Notum [80] and Wnt1 [78] at the anterior and
posterior end, respectively. As discussed above, these are thought to initiate the
head and tail specific gene-expression gradients pattering the head and the tail
of the animal [50].

In contrast to the early phase of Wnt1 expression at all wounds, the posterior-
specific, later phase of Wnt1 expression is β-catenin-dependent and irradiation-
sensitive [78]. Moreover, re-establishment of theWnt11-5 expression pattern after
amputation is β-catenin-dependent [78]. In particular, the Wnt11-5 expression
pattern is re-established from scratch. That is, in posterior-facing wounds of
anterior tissue regions that do not express Wnt11-5 at the time of amputation,
it starts forming 24 hours after amputation [78]. In anterior-facing wounds of
posterior tissue that express a lot of Wnt11-5 at the time of amputation, the
expression is first down-regulated and the pattern reforms starting 4 days post
amputation [78]. Thus, the tail-specific expression patterns in the posterior half
of the animal are re-established from the posterior pole in a β-catenin-dependent
manner [78].

These observations suggest that the initial Wnt1 expression at all wounds [78]
is permissive for the initiation of a Wnt signalling gradient. This potential is
then taken away from anterior-facing wounds by the anterior-specific expression
of Notum [80]. Subsequently, the signalling gradient reforms from the posterior
pole in a β-catenin–dependent manner [78, 98].
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Figure 1.16.: Wnt signalling during planarian regeneration. Regenerative
outcome of fragments cut from the central region of the animal as
indicated by the red lines in different Wnt signalling backgrounds
as indicated above the columns. In all cases, Wnt1 (dark red) is
expressed as a generic wound response between 6 and 24 hours
after amputation. In wild-type worms (left), it is counteracted by
Notum expression (green) at anterior-facing wounds starting 6 hours
post amputation. 48 hours post amputation Wnt1 is no longer ex-
pressed at anterior-facing wounds. Resulting high Wnt signalling at
the tail end and low Wnt signalling at the head end leads to tail
and head regeneration, respectively (bottom left). Both posterior-
specific Wnt1 expression and anterior-specific Notum expression are
β-catenin-dependent and thus not observed in β-catenin(RNAi)
animals (middle column). Two heads are regenerated in the low
Wnt signalling environment generated by β-catenin(RNAi) (bottom
middle). APC (RNAi) leads to increased β-catenin levels and thus
Notum expression also at posterior-facing wounds (right column).
Nevertheless, two tails are regenerated in this high Wnt-signalling
environment (bottom right). Illustrations based on findings presen-
ted in [43, 78, 80].
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A biological model of the Wnt signalling gradient

As discussed above, in the intact worm, the expression of several of the ’tail Wnts’,
goes down in response to knock down of several Wnt genes and up in response
to Apc(RNAi). Moreover, several components of the Wnt pathway change their
expression in a manner correlated with changes in the β-catenin protein gradient.
This suggests a positive feedback via Wnt-dependent Wnt expression: Elevated
Wnt signalling levels lead to elevated intracellular β-catenin levels (Fig. 1.9),
while elevated β-catenin concentrations lead to the production of more Wnt sig-
nalling molecules [98].

In light of this idea, the tail-to-head graded expression of several Wnt genes,
in particular Wnt11-1, -2, and -5 (Fig. 1.14, [77, 43, 100, 98]) can be interpreted
as a readout of the positive feedback loop: Wnt genes are being expressed in the
presence of high β-catenin levels, i.e. their expression decreases away from the
tail tip as the β-catenin levels decrease.

Interestingly, the expression of Wnt1 is not always correlated with the levels
of Wnt signalling in the intact worm, as certified by its up-regulation in response
to both Wnt 11-1 (RNAi) and 11-5 (RNAi), as well as in response to Apc(RNAi)
[98]. Moreover, Wnt1 is expressed at the tail tip [78] and thus at the high point
of the β-catenin gradient [98, 99]. This suggests that Wnt1 expression is in-
dependent of the other signalling pathway components and thus able to initiate
the pattern, in line with the idea of the pole cells initiating pattern formation [50].

The fact that after amputation the poles reform first and posterior-specific ex-
pression patterns subsequently re-form in a β-catenin-dependent manner [78] can
then be interpreted as the gradient re-forming after amputation by first estab-
lishing the symmetry-breaking input from the pole and then re-forming by the
positive feedback between β-catenin and Wnt.

Motivated by these observations, we will investigate the effect that positive
feedback can have on the formation of signalling gradients in this thesis. In the
next section, we discuss physical models for gradient formation based on diffusion
and degradation to which we will contrast the model presented in this thesis.

31



1. Introduction

1.5. Physical models of morphogen gradient

formation

A morphogen gradient is a concentration profile of a morphogen in space. Typ-
ically, we think of decreasing concentration profiles where the signalling molecule
is produced in a local source and its concentration decays away from its ori-
gin of production. Since morphogens have been shown to spread via diffusion
in vivo [42, 74] and to form an exponentially decaying profile [25], the local
source/diffusion/degradation model has gained particular attention in explaining
morphogen gradient formation. It has been used successfully to quantitatively
explain the formation of the Dpp gradient in the developing fly wing imaginal
disk [54].

The tissues in which morphogen gradients are observed consist of individual
cells. However, in physical models of gradient formation, tissue is often coarse-
grained and represented as a continuous structure in space. This representation
allows using continuous models to analyse the process. If the morphogen gradi-
ent is formed along one spatial dimension, and the dimensions perpendicular to
it do not contribute to the formation of the profile, that is if there are no spatial
gradients along these perpendicular directions, a model with only one spatial di-
mension can be used to analyse it [23].

In the diffusion/degradation model, the morphogen is produced in a spatially-
confined source region with rate s, spreads via diffusion with the diffusion constant
D, and is degraded with rate k:

∂tC = D∂2
xC − k C + s θ(S − x) (1.1)

where θ denotes the Heavyside function, i.e. θ(x) = 0 for x < 0 and θ(x) = 1 for
x ≥ 0, with S the width of the source region. The steady-state solution to this
model is given by C∗ (Fig. 1.17):

C∗ =

C in
1 e

x/λ + C in
2 e
−x/λ 0 ≤ x ≤ S

Cout
1 ex/λ + Cout

2 e−x/λ S < x ≤ L ,
(1.2)

where the length scale λ is defined by the bulk of the system and the amplitudes
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Figure 1.17.: A steady-state concentration profile generated by diffusion
and degradation. The steady-state concentration C∗ decreases
in space away from the local source (shaded in red). The profile
is normalised to its concentration at x = 0. The length scale λ
is indicated by the blue arrow. The parameters are of the order
of magnitude observed in the fly wing disk [54]: D = 0.1 µm2/s,
k = 10−3/s, s = 0.1 nM/s, leading to a length scale of 10 µm.

C in
1 , C in

2 , Cout
1 , and Cout

2 are defined by the boundary conditions as well as the
stitching conditions between the source and the non-source region. For no-flux
boundary conditions, i.e. nothing leaving or entering the system at the boundaries
at x = 0 and x = L:

∂xC(0) = ∂xC(L) = 0 , (1.3)

and differentiability, i.e. matching value and flux at point S, where the source
and the non-source regions meet:

lim
x↗S

C(x) = lim
x↘S

C(x) , (1.4)

lim
x↗S

∂xC(x) = lim
x↘S

∂xC(x) , (1.5)

the concentration profile outside of the source region is dominated by the decreas-
ing exponential. That is, Cout

1 is very small and goes to zero as the system size L
increases. Thus, outside of the source region the shape of the profile is governed
by the decaying exponential.

The length scale of the steady-state profile, λ, is set by the diffusive properties
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of the morphogen and its longevity according to:

λ =

√
D

k
. (1.6)

We see that more diffusive and/or more long-lived molecules give rise to steady-
state profiles with a longer length scale. Thus, in order to generate long-ranged
gradients using a diffusion/degradation mechanism, either the diffusion constant
has to be very large or the degradation rate very small. The diffusion constant
is a property of the molecule and dependent on the environment in which it is
diffusing. It can therefore not be arbitrarily increased by the cells. If the molecule
carries post-translational modifications hampering diffusion, these can be cleaved
off, increasing the diffusion constant. However, this should be thought of as a
’release of a brake’ that had been put on the diffusion constant rather than an
actual ’acceleration’. That is, the diffusion constant can be modulated, but not
increased beyond the one given by the properties of the signalling molecule and its
environment in the absence of any diffusion-hampering modifications. Therefore,
the main way to change gradient length scale in a diffusion/degradation mech-
anism is via changing the degradation rate. Thus, in a diffusion/degradation
mechanism, only long-lived molecules can give rise to long-ranged steady-state
profiles.

Increasing the length scale by decreasing the degradation rate, however, comes
at the price of making the dynamics of the system slower. For a linear system
like this one, the slowest relaxation time, τmax, is a good measure of how long it
takes to relax to steady state. For the diffusion/degradation system, it is given
by the inverse of the degradation rate k:

τmax =
1

k
(1.7)

(see Appendix A for details). Thus, increasing the length scale of the steady-
state profile by decreasing the degradation rate also makes the process of pattern
formation much slower. The morphogen concentration profiles that have been
suggested to arise by an effective diffusion/degradation mechanism are typically
of the order of tens to a few hundreds of micrometers [24, 54, 74]. Nevertheless,
it has been debated whether or not a diffusion/degradation mechanism is fast
enough to explain the signalling gradients across cell fields of a few hundreds of
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microns [23, 42, 34, 48].

The length scale of the steady-state profile can be modulated by directed trans-
port. This introduces advective spreading of the molecules in addition to the
diffusive spreading discussed above. Such directed transport can be achieved in-
tracellularly by transport via directed molecular motors along spatially-aligned
cytoskeletal filaments, or by cytoplasmic streaming, generated by motor proteins
at the cell periphery [48]. On a tissue scale, it can be generated by bulk movement
of extracellular fluid, for instance due to muscle contraction or ciliated cells [48].
Moreover, directed transcytosis, i.e. repeated cycles of endocytosis and exocyt-
osis implicated in the spreading of certain morphogens [54], can lead to effective
drift [17]. All of the described active, directed processes lead to drift with speed ν:

∂tC = D∂2
xC − ν ∂xC − k C + s θ(S − x) , (1.8)

where positive values of ν indicate a transport of molecules down the concentra-
tion gradient. The steady-state solution to this equation is given by:

C∗ =

C in
1 e

x/λ1 + C in
2 e
−x/λ2 0 ≤ x ≤ S

Cout
1 ex/λ1 + Cout

2 e−x/λ2 S < x ≤ L ,
(1.9)

where λ1 and λ2 are defined by the bulk and the amplitudes C in
1 , C in

2 , Cout
1 , and

Cout
2 are defined by the boundary conditions and the stitching conditions. Equi-

valently to what we discussed for the diffusion/degradation mechanism above, for
boundary conditions given by Eq. 1.3 and differentiability at S (Eqs. 1.4, 1.5),
the profile shape outside of the source region is governed by the decreasing expo-
nential. This is due to the fact that Cout

1 is very small and approaches zero with
increasing system size. The length scale of the steady-state profile is not only set
by the diffusion constant D and the degradation rate k, but also influenced by
the speed and direction of the drift ν:

λ1 =
2D

ν +
√
ν2 + 4Dk

, (1.10)

λ2 = − 2D

ν −
√
ν2 + 4Dk

. (1.11)

Since the shape of the steady-state profile is dominated by the decreasing expo-
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Figure 1.18.: A steady-state concentration profile generated by diffusion,
degradation and drift. The steady-state concentration C∗ de-
creases in space away from the local source (shaded in red). The pro-
files are normalised to their concentration at x = 0. The length scale
λ is indicated by the arrow of the matching color. Note that drift
down the gradient (ν > 0, green line) strongly increases the length
scale of the steady-state profile compared to the profile without drift
(ν = 0, blue line), while drift up the gradient (ν < 0, red line) re-
duces the length scale of the steady-state concentration profile. The
parameters are of the orders of magnitude observed in the fly wing
disk [54]: D = 0.1 µm2/s, k = 10−3/s, s = 0.1 nM/s.

nential, we refer to λ2 as the length scale of the mechanism. For transport down
the gradient, i.e. ν > 0, λ2 increases with increasing drift speed ν, in particular,
as ν2 � Dk. This way, drift can increase the length scale of the steady-state
profile beyond the length scale of the diffusion/degradation system. Figure 1.18
shows steady-state profiles for this mechanism with a positive and a negative drift.
For zero drift, the system simplifies to the diffusion/degradation system discussed
above. Note that drift in the direction of the concentration gradient, i.e. ν > 0,
markedly increases the length scale compared to a diffusion/degradation mech-
anism (Fig. 1.18). However, realising this kind of drift phenomenon on a tissue
scale in a biological context requires inducing bulk extracellular fluid movement
or transcytosis in the right direction, i.e. down the concentration gradient.

Morphogen gradients have been observed to adapt their length scale to the size
of the tissue to be patterned, that changes due to growth4 [111, 110]. When this

4Note that strictly speaking, tissue growth also has to be accounted for in the dynamics of
the morphogen concentration in form of advection and dilution. In this thesis, we assume
a separation of time scales, such that the dynamics of tissue growth are much slower than
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adaptation of length scale is such that the shape of the profile remains constant
relative to tissue size, the profile scales [111, 110, 112]. In this case, a profile
shape Z(x/L) can be defined that is shared between profiles C∗(x;L) in tissues
of different sizes L. This constant shape is revealed as a collapse to a master
curve when plotting relative concentrations C∗/C∗0 with respect to the relative
spatial coordinate x/L:

C∗(x;L) = C0(L) · Z(x/L) , (1.12)

where C0(L) denotes a - potentially size-dependent - amplitude (Fig. 1.19, [111,
110, 112]). In other words, the same relative concentration is reached at the same
relative position in the system. For the diffusion/degradation mechanism, scaling
is given when

λ ∝ L (1.13)

[111, 110, 112]. To see this, consider an exponentially decaying profile C∗ =

C0 e
−x/λ. The relative profile C∗/C0 collapses to a size-independent master curve

e−(x/L)/(λ/L) if λ/L is constant and thus λ ∝ L. In the example in Fig. 1.19, scal-
ing of the length scale is achieved by varying the degradation rate with system
size. Such adjustment of degradation rate has been observed to account for scal-
ing of the Dpp concentration profile in the developing fly wing imaginal disk [111].

In order to explain steady-state gradient scaling with system size, an expander
mechanism has been suggested [7, 11, 12, 111]. The idea is that an additional
molecule species, the expander, that is different from the morphogen, and homo-
geneously distributed in space, encodes the size of the system. It then changes the
properties of the morphogen in such a way that the length scale of the steady-state
profile of the morphogen scales with system size. We briefly introduce two real-
isations of such an expander mechanism: the expander-dilution mechanism [111]
and the expansion/repression mechanism [7, 11, 12], see Fig. 1.20.

In the expander-dilution model, the system comprises a fixed amount of an
expander molecule, that is very long-lived [111]. If the system grows or shrinks,

those of the morphogen concentration profile. In this case, the dynamics of tissue growth
can be neglected for the dynamics of the morphogen concentration.
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Figure 1.19.: Scaling of morphogen gradients. Two steady-state profiles scal-
ing with tissue size. A) Concentration profiles of two differently-
sized systems (L1, L2). B) Profile scaling can be appreciated as
collapse to a master curve when profiles are normalised to C∗(0)
and plotted in relative spatial coordinates x/L. The parameters
are of the order of magnitudes observed in the fly wing disk [54]:
D = 0.1 µm2/s, k1 = 10−3/s, k2 = 2.5 × 10−4/s, s = 0.1 nM/s.
Source region shaded in red.

this dilutes or concentrates the expander (Fig. 1.20, upper panel, [111]). Thus,
the size of the system is encoded by the concentration of the expander. In par-
ticular, large systems have lower expander concentrations than small systems.
Thus, if the length scale of the steady-state profile of the morphogen is neg-
atively regulated by the expander concentration, the morphogen concentration
profile can scale with system size. In a diffusion/degradation-based mechanism
for morphogen gradient formation, such expander-based scaling can be achieved
if the degradation rate of the morphogen is positively regulated by the expander
concentration [111, 112] or if the diffusion constant of the morphogen is negat-
ively regulated by the expander concentration [112]. This simple realisation of
the expander mechanism is highly sensitive to loss of expander molecules [112].

Alternatively, morphogen gradient scaling can be achieved by the expansion/
repression mechanism ([7, 11, 12], Fig. 1.20, lower panel). In this mechanism,
the expander is not present in a fixed amount. In contrast, its production is
regulated by the morphogen. In particular, expander production is negatively
regulated by the morphogen such that its production is limited to regions of low
morphogen concentration [7]. Thus, expander molecules are produced far away
from the source region of the morphogen and the domain of expander production
shrinks as the length scale of the morphogen concentration profile increases. The
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length scale of the steady-state morphogen concentration profile is positively reg-
ulated by the expander concentration in this mechanism, such that high expander
concentrations expand the morphogen gradient [7]. Again, the expander has to
be widely diffusible and stable, leading to spatially homogeneous steady-state
concentration profiles for the expander [7, 11]. Using this feedback loop between
the quickly diffusing expander and the morphogen, self-organised gradient scaling
is achieved [7, 11]. Specifically, this leads to a steady-state morphogen concen-
tration profile in which the morphogen concentration is just above the threshold
concentration for expander production at the boundary at x = L, opposite the
morphogen source region. In a diffusion/degradation mechanism for signalling
gradient formation, the expander can regulate the length scale of the morphogen
gradient by either negatively regulating the degradation rate or by positively reg-
ulating the diffusion constant of the signalling molecule, leading to an expansion
of morphogen gradient length scale with increasing expander levels that encode
increasing system size [11]. This model has successfully been used to explain self-
organised scaling of the Bmp gradient organising the dorsoventral axis during
Xenopus development [11], and the Dpp gradient organising the anteroposterior
axis of the wing imaginal disk during Drosophila development [12].

Both the expander-dilution as well as the expansion/repression mechanism rely
on a very quickly diffusing expander. Specifically, they require the length scale
of the expander steady-state profile to be much larger than system size, leading
to a spatially homogeneous expander concentration profile at steady state. This
requirement becomes increasingly difficult to meet for increasing system size for
the same reasons discussed above for the diffusion/degradation mechanism. Es-
sentially, it requires a very quickly diffusing and/or very long-lived molecule as
an expander.
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Figure 1.20.: An expander mechanism for gradient scaling. A) In the
expander-dilution mechanism, a constant amount of a very long-
lived expander molecule (depicted in blue) encodes system size:
Since the absolute amount of the expander molecule is fixed, its
concentration changes as the volume of the system changes. The
morphogen is regulated by the expander such that the steady-state
profile length scale increases with system size, i.e. with decreasing
expander concentrations. Illustration inspired by [112]. B) In the
expansion/repression mechanism, the amount of expander molecule
is not fixed. In contrast, expander production is regulated by the
morphogen. In particular, only cells experiencing low morphogen
concentrations below Trep produce the quickly diffusing enhancer.
The morphogen is regulated by the expander to increase the length
scale of the steady-state profile with increasing system size, i.e. with
increasing expander concentration. This leads to self-organised pat-
tern scaling with system size L, as the steady-state morphogen con-
centration is fixed to a value just above Trep at x = L. The expander
concentration profile is spatially homogeneous at steady state and
increases with system size. Illustration based on [11] and [110].
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1.6 Aim of this thesis

1.6. Aim of this thesis

Embryonic development, regeneration, and tissue renewal pose enormous pattern-
ing challenges. The required patterning information can be provided by morpho-
gen gradients, concentration profiles of signalling molecules in space. The forma-
tion of these profiles has been extensively studied in the context of embryonic de-
velopment, both experimentally and theoretically ([38, 42, 32, 24, 25, 23, 54, 39],
see Sections 1.2, 1.5). In particular, a diffusion/degradation based mechanism
has been used successfully to quantitatively explain the formation of the Dpp
morphogen gradient in the Drosophila wing imaginal disk ([54], see Fig. 1.8).
However, patterning is not restricted to the embryonic context. It is also re-
quired during regeneration and tissue turnover in the adult organism. Able to
regenerate from tiny amputation fragments and constantly turning over all of
their tissue, planarians are a great model for patterning at adult length scales.
They have been found to also employ signalling gradients for tissue organisation.
In particular, they rely on a Wnt signalling gradient to organise their main body
axis ([99, 98], see Section 1.4.3). While signalling gradients in the developmental
context are characterised by short length scales, 20 µm in case of the Dpp gradi-
ent in the fly wing disk [54], the Wnt signalling gradient in the worm shows a
much longer length scale in the mm range. Thus, the first major patterning chal-
lenge the worms pose is patterning at long length scales (Fig. 1.13). The second
major patterning challenge posed by the worms is their dynamic adjustment of
body size in response to the quantity of food available (Fig. 1.13). Being able
to dynamically adjust pattern length scale to a changing system size is also re-
quired during regeneration: Small pieces regenerate to small worms (that later
on grow) and large pieces regenerate to large worms. Thus, the pattering sys-
tem has to adapt to the size of the amputation fragment to correctly pattern
the regenerating worm. It is thus the first pre-requisite to meet the third pat-
terning challenge posed by the worms: self-organisation of the pattern (Fig. 1.13).

A diffusion/degradation based mechanism for gradient formation requires very
long-lived molecules to form a signalling gradient on such large length scales, mak-
ing the gradient formation process slow (see Section 1.5). Based on observations
of positive feedback in Wnt signalling in planarians ([98], see Section 1.4.3), we
propose a cell-to-cell relay mechanism for long-ranged gradient formation in this
thesis. In order to conceptualise this idea, we introduce a discrete model, account-
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ing for an extracellular signalling molecule (Wnt) and an intracellular effector
(β-catenin) that engage in a positive feedback loop, introduced in Chapter 2. We
analyse the effect of this relay on steady-state gradient length scale in Chapter 3,
investigating if the relay can increase the length scale of the steady-state gradi-
ent compared to a diffusion/degradation mechanism. In Chapter 4 we analyse if
the length scale of the steady-state gradient can be adjusted to system size, i.e.
body length, by changing the feedback strength appropriately. We analyse the
dynamics and time scales of the relay mechanism in Chapter 5. In particular,
we aim to understand the trade-off between achieving a long length scale and
fast dynamics of gradient formation. Finally, we note that polarised secretion in
response to the positive feedback can give rise to an effective drift of signalling
molecule concentration through the tissue. In Chapter 6, we analyse how this
influences the length scale of the steady-state gradient as well as the dynamics of
gradient formation.
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2. Signalling gradient formation
using a cell-to-cell relay

2.1. The challenge: Generating large-scale

patterns

Signalling gradients play an important role in pattern formation during embryonic
development, regeneration, and tissue renewal [25, 46, 54, 98, 99]. The main body
axis of planarians is patterned by a Wnt signalling gradient over the entire course
of their lives ([98, 99], see Section 1.4.3). This shifts the patterning challenge
to large length scales of the order of millimetres as opposed to the micrometer
length scales [24, 54, 74] described in the context of embryonic patterning. As
discussed in the Introduction, a diffusion/degradation-based mechanism would
require extraordinarily long-lived molecules to obtain such large length scales
(Section 1.5). In this thesis, we introduce a relay mechanism for the formation of
long-ranged signalling gradients. This mechanism is inspired by the observation
of positive feedback in the Wnt signalling gradient that patterns the main body
axis of planarians [44, 49, 77, 87, 100, 99, 98]. As discussed in Section 1.4.3, Wnt
ligands have been shown to be expressed in a Wnt-signalling-dependent manner
in planarians [98]. Together with the changes in the β-catenin protein gradi-
ent in response to changes in Wnt expression, this suggests a positive feedback
loop in which high levels of Wnt signalling lead to high intracellular levels of
β-catenin protein, that in turn leads to the production of more Wnt-ligands [98].
In particular, intracellular β-catenin-degradation is decreased by a Wnt-ligand
binding to a cell (Fig. 1.9). Accumulating levels of β-catenin inside the cell me-
diate the transcriptional response to the Wnt signal (Fig. 1.9). This can include
the production of more Wnt-ligands in response to the signal. Based on this idea,
we introduce a positive feedback loop that effectively leads to production of more
signalling molecules in response to receiving a signal.
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2. Signalling gradient formation using a cell-to-cell relay

Figure 2.1.: A cell-to-cell relay for signal propagation. If the concentrations
of signalling molecules are high enough in the extracellular space, the
cell receives a signal (red arrows). As a result, the intracellular ef-
fector concentrations rise, eventually leading to secretion of signalling
molecules (blue arrows). Based on this positive feedback, the signal
can be propagated by a cell-to-cell relay. Cells are depicted as grey
rectangles.

The signalling properties of the signalling molecule forming a gradient are com-
monly discussed in the context of gradient interpretation [25, 42, 118]. In this
thesis, we include the signalling properties of the signalling molecule in the mech-
anism of gradient formation: The cellular response to receiving a signal gives
rise to the positive feedback that we discuss. Abstracting from the complex
specifics of Wnt signalling gradient formation in planarians, we introduce a dis-
crete model comprising an extracellular signalling molecule (corresponding to the
different Wnt-ligands impacted in AP patterning in the worms), and an intracel-
lular effector (corresponding to β-catenin). This way, we can explicitly account
for the positive feedback at the cellular level. In particular, sufficiently high con-
centrations of signalling molecules in the extracellular space lead to increased
intracellular effector levels. Those in turn lead to production and secretion of
more signalling molecules, thus closing the positive feedback loop. This way, the
signal can be propagated by a cell-to-cell relay (Fig. 2.1).

In order to investigate the effect such positive feedback can have on the form-
ation of signalling gradients, we developed a physical model that we introduce in
this chapter. Additionally, we comment on our choice of boundary conditions as
well as model parameters and finally introduce a numerical solution to our model.
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2.2 A discrete cell-to-cell relay model for signalling gradient formation

Figure 2.2.: A discrete model of signalling gradient formation. The model
accounts for extracellular signalling molecules (red) and intracellular
effectors (blue). Cells are depicted as grey rectangles. We choose to
discretise the extracellular space as indicated by the thin black lines.
Source region shaded in red.

2.2. A discrete cell-to-cell relay model for

signalling gradient formation

In order to account for the individual cells receiving and propagating the signal,
we build a discrete model, consisting of individual cells in the extracellular space.
In actual tissue, the extracellular space is continuous. For ease of description,
we choose to discretise it as indicated by the black lines in Fig. 2.2. We assign a
single concentration of signalling molecule to each extracellular space and a single
concentration of effector to each cell.

In this discrete set-up, we introduce a positive feedback to the diffusion/degra-
dation model described in the introduction (Eq. 1.1). In contrast to the model
discussed in the introduction, the model presented here is discrete in order to ac-
count for the signal relay between individual cells. The dynamics of the signalling
molecule concentration in the extracellular space are given by extracellular dif-
fusion with diffusion coefficient D (Fig. 2.3), extracellular degradation with rate
kA, constant production in a local source with rate sA and a positive feedback
dependent on the level of effector in the cells to the left and to the right of the
extracellular space, denoted as f(bn−1, bn) and depicted in Fig. 2.3:

∂tan = D
(an−1 − 2 an + an+1)

δ2
− kAan + sA θ(w − n) + f(bn−1, bn), (2.1)

where θ(n) denotes the Heaviside function, specifically, θ(n) = 0 for n < 0,
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2. Signalling gradient formation using a cell-to-cell relay

Figure 2.3.: Model dynamics. Left panel: Wiggly line represent effective extra-
cellular diffusion of signalling molecules (red), i.e. exchange of sig-
nalling molecules between adjacent extracellular spaces. Cell width
δ, extracellular space width ε. Right panel: arrows represent secre-
tion of signalling molecules due to positive feedback with feedback
strength αin/out and polarity p.

θ(n) = p (defined below) for n = 0, θ(n) = 1 for n > 0. The number of source
cells is denoted by w.

The positive feedback is due to the cells secreting signalling molecules in an
effector-level-dependent manner. In particular, the cells produce signalling mo-
lecules with a feedback strength α and secrete them to the extracellular spaces
to their left and right with a secretion polarity p, where p = 1/2 corresponds to
symmetric secretion and p > 1/2 to preferred secretion to the right, i.e. away
from the local source (Fig. 2.3). The production strength is positively regulated
by the effector levels in the respective cells according to g(bn):

f(bn−1, bn) = p α g(bn−1) + (1− p) α g(bn). (2.2)

We choose a Hill activator function (Fig. 2.4 A) to capture the positive feedback
from the effector levels on signalling molecule production:

g(bn) =
(bn)h

(cB)h + (bn)h
, (2.3)

where cB is the activation threshold of the Hill function, defined as the concen-
tration of effector bn for which half-maximal signalling molecule production is
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2.2 A discrete cell-to-cell relay model for signalling gradient formation

Figure 2.4.: Hill functions. A) Hill activator function, g(bn) (Eq. 2.3, shown
for different Hill exponents h (h = 3, 5, 8, see inset). The functions
saturate at 1 (horizontal grey line). For h = 1, the function increases
and saturates. For h > 1, the functions become sigmoidal. For
h → ∞, the Hill function becomes a step function. At bn = cB,
half-maximal activation is reached. cB = 50 nM in this example.
B) Hill inhibitor function, h(an, an+1) (Eq. 2.5), shown for different
Hill exponents h (h = 3, 5, 8, see inset). The function starts at
1 (gray line) and decays to 0. For h = 1, the functions decreases,
for h > 1, the functions becomes sigmoidal. For h → ∞, the Hill
function becomes a step function. At (an+an+1) = cA, half-maximal
suppression is reached. cA = 50 nM in this example.

achieved. The Hill exponent h governs the shape of the response (see Fig. 2.4
A). Choosing a Hill function ensures a saturation of the response at high effector
levels.

As a result of the positive feedback f(bn−1, bn), every cell in the system produces
signalling molecules. This is qualitatively different from diffusion/degradation
models (Eq. 1.1, [54]) in which signalling molecules are exclusively produced in a
spatially confined local source. We nevertheless employ the term ’source region’,
to refer to the region in which the signalling molecule is constantly produced
with rate sA (containing the cells n ∈ [0, ..., (w − 1)], shaded in red in Fig. 2.3)
in addition to the production due to the positive feedback. This local, effector-
level-independent source breaks the symmetry in our system. It is inspired by
the Wnt signalling-independent expression of Wnt1 at the posterior pole of the
worms ([78, 98], see Section 1.4.3).

The feedback strength α can be different inside and outside of the source re-
gion. In particular, the feedback strength inside the source region is given by
αin and the feedback strength outside of the source region is given by αout. Note
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2. Signalling gradient formation using a cell-to-cell relay

that in the absence of positive feedback, i.e. f(bn−1, bn) = 0, the dynamics of
the signalling molecule concentration simplify to a diffusion/degradation system.
This occurs if the feedback strength α is zero inside and outside of the source
region, i.e. αin = αout = 0.

The dynamics of the intracellular effector are positively regulated by the con-
centration of signalling molecule in the extracellular spaces to its left and to its
right. In particular, the dynamics of the effector are given by a constant intra-
cellular production with rate sB and an intracellular degradation with rate kB,
that is modulated by the signalling molecule concentrations in the extracellular
spaces adjacent to the cell according to h(an, an+1):

∂tbn = sB − kB h(an, an+1) bn. (2.4)

Thus, the positive feedback is executed as an inhibition of degradation. This is in-
spired by the Wnt signalling cascade, in which a Wnt signal saves β-catenin from
degradation (Fig. 1.9). Note that activation by an inhibition of inhibition is a
common phenomenon in cellular signalling [35].

We choose a Hill inhibitor function (Fig. 2.4 B) to specify this feedback accord-
ing to:

h(an, an+1) =
(cA)h

(cA)h + (an + an+1)h
. (2.5)

The Hill function is parametrised by the concentration of the signalling molecules
leading to half-maximal inhibition, cA, as well as the Hill exponent h, indicating
how the response changes with input strength (see Fig. 2.4). Each cell senses the
concentration of signalling molecules from the extracellular spaces to its left and
to its right and integrates the two signals. Thus, it is the sum of the concentra-
tions in both of these adjacent cells, (an + an+1) that influences the modulation
of the degradation. Therefore, cA is twice the average signalling molecule con-
centration in each of the adjacent extracellular spaces (n and n+ 1) at which cell
n reaches half-maximal effector degradation (see Appendix B.1 for more details
on this argument).

Overall, this leads to an increase in effector concentration in response to receiv-
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2.2 A discrete cell-to-cell relay model for signalling gradient formation

ing a signal. Note that maximal effector degradation with rate kB is reached in
the absence of extracellular signalling molecules (an = an+1 = 0) and degradation
vanishes in the limit of infinitely high extracellular signalling-molecule concentra-
tions. This closes the positive feedback loop and thus gives rise to a cell-to-cell
relay in which the signal is effectively passed on from one cell to the next (Fig. 2.1).

In the remainder of the thesis, we will discuss the behaviour of this model for
a Hill exponent h = 1. The full dynamics of the signalling molecule inside the
source region, i.e. for n ∈ [1, ..., (w − 1)], thus are given by:

∂tan = D
(an−1 − 2 an + an+1)

δ2
− kAan + sA + pαin bn−1

cB + bn−1

+ (1− p)αin bn
cB + bn

.

(2.6)

Assuming that the constant production of signalling molecules in the source region
with rate sA follows the same secretion polarity as the production in response to
positive feedback, the dynamics at the source/non-source interface are given by:

∂taw = D
(aw−1 − 2 aw + aw+1)

δ2
− kAaw + p sA + pαin bw−1

cB + bw−1

+ (1− p)αout bw
cB + bw

.

(2.7)

Outside of the source region, i.e. for n ∈ [(w + 1), ..., (N − 1)], the dynamics of
signalling molecule concentration obey:

∂tan = D
(an−1 − 2 an + an+1)

δ2
− kAan + pαout bn−1

cB + bn−1

+ (1− p)αout bn
cB + bn

.

(2.8)

The dynamics at the system boundaries, a0 and aN , are specified in the next sec-
tion, where we discuss the boundary conditions. The dynamics of the intracellular
effector are given by:

∂tbn = sB − kB
1

1 + an+an+1

cA

bn (2.9)

for the whole system.
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2. Signalling gradient formation using a cell-to-cell relay

2.3. Boundary conditions

The system is comprised of a row of cells and extracellular spaces. It ends with
an extracellular space of width r0 × ε on the left side, and rN × ε on the right
side, where r0, rN ∈ [0, . . . , 1]. In particular, the one extreme choice of this
possible spectrum of extracellular-space widths, r0 = rN = 1, corresponds to
the system ending with an extracellular space of width ε (as in the bulk). The
other extreme choice, r0 = rN = 0, corresponds to the system ending with a cell
on either side. We will not consider this latter case, as there will typically be
at least some extracellular space at the boundary of any biological system. We
therefore do not need to specify boundary conditions for the intracellular effector
dynamics but rather for the dynamics of the signalling molecule concentrations
in the extracellular spaces 0 and N at the system boundaries. In particular, we
choose the volumes of the extracellular spaces at the system boundaries to be
smaller than those in the bulk according to: V0 = (1− p)V, VN = p V , where V
denotes the volume of an extracellular space in the bulk (Fig. 2.5). This leads to
the following dynamics at the system boundaries:

∂ta0 =
D

(1− p)
(−a0 + a1)

δ2
− kAa0 + sA + αin b0

cB + b0

(2.10)

∂taN =
D

p

(aN−1 − aN)

δ2
− kAaN + αout bN−1

cB + bN−1

. (2.11)

Note that the secretion polarity in the production terms at the boundaries is
balanced by this choice of boundary conditions (Fig. 2.5). To see this, consider
that cells produce individual molecules. However, the other processes considered
for the dynamics are concentration-dependent. Therefore, we define our model in
concentrations. In order to account for the production in individual molecules,
we define production rates α̃, s̃A, and s̃B in number of molecules per second and
convert them into concentration rates by dividing by the volume of the compart-
ment the resultant molecules reside in. That is, α = α̃/V , sA = s̃A/V , and
sB = s̃B/W , where V = δ2 ε denotes the volume of the extracellular space in the
bulk and W = δ3 denotes the volume of the cells. With the presented choice of
boundary conditions this leads to the equations presented above.

We use this choice of boundary conditions in the remainder of this thesis. We
discuss the impact of this choice of boundary conditions on profile shape and
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Figure 2.5.: The cell-to-cell relay mechanism. The system is comprised of N
cells (0 - (N − 1)) and N + 1 extracellular spaces (0 - N). We im-
pose reflective boundary conditions, i.e. nothing leaves or enters the
system at the boundaries. Cells have width δ, extracellular spaces
have width ε in the bulk and width r0 × ε, rN × ε at the boundaries,
where r0 = (1 − p) and rN = p. Source cells (n ∈ [0, ..., (w − 1)])
constitutively produce and secrete signalling molecules with rate s̃A
(red arrows), obeying tissue polarity p. All cells produce and secrete
signalling molecules as part of the positive feedback. We distinguish
between the feedback strengths inside and outside the source region
(α̃in - black arrows, and α̃out - grey arrows, respectively). The ex-
tracellular spaces at the left system boundary, 0, and at the bound-
ary between the source and the non-source region, w, only receive
constitutively-produced signalling molecules from one side. Simil-
arly, the extracellular spaces at the system boundaries, 0 and N ,
only receive signalling molecules produced by the positive feedback
from one side. Source region shaded in red.

compare it to an alternative choice V0 = VN = V in Appendix B.

2.4. Choice of model parameters

Our model comprises 8 parameters. In this section, we discuss the biological data
guiding our parameter choices for the model. The width of eukaryotic cells is of
the order of 10 µm [23, 48, 64]. We thus choose the cell width, δ, in our model to
be 10 µm. In particular, in planarians, the smallest cells type, the neoblasts, have
a cell diameter of 8 - 15 µm and the muscle fibres that express the Wnt signalling
molecules are 5 -10 µm wide and 150 - 200 µm long [6]. Applying our model to
the worm, the cells correspond to a ’stack’ of circular muscle fibres along the AP
axis. Thus, a cell width of 10 µm is a good estimate for this tissue.

The extracellular space in our model is narrow compared to the cell size. We
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2. Signalling gradient formation using a cell-to-cell relay

choose ε to be a tenth of the cell width, i.e. 1 µm. The corresponding structure
in the flatworm is the space between individual muscle fibres. Assuming that the
extracellular spaces in this densely packed tissue [20, 60] are wider than those in
an epithelium, 1 µm is a conceivable choice.

The diffusion coefficient of a sodium ion in water is of the order of 103 µm2/s
[47]. A protein, being much bigger, has a much smaller diffusion coefficient. A
spherical 100 kDa protein has a diffusion coefficient of the order of 100 µm2/s
in water [47]. Tissues and cells are crowded environments with a viscosity much
larger than water and thus in general show smaller diffusion coefficients [47, 48].
The diffusion coefficient of a protein inside a cell, for instance, is estimated to be
around 5 µm2/s [48]. The diffusion relevant for the formation of signalling gradi-
ents happens in the extracellular space. Here, it can be hampered by the protein
interacting with the extracellular matrix which may slow down the movement of
the molecules beyond the effect of the viscosity of the interstitial fluid. For the
signalling molecule Dpp, the diffusion coefficient in the extracellular space of the
developing fruit fly wing imaginal disk has been measured to be 21 ± 3 µm2/s by
fluorescence correlation spectroscopy (FCS) [121]. The effective diffusion coeffi-
cient in this tissue has been measured to be 0.1 µm2/s by fluoresce recovery after
photobleaching (FRAP) [54]. This discrepancy illustrates the difference between
the speed of molecular diffusion (as measured by FCS) and the effective spreading
of the molecule that also takes into account interactions with the extracellular
matrix as well as the cells (as measured by FRAP) [2]. In particular, Dpp de-
pends on endocytosis for spreading in the wing disk [54, 17]. This is a slow process
governed by the kinetics of receptor binding and uptake as well as secretion [2].
Thus, the dynamics of endocytosis and exocytosis are rate-limiting for molecular
spreading in this case [121, 2]. They are included in the FRAP measurement of
the effective diffusion coefficient of Dpp [2].

The effective diffusion coefficient of wingless, the Drosophila homologue of Wnt,
has been measured to be 0.05 µm2/s in the fly wing imaginal disk by FRAP [54].
The effective diffusion coefficient of several proteins in the zebrafish blastula have
been measured to be between 0.7 ± 0.2 µm2/s (Cyclops) and 18.9 ± 3.0 µm2/s
(Lefty2) by FRAP [71].
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In our model, diffusion is important to transmit the signal from one cell to the
next. Thus, it is diffusion on rather small length scales that is important. In par-
ticular, the spreading of molecules by transcytosis does not have to be considered
for this process. Therefore, the diffusion important for our model is best captured
by extracellular molecular diffusion. However, as discussed in Section 1.3.3, Wnt
molecules are hydrophobic molecules and thus not likely to have a fast extra-
cellular diffusion constant. We thus choose an effective diffusion coefficient of
1 µm2/s for our model. This is the same as the diffusion coefficient used for the
morphogen in Ref. [12].

The degradation rates of wingless and Dpp in the fly wing imaginal disk have
been measured by FRAP to be 1.43×10−3±1.04×10−3 s−1, and 2.52×10−4±1.29×
10−4 s−1, respectively [54]. Degradation rates of some proteins in the zebrafish
blastula have been measured by FRAP to be between 0.53×10−4±0.05×10−4 s−1

(Lefty1) and 1.22× 10−4 ± 0.13× 10−4 s−1 (Cyclops) [71]. We choose a degrad-
ation rate of kB = 10−3 s−1 for the effector molecule and one of kA = 10−3 s−1

for the signalling molecule. These choices are in agreement with the the orders of
magnitude that have been measured for signalling molecules. Note that we chose
a different value of kB = 100 s−1 in Chapters 5 and 6 as specified to explore the
possibilities of the model.

The constant source in our model is inspired by the stripe of Wnt1 -expressing
cells, the pole cells at the posterior midline of the worm [78, 43]. This stripe has
been measured to consist of around 10 cells [43]. This measurement has been
performed by in situ hybridisation which is generally performed on small animals
(1 - 2 mm long). The number of posterior pole cells has not been quantified in
differently-sized worms. We choose the source region to be of the order of 10% of
system size, i.e. worm length. This choice is in good agreement with the 10 cells
reported in Gurley et al. [43].

The Hill threshold concentrations cA and cB denote the concentrations of half-
maximal repression and activation, respectively. More precisely, cA is twice the
average signalling molecule concentration in each adjacent extracellular space (n
and n+ 1) at which cell n reaches half-maximal effector degradation, as both ex-
tracellular spaces contribute to the repression (see Appendix B.1 for more details
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on this argument). Ben-Zvi et al. assumed Hill-repression coefficients of 10−1µM
and 1 µM. We choose cA = 166.6 nM = 0.16 µM which is in the reported range.
We choose a threshold concentration cB ensuring that cB � bn. This way, the
feedback response can be approximated by a linear response, as the positive feed-
back term α

cB

bn
1+ bn

cB

simplifies to α
cB
bn in the limit bn

cB
� 1. To ensure cB � bn, we

choose cB = 1.66 × 105 µM. Note that we use different choices of cA and cB in
Chapter 4 as specified.

Signalling molecules are produced in a signalling-independent manner at rate
sA, and in a signalling-dependent manner with a maximal rate αin inside the
source region, and a maximal production rate αout outside of the source region.
Effector molecules are produced at rate sB. These are effective rates represent-
ing the amount of signalling molecules released to the extracellular space per
unit time, and the increase in intracellular effector concentration due to produc-
tion, respectively. We specify these rates in number of molecules per unit time
(s̃A, α̃in, α̃out, s̃B) and calculate the resulting change in concentration in the ex-
tracellular space by applying the volume of the extracellular space V, which is
given by the width of the extracellular space and the area of the cell side as
V = ε δ2, and in the cell by applying the cellular volume W = δ3. Lee et al.
report a β-catenin-production rate of 0.42 nM/min based on measurements in
Xenopus egg extracts [57]. Based on FRAP data for Dpp gradient formation
in the Drosophila wing imaginal disk, Kicheva et al. report a production rate
of 2.69 ± 1.58 molecules per cell per second [54]. The equivalent estimate for
wingless is 18.70 ± 12.92 molecules per cell per second [54]. In our model, we
explicitly account for the molecule production of individual cells. We choose
the constant signalling-molecule (Wnt) production rate in the source region as
s̃A = 20 molecules per cell per second according to the Wingless production rate
measured in [54], and the rate of effector (β-catenin) molecule production inside
the cell as s̃B = 4 molecules per cell per second. Applying the cell volume of
our model (103 µm3), this leads to a production rate of 0.4 nM/min, which is
in good agreement with the production rate for β-catenin measured in Lee et al.
(0.42 nM/min [57]). Moreover, it is in good agreement with the Dpp production
rate measured in Ref. [54]. We convert these production rates to units of concen-
tration per time by applying the volume of the extracellular space and the cell,
respectively: sA = s̃A/V , sB = s̃B/W . See Appendix B for a discussion of the
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effect of this conversion at the boundaries. Note that we use different choices of
s̃A and s̃B in Chapter 4, and a different choice of s̃A in Chapter 5 as specified.

The feedback strengths αin inside the source region and αout outside of the
source region are the maximal possible signalling molecule production rates,
reached when the effector concentration is much larger than the threshold cB.
Thus, the actual production rate can be approximated as α

cB
bn as long as cB � bn,

see above. Therefore, the choice of a high value of cB requires a large maximal
production rate αin/out to achieve considerable production in the most common
scenario that the effector concentration is lower than the threshold concentra-
tion. We analyse the effect of the feedback strength on the profile of signalling
molecules and thus do not choose a fixed feedback strength but vary it. We vary
it up to values of the same order of magnitude as cB, i.e. to values of the order
of α̃in/out = 108 nmol/s = 105 µmol/s. Equivalently to what we discussed before,
we convert this production into a resultant change in concentration by applying
the molecular volume of the extracellular space, i.e. αin/out = α̃in/out/V . In the
next section, we present a numerical solution to our model using the parameter
choices discussed here.

2.5. Numerical solution to the model

We can obtain the dynamic solution to our system numerically by starting from
an initial condition and computing the time evolution. We use an implicit-explicit
Euler method to compute the time evolution of our system ([5], see Appendix C
for details on the method). Solving the dynamics of the signalling-molecule con-
centration, we evaluate the linear parts (diffusion and degradation) implicitly
and the non-linear parts (feedback and constant source) explicitly. For the (non-
linear) dynamics of the effector concentration, we use the explicit Euler method.
See Appendix D for the specific implementation of this implicit-explicit Euler
method for our model. This numerical solution gives us both the dynamic evolu-
tion, as well as the steady state of the model. We show steady-state concentration
profiles for the signalling molecule and the effector obtained using this method in
Fig. 2.6.
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2. Signalling gradient formation using a cell-to-cell relay

Figure 2.6.: Numerical steady-state solution of our model. Numerical
steady-state solution for the signalling molecule profile (left, red
line) and effector profile (right, blue line). Source region shaded in
red. Parameters used: αin = αout = 1.245 × 108 molecules/(s V) =
2.075× 106 nM, cA = 166 nM, cB = 1.66× 108 nM, D = 1.0 µm2/s,
δ = 10.0 µm, kA = 10−3 s−1, kB = 10−3 s−1, p = 0.5, sA = 20 mo-
lecules/(s V), sB = 4 molecules/(s W), N = 300, w = 30,
V = 102 µm3, W = 103 µm3.

2.6. Summary and discussion

In this chapter we introduced the model for the cell-to-cell relay mechanism that
we will discuss in this thesis. The model is motivated by observations of positive
feedback in the Wnt signalling gradient patterning the main body axis of planari-
ans (Section 1.4.3). The model can, however, be extended to other signalling
pathways that exhibit positive feedback loops.

One of the major conceptual differences between the relay mechanism suggested
in this work and the diffusion/degradation mechanism discussed previously [54]
is that the positive feedback introduced in the relay mechanism leads to produc-
tion of signalling molecules throughout the system. The strength of production
is dependent on the strength of the feedback as well as the effector levels at the
position in question. On the contrary, in the diffusion/degradation mechanism
there is a confined source region with a constant strength. This spatially-confined
source is also present in our mechanism. Its role is to break the symmetry of the
system in the relay mechanism.

Mapping the model back to planarians, the cells in our model can be likened to
the circular muscle fibres of the planarian body wall musculature, the intracellu-
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2.6 Summary and discussion

lar effector to β-catenin, and the signalling molecule to an effective Wnt species
summarising all Wnts implicated in AP pattering in the worm. These are likely
to be the so called ’tail Wnts’ (Wnt1, Wnt11-1, -2, 5, see Section 1.4.2). The
effector-level dependent production gives rise to a spatially varied signalling mo-
lecule production. Production is high where the effector levels are high. This can
be likened to the Wnt expression gradients observed in planarians, that decay
from the tail tip anteriorly and thus in accordance with the β-catenin protein
gradient. The constant, signalling-level-independent production of signalling mo-
lecules in the source region can be likened to the constant Wnt1 expression in
the posterior pole cells in the worm.

Many signalling proteins, including Wnt proteins, rely on post-translational
modifications, in particular lipid modifications, in order to signal [75, 82, 115].
The extracellular signalling molecule population in our model corresponds to
those signalling molecules in the extracellular space that carry all post-translational
modifications necessary to elicit a signal and thus change the effector levels inside
the cell.

In the next chapter, we will analyse the steady-state concentration gradients
our model gives rise to. In particular, we will investigate the effect of the proposed
positive feedback on length scale of the gradient and analyse whether it can indeed
explain long-ranged steady-state gradient formation.
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3. The signalling gradient at
steady state

3.1. Large-scale pattern formation in light of

positive feedback

Signalling gradients pattern tissues during embryonic development, regenera-
tion, and tissue turn-over ([24, 25, 38, 42, 46], see Section 1.1). The diffu-
sion/degradation models used to explain the formation these gradients in the
context of embryonic development [54] struggle to explain formation of long-
ranged signalling gradients (see Section 1.5 for a discussion) such as the Wnt
signalling gradient patterning the main body axis of flatworms [99, 98]. Motiv-
ated by the observation of positive feedback in Wnt signalling in flatworms ([98],
see Section 1.4.3), we analyse the role of positive feedback on the formation of
signalling gradients in this thesis.

In this chapter, we analyse how positive feedback impacts the length scale of
the steady-state gradient. The positive feedback loop we introduced in Chapter 2
consists of the positive feedback of the signalling molecule concentration on ef-
fector levels, as well as the positive feedback of the effector levels on signalling
molecule production. This positive feedback loop serves as a cell-to-cell relay
mechanism, propagating the signal from one cell to the next without the need for
signalling molecules to physically traverse the entire tissue. Intuitively, we can
already appreciate that, when each cell produces molecules due to the positive
feedback, individual molecules do not necessarily have to travel across the whole
system for the pattern to have a long range. This may lead to an increased length
scale compared to production of signalling molecules exclusively taking place in a
local source region and molecules spreading by diffusion. Numerical solutions of
our model indeed show that the length scale of the steady-state gradient increases
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3.1 Large-scale pattern formation in light of positive feedback

with feedback strength (Fig. 3.1).

In order to understand and analyse the effect of positive feedback on the length
scale of the steady-state gradient, we introduce an analytical approximate steady-
state solution in this chapter. This reveals how the length scale depends on the
parameters of the model, in particular on the feedback strength. For effector
concentrations bn that are much lower than the Hill-activator threshold cB, i.e.
bn � cB, the feedback response is quasi-linear, as the system is far away from
saturation. Analysing the system in the limit of a linear feedback response reveals
an interesting relationship between the length scale and the feedback strength.
Guided by the analysis in this limit, we can better understand the behaviour of
the full model including saturation.

We start this chapter by introducing an analytical approximate steady-state
solution to the model. We then introduce the steady-state solution to the model
in the limit of low effector concentration, i.e. far away from saturation. Guided
by what we learn about the relationship between the length scale and the feed-
back strength in this limit, we then discuss the effect of the feedback strength on
the full model. Further, we discuss how the positive feedback influences gradient
shape. Gradient shape is not only defined by the length scale, but also by the
difference of the maximal and minimal values of the concentration profile.

Polarised secretion qualitatively changes the behaviour of the system and is
discussed in Chapter 6. In this chapter, we discuss the length scale and the shape
of the steady-state gradient in the absence of secretion polarity (p = 1/2).
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3. The signalling gradient at steady state

Figure 3.1.: Steady-state solution for varying feedback strength. Pro-
file length scale increases with increasing feedback strength αin/out.
Red line: numerical steady-state solution for the signalling molecule
concentration profile. Source region shaded in red. Parameters
used: αin = αout from top to bottom: αout = 1.225000 × 108 mo-
lecules/(s V) = 2.042 × 108 nM/s, αout = 1.245000 × 108 mo-
lecules/(s V) = 2.075 × 108 nM/s, αout = 1.249875 × 108 mo-
lecules/(s V) = 2.083× 108 nM/s, cA = 166 nM, cB = 1.66× 108 nM,
D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 10−3 s−1, p = 0.5,
sA = 20 molecules/(s V), sB = 4 molecules/(s W), N = 300, w = 30,
V = 102 µm3, W = 103 µm3.
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3.2 Approximate analytical steady-state solution to the model

3.2. Approximate analytical steady-state solution

to the model

In order to assess the effect of the positive feedback on profile shape, we analyse
the shape of the steady-state profiles. The steady-state of the system, denoted
by a*n and b*n, is defined as:

∂ta
*
n = 0 , (3.1)

∂tb
*
n = 0 . (3.2)

Based on Eqs. 2.9 and 3.2, we find that at steady state, the concentration of the
effector is a linear function of the concentration of the signalling molecule:

b*n =
sB
kB

(1 +
a*n + a*n+1

cA
) . (3.3)

We can thus express the steady-state solution of the signalling molecule only in
terms of the signalling molecule concentration by inserting Eq. 3.3 into the steady-
state equations of the signalling molecule concentration (Eqs. 2.6, 2.7, 2.8, 3.1).
This way, we find a piece-wise constant solution to the steady-state equation for
the signalling-molecule concentration given by a constant solution inside of the
source region:

ainc =
1

2

(
sA
kA

+
αin

kA
− cA

2

(
cBkB
sB

+ 1

))
+

√
1

4

[
sA
kA

+
αin

kA
− cA

2

(
cBkB
sB

+ 1

)]2

+
cA

2kA

[
sA

(
cBkB
sB

+ 1

)
+ αin

]
,

and a constant solution outside of the source region: (3.4)

aoutc =
1

2

(
αout

kA
− cA

2

(
cBkB
sB

+ 1

))
+

√
1

4

[
αout

kA
− cA

2

(
cBkB
sB

+ 1

)]2

+
αout cA

2kA
. (3.5)

In the absence of positive feedback, αin = αout = 0, the dynamics of the sig-
nalling molecule concentration simplify to a diffusion/degradation mechanism.
Note that in this case, ainc simplifies to sA

kA
, whereas aoutc vanishes as expected for

a diffusion/degradation system. The numerical solution to the model confirms
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3. The signalling gradient at steady state

that the steady-state concentration profiles indeed approach these constants far
away from the boundaries (Fig. 3.2).

Based on this piece-wise constant solution, we can analytically find an ap-
proximate solution to the steady-state equations of the signalling molecule. To
this end, we linearise the steady-state equations for the signalling molecule a*n
(Eqs. 2.6 - 2.8, 3.1, 3.2, 3.3) around the piece-wise constant solution given by
Eqs. 3.4 and 3.5. First, we express a*n as a deviation from the respective constant
steady-state solution in the source region (ainc ) and outside of the source region
(aoutc ), respectively:

a*n = ainc + δa*n for n ∈ [0, . . . , w] , (3.6)

a*n = aoutc + δa*n for n ∈ [(w + 1), . . . , N ] , (3.7)

where δan represents the deviation from the respective constant solution in the
extracellular space n. Then, we linearise the steady-state equations for the sig-
nalling molecule concentration (Eqs. 2.6 - 2.8, 3.1, 3.2, using Eq. 3.3) for small
deviations from the respective constant solution, i.e. for small δa*n. See Ap-
pendix E.1 for the resultant set of linearised steady-state equations. We use an
exponential ansatz to solve the system of linearised steady-state equations:

δa*n = C in
1 e

n/λ̄in
1 + C in

2 e
−n/λ̄in

2 for n ∈ [0, . . . , w] , (3.8)

δa*n = Cout
1 en/λ̄

out
1 + Cout

2 e−n/λ̄
out
2 for n ∈ [(w + 1), . . . , N ] . (3.9)

The amplitudes of the exponentials (C in
1 , C in

2 , Cout
1 , Cout

2 ) are given by the bound-
ary conditions at n = 0 and n = N , as well as by the source/non-source interface
stitching conditions at n = w and n = w+1. See Appendix E.2 for how to obtain
them.

As we are interested in the length scale of the system outside of the source
region, we focus our analysis of the profile length scale on λ̄out1 and λ̄out2 . Looking
at the numerical steady-state solutions and considering that the system obtains
a steady state also for large system sizes, we can deduce that the amplitude of
the increasing exponential (Cout

1 ) is very small and goes to zero as system size
increases. Therefore, the shape of the steady-state profile outside of the source
region is given by the decreasing exponential. We thus define the length scale of
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3.2 Approximate analytical steady-state solution to the model

the steady-state profile of our system, λ̄, as:

λ̄ := λ̄out2 . (3.10)

It denotes the decay length of the gradient in number of cells and is given by:

λ̄ =
2D
δ2

+ αout zout

(1− 2 p)αout zout +
√

[(1− 2 p)αout zout]2 + 2
(

2D
δ2

+ αout zout
)

(kA − 2αoutzout)
,

(3.11)

where

zout =
cA cB kB

sB [cA + cA cB kB
sB

+ 2aoutc ]2
. (3.12)

Note that λ̄ defined in this way is only dependent on the feedback strength outside
of the source region, αout, while it is not influenced by the strength of the feedback
inside of the source region, αin. Note further, that in the absence of positive
feedback, αout = 0, we recover

λ̄ =

√
D/δ2

kA
, (3.13)

i.e. the length scale of a simple diffusion/degradation system as expected.

Comparing Eq. 3.11 to the length scale of the continous diffusion/degradation
mechanism with drift (Eq. 1.11) introduced in Section 1.5, we can identify that
the secretion polarity gives rise to an effective drift with speed ν:

ν = (2 p− 1)αout zout . (3.14)

We introduced ν as having positive values when the drift was directed down the
gradient in Section 1.5 (Eq. 1.8). In contrast, ν as defined in Eq. 3.14 is positive
for p > 1/2. The secretion polarity is defined such that p > 1/2 corresponds to
preferred secretion to the right. This is consistent with positive values of ν corres-
ponding to secretion down the gradient if the gradient decays from left to right.
We defined the source region to be to the left in our model (Eq. 2.1, Fig. 2.2).
Thus, a gradient decaying from left to right is one that is decaying away from
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3. The signalling gradient at steady state

the local source. This is the shape of gradient we aim to analyse. We analyse
the effect of the effective drift that secretion polarity (p 6= 1/2) gives rise to in
Chapter 6.

In the remainder of the current chapter, as well as in Chapters 4 and 5, we
discuss the model for the case of symmetric secretion (p = 1/2). In this case, the
drift vanishes and the length scale simplifies to:

λ̄ =

√
D
δ2

+ αout zout

2

kA − 2αoutzout
. (3.15)

This analytical approximate steady-state solution is in good agreement with the
numerical steady-state solution (see Fig. 3.3). In the next section, we discuss the
model in the limit of a linear feedback response, valid for effector concentrations
that are low compared to the Hill-activator threshold concentration cB.
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3.2 Approximate analytical steady-state solution to the model

Figure 3.2.: The piece-wise constant solution is reached far away from
the boundaries. A) an (signalling molecules). The piece-wise con-
stant steady-state solution, given by ainc (Eq. 3.4) and aoutc (Eq. 3.5),
in the source-region and non-source region, respectively (dotted black
lines). B) bn (effector, β-catenin ). The piece-wise constant steady-
state solution is given by Eq. 3.3 based on ainc and aoutc (dotted black
lines). Source region shaded in red. The source region and non-source
region need to be sufficiently large for an, bn to reach these constant
values. Parameters used: αin = αout = 1.2125× 108 molecules/(s V),
cA = 166 nM, cB = 1.66 × 108 nM, D = 1.0 µm2/s, δ = 10.0 µm,
kA = 10−3 s−1, kB = 10−3 s−1, p = 0.5, sA = 20 molecules/(s V),
sB = 4 molecules/(s W), N = 500, w = 200, V = ε δ2 = 102 µm3,
W = δ3 = 103 µm3.
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3. The signalling gradient at steady state

Figure 3.3.: Analytical approximate steady-state solution. A) Signalling
molecule concentrations, an. The analytical approximate steady-
state solution (dashed line, Eqs. 3.6 and 3.7) is a good represent-
ation of the numerical steady-state solution to the non-linear model
(solid lines: numerical steady-state solution). B) Effector concentra-
tions bn. The analytical approximate steady-state solution (dashed
line, obtained based on Eqs. 3.6 and 3.7 using Eq. 3.3) is a good
representation of the numerical steady-state solution to the non-
linear system. Source region shaded in red. Parameters used:
αin = αout = 1.245 × 108 molecules/(s V) = 2.075 × 106 nM/s,
cA = 166 nM, cB = 1.66 × 108 nM, D = 1.0 µm2/s, δ = 10.0 µm,
kA = 10−3 s−1, kB = 10−3 s−1, p = 0.5, sA = 20 molecules/(s V),
sB = 4 molecules/(s W), N = 300, w = 30, V = ε δ2 = 102 µm3,
W = δ3 = 103 µm3.

66



3.3 Linear feedback response in the limit of low effector concentration

3.3. Linear feedback response in the limit of low

effector concentration

For effector concentrations that are low compared to the Hill-activator threshold
cB, the system exhibits a linear feedback response. In this case, the feedback
can be approximated by a linear response (Fig. 3.4). We can obtain this result
formally in the limit bn

cB
� 1 in Eq. 2.3:

bn/cB
1 + bn/cB

≈ bn
cB

. (3.16)

In this limit, the dynamic equations of the signalling molecule an (Eqs. 2.6 - 2.8)
simplify to:

∂tan = D
(an−1 − 2 an + an+1)

δ2
− kAan + sA + p

αin

cB
bn−1 + (1− p) α

in

cB
bn (3.17)

in the source region, i.e. for n ∈ [1, . . . , (w−1)], and equivalently at the boundary
for a0 based on Eq. 2.10;

∂taw = D
(aw−1 − 2 aw + aw+1)

δ2
− kAaw + p sA + p

αin

cB
bw−1 + (1− p) α

out

cB
bw

(3.18)

at the source/non-source interface;

∂tan = D
(an−1 − 2 an + an+1)

δ2
− kAan + p

αout

cB
bn−1 + (1− p) α

out

cB
bn (3.19)

outside of the source region, i.e. n ∈ [(w + 1), ..., (N − 1)], and equivalently for
the boundary condition at aN based on Eq. 2.11.

In this limit, we can obtain an analytical steady-state solution to our model:

a*n = ainc, lin + C in
1, lin e

n/λ̄in
1, lin + C in

2, lin e
−n/λ̄in

2, lin for n ∈ [0, ..., w] , (3.20)

a*n = aoutc, lin + Cout
1, lin e

n/λ̄out
1, lin + Cout

2, lin e
−n/λ̄out

2, lin for n ∈ [(w + 1), ..., N ] , (3.21)
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3. The signalling gradient at steady state

Figure 3.4.: For bn � cB, the Hill activator function can be approximated
by a linear function. Black line: Hill activator function for h = 1.
Dashed grey line: linear approximation to it. The approximation is
increasingly better as bn

cB
→ 0. A) cB = 10 nM. B) cB = 1000 nM.

where ainc, lin and aoutc, lin denote the piece-wise constant solution and are given by:

ainc, lin =
sA + αin sB

cB kB

kA − 2αin sB
cA cB kB

, (3.22)

aoutc, lin =

αout sB
cB kB

kA − 2αout sB
cA cB kB

. (3.23)

The amplitudes of the exponentials C in
1, lin, C in

2, lin, Cout
1 , Cout

2, lin are given by the
boundary conditions at n = 0 and n = N , as well as by the source/non-source
interface stitching conditions at n = w and n = w+ 1, and computed performing
the same steps as for the non-linear model (see Appendix E.2 for details on the
steps). Analogously to what we discussed for the approximate solution to the
non-linear system, the length scale of model in the limit of a linear feedback
response is defined as λ̄lin := λ̄out2, lin. In order to compute it, we follow the same
steps as discussed for the non-linear model. Based on Eqs. 3.19, 3.1, and 3.21,
we obtain:

λ̄lin =
2D
δ2

+ αout sB
cA cB kB[

(1− 2 p) αout sB
cA cB kB

]
+

√[
(1− 2 p) αout sB

cA cB kB

]2

+ 2
[

2D
δ2

+ αout sB
cA cB kB

] [
kA − 2 αout sB

cA cB kB

] .
(3.24)
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3.3 Linear feedback response in the limit of low effector concentration

For symmetric secretion, i.e. p = 1/2, this simplifies to:

λ̄lin =

√√√√ D
δ2

+ αout sB
2 cA cB kB

kA − 2αout sB
cA cB kB

. (3.25)

We term it λ̄lin in order to distinguish the length scale of the system in the limit
of low effector concentrations from the length scale defined by the analytical ap-
proximate steady-state solution to the full system, λ̄ (Eq. 3.11).

As for λ̄, in the absence of positive feedback, αin = αout = 0, the length
scale simplifies to λ̄lin =

√
D/δ2

kA
, i.e. we recover the length scale of the diffu-

sion/degradation system. This is expected as in the absence of positive feedback,
the signalling molecule part of the system simplifies to a diffusion/degradation
problem. Again as for λ̄, note that λ̄lin is only dependent on the feedback strength
outside of the source region, αout, while it is not influenced by the strength of the
feedback inside of the source region, αin.

We can show that the analytical approximate steady-state solution to the non-
linear model (Eqs. 3.6, 3.7) approaches the solution obtained in this limit by
formally taking the limit of bn

cB
→ 0 with αin/out = α

in/out
0 cB . Thus, in this limit

the solution obtained here is the solution to the non-linear problem (see Ap-
pendix E.5 for details). Importantly, we also see that it is a good approximation
to the non-linear system if the effector concentrations bn are low compared to the
threshold concentration cB (Fig. 3.5).

Analysing the length scale of the system in this limit, we see that it diverges
for a critical feedback strength (Fig. 3.6):

αcrit =
kA kB cA cB

2 sB
. (3.26)

Indeed, as we will see in Chapter 5, the system does not reach a steady state for
αin/out ≥ αcrit in the limit of a linear feedback response.

In order to analyse how the length scale of the relay mechanism increases with
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3. The signalling gradient at steady state

increasing feedback strength αout, we rewrite the feedback strength as

αout = αcrit − δαout , (3.27)

and analyse how the length scale behaves as a function of the difference from the
critical feedback strength, δαout. Note that the feedback approaches its critical
value for δαout → 0. Re-writing the length scale as a function of δαout, we obtain:

λ̄lin =

√
cA cB kB

(
D
δ2

+ 1
4
kA
)
− 1

2
sB δαout

2 sB δαout . (3.28)

Thus, the length scale scales according to:

λ̄lin ∝ (δαout)−1/2 (3.29)

as δαout → αcrit (Fig. 3.6 B.). This divergent behaviour is not physical and is
indeed not present in the full system, where the divergence is capped by the satur-
ation of the feedback. As discussed above, the limit of a linear feedback response
is only valid for effector concentrations that are low compared to the feedback
threshold concentration cB (Fig. 3.4). For increasing effector concentrations, the
response will saturate. These increasing effector concentrations are reached for an
increased feedback strength αin/out, as this leads to increased signalling molecule
production and thus in turn to increased effector concentrations. However, the
limit of linear feedback strength discussed here uncovers an important feedback
strength, αcrit, that also plays a special role in the full, non-linear system, as we
will discuss in the next section.
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3.3 Linear feedback response in the limit of low effector concentration

Figure 3.5.: For large threshold concentrations cB, the linear response
limit is a good approximation. Upper panel: signalling mo-
lecule concentration (an). Lower panel: effector concentration (bn).
The steady-state solution in the limit of a linear response (Eqs. 3.20,
3.21) is in good agreement with the analytical approximate steady-
state solution to the full model (Eqs. 3.6, 3.7), as well as with
the numerical steady-state solution (dots), if the system is in the
limit of a large threshold concentration cB, i.e. cB � bn. Com-
pare the maximum effector concentration bn (lower panel) to cB =
1.66 × 108 nM. Parameters used: αin = αout = 1.245 × 108 mo-
lecules/(s V) = 2.075× 106 nM/s, cA = 166 nM, cB = 1.66× 108 nM,
D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 10−3 s−1, p = 0.5,
sA = 20 molecules/(s V), sB = 4 molecules/(s W), N = 300, w = 30,
V = ε δ2 = 102 µm3, W = δ3 = 103 µm3.
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3. The signalling gradient at steady state

Figure 3.6.: In the limit of a linear feedback response, the length scale
diverges for a critical feedback strengths αcrit. The length scale
of the relay mechanisms (solid black line) is larger than that of the
diffusion/degradation mechanism (dashed grey line). A) It diverges
as αout → αcrit. The critical feedback strength αcrit is indicated by
the grey vertical line. B) The length scale scales as (δαout)−1/2. Note
that the critical feedback strength is approached for (δαout)→ 0, i.e.
to the left of the plot. Parameters used: cA = 166 nM, cB = 1.66 ×
108 nM, D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 10−3 s−1,
p = 0.5, sA = 20 molecules/(s V), sB = 4 molecules/(s W), N = 300,
w = 30, V = ε δ2 = 102 µm3, W = δ3 = 103 µm3.
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3.4. The effect of positive feedback on gradient

length scale

In this section, we analyse the effect that positive feedback has on the length
scale of the steady-state gradient in the full, non-linear system (Eqs. 2.6 - 2.8,
3.1). The positive-feedback response to effector levels is given by a Hill func-
tion (Fig. 3.4). The saturation of the feedback for effector concentrations higher
than the Hill-activator threshold cB prevents the divergence of the length scale
that we found in the limit of a linear feedback response in the previous section
(Fig. 3.6). Moreover, as we will discuss in Chapter 5, it also prevents the diver-
gence of the time scale observed in the limit of a linear feedback response. Thus,
steady-state solutions also exist for αin/out ≥ αcrit in the full, non-linear model.
However, the length scale of the full model still shows an interesting behaviour
at the critical feedback strength: The length scale reaches a maximum value at
the critical feedback back strength, as we observe for the length scale defined by
the approximate analytical steady-state solution (Eq. 3.15), and verify using the
numerical steady-state solution (Fig. 3.7). See Appendix F for how to obtain the
length scale from the numerical solution.

If the feedback strength is increased beyond this critical value, the length scale
of the steady-state gradient decreases. Thus, the behaviour is symmetrical around
αcrit (Fig. 3.7). In order to analyse how the length scale changes with changes
in the feedback strength, we again analyse how it scales with the difference from
the critical feedback strength, δαout (Eq. 3.27). Analogous to what we found for
the length scale in the limit of a linear feedback feedback response (see Eq. 3.29),
we again observe:

λ̄ ∝ (δαout)−1/2 . (3.30)

However, the length scale reaches a finite maximal value at the critical feedback
strength in the full, non-linear model, visible as a saturation of this scaling be-
haviour close to αcrit (Fig. 3.7 B).

Comparing the feedback mechanism to a diffusion/degradation system that our
system collapses to in the absence of positive feedback, αin/out = 0, we see that
positive feedback increases the steady-state gradient length scale of the system
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3. The signalling gradient at steady state

(Fig. 3.7):

λ̄ ≥ λ̄Diff/Degr . (3.31)

This increase is strongest at the critical feedback strength and decreases as the
difference from the critical feedback strength, δαout, increases. In particular, for
both, the limit of no feedback, αout → 0, and infinitely strong feedback, αout →∞,
the length scale approaches λ̄Diff/Degr. At α = 0, there is no positive feedback, i.e.
the dynamics of the signalling molecule decouple from the effector dynamics and
the model collapses to a diffusion/degradation model for the signalling molecule.
Therefore, in this limit, the length scale of the steady-state concentration profile
of the signalling molecule is equal to that of the diffusion/degradation mechanism.
Analysing how the length scale behaves in the limit of αout →∞, we find that it
also approaches λ̄Diff/Degr (see Appendix E.3 for details). This can be understood
intuitively by considering that a very large feedback strength eventually leads to
very high effector concentrations and thus to the feedback response saturating
(see Appendix E.4 for details on the length scale in the limit of feedback satur-
ation). In this regime, the positive feedback collapses to a constant ubiquitous
source of strength αout. In this case, the length scale of the steady-state profile is
solely determined by the diffusion constant and the degradation rate and equal
to that of the diffusion/degradation mechanism. This is because the positive
feedback, reduced to a constant source, can no longer influence the length scale
of the profile, just like the constant production in the source region with rate sA
does not influence the length scale of the profile.

Close to the critical feedback strength however (δαout → 0), the length scale
of the system is much larger than that of a diffusion/degradation system. This
observation is based on the analytical approximate steady-state solution presented
in Section 3.2 and seconded by the numerical solution to the model (Fig. 3.7).
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3.4 The effect of positive feedback on gradient length scale

Figure 3.7.: The length scale reaches a maximum at the critical feedback
strength αcrit. A) Length scale vs. feedback strength αout/αcrit

based on the analytical approximate steady-state solution (dashed
black line) and based on the numerical steady-state solution (red
dots, see Appendix F). The critical feedback strength αcrit is in-
dicated by the vertical gray line. The length scale of the diffu-
sion/degradation mechanism is indicated by the dashed gray line. B)
Approaching the critical feedback strength, the length scale scales as
(δαout)−1/2 before it saturates very close to αcrit, i.e. for (δαout)→ 0
(to the left of the plot). This saturation behaviour is not observed
in the limit of a linear response (gray line). Legend in B applies
to A and B. Parameters used: cA = 166 nM, cB = 1.66 × 108 nM,
D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 10−3 s−1, p = 0.5,
sA = 20 molecules/(s V), sB = 4 molecules/(s W), N = 300, w = 30,
V = ε δ2 = 102 µm3, W = δ3 = 103 µm3.
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3. The signalling gradient at steady state

3.5. Gradient shape

The shape of the steady-state concentration profile is not only governed by the
length scale of the profile. It is also important to analyse over which concentra-
tion difference the profile decreases. This can be analysed by investigating the
ratio of the constant steady-state solutions ainc /aoutc (Fig. 3.8). In principle, the
profile can not only decrease or be flat - it can even increase. A quantity that
can discriminate between these three possible profile shapes is the ratio ainc /aoutc .
It measures firstly, whether the gradient decreases or increases (ainc /aoutc > or
< 1 ) and secondly, whether the profile changes over considerably different values
of concentration |ainc /aoutc − 1| > 0). We are particularly interested in decreas-
ing long-ranged signalling gradients, i.e. ainc /a

out
c > 1. However, a long-ranged

gradient can only be biologically relevant if there is an appreciable concentration
difference over which the gradient decays. In other words, it is not helpful to
generate a profile that has a very large length length scale but is essentially ho-
mogeneous in space, i.e. a flat line.

We use ainc /aoutc = 1 as a discrimination between decreasing and increasing pro-
file shape. This way, we find a threshold value αout

T as a function of αin (Eq. 3.32)
for which profile shape changes:

αout
T =

1

2sB(cAkA + 2sA)

[
cAkA(cBkBsA + sB(2αin + sA)) + sA sB

(
2αin + 2sA + kA√

c2
A(cB kB + sB)2

s2
B

+
4cA(cBkB(sA − αin) + sB(αin + sA))

kAsB
+

4(αin + sA)2

k2
A

)]
.

(3.32)

In particular, we obtain flat profiles for αout = αout
T , decreasing profiles for

αout < αout
T , and increasing profiles for αout > αout

T (Fig. 3.9).

By analysing the limit of no signalling-independent production in the local
source (sA → 0), we find that for low production rates sA in the local source,
αout must be smaller than αin in order to obtain a decreasing profile. For large
signalling-independent production rates in the local source (sA → ∞), we find
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3.5 Gradient shape

Figure 3.8.: Possible steady-state profile shapes. The steady-state concen-
tration profile can have qualitatively different shapes. In particular,
we distinguish a decreasing profile (red line, ainc > aoutc ), a flat pro-
file (grey line, ainc = aoutc ), and an increasing profile (dark gray line,
ainc < aoutc ). Source region shaded in red. Dotted lines mark the
values of ainc and aoutc .

that the profile always decreases, i.e. the threshold for profile shape change di-
verges (αout

T → ∞, see Appendix E.6 for details). Thus, the strength of the
signalling-independent production in the local source with rate sA has a large
influence on profile shape. Fig. 3.10 shows how the position of the separatrix
changes in phase space dependent on the strength of the local source. For a strong
signalling-independent production in the local source (s̃A = 1000 molecules per
cell per second), the steady-state profile decreases even if αout > αin. In contrast,
for a weak signalling-independent production in the local source (s̃A = 4 mo-
lecules per cell per second), increasing profiles can be obtained in case of a strong
neighbour-dependent production outside of the source region compared to inside
of it (αout > αin).

We find that both ainc and aoutc increase with increasing feedback strength
(Fig. 3.11, left panels). We saw in Section 3.4, that the steady-state profile
reaches its maximum length scale for αin/out = αcrit. Therefore, we analyse the
behaviour of the piece-wise constant steady-state solution in the vicinity of αcrit.
Close to the critical feedback strength, we observe scaling with the inverse of the
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3. The signalling gradient at steady state

difference from the critical feedback strength (Fig. 3.11):

ainc ∝ (δαin)−1 , (3.33)

aoutc ∝ (δαout)−1 . (3.34)

We can understand this scaling behaviour in the limit of a linear feedback re-
sponse. To this end, we re-write the piece-wise constant steady-state solution in
this limit (Eqs. 3.22, 3.23) as a function of the difference from the cirical feedback
strength:

ainc, lin =
cA

2 sB

cB kB
(
sA + 1

2
cA kA

)
− sB δαin

δαin , (3.35)

aoutc, lin =
cA

2 sB

1
2
cA cB kA kB − sB δαout

δαout . (3.36)

Note that, as for the length scale, we observe a divergence of the piece-wise con-
stant steady-state solution as δαout → 0 in the limit of a linear feedback response.
This divergence is again capped by the saturation of the feedback response in the
full, non-linear model (Fig. 3.11). However, the scaling relationship of the piece-
wise constant steady-state solution with δαin and δαout inside the source region
and outside of it, respectively is conserved in the full, non-linear model close to
the critical feedback strength (Fig. 3.11).
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3.5 Gradient shape

Figure 3.9.: Gradient shape varies qualitatively dependent on the ratio
ain
c /a

out
c Upper panel: Shapes of the steady-state profiles in phase

space. Separatrix (black line) discriminates between decreasing and
increasing profiles. Horizontal and vertical black lines indicate αcrit.
Lower panels: Example steady-state profiles for the signalling mo-
lecule concentration (a*n) at indicated position in phase-space. Para-
meters as in Fig. 3.5.
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3. The signalling gradient at steady state

Figure 3.10.: The strength of the local source influences gradient shape.
The position of the separatrix at which ainc /aoutc = 1 and the shape of
the gradient changes (Eq. 3.32, black line) depends on the strength
of the local source sA. Horizontal and vertical black lines indicate
αcrit. Parameters used: cA = 166 nM, cB = 1.66 × 108 nM, D =
1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 10−3 s−1, p = 0.5,
sA = 20 molecules/(s V), sB = 4 molecules/(s W),N = 300, w = 30,
V = ε δ2 = 102 µm3, W = δ3 = 103 µm3.
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3.5 Gradient shape

Figure 3.11.: Piece-wise constant steady-state solution increases for in-
creasing neighbour-dependent production rate. The piece-
wise constant steady-state solution increases as the neighbour-
dependent production rate increases. The increase is more pro-
nounced in the vicinity of αcrit (grey line) (left panels). Close to
the critical feedback strength, ainc and aoutc scale as ainc ∝ (δαin)−1

and aoutc ∝ (δαout)−1, respectively (right panels). Parameters used:
cA = 166 nM, cB = 1.66 × 108 nM, D = 1.0 µm2/s, δ = 10.0 µm,
kA = 10−3 s−1, kB = 10−3 s−1, p = 0.5, sA = 20 molecules/(s V),
sB = 4 molecules/(s W), N = 300, w = 30, V = ε δ2 = 102 µm3,
W = δ3 = 103 µm3.
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3. The signalling gradient at steady state

3.6. Summary and discussion

In this chapter, we showed that the relay mechanism increases the length scale
of the steady-state gradient compared to the diffusion/degradation mechanism
(Eq. 3.31, Fig. 3.7). The increase is dependent on the feedback strength outside
of the source region, αout. It is particularly pronounced in the vicinity of the
critical feedback strength αcrit. This critical feedback strength is defined in the
limit of a linear feedback response that is valid for effector concentrations which
are low compared to the Hill-activator threshold concentration cB. In this limit,
the length scale diverges as the feedback strength becomes critical, αout → αcrit.
This divergence is not present in the full, non-linear model, due to the saturation
behaviour of the feedback response. However, the critical feedback strength still
has an interesting effect on the full system: The system reaches a maximal length
scale at the critical feedback strength (Fig. 3.7). This is a signature of the diver-
gence of the linear response in the full system, that is capped by the saturation
of the feedback response. Such saturation behaviour is characteristic of biological
processes. Analysing how the length scale changes with feedback strength, we
find that it scales as λ̄ ∝ (δαout)−1/2 (Eq. 3.30) until it saturates close to the
critical feedback strength where it reaches its maximum (Fig. 3.7).

The shape of the steady-state profile is not only governed by the length scale
but also by the concentration difference over which it decays. This is captured by
the ratio of the constant values the profile approaches inside and outside of the
source region far away from the boundaries, i.e. ainc /aoutc . This ratio discrimin-
ates decreasing, increasing, and flat profiles (Fig. 3.8). We find that the shape of
the steady-state gradient depends on the overall production strength inside of the
source region compared to outside of it. That is, the profile is highest in the region
in which most molecules are produced. For a diffusion/degradation mechanism
this clearly is the source region, since this is the only region in which molecules are
produced. The positive feedback turns all cells of the system into producing cells.
It is thus the difference between overall production in the source region, i.e. the
constant production with rate sA and the signalling-level-dependent production
with strength αin, compared to the signalling-level-dependent production outside
of the source region with strength αout that dictates the shape of steady-state
gradients. We distinguish between three classes of profiles: decreasing profiles, in
which the concentration of signalling molecules decreases with increasing distance
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3.6 Summary and discussion

from the local source; increasing profiles in which the concentration of signalling
molecules increases with increasing distance from the local source; and flat profiles
that do not show any spatial variation in signalling molecule concentration across
the system. We find that if the feedback in the source region is stronger than
outside of it, the profiles always decay. For a larger feedback strength outside of
the source region compared to inside of it, profile shape depends on the strength
of the signalling-level-independent production in the local source with rate sA
(Fig. 3.10). For large values of sA, the shape still decreases even if the feedback
is stronger outside of the source region compared to inside of it (Fig. 3.10). How-
ever, if sA is small compared to the feedback strength, it is possible to obtain
steady-state profiles increasing away from the local source, in case of stronger
positive feedback outside of the source region compared to inside the source re-
gion (Fig. 3.9).

When observing a signalling gradient in a biological experiment, we intuitively
assume that the source will be located where the profile is highest. In this chapter,
we showed that with the relay mechanism it is possible to have profiles increasing
away from the local source due to an increased positive feedback strength out-
side of the source region compared to inside the source region (Fig. 3.9). We are
not aware of an example of such a situation in a biological context, but it is an
interesting possibility to consider when observing signalling gradients.

For the system that the relay mechanism developed in this work is inspired
by, planarian flatworms, we are confident that the profile we observe has its
maximum inside the constant source region. The worms show a β-catenin con-
centration profile decaying from the tail tip anteriorly ([98, 99], Fig. 1.15). At
the tail tip, a stripe of pole cells expresses Wnt1 ([78, 43], Fig. 1.14) in a Wnt-
signalling-independent manner [98]. We liken Wnt1 production in these cells to
the local constant source in our model. Preliminary data suggests that Wnt1
RNAi lowers the β-catenin levels at the tail tip compared to control (data not
shown). This observation fits our hypothesis that the Wnt1 expressing pole cells
act as a local source in β-catenin gradient formation. Thus, the position of the
maximum of the gradient is in the local source.

In this chapter we showed that the relay mechanism can explain the formation
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3. The signalling gradient at steady state

of long-ranged signalling gradients (Fig. 3.7) and thus meets the first challenge
flatworms set for patterning mechanisms (Fig. 1.13). In the next chapter, we will
analyse how the feedback strength can be used to scale the gradient to varying
system sizes and thus meet the second patterning challenge set by the worms.
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4. Scaling of signalling gradients
using the relay mechanism

4.1. Scaling is required for all patterning

problems

How to scale to the size of the structure to be organised poses a fundamental
problem to every patterning mechanism. In biological contexts, patterning is
most prominently required during development and regeneration. Both of these
scenarios are characterised by growth, i.e. changes in size, as well as differences
between individuals. Thus, in both contexts, patterning mechanisms are required
to scale with system size. Indeed, signalling gradients have been observed to scale
to tissue size [12, 111]. Inspired by these observations, pattern scaling has also
been studied theoretically ([11, 12, 30, 113], see Section 1.5).

Planarian flatworms dynamically grow and shrink over 1.5 orders of magnitude
while constantly turning over all cells in their body [102], see Section 1.4. Thus,
their patterning systems have to constantly adapt to changes in body size at an
adult length scale. Therefore, they combine the challenges of large-scale pattern
formation and pattern scaling (Fig. 1.13). In Chapter 3, we discussed that the
challenge of long-ranged pattern formation is met by the relay mechanism. In
this chapter we investigate its ability to scale with system size.

4.2. Pattern scaling by adjusting feedback

strength

A pattern scales if its length scale is proportional to the size of the tissue to be
organised ([111, 110, 112], Eq. 1.13, see Section 1.5). In Chapter 3 we discussed
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Figure 4.1.: The length scale of the steady-state profiles scales with sys-
tem size. If δαout adapts to system size according to Eq. 4.1, the
length scale of the steady-state profile scales with system size. Para-
meters used: αin = αout = αcrit − δαout, cB = 1.66 × 106 nM,
D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 10−3 s−1,
p = 0.5, V = 102 µm3, W = 103 µm3. Size-dependent parameters:
scaling factor: η = N/100, w = 10 × η, δαout = 0.01αcrit × η−2,
sA = 2 molecules/(s V) × η−2, sB = 0.04 molecules/(s W) × η−2,
cA = 1.66 nM ×η−2.

that in the relay mechanism, the length scale of the steady-steady-state gradient
scales as λ̄ ∝ (δαout)−1/2 (Eq. 3.30, Fig. 3.7). Thus, if δαout is adjusted to system
size, the scaling relationship between δαout and λ̄ (Eq. 3.30) gives rise to scaling
of the length scale with system size. In particular, if δαout adapts to system size
according to:

δαout ∝ N−2 (4.1)

this results in λ̄ ∝ N (Eq. 1.13, see Section 1.5) and thus profile scaling with
system size. That is, profile scaling is achieved if δαout shrinks by a factor of 1/4

in response to a doubling in system size. This scaling behaviour of δαout with
system size leads to scaling of the length scale of the steady-state profiles with
system size across around two orders of magnitude, see Fig. 4.1.

Beyond this, the feedback mechanism starts to saturate as discussed in Chapter 3.
As it saturates, the length scale no longer scales with δαout (see Fig. 3.7). Thus,
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4.2 Pattern scaling by adjusting feedback strength

the length scale cannot be scaled to system size by adjusting δαout to system
size when the mechanism reaches saturation. This is due to the fact that the
length scale reaches a maximal value at the critical feedback strength, i.e. for
δαout = 0, see Fig. 3.7. The fact that the scaling saturates as the feedback
strength approaches its critical value is a general property of the relay mechan-
ism, as discussed in Chapter 3. The value of the length scale at which the scaling
saturates depends on the choice of model parameters. In particular, the value of
the Hill-activation threshold cB compared to effector concentrations bn determ-
ines how well the full model is approximated by the limit of a linear feedback
response. In this limit, the length scale scales perfectly with δαout (Fig. 3.6 B)
and thus with system size if δαout adapts to system size according to Eq. 4.1,
see Fig. 4.1. Thus, a high Hill-activation threshold compared to effector levels
ensures close to linear behaviour of the full model and thus extended scaling of
the length scale with δαout.

As discussed in Chapter 3, not only the length scale, but also aoutc , the con-
centration reached far away from the local source, is dependent on δαout (see
Eq. 3.34). In particular, it scales as aoutc ∝ (δαout)−1 (Eq. 3.34). Thus, if δαout

were indeed regulated by the system such that δαout ∝ N−2 (Eq. 4.1) to achieve
gradient scaling, aoutc would scale with system size according to aoutc ∝ N2. That
is, the steady-state concentrations would increase with increasing system size.

However, this is not consistent with observations in the flatworm: Gradients in
differently sized-worms have been found to decay to an approximately constant,
non-zero value; yet they exhibit shape scaling when corrected for this constant
offset (Hanh Vu, James Cleland, personal communication). This offset corres-
ponds to a∗N in our model. Motivated by the observed constant offset in the
worms, we analysed how a∗N can be kept constant while the length scale scales
with system size by scaling δαout according to δαout ∝ N−2 (Eq. 4.1).

The offset in our model, a∗N , corresponds to aoutc , in the sense that a∗N → aoutc

for large system sizes (N � λ̄). Thus, we postulate that the system regulates
δαout such that δαout ∝ N−2 to achieve gradient scaling, and ask which other
parameters the system has to scale in response to changing system size in or-
der to keep aoutc approximately constant across different system sizes. We lead
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4. Scaling of signalling gradients using the relay mechanism

this discussion guided by the expression for aoutc obtained in the limit of a linear
feedback response (Eq. 3.23) and subsequently confront our results with the nu-
merical solution of the full, non-linear system.

In order to achieve gradient scaling by scaling δαout as discussed above (Eq. 4.1),
the system regulates how far away the feedback strength is from the critical one
dependent on system size. Therefore, when scaling other parameters in addition
to δαout in order to keep aoutc approximately constant, the system has to do that
in a way that does not change αcrit (Eq. 3.26). Based on Eq. 3.36, that we repeat
below for convenience, we see that if cA and sB go to zero the same way that
δαout goes to zero, aoutc stays approximately constant as δαout → 0:

aoutc, lin =
cA

2 sB

1
2
cA cB kA kB − sB δαout

δαout .

Re-scaling cA and sB by the same factor does not change the critical feedback
strength, as αcrit ∝ cA/sB (Eq. 3.26). Therefore, when cA and sB scale with sys-
tem size the same way as δαout does, i.e. cA ∝ N−2, sB ∝ N−2, the profiles decay
to an approximately constant value, while the length scale scales with system
size, see Fig. 4.2. We also assume re-scaling of sA according to sA ∝ N−2. This
way, the value the profiles start from also approximately scales with system size
(taking ainc , Eq. 3.35, as a proxy for a∗0).

In Fig. 4.2 A, we show that the scaling behaviour of a∗N postulated here based
on aoutc in the limit of a linear feedback response is approximately valid for the
full, non-linear system1. Note, however, that neither a∗N nor a∗0 remain exactly
constant even after re-scaling additional parameters with system size. This is
firstly due to the fact that even in the limit of a linear feedback response, the
scaling is approximate. You can see this by looking at the equations for ainc and
aoutc in the limit of linear feedback response (Eqs. 3.36, 3.35) and considering the
simultaneous re-scaling of δαout, cA, sA, and sB as suggested. You also observe
that in the linear feedback response, the scaling becomes increasingly perfect as
δαout → 0. In contrast, in the non-linear model the scaling behaviour of aoutc

1We chose a high Hill-activation threshold cB compared to effector concentration bn to ensure
that the system behaves close to linearly for a wide range for feedback strengths. The
non-linear saturation behaviour still caps the divergence, see Chapter 3.
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4.2 Pattern scaling by adjusting feedback strength

Figure 4.2.: The steady-state profiles scale with system size. A) Steady-
state profiles for different system sizes N . B) Steady-state profiles
shown in A) in relative spatial coordinates n/N . Profiles correspond
to red dots in Fig. 4.1. Parameters used: αin = αout = αcrit − δαout,
cB = 1.66 × 106 nM, D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1,
kB = 10−3 s−1, p = 0.5, V = 102 µm3, W = 103 µm3. Size-
dependent parameters: scaling factor: η = N/100, w = 10 × η,
δαout = 0.01αcrit × η−2, sA = 2 molecules/(s V) × η−2, sB =
0.04 molecules/(s W)× η−2, cA = 1.66 nM ×η−2.

with δαout, as well as that of ainc with δαin, saturates close to δαout = 0, and
δαin = 0, respectively, i.e. close to αcrit, see Fig. 3.11. Thus, the re-scaling of
parameters to obtain a constant aoutc and thus a∗N , and a constant ainc and thus a∗0
across different system sizes is expected to become less accurate for larger system
sizes where δαout is smaller. This is indeed what we observe: Compare a*N and
a*0 between steady-state profiles of largest system sizes to those of smaller system
sizes in Fig. 4.2.

The profiles are very similar when plotted with respect to relative spatial co-
ordinates n/N , see Fig. 4.2 B. In order to analyse the shape of the profiles, we
plot relative concentration profiles with respect to relative spatial coordinates,
see Section 1.5. In case of scaling, this leads to collapse on a master curve, see
Section 1.5. Adapted to the discrete systems we discuss in this thesis, the defini-
tion of the profile shape that is conserved between differently-sized tissues in case
of scaling [112] is given as:

an(N) = A(N) · Z(n/N) , (4.2)

where n denotes the index of the extracellular space and N denotes the total
number of cells in the system. A(N) is the amplitude of the system that can be
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4. Scaling of signalling gradients using the relay mechanism

dependent on the system size N and Z(n/N) describes the conserved shape of
the profiles dependent on the relative spatial coordinate n/N ([111, 110, 112], see
Section 1.5, Eq. 1.12).

As discussed above, the steady-state profiles generated by the relay mechanism
decay to a constant, non-zero value. In order to analyse profile shape, we subtract
this constant offset (a*n − a*N) before analysing profile shape. This way we can
analyse whether the shape of the profile above this constant offset scales. Indeed,
we find that the shape of the profiles above the offset exhibits close-to-perfect
scaling over around two orders of magnitude of system sizes, see Fig. 4.3. Note
that again, the profile of the largest system size (dark red line in Fig. 4.3) shows
a sightly smaller relative length scale compared to the other system sizes. This is
due to the fact that δαout, which is regulated with system size to achieve scaling
(Eq. 4.1) gets closer and closer to zero with increasing system size. Since the
scaling behaviour of λ̄ with δαout saturates as δαout → 0 (see Fig. 3.7), the length
scale of the system does not scale perfectly with system size when δαout adapts
to system size according to Eq. 4.1, see Fig. 4.2. The larger the system gets, and
thus the closer δαout gets to zero, the more prominent this effect becomes.

Taken together, the analysis presented in this chapter shows that the relay
mechanism can not only explain gradient formation for large (millimetre to cen-
timetre long) tissue sizes (Chapter 3) but also gradient scaling over around 2
orders of magnitude for a physiological set of parameters (see Section 2.4 for a
discussion of the parameters).
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Figure 4.3.: Offset-corrected profiles exhibit close to perfect shape scal-
ing. After subtracting the offset (defined as the concentration at
the system boundary a∗N), the relative concentration profiles approx-
imately collapse to a master curve when plotted in relative spatial
coordinates n/N . Parameters used: αin = αout = αcrit − δαout,
cB = 1.66 × 106 nM, D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1,
kB = 10−3 s−1, p = 0.5, V = 102 µm3, W = 103 µm3. Size-
dependent parameters: scaling factor: η = N/100, w = 10 × η,
δαout = 0.01αcrit × η−2, sA = 2 molecules/(s V) × η−2, sB =
0.04 molecules/(s W)× η−2, cA = 1.66 nM ×η−2.

4.3. Summary and discussion

In this chapter we showed that, using the relay mechanism, the system can scale
the length scale of the steady-state gradient to system size if the difference from
the critical feedback strength is adapted to system size according to δαout ∝ N−2

(Eq. 4.1), see Fig. 4.1. Scaling of profile shape and length scale with system
size is revealed by the offset-corrected relative concentration profiles ((a∗n−a∗N) /
(a∗0 − a∗N)) collapsing on a master curve when plotted in relative spatial coordin-
ates, see Fig. 4.3.

If the production rates sA and sB, as well as the Hill-repression threshold cA

are scaled with system size the same way δαout is (Eq. 4.1), the values the profiles
decay to are approximately constant between differently-sized systems (Fig. 4.2).
This way, scaling of the length scale with system size on the one hand, and con-
stant offsets a∗N between different system sizes on the other hand, are achieved
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when δαout scales according to δαout ∝ N−2 (Eq. 4.1). This is consistent with
experimental observations in planarians, where the β-catenin protein gradient
that organises the main body axis [44, 43, 49, 77, 100, 99, 98] decays to a value
at the head end that is approximately constant between worms of different sizes,
while the shape of the gradient scales with system size (Hanh Vu, James Cleland,
personal communication).

We have so far discussed how the mechanism can explain shape scaling with sys-
tem size, as well as an approximately size-invariant concentration at the boundary
of the system a∗N . To this end, we postulated that δαout, sA, sB, and cA scale pro-
portionally to N−2. Thus, the system has to ’sense’ its own size N and adapt the
parameters accordingly. An expander mechanism has been proposed to explain
profile scaling with system size. The idea is that an additional molecule differ-
ent from the morphogen - the expander - encodes system size, see Section 1.5,
Fig. 1.20). An expansion/repression mechanism has been suggested as a specific
realisation of this idea to explain self-organised pattern scaling [7, 11, 12], see
Fig. 1.20 B. As explained in Section 1.5, this mechanism is based on a morpho-
gen and an expander, that regulate each other. The system reaches a steady
state in which the expander concentration encodes system size. The morphogen
concentration at the boundary away from its source (at N) is just above the
threshold for expander production at steady state, see Fig. 1.20 B. Thus, the
system self-organises to achieve an approximately constant, system size-invariant
value at the boundary N , that is slightly higher than the repression threshold for
expander production [11, 12]. This leads to a system size-dependent expander
concentration that scales the shape of the profile according to system size [11, 12].

The relay mechanism also leads to steady-state gradients with an approxim-
ately constant, system size-invariant concentration value at N , if the parameters
are scaled with system size as discussed above. Thus, an expansion/repression
mechanism could be employed to ’sense’ the system size. The parameters can
then be regulated by the expander concentration that encodes the system size.
More specifically, cA, sA, and sB would have to be under negative regulation by
the expander, i.e. decrease with system size. For the feedback strength, this
is a little more intricate, as the expander would have to regulate δαout, the dif-
ference from the critical feedback strength, rather than the feedback strength α
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4.3 Summary and discussion

directly. In order to achieve scaling with the relay mechanism using the expan-
sion/repression mechanism, the threshold for expander production would have to
be slightly lower than the approximately size-invariant value a∗N .

The expansion/repression mechanism has been introduced in the context of a
diffusion/degradation mechanism, where the diffusion constant or the degrada-
tion rate are under the control of an expander [11]. The gradient scaling achieved
this way was on the order of tens to hundreds of micrometres [11, 12]. In con-
trast, the mechanism presented here can explain gradient scaling on millimetre
to centimetre large tissues. These length scales pose a challenge to the expan-
sion/repression mechanism as it relies on an expander profile steady-state length
scale much larger than the system size, leading to spatially homogeneous expander
concentrations at steady state. As the system size becomes larger, this would
require an extremely long-lived molecule (see Section 1.5 for a more in-depth
discussion of this point). However, in the large system presented by planari-
ans, there is evidence for proteins, whose concentration changes with body size
(Hanh Vu, personal communication). Thus, there apparently is a way to en-
code system size in the concentration of a protein even in large systems. One
of the size-sensitive proteins could act as an expander in the system, regulat-
ing the signalling-dependent Wnt production rate αout, as well as the signalling-
independent Wnt and β-catenin production rates sA and sB, and the sensitivity
to Wnt signalling cA.

In diffusion/degradation mechanisms, profile scaling can mainly be achieved
by decreasing the degradation rate with increasing system size, as the diffusion
coefficient cannot be arbitrarily increased (see Section 1.5 for a discussion of this
point). Since the length scale scales as λ ∝ k−1/2 in the diffusion/degradation
mechanism, the degradation rate would have to scale as k ∝ N−2 in order to
achieve profile scaling (Eq. 1.13). Thus, in order to scale the profile to changes
in system size over two orders of magnitude, the degradation rate would have to
change over four orders of magnitude. In contrast, in the relay mechanism, scal-
ing of the length scale is achieved by scaling δαout ∝ N−2. It is thus the difference
from the critical feedback strength, rather than the feedback strength itself, that
changes over four orders of magnitude. Thus, the actual changes to the value
of the feedback strength are very small. Therefore, profile scaling across orders
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4. Scaling of signalling gradients using the relay mechanism

of magnitude of system sizes can be achieved by small changes to the feedback
strength (see Fig. 4.1, Fig. 3.7). Note that this also implies that a tight regu-
lation of the feedback strength is required, as close to the critical point, small
changes in the feedback strength have a strong influence on the length scale of
the steady-state profile (Fig. 3.7, Fig. 4.2). Note further that in order to keep
the offset a∗N constant across differently sized systems, sA, sB, and cA have to
scale with N−2. Thus, keeping a∗N constant across system sizes varying by two
orders of magnitude also requires adaptation of these parameters by four orders
of magnitude. However, if the system fails to adapt these parameters accordingly,
only the offset a∗N and not the shape or the length scale of the profile are affected.
Thus, the relay mechanism allows adapting the length scale to system size across
two orders of magnitude by small changes to the feedback strength as opposed
to order of magnitude changes of the degradation rate required for profile scaling
in a diffusion/degradation mechanism.

However, the scaling of the length scale with system size by adjusting δαout

(Eq. 4.1) saturates as δαout → 0, see Fig. 4.1. This is due to the fact that the
length scale reaches a maximal value at the critical feedback strength, where
δαout = 0 (Fig. 3.7, Fig. 4.2). Thus, the scaling relationship between λ̄ and δαout

saturates in the vicinity of αcrit (Fig. 3.7, Fig. 4.2). Accordingly, the scaling of
λ̄ with system size saturates close to αcrit. Therefore, the relay mechanism is
characterised by a saturation of the scaling ability by tuning δαout very close to
this critical feedback strength. Thus, there is an upper limit for system size up
to which the mechanism can scale. This observation is interesting in relation to
biological systems, that are typically characterised by a maximal size, introducing
a natural upper limit up to where pattern scaling is required. We briefly discuss
this point in the context of planarian flatworms.

Asexual flatworms usually start fissioning when they reach a body length of
6 mm and even when kept at high density, which makes them fission at larger
body lengths, they rarely grow beyond 2 cm. This suggests that there is an upper
limit of body size up to which the system has to be able to scale its patterning
mechanisms. Interestingly, there are examples of patterning systems collapsing
when a certain system size is reached. For instance, spontaneous appearance of
double-headed worms has been observed in asexual Dugesia dorotocephala that
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grew very long [51]. Sexual Schidtea mediterranea do not reproduce by fissioning.
When fed continuously, they grow to very large sizes beyond 2 cm. At these large
sizes, some strains of sexual Schidtea mediterranea start developing patterning
defects. In particular, they start making an additional set of eyes and pharynges
(Hanh Vu, personal communication). These observations suggest that there is
indeed a maximum system size up to which the patterning mechanism can scale,
consistent with the observation of an upper limit for pattern scaling in the relay
mechanism. The relay mechanism is capable of scaling systems over around
2 orders of magnitude for a physiological set of parameters, which is in good
agreement with the dynamic growth and shrinking of the worms over 1.5 orders
of magnitude [102].
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5. Dynamics of gradient
formation

5.1. How long does it take to form a

steady-state signalling gradient?

In order to analyse the behaviour of the relay mechanism, we are not only in-
terested in the shape of the steady-state profile it gives rise to, but also in its
dynamics. In particular: How long does it take the system, to approach its steady
state? As we saw in Chapters 3 and 4, a positive feedback loop leading to pro-
duction of more signalling molecules in response to receiving a signal strongly
increases the length scale of the steady-state concentration profile. Thus, the
relay mechanism can explain the formation of long-ranged profiles. However, in
order to exert their patterning function, these long-ranged profiles have to form.
Therefore, aside from the steady-state length scale of the signalling gradient, the
time it takes to reach that steady state is an important characteristic of the
gradient-forming mechanism. In this chapter, we thus seek to analyse the time
scale of gradient formation using the relay mechanism.

We can approximate the positive feedback by a linear response if the effector
levels bn are low compared to the Hill-activation threshold cB, see Section 3.3. As
discussed in Chapter 3, analysing the model in the limit of the linear feedback
response reveals an interesting behaviour of the length scale of the steady-state
gradient: The divergence of the length scale observed in the limit of linear feed-
back shows as a maximum in the length scale of the non-liner model (Fig. 3.7).
Therefore, we again turn to the limit of a linear feedback response as a first step
to understand the dynamics of the model.

We start this chapter by introducing an approximate analytical dynamic solu-
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5.2 Dynamic solution in the limit of a linear feedback response

tion to the model in the limit of a linear feedback response. We then define the
time scale of the relay mechanism in the limit of a linear feedback response based
on this dynamic solution. Subsequently, we analyse the effect that positive feed-
back has on this time scale. Thus, we ask how the feedback loop in the signalling
pathway affects the time it takes to form a gradient. Moreover, we combine
this analysis with the analysis presented in Chapters 3 and 4, asking how long
it takes to form a steady-state gradient of a specific length scale. That is, we
analyse whether there is a trade-off between the length scale and the time scale
of the signalling gradient. We also discuss what we learn about the dynamics
of the non-linear system from the analysis of the system in the limit of a linear
feedback response.

5.2. Dynamic solution in the limit of a linear

feedback response

In this section, we introduce the approximate dynamic solution to our system in
the limit of a linear feedback response. This limit is valid for low effector concen-
trations bn compared to the Hill-activator threshold, cB (see Section 3.3, Fig. 3.4).

In general, the dynamic solution to a system close to steady state can be
approximated by a time-dependent infinitesimal deviation from the steady-state
solution. Thus, the approximate dynamic solution to our system, an(t), and bn(t),
can be expressed as:

an(t) = a∗n + δan(t) , (5.1)

bn(t) = b∗n + δbn(t) , (5.2)

where a∗n and b∗n denote the respective steady-state solutions, and δan(t) and
δbn(t) denote the infinitesimal time-dependent deviations from it. Since the time
derivative of the steady-state solution is zero by definition, the dynamics of the
system is given by the dynamics of the deviation from the steady state, ∂tδan(t)

and ∂tδbn(t). In the following, we do not write the time dependence explicitly for
brevity.

In the limit of a linear feedback response, ∂tδan is linear, see Eqs. 3.17 - 3.19,
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5. Dynamics of gradient formation

Eq. 5.1. For δbn, we obtain:

∂tδbn =
cA

cA + a∗n + a*n+1

(
sB
cA

(δan + δan+1)− kBδbn
)

. (5.3)

based on Eqs. 2.9, 3.3, 5.1, and 5.2. The resulting system of linear equations
approximating the dynamics of the system can be expressed in matrix form as:

∂tδx = M · δx , where δx =



δa0

δb0

...
δaN−1

δbN−1

δaN


, (5.4)

and M describes the dynamics of the system according to Eqs. 3.17 - 3.19 and
Eq. 5.3. The dynamic solution to this system is given by the sum of all eigen-
modes:

δx(t) =
2N+1∑
i=0

Ki e
−t/τi vri , (5.5)

where vri denotes a right eigenvector of M with eigenvalue − 1
τi
, and the τi’s de-

note the relaxation times of the system. Note that the system is comprised of
both the cells and the extracellular spaces, gathered in δx, and thus has one set
of 2N + 1 relaxation times and corresponding eigenvectors. The coefficients Ki

are determined by the initial conditions. See Appendix G for details. Based on
Eq. 5.5, we obtain the approximate dynamic solution to the system in the limit
of a linear feedback response according to Eqs. 5.1 and 5.2 (Fig. 5.1).

We can define the characteristic time scale of the relay mechanism in the limit
of a linear feedback response based on this dynamic solution. For a linear system
like the one presented in Eq. 5.4, the dynamics of the system are governed by the
slowest relaxation time τmax for long times. In particular, this slowest relaxation
time is a good estimate of how long it takes the linear system to reach its steady
state. We thus define the slowest relaxation time

τmax := max{τi} (5.6)
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Figure 5.1.: Dynamic solution to the linearised model. Approximate dy-
namic solutions an(t) and bn(t) according to Eqs. 5.1 and 5.2 for indic-
ated time points. The dashed black line denotes the steady-state solu-
tion. Source region shaded in red. Parameters used: cA = 166 nM,
cB = 1.66 × 108 nM, D = 1.0 µm2/s, δ = 10.0 µm, ε = 1.0 µm,
kA = 10−3 s−1, kB = 102 s−1, p = 0.5, sA = 1000 molecules/(s
V), sB = 4 molecules/(s W), N = 300, w = 30, V = 102 µm3,
W = 103 µm3.

as the time scale of the relay mechanism in the limit of a linear feedback response.

All relaxation times of the system, including the slowest one, are obtained by
diagonalising M. This is done numerically, since M is an (2N + 1) × (2N + 1)

matrix. However, it is helpful to have an analytical estimate to the slowest
relaxation time in order to understand how the different parameters of the system
influence the slowest relaxation time. In particular, we are interested in how
the positive feedback of the relay mechanism influences the slowest relaxation
time and thus the dynamics of the system. Therefore, we derive an analytical
expression approximating the slowest relaxation time of the system. We introduce
this approach in the next section.

5.3. An analytical approximation to the slowest

relaxation time

In this section, we introduce an approach to obtain an analytical estimate for
the slowest relaxation time of the system. We first introduce how we obtain this
approximation. Subsequently, we compare it to the slowest relaxation time ob-
tained by diagonalising M (Eq. 5.4) as discussed in the previous section.
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5. Dynamics of gradient formation

As discussed above, the dynamics of the system are given by a set of eigen-
modes, each of which comes with a characteristic relaxation time (Eq. 5.5). In
the diffusion/degradation system, the spatially constant eigenmode relaxes most
slowly, see Appendix A. Assuming that in this aspect, the dynamics of the re-
lay mechanism in the limit of a linear feedback response behaves qualitatively
equivalently to a diffusion/degradation system, we use the relaxation time of the
constant eigenmode as an estimate for the slowest relaxation time of the system.

In our system, the ’constant’ eigenmode is given as δan = δain, δbn = δbin

inside the source region and δan = δaout, δbn = δbout outside of the source region.
∂tδbn depends on the steady-state solution a∗n (Eq. 5.3). In line with analysing
the constant mode, we approximate the steady-state solution a∗n by ainc, lin and
aoutc, lin inside the source region, and outside of it, respectively. Further, to ap-
proximate the slowest relaxation time, we neither consider the dynamics at the
boundaries of the system, nor at the source/non-source interface. Applying these
approximations, Eq. 5.4 collapses to:

∂t


δain

δbin

δaout

δbout

 =


−kA αin

cB
0 0

2 sB
cA+2 ain

c, lin

−kB cA
cA+2 ain

c, lin
0 0

0 0 −kA αout

cB

0 0 2 sB
cA+2 aout

c, lin

−kB cA
cA+2 aout

c, lin



δain

δbin

δaout

δbout

 . (5.7)

Similarly to what we discussed in the previous section, we can obtain the relaxa-
tion times for this approximation by diagonalising the matrix defined in Eq. 5.7.
We thus obtain four relaxation times:

(
τ in1,2
)−1

= −
[
−kA

2
− kB cA

2 (cA + 2 ainc, lin)

±

√√√√(−kA
2
− kB cA

2 (cA + 2 ainc, lin)

)2

− kA kB cA cB − 2αin sB
cB(cA + 2ainc, lin)

 , (5.8)

(
τ out1,2

)−1
= −

[
−kA

2
− kB cA

2 (cA + 2 aoutc, lin)

±

√√√√(−kA
2
− kB cA

2 (cA + 2 aoutc, lin)

)2

− kA kB cA cB − 2αout sB
cB(cA + 2aoutc, lin)

 . (5.9)
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5.3 An analytical approximation to the slowest relaxation time

We use the overall largest of these four relaxation times as an estimate for the
dynamics of the relay mechanism in the limit of a linear feedback response. We
see that τ in/out1 > τ

in/out
2 . Thus, the analytical approximation to the slowest

relaxation time τ appmax is given as:

τ appmax := max{τ in1 , τ out1 } . (5.10)

The system reaches a steady state if its slowest relaxation time is positive and
finite, i.e. 0 < τ appmax < ∞. Thus, based on the approximation of the slowest
relaxation time (Eq. 5.10), we see that the system reaches a steady state, if

kA kB cA cB − 2αin sB
cB(cA + 2ainc, lin)

> 0 , (5.11)

and

kA kB cA cB − 2αout sB
cB(cA + 2aoutc, lin)

> 0 . (5.12)

This defines the critical feedback strength αcrit, that we already discussed as the
feedback strength at which the steady-state length scale of the relay mechanism in
the limit of a linear feedback response diverges (see Chapter 3, Eq. 3.26, repeated
here for convenience):

αcrit =
kA kB cA cB

2 sB
.

Thus, for a feedback strength greater than or equal to αcrit, the relay mechanism
in the limit of a linear feedback response does not reach a steady state.

The system relaxes fast for τmax → 0 and increasingly slowly for τmax →∞. In
particular, this means that the system becomes slower and slower as αin and/or
αout approach αcrit. At the same time, the length scale of the steady-state gradi-
ent increases as αout → αcrit, as discussed in Chapter 3. In the limit of a linear
feedback response, discussed here, it diverges at αout = αcrit (Fig. 3.6).

Thus, the closer the feedback strength is to the critical one, the longer the
length scale of the steady-state profile but the slower the dynamics of the system.
In order to study this trade-off between length scale and relaxation time in the
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5. Dynamics of gradient formation

vicinity of the critical feedback strength, we need to understand how the relax-
ation time scales with δαin/out, the difference from the critical feedback strength
inside and outside of the source region. To this end, we analyse the scaling rela-
tionship between δαin/out and τ appmax in the next section. This enables us to discuss
the trade-off between length scale and relaxation time in the subsequent section.

5.4. Influence of the positive feedback on the

slowest relaxation time

The slowest relaxation time τmax becomes increasingly slow as the feedback strength
approaches its critical value αcrit. In order to better understand this behaviour,
we analyse how the approximation to the slowest relaxation time τ appmax scales with
the difference from the critical feedback strength δαin/out. As discussed in Sec-
tion 5.3, τ appmax is given by the maximum of τ in1 and τ out1 and those depend on αin

and αout, respectively. Thus, we first establish the scaling relationships between
τ in1 and δαin, as well as between τ out1 and δαout, in the vicinity of αcrit.

As discussed in Section 5.3, τ in1 and τ out1 diverge at the critical feedback strength
αcrit. In particular, αin/out has to be smaller than αcrit for the system to reach
a steady state (Eqs. 5.11, 5.12). In the vicinity of αcrit, the scaling relationship
between τ in1 and δαin, as well as that between τ out1 and δαout, are governed by
the respective scaling relationships of the respective stability criteria (Eqs. 5.11,
5.12). Thus, we analyse the scaling of these stability criteria (Eqs. 5.11, 5.12)
with δαin and δαout, respectively, in the following. Using Eqs. 3.35 and 3.36, we
can rewrite the stability criterion for τ in1 (Eq. 5.11) as:(

2 sB δα
in
)2

cA c2
B kB (2 sA + cA kA)

> 0 , (5.13)

and the one for τ out1 (5.12) as:

(2 sB δα
out)

2

(cA cB)2kA kB
> 0 . (5.14)

Due to the inverse in Eqs. 5.8 and 5.9, it follows that

τ in1 ∝
(
δαin)−2 in the vicinity of αcrit. (5.15)
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and

τ out1 ∝
(
δαout)−2 in the vicinity of αcrit. (5.16)

As discussed in Chapters 3 and 4, the length scale becomes increasingly large as
αout → αcrit. In particular, the length scale scales as λ̄ ∝ (δαout)−1/2 (Eq. 3.30).
We are interested in the trade-off between an increasingly large length scale of
the steady-state gradient and increasingly slow dynamics as the feedback strength
approaches αcrit. The length scale scales with δαout while the time scale scales
with either δαin or δαout, dependent on whether τ appmax is given by τ in1 or τ out1 . In
order to compare the scaling behaviour of the length scale and the time scale, we
aim to express the scaling relationship of τ appmax in terms of δαout, irrespective of
whether τ appmax is given by τ in1 or τ out1 . To this end, we assume there is a relationship
between δαin and δαout: δαin = f(δαout). That is, we analyse the scaling of τ appmax

with δαout for specific combinations of αin and αout. Note that defining these
functions f is a method we use to analyse the behaviour of the system. Thus,
the relationships between δαin and δαout described in f do not carry a specific
meaning for the system.

We start our discussion by analysing the case in which the difference to the
critical feedback strength inside of the source region is proportional to that outside
of the source region:

δαin = r δαout , r ∈ R . (5.17)

In this case, the estimate for the slowest relaxation time scales as

τ appmax ∝ (δαout)−2 , (5.18)

irrespective of whether τ in1 or τ out1 is slower since a constant factor does not change
the scaling relationship. We show this scaling relationship, as well as example
stead-state profiles for the case of r = 1, i.e. αin = αout in Fig. 5.2. We see
that both the time scale and the length scale increase as δαout → 0 (Fig. 5.2 B,
C). Note however, that the scaling relationship obtained in Eq. 5.18 is only valid
close to δαout = 0. The change in the scaling relationship for increasing δαout is
visible as a change in the slope of the black line (τ appmax) in Fig. 5.2 B. The scaling
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5. Dynamics of gradient formation

Figure 5.2.: Scaling of the slowest relaxation time with feedback
strength. Behaviour of the slowest relaxation time for δαin = δαout.
A) δαin = δαout in phase space (red line). Blue region: decreas-
ing steady-state profiles, grey dashed line: separatrix (see Fig. 3.9).
Grey region: no steady state is reached in the limit of a linear feed-
back response discussed here. B) The slowest relaxation time of
the system scales as τmax ∝ (δαout)−2 for δαout → 0. Black dots
and line: τ appmax (Eq. 5.10). Red line and crosses: τmax (Eq. 5.6).
C) Example profiles with increasing time- and length scale. Dots
indicate position of these profile in A) and B). Parameters used:
cA = 166 nM, cB = 1.66 × 108 nM, D = 1.0 µm2/s, δ = 10.0 µm,
kA = 10−3 s−1, kB = 102 s−1, p = 0.5, sA = 1000 molecules/(s V),
sB = 4 molecules/(s W), N = 300, w = 30, V = ε δ2 = 102 µm3,
W = δ3 = 103 µm3.

exponent of -2 (Eq. 5.18) corresponds to the steep slope for small values fo δαout,
whereas a smaller slope, corresponding to a lower absolute scaling exponent, is
observed further away from the critical feedback strength (to the right of the
plot). Further, the approximation to the slowest relaxation time τ appmax overestim-
ates the slowest relaxation time τmax close to δαout = 0 (compare the red and
black lines in Fig. 5.2 B).

Next, we analyse the behaviour for a power-law relationship between δαin and
δαout according to:

δαin = r
(
δαout)ν , r, ν ∈ R . (5.19)
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Plugging Eq. 5.19 into the scaling relationship for τ in1 (Eq. 5.15), we find that
τ in1 ∝ (δαout)−2ν . The slowest relaxation time is given by the maximum τ in1 and
τ out1 (Eq. 5.10). Thus, there is one regime in which it scales as

τ appmax ∝ (δαout)−2 in the vicinity of αcrit, (5.20)

when τ appmax = τ out1 , and another regime in which it scales as

τ appmax ∝ (δαout)−2ν in the vicinity of αcrit, (5.21)

when τ appmax = τ in1 .

Having established a way to express the scaling relationship of the estimate to
the slowest relaxation time τ appmax to the feedback strength in terms of δαout, we
compare the scaling relationship of the slowest relaxation time to the one of the
length scale of the steady-state gradient for δαout → 0 in the next section.

Note that throughout this chapter, we chose the constant production in the
source region sA such that we always obtain a decreasing steady-state profile,
indicated by the blue area in Fig. 5.2 A.

5.5. Analysing the trade-off between length scale

and time scale

For feedback strengths inside and outside of the source region that are related
according to δαin ∝ δαout (Eq. 5.17), including constant feedback across the
whole system αin = αout, the estimate for the slowest relaxation time scales as
τ appmax ∝ (δαout)−2 (Eq. 5.18). Combining this with the scaling relationship of the
length scale with δαout (Eq. 3.30), we find that the relaxation time scales with
the length scale according to:

τmax ∝ λ̄4 in the vicinity of αcrit . (5.22)

That is, if δαout changes such that the length scale doubles, the system takes
24 = 32-times as long to reach a steady state. Thus, the increase in length scale
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Figure 5.3.: Trade-off between length scale and time scale. τmax scales with
λ̄4 in the vicinity of αcrit (δαout = 0), but with λ̄2, grey line, further
away from the critical feedback strength. The green star indicates the
length scale and time scale of the diffusion/degradation mechanism
for the diffusion coefficient and degradation rate (kA) used in this
plot. Parameters used: αin = αout, cA = 166 nM, cB = 1.66×108 nM,
D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 102 s−1, p = 0.5,
sA = 1000 molecules/(s V), sB = 4 molecules/(s W), N = 300,
w = 30, V = 102 µm3, W = 103 µm3.

as the feedback strength approaches αcrit comes at the price of slow dynamics of
the system.

We find however, that for fast turnover of effector molecules (kB = 100 s−1),
the scaling relationship described above does only hold very close the the critical
feedback strength, that is for very large length and time scales, see Fig. 5.3. In
contrast, further away from δαout = 0, the relay mechanism in the limit of a linear
feedback response follows a scaling according to τmax ∝ λ̄2, compare the scaling of
τmax and τ appmax to the grey line indicating this scaling relationship in Fig. 5.3. The
latter is the scaling relationship observed for a diffusion/degradation mechanism.
Compare Eqs. 1.6 and 1.7 to see this.

Next, we analyse the trade-off between the length scale and the time scale for
δαin and δαout related according to a power-law relationship (Eq. 5.19). We find
that the scaling relationship becomes increasingly favourable for a power-law ex-
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5.5 Analysing the trade-off between length scale and time scale

ponent ν < 1, see Fig. 5.4 left panel. That is, τmax scales as τmax ∝ λ̄2 for a
large range of δαout (compare the red line to the grey line in Fig. 5.4), and the
scaling exponent even decreases close to αcrit (to the right of the plot). In con-
trast, the trade-off between the time scale and the length scale is less favourable
for a power-law exponent ν > 1, see Fig. 5.4, right panel. That is, τmax scales
as τmax ∝ λ̄2 only for very large δαout (to the left of the plot) while the scaling
exponent increases, particularly close to the critical feedback strength (to the
right of the plot, compare red line and grey line).

Note in all cases discussed, τ appmax overestimates τmax in the vicinity of αcrit (com-
pare black and red lines in Figs. 5.3, 5.4, where large values of λ̄ correspond to
small values of δαout). Thus, the approximation becomes increasingly worse as
δαout → 0. We thus note that the simple approximation τ appmax we introduced is
not sufficient to analyse the dynamics of the system in the vicinity of the critical
feedback strength. Here, we need to analyse the slowest relaxation time τmax.

Based on the slowest relaxation time τmax, we see that for large values of kB,
the trade-off between the length scale and the time scale in the relay mechanism
in the limit of a linear feedback response is given by τmax ∝ λ̄2 for a wide range
of δαout and thus equivalent to that of a diffusion/degradation mechanism. For
large length scales, i.e. close to the critical feedback strength, this trade-off gets
better than in a diffusion/degradation mechanism if δαin and δαout are related
according to a power-law relationship (Eq. 5.19) and ν < 1, see Fig. 5.4, left
panel.
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5. Dynamics of gradient formation

Figure 5.4.: Scaling of the relaxation time with length scale for δαin =
r (δαout)

ν . The trade-off between length scale and time scale be-
comes more favourable for ν < 1 (left) and less favourable for ν > 1.
Parameters used: αin = αout, cA = 166 nM, cB = 1.66 × 108 nM,
D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 102 s−1, p = 0.5,
sA = 1000 molecules/(s V), sB = 4 molecules/(s W), N = 300,
w = 30, V = 102 µm3, W = 103 µm3.

5.6. Summary and discussion

It takes increasingly longer to form steady-state gradients with a longer steady-
state length scale. This is true both for the diffusion/degradation mechanism
and the relay mechanism. While the length scale is increased by decreasing the
degradation rate in the diffusion/degradation mechanism (see Section 1.5), it is
increased by approaching the critical feedback strength in the relay mechanism.
In the diffusion/degradation mechanism the length scale scales with the time scale
according to τmax ∝ λ̄2. In order to compare this trade-off between length scale
and time scale between the diffusion/degradation and the relay mechanism, we
analysed the scaling behaviour of the time scale with the length scale in the relay
mechanism in this chapter.

In order to analyse this trade-off in the relay mechanism in limit of a linear
feedback response, we solved the dynamics of the model close to the steady state
and defined the time scale as the slowest relaxation time of the system (Sec-
tion 5.2). Further, we introduced an analytical approximation to the slowest
relaxation time (Section 5.3), based on which we analysed the influence of the
positive feedback on the slowest relaxation time (Section 5.4). In particular, this
allowed defining a scaling relationship between the length scale and the time scale.
Based on this approximation, the slowest relaxation time scales with the length
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5.6 Summary and discussion

scale as τmax ∝ λ̄4 if δαin ∝ δαout (Eq. 5.17). Note that this scaling relationship
was derived using the stability criteria for τ in1 and τ out1 (Eqs. 5.11, 5.12), rather
than the full expressions for τ in1 and τ out1 and is thus only valid close to the critical
feedback strength (see Section 5.4).

Considering the full expressions for τ in1 and τ out1 we see that the length scale and
the time scale scale according to τmax ∝ λ̄2 further away from the critical feed-
back strength, for large values of kB (Fig. 5.3). This is the scaling relationship
observed for a diffusion/degradation mechanism. We find scaling according to
τmax ∝ λ̄2 in the relay mechanism for length scales on the order of 10 to 100 cells,
corresponding to 0.1 mm to 1 mm (Fig. 5.3). These are length scales relevant
for patterning of the worm. Moreover, if δαin and δαout are related according to
a power-law relationship (Eq. 5.19) and ν < 1, the scaling exponent is further
decreased for large length scales, see Fig. 5.4, left panel. Thus, in this case the
trade off between the length scale and the time scale is better in the relay mech-
anism than in the diffusion/degradation mechanism.

Note, however, that the scaling according to τmax ∝ λ̄2 as presented in this
chapter does not hold in general. It was observed for a fast turnover of the ef-
fector molecule bn, that is for a large degradation rate kB = 100 s−1. In particular,
the time scale of the relay mechanism is slower than discussed in this chapter for
kB = kA = 103 s−1, the parameters we used in Chapters 3 and 4, leading to a
scaling relationship closer to τmax ∝ λ̄4. Further analysis is needed to understand
how the scaling between the length scale and the time scale in the relay mechan-
ism depends on the ratio of the two degradation rates kA and kB. However, in the
next chapter we show that the trade-off between the length scale and the time
scale of a signalling gradient formed by the relay mechanism is greatly improved
by polarised secretion in response to the positive feedback. This can even boost
the trade-off beyond τmax ∝ λ̄2, the one characteristic of a diffusion/degradation
mechanism.

The data presented in this chapter (obtained for large values of the degradation
rate kB) show that the relay mechanism allows short-lived molecules to form long-
ranged gradients. This opens the possibility for short-lived molecules to impact
the patterning of large structures. Taking into consideration that signalling pro-
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5. Dynamics of gradient formation

files are thought to already exert a patterning function as they are being formed,
i.e. before they have reached steady state [30], this might open new perspectives
for patterning large structures using the relay mechanism, even if its relaxation
time is on the order of days. This is in stark contrast to the diffusion/degradation
mechanism, in which only long-lived molecules can form a long-ranged gradient.

In this chapter, we discussed the time scale of the relay mechanism in the limit
of a linear feedback response. In this limit, the time scale diverges at αin = αcrit

or αout = αcrit (Eqs. 5.11, 5.12). That is, the system does not reach a steady state
for feedback strengths greater than or equal to αcrit. In contrast, the non-linear
system does reach a steady state for feedback strengths equal to or greater than
αcrit. That is, the divergence is capped by the saturation behaviour of the posit-
ive feedback response. Numerical analysis of the non-linear system reveals that
the dynamics is getting slower as the feedback strength approaches αcrit. This is
in line with what we observed for the relaxation time of the system in the limit
of a linear feedback response presented in this chapter. In contrast to what we
presented in this chapter, the time scale does not diverge but reaches a max-
imum at the critical feedback strength in the non-linear model. Further analysis
is needed to understand how the time scale of the non-linear system scales with
the length scale in the vicinity of αcrit. Such analysis will allow comparing this
scaling behaviour to the one of the diffusion/degradation system, analogously to
what we did in this chapter in the limit of a linear feedback response.

In the next chapter, we discuss the influence of secretion polarity on both the
length scale and the time scale of the relay mechanism. In particular, we show
that polarised secretion can improve the trade-off between the length scale and
the time scale of the relay mechanism even beyond τmax ∝ λ̄2, that is, beyond the
one observed for the diffusion/degradation mechanism.
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6. Role of tissue polarity in
cell-to-cell relay

6.1. Impact of tissue polarity on signalling

gradients formed by cell-to-cell relay

In Chapters 3 to 5, we discussed the properties of the relay mechanism in the ab-
sence of secretion polarity, that is for symmetric secretion of signalling molecules
to the left and to the right of each cell (p = 1/2 in Eqs. 2.6 - 2.8). However, we
introduced the model with a general secretion polarity p in Chapter 2, that is
motivated by tissue polarity.

Polarity is a common phenomenon in biology. It describes the fact that two
sides of a cell or a tissue are distinct, thus, there is directionality in the structure.
It can be found intracellularly, manifesting in the spatially distinct organisation
of the cytoskeleton and cytoplasmic components such as mRNAs and proteins, so
that some components are preferentially located to a specific side of the cell [18].
This can for instance be observed during cell migration, or in asymmetric cell
division [18]. Not only individual cells, but also whole tissues can be polarised.
This is achieved by syncing the polarity of individual cells within a tissue. A
famous example is the apical-basal polarity of epithelial tissues that form a bar-
rier between a lumen or air and the body [18]. Aside from apical-basal polarity,
epithelia also exhibit planar cell polarity, that is, a polarity in the plane of the
epithelium [56, 119]. This is most noticeable in the aligned orientation of hairs,
bristles, or cilia growing out of epithelial cells [56, 119]. The planar cell polarity
pathway organises cell polarity within a sheet of cells by the separation of two
protein complexes: one to the anterior and the other to the posterior side of each
cell in the tissue [56, 119].
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6. Role of tissue polarity in cell-to-cell relay

Thus, tissue polarity leads to distinct properties of two sides of a cell. It is
therefore conceivable that it can lead to polarised secretion of signalling mo-
lecules. The polarity in our model is akin to planar cell polarity in the sense
that it is a polarity in the ’plane’ of the tissue, i.e. along the row of cells in our
model. In Chapter 3, we identified that such polarised secretion can give rise to
an effective drift of signalling molecule concentration through the system with
speed ν = (2 p− 1)αout zout (Eq. 3.14).

In the continuous diffusion/degradation model with drift (Eq. 1.8), the length
scale of the steady-state gradient is boosted by drift for positive drift speeds ν,
see Fig. 1.18. Positve values of ν correspond to movement of concentration down
the concentration gradient in this model. In our model, the speed of the drift
is positive for the secretion polarities p > 1/2, see Eq. 3.14, corresponding to
preferred secretion to the right. The local source is to the left of the system in
our model (see Eq. 2.1, Fig. 2.2). Thus, p > 1/2 corresponds to drift away from
the local source. This is consistent with a drift down the gradient if the profile
decreases away from the local source. We thus expect a boost of the length scale
of the steady-state gradient due to drift in our model for p > 1/2.

In this chapter, we investigate the influence that the effective drift emerging
from polarised secretion has on the length scale of the steady-state signalling
gradient, as well as on the trade-off between the length scale of the steady-state
gradient and the time scale of gradient formation. We indeed find the expected
boost of the steady-state gradient for p > 1/2 (Section 6.2), that also leads to
a greatly imporved trade-off between the length scale and the time scale (Sec-
tion 6.3), allowing to reach long-ranged steady-state gradients in biologically rel-
evant times scales of hours to days.

6.2. Effect of tissue polarity on the length scale

of signalling gradients at steady state

In accordance with what we discussed for the diffusion/degradation mechanism
with drift (Section 1.5), the emerging drift changes the length scale of the steady-
state gradient in the relay mechanism. In particular, preferred secretion to the
right (p > 1/2), corresponding to secretion down the gradient (see Section 6.1),
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Figure 6.1.: Secretion polarity influences profile length scale. Baseline-
corrected and maximum-normalised profiles reveal an increased
steady-state length scale for preferred secretion to the right (p > 1/2)
compared to symmetric (p = 1/2) secretion or secretion to the left
(p < 1/2). Solid lines: analytical approximate steady-state solution.
Dots: Numerical steady-state solution. Parameters used: αin = αout,
cA = 166 nM, cB = 1.66 × 108 nM, D = 1.0 µm2/s, δ = 10.0 µm,
kA = 10−3 s−1, kB = 10−3 s−1, sA = 20 molecules/(s V), sB = 4 mo-
lecules/(s W), N = 300, w = 30, V = 102 µm3, W = 103 µm3.

increases the length scale of the steady-state gradient compared to symmetric
secretion (p = 1/2), while preferred secretion to the left (p < 1/2) decreases it,
see Fig. 6.1.

Note that secretion polarity not only changes the length scale of the steady-
state concentration profile, but also the overall amount of molecules in the system:
It is increased for preferred secretion to the right (p > 1/2) compared to symmet-
ric secretion (p = 1/2) and decreased for preferred secretion to the left (p < 1/2),
see Fig. 6.2.

In the relay mechanism, the length scale of the steady-state gradient increases
as the feedback strength approaches its critical value (see Chapter 3). In partic-
ular, we find that the length scale scales as λ̄ ∝ δ(αout)−1/2 (Eq. 3.30) in case
of symmetric secretion (p = 1/2). If we define a general scaling relationship
λ̄ ∝ δ(αout)−γ, we find that the scaling exponent γ is dependent on p. In par-
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Figure 6.2.: Secretion polarity influences steady-state concentrations.
Preferred secretion to the right (p > 1/2) increases the overall concen-
tration of the steady-state profile compared to symmetric (p = 1/2)
secretion or secretion to the left (p < 1/2). Solid lines: analytical ap-
proximate steady-state solution. Dots: Numerical steady-state solu-
tion. Parameters used: αin = αout, cA = 166 nM, cB = 1.66×108 nM,
D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 10−3 s−1,
sA = 20 molecules/(s V), sB = 4 molecules/(s W), N = 300, w = 30,
V = 102 µm3, W = 103 µm3.

ticular, γ = 1/2 for p = 1/2 (Eq. 3.30), whereas γ > 1/2 for p > 1/2 (preferred
secretion to the right) and γ < 1/2 for p < 1/2 (preferred secretion to the left),
see Fig. 6.3. That is, for secretion to the right (p > 1/2) the length scale grows
faster as the feedback approaches its critical strength. The opposite is true for
secretion to the left (p < 1/2). Thus, gradients with a longer length scale are
formed at the same value of δαout for preferred secretion to the right, see Fig. 6.3.
Note in particular that the maximal length scale the relay mechanism can achieve
for a given set of parameters is increased for preferred secretion to the right (com-
pare the values at which λ̄ saturates for different values of the secretion polarity
in Fig. 6.3).

The effect of secretion polarity on the length scale of the steady-state gradi-
ent is strongest close to the critical feedback strength (to the left of the plot in
Fig. 6.3). We can understand this intuitively by considering that secretion po-
larity affects the distribution of the signalling molecules that are generated in
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Figure 6.3.: The effect of secretion polarity is strongest close to the crit-
ical feedback strength. Secretion polarity leads to an effective
drift with speed ν ∝ (2 p − 1), Eq. 3.14. Preferred secretion down
the gradient (p > 1/2) increases the length scale of the steady-state
gradient compared to symmetric secretion (p = 1/2). The opposite
is true for preferred secretion up the concentration gradient. Length
scale computed based on numerical steady-state solution (dots, see
Appendix F), analytical approximate steady-state solution (dashed
lines), limit of linear feedback response (transparent solid lines).
Parameters used: αin = αout, cA = 166 nM, cB = 1.66 × 108 nM,
D = 1.0 µm2/s, δ = 10.0 µm, kA = 10−3 s−1, kB = 10−3 s−1,
sA = 20 molecules/(s V), sB = 4 molecules/(s W), N = 300, w = 30,
V = 102 µm3, W = 103 µm3.

response to the positive feedback. It thus exerts its effect in concert with the
positive feedback. Therefore, it has the strongest effect on the length scale of the
steady-state gradient when the length scale is strongly influenced by the positive
feedback. The length scale is most strongly influenced by the positive feedback
for close to critical feedback strengths (Fig. 3.7). Accordingly, the effect of secre-
tion polarity is also strongest in the vicinity of the critical feedback strength (to
the left of the plot in Fig. 6.3).

In the next section, we analyse how this increase in steady-state gradient length
scale due to preferred secretion to the right influences the trade-off between the
length scale and the time scale of the signalling gradient.
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6. Role of tissue polarity in cell-to-cell relay

6.3. Effect of tissue polarity on the trade-off

between length scale and time scale

How does polarised secretion change the trade-off between the length scale of the
steady-state gradient and the time scale of its formation? In order to answer this
question, we extend the analysis of the time scale of relay mechanism in the limit
of a linear feedback response presented in Chapter 5 to the case p 6= 1/2. The
analytical approximation to the slowest relaxation time obtained in Chapter 5
suggests that the slowest relaxation time is independent of secretion polarity,
since τ appmax does not depend on p (Eq. 5.10). In the previous section, we discussed
that the length scale of the steady-state profile is increased for preferred secretion
to the right (p > 1/2), corresponding to secretion down the gradient, see Fig. 6.3.
Taken together, this suggests that polarised secretion can improve the trade-off
between the steady-state length scale and the time scale of gradient formation.

Indeed, we see that for preferred secretion to the right, a steady-state gradient
with a longer length scale is reached in the same time compared to symmetric
secretion or secretion to the left, see Fig. 6.4. Thus, secretion polarity speeds
up the formation of signalling gradients. In other words, a signalling gradient of
a specific length scale reaches steady state faster if the signalling molecules are
preferentially secreted to the right (p > 1/2) compared to symmetric secretion
(p = 1/2, compare the green lines to the blue lines in Fig. 6.4). Moreover,
preferred secretion to the right greatly improves the trade-off between the length
scale and the time scale beyond the one obtained by a diffusion/degradation
mechanism, compare the green line in Fig. 6.4 to the grey line indicating τmax ∝
λ̄2, characteristic of a diffusion/degradation mechanism.
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Figure 6.4.: Effect of Secretion polarity on trade-off between length scale
and time scale in the limit of a linear feedback response. Pref-
erential secretion to the right (p > 1/2, green lines) decreases the time
it takes for a profile of a given length scale to form compared to sym-
metric secretion (p = 1/2, blue lines) or secretion to the left (p < 1/2,
red lines). Dashed lines: τmax according to Eq. 5.6, transparent solid
lines: τ appmax according to Eq. 5.10. Parameters used: αin = αout,
cA = 166 nM, cB = 1.66 × 108 nM, D = 1.0 µm2/s, δ = 10.0 µm,
kA = 10−3 s−1, kB = 102 s−1, sA = 1000 molecules/(s V), sB = 4 mo-
lecules/(s W), N = 300, w = 30, V = 102 µm3, W = 103 µm3.

6.4. Summary and discussion

In this chapter, we discussed the influence of polarised secretion of signalling mo-
lecules on the length scale of the steady-state gradient, as well as on the trade-off
between the length scale and the time scale. In conclusion, the positive feedback
in the relay mechanism naturally leads to the emergence of drift, if the molecules
produced in response to the feedback are secreted in a polarised manner. If they
are preferentially secreted to the right, corresponding to down the gradient (see
Section 6.1), this leads to an increased length scale of the steady-state gradient
(see Fig. 6.1, Fig. 6.3). Not only does such drift lead to steady-state profiles of an
increased length scale for the same feedback strength αout, but is also increases
the maximal length scale the relay mechanism can reach for a given set of para-
meters, see Fig. 6.3.

Moreover, polarised secretion to the right improves the trade-off between the
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6. Role of tissue polarity in cell-to-cell relay

length scale and the time scale of the mechanism (see Fig. 6.4). That is, a
steady-state gradient of a given length scale is reached in a shorter amount of
time. This is especially important to explain the formation of long-ranged sig-
nalling gradients on biologically relevant time scales on the order of hours to days.
Fig. 6.4 shows that for preferred secretion to the right, steady-state profiles with
a length scale of tens to hundreds of cells, i.e. on the order of millimetres can be
formed within hours to days using a physiologically relevant diffusion coefficient
of 1 µm2/s.

For the parameter set analysed (kB � kA, see Chapter 5), the trade-off between
gradient length scale and time scale is even improved beyond the one found for
a diffusion/degradation mechanism (τ ∝ λ̄2, grey line in Fig. 6.4) in case of pre-
ferred secretion down the gradient (green lines in Fig. 6.4).

The observed increase in the length scale of the steady-state gradient for pos-
itive drift speeds is consistent with what we discussed for the continuous dif-
fusion/degradation model with drift in the Introduction (compare Fig. 6.1 to
Fig. 1.18, see also Ref. [48]). However, different from the diffusion/degradation
mechanisms with drift discussed in the Introduction (Section 1.5, see also Ref. [48]),
the relay mechanism does not depend on cilia beating or muscle contraction giv-
ing rise to bulk movement of extracellular fluid to generate drift. In contrast,
drift emerges naturally from polarised secretion in the relay mechanism. Thus,
the only ingredient required to generate drift in the relay mechanism is tissue
polarity.

The polarity in our model is in the plane of the tissue, i.e. along the the row of
cells in our model (see Fig. 2.5). It is thus akin to planar cell polarity. The model
presented in this thesis is motived by observations in planarian flatworms. These
have indeed been shown to exhibit planar cell polarity [9, 107]: It is implicated
in organising cilia on the ventral epithelium of planarians [9, 107] that are used
for locomotion [96]. As discussed in Chapter 2, the cells in our model can be
likened to the circular muscle fibres in flatworms. Muscle tissue is polarised by
construction as it consists of individual muscle fibres that are aligned. The secre-
tion polarity suggested in our model would have to be present in anteroposterior
direction, i.e. perpendicular to the orientation of the individual muscle fibres.
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As discussed in Section 6.1, epithelial sheets frequently show planar cell polarity
perpendicular to their characteristic apical basal polarity. It is thus conceivable
that such a kind of polarity could also be present in muscle cells.

In the planar cell polarity pathway, an extracellular Wnt signalling gradient has
been suggested to orchestrate the segregation of the two complexes encoding the
planar cell polarity to the anterior and posterior side of the cells [119]. This opens
the possibility for positive feedback on a different level in our model: The tissue
polarity could be organised by the Wnt signalling gradient, while the formation
of the Wnt signalling gradient is aided by the polarised secretion due to the tissue
polarity.
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7. Discussion

During embryonic development, regeneration, and tissue turn-over, newly-formed
tissue has to be patterned. The required patterning information can be provided
by spatially graded concentration profiles of signalling molecules, called signalling
or morphogen gradients ([25, 54, 46, 99, 98], see Section 1.2). Planarian flatworms
are a great model to study tissue patterning as they constantly turn over all of
their body, dynamically grow and shrink depending on the amount of food avail-
able, and are able to regenerate from arbitrary amputation fragments (reviewed
e.g. in [50, 84], see Section 1.4). Thus, their patterning mechanisms have to be
present at adult length scales, dynamically adjust to changes in size, and reform
after amputation. Their main body axis is organised by a Wnt signalling gradi-
ent ([99, 98], see Section 1.4.3). In this thesis, we focused on the question of how
signalling gradients with a length scale in the millimetre range as observed in
flatworms can form and scale with tissue size. Inspired by observations of posit-
ive feedback in the Wnt signalling gradient in flatworms ([98], see Section 1.4.3),
we developed a cell-to-cell relay mechanism that leads to effective spreading of
the morphogen concentration based on positive feedback. In this chapter, we
summarise and discuss the main results of the research presented in this thesis.

In Chapter 2, we introduced a discrete model that explicitly accounts for indi-
vidual cells receiving a morphogen signal from the adjacent extracellular spaces
(Fig. 2.2). This signal prevents the degradation of an intracellular effector, lead-
ing to increased intracellular effector concentrations. Those in turn positively
regulate the production of signalling molecules. Thus, increased intracellular ef-
fector levels lead to increased extracellular signalling molecule concentrations,
resulting in a positive feedback loop. Thus, all cells in the system produce sig-
nalling molecules. This way, the signal can be relayed from one cell to the next.
Therefore, the signalling molecules do not necessarily have to diffuse across the
whole tissue from a spatially-confined local source as they would have to in a
diffusion/degradation mechanism for gradient formation.
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We analysed the properties of the steady-state signalling gradient formed by
this relay mechanism in Chapter 3. We found that the positive feedback loop in-
deed increases the length scale of the steady-state gradient compared to a mech-
anism relying exclusively on diffusion and degradation with the same diffusion
constant and degradation rate (Fig. 3.7). Analysing how the length scale changes
with the feedback strength αout, we identified a critical feedback strength αcrit,
at which a maximal length scale is reached. It is the difference from this critical
feedback strength, δαout, that sets the length scale of the steady-state profile. In
particular, the length scale scales as λ̄ ∝ (δαout)−1/2. That means, that close to
the critical feedback strength, the length scale is very sensitive to changes in the
feedback strength.

That fact that the length scale is highly sensitive to changes in feedback
strength close to αcrit allows for scaling the length scale of the steady-state gradi-
ent to varying tissue sizes by small adaptations of the feedback strength, as we
presented in Chapter 4 (Fig. 4.1). The reason for this is that the length scale
scales with the difference from the critical feedback strength in the relay mech-
anism δαout. The proposed scaling thus requires δαout to scale with system size.
Since the relay mechanism reaches a maximum length scale at αout = αcrit, it can
only scale the profile to system size up to a maximal system size, set by αcrit.
The concentration a∗N to which the steady-state profiles decay would also increase
as the feedback strength approaches its critical value. However, it can be kept
approximately constant across different system sizes when rescaling other para-
meters of the system with system size in addition to the feedback strength. This
way, steady-state gradients with a length scale that scales with system size but
that decay to an approximately constant value can be obtained (Fig. 4.2). Thus,
it is conceivable that the required scaling of parameters of the system to system
size could be regulated by an expansion/repression mechanism as presented in
Refs. [7] and [11]. Analysing the shape of the profiles after base-line correcting,
we found that the profiles exhibit close-to-perfect shape scaling across system
sizes varying by more than 1.5 orders of magnitude (Fig. 4.3).

In Chapter 5, we analysed the dynamics and time scales of the relay mechanism
in the limit of a linear feedback response close to steady state. We found that
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7. Discussion

the dynamics of the system become increasingly slow as the feedback strength
approaches its critical value αcrit. Since the length scale increases as the feedback
approaches αcrit, there is a trade-off between a long length scale of the steady-
state gradient and fast dynamics of gradient formation. We found that for fast
turnover of effector molecules (kB = 100 s−1), the time scale scales as τmax ∝ λ̄2

for length scales on the orders of ten to hundreds of cells, i.e. hundreds of micro-
metres to millimetres (Fig. 5.3, Fig. 5.4). This is the same scaling relationship
also observed for a diffusion/degradation mechanism. For larger length scales, i.e.
closer to the critical feedback strength, the scaling exponent is increased, except
if the feedback strengths inside and outside of the source region are related as
δαin = m(δαout)ν with ν < 1. In this case, the relaxation time becomes constant
as the feedback strength approaches αcrit (Fig. 5.4). Thus, in this case the length
scale of the profile can be increased without strongly increasing the relaxation
time.

If the secretion of signalling molecules in response to the positive feedback is
polarised, this leads to the emergence of drift, i.e. an effective transport of sig-
nalling molecules through the tissue. The drift resulting from polarised secretion
to the right, i.e. away from the local source, markedly increases the length scale
of the steady-state gradient (Fig. 6.1, Fig. 6.3). Importantly, it also improves
the trade-off between the length scale and the time scale. That is, gradients of
a given steady-state length scale can be established in a shorter amount of time
(Fig. 6.4). In particular, this means that steady-state gradients with a length
scale on the order of hundreds of cells (millimetres) can be reached within one
day, assuming a physiologically relevant diffusion coefficient of 1 µm2/s (Fig. 6.4).
After having summarised the results of this thesis, we discuss them both in the
context of planarians and from a theoretical point of view below.

Planarians can dynamically grow and shrink over 1.5 orders of magnitude [102],
and thus have to scale their patterning system accordingly. Indeed, the Wnt
signalling gradient, measured as a β-catenin protein gradient, has been shown
to scale with animal size (Hanh Vu, James Cleland, personal communication).
In order to scale a diffusion/degradation-based pattern to tissue sizes varying
across two orders of magnitude, the degradation rate would have to change across
four orders of magnitude. In contrast, the relay mechanism allows scaling the
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steady-state profile over two orders of magnitude by small changes in the feed-
back strength αout, as the length scale scales with the difference from the critical
feedback strength δαout. In order to achieve robust patterning using the relay
mechanism, the feedback strength has to be tightly controlled by the system size,
as discussed in Chapter 4. This poses the question of how a system senses its own
size. Importantly, there is evidence for size-sensitive proteins in planarians, whose
concentration changes with body size (Hanh Vu, personal communication). Fu-
ture experimental work will analyse whether these proteins can act as expanders,
regulating the feedback strength according to system size. In parallel, future
theoretical work will have to reveal how an expansion/repression mechanism as
proposed in Refs. [7] and [11] would have to be wired to regulate δαout, the dif-
ference from the critical feedback strength δαout, rather than αout with system
size. Such regulation is necessary to achieve self-organised pattern scaling using
the relay mechanism.

The β-catenin gradient decays to a constant, non-zero value that is conserved
between worms of different sizes (Hanh Vu, James Cleland, personal communic-
ation). This constant value can be mapped to the value the steady-state profiles
decay to in our model, a∗N . As discussed in Chapter 4, scaling of other parameters
of the system in addition to the feedback strength allows keeping this value sim-
ilar across different system sizes while scaling the length scale of the steady-state
profile with system size (Fig. 4.2). This behaviour is thus in accordance with
these experimental observations.

We observe that the relay mechanism reaches a maximum length scale for a
given set of parameters at the critical feedback strength (Figs. 3.7). That is,
there is a hard upper bound up to which the length scale of the steady-state
profile can scale with system size. This hard upper bound for the length scale
of the patterning system can be interpreted in the context of the finite size most
organisms reach. In some planarian species, individuals keep growing when fed
continuously. For some of those species, individuals show patterning defects when
they exceed a certain size ([51], Hanh Vu, personal communication). It will be
interesting to analyse the Wnt signalling gradients in such worms as they grow
towards the size where their patterning mechanism breaks down, and to observe
whether the scaling of the gradient with system size indeed saturates close to the
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7. Discussion

size at which they start developing patterning defects.

In our model we introduce a polarity akin to planar cell polarity, that leads
to the emergence of drift and thus to a strong increase in the length scale of
the steady-state gradient. Importantly, this improves the trade-off between the
gradient length scale and time scale (Fig. 6.4). We liken the cells in our model to
the circular muscle fibres of the worms. It will be important to analyse whether
the body wall muscle cells exhibit planar cell polarity and thus could employ
secretion polarity in order to boost gradient length scale. Planarians have been
shown to exhibit planar cell polarity in epithelial tissue organising the orientation
of their cilia [9, 107].

The symmetry-breaking production of signalling molecules with rate sA in the
source region of our model, is motivated by the Wnt signalling-independentWnt1
expression [98] at the posterior pole of the animal [78]. We know that Wnt1 is
expressed in muscle cells [116]. It will thus be interesting to analyse whether
Wnt1 is indeed expressed in the circular muscle fibres to which we liken the cells
in our model.

Many morphogens including Wnt [115] and Sonic hedgehog [75, 82] carry lipid
modifications that make it unlikely for them to be highly diffusive in the aqueous
extracellular environment. Thus, there is a long-standing controversy as to how
such poorly diffusive molecules can give rise to signalling gradients (see Sec-
tion 1.3.3). The relay mechanism developed in this thesis explains morphogen
spreading not purely by diffusion, but introduces an effective spreading by posit-
ive feedback. It can thus explain the formation of morphogen gradients even in the
absence of molecular diffusion of the morphogen: If a cell presents the morphogen
into the extracellular space, the signal is sensed by the immediate neighbouring
cell that in turn starts to also present the morphogen into the extracellular space,
due to the positive feedback. This way, the information is passed on from cell to
cell. Thus, the relay mechanism presents an attractive concept to rationalise the
observed long-ranged patterning effects of poorly diffusive morphogens.
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A. Dynamic solution to the
diffusion/degradation
mechanism

In this Appendix, we compute the steady-state solution and the dynamic solution
to a symmetric one-dimensional continuous diffusion/degradation as specified in
Fig. A.1.

Figure A.1.: Symmetric continuous one-dimensional diffu-
sion/degradation system. The system produces molecules
in the central source region. Molecules spread by diffusion and are
degraded. It is important to note that we are dealing with one
system comprised of three subsystems. Thus, any dynamic equation
or dynamic or steady-state solution to the system has to be defined
for the whole system (potentially piece-wise).

The dynamics of the system are given as:

∂tC = s [θ(x−W )− θ(x− (−W ))] +D∂2
xC − kC . (A.1)

This is an inhomogeneous differential equation

s [θ(x−W )− θ(x− (−W ))] = (∂t −D∂2
x + k)C . (A.2)
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A. Dynamic solution to the diffusion/degradation mechanism

with the corresponding homogeneous equation

∂ty = D∂2
xy − ky . (A.3)

The boundary conditions are given as no-flux boundary conditions at the system
boundaries:

∂xC(−L, t) = 0 , (A.4)

∂xC(L, t) = 0 . (A.5)

The initial condition is given by an empty system:

C(x, 0) = 0 . (A.6)

In order to calculate the steady-state solution, denoted by C* and defined as
∂tC

* = 0, we subdivide the system into three subsystems: left, source, right,
denoted by C l, Cs, and Cr, respectively, and stitch them with stitching conditions
demanding constant flux and constant values at the subsystem boundaries:

−D ∂xC
l(−W, t) = −D ∂xC

s(−W, t) , (A.7)

C l(−W, t) = Cs(−W, t) , (A.8)

−D ∂xC
r(W, t) = −D ∂xC

s(W, t) , (A.9)

Cr(W, t) = Cs(W, t) . (A.10)

We then find the solution to the bulk of the three subsystems using the following
Ansatz

C*,l = Al ex/λ +Bl e−x/λ , (A.11)

C*,s =
s

k
+ As ex/λ +Bs e−x/λ , (A.12)

C*,r = Ar ex/λ +Br e−x/λ , (A.13)

where λ =
√

D
k
and the coefficients Al/s/r and Bl/s/r are given by the boundary

conditions and the stitching conditions. They can be calculated according to:

M · ν = s ⇔ ν = M−1 · s , (A.14)
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where

M =



e−L/λ −eL/λ 0 0 0 0

e−W/λ −eW/λ −e−W/λ eW/λ 0 0

e−W/λ eW/λ −e−W/λ −eW/λ 0 0

0 0 eW/λ −e−W/λ −eW/λ e−W/λ

0 0 −eW/λ −e−W/λ eW/λ e−W/λ

0 0 0 0 eL/λ −e−L/λ


, ν =



Al

Bl

As

Bs

Ar

Br


, s =



0

0
s
k

0
s
k

0


.

The solution to any inhomogeneous differential equation is given by the solution
to the corresponding homogeneous equation plus one particular solution. We
chose the steady-state solution as the particular solution. Thus,

C(x, t) = C*(x) + y(x, t) , (A.15)

where y(x, t) specifies the solution to the corresponding homogeneous equation
(Eq. A.3). This can also be read as the solution being given by the steady-state
solution plus deviations from the steady-state solution. In this interpretation,
y(x, t) specifies the deviations from the steady-state solution. We will express
y(x, t) as a discrete Fourier series:

y(x, t) =
∞∑
n=0

cn(t) cos
(nπx
L

)
+ qn(t) sin

(nπx
L

)
, (A.16)

where nπx
L

maps the x coordinate to an integer multiple of the period of the
sine/cosine by scaling it to the system size x

2L
and mapping it to 2πn, i.e. one

period times the wave number (i.e. an integer multiple of whole period), en-
suring that only whole waves are put on the system and resulting in nπx

L
. The

sines and cosines are called ’eigenmodes’. Since the steady-state solution ful-
fils the boundary conditions, y(x, t) also has to fulfil the boundary conditions in
order for C(x, t) to fulfil the boundary conditions. Only the cosine part of the
series fulfils the boundary conditions. Therefore, y(x, t) is given as a cosine series.

In order to find the time-dependent function cn(t), we plug the cosine series
into the homogeneous differential equation (Eq. A.3):

0 =
∞∑
n=0

[
∂tcn +

(
Dn2π2

L2
+ k

)
cn

]
cos
(nπx
L

)
. (A.17)
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A. Dynamic solution to the diffusion/degradation mechanism

Since cosines for different arguments are linearly independent, it follows:

⇒ 0 = ∂tcn +

(
Dn2π2

L2
+ k

)
cn , (A.18)

and thus

cn(t) = Kn e
−
(
Dn2π2

L2 +k
)
t
. (A.19)

Each eigenmode comes with a characteristic decay time τn.

τn =
1(

Dn2π2

L2 + k
) . (A.20)

We see that modes with a long wave length (small values of n) have a higher
relaxation time τn. Thus, they decay more slowly. In particular, the constant
mode with n = 0 has the slowest relaxation time given by

τmax =
1

k
. (A.21)

The Kn are given by the initial condition according to:

cn(0) = Kn e
0/τn = Kn . (A.22)

That is, y(x, t) describes how, over time, the initial condition exponentially relaxes
to the steady state. Thus,

cn(t) = cn(0) e−t/τn . (A.23)

Based on the initial condition (Eq. A.6) we find:

y(x, 0) = −C* =
∞∑
n=0

Kne
−0/τn cos

(nπx
L

)
.

From here we determine

Kn =

 1
2L

∫ L
−L−C* dx n = 0

1
L

∫ L
−L−C* cos

(
nπx
L

)
n 6= 0 .

(A.24)
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Thus, the full dynamic solution to Eq. A.1 is given by

C(x, t) = C* +
∞∑
n=0

Kne
−t/τn cos

(nπx
L

)
, (A.25)

with τn and Kn as specified above. Since the steady state is defined piece-wise,
the integral to calculate Kn is evaluated piece-wise:

Kn =
1

L

{∫ −W
−L
−C*,l cos

(nπx
L

)
dx

}
+

1

L

{∫ W

−W
−C*,s cos

(nπx
L

)
dx

}
+

1

L

{∫ L

W

−C*,r cos
(nπx
L

)
dx}
}
, (A.26)

and equivalently for K0.
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B. Effect of the choice of
boundary conditions

B.1. Model dynamics revisited

In order to discuss what happens at the boundaries of the system it is helpful to
revisit the dynamic equations of the model, analysing if the individual terms of
the model are governed by changes in molecule numbers or concentrations. Of
course, these two quantities can be converted into one another using the volume
of the respective compartment. However, as we start changing the volume of the
compartments at the boundaries compared to those in the bulk, we introduce spa-
tially distinct conversion factors between molecule numbers and concentrations.
Therefore, it is helpful to clearly distinguish between concentrations and molecule
numbers. To this end, please note the following choice of notation: lower case
letters (an, bn, cA, cB) denote concentrations; upper case letters (An, Bn, CA, CB)
denote molecule numbers. VN specifies the volume of extracellular space n and
Wn stands for the volume of cell n. Thus, an = An/VN , bn = Bn/Wn, cA = CA/V ,
cB = CB/W . Note further that we chose a constant cell volume Wn = W ∀n and
thus drop the index. We chose VN = V ∀n ∈ [1, ..., (N − 1)], i.e. in the bulk and
discuss the choice of V0 and VN , i.e. the volume of the extracellular spaces at the
boundaries as well as the impact of this choice below.

Let us first consider the production and secretion of signalling molecules. The
source cells constantly produce and secrete signalling molecules with rate s̃A and
in an effector concentration-dependent way with rate α̃in. The non-source cells
produce and secrete signalling molecules in an effector concentration-dependent
manner with rate αout. The produced molecules are secreted on both sides of
the cell. That is, the molecules ending up in extracellular space n stem from the
cells n− 1 and n. In Eqs. 2.6 and 2.6 we have already divided by the volume of

130



B.1 Model dynamics revisited

the extracellular space in the bulk (V ) and in case of sA added the contributions
from both cells. This is helpful to discuss what happens in the bulk of the system
using simplified equations. In order to discuss what happens at the boundaries,
it is helpful to consider the contributions of individual cells. We assume the cells
follow the same secretion polarity for the constant production as they do for the
effector-dependent production. For the change in molecule number due to pro-
duction and secretion we then get:

Figure B.1.: Polarised secretion. Source cells (n ∈ [0, ..., (w−1)]) constitutively
produce signalling molecule (Wnt) with rate s̃A (red arrows) that
they distribute to their adjacent extracellular spaces obeying tissue
polarity p. All cells produce signalling molecule (Wnt) as part of the
positive feedback and secrete it obeying tissue polarity p.

p s̃A, n-1 + (1− p) s̃A, n + p α̃in/out Bn−1

CB +Bn−1

+ (1− p) α̃in/out Bn

CB +Bn

.

In order to describe the change in concentration due to production and secre-
tion, we need to account for the volume of the extracellular space the molecules
are secreted into:

p
s̃A, n-1
VN

+ (1− p) s̃A, n
VN

+ p
α̃in/out

VN

bn−1

cB + bn−1

+ (1− p) α̃
in/out

VN

bn
cB + bn

for VN = V :

= p sA, n-1 + (1− p) sA, n + p αin/out bn−1

cB + bn−1

+ (1− p) αin/out bn
cB + bn

.

Next, we revisit the Hill-type interaction terms between an and bn (Eqs. 2.3,
2.5). Cells produce signalling molecules (a, Wnt) in response to increased ef-
fector levels (b, β-catenin) according to Eq. 2.3. The motivation for this term
is the idea that cells experiencing increased signalling levels produce more sig-
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nalling molecules. The mental model behind this is that a Wnt signal leads to
increased β-catenin concentrations in the cell that in turn leads to translocation
of more β-catenin to the nucleus. In the nucleus, β-catenin alters transcription
- in this case, according to the mental model, in such a way that more Wnt is
transcribed that will then also be translated and secreted. This is motivated by
the observation in planarians, that Wnt expression is increased in response to
elevated β-catenin levels (see Section 1.4.3). Following these lines of argument,
the corresponding term in the model is influenced by concentrations rather than
molecule numbers as the processes described here are governed by mass-action
(Eq. 2.3). Multiplying numerator and denominator in Eq. 2.3 with W , we get an
equivalent term in molecule numbers:

Bn

CB +Bn

. (B.1)

Thus, even though we know the process is driven by changes in concentrations,
we can also describe it by changes in molecule numbers as the process happens
inside one compartment of a given size and thus the two representations can be
easily converted into each other. Since all cells have the same volumeW , the con-
version factor does not have any spatial dependence and is thus the same across
the whole system. What’s more, since this is a dimensionless fraction, even the
numerical value of the term is not affected by the choice of either concentration
or molecule number to represent it since both numerator and denominator are
affected equally by the conversion.

With regard to the inhibitory term in the dynamic equation for bn (Eq. 2.5),
the idea is that, the higher the Wnt concentration in the extracellular spaces
to the left and to the right of the cell, the more Wnt molecules will bind to
a Wnt receptor at the cell surface and the more β-catenin will be saved from
degradation. This is motivated by the mode of action of the well-conserved Wnt-
signalling pathway (Fig. 1.9). Again, the receptor binding is assumed to follow
mass action and is thus dependent on the concentration of signalling molecules
in the respective extracellular spaces. In particular, we can think of the term
as comparing the average of the concentrations in the two adjacent extracellular
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spaces (n and n+ 1) to a threshold concentration c′A:

1

1 + (an+an+1)/2
c′A

. (B.2)

With c′A = 1/2 cA we recover Eq. 2.5. We can express this term in terms of
molecule numbers as

1

1 + (An/Vn+An+1/Vn+1)V
CA

.

In the bulk, i.e. n ∈ [1, ..., (N − 1)], where VN = V , this is equal to Eq. 2.5.
However, at the boundaries, where V0 and VN may differ from V , we need to take
these differences into account and explicitly compute

1

1 + (A0/V0+A1/V )V
CA

,

and
1

1 + (AN−1/V+AN/VN )V

CA

.

Finally, let us consider the diffusion term. As far as the diffusion is concerned,
the number of molecules is conserved. Thus,

∂tAn = −(JA
n − JA

n-1) , (B.3)

where JA
n is the diffusive molecule flux [#/t] across cell n, i.e from extracellular

space n to extracellular space n+ 1 (Fig. B.2).

We define JA
n as

JA
n = −σDp

an+1 − an
δ

(B.4)

= −σDp
An+1/Vn+1 − An/VN

δ
.

The reason for choosing this definition of the diffusive molecule flux is as fol-
lows: A diffusive flux is caused by differences in concentration in space (not in
molecule number). Hence, we consider the difference in concentration in two
adjacent extracellular spaces (n + 1) and n. In our one-dimensional model, the
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Figure B.2.: Definition of the diffusive molecule flux. The diffusive molecule
flux JA

n [#/t] across cell n gives the number of molecules flowing from
extracellular space n to extracellular space n+1 due to differences in
concentrations in the respective extracellular spaces. Cells depicted
in grey.

Figure B.3.: Illustration of the diffusive flux. To conceptualise molecules
flowing around a cell, picture them flowing ’through’ the cell via a
pipe connecting the two extracellular spaces. δ: cell width = pipe
length, ε: extracellular space width, σ: cross-sectional area of pipe.

diffusion around the cells in the three-dimensional reality is captured by molecules
’jumping’ between extracellular spaces. We can conceptualise this as molecules
diffusing ’through’ the cell via a small pipe (Fig. B.3). In this analogy, the mo-
lecular diffusion happens inside the pipe with a diffusions coefficient Dp across
the width of the cell δ. The molecules flowing through the pipe enter and leave
it through its ends with a cross-sectional area of σ.

Following from Eqs. B.3 and B.4, the temporal change in molecule numbers
due to diffusion is given by:
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∂tAn = σDpδ
(An−1/Vn−1 − 2An/VN + An+1/Vn+1)

δ2

for n ∈ [2, ..., (N − 2)] :

∂tAn =
σDpδ

V

(An−1 − 2An + An+1)

δ2

with V = δ2ε

=
σDp

δε

(An−1 − 2An + An+1)

δ2
.

In order to define the corresponding diffusion term in concentrations, we need to
define the diffusive concentration flux Jn [# /(t l2)]:

Jn = − σ
δ2
Dp

an − an−1

δ
.

The rationale for this definition is that in order to account for molecules only
diffusing though the ’pipe’ in our pipe picture (cross-sectional area σ, Fig. B.3)
we define the average area across which molecules can diffuse as σ

δ2
. The rest of

the definition is the same as for JA
n .

The dynamic equation for the concentration is given by

∂tan = −Jn+1 − Jn
x

,

where x is a length. In the geometry of our model it is not a priori obvious,
whether x = δ or x = ε. Using the conservation law (Eq. B.3), we find x = ε and
recover the diffusion term we used in Eqs. 2.6 - 2.8.

Taking these considerations together, we get the following equations for our
model in concentrations:

∂tan =
σDp δ

VN

(an−1 − 2 an + an+1)

δ2
− kAan + p

s̃A, n-1
VN

+ (1− p) s̃A, n
VN

+ p
α̃in/out

VN

bn−1

cB + bn−1

+ (1− p) α̃
in/out

VN

bn
cB + bn

(B.5)
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∂tbn =
s̃B
W
− kB

1

1 + an+an+1

cA

bn (B.6)

and in molecule numbers:

∂tAn = σDpδ
(An−1/Vn−1 − 2An/VN + An+1/Vn+1)

δ2
− kAAn + p s̃A, n-1

+ (1− p) s̃A, n + p α̃in/out Bn−1

CB +Bn−1

+ (1− p) α̃in/out Bn

CB +Bn

(B.7)

∂tBn = s̃B − kB
1

1 + An/VN+An+1/Vn+1

CA/V

Bn . (B.8)

B.2. Outer system boundaries

At the outside boundaries of the system, we impose reflective boundary condi-
tions, i.e. nothing leaves or enters the system from the outside. That is, the
concentration in the hypothetical extracellular spaces a−1 = aN+1 = 0, and the
concentration in the hypothetical cells b−1 = bN = 0. All cells in the source
region (n ∈ [0, ..., (w − 1)]) constitutively produce signalling molecule with rate
s̃A and in an effector-dependent manner with rate α̃in. Cells in the non-source
system (n ∈ [w, ..., (N−1)]) produce signalling molecule in an effector-dependent
manner with rate α̃out. Thus, the dynamic equations at the system boundaries
read:

∂ta0 =
σDp δ

V0

(− a0 + a1)

δ2
− kAa0 + (1− p) s̃A

V0

+ (1− p) α̃
in

V0

b0

cB + b0

(B.9)

∂taN =
σDp δ

VN

(aN−1 − aN)

δ2
− kAaN + p

α̃out

VN

bN−1

cB + bN−1

(B.10)

or

∂tA0 = σDpδ
(−A0/V0 + A1/V1)

δ2
− kAA0 + (1− p) s̃A + (1− p) α̃in B0

CB +B0

(B.11)

∂tAN = σDpδ
(AN−1/Vn−1 − AN/VN)

δ2
− kAAN + p α̃out BN-1

CB +BN-1
. (B.12)

The dynamic equations for bn or Bn at the system boundaries read:
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B.2 Outer system boundaries

∂tb0 = sB − kB
1

1 + a0+a1
cA

b0 (B.13)

∂tbN−1 = sB − kB
1

1 + aN−1+aN
cA

bN−1 (B.14)

or

∂tB0 = s̃B − kB
1

1 + A0/V0+A1/V
CA/V

Bn (B.15)

∂tBN-1 = s̃B − kB
1

1 + AN−1/V+AN/VN
CA/V

Bn . (B.16)

We consider two variants of these boundary conditions: First, we consider all
extracellular spaces to have the same volume V = δ2 ε. Secondly, we consider the
extracellular spaces at the system boundaries to have a different volume V0 6= V

and VN 6= V (Fig. B.4).

B.2.1. Constant width of extracellular spaces at the

boundaries

If all extracellular spaces have the same volume V = δ2 ε, the boundary conditions
specified in Eqs. B.9 - B.12 simplify to

∂ta0 = D
(− a0 + a1)

δ2
− kAa0 + (1− p) sA + (1− p)αin b0

cB + b0

(B.17)

∂taN = D
(aN−1 − aN)

δ2
− kAaN + pαout bN−1

cB + bN−1

(B.18)

or

∂tA0 = D
(−A0 + A1)

δ2
− kAA0 + (1− p) s̃A + (1− p) α̃in B0

CB +B0
(B.19)

∂tAN = D
(AN−1 − AN)

δ2
− kAAN + p α̃out BN-1

CB +BN-1
. (B.20)

Based on Eqs. B.13 and B.16, the dynamic equations for Bn at the system bound-
aries read:
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B. Effect of the choice of boundary conditions

Figure B.4.: Boundary effects. The choice of the width of the extracellular
space at the system boundaries affects the shape of the steady-state
profile. Numerically obtained steady-state profiles for V0 = VN =
V = δ2 ε (dashed lines) and for V0 = (1 − p)V and VN = p V
(solid lines). Upper panels show steady-state profiles for a (signalling
molecule, Wnt concentrations); lower panels those for b (effector,
β-catenin concentrations). Left panel: αin = αout = 0.9αcrit =
1800 nM/s, middle panel: αin = αout = αcrit = 2000 nM/s, right
panel: αin = αout = 1.1αcrit = 2200 nM/s. Parameters used:
cA = 0.1 nM, cB = 105 nM, D = 1.0 µm2/s, δ = 10 µm, kA =
0.0001 1/s, kB = 0.0001 1/s, N = 300, p = 0.5, sA = 0.1 nmol/V,
sB = 0.0025 nmol/W, V = ε δ2 = 102 µm3, W = δ3 = 103 µm3,
w = 30. Source region shaded in red.

∂tB0 = s̃B − kB
1

1 + A0+A1

CA

Bn (B.21)

∂tBN-1 = s̃B − kB
1

1 + AN−1+AN
CA

Bn (B.22)

and Eqs. B.13 and B.14 remain unchanged as they are independent of V0 and
VN .

B.2.2. Different widths of extracellular spaces at the

boundaries

In general, the extracellular spaces at the system boundaries may have different
volumes from those in the bulk. Specifically, we chose their volumes to be V0 =
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B.2 Outer system boundaries

(1−p)V and VN = p V (r0 = (1−p), rN = p in Fig. 2.5). In particular, for p = 1/2,
i.e. symmetric secretion, this corresponds to the extracellular spaces at the system
boundaries having only half the volume of those in the bulk (r0 = rN = 1/2 in
Fig. 2.5). This choice results in a system without a slope in the concentration
profile at the boundaries (Fig. B.4). This is equivalent to what one finds in
continuous systems when choosing refectory boundary conditions. These choices
result in:

∂ta0 =
D

(1− p)
(−a0 + a1)

δ2
− kAa0 + sA + αin b0

cB + b0

(B.23)

(B.24)

∂taN =
D

p

(aN−1 − aN)

δ2
− kAaN + αout bN−1

cB + bN−1

(B.25)

(B.26)

for concentrations and

∂tA0 = D
− 1

(1−p) A0 + A1

δ2
− kAA0 + (1− p) s̃A + (1− p) α̃in B0

CB +B0

(B.27)

∂tA1 = D

1
(1−p) A0 − 2A1 + A2

δ2
− kAA1 + s̃A

+ p α̃in B0

CB +B0
+ (1− p) α̃in B1

CB +B1
(B.28)

∂tAN−1 = D
(AN−2 − 2AN−1 + 1

p
AN)

δ2
− kAAN−1 + p α̃out BN-2

CB +BN-2

+ (1− p) α̃out BN-1

CB +BN-1
(B.29)

∂tAN = D
(AN−1 − 1

p
AN)

δ2
− kAAN + p α̃out BN-1

CB +BN-1
(B.30)

for molecule numbers. Note that we need to also specify the dynamic equitations
for A1 and AN−1 (Eqs. B.28 and B.29, respectively), as they are also dependent
on V0 and VN , respectively.

The dynamic equations for the outermost cells of the system (Eqs. B.15, B.16),
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B. Effect of the choice of boundary conditions

simplify to:

∂tB0 = s̃B − kB
1

1 +
1

1−p A0+A1

CA

B0

∂tBN-1 = s̃B − kB
1

1 +
AN−1+ 1

p
AN

CA

BN-1 .

Those in concentration (Eq. B.13 and B.14) are neither dependent on V0 nor on
VN and thus do not change, i.e. they are the same as in the bulk.

Note that the equation for bn or Bn is the same in the source and the non-source
system as the source of Bn or bn is constant in space.

The two notations can be converted into each other following

∂tan =
∂tAn
VN

∂tbn =
∂tBn

W
.

B.3. Source/non-source interface

We further need to specify the stitching condition where the source system and
the non-source system meet. Specifically, cells n ∈ [0, ..., (w− 1)] produce a with
constant rate s̃A, cells n ∈ [w, ..., (N − 1)] do not and the effector-dependent
signalling-molecule production rates are α̃in and α̃out for the two subsystems,
respectively. Thus, the equation for the extracellular space w at the interface of
the two systems reads:

∂taw = D
(aw−1 − 2 aw + aw+1)

δ2
− kAaw + p sA

+ pαin bw−1

cB + bw−1

+ (1− p)αout bw
cB + bw

(B.31)

or

∂tAw = D
Aw−1 − 2Aw + Aw+1

δ2
− kAAw + p s̃A

+ p α̃in Bw-1

CB +Bw-1
+ (1− p) α̃out Bw

CB +Bw

. (B.32)
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B.4 Discussion

The subsystem boundary does not affect the dynamic equation for bn or Bn.
Thus, the latter are described by the respective equations for the bulk.

We will discuss the model in concentrations using V0 = (1−p)V and VN = p V

in the main text of this thesis. We end this appendix by discussing the effect of
the choice of boundary conditions on profile shape.

B.4. Discussion

If we choose the outer system boundary conditions as V0 = VN = V , we observe
a non-zero slope of the profile at the boundaries (Fig. B.4). This impression of
the system boundaries acting like effective sinks stems from the fact that in the
bulk, each extracellular space receives material from the cells on both of its sides.
At the boundary, a cell is only present at one side of the extracellular space.
Since all cells produce the same number of molecules per unit time, only (1− p)-
and p-times the number of molecules per unit time are added to the extracellular
spaces at the respective system boundaries. Therefore, if their volume is as large
as that of the extracellular spaces in the bulk, the increase in concentration due
to the production by the neighbouring cells is only (1− p)- and p-times as large
as in the bulk. Combined with the same degradation rate at the boundaries as
in the bulk, this appears as an effective sink leading to a non-zero profile slope
at the system boundaries (Fig. B.4).

If, on the other hand, we chose the boundary conditions as V0 = (1 − p)V ,
VN = p V , we obtain a profile with no slope at the boundaries (Fig. B.4). This is
due to the fact that the volumes of the extracellular spaces at the system bound-
aries are chosen such that the increase in concentration due to the production
by the neighbouring cells is equivalent to that of the extracellular spaces in the
bulk. Let us consider the example of p = 1/2. In this case of symmetric secre-
tion, each cells distributes the molecules produced per unit time equally to its
adjacent extracellular spaces on the left and on the right. That is, half its pro-
duction goes to the left and the other half to the right. The extracellular spaces
at the boundaries are half as big as the ones in the bulk. When half the number
of molecules per unit time gets to an extracellular space half as big as the ones
in the bulk, the resulting increase in concentration is exactly the same as in the
bulk. Since the degradation is also the same as in the bulk this leads to a zero
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B. Effect of the choice of boundary conditions

slope in the concentration profile at the boundaries (Fig. B.4). We chose these
boundary conditions for the further discussion of the problem in this thesis as
we would like to analyse the properties of the bulk of the system and not the
boundary effects.

Note that the effect of the boundaries becomes more and more pronounced as
the length scale of the profile increases (Fig. B.4). As discussed in Chapter 3,
the maximum length scale is reached at αin/out = αcrit (middle panel in Fig. B.4).
Since the boundary effects are propagated into the bulk of the system with the
length scale of the system, they are most widely visible in this regime.
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C. Numerical solution to
differential equations:
Implicit-explicit Euler method

C.1. Explicit Euler

In order to solve a differential equation numerically, we discretise it. We will use
a simple one-dimensional diffusion/degradation equation as an example.

∂tC = D∂2
xC − kC . (C.1)

Discretising in space, we obtain:

∂tC = D
Cn-1 − 2Cn + Cn+1

∆x2
− kCn . (C.2)

Discretising time in a classical forward Euler scheme, i.e. explicitly, we obtain

Ct
n − Ct-1

n

∆t
= D

Ct-1
n-1 − 2Ct-1

n + Ct-1
n+1

∆x2
− kCt-1

n , (C.3)

which we can rearrange to get to the known numerical implementation of the
forward Euler, i.e.

Ct
n = Ct-1

n + ∆t

[
D
Ct-1
n-1 − 2Ct-1

n + Ct-1
n+1

∆x2
− kCt-1

n

]
. (C.4)

C.2. Implicit Euler

We can also solve this equation implicitly. Essentially this means, using the
current value of C to obtain the current value. This produces a coupling in space,
i.e. Cn can no longer be solved independently, but is coupled to all other Cn. In
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C. Numerical solution to differential equations: Implicit-explicit
Euler method

order to see this, we spell out this way of solving the equation. In particular,
when discretising the time, we now use t on both the left and the right hand-side
of the equation:

Ct
n − Ct-1

n

∆t
= D

Ct
n-1 − 2Ct

n + Ct
n+1

∆x2
− kCt

n . (C.5)

Rearranging, we obtain

Ct-1
n = Ct

n −∆t

[
D
Ct
n-1 − 2Ct

n + Ct
n+1

∆x2
− kCt

n

]
. (C.6)

If we impose no-flux boundary conditions, the equations at the boundaries read:

Ct-1
0 = Ct

0 −∆t

[
D
−Ct

0 + Ct
1

∆x2
− kCt

0

]
, (C.7)

Ct-1
N = Ct

N −∆t

[
D
Ct
N-1 − Ct

N

∆x2
− kCt

N

]
. (C.8)

Expressing this system of equations in matrix notation, we find:

Ct-1 = (1−∆tM) ·Ct . (C.9)

with

M =


− D

∆x2
− k D

∆x2
0 ... 0

D
∆x2

−2D
∆x2
− k D

∆x2
0 0

... ... ... ... ... ...

0 D
∆x2

−2D
∆x2
− k D

∆x2
0

0 ... 0 D
∆x2

1− D
∆x2
− k

 .

Thus, we can obtain Ct by inverting the matrix:

Ct = [1−∆tM]−1 ·Ct-1 . (C.10)

For a constant time step width ∆t the matrix that is being inverted (([1−∆tM])
is independent of time. Thus, it only needs to be inverted once and the inverse
can be used for all time steps: The next time step can always be obtained mul-
tiplying with the inverted matrix. Moreover, an implicit solver is numerically
stable for an arbitrarily large choice of ∆t [83].
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C.3 Implicit-explicit Euler

Using the same approach, we can solve a diffusion/degradation problem with
a local source s,

s =



s

...

s

0

...

0


and obtain

Ct = [1−∆tM]−1 ·
[
Ct-1 + ∆t s

]
. (C.11)

C.3. Implicit-explicit Euler

The implicit method is very powerful to solve linear differential equations. How-
ever, it is not easily applicable to non-linear problems. One can, nonetheless,
combine the implicit and the explicit approach in an implicit-explicit method.
To this end, we divide the equation up in one part that we want to solve expli-
citly and one part that we want to solve implicitly [5]. In our case, those will be
the non-linear and linear parts, respectively.

Consider the system we solved above plus a non-linear term f(C):

Ct
n − Ct-1

n

∆t
= D

Ct
n-1 − 2Ct

n + Ct
n+1

∆x2
− kCt

n + s+ f(Ct-1
n-1, C

t-1
n , Ct-1

n+1) . (C.12)

In matrix notation, the equation reads:

Ct −Ct-1

∆t
= M ·Ct + s + f(Ct-1) . (C.13)

Using boundary conditions equivalent to Eqs. C.7 and C.8,M is given by Eq. C.10.

Solving for Ct, we obtain:
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C. Numerical solution to differential equations: Implicit-explicit
Euler method

⇔ Ct = (1−∆tM)−1 ·
[
Ct-1 + ∆t

(
s + f(Ct-1)

)]
. (C.14)

That is, the linear part of the equation, specified by M, is solved implicitly, while
the non-linear part (s + f(Ct-1)) is solved explicitly.

C.4. Steady-state solution

We can appreciate that the implicit-explicit solver gives the same steady-state
solution as the explicit one when plugging in the respective solutions. At steady
state, C does not change in time, thus Ct-1 = Ct = Ct+1 = C*, where the
star denotes the steady-state solution. Consider Eq. C.14 and its corresponding
explicit form

Ct −Ct-1

∆t
= M ·Ct-1 + s + f(Ct-1) (C.15)

⇔ Ct = Ct-1 + ∆t
[
M ·Ct-1 + s + f(Ct-1)

]
. (C.16)

In order to find the steady-state solution to either of these two equations, we
would keep computing the next time-step as specified by the respective equations
until C would no longer change in time. At this point, Ct-1 = Ct = Ct+1 = C*.
Plugging this numerically obtained steady-state solution C* into Eq. C.16, we
get

C* = C* + ∆t
[
M ·C* + s + f(C*)

]
(C.17)

⇔ 0 = ∆t
[
M ·C* + s + f(C*)

]
, (C.18)

which is the definition of the steady state.

Equivalently, for the implicit-explicit scheme, we find

C* = (1−∆tM)−1 ·
[
C* + ∆t

(
s + f(C*)

)]
(C.19)

⇔ 0 = [1− (1−∆tM)] ·C* + ∆t
[
s + f(C*)

]
(C.20)

= ∆t
[
M ·C* + s + f(C*)

]
, (C.21)
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C.4 Steady-state solution

which also is the definition of the steady state, showing that both schemes give
the same steady-state solution. Since ∆t can be chosen larger for the implicit-
explicit solver without causing numerical instabilities [83], the steady state can be
reached faster with this solver compared to the explicit Euler method. However,
numerical stability is not the same as accuracy, i.e. the solver may reach the
correct steady-state solution very efficiently, but the dynamics in between may
be inaccurate if the time-steps are chosen too large.

We can test if the solver has reached steady state by inserting the result of
the last time point of the solver into the steady-state equation and verifying that
it solves the equation to a reasonable precision. In general, ’reasonable’ in this
context is close to machine precision. The machine precision in Python is 10−15

for floats. We consider the solution a veritable steady-state solution if the steady-
state equation evaluates to ≤ O(10−10) where the exact solution would evaluate
to 0 (i.e. O(10−15) when using floats).
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D. Numerical solution to the
model

We can obtain the dynamic solution to our system numerically by starting from
an initial condition and computing the time evolution. In order to obtain the
concentration profile of the signalling molecules and effectors at time t , at, and
bt, respectively:

at =


at0
...
atN

 , bt =


bt0
...

btN−1

 , (D.1)

where the upper index refers to the time step and bold fond indicates vector
notation, we need both of their concentration profiles at time t−1, at-1, and bt-1.
We use a forward (explicit) Euler method (see [83] and Appendix C) to compute
the (non-linear) dynamics of the concentration profile of the effector molecule.
Specifically, we add the change in concentration during one time-step of length
∆t to the current concentration profile bt-1:

bt = bt-1 + ∆tG(at-1,bt-1) , (D.2)

where the differential equation for the effector dynamic G(at-1,bt-1) is defined
equivalently to Eq. 2.9:

[G(at-1,bt-1)]n = sB − kB
1

1 +
at-1
n +at-1

n+1

cA

bt-1n . (D.3)

To compute the dynamics of the signalling molecule, we use an implicit-explicit
Euler method ([5], see C). In particular, we evaluate the linear parts (diffusion
and degradation, described by the matrix M) implicitly and the non-linear parts
(feedback and constant source) explicitly (see [5] and appendix C for details on
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the method). This results in the following dynamics:

at = (1−∆tM)−1 ·
[
at-1 + ∆t F(bt-1)

]
. (D.4)

The non-linear part of the dynamics of the signalling molecule, F(bt-1), is given
by the constant production in the local source with rate sA and the positive
feedback according to Eq. 2.2. This results in:

[F(bt-1)]n∈ [1,...,w−1] = sA + pαin bt-1n−1

cB + bt-1n−1

+ (1− p)αin bt-1n
cB + bt-1n

(D.5)

[F(bt-1)]w = p sA + pαin bt-1n−1

cB + bt-1n−1

+ (1− p)αout bt-1n
cB + bt-1n

(D.6)

[F(bt-1)]n∈ [w+1,...,N−1] = pαout bt-1n−1

cB + bt-1n−1

+ (1− p)αout bt-1n
cB + bt-1n

. (D.7)

The boundary conditions are specified equivalently to Eqs. 2.10, 2.11. This way,
we can compute the dynamic solution to our model and in particular, for long
times, the steady-state solution (Fig. 2.6).
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E. Analytical approximate
steady-state solution to the
model

E.1. Linearisation of the steady-state equations

for signalling molecule concentration

As described in Section 3.2, we linearise the steady-state equations for a∗n (Eqs. 2.6
- 2.8, 3.1, 3.2, using Eq. 3.3) around the piece-wise constant steady-state solution
given by ainc (Eq. 3.4) and aoutc (Eq. 3.5). To this end, we first express a∗n as
a small deviation from the respective constant steady-state solution (Eq. 3.6,
Eq. 3.7). We then linearise the equations for small deviations from ainc and aoutc ,
respectively, i.e. for small δa*n. Note that, when expanding around ainc or aoutc ,
we are not linearising around a single point in space, but around every point in
space at once. In this sense our computation is the discrete version of a functional
derivative. As the Taylor expansion is linear, we can expand all terms individually
and add the expansions in order to obtain the linearised version of the equation.
In this case, only the positive feedback term is non-linear. Linearising this term,
we obtain the linearised version of the system of steady-state equations:

∂ta
*
0 = 0 =

D

(1− p)
−δa*0 + δa*1

δ2
− kAδa*0 + αin

(δa*0 + δa*1) cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2
(E.1)

for n ∈ [1, ..., (w − 1)] :

∂ta
*
n = 0 = D

δa*n−1 − 2δa*n + δa*n+1

δ2
− kAδa*n

+ pαin
(δa*n−1 + δa*n) cA cB kB

sB

[cA + cA cB kB
sB

+ 2ainc ]2
+ (1− p)αin

(δa*n + δa*n+1) cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2

(E.2)
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E.1 Linearisation of the steady-state equations for signalling molecule
concentration

∂ta
*
w = 0 = D

−ainc + aoutc

δ2
− kA ainc + p sA

+ pαin cA + 2ainc
cA + cA cB kB

sB
+ 2ainc

+ (1− p)αout cA + ainc + aoutc

cA + cA cB kB
sB

+ ainc + aoutc

+D
δa*w−1 − 2δa*w + δa*w+1

δ2
− kAδa*w + pαin

(δa*w−1 + δa*w) cA cB kB
sB

[cA + cA+cA cB kB
sB

+ 2 ainc ]2

+ (1− p)αout
(δa*w + δa*w+1) cA cB kB

sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2

(E.3)

∂ta
*
w+1 = 0 = D

ainc − aoutc

δ2
− kAaoutc + pαout cA + ainc + aoutc

cA + cA cB kB
sB

+ ainc + aoutc

+ (1− p)αout cA + 2aoutc

cA + cA cB kB
sB

+ 2aoutc

+D
δa*w − 2δa*w+1 + δa*w+2

δ2
− kAδa*w+1

+ pαout
(δa*w + δa*w+1) cA cB kB

sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2
+ (1− p)αout

(δa*w+1 + δa*w+2) cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

(E.4)

for n ∈ [(w + 2), ..., (N − 1)] :

∂ta
*
n = 0 = +D

δa*n−1 − 2δa*n + δa*n+1

δ2
− kAδa*n

+ pαout
(δa*n−1 + δa*n) cA cB kB

sB

[cA + cA cB kB
sB

+ 2aoutc ]2
+ (1− p)αout

(δa*n + δa*n+1) cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

(E.5)

∂ta
*
N = 0 =

D

p

δa*N−1 − δa*N
b2

− kA δa*N + αout
(δa*N−1 + δa*N) cA cB kB

sB

[cA + cA cB kB
sB

+ 2aoutc ]2
. (E.6)

The term for the production of signalling molecules based on the positive feedback
for cell w at steady-state is given by b*w

cB+b*w
. When re-writing this using Eq. 3.3, it

contains a*w and a*w+1. Therefore, it needs to be linearised around the sum of ainc
and aoutc . Thus, for a*w and a*w+1, the constant term does not vanish (see Eqs. E.3
and E.4) as it contains both ainc and aoutc .
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E. Analytical approximate steady-state solution to the model

E.2. Solution to the linearised steady-state

equations

The presented set of linearised steady-state equations (Eqs. E.1 - E.6), can be
solved using an exponential Ansatz (Eqs. 3.8 and 3.9), repeated here for conveni-
ence:

δa*n = C in
1 e

n/λ̄in
1 + C in

2 e
−n/λ̄in

2 for n ∈ [0, . . . , w] (E.7)

δa*n = Cout
1 en/λ̄

out
1 + Cout

2 e−n/λ̄
out
2 for n ∈ [w + 1, . . . , N ] . (E.8)

The length scales of the steady-state solution inside the source region (λ̄in1,2) are
defined by Eqs. 3.8 and E.2. Re-writing Eq. E.2, we obtain:

for n ∈ [1, ..., (w − 1)] :

0 = δa*n−1

[
D

δ2
+ pαin cA cB kB

sB [cA + cA cB kB
sB

+ 2ainc ]2

]

+ δa*n+1

[
D

δ2
+ (1− p)αin cA cB kB

sB [cA + cA cB kB
sB

+ 2ainc ]2

]

+ δa*n

[
−2D

δ2
− kA + αin cA cB kB

sB [cA + cA cB kB
sB

+ 2ainc ]2

]
.

Defining

zin =
cA cB kB

sB [cA + cA cB kB
sB

+ 2ainc ]2
, (E.9)

and plugging in a simplified version of the exponential ansatz (δa*n = C inen/λ̄
in),

we obtain:

0 = cosh
(
1/λ̄in

) [2D

δ2
+ αin zin

]
+ sinh

(
1/λ̄in

) (
−2 pαin zin + αin zin

)
+

[
−2D

δ2
− kA + αinzin

]
. (E.10)

We aim to understand length scales much larger than the width of one cell,
1/λ̄ � 1. Therefore, we can express cosh and sinh by the first terms of their
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E.2 Solution to the linearised steady-state equations

Taylor series expansions according to:

cosh(x) = 1 +
x2

2
+O(x4) ,

sinh(x) = x+O(x3) .

Using these approximations, Eq. E.10 simplifies to:

0 =
1

(λ̄in)2

[
D

δ2
+ αin z

in

2

]
+
(
1/λ̄in

) [
(1− 2 p)αin zin

]
+
[
−kA + 2αinzin

]

⇒ 1

λ̄in1,2
=

−
[
(1− 2 p)αin zin

]
±
√

[(1− 2 p)αin zin]2 − 4
[
D
δ2

+ αin zin

2

]
[−kA + 2αinzin]

2
[
D
δ2

+ αin zin

2

]
⇒ λ̄in1,2 =

2D
δ2

+ αin zin

[(2 p− 1)αin zin]±
√

[(2 p− 1)αin zin]2 − 2
[

2D
δ2

+ αin zin
]

[−kA + 2αinzin]
.

We chose to write the exponential ansatz as presented in Eq. 3.8, i.e. using
e−n/λ̄

in
2 , in order to make it more obvious that this part of the solution is the

decreasing exponential function. In accordance, we re-define λ̄in2 obtained using
the simplified exponential ansatz (δa*n = C inen/λ̄

in) to:

λ̄in2 := −
2D
δ2

+ αin zin

[(2 p− 1)αin zin]−
√

[(2 p− 1)αin zin]2 − 2
[

2D
δ2

+ αin zin
]

[−kA + 2αinzin]
.

(E.11)

We determine λ̄out1,2 from Eq. E.5 in an equivalent way. The solution for λ̄out2

is given in the main text (Eq. 3.11). We define λ̄out2 as the length scale of the
analytical approximate steady-state solution, as it describes the exponentially
decreasing part of the profile outside of the source region and thus the one we are
most interested in, see Section 3.2.

The constants in Eq. 3.8 and Eq. 3.9 are defined by the boundary conditions
at n = 0 and n = N , as well as by the source/non-source interface at n = w

and n = w + 1 (Eqs. E.1, E.3, E.4, and E.6). Plugging the exponential ansatz
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E. Analytical approximate steady-state solution to the model

(Eqs. 3.8 and 3.9) into Eqs. E.1, E.3, E.4, and E.6, we obtain:
∂ta

*
0

∂ta
*
w

∂ta
*
w+1

∂ta
*
N

 = 0 =


M11 M12 0 0

M21 M22 M23 M24

M31 M32 M33 M34

0 0 M43 M44

 ·

C in
1

C in
2

Cout
1

Cout
2

+


s1

s2

s3

s4

 (E.12)

= M · c + s . (E.13)

Thus, the constants in c are given as:

⇔ c = M−1 · (−s) . (E.14)

The explicit values of M, c, and s read:

s1 = 0

s2 = D
−ainc + aoutc

δ2
− kAainc + p sA + pαin cA + 2ainc

cA + cA cB kB
sB

+ 2ainc

+ (1− p)αout cA + ainc + aoutc

cA + cA cB kB
sB

+ ainc + aoutc

s3 = D
ainc − aoutc

δ2
− kAaoutc + pαout cA + ainc + aoutc

cA + cA cB kB
sB

+ ainc + aoutc

+ (1− p) cA + 2aoutc

cA + cA cB kB
sB

+ 2aoutc

s4 = 0

M11 =

(
− D

(1− p) δ2
− kA + αin

cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2

)
e0/λ̄in

1

+

(
D

(1− p) δ2
+ αin

cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2

)
e1/λ̄in

1

M12 =

(
− D

(1− p) δ2
− kA + αin

cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2

)
e−0/λ̄in

2

+

(
D

(1− p) δ2
+ αin

cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2

)
e−1/λ̄in

2

M21 =

(
D

δ2
+ pαin

cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2

)
e(w−1)/λ̄in

1
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E.2 Solution to the linearised steady-state equations

+

(
−2D

δ2
− kA + pαin

cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2

+(1− p)αout
cA cB kB
sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2

)
ew/λ̄

in
1

M22 =

(
D

δ2
+ pαin

cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2

)
e−(w−1)/λ̄in

2

+

(
−2D

δ2
− kA + pαin

cA cB kB
sB

[cA + cA cB kB
sB

+ 2ainc ]2

+(1− p)αout
cA cB kB
sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2

)
e−w/λ̄

in
2

M23 =

(
D

δ2
+ (1− p)αout

cA cB kB
sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2

)
e(w+1)/λ̄out

1

M24 =

(
D

δ2
+ (1− p)αout

cA cB kB
sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2

)
e−(w+1)/λ̄out

2

M31 =

(
D

δ2
+ pαout

cA cB kB
sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2

)
ew/λ̄

in
1

M32 =

(
D

δ2
+ pαout

cA cB kB
sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2

)
e−w/λ̄

in
2

M33 =

(
−2D

δ2
− kA + pαout

cA cB kB
sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2

+(1− p)αout
cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

)
e(w+1)/λ̄out

1

+

(
D

δ2
+ (1− p)αout

cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

)
e(w+2)/λ̄out

1

M34 =

(
−2D

δ2
− kA + pαout

cA cB kB
sB

[cA + cA cB kB
sB

+ ainc + aoutc ]2

+(1− p)αout
cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

)
e−(w+1)/λ̄out

2

+

(
D

δ2
+ (1− p)αout

cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

)
e−(w+2)/λ̄out

2

M43 =

(
D

p δ2
+ αout

cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

)
e(N−1)/λ̄out

1
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E. Analytical approximate steady-state solution to the model

+

(
− D

p δ2
− kA + αout

cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

)
eN/λ̄

out
1

M44 =

(
D

p δ2
+ αout

cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

)
e−(N−1)/λ̄out

2

+

(
− D

p δ2
− kA + αout

cA cB kB
sB

[cA + cA cB kB
sB

+ 2aoutc ]2

)
e−N/λ̄

out
2 .

E.3. Steady-state length scale in the limit of an

infinitely high feedback response

The length scale of the signalling gradient at steady-state (Eq. 3.11) approaches
that of a diffusion/degradation system in the limit of an infinitely high feedback
response. In this section, we show this by formally taking this limit. To this end,
we take the limit of the individual terms. zin depends on ainc , zout depends on
aoutc . Starting with this piece-wise constant solution in the limit of an infinitely
high feedback response, we find:

lim
αin→∞

ainc =
1

2

αin

kA
+

√
1

4

[
αin

kA

]2

+
cA

2kA
αin (E.15)

⇒ lim
αin→∞

ainc →∞ , (E.16)

and similarly based on Eq. 3.5:

lim
αout→∞

aoutc →∞ . (E.17)

We thus use l’Hospital’s rule to compute αinzin in the limit αin → ∞. Using
Eq. E.9, we obtain:

lim
αin→∞

αinzin = lim
αin→∞

cA cB kB
sB

∂αinαin

∂αin [cA + cA cB kB
sB

+ 2ainc ]2
(E.18)

= lim
αin→∞

cA cB kB
sB

1

2 [cA + cA cB kB
sB

+ 2ainc ] 2 ∂αinainc
(E.19)

= lim
αin→∞

cA cB kB
sB

1

6 ainc ∂αinainc
. (E.20)
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E.4 Steady-state length scale in the limit of feedback saturation

Based on Eq. 3.4, we find that:

lim
αin→∞

∂αinainc =
1

2 kA
.

Thus, taken together:

lim
αin→∞

αinzin = 0 .

Performing the same steps for αoutzout, we find:

lim
αout→∞

αoutzout = 0 .

Using this result, we can take the respective limits for all length scales in Eqs. 3.8
and 3.9:

lim
αin→∞

λ̄in1,2 =

√
D/δ2

kA
= λ̄Diff/Degr ,

as well as

lim
αin→∞

λ̄out1,2 =

√
D/δ2

kA
= λ̄Diff/Degr .

Thus, λ̄ (Eq. 3.11) indeed collapses to the length scale of the diffusion/degradation
mechanism in the limit of an infinity high feedback response.

E.4. Steady-state length scale in the limit of

feedback saturation

The feedback response saturate when bn � cB. We can thus analyse the effect
of saturation formally by taking the limit cB → 0. Starting with the piece-wise
constant solution as above, based on Eq. 3.4, we find:

lim
cB→0

ainc =
sA + αin

kA
, (E.21)
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E. Analytical approximate steady-state solution to the model

and analogously for aoutc based on Eq. 3.5:

lim
cB→0

aoutc =
αout

kA
. (E.22)

Thus, based on Eq. E.9 and Eq. E.21, we find that

lim
cB→0

zin = 0 . (E.23)

Similarly, based on Eq. 3.12 and Eq. E.22, we find that:

lim
cB→0

zout = 0 . (E.24)

Thus, for finite feedback strengths αin/out, based on Eq. 3.11, and the correspond-
ing equations for the other length scales defined in 3.8 and 3.9 we find:

lim
cB→0

λ̄in1,2 =

√
D/δ2

kA
= λ̄Diff/Degr , (E.25)

lim
cB→0

λ̄out1,2 =

√
D/δ2

kA
= λ̄Diff/Degr . (E.26)

We thus see that in the limit of feedback saturation, the length scale approaches
that of a diffusion/degradation mechanism.

E.5. Limit of a linear feedback response

In Section 3.3, we calculated the steady-state solution to the model in the limit
of bn � cB (Eqs. 3.17 - 3.19). Formally, these equations are derived from Eqs. 2.6
- 2.8 by taking the limit bn/cB � 1 of the Hill activator function (Eq. 3.16).
This corresponds to analysing the initial linear increase of the Hill function far
away from saturation. Hence, Eqs. 2.6 - 2.8 should be exactly represented by
Eqs. 3.17 - 3.19 in the limit of bn/cB → 0. Here, we show that this is true for the
steady-state solutions we obtained based on the respective sets of equations.

Both, the steady-state solution to the model in the limit of a linear feedback
response (Eqs. 3.17 - 3.19), as well as the approximate steady-state solution to
the non-linear model (Eqs. 3.8 - 3.9) are defined in a piecewise manner inside and
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E.5 Limit of a linear feedback response

outside of the source region. Inside the source region, the solution to the latter
is defined by the constants ainc , λ̄in1 , and λ̄in2 ; outside of the source region, it is
defined by aoutc , λ̄out1 , and λ̄out2 . In order to show that the model in the limit of
a linear feedback response becomes an exact representation of the approximate
steady-state solution to the non-linear model in the limit of bn/cB → 0, we thus
need to show that the respective constants are equal in both models in this limit.
In the following, we go through each of the constants defining the approximate
steady-state solution to the non-linear model and show that they indeed collapse
to those defining the steady-state solution to the model in the linear feedback
response, when taking the limit bn/cB → 0.

In the limit bn/cB → 0, the Hill activator term αin/out

cB
bn

1
1+bn/cB

goes to zero
for finite values of bn. In order to be able to study the approximate steady-
state solution to the non-linear model in this limit, we choose αin/out such that
αin/out

cB
= α

in/out
0 = const. That is, we express αin/out as a multiple of cB.

In the following, we will first re-write the constants defining the approximate
the steady-state solution to the non-linear model using αin/out = α

in/out
0 cB, then

take the limit bn/cB → 0, and then show that they reduce to the constants de-
fining the steady-state solution to the model in the limit of a linear feedback
response.

Plugging αin

cB
= αin

0 into Eq. 3.4, and rearranging, we obtain:

ainc =
1

2

(sA
kA
− cA

2

)
+

1

2
cB

[αin
0

kA
− cAkB

2 sB

]
+
cB
2

{ 1

c2
B

[(sA
kA
− cA

2

)2
+

2 cA sA
kA

]
+

1

cB

[
2
(sA
kA
− cA

2

)(αin
0

kA
− cA kB

2 sB

)
+

2 cA
kA

(sA kB
sB

+ αin
0

)]
+
(αin

0

kA
− cA kB

2 sB

)2
}1/2

.

Simplify individual the individual terms:

(sA
kA
− cA

2

)2
+

2 cA sA
kA

=
(sA
kA

+
cA
2

)2
,
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and

2
(sA
kA
− cA

2

)(αin
0

kA
− cA kB

2 sB

)
+

2 cA
kA

(sA kB
sB

+ αin
0

)
=

2 sA α
in
0

k2
A

+
sA cA kB
sB kA

+
cA α

in
0

kA
+
c2
A kB
2 sB

,

we obtain:

ainc =
1

2

(sA
kA
− cA

2

)
+

1

2
cB
[αin

0

kA
− cA kB

2 sB

]
+
cB
2

{ 1

c2
B

(sA
kA

+
cA
2

)2
+

1

cB

[
2
sA
kA

αin
0

kA
+ cA

(αin
0

kA
+
sA
kA

kB
sB

)
+
c2
A kB
2sB

]
+
(αin

0

kA
− cA kB

2 sB

)2
}1/2

.

Taylor expanding the square root around 1
cB
→ 0 according to:

f(x) = (ax2 + bx+ c)1/2

≈ √c+
1

2

b√
c
x ,

where

x =
1

cB

a =
(sA
kA

+
cA
2

)2

b =
[
2
sA
kA

αin
0

kA
+ cA

(αin
0

kA
+
sA
kA

kB
sB

)
+
c2
A kB
2sB

]
c =

(αin
0

kA
− cA kB

2 sB

)2
,

we find that

ainc ≈ |
αin
0

kA
− cA kB

2 sB
|+ 1

2

[
2 sA
kA

αin
0
kA

+ cA
(αin

0
kA

+ sA
kA

kB
sB

)
+

c2A kB
2sB

]
|αin

0
kA
− cA kB

2 sB
|

1

cB
. (E.27)

In order to evaluate the absolute values, we need to determine sign of
(
αin

0
kA
− cA kB

2 sB

)
.

As we will see in Chapter 5, the model in the limit of a linear feedback response
only reaches a steady state if αin/out < αcrit (Eqs. 5.11, 5.12). Rewriting αcrit in
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terms of αin/out
0 , we obtain:

αin
0 <

cA kA kB
2 sB

.

From here, we see:

αin
0

kA
− cA kB

2 sB
< 0 ,

and thus:

|α
in
0

kA
− cA kB

2 sB
| = −

(
αin
0

kA
− cA kB

2 sB

)
.

Plugging this result into Eq. E.27 and rearranging, we obtain:

⇒ ainc =
sA +

αin
0 sB
kB

kA − 2αin
0 sB

cA kB

,

which is equal to ainc, lin (Eq. 3.22) using αin/cB = αin
0 . Thus, we confirmed that

lim
bn/cB→0

ainc = ainc, lin . (E.28)

Taking the limit limbn/cB→0 a
out
c (aoutc defined in Eq. 3.5), following the same steps

as shown for ainc above, and using αout

cB
= αout

0 , we obtain

lim
bn/cB→0

aoutc = aoutc . (E.29)

Comparing the expressions for the length scale in the approximate stead-state
solution (Eq. 3.11) to the one for the model in the limit of a linear feedback
response (Eq. 3.24), we identify that the two expressions are equal if

αinzin = αin sB
cA cB kB

= αin
0

sB
cA kB

,

where zin is given by Eq. E.9.

Using the result obtained for ainc in the limit bn/cB → 0 (Eq. E.28), rearranging,
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E. Analytical approximate steady-state solution to the model

and Taylor-expanding, we find:

αinzin ≈ αin
0 sB
cA kB

[
1− 2

sB
cAkB

1

cB

(
cA + 2ainc, lin +O(

1

cB
)
)]

⇒ lim
bn/cB→0

αinzin = αin
0

sB
cA kB

,

and thus,

lim
bn/cB→0

λ̄in1,2 = λ̄inlin 1,2 .

Performing the same steps as for λ̄in, we find

lim
bn/cB→0

λ̄out1,2 = λ̄outlin 1,2 .

We have thus shown, that the approximate steady-state solution to the non-
linear model collapses to the steady-state solution to the model in the limit of a
linear feedback response, when taking the limit lim bn/cB → 0.

E.6. Shape of the signalling gradient at steady

state

In order to analyse how the shape of the profile depends on the strength of the
signalling-independent production in the source region with rate sA, we analyse
the threshold for gradient-shape change αout

T (Eq. 3.32) in the limit of infinite and
zero signalling-independent production in the source region.

In the limit sA → 0, we find:

lim
sA→0

αout
T =

1

2 cA kA sB

[
2 cA kA sB α

in

]
(E.30)

= αin . (E.31)

Thus, in the absence of signalling-independent production in the source region,
the feedback strength outside of the source region must be smaller than inside of
the source region (αout < αin) in order to obtain decreasing steady-state concen-
tration profiles.
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E.6 Shape of the signalling gradient at steady state

In the limit sA →∞ we find:

lim
sA→∞

αout
T = lim

sA→∞

1

2sB 2sA

[
cAkA(cBkBsA + sBsA)

+ sA sB

(
2sA + kA

√
c2
A(cB kB + sB)2

s2
B

+
4cA(cBkBsA + sBsA)

kAsB
+

(2 sA)2

k2
A

)]

= lim
sA→∞

1

4 sB

[
cAkA(cBkB + sB)

+ sB

(
2sA + kA

√(cA(cB kB + sB)

sB
+

(2 sA)

kA

)2
)]

= lim
sA→∞

1

4 sB
sB

[
2sA + 2 sA

]
= lim

sA→∞
sA →∞ . (E.32)

Thus, in the limit of infinitely strong signalling-independent production in the
source region (sA →∞), the threshold for profile shape change diverges. In this
case, the profiles always decrease, irrespective of how large αout is compared to
αin, i.e. irrespective of the respective signalling-dependent production rates in-
side and outside of the source region. In particular, that means that for a large
production rates sA the feedback strength outside of the source region αout can be
larger than that inside of the source region αin and yet a decreasing steady-state
concentration profile can be obtained.
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F. Definition of length scale
based on the numerical
steady-state solution

In order to verify the finding that the length scale of the steady-state profile
reaches a maximum at the critical feedback strength for a given set of parameters,
we compute the length scale of the steady-state solution obtained numerically. To
this end, we need to define a profile length scale based on the numerical steady-
state solution. We compute the length scale based on the second derivative of
the profile. As discussed in Section 3.2, the steady-state profile outside of the
source region is well described by a decreasing exponential. Thus, in order to
obtain the length scale from the numerical steady-state solution, consider an
exponentially decaying steady-state concentration profile C* with amplitude C0

and length scale λ:

C* = C0 e
−x/λ .

Its length scale can be obtained numerically based on its second spatial derivative:

∂x2C
* =

1

λ2
C0 e

−x/λ ,

and thus

λ =

√
C∗

∂x2C* . (F.1)

However, the steady-state profile of our system outside of the source region is not
just a simple exponentially decaying profile: It has a constant offset, i.e. it does
not decay to zero (see Fig. 3.3). Therefore, we need to subtract the offset, given
by aN , before we can use Eq. F.1 to estimate the length scale of the numerically
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obtained steady-state profile. Note that this offset is related to aoutc in Eq. 3.7.
In particular, aN = aoutc if N � λ̄.

After subtracting the offset aN , we compute the length scale of the profile ac-
cording to Eq. F.1. This way, we define λ̄num. This allows comparing the values
of λ̄ defined by the analytical approximate steady-state solution (Eq. 3.11) to a
quantity based on the numerical steady-state solution. We find a good qualitative
and partially quantitative agreement between the length scales computed based
on the numerical steady-state solution and the analytical approximate steady-
state solution (Fig. 3.7). In particular, the length scale obtained from the analyt-
ical approximate steady-state solution quantitatively agrees well with the length
scale computed based on the numerical steady-state solution for non-critical feed-
back strengths. Using the numerical approach, we confirm the finding that the
system reaches a maximal feedback strength for given set of parameters at the
critical feedback strength (Fig. 3.7). However, we see that the profile length scale
is overestimated by the analytical approximate steady-state solution at this point
(Fig. 3.7).
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G. Dynamic solution in the limit
of a linear feedback response

G.1. Approximate dynamic solution to the model

in the limit of a linear feedback response

In order to solve the dynamic equations of the system in the limit of a linear
feedback response (Eqs. 5.1, 5.2), we need to solve the dynamic equations for δan
and δbn, gathered in Eq. 5.4, that we repeat here for convenience:

∂tδx = M · δx , where δx =



δa0

δb0

...
δaN−1

δbN−1

δaN


. (G.1)

The matrix M in Eq. 5.4 is defined by the dynamics equations for δan and δbn.
The dynamic equations for δan are given by Eqs. 3.17 - 3.19. Using Eqs. 5.1 and
5.2, they read:

∂tδa0 =
D

(1− p)
(−δa0 + δa1)

δ2
− kAδa0 +

αin

cB
δb0 (G.2)

for n ∈ [1, ..., (w − 1)] :

∂tδan = D
(δan−1 − 2 δan + δan+1)

δ2
− kAδan

+ p
αin

cB
δbn−1 + (1− p) α

in

cB
δbn (G.3)

∂tδaw = D
(δaw−1 − 2 δaw + δaw+1)

δ2
− kAδaw
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linear feedback response

+ p
αin

cB
δbw−1 + (1− p) α

out

cB
δbw (G.4)

for n ∈ [(w + 1), ..., (N − 1)] :

∂tδan = D
(δan−1 − 2 δan + δan+1)

δ2
− kAδan +

+ p
αout

cB
δbn−1 + (1− p) α

out

cB
δbn (G.5)

∂tδaN =
D

p

(δaN−1 − δaN)

δ2
− kAδaN +

αout

cB
δbN−1 . (G.6)

In order to obtain the dynamic equation for δbn, we linearise the dynamic equation
for bn (Eq. 2.9) around the steady-state solution. We obtain:

∂tδbn =
cA

cA + a*n + a*n+1

(
sB
cA

(δan + δan+1)− kBδbn
)
. (G.7)

In order to solve Eq. 5.4, we diagonaliseM . To this end, we solve the eigenvalue
problem:

vli · M = − 1

τi
vli ,

M · vri = − 1

τi
vri ,

where M is given by Eq. 5.4 and vli and vri denote the left and right eigenvector
to the eigenvalue − 1

τi
, respectively. We need to distinguish between the left and

the right eigenvectors, since M is not symmetric (see Section G.2) and hence the
right eigenvalues are not necessarily orthogonal to their transpose

vli 6= (vri)
T .

For any matrix includingM , the left and right eigenvector to the same eigenvalue
are orthogonal to each other, that is:

vlm · vri =

0 for m 6= n

r ∈ R for m = n .
(G.8)

The coefficients Ki are determined by the initial conditions a(0) and b(0) for
the signalling molecule and effector concentration, respectively. Gathering these
initial conditions, as well as the steady-state solution in respective vectors similar
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to what we did for δx:

x(0) =



a0(0)

b0(0)
...

aN−1(0)

bN−1(0)

aN(0)


, x∗ =



a∗0

b∗0
...

a∗N−1

b∗N−1

a∗N


, (G.9)

we obtain the Ki according to:

Ki =
1

r

[
vli · (x(0)− x∗)

]
.

That is, we compute the Ki by projecting the initial condition onto the corres-
ponding elements of the left eigenvector and normalising to vli · vri = r (see
Eq. G.8). Note that we use the left eigenvectors to compute the Ki as we used
the right ones to obtain the Eigenmodes.

G.2. Symmetry considerations

Note that M (Eq. 5.4) is not symmetric. This is due to the fact that the effect
of δan on δbn is different from the effect of δbn on δan. Thus, Mi, j 6= Mj, i and
hence, M is not symmetric. In other words, the contribution from the neighbour-
dependent production/degradation is not symmetric, while the contribution of
the diffusion is.

If we re-order the matrix in such a way that we first write all the equations
for ∂tδan followed by all the equations for δbn, we observe the same phenomenon:
The contributions of the diffusion for the equations for ∂tδan are now located on
the diagonal and upper/lower off-diagonal of the upper half of the matrix and
are symmetric corresponding to δan. Additionally, we find the effect of δbn on
δan in upper right quadrant of the matrix and the effect of δan on δbn in the
mirrored lower left quadrant of the matrix. Albeit the fact that the mutual effect
of δbn and δan on each other lie on mirror symmetric locations in the matrix, the
entries are not the same as the effect of δbn on δan is different from the effect
of δan on δbn. Thus, the matrix is not symmetric when re-ordered in this way,
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of no feedback

either. This makes sense, as the re-ordering was obtained by first swapping lines
and then swapping columns, two operations that do not change the properties of
the matrix.

Note further, that this is independent of the choice of discretisation. The
descretisation we chose gives rise to the phenomenon that reaction terms directly
lead to fluxes. The fact that the matrix is asymmetric, though, is simply due to
the effect of δbn on δan being different from the effect of δan on δbn. That is, also
a two component classic reaction-diffusion system gives rise to an asymmetric
matrix as soon as the effect of δbn on δan is different from the effect of δan on
δbn as this leads to the corresponding matrix elements having different values.

G.3. Analytical approximation to slowest

relaxation time in the limit of no feedback

In the absence of positive feedback, we recover the relaxation time known for a
diffusion/degradation mechanism (k−1

A ) and an additional relaxation time that
depends on the dynamics of the effector bn. We obtain these based on τ in1,2 by
setting αin = 0 and from τ out1,2 by setting αout = 0.

(τ in1 )−1 = kA (G.10)

(τ in2 )−1 =
kB cA

cA + 2 ainc

=
kB cA

cA + 2 sA
kA

, as ainc =
sA
kA

for αin = 0(τ out1 )−1 = kA (G.11)

(τ out2 )−1 =
kB cA

cA + 2 aoutc

= kB , as aoutc = 0 for α = 0 . (G.12)
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