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Abstract

All living things are driven by chemical reactions. Reactions provide energy and
transform matter. Thus, maintaining the system out of equilibrium. However, these
chemical reactions have to be organized in space. One way for this spatial organi-
zation is via the process of phase separation. Motivated by the recent discovery of
liquid-like droplets in cells, this thesis studies the organization of chemical reactions
in phase-separated systems, with and without broken detailed balance.
After introducing the underlying thermodynamic principles, we generalize mass-
action kinetics to systems with homogeneous compartments formed by phase sepa-
ration. Here, we discuss the constraints resulting from phase equilibrium on chemi-
cal reactions. We study the relaxation kinetics towards thermodynamic equilibrium
and investigate non-equilibrium states that arise when detailed balance is broken in
the rates of reactions such that phase and chemical equilibria contradict each other.
We then turn to spatially continuous systems with spatial gradients within formed
compartments. We derive thermodynamic consistent dynamical equations for re-
actions and diffusion processes in such systems. Again, we study the relaxation
kinetics towards equilibrium and discuss non-equilibrium states. We investigate
the dynamics of droplets in the presence of reactions with broken detailed balance.
Furthermore, we introduce active droplet systems maintained away from equilib-
rium via a coupling to reservoirs at their boundaries and organizing reactions solely
within droplets. Here, detailed balance is only broken at the boundaries. Neverthe-
less, stationary chemically active droplets exist in open systems, and droplets can
divide.
To quantitatively study chemically active droplet systems in multi-component mix-
tures, we introduce an effective description. Therefore, we couple linearized reaction-
diffusion equations via a moving interface within a sharp interface limit. At the
interface, the boundary conditions are set by a local phase equilibrium and the con-
tinuity of fluxes.
Equipped with these tools, we introduce and study protocell models of chemically
active droplets. We explicitly model these protocells’ nutrient and waste dynamics,
leading to simple models of their metabolism. Next, we study the energetics of these
droplets and identify processes responsible for growth or shrinkage and maintaining
the system out of equilibrium. Furthermore, we discuss the energy balance leading
to the heating and cooling of droplets.
Finally, we show why chemically active droplets do not spontaneously divide in
two-dimensional systems with bulk-driven reactions. Here, droplets can elongate
but do not pinch off. To have a minimal two-dimensional model with droplet di-
vision, we introduce additional reactions. When these reactions are localized at the
interface and dependent on its mean curvature, droplets robustly divide in 2D.
In summary, this thesis contributes to the theoretical understanding of how the ex-
istence of droplets changes the kinetics of reactions and, vice versa, how chemical
reactions can alter droplet dynamics.
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Zusammenfassung

Alle Lebewesen sind angetrieben von chemischen Reaktionen, die Energie liefern
und Materie umwandeln können, wodurch diese Systeme aus dem Gleichgewicht
gehalten werden. Diese chemischen Reaktionen müssen jedoch räumlich organisiert
sein. Eine Möglichkeit räumlicher Organisation ist der Prozess der Phasentrennung.
Angeregt durch die jüngste Entdeckung flüssiger Tröpfchen in Zellen untersucht
diese Arbeit die Organisation chemischer Reaktionen in phasengetrennten Systemen
mit und ohne gebrochener detaillierter Bilanz.
Nach der Einführung der zugrunde liegenden thermodynamischen Prinzipien ve-
rallgemeinern wir die Massenwirkungskinetik auf Systeme mit, durch Phasentren-
nung gebildeten, homogenen Kompartimenten. Hier diskutieren wir die aus dem
Phasengleichgewicht resultierenden Einschränkung für chemische Reaktionen. An-
schließend untersuchen wir die Relaxationskinetik hin zu dem thermodynamischen
Gleichgewicht. Darüber hinaus untersuchen wir stationäre Nichtgleichgewichtszu-
stände. Diese entstehen, wenn die detaillierte Bilanz in den Raten der Reaktio-
nen derartig gebrochen sind, sodass Phasengleichgewicht und das Gleichgewicht
chemischer Reaktion zueinander im Widerspruch stehen.
Anschließend wenden wir uns räumlich kontinuierlichen Systemen zu, in welchen
Gradienten auch innerhalb der Kompartimente existieren können. Wir leiten ther-
modynamisch konsistente dynamische Gleichungen für die Reaktionen- und Dif-
fusionsprozesse in solchen Systemen her. Erneut untersuchen wir die Relaxations-
kinetik in Richtung des Gleichgewichts und diskutieren Nichtgleichgewichtszustän-
de und die Dynamik von Tröpfchen in Gegenwart von Reaktionen mit gebrochener
detaillierter Bilanz. Darüber hinaus führen wir aktive Tropfensysteme ein, die durch
eine Kopplung an Reservoirs an ihren Systemgrenzen aus dem Gleichgewicht gehal-
ten werden und bei denen Reaktionen nur innerhalb der Tröpfchen geschehen. Ob-
wohl hier die detaillierte Bilanz nur an den Systemgrenzen gebrochen ist, gibt es
dennoch stationäre chemisch aktive Tröpfchen in offenen Systemen und Tröpfchen
können sich teilen.
Um aktive Tropfensysteme in Mehrkomponentenmischungen quantitativ untersuch-
en, zu können führen wir eine effektive Beschreibung ein. Unter der Annahme einer
unendlich scharfen Grenzfläche kann die Dynamik derartiger Systeme approximiert
werden. Anstelle der nichtlinearen Differentialgleichungen, werden in den jew-
eiligen Phasen linearisierte Reaktions-Diffusionsgleichungen über eine bewegliche
Grenzfläche gekoppelt. Die Randbedingungen dieser Grenzfläche sind festgelegt
durch ein lokales Phasengleichgewicht und die Kontinuität der Ströme.
Mit Hilfe dieser Konzepte, führen wir ein Protozellmodell von chemisch aktiven
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Tropfen ein. Wir modellieren explizit die Nährstoff- und Abfalldynamik dieser Pro-
tozellen, was zu einfachen Modellen ihres Metabolismus führt. Anschließend unter-
suchen wir die Energetik dieser Tröpfchen und identifizieren Prozesse, die verant-
wortlich für Wachstum oder Schrumpfung und die Aufrechterhaltung des Nicht-
gleichgewichtzustandes sind. Schließlich erörtern wir die Energiebilanz, die Auf-
schluss über das Erwärmen oder die Abkühlung dieser Tropfen gibt.
Abschließend erörtern wir, warum sich aktive Tröpfchen, getrieben von Nichtgle-
ichgewichtsreaktionen, in zweidimensionalen Systemen nicht spontan teilen. Sie
können sich ausdehnen und verformen, aber es kommt zu keiner Teilung. Um
ein minimales zweidimensionales Modell zu haben, das die Teilung von Tröpfchen
zeigt, führen wir zusätzliche chemische Reaktionen ein. Wenn diese Reaktionen an
der Tropfengrenzfläche lokalisiert sind und von dessen mittleren Krümmung ab-
hängen, teilen sich die Tröpfchen robust in 2D.
In ihrer Gesamtheit trägt diese Arbeit zum theoretischen Verständnis der Frage bei,
wie die Existenz von Tröpfchen die Reaktionskinetik verändern kann und umgekehrt,
wie chemische Reaktionen die Tröpfchendynamik beeinflussen.
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Chapter 1

Introduction

The discovery of liquid-like droplets in cells [1] has nucleated a fast-growing field of
biological research [2, 3]. Now, the existence of droplets, mainly formed by proteins,
inside the cytoplasm has been reported in many different studies. For a review, see
[4]. These droplets form membrane-less organelles and can structure the cytoplasm.
However, a key challenge up to now is to identify the full functional consequence of
droplets and their distinct biological relevance [5, 6]. One of the proposed functions
of these condensates is to structure and localize chemical reactions inside cells [5, 7].
From a statistical physics point of view, the interplay of chemical reactions and phase
separation in active environments like cells is an interesting question on its own.
However, systems with chemical reactions and phase separation are much less stud-
ied than chemical reactions in homogeneous or spatially continuous systems with
diffusion following Fick’s law. In the first case, the time evolution of concentrations
follows classical mass-action dynamics, and non-equilibrium steady states can oc-
cur when detailed balance is broken, see [8, 9]. The second case is usually studied
within the framework of reaction-diffusion equations, see, e.g., [9, 10]. Here, interest-
ing patterns can emerge from the interplay of active chemical reactions and spatial
transport via classical diffusion [11]. Another example of these spatial systems with
active chemical reactions is the so-called Model A in the classification of Hohenberg
and Halperin [12]. Here, the time evolution of the concentration field is given by the
so-called Allen-Cahn equation [13, 14].
Phase separation dynamics is mainly studied theoretically in binary mixtures. The
typical example is the so-called Model B in the same classification of Hohenberg and
Halperin [12]. Here, the dynamical equation of the concentration field of one of the
components follows the so-called Cahn-Hilliard equation [15, 14].
As mentioned above, the interplay of phase separation and chemical reactions is
much less studied. Chemical active droplets had been studied conceptionally, with-
out a direct link to the driving free energy, already 90 years ago [16, 17]. Only re-
cently, active chemically reactions in spatial models of binary mixtures have been
studied by [18, 19, 20]. In most of these studies, however, the chemical reactions
are considered far from equilibrium, in the sense that the chemical reaction rates are
not connected to the free energy that drives phase separation. This thesis starts from
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equilibrium considerations of multi-component phase-separating mixtures and makes
the breaking of detailed balance explicit, thus driving the system out of equilibrium.
In spatially organized systems, the driving of chemical reactions in the bulk or the
breaking of detailed balance at the system boundaries can lead to droplet dynamics
not observed in equilibrium situations.
In this introduction, we introduce all concepts of phase separation and chemical
reactions in equilibrium systems that are used in this work and give a short review
of how systems are usually made active via driven chemical reactions. At the end of
this introduction, we will briefly outline the goals and structure of this thesis.

1.1 Thermodynamics of phase separation

Phase separation occurs in mixtures of at least two non-dilute components when
molecules interact. Instead of homogeneous, well-mixed states, these systems de-
mix and build phases of different compositions. Arguably, the most common ex-
ample is the spontaneous demixing of oil and water. The interactions between hy-
drophobic oil molecules and water lead to the formation of droplets. However, this
phenomenon is general and occurs in many different circumstances [21].
In this work, we focus on phase separation in incompressible fluids. To describe the
composition of a mixture with several components i = 0, ...,M , we define the vol-
ume fractions ϕi = νiNi/V . Here, νi is the mean volume occupied by one molecule
of species i, called molecular volume in the following,Ni is the number of molecules
of species i, and V is the system volume. Furthermore, we can express the volume
fraction of one component in terms of all others. We write ϕ0 = 1−∑M

i=1 ϕi and call
this component solvent S in the following. In this thesis, we will use mean-field the-
ories. The main assumption is that we can define useful mean values of ϕi in local
volumes. Instead of summing over all possible microscopical states, and deriving
the free energy from the partition function, we assume, therefore, an effective free
energy

F ({ϕi}) =
∫
dV

[
f({ϕi}) +

M∑

i=0

κi
2νi

(∇ϕi)2
]

, (1.1)

for the total system. For a more detailed discussion about the mean-field assump-
tion, see, e.g., [22, 23]. The terms proportional to (∇ϕi)2 are equivalent to the den-
sity gradient term1 introduced already 1873 by van der Waals (see [24] for an En-
glish translation and a more detailed discussion) and put in their modern form by
Cahn and Hilliard [15]. These terms penalize spatial gradients and ensure smooth
changes of ϕi between different local volumes, even when the system phase sepa-
rates. However, the free energy density has to have non-convex regions for phase
separation to occur. In the literature, the most common example is the Ginzburg-
Landau free energy density for binary mixtures, see, e.g., [25]. Here, combining a

1Here, we neglect terms of the form |∇ϕi∇ϕj | which are of the same order but do not change the
effects qualitatively.
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quadratic term and a biquadratic term generates a concave interval in the free en-
ergy density. However, in the main2 part of this thesis, we will use versions of the
so-called Flory-Huggins free energy density [26, 27]. For the latter, the ideal limit of
non-interacting particles becomes simple and it can be easily generalized for multi-
component mixtures.
Given a free energy such as Eq. 1.1, we can define, via the functional derivative,
the exchange chemical potential as µ̄i = νiδF/δϕi, for i = 1, ...,M . Due to incom-
pressibility, changing the particle number Ni but keeping the volume constant is
only possible by exchanging particles. As a convention, we always exchange with
solvent particles3. We can write these exchange chemical potentials as

µ̄i = kBT log (γ̄iϕi) + ω̄i − κi∇2ϕi , (1.2)

where γ̄i is the exchange activity coefficient and γ̄iϕi the exchange activity. Further-
more, we have introduced composition-independent reference chemical potentials
ω̄i of exchanges, the Boltzmann constant kB and the system temperature T . For
mean-field models up to the second viral coefficients, the exchange activity coeffi-
cient has the form

γ̄i =
1

ϕ0
exp

(
νi

∑M
j=1(χij − χi0 − χj0)ϕj

kBT

)
, (1.3)

where χij are the so-called Flory-Huggins interaction parameters. These parameters
result from the molecular interactions between the components. Without loss of gen-
erality, only M(M + 1)/2 interaction parameters χij can be chosen independently.
Thus, we can represent them in a symmetric matrix with χii = 0. Other choices can
always be rewritten into this form. This also shows that the specific energetic cost of
molecular interactions between components (in total, there can be (M +1)(M +2)/2

different pairs of interactions) cannot be inferred fully from the interaction parame-
ters. These specifics have been lost during the process of coarse-graining.

1.1.1 Phase equilibrium in the thermodynamic limit

To perform the thermodynamic limit, we make the system size V large while keep-
ing the mean volume fractions ϕ̄i = νiNi/V constant. Therefore, we can expand the
total free energy of the system into bulk contributions, scaling with the system vol-
ume, and surface contributions, scaling with the surface area A of the system. We
write

F = fbV + γA+O(Ld−2) , (1.4)

where d is the dimensionality of the system, γ the surface tension, A the surface area
of the system, and L is the system size, thus L ∝ V 1/d. The bulk free energy density
fb is defined via fb = limV→∞ F/V . For a system of two coexisting phases, we split

2Except Section 6.1. There, we use to the Ginzburg-Landau free energy.
3The exchange chemical potentials are related to the chemical potential in the compressible case via

µ̄i = µi − νi/ν0µ0.
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this free energy density into two contributions coming from the two homogeneous
phases and write

fb =
V I

V
f I +

V II

V
f II , (1.5)

where we introduced the phase volumes V I/II. The gradient terms in Eq. 1.1 do not
contribute to the bulk free energy when L becomes large compared to the length
scales over which gradients occur in the system. Therefore, we can assume f I/II =

f({ϕI/II
i }), with f being the free energy density from Eq. 1.1. However, these gra-

dient terms are relevant for the interface between the two phases. The surface free
energy, also called surface tension in liquids, is defined by γ = limA→∞(F−fBV )/A.
In addition to the system boundaries, the interphase between the phases also gives
rise to surface contributions of the free energy for phase separating systems. A more
detailed discussion about the connection between the gradient terms in Eq. 1.1 and
the surface tension is given in App. B. A more detailed discussion about the ther-
modynamic limit, in general, can be found in [28].
The minimum of the free energy defines the phase equilibrium for finite systems
with system size V . This minimization, however, is constrained. First, the conser-
vation of particles requires V ϕ̄i = V IϕI

i + V IIϕII
i , for every component i = 1, ...,M .

Second, the phase volumes build up the system volume, thus V = V I + V II. These
constrains reduce the 2M + 2 variables in Eq. 1.5, ϕI/II

i for i = 1, ...,M and V I/II,
to only M + 1 degrees of freedom. Furthermore, we assume spherical droplets with
radiusR of phase I in 3D and neglect surface contributions from the systems bound-
aries. Knowing the average volume fractions ϕ̄i in a system, we can derive the 2M

volume fractions for the minimum of F by solving 4:

• chem. pot. balance between phases: µ̄I
i = µ̄II

i , M

• pressure condition: f I − f II =
M∑

i=1

µ̄i
I/II

νi
(ϕI
i − ϕII

i )−
2γ

R
, 1

• conservation laws:
ϕ̄i − ϕII

i

ϕI
i − ϕII

i

=
ϕ̄j − ϕII

j

ϕI
j − ϕII

j

, i, j = 1, ...,M M − 1

2M

(1.6)

where we named the constraints on the left hand side and count the number of
independent equations on the right hand side. Furthermore, we have defined the

4 Minimization of the free energy:
We consider ϕI

i for i = 1, ...,M , and V I as independent degrees of freedom. Using the constrains, we
can express

V II = V − V I, ϕII
i =

V ϕ̄i − V IϕI
i

V − V I

and find
∂V II

∂ϕI
i

= 0,
∂V II

∂V I = −1,
∂ϕII

i

∂ϕI
j

= − V I

V II δij ,
∂ϕII

i

∂V I =
ϕII
i − ϕI

i

V II .
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bulk exchange chemical potentials5 µ̄I/II
i = νi∂f({ϕI/II

i })/∂ϕi.
The first M +1 constrains follow from the minimization4 of F . The remaining M −1

conservation laws follow directly when considering

V I

V
=
ϕ̄i − ϕII

i

ϕI
i − ϕII

i

, (1.7)

and V II/V = 1− V I/V . In the thermodynamic limit, the system size goes to infinity,
but these relative phase volumes are well defined. Furthermore, the droplet radius
R diverges, and the surface contribution becomes negligible compared to the bulk
contribution. We find that phase equilibrium is independent of the reference chemi-
cal potentials ωi. These terms stem from linear contributions proportional to ωiϕi in
f . The structure of Eq. 1.6 is such that all these terms cancel.
For a binary system (M = 1), the composition is defined by just one volume frac-

tion ϕ. In the thermodynamic limit, the condition of phase equilibrium, stated in
Eq. 1.6, can be geometrically understood as finding two volume fractions ϕI/II (red
dots in FIG. 1.1(a)), where f(ϕI/II) has the same tangent (black line in FIG. 1.1(a)).
This is known as the "common tangent" construction. Therefore, the bulk exchange
chemical potentials µ̄I/II are identical (red dots in FIG. 1.1(b)). For finite systems, the
interface contribution leads to deviations. The equilibrium volume fractions ϕI/II

(orange dots in FIG. 1.1(a)), do not have the same tangent, but an offset ∝ 2γ/R be-
tween them (grey lines in FIG. 1.1(a)). The bulk exchange chemical potentials µ̄I/II

are still the same (orange dots in FIG. 1.1(b)).
In the binary case (M = 1), however, the equilibrium volume fractions ϕI/II are
unique in the sense that they are independent of the average volume fraction ϕ̄ in
the thermodynamic limit. Here, already the first two conditions of Eq. 1.6 are suffi-
cient to define these values. As a result, all systems with ϕ̄ values which lie within
the phase separating area have the same equilibrium volume fractions ϕI/II. Only
the relative phase volumes V I/II/V differ between these systems.
For all systems with M > 1, the equilibrium volume fractions ϕI/II

i depend on ϕ̄i.

From the assumption of a spherical droplets of phase I, we conclude

∂A

∂ϕI
i

= 0,
∂A

∂V I =
2

R
.

Therefore, we can express the free energy in Eq. 1.4 as F ({ϕI
i}, V I) = V If I + V IIf II + γA, thus its

minimum reads
∂F

∂ϕI
i

= 0 ⇒ ∂f I

∂ϕI
i

=
∂f II

∂ϕII
i

,

for i = 1, ...,M and
∂F

∂V I = 0 ⇒ f I − f II =
∂f II

∂ϕII
i

(ϕI
i − ϕII

i )−
2γ

R
,

where we have used chain rules and the aforementioned partial derivatives. The first constrains bal-
ance the exchange chemical potentials between the phases, while the last constrain balances the so-
called osmotic pressures ΠI/II = −∂F/∂V I/II and the additional Laplace pressure coming from the
interface between the phases.

5In the following, we do not distinguish strictly between the bulk exchange chemical potentials and
the exchange chemical potentials defined in Eq. 1.2. Whenever spatial systems with fields of volume
fractions are considered, we refer to Eq. 1.2, while in systems of homogeneous phases, we refer to the
bulk exchange chemical potentials defined here.
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FIGURE 1.1: "Common tangent" construction for a binary (M=1) mixture: An ex-
emplary free energy density of a binary mixture (a), and the corresponding ex-
change chemical potential µ̄ (b) as a function of ϕ are shown. The equilibrium
values in the thermodynamic limit (red dots) are defined by the common tangent
(black line in (a)), while the tangents at the equilibrium values in finite systems
have an identical slope but are shifted due to the Laplace pressure (grey lines in
(a)). The spinodal points (see Section 1.1.3) are indicated with green dots. For the

specific parameters, see App. C.

In FIG. 1.3(a) we show the phase diagram of a ternary mixture with molecules of
type A, B, and the solvent S. It shows the equilibrium volume fractions in the com-
position space. All systems with average compositions ϕ̄B and ϕ̄A lying within the
binodal (thick green line) phase separate. The equilibrium volume fractions ϕI/II

i lie
at the end of the corresponding tie lines (thin green lines). These tie lines are the
graphical representation of the conservation laws in Eq. 1.6. Furthermore, the ratio
of the phase volumes V I/V II can be identified by the ratio of the distance from ϕ̄i to
ϕII
i and the distance from ϕ̄i to ϕI

i along the tie lines, see, e.g., [29].
The equilibrium values for finite and infinite systems, determined in this section, are
reached far away from the interface connecting the two phases. In general, it is not
possible to derive the spatial profiles that correspond to the minimum of Eq. 1.1. For
further discussion, see App. B.

1.1.2 Relaxation dynamics towards equilibrium

In the previous section, we studied the equilibrium values for large systems and
minimized the expanded free energy F given in Eq. 1.4. To derive the dynamics of
the volume fractions fields, we minimize the free energy given in Eq. 1.1 directly.
Locally, the conservation of material has to hold, and we can use the continuity
equation

∂tϕi = −∇ · ji , (1.8)

where ji is the diffusive flux density of volume fraction. In linear theory, we can
assume

ji = −νi
M∑

i=1

Γij∇µ̄j , (1.9)
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where Γij are the mobility coefficients. In this work, we choose, whenever nothing
else is specified, a non-diagonal mobility matrix

Γij = Γϕi(δij − ϕj) , (1.10)

where Γ can be related to an exchange rate of particles. This choice of the mobility
matrix is motivated by the fact that the diffusion matrix, defined by

Dij = νi

M∑

k=1

Γik
∂µ̄k
∂ϕj

, (1.11)

becomes diagonal Dij = νikBTγδij in the absence of molecular interactions6 and all
molecular volumes being equal. With this, we restore Fick’s law of diffusion (see
Appendix of [30, 31]).
In general, Eq. 1.8 is a non-linear fourth-order partial differential equation. In the
special case of a binary mixture and a Ginzburg-Landau free energy density, this
equation simplifies to linear fourth-order terms and non-linear quadratic terms. Un-
der these circumstances it is known as Cahn-Hilliard equation [15, 32].

1.1.3 Local stability of homogeneous phases

Even when the system has average volume fractions corresponding to a phase-
separated equilibrium situation, the system does not necessarily spontaneously de-
mix [33]. In this section, we study the stability of homogeneous states. Therefore,
we linearise the dynamics of Eq. 1.8 around the homogeneous state ϕ̂i of interest and
study the relaxation of small perturbations δϕi. The linearized dynamics follow

∂tδϕi =
M∑

j=1

(D̂ij − Γ̂ij∇2)∇2δϕj , (1.12)

where we use the diffusion coefficients D̂ij = Dij({ϕ̂i}) as defined in Eq. 1.11 and
evaluated at ϕ̂i, and Γ̂ij = νiκjΓij({ϕ̂i}). To study the stability of small perturba-
tions, we use periodic functions

δϕj = ϵj exp(τt+ iqx) , (1.13)

6In the absence of molecular interactions, the volume fractions fields become more and more ho-
mogeneous and the gradient terms proportional to κi in Eq. 1.1 become negligible.
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FIGURE 1.2: Nucleation-and-growth regime vs. spinodal decompositon: (a): The
relaxation rates τ as functions of the perturbation wavelength q are shown at four
different homogeneous volume fraction values ϕ̄. (b): Snapshots of the volume
fraction fields in 2D systems over time are shown, in the upper row, a system in
the nucleation-and-growth regime, of locally stable homogeneous mixtures, in the
lower row in the spinodal regime. The chosen colormaps for the two examples
match the corresponding color of the stability analysis in (a) with same average

composition. For details and parameters, see App. C.

with wavenumber q, and relaxation time τ . Here, i is the imaginary unit, and ϵj are
the perturbation amplitudes. These amplitudes have to be necessarily component-
specific coefficients, for solving the non-diagonal problem. We can derive the disper-
sion relations7 τk(q) in linear response. They are obtained by solving the M equa-
tions

τϵi = −q2
M∑

j=1

(D̂ijϵj + Γ̂ijϵjq
2) , (1.14)

simultaneously for ϵj , j = 2, ...,M and τ . Due to the scaling of the overall amplitude,
we can always assume ϵ1 = const. without loss of generality. Therefore, choosing
a perturbation with a specific wavenumber q determines the relaxation rates τk’s.
Whenever such a perturbation has one τk > 0, this perturbation is unstable and will
grow exponentially. Hence the mixture demixes. This instability is called spinodal
decomposition. Whenever all τk < 0, only large perturbations can trigger phase
separation. In this regime, droplets grow after being nucleated larger than a critical
radius. This critical radius can be defined as

Rcrit =
2γ

f I − f II −∑i=1
µ̄i
νi
(ϕI
i − ϕII

i )
, (1.15)

by inverting the pressure condition of Eq. 1.6 [34]. The manifold in composition
space which splits these two regimes is called spinodal and always lies within the
binodal area. Only at the critical point, it touches the binodal (see for example
FIG. 3.1(a)). For binary mixtures, we obtain just two volume fractions at which
the stability changes. The green dots in FIG. 1.1 depict these points for the free en-
ergy chosen in this example. We show the dispersion relation of the same system in
FIG. 1.2(a). The instability occurs at ϕ̄ ≈ 0.32 (green line). This value is the inflection

7For multi-component mixtures, we obtain degenerated solutions, thus several τ ’s for one q



Chapter 1. Introduction 9

point of the free energy in FIG. 1.1(a). In general, the stability can also be determined
directly by the curvature of the free energy density [34, 22]. Furthermore, we show
snapshots in time of numerical simulations with homogeneous initial conditions of
average composition ϕ̄ = 0.25 (blue) and ϕ̄ = 0.4 (red) in FIG. 1.1(b). As predicted
from the dispersion relation shown in FIG. 1.2(a) (in the corresponding colors), phase
separation occurs only after a nucleation event in the first case. In the second case,
the mixture spontaneously demixes. After the spinodal decomposition, however,
big droplets grow at the cost of small ones. This process is called Ostwald ripening
[35].

1.2 Thermodynamics of chemical reactions in homogenous
mixtures

While phase separation minimizes the free energy by organizing particles in space,
chemical reactions minimize the free energy by converting particles of different types
into each other. In general, chemical reactions can be written in the form

M∑

i=0

σ+iαCi ⇌
M∑

i=0

σ−iαCi , (1.16)

where the σ±iα are stoichiometric coefficients, and Ci denote the chemical species, see
[36, 37]. The stoichiometric coefficients σ±iα indicate how many particles of species i
are degraded (reactants: +) or produced (products: −) when the chemical reaction
α runs from the left to the right side. These coefficients define the so-called stoichio-
metric matrix

σiα = σ−iα − σ+iα , (1.17)

which represents therefore a specific reaction scheme of multiple reactions α =

1, ..., L. In this work, we restrict ourself to incompressible mixtures. Therefore, only
volume conserving chemical reactions, fulfilling

M∑

i=0

σiανi = 0 , (1.18)

can occur. Otherwise, the system becomes compressible due to the fact, that it can
shrink in size via a change in composition when pressure is applied to the system.

1.2.1 Conserved densities and reaction extents

The volume fractions ϕi are not conserved individually, due the chemical reactions.
In general, there are L′ ≤ M linearly independent chemical reactions. Therefore,
there remain C = M − L′ conserved densities in addition to the conserved volume,
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see for example [38, 39]. These conserved densities can be expressed as linear com-
bination of volume fractions. We write the conserved densities as

ψj =
M∑

i=0

Ajiϕi , (1.19)

where j = 0, 1, ..., C. Here, the matrix A obeys the relation
∑M

i=0Ajiνiσiα = 0, i. e.
the rows of the matrix A are linearly independent null-vectors of the matrix νiσiα.
The conservation law Eq. 1.18 corresponds to j = 0 with A0i = 1/ν0, which also
clarifies that units of ψj is inverse volume8. We can also define the L′ = M − C

non-conserved densities

ξα =
M∑

0=1

Bαiϕi , (1.20)

where α = 1, ..., L′, which are the reaction extents. These ξα measure the cumulative
number of reaction events that have occured per volume. While the conserved den-
sities stay constant in time, in homogeneous mixtures the densities of the reaction
extents are the only dynamical variables. For the matrix B, we use the pseudo-
inverse of the volumetric stoichiometric matrix νiσiα. Explicitly, the matrices A and
B define the matrix elements of an invertible square matrix

U =




A00 · · · A0i · · · A0M

· · · Aji · · ·
AC0 · · · ACi · · · ACM

B1i ... B1i ... B1M

... Bαi ...

BL′0 ... BL′i ... BL′M




. (1.21)

A property of the inverse matrixU−1 isU−1
iα = νiσiα. The matrixA and the conserved

densities ψj are not unique. Indeed, any linear combination of conserved densities
is also a conserved density. A choice of linearly independent conserved densities
specifies the matrix A uniquely. Similarly, the matrix B is also not unique, because
each reaction extent is defined with respect to a reference value.
From the conserved densities ψj and the reaction extents ξα, we can obtain the vol-
ume fractions as

ϕi =

C∑

j=0

U−1
ij ψj +

L′∑

α=1

νiσiαξα . (1.22)

To illustrate this, we consider, for example, a quaternary (M = 3) mixture of compo-
nentsA,B, C, and the solvent S. Their molecular volumes follow νS = νA, νB = 2νA

and νC = 6νA. Furthermore, the chemical reactions 2A+B ⇌ C (α = 1) and 4A⇌ B

8For simplicity, we will suppress this molecular volume in all systems in this thesis when all compo-
nents have identical molecular volumes. We speak then about conserved or non-conserved quantities.
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(α = 2) can occur, thus the stoichiometric matrix is given by

σ =

α = 1 α = 2






0 0 S

−2 −4 A

−1 1 B

1 0 C

. (1.23)

The volume stoichiometric matrix σ̃ can be expressed as

σ̃ = νA




0 0

−2 −4

−4 4

6 0




. (1.24)

Its left nullspace is two-dimensional and we can use the row vectors v0 = (1, 1, 1, 1)

(which is the conservation of volume) and v1 = (0, 1, 1, 1) as a basis of this null-
space. The remaining non-trivial conserved density is thus given by ψ1 = (ϕA +

ϕB + ϕC)/νA. With this, we can construct the non-conserved quantities via

U = ν−1
A




1 1 1 1

0 1 1 1

B00 B01 B02 B03

B10 B11 B12 B13



, and U−1 = νA




A−1
00 A−1

01 0 0

A−1
10 A−1

11 −2 −4

A−1
20 A−1

21 −4 4

A−1
30 A−1

31 6 0




,

(1.25)
where A−1 is the pseudo-inverse of A, when solving for U · U−1 = 1. For this exam-
ple, the last equation is satisfied when

B11 = B12 , (1.26)

B13 = 1/6(1 + 6B11) , (1.27)

B22 = 1/4(1 + 4B21) , (1.28)

B23 = 1/6(1 + 6B21) , (1.29)

thus we can choose for example the reaction extents ξ1 = (−1/12ϕA − 1/12ϕB +

1/12ϕC)/νA and ξ2 = (−1/6ϕA + 1/12ϕB)/νA.

1.2.2 Equilibrium of chemical reactions

To identify the chemical equilibrium of any given reaction scheme in the form of
Eq. 1.16, we can define the forward and the backward chemical reaction free energy
as

µ±α =

M∑

i=1

σ±iαµ̄i . (1.30)
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Their differenece, the so-called reaction free energy,

∆µα =
M∑

i=1

σiαµ̄i , (1.31)

quantifies the release of free energy when this chemical reaction runs once from the
left to the right side. At chemical equilibrium of reaction α, both sides are balanced
and thus

∆µα = 0 . (1.32)

Therefore, given a well-mixed system of M + 1 components, we can compute the
volume fractions at chemical equilibrium via:

• chemical equilibrium: ∆µα = 0, L′

• conservation laws: ψj M − L′

M (1.33)

These conditions determine the M volume fractions. The solvent volume fraction
follows again from ϕ0 = 1−∑M

i=1 ϕi. Any closed system, without additional driving
relaxes towards this chemical equilibrium in the long time limit.

1.2.3 Mass-action kinetics towards equilibrium

The decomposition of ϕi in Eq. 1.22 reveals that in homogeneous systems, the only
temporal evolution of ϕi stems from the dynamics of the reaction extents ξα because
the conserved densities ψj stay constant in time. However, the reaction extent ξα
evolves in time, with

dξα
dt

= rα , (1.34)

when there is a net reaction rate rα = r+α−r−α of reaction α. The latter is the difference
between the forward and backward chemical reaction rates r±α . Detailed balance of
the rates requires that the ratio of these reaction rates follows

r+α
r−α

= exp

(
−∆µα
kBT

)
, (1.35)

see, e.g., [40, 41, 42] for a general discussion. Therefore, we can write

r±α = kα exp

(
µ±α
kBT

)
, (1.36)

where we have introduced the kinetic coefficients kα. These coefficients are posi-
tive numbers, but can depend on composition. This dependency we utilize later to



Chapter 1. Introduction 13

localize the reactions within one phase9. With this, the net reaction rate is given by

rα = kα

[
exp

(
µ+α
kBT

)
− exp

(
µ−α
kBT

)]
, (1.37)

which vanishes at chemical equilibrium.
According to Eq. 1.22, the temporal evolution of the volume fractions is given by

dϕi
dt

= ri , (1.38)

ri =

L′∑

α=1

νiσiαrα , (1.39)

where ri is a sink or source of component i stemming from all chemical reactions in
which the component is involved, σiα ̸= 0.

Dilute limit or no interactions

When no molecular interactions between molecules occur, or the volume fractions
of all components except the solvent are dilute, the exchange activity coefficients
γ̄i can only be dependent on the solvent volume fraction. For volume conserving

reactions, it holds that
∏M
i=1 γ̄

σ+
iα
i ∝∏M

i=1 γ̄
σ−
iα
i . We can define, therefore, the so-called

equilibrium coefficient

Kα =
M∏

i=1

γ̄−σiαi exp

(
−σiαωi
kBT

)
, (1.40)

for the chemical reaction α, which is independent of composition for dilute mixtures.

Furthermore, we can define K±
α =

∏M
i=1 γ̄

σ±
iα
i exp

(
σ±
iαωi

kBT

)
, such that Kα = K+

α /K
−
α

and write for the kinetical equations

dϕi
dt

=
L∑

α=1

νiσiαkα


K+

α

M∏

j=1

ϕ
σ+
jα

j −K−
α

M∏

j=1

ϕ
σ−
jα

j


 . (1.41)

Any composition dependency left in K±
α can be compensated by the kinetic coeffi-

cient kα. Therefore, reaction fluxes can be proportional only to the volume fractions
to the power of the stoichiometric matrices, in the simplest case. In the long time
limit, the chemical equilibrium is reached, and for each chemical reaction, it holds
that

Kα =
M∏

i=1

ϕσiαi , (1.42)

see, e.g., [43]. Using Eq. 1.40 and Eq. 1.42 together we obtain again ∆µα = 0, which
is the general condition for chemical equilibrium. The dilute regime is characterized,
therefore, by the condition that Kα is composition independent. For systems with

9In general, also different choices of Eq. 1.36 are possible when introducing k±α , such that Eq. 1.35
still holds. However, due to simplicity, we choice the symmetric version stated in Eq. 1.35.
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interactions and non-dilute concentrations, the equilibrium constants Kα have to be
composition-dependent. This, we show in the following.

1.3 Simultaneous equilibrium of chemical reactions and phase
separation

The thermodynamic equilibrium of phase separating mixtures in the presence of
chemical reactions is reached when the conditions of phase equilibrium, stated in
Eq. 1.6, and the requirements of chemical equilibrium, stated in Eq. 1.33, are satisfied
simultaneously. Chemical equilibrium can be reached in all phases simultaneously,
because, as Landau and Lifshitz [44] write "[...] the condition (chem. equilibrium)
retains its form even when the reacting substances are distributed in the form of solutes
in two different phases in contact. This follows from the fact that in equilibrium the chemical
potentials of each substance in either phase must be equal, in accordance with the conditions
for phase equilibrium." In our framework, we summarize the condition for a two-
phases coexistence in a system with M + 1 components and L′ < M + 1 linearly
independent reactions by

• chem. pot. balance between phases: µ̄I
i = µ̄II

i , M

• pressure condition: f I − f II =

M∑

i=1

µ̄i
I/II

νi
(ϕI
i − ϕII

i )−
2γ

R
, 1

• chemical equilibrium: ∆µI/II
α = 0, L′

• conservation laws:
ψ̄i − ψII

i

ψI
i − ψII

i

=
ψ̄j − ψII

j

ψI
j − ψII

j

M − L′ − 1

2M (1.43)

which determines the 2M volume fractions at equilibrium. The volume of phase I
follows again, similar to Eq. 1.7, from

V I

V
=
ψ̄i − ψII

i

ψI
i − ψII

i

, (1.44)

while V II = 1− V I.
From Eq. 1.43, we can immediately show why, in general, the equilibrium constants
Kα, as defined in Eq. 1.40, can not be composition-independent when a system
phase separates. From the condition of identical chemical potentials follows the
identity of activities between the phases, thus γ̄I

iϕ
I
i = γ̄II

i ϕ
II
i . Thus, the partition

factor, defined by the ratio of the volume fractions Pi = ϕI
i/ϕ

II
i , fulfils Pi = γ̄II

i /γ̄
I
i

at phase equilibrium. Furthermore, when writing down the equilibrium constants
KI/II
α , which follow from chemical equilibrium, we need a phase index I/II due to

composition dependency of γ̄i. The partition coefficient of phase separation and the
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FIGURE 1.3: Partial and thermodynamic equilibrium in a ternary mixtures: (a):
A phase diagram of a ternary mixture (M = 2) with components A, B, and S is
shown. Phase equilibrium is established at the binodal line (thick green line). Sys-
tems with average compositions within the binodal area (green) have coexisting
phases at equilibrium, determined by the corresponding tie line (thin green lines).
(b): The graphical representation of the chemical equilibrium of the reactionA⇌ B
is shown (L′ = 1). The thick orange line is the line at which the reaction free energy
∆µ vanishes. However, chemical reactions cannot alter ψ = ϕA + ϕB , leading to
the conservation lines (thin orange). (c): The thermodynamic equilibrium for this
system is visualized. In the white domains, it is reached at homogeneous systems
at the chemical equilibrium line (orange). In the green domain, the equilibrium is
dictated by the green tie line obtained by the intersections of the binodal (dashed
green) and the chemical equilibrium line. (d): Different thermodynamic equilibria
for three parameter choices of reference chemical potentials ωi, leading to different
∆ω = ωB−ωA, are shown. While the binodal stays constant under these parameter
changes, the chemical equilibrium line gets shifted. For more details and parame-

ters, see App. C.

chemical equilibrium coefficient are connected via

KI
α

KII
α

=

M∏

i=1

P σiαi . (1.45)

As we will show later, this also has direct consequences on the dynamics. Using
mass-action kinetics suitable for dilute systems will most likely break the assump-
tion of detailed balance of the rates and make the chemical reactions active.
We continue by illustrating the conditions Eq. 1.43, first, for a ternary (M = 2) mix-
ture with one chemical reaction. In FIG. 1.3, we consider a ternary mixture where B
can phase separate from the solvent. Furthermore, we allow the chemical reaction
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A ⇌ B. The phase diagram is shown in FIG. 1.3(a). It is the graphical representa-
tion of Eq. 1.6 for this system. The thick green line denotes the binodal line at which
µ̄I
i = µ̄II

i . Furthermore, we show a set of tie-lines (thin green lines). These lines are
the graphical expression of the conservation laws denoted in Eq. 1.6. They repre-
sent the linear relationship how ϕ̄A and ϕ̄B have to be altered such that the same
equilibrium volume fractions are reached, but only the phase volumes differ. Inside
the binodal area (green), the system’s equilibrium without chemical reactions would
be a phase-separated state. Furthermore, the system can never be in the grey area
where νSψ1 = ϕA + ϕB > 1.
In FIG. 1.3(b), we show the graphical representation of Eq. 1.33 for this system. Here,
the line of vanishing reaction free energy, thus µ̄A = µ̄B for this chemical reaction,
is shown by the thick orange line. Furthermore, we show a set of lines of different
values of the conserved quantity ψ = ϕA + ϕB (thin orange lines). Only along these
lines, the chemical reaction can alter ϕ̄A and ϕ̄B .
The thermodynamic equilibrium, thus the graphical representation of Eq. 1.43, is
shown in FIG. 1.3(c). The thermodynamic equilibrium of all the systems with aver-
age composition within the green area is given by a coexistence of two phases with
volume fraction values denoted by the red dots. These points are the intersection of
the binodal with the chemical equilibrium line. Due to the structure of Eq. 1.43, it
is guaranteed that these intersection points are always connected via a tie line. The
system within the green area can only differ in sizes of the two phases V I/II. Their
ratio is given by the intersection of the line of conserved quantity with the unique
tie line. All the systems with average composition outside the green area, will have
a well-mixed equilibrium state given by the intersection of the line of conserved
quantity with the chemical equilibrium line.
The equilibrium conditions for phase equilibrium are invariant under changing the
reference chemical potentials ωi. However, these values strongly affect the chemi-
cal equilibrium. We illustrate this in FIG. 1.3(d). While the binodal is always the
same, the chemical equilibrium line changes for different values of ∆ω = ωA − ωB .
However, whenever there are intersections between these two lines, they are always
connected via a tie line.
To illustrate how this is generalizes for systems with more components and several
reactions, we briefly discuss the case of a quaternary system (M = 3) with one or
two reactions. In FIG. 1.4(a), we show a binodal manifold (green) of a system with
components A, B, C and S, where only C can phase separate on its own from the
solvent S. In addition, here we consider the chemical reaction A + B ⇌ C. The
corresponding chemical equilibrium manifold is shown in orange. These two man-
ifolds intersect in a closed line, shown in FIG. 1.4(b) as a green-orange dashed line.
A new manifold is spanned when all the points at this line are connected via their
tie lines. The thermodynamical equilibrium of any system can now be constructed
when knowing the values of the average conserved quantities. Here, we have cho-
sen ψ1 = ϕA + ϕB + ϕC and ψ2 = ϕA − ϕB . The latter can be represented here
by planes in composition space (two exemplary ones are shown in grey and blue).
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FIGURE 1.4: Thermodynamic equilibrium for quaternary mixtures: (a): The bin-
odal manifold (green) for a quaternary system (M = 3) with components A, B, C,
and S, and the chemical equilibrium manifold (orange) for the chemical reaction
A + B ⇌ C (L′ = 1). (b): The intersection of the two manifolds forms a circle
(green-orange dashed). The tie lines along the circle (thin green lines) span a plan.
The chemical reaction conservers ψ1 = ϕA + ϕB + ϕC and ψ2 = ϕA − ϕB . These
conserved quantities can be represented by planes (grey and blue). Two phases
coexist at equilibrium whenever these planes intersect within the closed circle. (c):
We show the phase diagram in the composition space of the two conserved quan-
tities. The binodal and chemical equilibrium line is shown with the green-orange
dashed, and the thin green lines are tie lines. (d): When the additional reaction
A ⇌ B is allowed (L′ = 2), a second chemical equilibrium manifold can be con-
structed, leading again to a unique thermodynamic equilibrium where all of the

manifolds intersect (red dots). For the parameters, see App. C.

Whenever the line, lying on both planes of the conserved quantities (red line for this
example), intersects the manifold constructed via the tie lines, two phases coexist at
thermodynamic equilibrium. Their volume fractions are given by the correspond-
ing tie line (red dots). Alternatively, we show the phase diagram in the composition
space of the conserved quantities in FIG. 1.4(c). The dimensionality of this space is
reduced by one due to the condition of chemical equilibrium.
Furthermore, when allowing additionally the chemical reaction A⇌ B, we obtain a
second chemical equilibrium manifold, shown in blue in FIG. 1.4(d). With two reac-
tions, justψ1 is still a conserved quantity, while ϕA−ϕB is no longer conserved. Thus,
the thermodynamic equilibrium is determined by the intersection of the two chemi-
cal equilibrium manifolds (blue-orange dashed line). However, when this line enters
the binodal area, again, just one distinct phase equilibrium is selected. Changing the



Chapter 1. Introduction 18

conserved quantity within the binodal area just leads to differently sized phase vol-
umes.

1.4 Chemical reactions maintained away from equilibrium

So far, we have discussed the thermodynamic equilibrium state and the relaxation
kinetics toward this equilibrium. However, many systems and every biological sys-
tem are driven out of equilibrium. The literature on so-called active matter is rich
and many different ways exist how detailed balance can be broken. Examples are
given by noise terms in the dynamics which do not satisfy the fluctuation-dissipation
theorem, see, e.g., [45], or breaking the symmetry or reciprocal relations of Onsager
coefficients, see, e.g., [46]. However, many transition processes in biology are driven
away from equilibrium by the supply of chemical fuels, e.g. ATP in cells. Two ex-
amples are given by channels and pores, which pump ions against concentration
gradients, and electrical potentials across membranes [47], or molecular motors that
generate mechanical forces [48]. Under the consumption of these fuel molecules,
chemical reactions run in the opposite direction than they would normally do in the
absence of fuel. Instead of taking the fuel dynamics into account, these processes
can be modeled by additional chemical energy, in this thesis, we will refer to it as
∆µ̃, which breaks the detailed balance condition [49]. This is motivated by the idea
that these ’hidden’ processes are faster than the modeled processes, e.g., fast ATP
diffusion inside cells.
For driven chemical reactions, this additional chemical energy ∆µ̃ can therefore be
interpreted as the chemical potential from ’hidden’ chemical species that are in-
volved in the corresponding chemical reaction. However, these species are always
in excess and constantly supplied or removed. Therefore, we break the detailed bal-
ance condition in Eq. 1.35 by additional terms in the forward and backward chemical
reaction energies µ̃±α . Instead of Eq. 1.30, we write

µ±α =

M∑

i=1

σ±iαµ̄i + µ̃±α , (1.46)

when the chemical reaction α is driven. Thus the total reaction free energy is given
by

∆µα =

M∑

i=1

σiαµ̄i +∆µ̃α , (1.47)

with ∆µ̃α = µ̃+α − µ̃−α . Due to this driving, such systems do not relax towards equi-
librium.
However, even when chemical reactions are driven, some systems can be described
by an effective equilibrium system when these additional chemical energies can be
recast in the chemical potentials of the species i = 1, ...,M . Thus, defining an effec-
tive free energy. In general, this cannot be achieved. For cyclic reaction networks,
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FIGURE 1.5

driving specific chemical reactions by a supply of
chemical energy ∆µ̃α leads to a system for which no
equilibrium description can be found. By redefin-
ing the chemical potentials of species involved in
this reaction α, also their chemical potentials for the
other chemical reactions would change. Thus, such
a system is active, and any stationary state is a non-
equilibrium one. However, we need at least three
components and three chemical reactions for build-

ing a cycle. In FIG. 1.5 we sketch such a cyclic system with components A, B, and
C and chemical reactions A ⇌ B (α = 1), B ⇌ C (α = 2), and C ⇌ A (α = 3). The
latter is driven towards the forward directions, via an external energy supply ∆µ̃α.
The dynamics of each component are affected by the two chemical reactions it is in-
volved in, e. g., dtϕA = νA(r3 − r1). When ∆µ̃α ̸= 0, no effective chemical potentials
can be found for which the detailed balance conditions could be written without any
active driving. Thus, no volume fractions can be found, for which the individual rα
vanish simultaneously. However, a stationary state can be found when all chemical
reactions occur with the same non-vanishing rate rα = r. A detailed discussion of
driven chemical reaction in cyclic biochemical networks is given in [8].

1.5 Structure of this thesis

In this thesis, we study how chemical reactions can be organized by phase separa-
tion. Starting from the thermodynamic description given in this chapter, we show
how systems can relax towards their equilibrium, defined by simultaneous phase
and chemical equilibrium. Furthermore, we show two ways how these systems can
be maintained away from equilibrium. First, when chemical reactions are driven
differently in phases, chemical and phase equilibrium cannot be reached at the same
time. Second, by allowing chemical reactions only in one phase, chemically active
droplets of this phase can be driven out of equilibrium by controlling the concentra-
tions at the system boundaries. The remaining chapters of this thesis are organized
as follows.
Chapter 2 generalizes mass-action kinetics to systems where phase separation has
led to homogeneous compartments. Here, we consider fast diffusive processes com-
pared to chemical reactions rates on the relevant length scales. With this, we dis-
cuss the relaxation kinetics towards equilibrium and show the existence of non-
equilibrium steady states in systems with driven chemical reactions. In Chapter 3,
we introduce the dynamical equations of chemical reactions and phase separation
in spatially continuous systems of multi-component mixtures. Again, we study the
relaxation dynamics and out-of-equilibrium situations, either by driving chemical
reactions or by coupling the system to reservoirs at the system boundaries. Solv-
ing these equations numerically reveals that the droplet can stop ripening, elon-
gate and even divide in out-of-equilibrium situations. For studying the dynamics
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of chemically active droplets quantitatively, we introduce an effective description of
chemically active droplets in multi-component mixtures in Chapter 4. In the limit
of a sharp interface, we can describe their dynamics by two sets of linear reaction-
diffusion equations coupled via a moving interface. In Chapter 5, we introduce a
protocell model of chemically active droplets. Here, we take the nutrient and waste
dynamics explicitly into account. Thus, we obtain a minimal model of metabolic
processes in these protocells. We discuss two different forms of driving for main-
taining these chemically active droplets away from equilibrium, boundary driven
and bulk driven. In Chapter 6, we show why chemically active droplets with driven
chemical reactions in the bulk do not divide in 2D. However, for building minimal
models of chemically active droplets showing division, we introduce chemical reac-
tions at the interface of droplets. When these chemical reactions depend on the mean
curvature of the interface, chemically active droplets can divide robustly in 2D. Fi-
nally, we conclude the main results of this thesis and point out possible directions
for future research in Chapter 7.
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Chapter 2

Chemical reactions in compartmen-
talized systems

This chapter studies chemical reactions in compartments formed by phase separa-
tion. These compartments are homogeneous phases that are at phase equilibrium at
all times. This setting occurs in systems where chemical reactions are much slower
than diffusion on the relevant length scales. As a result, we obtain homogeneous
coexisting phases. For simplicity, we focus on two-phase coexistence, phases I and
II, in this chapter. Each phase is characterized by its phase volume V I/II and M

composition variables. However, the generalization to multi-phase coexistence is
straightforward.
To investigate their dynamics, we generalize the mass-action kinetics of homoge-
neous systems for chemical reactions that take place in compartmentalized systems.
With this, we study the relaxation kinetics in passive systems towards thermody-
namic equilibrium when initialized away from chemical equilibrium. During this
relaxation kinetics, however, phase equilibrium is fulfilled at all times. The second
part of this chapter studies driven chemical reactions in compartmentalized systems.
In homogeneous mixtures, driven situations with non-vanishing fluxes can only oc-
cur with driven chemical reactions in cyclic reaction networks, see Section 1.4. How-
ever, no effective equilibrium situation can be found in compartmentalized systems
when chemical reactions are driven differently in the compartments. Nevertheless,
in the limit of infinite fast diffusion, phase equilibrium is always maintained, while
chemical reactions are driven out of equilibrium. We show the conditions for non-
equilibrium steady states and introduce a method to visualize the selected phase
equilibrium when chemical reactions are driven. This chapter was the result of a
cooperation with Sudarshana Laha and Patrick McCall.

2.1 Mass-action kinetics for compartments built by phase sep-
aration

We have introduced the exchange chemical potentials µ̄i for i = 1, ...,M in Eq. 1.2,
and stated the conditions of phase equilibrium in Eq. 1.6. We found that all the
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exchange chemical potentials of theM non-solvent species and the osmotic pressure
must be balanced. However, in this chapter, it is more convenient to use chemical
potentials instead of the exchange chemical potentials. When considering the Gibbs
free energy G, they are defined by µi = ∂G/∂Ni = ∂g/∂ni+ νi(g−

∑M
k=0 nk∂g/∂nk),

for i = 0, ...,M , where ni = Ni/V is the concentration of component i, see [50].
Analogously to Eq. 1.2, these chemical potentials can be written as

µi = kBT log(γiϕi) + ωi , (2.1)

where ωi a reference chemical potential and γi is the activity coefficient. With these
coefficients, we can define the activity of each component i as γiϕi. Phase equilib-
rium requires the equality of these M + 1 chemical potentials between phases. It is
this symmetric form of the phase equilibrium condition which simplifies our expres-
sions in this chapter. However, for an incompressible system, thus constant molecu-
lar volumes, the equality of the M +1 chemical potentials is identical to the equality
of M exchange chemical potentials and the Osmotic pressure condition, when the
energetic cost of the interface is negligible.

2.1.1 Dynamical equations for densities and phase volumes

Section 1.2.3 studies the volume fraction dynamics for systems with chemical reac-
tions in homogenous mixtures with dilute reactants, leading to the classical mass-
action kinetics. However, in systems with coexisting phases, the volume fractions in
each phase1 ϕI/II

i = νiN
I/II
i /V I/II become dynamic variables. Their time evolution is

affected by changes in particle numbersN I/II
i in the phases and changes in the phase

volumes V I/II .
While in homogeneous mixtures, reaction rates are the only contributions to particle
numbers changes, particle exchanges across the phase boundary can also change
their numbers in systems with coexisting phases. The volume fraction dynamics for
systems with coexisting phases read, therefore

dϕI/II
i

dt
= rI/II

i − jI/II
i − ϕI/II

i

V I/II
dV I/II

dt
, (2.2)

where rI/II
i are sinks or sources of component i due to chemical reactions, and jI/II

i

are the diffusive exchange rates between phases per phase volume V I/II. Note that
only in this chapter do diffusive exchange rates have the units of volume fraction per
time. Furthermore, the volume fraction of particles also changes when the particle
number N I/II stays constant but the respective volume V I/II changes. The last term
in Eq. 2.2 captures this effect and couples the dynamics of all components i.
The volume of each phase is built up by all particles, V I/II =

∑M
i=0 νiN

I/II
i . Therefore,

changes in particle numbers, thus volume fractions, are directly coupled to changes

1Here, we consider the molecular volumes to be constant. However, this framework can be easily
generalized to the more complicated scenario of compressible systems. For simplicity and consistency
in this work, we focus on these incompressible cases. A more general discussion can be found [51].
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in phase volume. Their time evolution follows therefore

dV I/II

dt
= V I/II

(∑

i=0

rI/II
i − jI/II

i

)
. (2.3)

The total system size V = V I+V II, however, must stay constant in an incompressible
system, due to Eq. 1.18. The conservation of particle numbers under the diffusive
exchange obeys

V IjI
i = −V IIjII

i . (2.4)

Furthermore, this conservation causes that the temporal evolution of the average
volume fractions ϕ̄i =

(
V IϕI

i + V IIϕII
i

)
/(V I + V II) follows

dϕ̄i
dt

=
V IrI

i + V IIrII
i

V I + V II , (2.5)

which is independent of the diffusive exchanges.

Diffusive exchange fluxes maintain phase equilibrium

As mentioned above, in the Gibbs Ensemble, phase equilibrium requires the equality
of chemical potentials between phases. This condition is equivalent to the equality of
all activities, thus γI

iϕ
I
i = γII

i ϕ
II
i . Therefore, maintaining phase equilibrium along the

time evolution constraints the volume fractions dynamics via dt(γI
iϕ

I
i) = dt(γ

II
i ϕ

II
i ).

Using a simple product rule, this can be rewritten as

γI
i

dϕI
i

dt
+ ϕI

i

M∑

k=0

∂γI
i

∂ϕI
k

dϕI
k

dt
= γII

i

dϕII
i

dt
+ ϕII

i

M∑

k=0

∂γII
i

∂ϕII
k

dϕII
k

dt
(2.6)

It is important to note that while applying Eq. 2.2 and Eq. 2.3, Equations 2.6 remains
linear in jI/II

i . Therefore, Equations 2.4 and Eq. 2.6 define a system of 2(M +1) linear
equations that can be inverted, leading to maybe lengthy, but closed-form expres-
sion of jI/II

i

(
{rI
k, r

II
k , V

I, V II}
)
. These so constructed diffusive exchange fluxes ensure

phase equilibrium between phases, while chemical reaction fluxes can change the
volume fractions in phases. The numerical power of this approach becomes appar-
ent when reminded that, in general, constructing the binodal manifold of a multi-
component phase diagram requires looping over transcendental equations. Here,
after initializing the system at one point on the binodal manifold, only closed-form
expressions must be obeyed to stay on the binodal manifold along with the evolution
in time.

Chemical reaction rates at phase equilibrium

In Section 1.2.3, we introduced the reaction rates in homogenous systems. There,
differences in the forward and backward chemical reaction free energy µ±α drive the
chemical reaction α with a net rate rα. When component i participates in reaction
α, thus σiα ̸= 0, this net reaction rate causes the a sink or source term ri for species
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i. The same holds true for homogenous compartments, when phase specific source
and sink terms rI/II

i are considered. We find2,

rI/II
i =

L∑

α=1

kI/II
α σiανi

[
exp

(
µ+α
kBT

)
− exp

(
µ−α
kBT

)]
. (2.7)

However, for coexisting phases at phase equilibrium µI
i = µII

i . Thus, the forward and
backward reaction free energies µ±α are equal between the phases, and the bracket
in Eq. 2.7 loses its phase dependency. The only phase dependency of rI/II

i can stem
from a composition dependency of the kinetic coefficients kα. Therefore, the in-
creased concentration of a reacting solute by phase separation does not necessarily
increase the reaction rates in which it is involved. However, composition-dependent
kinetic coefficients can affect the dynamics strongly.

2.1.2 Relaxation kinetics in a simple example

A consequence of phase separation is that the reaction rates rα can, in general3,
not be linear in volume fraction when the system can relax towards equilibrium,
even for unimolecular reactions. In the following, we study a unimolecular re-
action in a ternary mixture to illustrate these effects and study the consequence
of compartment-dependent kinetic coefficients kα. However, the framework intro-
duced above is general and can be applied to more complicated systems with mul-
tiple components and reactions.
In Section 1.3, the thermodynamic equilibrium for a ternary mixture, composed out
of components A, B and S, with the chemical reaction A ⇌ B was discussed. Here,
we study the relaxation kinetics towards this equilibrium in compartmentalized sys-
tems. Therefore, we solve the governing Eq. 2.2 and Eq. 2.3 numerically. The result-
ing kinetics leads to a trajectory in composition space, constrained by conservation
laws. We illustrate this trajectory in the phase diagram in FIG. 2.1(a) for two dif-
ferent initial conditions. Initial condition 1 starts in the homogeneous area of the
phase diagram. When the trajectory hits the area of coexisting phases, the system
phase separates and follows the binodal line. Initial condition 2 starts already in the
separated area. Therefore, the volume fractions ϕI/II

A/B have to be initialized on the
binodal line, which the trajectory follows from thereon. Both initial conditions reach
the same thermodynamical equilibrium. The convergence in volume fraction ϕB is
shown in FIG. 2.1(b).
Composition-dependent kinetic coefficients alter the kinetics, see FIG. 2.1(c)-(d). For
simplicity, we choose a composition dependency affecting phase I uniformly 4. For
initial condition 1, the early time evolution in the homogeneous area is identical for

2Please note, in the rest of the thesis, we use exchange chemical potentials and the Helmholtz en-
semble. Here, we use the Gibbs ensemble. For incompressible mixtures, this leads only to a different
definition of kα for the symmetric choice of Eq. 1.36 and shows the ambiguity of the kinetic coefficient.

3They can only be linear for a specific choice of identical molecular interactions for reacting species.
4A dependency of such kind could read for example k = kII + (kI − kI/II)sig

(
ϕB − ϕcrit.

B

)
.
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FIGURE 2.1: Unimolecular reaction kinetics: We show the relaxation dynamics
of a ternary system, composed out of components A, B, and S, with the chemical
reaction A ⇌ B, towards the thermodynamic equilibrium. Fig. (a) shows trajec-
tories for two systems with the same amount of conserved material ϕA + ϕB , only
differ in their relative composition at initialization. Whenever the system can phase
separate, these trajectories follow the binodal line. Fig. (b) displays the temporal
evolution of ϕI/II

B and its average ϕ̄B for these relaxation processes is shown for
cases with a phase independent kinetic coefficient kα. Fig. (c) shows ϕI/II

B ’s tem-
poral evolution for the initial condition 1 for different kinetic coefficients kI. The
dynamics of the corresponding relative phase volumes V I/(V I + V II) is shown in
Fig. (d). Phase equilibrium ensures that the combination of distinct values for ϕI,

ϕII, and V I always occur together. For more details, see App. C.

different values of kI/kII due to the absence of phase I. As expected, when the tra-
jectory hits the binodal line, the different kinetic coefficients accelerate or decelerate
the time evolution. However, due to phase equilibrium, the phases can not develop
independently. Therefore, increasing the kinetic coefficient just in one phase auto-
matically speeds up the time evolution of volume fractions in the other phase, see
FIG. 2.1(c). Furthermore, the time evolution of the phase volumes is affected, see
FIG. 2.1(d). When the system demixes, phase I is spontaneously built, leading to
a kink in the temporal evolution of V I. The initial slope of the growing phase is
affected by the kinetic coefficients, FIG. 2.1(d).
Due to the chemical reaction, material B is net produced for initial condition 1 in
FIG. 2.1. With this, the chemical reaction leads to the growth of phase I. However,
when the kinetic coefficient is phase-dependent, a non-linear feedback exists. In
the case of kI > kII, for example, the chemical reaction occurs faster in the grow-
ing phase, therefore, more B material gets produced faster, which leads again to
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FIGURE 2.2: Average reaction flux and acceleration: Phase separation can acceler-
ate or decelerate the net production of a material. We illustrate this by showing the
averaged B-production r̄B = (V I rI

B + V II rII
B)/(V

I + V II) for the initial condition
I from FIG. 2.1 in Fig. (a). At the onset of phase separation, zoomed in the inset,
r̄B has a kink, leading to a jump in the averaged reaction acceleration, shown in

Fig. (b). For further details, see App. C.

faster growth of phase I. We show the consequence of this feedback for the aver-
aged production of material B, r̄B = (V I rI

B + V II rII
B)/(V

I + V II) (right-hand side of
Eq. 2.5) in FIG. 2.2(a). When the system demixes, an initial increase of the average
B-production occurs when kI/kII = 10, leading to a kink in its temporal evolution.
However, the thermodynamical equilibrium is reached faster here, and therefore,
the average reaction rate has to vanish earlier than in other cases, leading to a max-
imum of r̄B . In general, at the onset of phase separation, the averaged source and
sink terms of chemical reactions r̄B are continuous but not differentiable functions.
This leads to a jump of the averaged acceleration dtr̄i, see FIG. 2.2(b). This discontin-
uous behavior is a direct consequence of the kink in the time evolution of the phase
volumes.

2.2 Driven chemical reactions in compartmentalized systems

The kinetic equations described in the first part of this chapter can be used not only
for studying the relaxation towards the thermodynamical equilibrium but also for
non-equilibrium situations. In Section 1.4, we introduced how driven chemical re-
actions in cyclic reaction networks can lead to non-equilibrium steady states, where
no effective equilibrium description can be found, and chemical reactions occur with
constant rates at a steady state. In compartmentalized systems, driving chemical re-
actions differently in the phases, thus a compartment dependency of ∆µ̃I/II

α , does
not allow an equilibrium description either5.
Analogously to Eq. 1.46, we include the driving of chemical reactions in compart-
mentalized systems by writing the forward and backward chemical reaction free

5Such dependencies can arise, e.g, when the kinetic coefficients of reactions involving the ’hidden’
components, introduced in Section 1.4, are affected by phase separation.
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energies as

µ±,I/II
α =

M∑

i=0

σ±iαµi + µ̃±,I/II
α (2.8)

where the chemical energy supply ∆µ̃I/II
α = µ̃−I/II

α − µ̃+I/II
α . When ∆µ̃I

α ̸= ∆µ̃II
α,

the reaction free energy becomes compartment-dependent ∆µI/II
α . Therefore, an

effective equilibrium of chemical reactions, thus ∆µI/II
α = 0, can not be reached

simultaneously when the chemical potentials have to obey µI
i = µII

i . The latter
is the condition for phase equilibrium. With this, phase equilibrium and chem-
ical equilibrium contradict each other. Thus, phase-specific driving of chemical

FIGURE 2.3

reactions forbid an equilibrium description already
in binary mixtures with just one chemical reaction.
In FIG. 2.3, we sketch an exemplary system with
components A and B which can convert into each
other. This chemical reaction is driven in phase II.
Thus, if these two compartments were isolated from
each other, both would settle at effective chemical
equilibria with different chemical potentials of the
components. However, the diffusive transport equi-

librates differences in chemical potentials between compartments. In the limit of
infinite fast diffusion, phase equilibrium is always maintained, even in the presence
of chemical driving. With this, non-equilibrium steady states can occur where the
constant chemical reaction fluxes are balanced by fluxes of components between the
compartments. We study these non-equilibrium steady states in the following.

2.2.1 Non-equilibrium steady states at phase equilibrium

As mentioned above, we assume phase equilibrium between the compartments at all
times. Thus, the chemical potentials of all components have to be identical between
the phases. With this, the reaction free energy in the absence of chemical driving, as
defined in Eq. 1.31, does not vanish but has to have the same value at all times. We
define the chemical reaction free energy at the non-equilibrium steady state as

∆µNESS
α =

M∑

i=0

σiαµ
NESS
i , (2.9)

where µNESS
i is the chemical potentials of species i at the steady state. From the

stationary state of Eq. 2.2 and Eq. 2.3, and the conservation law Eq. 2.4, it follows
that

V IrI
i = −V IIrII

i , (2.10)

for two phases at phase equilibrium. Any net excess material produced in one phase
is balanced by a net shortfall in the other phase at steady state. From here, we can
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conclude the stationary condition

∆µNESS
α = kBT log



kI
αV

I exp
(
µ̃+,I
α

kBT

)
+ kII

αV
II exp

(
µ̃+,II
α
kBT

)

kI
αV

I exp
(
µ̃−,I
α

kBT

)
+ kII

αV
II exp

(
µ̃−,II
α
kBT

)


 . (2.11)

The non-equilibrium steady state chemical reaction free energy ∆µNESS
α , therefore,

couples the kinetic coefficients k±α , the active reaction free energies µ̃±,I/II
α in each

phase, and the phase volumes V I/II. The latter can be expressed again in terms of
conserved densities ψ̄i, see Eq. 1.7. Therefore, the non-equilibrium steady state at
phase equilibrium for a given system is still uniquely defined by knowing the aver-
age values of conserved quantities. Instead of the conditions for thermodynamic
equilibrium stated in Eq. 1.43, we can define the conditions for non-equilibrium
steady states for a system with M non-solvent components and L′ linearly inde-
pendent reactions at phase equilibrium via

• phase equilibrium6: µI
i = µII

i , M + 1

• stationarity conditons: ∆µI/II
α = ∆µNESS

α , L′

• conservation laws:
ψ̄i − ψII

i

ψI
i − ψII

i

=
ψ̄j − ψII

j

ψI
j − ψII

j

M − L′ − 1

2M (2.12)

Therefore, we have found again 2M conditions for the 2M unknown volume frac-
tions at steady state. Note, the stationary conditions are simultaneously fulfilled in
both phases, I and II, due to phase equilibrium.

2.2.2 The tie line selecting manifold

In the introduction, we showed how the conditions of phase equilibrium, chemical
equilibrium, and the combination of both, thus thermodynamic equilibrium, can be
represented in composition space. Analogously, we will show conditions of a non-
equilibrium steady state at phase equilibrium in composition space. In a passive sys-
tem, the intersections between the chemical equilibrium line (manifold) and the bin-
odal line (manifold) are necessarily connected via tie lines, see FIG. 1.3 and FIG. 1.4.
However, these intersections between the two equilibrium lines (manifolds) are no
longer connected via tie lines for phase-specific chemical driving. Nevertheless, the
fact that we can express the conditions in Eq. 2.12 without solving for V I and V II

explicitly7 means that we can still draw a classical phase diagram for the volume
fractions at the non-equilibrium steady state.
For doing this, additional information is needed to identify which tie line gets se-
lected in the non-equilibrium steady state at phase equilibrium. Therefore, we intro-
duce the tie line selecting manifold, which translates between conserved quantities

6These constraints are given in the Gibbs ensemble. In the Helmholtz ensemble, we obtain M
constraints from balancing the exchange chemical potentials µ̄I/II

i and the osmotic pressure condition.
7However, when knowing the values of ψI/II, they are immediately given via Eq. 1.44.
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FIGURE 2.4: Tie line selecting curve: The binodal line (thick green) and the tie
lines (thin green) denote phase equilibrium in all figures. Two chemical equilibria
lines, compatible with thermodynamic equilibrium situations, are shown in Fig. (a)
(blue and yellow dashed). An equilibrium situation can describe systems with
well-mixed steady states (blue and yellow shaded areas). However, with phase-
specific driving, we obtain the red chemical equilibrium line. Systems with coex-
isting phases at steady state (green shaded area) can not be at equilibrium—a non-
equilibrium steady state at phase equilibrium but away from chemical equilibrium
results. The tie line selecting curve (black) depicts which phase equilibrium along
the binodal line is chosen. Fig. (b) shows how this curve translates from specific
conserved quantities ψ = ϕA + ϕB to the selected phase equilibrium. The latter
is captured by the tie line, which runs through the intersection point of the con-
servation line (grey) and the tie line selecting curve. Tie line selecting curves for
different driving strengths are shown in Fig. (c). When the system is not driven
phase-specifically, the tie line selecting curve collapses to the tie line compatible

with equilibrium (first plot). For the parameters, see App. C.

and volume fractions. This manifold summarizes the conditions of phase equilib-
rium and stationarity conditions while conservation laws still constrain the system
on a subspace of the composition space. The non-equilibrium steady state can now
be depicted as the intersection between the manifolds of conserved quantity and the
tie line selecting manifold. It is defined by the average volume fractions ϕ̄i at steady
state given specific values of conserved quantity and solving Eq. 2.12.
To illustrate this, we show in FIG. 2.4(a) the phase diagram of ternary mixture com-
posed out of A, B and a solvent S with the driven chemical reaction A ⇌ B. The
thick green line is the binodal line, while thin green lines are a set of tie lines. Ad-
ditionally, we show two chemical equilibrium lines compatible with an equilibrium
system as blue and yellow dashed. Both the intersection points of both of these lines
are connected via a tie line. However, we drive the system phase-specific. Far below
a certain value of the conserved quantity ψ = ϕA + ϕB , a well-mixed system would
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follow the yellow chemical equilibrium line, while far above it would follow the blue
chemical equilibrium line. However, due to the phase-specific driving, no tie line
connects the intersections between the red chemical equilibrium line and the bin-
odal line 8. Thus, this system is active. However, we can depict the non-equilibrium
steady state by introducing the tie line selecting curve in black. This non-equilibrium
steady state depends on the conserved quantity ψ. We show in FIG. 2.4(b) how
the tie line selecting curve allows identifying the non-equilibrium steady state. The
conservation line for a given value of the conserved quantity ψ intersects the tie
line selecting curve at one point. The tie line which runs through this intersection
point depicts the non-equilibrium steady state. Therefore, we can colorize the ar-
eas in FIG. 2.4(a). The steady state is well-mixed in the yellow/blue shaded area
and follows the yellow/blue chemical equilibrium curve. An effective equilibrium
situation can describe these systems. However, a non-equilibrium steady state of
coexisting phases exists in the green area. In this state, constant chemical reactions
occur in the phases, balanced by a constant diffusive exchange between phases. In
FIG. 2.4(c), we show the tie line selecting curve for different driving strength. If the
system is passive (first case), the tie line selecting curve is identical to the selected
tie line selected by the two intersections of the binodal line and the chemical equilib-
rium line. Whenever the system is phase-specific driven, the non-equilibrium state
becomes dependent on the conserved quantity and a non-trivial tie line selecting
curve occurs.

2.3 Discussion

In this chapter, we have studied chemical reactions in systems compartmentalized
by phase separation. The central assumption is the limit of infinitely fast diffusion.
Therefore, coexisting phases build homogeneous compartments that are at phase
equilibrium at all times. Consequently, ordinary differential equations, namely
Eq. 2.2 and Eq. 2.3, can describe the dynamics of their composition and sizes. This
limit holds when chemical reactions are slow compared to the diffusive dynam-
ics. This separation of time scales implies that the system size is smaller than the
reaction-diffusion length scales, which are set by the reaction rate coefficients and
the diffusion coefficients. Therefore, we want to highlight that this limit is not a
hydrodynamic limit. On large length scales, chemical equilibrium will be reached
faster than diffusive transport can equilibrate the spatial gradients of chemical po-
tentials. However, first, this condition of a partial equilibrium holds in reaction-
limited chemical kinetics also found in biology, see [52, 53]. Especially for small
droplets, diffusion is sufficiently fast. Second, as we will see in the following chap-
ters, the hydrodynamic limit can not be performed easily for actively driven systems.
Therefore, it is convenient to have a well-defined limit, in which the non-equilibrium
steady state is known and well-defined by Eq. 2.12.

8In this case, we have chosen ∆µ̃ to be dependent on ψ. This leads to the smooth interpolation
inside the binodal.
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Chapter 3

Dynamics of concentration fields in
phase-separating systems with chem-
ical reactions

The previous chapter discussed chemical reactions in compartments formed by phase
separation. These compartments are considered to be homogeneous and at phase
equilibrium at all time points. This is the limiting case with fast diffusion compared
to the rate of chemical reactions in finite systems. When chemical reactions occur on
time scales, that diffusion needs to equilibrate chemical potentials on the relevant
length scales, spatial gradients arise. For studying such systems, this chapter dis-
cusses chemical reactions in phase-separating systems with local variables in space,
thus concentration fields. We introduce partial differential equations for describ-
ing reaction and diffusion processes, valid for non-dilute mixtures capable of phase
separation.
After introducing the governing equations, we first discuss the circumstances un-
der which the assumptions for homogeneous phases at phase equilibrium hold. We
compare the relaxation dynamics toward equilibrium in passive systems and the re-
laxation towards a non-equilibrium steady state for driven systems to the dynamics
derived in Chap. 2. Second, with the spatial dynamics at hand, we investigate sys-
tems where the chemical reactions can equilibrate locally towards their equilibrium,
while diffusion is not fast enough to equilibrate the concentrations in space. Thus,
gradients emerge.
These gradients also exist at the steady state when the system is maintained away
from equilibrium, either by driving chemical reactions specific in some phases, sim-
ilarly as done in Chap. 2, or by organizing chemical reactions inside phases and
driving the system away from equilibrium via reservoirs at the boundaries of the
system. The first breaks detailed balance of the rates only for chemical reactions,
while the second only breaks detailed balance at the boundaries. Nevertheless, in
both circumstances, the droplet dynamics changes compared to the nucleation-and-
growth or ripening behavior of equilibrium systems. This, we discuss at the end of
this chapter.
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3.1 Reaction-diffusion equations for phase separating sys-
tems

Already in 1951, Alan Turing proposed that the pattern formation obtained from the
interplay of chemical reaction and diffusion is a key mechanism for morphogene-
sis [54]. However, due to the generality of these concepts, they are not only used
for modeling chemical reactions in spatial systems but are applied in many differ-
ent fields. Examples are given by population dynamics, spreading of viruses and
models of skin pigmentation, see [55, 9, 56].
However, the classical reaction-diffusion equations are valid only for dilute mix-
tures. Fick’s law of diffusion then describes the spatial transport and mass-action
laws with chemical reaction fluxes proportional to concentrations to the power of
the stoichiometric coefficients describe the chemical reaction kinetics. The dynamics
of systems with coexisting phases, however, can not be described with these equa-
tions.
Nevertheless, in the introduction of this work, we derived the dynamics of these pro-
cesses from the minimization of a free energy. The reaction kinetics of homogeneous
mixtures Eq. 1.38 can be applied locally. Thus, together with Eq. 1.8, we obtain

∂tϕi = −∇ · ji + ri , (3.1)

with the spatial fluxes ji and the source or sink terms ri stated in Eq. 1.39 and eval-
uated locally. We conclude

∂tϕi =
M∑

j=1

νi∇Γij∇µ̄j +
L∑

α=1

kασiανi

(
exp

(
µ+α
kBT

)
− exp

(
µ−α
kBT

))
. (3.2)

The forward and backward chemical reaction energies µ±α are given by Eq. 1.30 in
passive systems. For active driving of chemical reactions, we use Eq. 1.46. Here, the
supplied chemical energy ∆µ̃α can be composition dependent. Equation 3.2 is the
governing equation of phase separating systems with chemical reactions. In gen-
eral, it is a fourth-order non-linear partial differential equation. This equation can
be reduced to the classical reaction-diffusion equations for dilute mixtures. Then,
the diffusive fluxes lead to Fick’s diffusion law, while the chemical reaction kinetics
relaxes towards classical mass-action laws. However, for systems with molecular in-
teractions of particles, non-linearities arise in the diffusion terms and in the reaction
terms. Therefore, the same non-linearities that lead to phase separation make the
reaction rates necessarily non-linear, even for unimolecular reactions like A⇌ B.
In Eq. 3.2, several length-scales exist. First, the coefficients of the gradient terms in
the free energy κi define, together with the mobility coefficients Γij , the length scales
of the interfaces of droplets, as in phase-separating systems without reactions. Fur-
thermore, similar to classical reaction-diffusion equations, the combination of diffu-
sion and chemical reactions set length scales. However, due to these non-linearities,
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the reaction-diffusion length scales λRD can be defined only by linearizing Eq. 3.2.
Note that even for constant kinetic coefficients and the choice of the mobility matrix
given in Eq. 1.10, the reaction-diffusion length scales differ between the two phases.
We can express, for example, the inverse of the reaction-diffusion length scale λRD
for a unimolecular reaction A⇌ B as

λ−1
RD =

√
k

Γ

√
γ̄A exp

(
ωA
kBT

)
+ γ̄B exp

(
ωB
kBT

)
. (3.3)

However, at phase equilibrium, γ̄I
iϕ

I
i = γ̄II

i ϕ
II
i , therefore γ̄I

i ̸= γ̄II
i , when the reacting

molecules partition. Therefore λ−1
RD becomes phase dependent.

3.2 Relaxation towards thermodynamic equilibrium in spa-
tial systems

Local chemical reactions and spatial transport via diffusion occur in the relaxation
kinetics towards equilibrium. This equilibrium is defined when both processes are
at their equilibrium state. However, the relaxation rate of these processes can differ.
Thus, the relaxation kinetics changes. We discuss this relaxation kinetics by using
the same ternary mixture as done in Chap. 2. First, we assume fast diffusion, such
that length scale and time scale separate, leading to the limit discussed in the pre-
vious chapter. We compare the dynamics of the spatial system to those derived in
Chap. 2 by initializing a system in a well-mixed state outside the binodal area and
away from chemical equilibrium (initial condition 1 in FIG. 2.1(a)) and solve Eq. 3.1
numerically in a two-dimensional system. Second, we show the differences arising
when systems relax towards thermodynamic equilibrium in the presence of spatial
gradients, when reactions are fast compared to diffusion. For this, we initialize a
system with two homogeneous phases at phase equilibrium but away from chemi-
cal equilibrium (initial condition 2 in FIG. 2.1(a)).

3.2.1 Relaxation kinetics and fast diffusion

In FIG. 3.1, we compare the time evolution of the spatial system with the kinetics
of homogeneous phases at phase equilibrium1. Therefore, we again use an exem-
plary ternary mixture of components A, B, and S and allow the chemical reaction
A ⇌ B. For the specific choice of parameters used for generating FIG. 3.1, the
reaction-diffusion length scales, linearized around the thermodynamic equilibrium
are λI

RD = 0.60L in the B−rich phase I, and λII
RD = 0.37L in phase II, where L is the

system size.

1Please note, in Chap. 2, we used the Gibbs Ensemble. For incompressible systems with volume-
conserving reactions, this is equivalent to the corresponding Helmholtz ensemble used in the rest of the
thesis. However, by changing the ensemble, a prefactor in kα arises. Other than that, both ensembles
are equivalent.
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FIGURE 3.1: Relaxation dynamics with instantaneous phases equilibrium vs.
spatial systems with fast diffusion: (a): The binodal (dark grey dashed), spinodal
(light grey solid), and the chemical equilibrium line (thick grey - solid for equilibria
state, dashed for otherwise) are shown, together with the line of conserved quan-
tity (dark thin grey) used in the system. The reaction kinetics for two homogeneous
phases at phase equilibrium (blue) and the composition of the bulk phases in a 2D
spatial system (yellow) are shown as trajectories in composition space. The insets
show a zoom of the dynamics in the phase-separated area. (b) Vol. fraction ϕB as a
function of time is shown. The dotted line indicates the systems’ average. (c): For
six time points, volume fraction fields of A and B are shown on the right as spatial
density plots, and on the left in composition space. These time points are indicated
by vertical grey lines in (b). The dark blue points correspond to the volume fraction
values under the dynamics for homogeneous phases. The orange points are con-
structed by binning the 2D composition space. The larger points are the averaged
composition in the one/two (homogeneous/phase-separated state) bins with the
highest counts, representing the bulk phases. Their dynamical evolution is shown
in the yellow line. The small points correspond to all other bins with non-zero
count, representing the interface values (for the non-monotonic form, see App. B).
The x indicates the system average. For further details and parameters, see App. C.

The single droplets, and the inter-droplet distance, however, are much smaller than
these length scales as long as the system is far away from chemical equilibrium.
Therefore, the limit of fast diffusion compared to chemical reactions is valid.
Figure 3.1(a) shows, in addition to the phase diagram of the system without chem-
ical reactions, the trajectories of the volume fractions in the composition space. We
initialize the system outside the binodal line. Thus, the system is homogeneous and
follows the conservation line (ψ = 0.42). Here, A gets converted into B, which leads
to the enrichment of the latter over time, see FIG. 3.1(b) from t0 to t1. These values,
similarly to the trajectories shown in FIG. 2.1(a)), can be directly obtained from the
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dynamics of chemical reactions in compartments. We bin the volume fraction fields
in the composition space for the spatial system by sorting every grid point (used for
the numerical simulation) into a bin in the 2D composition space. In these early dy-
namics, the system is homogeneous (see the density plots FIG. 2.1(c)), and only one
bin has a non-zero count. Its average composition is shown in with the yellow lines
in FIG. 2.1(a),(b).
Around t1, the systems reach the binodal line. With the assumption of instantaneous
phase equilibrium at all times, two homogeneous compartments are formed in the
system with infinite diffusion. However, the homogeneous state in the spatial sys-
tem is still locally stable. Therefore, it does not undergo spontaneous demixing (see
FIG. 2.1(c) at t2). The homogeneous phase becomes unstable only when the system
reaches the spinodal line (shown in FIG. 3.1(a),(c)2). This happens shortly before
t3. Here, the spatial system undergoes a spinodal decomposition, and droplets are
formed. Due to the large reaction-diffusion length scales, these phases are almost
homogeneous. The average of the two bins with the highest counts (representing
the two bulk phases) are shown in the FIG. 3.1(a),(b) from thereon. In FIG. 3.1(c), we
show these points by the larger orange points in the composition space. The smaller
points are the average values of all the bins with a non-zero count, stemming from
the interface between the two phases. These points follow a curve that minimizes
the free energy of the interface, see App. B. In the dynamics, the bulk phases in
the spatial system follow the binodal line closely from thereon. However, a small
deviation can be seen, which declines over time (see the insets in FIG. 3.1(a)). This
deviation stems from the Laplace pressure, which shifts the equilibrium values in
finite two- or three-dimensional systems. These deviations get smaller during the
dynamics because droplets ripen (see FIG. 3.1(c)) and reduce their average curva-
ture. The wiggling seen in these curves results from the dissolution of tiny droplets.
However, the average of the spatial system has gained a time lag, when compared
with the homogenous one (see the shift of the blue and orange points and x’s in the
composition space in FIG. 3.1(c) t3 − t5). The reason for this lag is the fact that the
reaction free energy ∆µmix of the well-mixed state is smaller than the reaction free
energy ∆µI/II during this time evolution. Thus, the reaction is slower. However,
in real systems or stochastic descriptions of Eq. 3.1, nucleation can happen due to
fluctuations, and thus, the demixing would occur earlier.

3.2.2 Relaxation kinetics with spatial gradients

So far, we have chosen reaction rates kα such that diffusion was much faster than
chemical reactions on the length scales relevant to the droplets. However, we can
also investigate how systems relax towards the thermodynamic equilibrium when
diffusion is slow. For this, we initialize two phases at phase equilibrium but away

2We compute here the spinodal line for the system without chemical reactions. In general, the
presence of chemical reactions can change stability. This can partially explain the delay between the
onset of phase separation, seen in the FIG. 3.1(a), and the reaching of the spinodal line. Furthermore,
the spatial system is almost perfectly homogeneous due to the dynamics up to that point. Therefore,
the numerical variation of the fields is small.
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FIGURE 3.2: Relaxation dynamics - slow and intermediate diffusion: (a): Corners
of the composition space, together with the binodal (dashed dark grey), and the
chemical equilibrium line (solid light grey) are displayed. The trajectory of the
relaxation kinetics stays closer to the binodal line the faster diffusion gets: slow
diffusion in the upper row, intermediate diffusion in the lower row in a 1D system
of length L. These trajectories are obtained by following the average compositions
in the grey area in the first plot of (c) over time. Time is encoded in the color code
(from blue/green to red/yellow). The conservation line in phase I is shown in (a)
as a thin black line. (b): The dynamical evolution of ϕB in the case of homogeneous
phases at instantaneous (infinite diffusivity) phase equilibrium (red), intermediate
diffusion (green), and slow diffusion (blue) is shown. (c): The spatial profiles of
these systems at different time points are shown: upper row - slow diffusion, lower

row - intermediate diffusion. For further details and parameter, see App. C.

from chemical equilibrium in a spatial 1D system (initial condition 2 in FIG. 2.1(a)).
Furthermore, the chemical reaction occurs only in theB-rich phase I. This is achieved
by choosing k ∝ kIsig

(
(ϕB −ϕcrit

B )/ω
)
, with sig(x) = (1+ tanh(x))/2, thus λII

RD = ∞.
In FIG. 3.2, we compare the chemical kinetics in homogeneous phases with the dy-
namics in two spatial systems with different values of the mobility coefficients. The
parameters are chosen such that λI

RD = 0.06L for the first case, and λI
RD = 0.60L in

the second case. In the beginning, both phases occupy roughly half the system size
(see FIG. 3.2(c) the first column). Thus, phase I is almost ten times bigger than the
reaction-diffusion length scale for the first case and in the same order of magnitude
as the second case’s reaction-diffusion length scale. For the first case, the volume
fraction values far away from the interface can thereby be altered by chemical re-
actions faster than diffusion can maintain phase equilibrium in space. To visualize
this, we plot these values (the mean over the grey areas depicted in the first column
of FIG. 3.2(c) respectively) in the composition space in FIG. 3.2(a) (see FIG. 3.1(a)
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for the full phase diagram) and against time in FIG. 3.2(b). The temporal evolution
is encoded in a linear colormap in FIG. 3.2(a). For the first case (upper row), these
values do not follow the binodal line. In phase I, chemical reactions will equilibrate
locally, and the trajectory follows the conservation line of the locally conserved quan-
tity (black line) until it reaches the chemical equilibrium line (light grey line). From
thereon, it relaxes along this chemical equilibrium line to phase equilibrium. This
leads to two different time regimes, see FIG. 3.2(b)) (blue line). Until t ≈ 1, the
composition relaxes locally to a chemical equilibrium in phase I, while the compo-
sition in phase II stays constant due to the absence of chemical reactions. Only in
the second time regime (t > 5) does diffusion slowly exchange material until phase
equilibrium is finally reached between the phases.
For the second case the trajectory stays much closer to the binodal line (see the sec-
ond row in FIG. 3.2(a)). Also, in time, the dynamics is similar to the chemical kinet-
ics of two homogeneous phases at phase equilibrium (compare the red and green
curves in FIG. 3.2(b)). As expected from the reaction-diffusion length scales, the spa-
tial gradients are almost negligible in this case (see FIG. 3.2(c)). Even in the absence
of chemical reactions in phase II, diffusion couples the composition of both phases
such that chemical and phase equilibria are approached on similar time scales.
Furthermore, FIG. 3.2(c) reveals that also the interface length scale is affected by the
composition (compare the initial and the final interface widths for both cases). This
is related to the change of surface tension for different phase equilibria in a ternary
mixture, see App. B.
In general, passive phase separating systems with chemical reactions have two pro-
cesses by which they can reach equilibrium. In the limit that diffusion is much faster
than reactions, we can describe the relaxation by the theory developed in the previ-
ous chapter. However, some local stabilities during the transients and the Laplace
pressure in finite systems can alter the dynamics slightly for spatial systems. In the
other limit, local chemical equilibrium is reached, and diffusion slowly equilibrates
the phases. In these systems, droplets ripen and their equilibrium is governed by
Eq. 1.43 at which diffusive and chemical fluxes vanish.

3.3 Driven chemical reactions in phase-separating systems

As seen already in the previous chapter, phase-separating systems with driven chem-
ical reactions are active when chemical reactions are driven differently in phases. In
Section 2.2 we studied the non-equilibrium steady states for fast diffusion. Simi-
larly, in spatial systems, when the diffusion-reaction length scale is larger than the
system size, the non-equilibrium steady states are determined by Eq. 2.12. Like the
equilibrium case, only single droplets exist at the steady state. However, when this
hierarchy of length scales is not given, spatial gradients occur. Due to the chemi-
cal reactions, finite length scales appear, which set, in general, limits to the droplet
sizes and can lead to stable states of multiple droplets. Therefore, the ripening can
be suppressed, and droplets can deform in non-spherical states and even divide.
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FIGURE 3.3: Phase-specific driving and fast diffusion: (a): The binodal (thick
green), the effective chemical equilibrium line (red), a conservation line (grey), the
tie-line selecting curve (black), and the selected tie-line (green) are shown. Further-
more, we display two trajectories (blue and orange lines) of the bulk phases in 2D
spatial systems with fast diffusion for different initial conditions (blue and orange
dots) but the conserved quantity as indicated with the conservation line. (b): The
temporal evolution of the corresponding ϕB values as a function of time (dashed
lines), together with the dynamics for homogeneous phases at phase equilibrium
(solid line), is shown. (c): Density plots of ϕB in space for eight time points each

are shown. For further details and parameters, see App. C.

These aspects have been studied in the literature mainly for binary systems, see
[18, 19, 20]. However, some of the aspects have been already reported for multi-
component mixtures recently, see [57, 58, 59]. Here, we start our discussion with the
case of fast diffusion. In this limit, the non-equilibrium steady state is uniquely de-
fined by Eq. 2.12. In the later part of this section, we discuss non-equilibrium states
with spatial gradients and the dynamics for systems with finite diffusivities.

3.3.1 Driven chemical reaction and fast diffusion

As mentioned above, Chap. 2 discusses the chemical kinetics and non-equilibrium
steady states for systems with phase-dependent chemical driving. The stationary
states of chemical reactions are not compatible with phase equilibrium, which is
maintained via diffusive exchanges instantaneously. Thus, no equilibrium can be
found in such systems, but a unique non-equilibrium steady state is reached for
simple reaction schemes. It is determined by Eq. 2.12. In FIG. 2.4, we show the tie
line selecting curve and the phase diagram of a ternary mixtureA, B, and S with the
chemical reaction A⇌ B.
Here, we compare the dynamics of spatial systems to those of two phases at phase
equilibrium for this ternary mixture. To this end, two different conditions of com-
positions in ϕA and ϕB but with the identical value of the conserved quantity ψ =
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ϕA + ϕB are initialized. Despite being a spatial system, we chose chemical coeffi-
cients such that diffusion is fast compared to the chemical reactions on the system
size length scale L (λI

RD = 4.7L). In FIG. 3.3(a), the binodal line (thick dark green),
the effective chemical equilibrium line (red), the line of conserved quantity ψ = 0.5

(grey line), the tie line selecting curve (black), and the for this conserved quantity
selected tie line is shown (thin dark green). Again, the dynamics of the two spatial
systems are depicted in composition space (blue and orange lines). Therefore, the
volume fractions fields are binned, and the mean of the two bins with the highest
counts for bins above and below the average value of the conserved quantity are
depicted. These values are a good proxy for the average composition in the two
phases, away from the interface. After a fast spinodal decomposition, these two av-
erage compositions follow the binodal line again almost perfectly until they reach
the values connected by the selected tie line resulting from the assumption of homo-
geneous phases at phase equilibrium.
Furthermore, these two average compositions match the chemical kinetics of two
phases at phase equilibrium when shown versus time, see FIG. 3.3(b). Only the time
needed for the spinodal decomposition leads to a slight offset because the chemical
reaction fluxes are smaller for the well-mixed state. This shift is most dominant for
initial condition 1 (upper row) because the system is initialized close to the critical
point, leading to slower time scales of the spinodal decomposition. In FIG. 3.3(c), we
show snapshots of the volume fraction field B for designated time points. The spin-
odal decomposition and the ripening of the resulting structures can be seen. Both
systems form a single droplet in the steady state. The phase volume and the com-
position of these almost homogeneous phases are close to those predicted by the tie
line selecting curve. This ripening occurs in the presence of a slow production of B
material for initial condition 1 and slow degradation of B material for initial condi-
tion 2. Therefore, for systems with large reaction-diffusion length scales compared
to the system size, which itself is much larger than the interface width, only the total
volumes of each phase become the important variables. If these phase volumes are
composed of many tiny droplets or just one big droplet is not resolved, and ripening
will always lead to the latter state. The initial condition is therefore irrelevant for the
non-equilibrium steady state.

3.3.2 Non-equilibrium steady states and spatial gradients

When the separation of length scales is not given, thus reaction-diffusion length
scales are smaller than the system size, spatial gradients can occur. These gradi-
ents exist even at the steady state. Locally, the driven chemical reactions try to relax
towards their effective chemical equilibrium. However, these chemical equilibria
differ between the phases such that no phase equilibrium can be reached. Neverthe-
less, diffusion equilibrates the chemical potential profiles locally.
We illustrate this in FIG. 3.4. Here, we initialize a one-dimensional system at the
steady state for two homogeneous phases at phase equilibrium. Then, we solve
Eq. 3.1 numerically for different values of the mobility coefficient until a steady
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FIGURE 3.4: Non-equilibrium steady states for different kinetic coefficients: The
binodal (thick green), the spinodal (light green), the effective chemical equilibrium
line (red), a conservation line (grey), the tie-line selecting curve (black), and the
selected tie-line (green) are shown in (a). Furthermore, we plot the average volume
fractions deep inside the phases (grey area in (b)) of a 1D system at steady state
for different kinetic coefficients (colored dots) and the conserved quantity shown
in (a). The average of these systems is denoted by x. The steady state profiles of ϕB
for these systems are shown in (b). In (c), we show the ϕB values for four different
time points in a system with λI

RD = 0.1L. In the inset of the second plot, the volume
fractions deep in phase I (average over grey area) are shown in composition space,

touching the spinodal line. For further details and parameters, see App. C.

state is reached. The profile of the B component volume fraction ϕB , is depicted
in FIG. 3.4(b). The smaller the reaction-diffusion length scale is, the stronger the
spatial gradients become. Furthermore, different values at the interface are selected
between the different cases. We show the average composition from the grey area
in FIG. 3.4(a) in the composition space in FIG. 3.4(a). These values lie only on the
binodal line (dark green) and are connected with a tie line for systems with large
reaction-diffusion length scales, see the case of λI

RD = 4.7. With this, the phases are
homogeneous and the tie line selecting curve depicts the average composition of the
almost homogenous phases at the non-equilibrium steady state. However, when the
reaction-diffusion length scales become smaller, the values deep in the phases do not
lie on the binodal anymore, nor are they connected via a tie line. For λRD < L, the
values deep within the phases come closer to the local chemical equilibrium. De-
pendent on the conserved quantities, the reaction-diffusion length (the smaller the
reaction-diffusion length scales, the closer they come to the effective chemical equi-
librium line, see FIG. 3.4(a)) and the local stability, the chemical equilibrium can be
reached. In the system shown in FIG. 3.4, the local chemical equilibrium lies within
the spinodal area (light green line) for the conserved quantity used in these systems
(ψ = 0.5). When local volume fraction values reach the spinodal line, the system
starts to build a new interface. Therefore, for such systems, the reaction-diffusion
length scale, combined with the distance between the binodal and the spinodal line,
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set a maximum droplet size. This can be seen in FIG. 3.4(c). For λI
RD = 0.1L, the

composition deep within the B-rich phase reaches the spinodal point at t ≈ 4 (see
the zoom of the same phase diagram as in (a) in the inset). A second interface is
formed (around t = 5), and the droplet slowly moves towards the center (the sta-
tionary state, not shown, is at the center of the system). This mechanism leads to
finite length scales of phases for one-dimensional systems, for two-dimensional sys-
tems to rings, and in three-dimensional systems to spherical shells or tori.
In general, in systems where some reaction-diffusion length scales are significantly
smaller than the system size, but the conserved quantities require total phase vol-
umes larger than these length scales, complex dynamics of multiple droplets can
arise. This, we study in the following.

3.3.3 Droplets growth and ripening with driven chemical reactions

For passive systems, we showed in Section 1.3 that the equilibrium is uniquely de-
fined by Eq. 1.43, which only depends on the conserved quantities. This equilib-
rium is reached either by the constant growth of a single droplet in the nucleation-
and-growth regime or by the ripening of many droplets after a spinodal decomposi-
tion, see Section 1.1.2. In Section 3.3.1, we studied already the dynamics of systems
with driven chemical reactions towards the non-equilibrium steady state defined in
Eq. 2.12 for systems with fast diffusion. Here, we show the droplet dynamics for sys-
tems with driven chemical reactions and finite diffusivities. Interestingly, by mak-
ing the system active only in the chemical reactions, the dynamics of the conserved
quantities also changes. Due to different interactions between components, the con-
served quantities are coupled to the non-conserved variables, in general. Thus, al-
though only maintaining the non-conserved reaction extent out of equilibrium, also
the conserved quantities can not relax towards their equilibrium, and the droplet
dynamics changes.
We illustrate this interplay again by a ternary mixture with components A, B, and
S, where components A and B can chemically interconvert by the chemical reaction
A ⇌ B. For simplicity we assume identical molecular volumes ν = νi with i =

A,B, S. We define the conserved quantity ψ = ϕA + ϕB and the non-conserved one
ξ = ϕB − ϕA. Following Eq. 3.1, Eq. 1.19 and Eq. 1.20 the dynamical equations for
the conserved and non-conserved quantity read

∂tψ = −∇ · jψ , (3.4)

∂tξ = −∇ · jξ + r , (3.5)

where jψ = jA + jB is the flux of the conserved quantity, jψ = jB − jA is the flux
of the non-conserved quantity, and r = 2rB the reaction source term of the reaction
extent. At the steady state, jψ must be zero3. However, this does not require ∇ψ or
∇µ̄ψ with µ̄ψ = 1/2(µ̄A + µ̄B) to be zero, in general. From the stationarity of Eq. 3.4

3Strictly, it must be a constant which is then fixed by boundary conditions.
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follows

∇ψ = −
[
(χAS − χBS)ψ − χABξ

]
∇ξ − κ/ν(ψ∇3ψ + ξ∇3ξ)

2kBT
ν(1−ψ) +

[
(χAB − 2χAS − 2χBS)ψ + (χAS − χBS)ξ

] (3.6)

when exchange chemical potentials of the form Eq. 1.2 and a mobility matrix of the
form Eq. 1.10 are considered. Equation 3.6 reveals that, in general, a gradient in
the conserved quantity ψ is an unavoidable consequence of a gradient of the non-
conserved reaction extent ξ, even in the limit of κ = 0, thus a vanishing interface
width. Therefore, when active driving of chemical reactions leads to spatial gradi-
ents of the non-conserved quantity ξ, the conserved quantity ψ is also kept away
from equilibrium via the molecular interactions, in general. However, there are two
special cases. One is the case where phase separation only occurs between the con-
served quantity and the solvent. Second, the case where phase separation only oc-
curs within the non-conserved quantity. We will start with these spatial cases and
come to the general case of coupled dynamics at the end.

Phase separation of the conserved quantity from the solvent

When the components A and B have the same interaction parameters with the sol-
vent, thus χAS = χBS , but do not interact with each other, thus χAB = 0, the con-
served quantity phase separates from the solvent independently from its specific
composition in terms of ϕA and ϕB . With this, the numerator of Eq. 3.6 vanishes
outside of the interface area related to the terms proportional to κ.
In FIG. 3.5(a), we show a phase diagram of such a system. The binodal lines (thick
green) are parallel to the conservation lines (example given by the dark blue line
with ψ = 0.4). Due to active driving from B → A in the solvent-rich phase, com-
ponent B gets locally enriched compared to the solvent-poor phase. Therefore, the
intersections of the chemical equilibrium line (red) with the binodal lines are not
connected via a common tie line (thin green lines). In FIG. 3.5(c), we show the vol-
ume fraction profiles of ϕA and ϕB , as well as the related chemical potentials µ̄A and
µ̄B of a stationary state in a one-dimensional system. Inside the droplet, chemical
reactions try to equilibrate the chemical potentials. While in the outside phase, B
material gets enriched due to active driving. Furthermore, we show the profiles of
the conserved quantity ψ and the reaction extent ξ and the related chemical poten-
tials in FIG. 3.5(d). Due to the symmetric choice of the interactions, the ψ-profile
is constant inside the two phases, while ξ can vary in space. Here, the conserved
quantity can reach an effective equilibrium, while the constantly ongoing chemical
reactions only change the local composition of the conserved quantity. However,
even for this symmetric choice, the chemical potentials of µ̄ψ and µ̄ξ show gradients
due to a non-diagonal mobility matrix in the conserved/non-conserved ensemble.
Furthermore, we show the volume fraction of component B at different time points
in a two-dimensional system as density plots. We initialize the system homoge-
neously with ψ = 0.4. After a fast spinodal decomposition, tiny droplets are formed.
Over time, these droplets ripen but display gradients of the volume fractions. Close
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FIGURE 3.5: Ripening of chemically active droplets: The binodal line (thick
green), some tie-lines (thin green), and the effective chemical equilibrium line are
shown in (a). Density plots of the volume fraction profiles ϕB in a 2D system with
the conserved quantity indicated by the blue line in (a) are shown in (b). We show
the profiles of volume fractions (c), as well as the conserved quantity ψ and non-
conserved quantity ξ (d), and their corresponding chemical potentials in the steady

state of a 1D system with the same conserved quantity. see App. C.

to the interface, the B concentration is higher than deep within the droplets. There-
fore, shortly before small droplets dissolve in the ripening process, they have a high
concentration of B material due to the active enrichment of B in the other phase.
Nevertheless, this driving does not affect the conserved quantity. Independent of
how the conserved quantity is built up in terms of ϕA and ϕB , its interactions are
always the same. Therefore, the dynamical equation of the conserved quantity - up
to some slight changes in the interface region - decouples from the dynamics of the
actively driven non-conserved reaction extent, and normal Ostwald ripening takes
place. Thus, we can identify the conserved quantity as the only relevant variable in
a hydrodynamic limit.

Phase separation within the non-conserved quantity

Another special case is when phase separation only occurs within the non-conserved
quantities. In our ternary example, this means A only phase separates from B,
leading to a high interaction parameter χAB , but their interactions with the solvent
are identical, thus χAS = χBS . A phase diagram of such a situation is shown in
FIG. 3.6(a). Here, the tie lines (thin green lines) are parallel to the conservation lines
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FIGURE 3.6: Decoupled conserved and non-conserved variables: The binodal
line (thick green), some tie-lines (thin green), and the effective chemical equilib-
rium line are shown in (a). Density plots of the volume fraction profiles ϕB for two
2D systems with the conserved quantity indicated by the blue line in (a) are shown
in (b). In the upper row, the system is initialized in the nucleation-and-growth
regime, in the lower row inside the spinodal regime. We show the profiles of vol-
ume fractions (c), as well as the conserved quantity ψ and non-conserved quantity
ξ (d), and their corresponding chemical potentials in the steady state of a 1D system
with the same conserved quantity. For further details and parameters, see App. C.

(example given by the dark blue line with ψ = 0.9). However, due to the active driv-
ing, the chemical equilibrium line (red) intersects the binodal line (thick green) only
at one point. For these interaction parameters and the reaction A ⇌ B, a passive
system without driving can not have coexisting phases at equilibrium. Except for
the degenerate case of ωA = ωB , where the chemical equilibrium line is the bisecting
line of the first quadrant, the chemical equilibrium line can not intersect the binodal
line without driving.4

Also, for this case, the conserved quantity decouples from the non-conserved reac-
tion extent outside of the interface region. Again, the term [(χAS−χBS)ψ−χABξ]∇ξ
in the numerator of Eq. 3.6 vanishes, because when χAS = χBS , its dependency on
ψ immediately disappears. Furthermore, the term proportional to ξ∇ξ = 1/2∇ξ2.
For these interactions, the absolute value of ξ is identical in the two phases, and only

4The physical argument here is identical to the binary case. Geometrically, this can be understood
by considering the tangent construction of a binary mixture. Phase equilibrium is reached at the points
of the common tangent. However, chemical equilibrium is reached at the absolute minimum of the free
energy density.
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FIGURE 3.7: Coupled conserved and non-conserved variables: The binodal line
(thick green), some tie-lines (thin green), and the effective chemical equilibrium
line are shown in (a). We show the profiles of volume fractions (c), as well as the
conserved quantity ψ and non-conserved quantity ξ (d), and their corresponding
chemical potentials in the steady state of a 1D system with the same conserved

quantity. For further details and parameters, see App. C.

its sign varies between the phases. Therefore, ξ2 can be constant in space. There-
fore, gradients of the non-conserved field do not cause gradients of the conserved
field. In FIG. 3.6(c), we show the volume fraction profiles of ϕA and ϕB , as well as
the related chemical potentials µ̄A and µ̄B of a stationary state in a one-dimensional
system. Due to the phase-specific driving, gradients in both volume fractions occur,
and theB-rich phase adapts to a size where the total loss ofB material gets balanced
by a flux from the B-poor phase through the interface. However, due to the sym-
metric interactions, the conserved quantity can reach a flat profile in the presence of
a spatial variation of ξ, see FIG. 3.6(d).
This case is equivalent to a binary mixture. Here, droplets can become shape un-
stable [20], or Ostwald ripening can be suppressed [19]. The first happens in this
system, when it is initialized in the nucleation-and-growth regime, see FIG. 3.6(b)
(upper row). The second, when the system is initialized inside the spinodal regime
FIG. 3.6(b) (lower row). Both behaviors differ clearly from the equilibrium dynam-
ics shown in FIG. 1.2. However, due to the decoupling with the conserved variable,
the dynamics of the non-conserved reaction extent is not constrained by the material
conservation of ψ. This differs in the general case, which we will discuss next.

Coupling between the conserved quantity and the non-conserved quantity

After having discussed these special cases where the conserved quantity decouples
from the non-conserved one, we come to the general case. Here, maintaining the
reaction extent away from equilibrium via active chemical reactions also influences
the conserved variable. To illustrate that and show its consequence, we slightly alter
the interaction parameters of the first case of this section, such that χAS < χBS . Fig-
ure 3.7(a) shows the corresponding phase diagram of such a system. Different from
the first example in FIG. 3.5, the binodal lines (dark green) are no longer parallel to
the lines of a conserved quantity (example given by the dark blue line with ψ = 0.4).
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FIGURE 3.8: Dynamics of coupled conserved and non-conserved variables: The
lower-left corner of the composition space, shown in FIG. 3.7(a), is displayed in (a).
In addition to the binodal line (thick green), some tie-lines (thin green), the effective
chemical equilibrium line (red), also the spinodal line (light green) is illustrated.
The conservation line (blue) denotes the conserved quantity used in the three sys-
tems shown in (b-d). In (b), the density plots of ϕB in a 2D system at different time
points are shown, nucleated in the nucleation-and-growth regime. Similarly, (c-d)
show density plots of ϕB for systems initialized slightly within (c) or deep within

(d) the spinodal regime. For further details and parameters, see App. C.

Even though the volume fraction profiles in FIG. 3.7(b) (upper panel) look similar to
the profiles shown in FIG. 3.5(c), weak gradients of the conserved quantity appear
at steady state, see FIG. 3.7(b) (lower panel). Thus, the active driving of the chemical
reaction leads to spatial gradients of the conserved quantity due to the interaction
between particles.
Therefore, the dynamics of the conserved quantity is coupled to the dynamics of the
reaction extent and shows gradients in a stationary state. A further consequence of
this is that droplets necessarily interact due to the conserved quantity. In contrast
to the last special case, where droplets do not change the local amount of the con-
served quantity and the formation of a new droplet somewhere in the system does
not change the amount of conserved quantity in other areas far away, the local for-
mation of a new droplet changes necessarily the amount of the available conserved
material in other areas of the system.
To illustrate the effect of this competition, we initialize three different systems with
the identical amount of conserved material and the exact same parameters, identical
to those used for FIG. 3.7. We use systems with an average amount of conserved
quantity, such that we can initialize them inside and outside of the spinodal area. In
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FIG. 3.8(a), we show a zoomed-in version of FIG. 3.7(a), where the line of the average
conserved quantity used in FIG. 3.8(b-d) is shown in dark blue, and the spinodal
line in dark green. The intersection of the chemical equilibrium line (red) and the
conservation line lies outside the spinodal area. Thus, the well-mixed state with
the corresponding composition is meta-stable and lies in the nucleation-and-growth
regime.
In FIG. 3.8(b), we initialize the system almost at this point, together with a small per-
turbation at the center. This perturbation leads to the nucleation of aB-rich, growing
droplet. However, due to the active driving, B material gets enriched locally in the
B-poor phase compared to the B-rich phase. Thus, when the droplet becomes large
enough, the circular shape becomes unstable, and the droplet undergoes a shape
instability. Thereby, four branches are formed, which split up several times until a
non-equilibrium state is reached, at which no conserved material is available, which
could lead to further growth. We study this shape instability in the next chapter.
In FIG. 3.8(c), we initialize the system slightly within the spinodal region such that
several droplets are formed in some areas. Nevertheless, the meta-stable, local chem-
ical equilibrium is reached in other areas. Again, these droplets grow but compete
against conserved material, such that their size is limited. And finally, in FIG. 3.8(d),
we initialize the system such that the full spinodal decomposition can take place. In
both of the last two cases, ripening is suppressed, and droplets have the same size
within the system. Furthermore, droplets position themselves. In FIG. 3.8(d), a lat-
tice is formed. In FIG. 3.8(c), droplets move apart from each other. However, this po-
sitioning dynamic slows down dramatically. With this, disordered structures can be-
come stationary over very long time scales. However, the droplet sizes differ vastly
between FIG. 3.8(c) and FIG. 3.8(d), revealing that here, not the reaction-diffusion
length scales but the competition over conserved material limits the growth of droplets.

3.4 Boundary driven chemically active droplets

FIGURE 3.9

In the previous section, detailed balance of the rates
was broken via an external supply of chemical en-
ergy. This section introduces another way of driv-
ing systems out of equilibrium when chemical reac-
tions are organized by phase separation. Here, we
couple the systems to particle baths at the system
boundaries via concentration boundary conditions.
Then, even when detailed balance is fulfilled every-
where in the bulk of the system, these reservoirs at

the boundaries can drive fluxes. In the absence of chemical reactions, droplets would
constantly grow or shrink in open systems. However, with chemical reactions or-
ganized only inside droplets, stationary chemically active droplets can exist. This
is motivated by the idea that these reactions are enabled by catalysts that are only
located inside one phase and are absent in the other. We model this by choosing
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composition-dependent kinetic coefficients kα, without breaking detailed balance of
the rate. When fixing the concentration values at the system boundary, a hierarchy
of chemical potentials is imposed, which dictates the direction of the chemical reac-
tions in a phase far away from the system boundaries. In FIG. 3.9, we sketch such a
system. The chemical reaction will locally deplete component B inside the droplet,
thus lowering the chemical potential of B, which causes a diffusive flux from the
reservoirs towards the droplet. Vice versa, component A gets enriched inside the
droplet and diffuses outwards.

3.4.1 Droplets in open systems

As already mentioned, in open systems, thus systems that can exchange particles
with their surrounding, droplets can not be stationary in the absence of chemical re-
actions. Instead, droplets either shrink or grow. This is because the volume fraction
values at the system boundaries set specific chemical potentials. Particle fluxes oc-
cur whenever chemical potentials are locally lower than these values at the system
boundary. These particle fluxes flatten concentration gradients in non-interacting
mixtures with free diffusion until the chemical potentials are equilibrated. How-
ever, these particle fluxes do not smoothen gradients in phase-separated systems
but grow phases. This is possible whenever the boundary values lie within the bin-
odal area. Then, a set of identical chemical potentials with lower values than those
defined by the reservoirs can be found. The particle flux towards the area of lower
chemical potentials now just shifts the phase boundaries.
In FIG. 3.10, we illustrate this in a ternary mixture, where the component B phase
separates from the solvent. The domains of growth and shrinkage as a function
of the reservoir volume fraction values called ϕ∞i in the following, are shown in
FIG. 3.10(a). Droplets shrink in the white domain and grow in the green. The bound-
ary of these domains is given by the binodal line of a closed system. We restrict our-
selves to reservoir values outside of the spinodal area, where further droplets would
be nucleated. Examples of volume fractions fields of components A (blue) and B

(green) in one-dimensional system are shown in FIG. 3.10(b-c). The reservoir values
in FIG. 3.10(b) are in the white area. Thus, an initialized droplet shrinks until it dis-
solves. The stationary state is given by homogeneous solutions of the corresponding
boundary values. In FIG. 3.10(c), we carefully selected reservoir values lying on the
binodal line. Thus, any droplet, independent of its size, is stable in a 1D system
where no Laplace pressure exists. If the reservoir values lie within the green area,
droplets grow until they fill the system, see FIG. 3.10(d).

3.4.2 Non-equilibrium steady droplets and shape instabilities

When chemical reactions occur inside droplets, these droplets can be stabilized in
open systems. Instead of constantly growing or shrinking, a specific droplet size,
dependent on the driving strength and kinetic coefficients, can exist at which the
droplet gets stationary. Diffusive processes transport chemical reactants towards the
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FIGURE 3.10: Droplet growth and shrinkage in open systems without reactions:
(a): Areas of growth (green) and shrinkage (white) of droplets in open systems
as a function of the reservoir values at the system boundaries. (b-d): Exemplary
volume fraction profiles of components A (blue) and B (green). Black x’s in (a)
indicate the boundary conditions. Dark colors correspond to earlier time points.

For the parameters and details, see App. C.

droplet, where these become products that diffuse outwards towards the reservoirs.
The total amount of products that decay at every time point scales with the droplet
size, while the total amount of products that enter the droplet scale size of the in-
terface. Small droplets grow, and large droplets shrink until these two processes
balance.
We use the same ternary system as in the previous discussion about the droplet
in open systems and allow the chemical transition from A ⇌ B inside the B-rich
phase. Again, this is achieved by making the kinetic coefficient kα composition de-
pendent. In FIG. 3.11(b), we show profiles of the volume fractions ϕA and ϕB of a
one-dimensional system in space. They were obtained by solving Eq. 3.2 numeri-
cally until a steady state was reached. The black x indicates the reservoir values in
the composition space, shown in FIG. 3.11(a). They lie within the binodal area (green
domain in FIG. 3.11(a)) but below the chemical equilibrium line (purple). Thus, the
system can phase separate, and the chemical potential ofB is larger than that of com-
ponentA. At the interface of the droplet, local phase equilibrium is established. This
can be seen when plotting the interface values from the local profile in the compo-
sition space - indicated by the yellow symbols in FIG. 3.11. Both lie on the binodal
line and are connected by a tie line. However, both pairs of volume fractions still
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FIGURE 3.11: Stationary chemically boundary driven droplet in 1D: (a): The
chemical equilibrium line (purple), the binodal line (thick green), and tie lines (thin
green) of a closed system are shown in the composition space. Furthermore, we
highlight the boundary values (black), the values at the interface (yellow), and the
value at the center of a stationary droplet (red), shown in (b). (b): Volume fractions
profiles in a 1D system are shown of a stationary chemically active droplet. The
symbols on top of the grey lines correspond to the symbols in (a). For parameter

choices and details, see App. C.

lie below the chemical equilibrium line. Thus, the chemical reaction runs predom-
inantly from B to A inside the droplet. This causes a decreasing profile of B and
an increasing profile of A towards the droplet center. The volume fraction values
here are closer to the local chemical equilibrium, indicated by the equilibrium line in
FIG. 3.11(a).
However, the size of these droplets can be controlled by the reservoir values. This,
we show in FIG. 3.12. Here, we solve Eq. 3.2 in a two-dimensional system5 for
five different reservoir values, again indicated by the black x’s in the composition
space shown in FIG. 3.12(a) and numerated with I-V. All of them lie within the bin-
odal area. However, for low values of ϕ∞B , e.g. by setting I, no stationary droplet
can exist, see FIG. 3.12(b). For higher reservoir values of B, stationary chemically
active droplets exist, with larger sizes for higher values of ϕ∞B , see II-IV. Further-
more, chemically active droplets driven over the system boundaries also can un-
dergo shape instabilities and elongate, similar to the droplets in systems with driven
chemical reactions discussed in the previous section. In FIG. 3.12(c), we show the
volume fraction fields for different time points for even higher values of ϕ∞B . Af-
ter initializing a slightly elongated droplet, the droplet elongates and divides. Both
daughter droplets grow in size and move towards the system boundaries. When
reaching them, they form a wetting layer, and a stationary state is reached. We study
this shape instability further in the following chapter.

5This system is similar to the previous system. However, we changed the parameters slightly such
that A is enriched in the B-poor phase for illustrative purposes in FIG. 3.12(c).
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FIGURE 3.12: Stationary chemically active droplets and shape instabilities in 2D:
(a): The chemical equilibrium line (purple) and the binodal line (green) of a closed
system in the volume fraction space of the reservoir values. We indicate reservoir
values of the systems shown in (b-c) with black x’s. (b): Spatial density plots of
the volume fraction ϕB are shown of stationary chemically active droplets in 2D
systems with different reservoir values, indicated in (a) with I-IV. (c): Density plots
of the volume fraction field ϕA (blue) and ϕB (green) at different time points for the
reservoir values V, when a slightly elongated droplet was initialized. For parame-

ters choices and details, see App. C.

3.5 Discussion

This chapter introduced the governing equations for the dynamics of volume frac-
tions fields in phase-separating systems with chemical reactions. For passive sys-
tems, this dynamics relaxes toward the thermodynamical equilibrium described in
Section 1.3. The relative magnitude of the kinetic coefficients and the system size
govern which equilibrium, either phase or chemical equilibrium, is reached first.
We compared the dynamics for chemical reactions at phase equilibrium from Chap.
2 to the spatial dynamics in the limit of fast diffusion. Both agree well, except for the
local stability of well-mixed states outside the spinodal and minor differences due
to the Laplace pressure.
Furthermore, we studied two different ways of maintaining the system out of equi-
librium. First, by driving chemical reactions specific in phases. Second, by coupling
the system to reservoirs at its boundaries. In both cases, chemical reactions can reach
locally different equilibria than compatible with phase equilibrium. In spatial sys-
tems with sufficiently fast reactions, spatial gradients occur, causing spatial fluxes
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that are balanced by fluxes of chemical reactions. However, due to molecular in-
teractions, these spatial gradients also affect the conserved quantities. The latter
causes a different droplet dynamics in active systems. While in equilibrium sys-
tems, droplets continuously grow or ripen until the equilibrium is reached, droplets
deform, divide or show reversed ripening in active systems.
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Chapter 4

Chemically active droplets in the sharp
interface limit

The last chapter showed that in systems with chemical reactions organized by phase
separation, out-of-equilibrium situations can emerge where phase equilibrium and
chemical equilibrium cannot be satisfied simultaneously. Here, the dynamics of
droplets can differ from passive systems. In the latter, droplets in the nucleation-
and-growth regime grow spherical until they have reached the maximal size com-
patible with the conservation laws in the system. In active systems, these droplets
can undergo shape instabilities, leading to elongated droplets or droplet division.
This chapter introduces an effective description of chemically active droplets inside
that nucleation-and-growth regime. Thus, the dynamics of single droplets in out-of-
equilibrium situations.
Instead of solving the dynamical equations in spatially continuous systems, we re-
duce the system to two reaction-diffusion equations coupled via a moving inter-
face1. Therefore, we assume an infinitely sharp interface, only taken into account by
its corresponding surface tension. This limit is valid for large enough droplets and
reaction-diffusion length scales larger than the interface width. Inside the phases,
we linearize the dynamics. Thus, all the non-linearities of the problem get reduced
to boundary conditions at the interface. With this, we can quantitatively study the
stationary size of spherical chemically active droplets and their shape instability un-
der these simplified dynamics.

4.1 Droplet dynamics via reaction-diffusion equations cou-
pled by a moving interface

When phase separation occurs, the volume fraction values at the interface jump,
while the chemical potentials are continuous in space. In the following, we will call
these volume fraction values at the interface ΦI/II. Assuming we know these values,
we can linearize Eq. 3.1 around the corresponding values in each phase and make
the limit κi → 0, such that the interface width goes to zero. The exact values of

1These moving boundary problems are also called Stefan problem [60].
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these interface volume fractions are then determined at the end in a self-consistent
manner. With the linearization, we obtain

∂tϕi =
M∑

j=1

[
DI/II
ij ∇2ϕj + kI/II

ij

(
ϕj − ΦI/II

j

)]
+ cI/II

i , (4.1)

where DI/II
ij = Dij(Φ

I/II) are the diffusion coefficients introduced in Eq. 1.11. The
reaction coefficients kij are obtained from the reaction fluxes ri, given in Eq. 1.39, by

kI/II
ij =

∂ri(Φ
I/II
i )

∂ϕj
(4.2)

and constant source terms are

ci = ri(Φ
I/II
i ) . (4.3)

The latter source terms result from the fact that volume fraction values at the inter-
face are no stationary states of the chemical reactions in general.
Furthermore, we can also express the fluxes of volume fraction

jI/II
i (x) = −

M∑

k=1

Dik∇ϕk , (4.4)

as functions of the volume fractions at the interface ΦI/II
i .

These linear equations can be solved. Thus, the volume fraction profiles and their
fluxes can be found analytically, given an interface position R and the values ΦI/II

i

on both sides of the interface. However, these interface volume fractions are not
free. Locally, the chemical potentials and the osmotic pressure must be balanced,
leading to values of ΦI/II

i that obey a local phase equilibrium. Nevertheless, the
constraint of phase equilibrium only determines these values fully in a binary mix-
ture. Already in a ternary mixture, all volume fraction values along the binodal2 line
(manifold) obey these conditions. The values at phase equilibrium in passive sys-
tems are only defined by the additional global conservation laws of ϕ̄i, see Eq. 1.6.
Therefore, additional conservation laws are needed to determine the interface values
self-consistently. We will discuss these interface conditions in the next section.

4.2 Stationary interface positions in spherical symmetry

The additional conservation laws differ between open and closed systems. Closed
systems have to obey global conservation laws, which are absent in open systems,
where material can be exchanged with the surrounding. In this work, we restrict
ourselves to quasi-stationary dynamics of the interface. Thus, the volume fraction
profiles are considered to be at steady state, while the interface can slowly relax

2Strictly, the binodal does not take the shift stemming from the Laplace pressure into account, which
has to be considered.
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towards its stationary state. However, the global conservation laws prohibit this
limit. Assuming that the volume fraction profiles are at steady state immediately
leads to a non-moving interface. Therefore, we solve in closed systems directly for
the stationary interface position, while in open systems, a quasi-stationary relaxation
kinetics towards this position can be considered. In general, also the dynamical
problem of Eq. 4.1 can be solved analytically. This would also allow us to investigate
the relaxation kinetics in closed systems. However, due to the non-linear interface
conditions, this approach is challenging.

4.2.1 Interface conditions in closed systems

In closed systems with non-flux boundary conditions at the system boundaries, and
at steady state of the volume fraction profiles, there can not be fluxes of conserved
quantities. Therefore, no conserved material is transported, and the interface posi-
tion has to be at a steady state when the values of conserved densities differ between
the phases. Nevertheless, the conserved quantities can still have gradients because
of the coupling of the fluxes to the non-conserved reaction extents. As mentioned
above, in a closed system, we solve for the volume fraction values ΦI/II and the sta-
tionary interface position R. Thus, in total 2M +1 unknowns have to be determined
by conditions at the interface. These constraints read

• chem. pot. balance between phases: µ̄I
i = µ̄II

i , M

• pressure condition: f I − f II =
M∑

i=1

µ̄i
I/II

νi
(ϕI
i − ϕII

i )−
2γ

R
, 1

• local conservation laws: jξ,Ij (R) = jξ,IIj (R), L

• global conser. laws:
∫ R

0
drr2ψI

i(r) +

∫ Rsys

R
drr2ψII

i (r) = (Rsys)3ψ̄i, M − L

2M + 1

(4.5)

Here, we assumed a spherical droplet of phase I in a closed spherical system with
size Rsys in 3D. For 2D systems, the additional Laplace-pressure term −2γ/R in the
pressure condition gets reduced to −γ/R, while in 1D systems, it vanishes com-
pletely. Furthermore, the surface tension itself is a function of the interface volume
fractions. We determine it by the method explained in App. B. Locally at the inter-
face, we assume an equilibrium of phase separation, local conservation laws of the
reaction extents, and global conservation laws of the conserved quantities in the sys-
tem. This determines all volume fractions ΦI/II

i and the stationary interface position.
We illustrate this method for the same system as we used in Section 3.3.2. There, we
introduced a one-dimensional closed system maintained away from equilibrium by
phase-specific driving of a chemical reaction between two components in a ternary
mixture. The volume fraction profiles of non-equilibrium steady states are shown
in FIG. 3.4(b). Here, we compare these profiles obtained by solving the continuous
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partial differential equations with the resulting profiles using the method introduced
above. We linearize the dynamical equations and find the set of equations

∂tϕ
I/II
A = DI/II

AA∇2ϕI/II
A +DI/II

AB∇2ϕI/II
B + kI/II

AA

(
ϕI/II
A − ΦI/II

A

)
+ kI/II

AB

(
ϕI/II
B − ΦI/II

B

)
+ cI/II

A ,

∂tϕ
I/II
B = DI/II

BA∇2ϕI/II
A +DI/II

BB∇2ϕI/II
B + kI/II

BA

(
ϕI/II
A − ΦI/II

A

)
+ kI/II

BB

(
ϕI/II
B − ΦI/II

B

)
+ cI/II

B ,

(4.6)

in the corresponding phases I (B-rich) and II (B-poor), with kI/II
BA = −kI/II

AA , kI/II
BB =

−kI/II
AB and cI/II

B = −cI/II
A . Due to the initialization in Section 3.3.2, we assume that

phase II is to the left of phase I. The stationary solutions of Eq. 4.6 in phase II can be
written as

ϕII
A(x) =

cII
A

kII
AA + kII

ABρ
II

(
cosh

(
x/λII)

cosh
(
R/λII

) − 1

)
+ΦII

A ,

ϕII
B(x) =

cII
Aρ

II

kII
AA + kII

ABρ
II

(
cosh

(
x/λII)

cosh
(
R/λII

) − 1

)
+ΦII

B , (4.7)

for 0 < x < R, where R is the position of the interface. These solutions fulfil the
boundary conditions jII

i (0) = 0 and ϕII
i (R) = ΦII

i . Similarly, the stationary solutions
in phase I read

ϕI
A(x) =

cI
A

kI
AA + kI

ABρ
I

(
cosh

(
(x− L)/λI)

cosh
(
(R− L)/λI

) − 1

)
+ΦI

A ,

ϕI
B(x) =

cI
Aρ

I

kI
AA + kI

ABρ
I

(
cosh

(
(x− L)/λI)

cosh
(
(R− L)/λI

) − 1

)
+ΦI

B , (4.8)

for R < x < L. Here, the boundary conditions are stated by jI
i(L) = 0 and ϕI

i(R) =

ΦI
i. The factor ρI/II and the length-scales λI/II are connected to the diffusion coeffi-

cients Dij and reaction rates kij via

ρI/II = −D
I/II
AA +DI/II

BA

DI/II
AB +DI/II

BB

,

λI/II =

√√√√ DI/II
ABD

I/II
BA −DI/II

AAD
I/II
BB

(DI/II
AB +DI/II

BB)k
I/II
AA − (DI/II

AA +DI/II
BA)k

I/II
AB

. (4.9)

The latter are the reaction-diffusion length scales, now expanded around phase equi-
librium as opposed to Eq. 3.3, where we expanded around the stationary state of
chemical reactions. With this, Eq. 4.7 and Eq. 4.8 are the general solutions for the
linearized dynamics around arbitrary interface values ΦI/II

i . Furthermore, we can
compute the resulting fluxes jI/II

i (ΦI/II
i ) at the interface for those volume fraction

values. Being able to express the fluxes as functions of ΦI/II
i enables us finally to

solve for the boundary conditions at the interface and the interface position. As
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FIGURE 4.1: Comparison of continuous profiles and the effective description for
different kinetic coefficients: The continuous profiles (solid lines) are identical to
the curves shown in FIG. 3.4(b) with the same color. The reaction-diffusion length
scale decreases from left to right. Furthermore, we plot the corresponding solution
of the effective model on top of these profiles (dashed lines). For the specific pa-

rameters, see App. C.

stated in Eq. 4.5, from the assumption of phase equilibrium at the interface, we ob-
tain µ̄I

A = µ̄II
A, µ̄I

B = µ̄II
B and f I − f II = µ̄I/II

A (ϕI
A − ϕII

A) + µ̄I/II
B (ϕI

B − ϕII
B). In the latter

condition, no additional term from the surface tension appears due to the Laplace
pressure’s absence in 1D. Furthermore, the local conservation of component A at
an infinitely small interface region requires jI

A(R) = jII
A(R). Due to the symmetry

jI/II
A (x) = −jI/II

B (x) for all x, this automatically fulfills the conservation law of com-
ponent B. Thus, we obtain four conditions for the four interface values. However,
the position of the interface R is determined by the amount of conserved material ψ̄
in the system. We find3 R/L =

(
ψ̄ − ΦI

A − ΦI
B

)
/
(
ΦII
A +ΦII

B − ΦI
A − ΦI

B

)
.

In FIG. 4.1, we show the solutions for four different values of the kinetic coefficients
Γ/k. This ratio decreases from the left plot to the right. The reaction-diffusion
length scale is directly proportional to

√
Γ/k. Thus, the larger this ratio becomes,

the weaker the spatial gradient. For the first plot (blue color scheme), we choose
Γ/k = 10−6. This choice leads to λI/L = 4.6 and λII/L = 1.6 (their value differ
slightly from the reaction-diffusion length scales when expanded around the effec-
tive chemical equilibrium, e. g. λI

RD/L = 4.7). Therefore, the profiles get almost con-
stants in the corresponding phases. To show the equivalency to the non-equilibrium
steady state for homogeneous phases, as introduced in Section 3.1, we note that

jII
i (x) = rII

i λ
II tanh

(
R/λII

)
+O(x−R) ,

jI
i(x) = rI

iλ
I tanh

(
(R− L)/λI

)
+O(x−R) , (4.10)

in general. When R < λII and L − R < λI, we can use tanh(x) ≈ x and obtain from
the condition jI

i = jII
i again the stationarity condition from Eq. 2.10 in the form of

rII
i R = −rI

i(L − R) for a one-dimensional system. For the second and third plots

3Here, we assume that the conserved quantity stays constant in space. This is not true in general, but
given the mobility coefficients stated in Eq. 1.10 and the molecular interactions chosen in this example,
the gradients of the conserved quantities are weak.
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(green and red color schemes), Γ/k = 5 · 10−5 and Γ/k = 10−4. These choices lead to
λI/L = 0.65 and λII/L = 0.23 for the second plot and λI/L = 0.46 and λII/L = 0.17

for the third plot. Spatial gradients become visible. However, the effective descrip-
tion matches the continuous solutions to a reasonable degree. The two profiles must
differ directly at the interface because the effective description assumes an infinitely
sharp interface. Furthermore, the profiles can deviate from each other far away from
the interface because we linearize the reaction fluxes around the interface values.
This effect can be seen already in phase II in the third plot, but it becomes more dom-
inant in the fourth plot. Here, we choose Γ/k = 3 · 10−4 which leads to λI/L = 0.26

and λII/L = 0.10. The spatial gradients become strong enough to show large devi-
ations between the two profiles, resulting from the non-linear nature of the reaction
fluxes and diffusive fluxes in phase-separating systems.
In general, the method introduced above allows to self-consistently solve for non-
equilibrium steady states in the presence of spatial gradients. It captures the contin-
uous solutions well when the interface length scale is small and the spatial gradients
are weak. Under these circumstances, the assumption of an infinitely sharp inter-
face becomes valid, and the linear order of the dynamics is sufficient to describe the
spatial gradients. However, it does not take spinodal instabilities into account.

4.2.2 Interface conditions in open systems

In open systems, like the case with boundary driven chemically active droplets, com-
ponents can be exchanged with the surrounding. Therefore, the under chemical re-
actions conserved quantities can change in the system over time. Thus, divergence-
free fluxes of the conserved quantities can exist and droplets can grow or shrink in
the quasi-stationary limit. Instead of solving for the stationary radius directly, we
can assume any droplet radius R. The boundary conditions at the interface read

• chem. pot. balance between phases: µ̄I
i = µ̄II

i , M

• pressure condition: f I − f II =
M∑

i=1

µ̄i
I/II

νi
(ϕI
i − ϕII

i )−
2γ

R
, 1

• local conservation laws:
jIi − jIIi
ϕI
i − ϕII

i

=
jIk − jIIk
ϕI
k − ϕII

k

, M − 1

2M (4.11)

The local conservation laws result from the continuity equation in the comoving
frame of reference and the fact that the normal velocity

v =
jIi − jIIi
ϕI
i − ϕII

i

n , (4.12)

where n is the normal vector of the interface, is identical for every component. Thus,
by assuming a droplet radius R and Eq. 4.11, we obtain the temporal dynamics of
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FIGURE 4.2: Growth and shrinkage of a droplet in an open system without chem-
ical reactions: (a): Interface velocities as a function of droplet size in open systems
are shown. The x’s of the same color denote the reservoir values of these curves in
composition space in (b). In the inset of (a), we show the volume fraction profiles
for the two droplets denoted by the grey x’s in (a). (b): Domains with continuously
growing droplets, when initialized above the critical radius denoted in the corre-
sponding color, are shown. The yellow line corresponds to the binodal line, and the
red line to the spinodal of a closed system. Droplets always dissolve in the white

domain. For the parameters, see App. C.

the interface. It follows
dR

dt
= v , (4.13)

leading to growth or shrinkage of a droplet.
Identical to the last chapter, we use this method to show the growth and shrinkage
dynamics of droplets in open systems without chemical reactions. Therefore, we
study the same system of a ternary mixture studied in Sec. 3.4.1. We control the
volume fraction values of reservoirs ϕ∞A and ϕ∞B far away from the droplet. The
stationary solutions of Eq. 4.1 are solutions of the spherical Laplace equation. For a
B-rich droplet with radius R, we find

ϕI
i(r) = ΦI

i ,

ϕII
i (r) =

(ΦII
i − ϕ∞i )R

r
+ ϕ∞i . (4.14)

Inside the droplet, no diffusive fluxes occur, while in the outside area, divergence-
free fluxes transport molecules either towards or away from the droplet. Using
Eq. 4.14, we can express these fluxes at the interface jII

i (R) as functions of ΦII
i . Finally,

Eq. 4.11 can be used to determine the values ΦI/II
i . Note that the surface tension itself

is also a function of ΦI/II
i , see App. B.

Instead of the average composition, FIG. 4.2(b) shows a stability diagram in terms
of the composition of the reservoirs. The yellow line is the binodal line. When the
reservoirs have values lying on this line, no finite droplet can exist due to the surface
tension. The red line is the spinodal line. For reservoir values inside the spinodal
area (red), droplets would be spontaneously built in the system, thus violating our
assumption of a single droplet. In between, a critical radius R > Rcrit exists, as
defined in Eq. 1.15. Droplets of larger sizes, thus R > Rcrit, always grow while



Chapter 4. Chemically active droplets in the sharp interface limit 60

smaller droplets shrink. We show lines of two different critical radii (light orange
and orange). These lines define areas in the phase diagram. For example, inside the
light orange area, all droplets smaller than R = 1 shrink, while droplets larger than
this radius will grow. In FIG. 4.2(a), we show the interface velocity as a function of
droplet size for four different reservoir values (depicted by x in the corresponding
color in FIG. 4.2(b). The two examples with reservoir values within the binodal area
but outside the spinodal area always have a positive interface velocity beyond the
critical radius. The interface velocity is always negative for reservoir values outside
the binodal area. Therefore, in the absence of chemical reactions, no stationary state
can occur, and one phase will always grow at the expense of the other. Furthermore,
we show two profiles of volume fraction in the inset of FIG. 4.2(a). The reservoir
values are depicted by the color of the lines, matching the corresponding velocity
curves, and the droplet sizes by grey x’s in FIG. 4.2(a).
For chemically active droplets driven over the system’s boundary, we now allow
chemical reactions inside the droplet, as introduced in Sec. 3.4. Here, we study the
dynamics of these droplets in ternary mixtures quantitatively, first, in systems with
the same interaction parameters as studied previously in the absence of chemical
reactions for two systems with different reference chemical potentials ωi, leading to
two different chemical equilibrium lines. Second, for a system where both compo-
nents, A and B, can phase separate from the solvent solely.
In all cases, the chemical reactions inside the droplet lead to gradients in the vol-
ume fraction profiles, even at the stationary state. These stationary volume fraction
profiles of Eq. 4.1 for a single spherical symmetric droplet of radius R are given by

ϕI
A(x) =

cI
A

kI
AA + kI

ABρ
I

(
sinh(r/λI)

sinh(R/λI)

R

r
− 1

)
+ΦI

A ,

ϕI
B(x) =

cI
Aρ

I

kI
AA + kI

ABρ
I

(
sinh(r/λI)

sinh(R/λI)

R

r
− 1

)
+ΦI

B , (4.15)

where λI and ρI are given in Eq. 4.9. In the outside phase, no reaction occurs. The
stationary solutions of Eq. 4.1 are identical to the solutions of ϕII

i (r) given in Eq. 4.14.
Finally, we can use Eq. 4.11 for finding the values ΦI/II

i at the interface.
In FIG. 4.3(a), we show exemplary solutions of the the volume fraction profiles stated
in Eq. 4.15 and Eq. 4.14. Here, we have chosen ϕ∞B = 0.17 and ϕ∞A = 0.05. For these
values, µ̄∞B is larger than µ̄∞A , leading to a predominant degradation of B within
the droplet. With this degradation, also the chemical potential of B gets reduced
inside the droplet, leading to a diffusive flux jB from the reservoir to the droplet.
Vice versa, A material gets produced within the droplet and carried away by dif-
fusive fluxes jA to the reservoir. Thus, the chemical reaction can never equilibrate.
However, for the shown case of a droplet with size R = 15, B material gain via jB
is smaller than the loss of A via jA. A droplet of this size therefore shrinks. Thus
the interface velocity dR/dt is negative as displayed in FIG. 4.3(b) (denoted by grey
x), where we show the interface velocity dR/dt as a function of droplet size. For
the chosen examples, ϕ∞A = 0.05 and we vary ϕ∞B . For the cases of ϕ∞B = 0.08 and
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FIGURE 4.3: Stationary chemically active droplets in a boundary driven system:
(a): Radial profiles of a chemically active droplet are shown. Its interface velocity
is denoted by the grey x in (b). (b): Interface velocities as a function of droplet size
R are shown for reservoir volume fractions settings, indicated by the x’s with the
same color in (d). (c): The roots of the dR/dt-functions in (b) denote the stationary
droplet radii. The larger radii are stable (solid), while the smaller radii are unstable
(dotted). (d): The line of chemical equilibrium in the reservoir (purple) and the
binodal of a closed system without chemical reactions (grey) are shown. In the
green domain, chemically active droplets with stationary radius exist, while in the
red domain, the homogeneous compositions in the reservoirs are locally unstable.
No stationary chemically active droplets can exist in the white domain. For further

details and parameters, see App. C.

ϕ∞B = 0.11, droplets of all sizes will shrink. However, for the cases ϕ∞B = 0.14 and
ϕ∞B = 0.17, we find regions of positive interface velocities. The roots of this function
dR/dt denote stationary droplet radii. While the left one is unstable, and thus the
critical radius of nucleation, similar to the case without chemical reactions, the right
one is stable. It depicts the stationary radius of a spherical chemically active droplet.
These two stationary radii are shown as functions of ϕ∞B for three different values
of ϕ∞A in FIG. 4.3(c). Identical to the numerical studies in 2D of a similar system,
see FIG. 3.12, the stationary radii grow for larger values of ϕ∞B . We show the stabil-
ity diagram in terms of the reservoir volume fractions ϕ∞i inFIG. 4.3(d). Here, the
purple line denotes the chemical equilibrium line, where µ̄∞A = µ̄∞B . Below this line
µ̄∞B > µ̄∞A , and vice versa above. The grey line is the binodal line of a closed system
without chemical reactions. Different from the system without chemical reactions,
even when the reservoir values ϕ∞i lie within the binodal area, some chemically ac-
tive droplets do not grow. This is because the nucleation radius set by the surface
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tension is larger than the length scales set by the chemical reactions. Only at the
green line does the function dR/dt intersect the x-axis, leading to spherical droplets
of fixed size in the green area. The red line is the spinodal line. The reservoir values
in the red area would lead to an instant decomposition of the system, thus violat-
ing our assumption of a single spherical droplet. The blue x’s denote the examples
shown in FIG. 4.3(b), matching the curves of identical color.
Here, we have chosen parameters such that µ̄∞B > µ̄∞A within the binodal area. Thus
the chemical equilibrium line does not intersect the binodal line. However, changing
the reference chemical potentials ωi, as introduced in Eq. 1.2, the binodal and spin-
odal lines stay constant, but the chemical equilibrium line gets shifted. In FIG. 4.4(a),
we show the stability diagram for a system with identical interactions but other ref-
erence chemical potentials, such that the chemical equilibrium line intersects the bin-
odal line. Under these circumstances, also the line for stationary droplets (green) can
intersect the chemical equilibrium line. Our analysis shows that independent of ϕ∞B ,
chemically active droplets driven by reservoirs with a ϕ∞A values above the value of
this intersection point (yellow area) do not have a stationary stable radius and con-
tinuously grow, even for reservoir values outside of the binodal area. To illustrate
that, we show the interface velocity dR/dt as a function of R for the reservoir values
denoted by the blue x’s in FIG. 4.4(c). This function for the two dark blue values
from the green area has two roots, leading to the critical and stable radii. However,
for the other three parameter values (lighter blue), only one root exits and thus only
the critical radius. In FIG. 4.4(e), we show these radii as a function of ϕ∞B . For higher
ϕ∞A values, the stable critical radii get larger until they diverge at ϕ∞A ≈ 0.176.
Finally, we also discuss a system where both components, A and B, can phase sep-
arate from the solvent S. Here, we allow the chemical reaction A ⇌ B only in
the solvent-poor phase. In general, the area of always growing droplets (yellow)
increases while the area of stationary droplets (green) gets reduced under these
circumstances. In many cases of such interaction parameters, the region of stable
droplets disappears completely. When both components can phase separate, the
binodal area reaches from the x-axis to the y-axis in the stability diagram. There-
fore, the chemical equilibrium line must cross the binodal line. An exemplary phase
diagram of such a system is shown in FIG. 4.4(b). In the chosen example, the inter-
action between B and S is stronger than between A and S. This asymmetry leads to
a small area of stationary droplets for low ϕ∞A values. However, when ϕ∞B becomes
too large, the stationary radius again vanishes, see FIG. 4.4(d,e).
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FIGURE 4.4: Stationary chemically active droplets for different phase diagrams:
(a,b): Stability domains of chemically active droplets for different reservoir values
are shown. Areas without (white) and with (green) stable stationary radii are in-
dicated. In the yellow domains, only unstable stationary radii exist. The red area
indicates the spinodal regime where many droplets would be instantaneously nu-
cleated. Furthermore, the line of chemical equilibrium in the reservoir (purple) and
the binodal of a closed system without chemical reactions (grey) are shown. (c,d):
The interface velocities dR/dt as a function of droplet radius R are shown for the
parameter settings indicated by the x’s in (a,b) with identical colors. (e,f): Stable
(solid) and unstable (dotted) stationary radii as a function of the reservoir value

ϕ∞B are shown for different values of ϕ∞A . For the parameters, see App. C.

In general, even when the effective description finds stable spherical droplets, their
stability against shape deformation must be considered: First, the values at the
droplet center can reach the spinodal area. When this happens, a solvent-rich phase
is built, leading to spherical shells, similar to the process described in FIG. 3.4(c).
Second, when the droplet is chemically driven, spherical droplets can become un-
stable and deform, as seen in the previous chapter. We study this shape instability
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in the following.

4.3 Shape instabilities of spherical droplets

In out-of-equilibrium situations, droplets can elongate. The spherical symmetric
shape becomes unstable, and the droplet deforms, see, e.g., FIG. 3.8(c). This in-
stability can be studied quantitatively by performing a linear stability analysis of the
spherical symmetric stationary states found in the previous section. To this end, we
study relaxation kinetics of spherical harmonics perturbations. We write

ϕI/II
i (r, φ, ϑ, t) = ϕ̂I/II

i (r) + δϕI/II
i (r, φ, ϑ, t) , (4.16)

R(φ, ϑ, t) = R̂+ δR(φ, ϑ, t), (4.17)

where ϕ̂i(r) are the volume fraction profiles of the stable solutions and R̂ is the stable
droplet radius. Furthermore, we have introduced the the perturbations δϕi for the
perturbation of the volume fraction profiles and δR, which is the perturbation of the
interface. In spherical coordinates, the latter two depend on the radial coordinate r,
and the azimuthal angle ϑ and the polar angle φ. Due to the linear nature of Eq. 4.1,
we obtain the differential equations for the perturbations

∂tδϕ
I/II
i =

M∑

j=1

(
DI/II
ij ∇2δϕI/II

j + kI/II
ij δϕI/II

j

)
(4.18)

where all the constant terms in Eq. 4.1 are solved by the stationary solutions ϕ̂I/II
i .

These coupled partial differential equations can be solved by using the ansatz

δϕI/II
i (r, φ, ϑ, t) =

∑

n,l,m

ϵnlmϱ
I/II
inl (r)Ylm(ϑ, φ) exp(τnlt) , (4.19)

δR(φ, ϑ, t) =
∑

n,l,m

ϵnlmYlm(ϑ, φ) exp(τnlt) , (4.20)

which separates this set of equations into a radial problem for r, an angular prob-
lem for φ and ϑ, and a temporal problem for t. This ansatz is a linear combination of
modes to the problem, where the index n = 0, ...,∞ is related to the radial coordinate
r, the index l = 0, ...,∞ is related to the polar angle φ, and the index m = −l, ..., l is
related to the azimuthal angle ϑ. The amplitude of each mode is given by ϵnlm. The
angular problem is solved by the spherical harmonics Ylm(ϑ, φ), while an exponen-
tial function solves the temporal problem, where we have introduced the relaxation
rate τln. At the end, it is this relaxation rate which dictates if the mode m,n, l is
stable τnl < 0, or unstable τnl > 0. The remaining spatial problem must be solved
for all components i simultaneously. However, it is again a linear coupling of so-
called Bessel problems. Thus, the solution is given by the summation of M linearly
independent Bessel functions. Each Bessel function enters the component i with a
different weight. Furthermore, each Bessel function comes in two forms, the first
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and second kind. The boundary conditions at r = 0 and at the system’s boundary
determine which solutions are allowed. Here, the open and the closed system differ.
For illustrative purposes, we show the solutions of a ternary mixture with i = A,B,
in an open system. For the radial functions in Eq. 4.19, we make the ansatz

ϱI
Anl(r) = CI

1nlil(r/λ
I
1nl) + CI

2nlil(r/λ
I
2nl) ,

ϱI
Bnl(r) = CI

1nlρ
I
1nlil(r/λ

I
1nl) + CI

2nlρ
I
2nlil(r/λ

I
2nl) ,

ϱII
Anl(r) = CII

1nlkl(r/λ
II
1nl) + CII

2nlkl(r/λ
II
2nl) ,

ϱII
Bnl(r) = CII

1nlρ
II
1nlkl(r/λ

II
1nl) + CII

2nlρ
II
2nlkl(r/λ

II
2nl) . (4.21)

In phase I, within the droplet, we use the modified spherical Bessel functions of the
first kind il(r), which ensure vanish gradients at r = 0. In phase II, the outside
area, we use the modified spherical Bessel functions of the second kind kl(r), which
ensure finite values at r → ∞. In closed systems, a combination of the first and
second kind has to be taken such that the flux vanishes at the system boundary.
Here, we have to sum up two independent solutions since. As mentioned above, the
time-dependent problem of any coupled linear reaction-diffusion system of M free
components has M independent solutions. The independent solutions follow when
using an ansatz of type Eq. 4.21, together with Eq. 4.19, in Eq. 4.18. We obtain the
modified Bessel problems

(
∂rr

2∂r −
(
r2

λ2
+ l(l + 1)

))
bl(r/λ) = 0 , (4.22)

where bl is either il or kl. For the ternary case, we are left with two equations from
where we obtain

λ2 =
DI/II
AA + ρI/II

nl D
I/II
AB

kI/II
AA + ρI/II

nl k
I/II
AB − τnl

(4.23)

from the differential equation for component A, and

λ2 =
DI/II
BA + ρI/II

nl D
I/II
BB

−kI/II
AA − ρI/II

nl k
I/II
AB − ρI/II

nl τnl
(4.24)

from the differential equation for component B4. The latter two equations have two
independent solutions for (λI/II

nl )2 and ρnl, giving rise two the two contributions in
Eq. 4.21. Therefore, we obtain four free coefficients CI/II

1/2nl, which must be deter-
mined by boundary conditions at the interface. Furthermore, these interface condi-
tions determine the relaxation rate τnl. Thus, five conditions are needed to fix the
coefficients CI/II

1/2nl and τnl. In general, we have to determine again 2M +1 unknown
values. They follow in linear order of perturbations to the interface condition stated
in Eq. 4.11. In the linear problem, we can solve every mode independent from the

4Note, that even when all kij = 0, which is the case in phase II, we still have well-defined length-
scales due to the existence of τnl. This ensures that we find always the right number of solutions in the
dynamical problem, even in the absence of chemical reactions.



Chapter 4. Chemically active droplets in the sharp interface limit 66

0.10 0.15 0.20 0.25

reservoir vol. frac. φ∞
B

0.1

0.2

0.3

re
se
rv
oi
r
vo
l.
fr
ac
.

φ
∞ A

0.15 0.20 0.25

−4

−2

0

2
re
la
x
.
ra
te

τ 0
l/

k

FIGURE 4.5: Shape stability of chemically active droplets: (a): The largest relax-
ations rates τ0l of spherical harmonic deformations with l = 0, ..., 3 are shown as
functions of ϕ∞B for ϕ∞A = 0.05. We show sketches of the perturbations in the in-
set (crosssections through the deformed spheres). (b): The same stability diagram
as FIG. 4.3(d) is shown. Furthermore, we highlight domains with unstable l = 2

modes in blue and unstable l = 3 modes in orange. For parameters, see App. C.

other. Thus, every mode n, l,m has to obey

• perturbations of chemical potential balance between phases:

::

M∑

j=1

∂µ̄I
i

∂ϕj

(
∂rϕ̂

I
j(R̂) + ϱI

jnl(R̂)
)
=

M∑

j=1

∂µ̄II
i

∂ϕj

(
∂rϕ̂

II
j (R̂) + ϱII

jnl(R̂)
)
, M

• perturbation of the pressure condition:

::
γ(l2 + l − 2)

R̂2
=

M∑

i=1

ϕIi − ϕII
i

νi




M∑

j=1

∂µ̄I/II
i

∂ϕj

(
∂rϕ̂

I/II
j (R̂) + ϱI/II

jnl (R̂)
)

 , 1

• perturbation of the local conservation laws:

:: τnl = −

M∑
j=1

[
DI
ij

(
∂2r ϕ̂

I
j(R̂) + ∂rϱ

I
jnl(R̂)

)
−DII

ij

(
∂2r ϕ̂

II
j (R̂) + ∂rϱ

II
jnl(R̂)

)]

ϕI
i − ϕII

i

, M

2M + 1

(4.25)

when using Eq. 4.19, where the amplitude of this mode ϵnlm, the spherical harmonics
and the exponential function cancel in every line. Furthermore, we used that when a
sphere of radius R̂ is perturbed with δR, its mean curvature is given byH(R̂+δR) =

H(R̂) + (l2 + l − 2)δR/R̂2 +O(δR2), see [61, 62].
To demonstrate the outcome of this linear stability analysis, we show in FIG. 4.5(a)
the stability of the ternary mixture of components A,B and S studied in the previ-
ous section. For this problem, the spatial solutions are given by Eq. 4.21. We show
the numerical values of τnl with n = 0, corresponding to the longest length-scales,
for l = 0, ..., 3 as a function of ϕ∞B for the system used for generating FIG. 4.3 and
a fixed value of ϕ∞A = 0.05. Whenever we find a radially symmetric stable solution
(see FIG. 4.3(c) blue line), the relaxation rate of modes with l = 0 (green line) are
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always negative. These perturbations are radially symmetric and must therefore de-
cay. Translations of the droplet correspond to the mode l = 1. Their relaxation rates
are always zero (grey line) due to the infinite, radially symmetric system. However,
in systems with high reservoir values ϕ∞B , first modes with l = 2 (blue line) and
latter modes with l = 3 (orange line) become unstable. Whenever these chemically
active droplets are slightly deformed, these modes will always lead to elongations of
the radially symmetric shape. In FIG. 4.5(b), we show the phase diagram of this sys-
tem where we highlight the parameters with radially symmetric droplets in green,
areas in which modes with l = 2 are unstable in blue, and areas where modes with
l = 3 are unstable in orange. The results are consistent with the numerical study of
a similar system in 2D in FIG. 3.12. For low values of ϕ∞B , no spherical droplet can
exist, even inside the binodal area. Increasing the reservoir value leads to stationary
circular droplets. For even higher values of ϕ∞B , the droplet becomes shape unstable
and elongates.

4.4 Discussion

This chapter introduced a semi-analytical method for studying chemically active
droplets quantitatively. Here, we focused on the dynamics of single droplets, as
found in the nucleation-and-growth regime. Instead of solving the spatially contin-
uous fourth-order partial differential equations introduced in the last chapter, we
consider the limit of an infinitely sharp interface and couple two reaction-diffusion
equations via a moving interface.
We showed how this method can be used to quantitatively study the existence and
size of stationary droplets of spherical shape. In particular, we explored the stability
diagram of boundary driven chemically active droplets in ternary mixtures. Depen-
dent on the phase diagram and the chemical equilibrium line, stationary droplets
can exist only inside the binodal area. Furthermore, we can explore the shape in-
stabilities of these chemically active droplets by perturbing the stationary state and
studying the relaxation kinetics of these perturbations.
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Chapter 5

Models of protocells and their meta-
bolism as chemically active droplets

Almost a hundred years ago, chemically active droplets were proposed as a potential
step in the origin of life. Namely, Alexander Oparin [63], and John Haldane [64,
65] brought up the idea that droplets, that localized chemical reactions in the early
oceans, could have been the first life-like objects on this planet. These droplets could
have formed distinct chemical compartments that could compete in an evolutionary
setting. Recently, a minimal model of such chemically active droplets in a binary
mixture has been introduced [20]. The authors showed that in this binary mixture, a
single chemically active droplet can undergo cycles of growth and division, leading
to several droplets.
In this chapter, we introduce a protocell model of a quaternary mixture, where we
take the dynamics of nutrients and waste explicitly into account1. We discuss the
stability of these droplets and study the energy and matter balance of these droplets.
Following the ideas of Alexander Oparin, who defined "the simplest but still complete
prototype of metabolism" as processes with "absorption of substances from the surround-
ing medium, their assimilation and breakdown and the giving off of the products of their
decomposition" [67], the energetics of these chemically active droplets serve as simple
models of protometabolism.

5.1 Breaking detailed balance in protocell models

To explicitly model the consumption of nutrients and the release of waste, we intro-
duce a quaternary mixture composed of components i = S,D,N,W . These com-
ponents are solvent S, droplet material D, nutrient N , and waste W . The droplet
material D phase-separates from the solvent S, leading to droplets. Nutrient N can
chemically convert to droplet material D, thereby feeding the droplet. Droplet ma-
terial can undergo a chemical change to become waste W . These reactions can be

1The main results of this chapter have been published here [66].
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written as

N ⇌ D (α = 1) , (5.1)

D ⇌W (α = 2) , (5.2)

and are indexed with α = 1, 2. For simplicity, we consider that reactions involving
the droplet material only occur inside the droplets. This is motivated by the idea
that these reactions are enabled by catalysts that are absent outside and thus solely
located inside droplets. Similar to the previous chapters, we distinguish two differ-
ent scenarios of how phase separation organizes chemical reactions for making these
systems active.

5.1.1 Boundary driven protocell models
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FIGURE 5.1

In the boundary-driven protocell models, we fix the
volume fraction values of nutrient N , waste W , and
droplet material D at the system boundary via con-
centration boundary conditions, see FIG. 5.1. This cor-
responds to the coupling of the system to reservoirs.
These reservoir set values of the chemical potentials
at the boundary µ̄∞i . We choose conditions where
µ̄∞N > µ̄∞D > µ̄∞W such that the direction of chemical re-
actions is from nutrient via droplet material to waste.
Therefore, nutrient will be provided, and waste will

be absorbed by the reservoir. Thus, the free energy provided by the reservoir per
consumed nutrient molecule is µ̄∞N − µ̄∞W > 0. This difference maintains the system
out of equilibrium and drives a constant flux of molecules through the system. Un-
der these chemical reactions, the only non-trivial conserved quantity in the system
is ψ = ϕD + ϕN + ϕW . It obeys the continuity equation, ∂tψ + ∇ · jψ = 0, where
jψ is the associated, conserved current. The conserved quantity is provided by the
reservoir and can feed droplet growth. Therefore, droplet size is not limited by the
conservation law.

5.1.2 Bulk driven protocell models

W → N
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In the bulk-driven protocell models, we impose no-
flux boundary conditions, considering that no ex-
change of molecules with reservoirs occurs at the
boundaries, see FIG. 5.2. The system is maintained
out-of-equilibrium by driving an additional chemical
reaction

W ⇌ N (α = 3) (5.3)

by an additional chemical energy ∆µ̃. For simplic-
ity, we only allow this chemical reaction outside the
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droplets in the bulk phase. This energy input could, for example, be provided by
chemical fuel or by radiation. The energy input ∆µ̃ drives the reaction, which would
spontaneously run from N to W in the opposite direction and allows nutrient to be
recycled to waste. This can be achieved when ∆µ̃ + µ̄W > µ̄N . The chemical re-
action α = 3 is linearly dependent on reactions α = 1, 2. Thus, the same quantity
ψ = ϕD + ϕN + ϕW is the only non-trivially conserved quantity in the system. Since
there is no exchange at the boundaries, the amount of this conserved quantity ψ is
fixed inside the system. Therefore, the amount of droplet material D is limited by
the conserved quantity. This implies that even though free energy is constantly sup-
plied via free energy ∆µ̃ to the system, the droplet size is limited by the conservation
law.

5.2 Protocell dynamics

The latter case of bulk-driven protocell models can be compared to the minimal pro-
tocell model based on a binary system studied previously [20]. In this simple system,
two components phase-separate from each other and can also be chemical converted
into each other. Therefore, there is only one independent volume fraction in this
binary system and no conservation law. Thus, droplet size is not limited by a con-
servation law. This previous work showed that these droplets can either shrink and
disappear, grow until droplets reach a stable size, or undergo a shape instability and
divide. In the latter case, cycles of growth and division can lead to many daughter
droplets that together occupy an increasing volume.
As we will show in the following, our simple protocell models also exhibit regimes
where droplets are stable with a finite size and regimes where droplets divide via
a shape instability. Examples of droplet dynamics in the boundary-driven case are
shown in FIG. 5.3 as snapshots of configurations of droplet material at different time
points and for different nutrient reservoir volume fractions ϕ∞N . For a small nutri-
ent supply (ϕ∞N = 0.04), an initially prepared droplet tends to shrink as the waste
released from the droplets exceeds the nutrient supply. For a larger nutrient supply
(ϕ∞N = 0.08), an active droplet is stationary with a size that is determined by the nu-
trient supply. Increasing the nutrient supply further (ϕ∞N = 0.13), the droplet shape
becomes unstable, and division occurs.
Solving these three coupled non-linear partial differential equations of fourth order
is numerically costly. Therefore, we will use the effective description introduced in
the last chapter to study these active droplet systems. Thus, we can quantitatively
investigate the shrinkage, stationarity, growth, and division of protocells in these
models.

5.2.1 Steady states droplets

The upper row of FIG. 5.4(a) shows profiles of volume fractions of droplet material
D, nutrient N and waste W in the boundary driven case for a spherical droplet of
size R as a function of the radial coordinate r. The droplet material is produced by
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FIGURE 5.3: Numerical study of a boundary driven chemically active droplet:
Volume fraction fields of droplet material ϕD for different time points t in
boundary-driven systems for three values of ϕ∞N are shown. The last panel in the
middle row shows densities of ϕN and ϕW of a planar crosssection. Solutions were
obtained by numerical integration of Eq. 3.1, and initializing a slightly elongated

droplet at t = 0. For parameters and further details, see App. C.

reaction α = 1 inside the droplet (gray region), where it is also the majority com-
ponent. The droplet material also occurs outside at low concentrations. Nutrient is
provided at large distances and diffuse toward the droplet. Waste is produced in-
side the droplet by the reaction α = 2 and diffuses outwards. This can be seen by the
profiles of the volume fraction fluxes (lower row). Outside the droplet, no reactions
occur, and divergence-free fluxes couple the droplet to the reservoirs. In general,
also fluxes of the droplet material exist. However, we have chosen reservoir values
such that this flux almost vanishes. The system is maintained out-of-equilibrium
by the concentration boundary conditions at infinity, where µ̄N ̸= µ̄W . Note that
detailed balance is obeyed everywhere in the system.
In the bulk-driven case, we impose that no-flux boundary conditions at infinity. With
this, the reaction α = 3 is at local chemical equilibrium with ∆µ̃ = µ̄N − µ̄W , where
∆µ̃ is the chemical free energy supplied by a fuel. Note that the reaction α = 3 oc-
curs outside the droplet to regenerate nutrient from waste. The profiles of volume
fractions of a steady state droplet are shown in FIG. 5.4(c), together with the corre-
sponding currents. The profiles of volume fraction are qualitatively similar to the
boundary-driven case shown in FIG. 5.4(a). The main difference is that the fluxes
decay more quickly, and no net flux remains at infinity. Furthermore, the flux of the
droplet material jD has to be strictly zero everywhere outside the droplet.
In the bulk-driven case, the steady state droplet radius depends on the concentra-
tions imposed at infinity, see FIG. 5.4(b) which shows stationary radii of stable (solid



Chapter 5. Models of protocells and their metabolism as chem. active droplets 72

0.65

0.75
D N W

0 2 4
radial pos. r /R

0.01

0.11φ
i

0 2 4

radial position r /R

−10

0

10

j i
/
K

2

0.100 0.125 0.150 0.175

reservoir nutrient vol. fraction φ∞
N

5

10

15

20

st
at
.
ra
d
iu
s

R
st
a
t φ∞

D = 0.06

φ∞
D = 0.09

0.65

0.75
D N W

0 2 4
radial pos. r /R

0.01

0.11

φ
i

0 2 4

radial position r /R

−10
0

10

j i
/
K

2

0.175 0.200 0.225 0.250

aver. conserved quantity ψ̄

10

20

30

st
at
.
ra
d
iu
s

R
st
a
t ∆µ̃ = 8

∆µ̃ = 10

FIGURE 5.4: Stationary protocells: Spatial profiles of volume fractions and fluxes
and the functional dependency of the stationary radius on the driving are shown.
In the upper row for the boundary-driven case, while in the lower row for the
bulk-driven case. (a,c): Exemplary profiles of volume fractions and corresponding
diffusive fluxes for droplet material, nutrient and waste are shown. (b,d): Stable
and unstable stationary radii Rstat of chemically active droplets are shown. For the
boundary-driven case, Rstat is shown as a function of the nutrient volume fraction
of the reservoir ϕ∞N for two different reservoir values of the droplet material ϕ∞D .
For the bulk-driven case, Rstat is depicted as a function of the averaged conserved
quantity ψ̄ for two different values of external energy input ∆µ̃ that break detailed

balance of the rates (1.35). For parameters and more details, see App. C.

lines) and unstable (dashed lines) droplets for two different values of ϕ∞D as a func-
tion of ϕ∞N . Droplets nucleated beyond the critical radius (dashed lines) grow un-
til they reach the stable stationary radius (solid lines), while droplets larger than
the stable radius shrink. For smaller volume fractions, ϕ∞D droplet material is lost
by diffusion towards infinity, requiring larger volume fractions ϕ∞N to maintain the
droplet.
For the bulk-driven case, the stable and unstable radii of stationary droplets are
shown in FIG. 5.4(d). Here, as a function of the conserved quantity ψ∞ and for
two different values of ∆µ̃. Increasing the driving via ∆µ̃ enables chemically active
droplets for smaller values of the conserved quantity ψ∞ and leads to larger stable
stationary droplets. This behavior is similar to that of the boundary-driven case, see
FIG. 5.4(b). Increasing ∆µ̃ in the bulk-driven case has the same qualitative effect
on the stationary radius as an increase of nutrient supply via ϕ∞N in the boundary
driven case, compare FIG. 5.4(b) and FIG. 5.4(d) .
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FIGURE 5.5: Shape stability of protocells: Stability diagrams for chemically ac-
tive droplets for the boundary driven case in (a) and the bulk driven case (b) are
shown. In the green area stationary droplets of spherical shape can exist. All shape
perturbations decay. In the yellow area, the slowest l = 2 perturbation becomes
unstable. Thus droplets elongate. In the red area, additionally, the slowest l = 3
mode becomes unstable. For the boundary driven case, we show the stability for a
specific value of waste volume fraction of the reservoir, ϕ∞W = 0.001. Therefore, we
can draw the chemical equilibrium line of reaction α = 1 (purple) and the binodal
line of these systems in the absence of chemical reactions (blue). For parameters,

see App. C.

5.2.2 Shape stability of spherical symmetric droplets

So far, we have considered stationary droplets of spherical shapes. However, due
to non-equilibrium conditions, chemically active droplets can also undergo a shape
instability and take non-spherical shapes and thereby even divide. An example of a
division event is shown in FIG. 5.3 (upper row). We can systematically study the lin-
ear stability of spherical shapes using the effective description in the sharp interface
limit introduced in the last chapter.
In FIG. 5.5(a), we show a stability diagram of chemically active droplets for the
boundary driven case as function of nutrient and droplet material volume fraction
at infinity, ϕ∞N and ϕ∞D , for fixed ϕ∞W . Stationary spherical droplets are stable within
the green region of the diagram. However, within the yellow area, a spherical har-
monic deformation mode with l = 2 is unstable. This corresponds to an elongation
of the droplet shape. Similarly, in the red region, a spherical deformation mode with
l = 3 is also unstable. In the white area, no stationary droplets exit. The figure
shows, that starting from a stationary stable droplet, division can typically be in-
duced by increasing the supply of either nutrient or droplet material. The binodal
line of phase coexistence is shown as a solid blue line. In the absence of chemi-
cal reactions, droplets within the binodal region grow, while outside, they shrink.
Chemical reactions also permit the existence of chemically active droplets outside
of the binodal area, where droplet material is constantly lost towards the reservoir2

Under such non-equilibrium conditions, the volume fractions at the interface (gov-
erned by the binodal) differ from the values imposed by boundary conditions at

2This only works in this quaternary mixture. The last chapter shows that stable chemically active
droplets only exist inside the binodal area in a ternary mixture.
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large distances. The solid purple line indicates the chemical equilibrium of reaction
α = 1, where the chemical rate rα changes sign. For nutrient volume fractions above
this line, droplet material is produced by the nutrient, while below this line, nutrient
is produced.
Figure 5.5(b) shows the corresponding stability diagram for the bulk driven case as a
function of the conserved density at infinity ψ∞ and the active chemical free energy
∆µ̃. The same regions of stability are indicated: stable spherical droplets green,
unstable mode with l = 2 yellow, and unstable mode with l = 3 red. Spherical
stable droplets will typically divide when the conserved quantity is supplied, i.e.,
the conserved density ψ∞ is increased. Moreover, for increasing values of ∆µ̃, the
stability of active droplets becomes independent of ∆µ̃. This is because almost all
waste is turned over into nutrient by the chemical reaction α = 3.

5.3 Energetics of protocells

In our protocell models as chemically active droplets, we explicitly model the dy-
namics of nutrient and waste. As mentioned above, this provides us with simple
models of the metabolic processes of such protocells. Therefore, we study the bal-
ance of matter and energy of chemically active droplets in this section.

5.3.1 Mass conservation and droplet growth or shrinkage

Like living objects, the chemically active droplets studied in this chapter are main-
tained away from equilibrium by fluxes of molecules. However, these fluxes lead to
droplet shrinkage or growth, in general. However, when the incoming and outgo-
ing fluxes are balanced, they only lead to the supply of free energy, which keeps the
system away from equilibrium. To identify these two different behaviors, we can
again use the concept of conserved and non-conserved quantities. In both cases of
driving, we can identify the conserved quantity ψ = ϕD+ϕN+ϕW . Furthermore, we
can identify the variables ξ1 = −ϕN and ξ2 = ϕD + ϕN − 2ϕW as reaction extents in
these systems. Droplet growth and shrinkage are governed by the dynamics of the
conserved quantity, while fluxes of the reaction extents maintain the system out of
equilibrium. To illustrate this, we show in FIG. 5.6 radial profiles of the conserved
and non-conserved quantities and the corresponding fluxes at the stationary state
for the boundary- and bulk-driven droplets shown in FIG. 5.4(a,c). To illustrate this,
we show in FIG. 5.6 radial profiles of the conserved and non-conserved quantities
(upper row) and the corresponding fluxes (lower row) at the stationary state for the
boundary-driven (FIG. 5.6(a)) and bulk-driven droplets (FIG. 5.6(b)). The profiles
of these quantities look similar between the cases, like the volume fraction profiles
shown in FIG. 5.4(a,c). However, even for the boundary-driven case, the flux of the
conserved quantity vanishes everywhere at the steady state. Reactions can not com-
pensate for a flux of the conserved quantity. Thus, the droplet would have to shrink
or grow. To maintain the system out of equilibrium, fluxes of the reaction extent
occur inside and outside the droplet. These fluxes are again divergence-free in the
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For parameters and details, see App. C.

outside area in the boundary-driven case. In the bulk-driven case, they decay to zero
for large distances, where reaction α = 3 is at local chemical equilibrium with the
additional supplied chemical energy.

5.3.2 Energy conservation and droplet heating or cooling

In the previous part, we have shown that fluxes of components with different chem-
ical potentials can maintain droplets in a non-equilibrium steady state. In this sec-
tion, we study the transport of energy explicitly. For this, also the transport of heat
has to be taken into account. For simplicity, we focus on isothermal systems at con-
stant temperature T and compute the heat flux transported away instantaneously,
in the limit of an infinite heat conductance. We first derive this heat flux and the
local entropy production rate for phase separating systems with chemical reactions,
in general. Afterward, we come back to our protocell model and compute the flux
of the released or absorbed heat from a heat bath at the boundary of the system.
Phase separation and chemical reactions occur to lower the free energy F =

∫
fdV .

Its local density (including the gradient terms) is denoted here by f . The density
of the energy, e = f + Ts, can be decomposed into the free energy density and
an entropy density s = −∂f/∂T . While the free energy gets lowered by the phase
separation and chemical reactions, entropy has to increase to conserve the internal
energy. The conservation of internal energy locally reads

∂te+∇ · jh = −∇ · jq , (5.4)

where we split up the energy flux into an enthalpy flux jh, and a heat flux jq. The
first is given by jh =

∑M
i=1 hiji/νi, where we define the enthalpy hi = µ̄i + Tsi per

molecule of species i with si = −∂µ̄i/∂T denoting the entropy per molecule, and ji

being the volume fraction flux. With this, Eq. 5.4 defines the heat flux3.

3For a more general discussion about defining heat fluxes in open systems, see [68]
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The rate of change of internal energy density reads ∂te =
∑M

i=1 hi∂tϕi/νi. Using
Eq. 5.4, we can identify the heat production rate as

∇ · jq = −
L∑

α=1

rα∆hα −
M∑

i=1

ji
νi

· ∇hi , (5.5)

where ∆hα =
∑M

i=1 σiαhi is the reaction enthalpy. Using the definitions of the en-
tropy density s and energy density e, we obtain the entropy balance

∂ts+∇ · js = Θ̇ , (5.6)

where the entropy flux is js =
∑M

i=1 siji/νi + jq/T . The entropy production rate Θ̇

obeys

T Θ̇ = −
L∑

α=1

rα∆µα −
M∑

i=1

ji
νi

· ∇µi , (5.7)

which is zero or positive according to the second law of thermodynamics.
With these general equations at hand, we can compute the heat flux in our protocell
models. While the entropy production of every process in Eq. 5.7 has to be positive,
heat can be released or absorbed. Each term in Eq. 5.5 can have both signs under
processes that minimize the free energy. Heat is released by chemical reactions if
the reaction enthalpy ∆hα > 0 (exothermic) and is absorbed by chemical reactions
if ∆hα < 0 (endothermic). In addition, heat is absorbed or released at the droplet
interface (latent heat) for

∑
i ji∇hi > 0 and

∑
i ji∇hi < 0, respectively. Here, the

sum is over all solute species.
Figures 5.7(a-d) present four scenarios that differ in the heat released by reactions
and the heat released at the interface. For this example, we have chosen the reservoir
values for a boundary-driven chemically active droplet such that the flux of droplet
material is zero outside the droplet. In all four scenarios, the imposed chemical
potentials at large distances start high for the nutrient, are lower for droplet material,
and lowest for waste, µ̄∞N > µ̄∞D > µ̄∞W . This biases reactions α = 1 and α = 2 in the
forward direction, and diffusive transport and chemical reactions run in the same
directions in all four scenarios.
The first scenario of exothermic reaction and latent heat release at the interface is
shown in FIG. 5.7(a). It is characterized by the profiles of molecular enthalpies hi
(upper row) and total heat flux Jq = 4πr2jq (lower row). The nutrient enthalpy
inside the droplet hI

N (blue) is larger than the waste enthalpy hI
W (red), indicative

of a net exothermic reaction from N to W . In addition, FIG. 5.7(a) shows that at
the interface hII

N − hI
N > hII

W − hI
W , corresponding to a net latent heat release. Here,

index I refers to the droplet phase and II to the phase outside. The release of heat at a
distance r corresponds to the slope of total heat flux dJq/dr. Heat release by chemical
reactions corresponds to an increase of Jq inside the droplet. The contribution of
latent heat is captured by a discontinuity of Jq at the interface.



Chapter 5. Models of protocells and their metabolism as chem. active droplets 77

−2

0

2

en
th
al
p
y

h
i

0 1 2 3

radial pos. r/Rstat

−0.1

0.0

h
ea
t
fl
u
x

J
q

−2

0

2

en
th
al
p
y

h
i

0 1 2 3

radial pos. r/Rstat

−0.1

0.0

0.1

h
ea
t
fl
u
x

J
q

−2

0

2

en
th
al
p
y

h
i

0 1 2 3

radial pos. r/Rstat

−0.05

0.00

h
ea
t
fl
u
x

J
q

−2.5

0.0

2.5
en
th
al
p
y

h
i

0 2 4

radial pos. r/Rstat

0.0

0.5

h
ea
t
fl
u
x

J
q

FIGURE 5.7: Heat flux in stationary protocells: We show the profiles of molec-
ular enthalpies hi for four different boundary driven stationary active droplets in
the panels in the upper row of all figures (a-d). Despite the identical hierarchy of
chemical potentials, µ̄∞

N > µ̄∞
D > µ̄∞

W , at the system boundary, these profiles differ.
Thus the total heat flux Jq = 4πr2jq varies respectively (lower row). For simplicity,
we have chosen ϕ∞D such that the current of droplet material vanishes outside of
the droplet in the steady state. Thus there is no flux of the droplet material over the
interface at a stationary state, which would contribute to latent heat production or

absorption. For parameters and details, see App. C.

There are three other additional scenarios are shown in FIG. 5.7: Exothermal re-
actions with latent heat absorption at the interface FIG. 5.7(b), endothermal reac-
tions with heat release FIG. 5.7(c) and endothermal reactions with heat absorption
FIG. 5.7(d). In the case of endothermal reactions, the enthalpy of the waste is higher
than that of the nutrient, see FIG. 5.7(c,d) (upper row). In the case of latent heat ab-
sorption, Jq drops at the interface, such that the heat generated inside the droplet
by exothermic reactions is not fully transported to the outside FIG. 5.7(b). Finally,
in the case of endothermic reactions and heat absorption at the interface, the system
takes up heat, which enters at large distances and is absorbed by reactions inside
the droplet, FIG. 5.7(d). The droplet, therefore, acts as a cooling device, which in the
case of finite heat conductivity, could lead to lower temperatures inside the droplet
compared to the outside.

5.4 Discussion

This chapter introduced a protocell model of chemically active droplets. These droplets
are maintained away from equilibrium by the supply of nutrient and the removal of
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waste. We distinguish between two different driving forms, boundary driven and
bulk driven. In the first case, detailed balance is obeyed everywhere within the sys-
tem and only broken by reservoirs at the system boundaries. In the latter case, we
drive an additional chemical reaction outside the droplet for regenerating nutrient
from waste. We showed that non-equilibrium steady states can exist and that for
strong enough driving, chemically active droplets can divide in multi-component
mixtures motivated by protocells.
In addition, we considered the balance of energy and matter. We showed that the
growth or shrinkage of a chemically active droplet is governed by fluxes of the con-
served quantities. However, non-equilibrium steady states are maintained by fluxes
of the non-conserved reaction extents. This highlights the different roles of con-
served densities ψj and of non-conserved reaction extents ξα for protocell dynamics.
From the point of view that active droplets represent simple models for protocells,
the chemical reactions inside the droplets represent a simple metabolism.
In biology, metabolic processes are classified as anabolic or catabolic. Anabolic pro-
cesses are considered to build complex components from smaller units by consum-
ing energy, while catabolism typically describes the break-up of complex molecules
into smaller units by which energy is released. The reactions in our models of pro-
tocells can capture such anabolic and catabolic processes. As an example, we can
consider nutrient and waste to be simple molecules of high and low internal energy,
respectively. Droplet material D would then represent more complex components.
In such a setting, the reaction N ⇌ D (α = 1) corresponds to anabolic processes,
while the reaction D ⇌W (α = 2) corresponds to catabolic processes.
A signature of the non-equilibrium state of living systems is the release of heat [69].
Our framework captures energy balance and heat exchange. Nutrients supply free
energy via a high chemical potential compared to waste µ̄N > µ̄W , which drives
the system out of equilibrium. Typically, nutrient N is also a molecular energy car-
rier and waste W , a low energy molecule that is reflected in molecular enthalpies
(hN > hW ). Active droplets are exothermic and release heat, see FIG. 5.7(a). How-
ever, protocells can also be endothermic if the molecular enthalpy of waste exceeds
that of nutrient (hN < hW ). In this case, the droplet would absorb heat from the en-
vironment, see FIG. 5.7(c,d). The latent heat of phase separation at the interface also
enters this energy balance. Latent heat can be either released or absorbed, which
leads overall to four different scenarios shown in FIG. 5.7. One of these scenarios
shows that even if the droplet absorbs heat and appears to be endothermic, the re-
actions inside could still be exothermic, see FIG. 5.7(b). This shows that a measure-
ment of overall heat absorption by an organism does not necessarily imply endother-
mic biochemistry. Therefore, our finding in this theoretical model is parallel to the
proposed mechanism, leading to the measured heat uptake measured in bacteria
[70, 71].
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Chapter 6

The role of dimensionality on droplet
division

A minimal model of chemically active droplets for protocells has been introduced
by Zwicker et al. [20]. In this model, active chemical reactions in a binary phase-
separating mixture can lead to droplet division. However, this only happens in
three dimensions. In two-dimensional systems, independent of the number of com-
ponents in the system, droplet division does not occur for driven chemical reactions.
Droplets can elongate, leading to tubular structures1, see FIG. 3.7(b) or FIG. 3.8(b).
Only in boundary-driven systems droplet division can occur in small 2D systems,
see FIG. 3.12(c). In the divergence-free gradients from the system boundaries, elon-
gated droplets get pulled apart until they wet the boundary. Nevertheless, these
systems have to be small due to the logarithmic decay of the volume fraction pro-
files, which are the solution of the corresponding Laplace equation. In this system,
typically, only one division event can occur.
The aim of this chapter is, first, to explain the cause of the different behavior be-
tween 2D and 3D systems. Second, to build a minimal model that shows cycles
of droplet growth and division in 2D. The primary motivation is that solving these
fourth-order partial differential equations in 3D is numerically costly. By lowering
the dimensionality of the system, much larger systems can be simulated with not
only tens, but hundreds or thousands of droplets. This hopefully opens the door for
further investigations of chemically active droplets as models for protocells. There-
fore, we will introduce a mechanism that can robustly lead to droplet division in
2D. This mechanism is built on chemical reactions at the interface, dependent on
its mean curvature. However, the study of chemical reactions at the interface of
droplets is an interesting problem in itself.

1Division in 2D was reported under specific initial condition when also noise was taken into account
in the dynamics, see [72].
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6.1 Stability of chemically active droplets in 2D vs. 3D

For building a minimal model, we will use the binary system introduced by Zwicker
et al. [20]. Here, we will shortly introduce it and explain, with this model, the differ-
ence in the stabilities between 2D and 3D. The local composition of binary mixtures
is entirely described by just the volume fraction of just one component. In the fol-
lowing, we consider a mixture of components A and B, which phase-separate from
each other and can chemically convert into each other. We use the volume fraction of
B, denoted as ϕ in the following, to describe the composition. Furthermore, the equi-
librium values ΦI/II

0 of phase separation in an infinite system are independent of the
total composition in the system. As long as the average composition ϕ̄ stays within
these values, replacing A with B or vice versa only changes the phase volumes.
Therefore, we will use, in contrast to the rest of this thesis, the Ginzburg-Landay
free energy

f(ϕ) =
b

2∆ϕ

(
ϕ− ΦI

0

)2 (
ϕ− ΦII

0

)2
(6.1)

as free energy density in Eq. 1.1, where ∆ϕ = ΦI
0 − ΦII

0 , and b characterizes the
molecular interaction strength. It can be understood as the expansion of a binary
free energy density close to the critical point, see [73]. For this free energy density,
the exchange chemical potential µ̄ of component B reads

µ̄ =
b

∆ϕ

(
ϕ− ΦI

0

)(
ϕ− ΦII

0

)(
2ϕ− ΦI

0 − ΦII
0

)
− κ∇2ϕ (6.2)

This chemical potential drives the diffusive fluxes. With the Ginzburg-Landau free
energy, we can use a constant mobility coefficient Γ, without obtaining any singular-
ities for any dilute case. Thus we can write

∂tϕ = γ∇2µ̄+ r (6.3)

which is the reduced form of Eq. 3.2. However, due to simplicity, the authors of [20]
directly assumed a linear dependency in each phase, which makes the system active.
For this, they used

r =





−kII (ϕ− ΦII
0

)
+ cII, ϕ ≤ ϕ+c ,

p(ϕ), ϕ+c < ϕ < ϕ−c ,

−kI (ϕ− ΦI
0

)
− cI, ϕ ≥ ϕ−c

, (6.4)

thus two linear regimens connected by a fourth-order polynomial p(ϕ), ensuring a
smooth interpolation. If cI/II > 0, B material is degraded below the equilibrium
value ΦI

0 within the B-rich droplet with the turnover cI and produced above equi-
librium value ΦII

0 in the outside area until ϕ reaches the supersaturation ϵ = cII/kII.
This implicitly assumes the same breaking of detailed balance by an additional fuel
component, as previously studied in this thesis. Zwicker et al. [20] studied this
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FIGURE 6.1: 3D vs. 2D - elongation and division: We show snapshots of vol-
ume fraction fields obtained by solving Eq. 6.5 numerically. A three-dimensional
system is shown in (a), while in (b), a two-dimensional system. In both cases, the
chemically active droplet elongates. However, only in 3D does the formed neck
pinches off, leading to a division. In 2D, a stable neck is formed. For the parameter

settings, see App. C.

model in detail and showed that these chemically active droplets can undergo cy-
cles of growth and division numerically in 3D. Furthermore, they studied the shape
instability when small deformation of spherical chemically active droplets become
unstable, leading to further elongation.
In FIG. 6.1(a), we show snapshots of volume fraction fields of numerical solutions
of this model. In the upper row, we solve this model in a three-dimensional system.
Here, a slightly elongated droplet elongates further, and the formed neck shrinks
until it finally pinches off. Identical to the results of Zwicker et al. However, solving
Eq. 6.3 in a two-dimensional system with the parameters leading to similar droplet
radii, see FIG. 6.1(b), the droplet elongates, builds a neck of fixed size, and never
pinches off. This behavior is robust; thus, a division of a chemically active droplet,
driven by phase-specific driving, never occurs in 2D. However, the authors of [72]
reported a division event in a noise version of this model for very elongated droplets.
A quantitative study of the pinch-off instability of a formed neck and comparing
the 2D case with the 3D case is missing in the literature. Therefore, we revisit the
elongation stability of spherical chemical active droplets in 3D, as performed in [20],
and compare it two the 2D stability of circular chemical active droplets. Then, we
study the stability of a cylindrical shape in 3D and compare it two the stability of a
rectangular shape in 2D. With this, we obtain insights into the pinch-off instability.
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6.1.1 Stationary droplets in 1D, 2D and 3D

A considerable advantage of dealing with binary mixtures is that the equilibrium
volume fractions ΦI/II

0 in infinite systems are independent of the average composi-
tion. In the multicomponent mixture, we linearized Eq. 3.1 around not previously
known volume fractions. These values were only determined self-consistently at the
end, see Section 4.2. In a binary mixture, however, we can use the known equilib-
rium values of infinity systems ΦI/II

0 to linearize Eq. 3.1. For deriving Eq. 6.3, we
used the composition-independent mobility coefficient γ. For the given free energy
density Eq. 6.1 the diffusion coefficients in each phase, as defined in Eq. 1.11, are
composition independent DI/II = D and read D = γb, while the reaction fluxes are
linear by construction. Thus, the linear problem of Eq. 6.3 in each phase read

∂tϕ
I/II = D∇2ϕI/II − kI/II

(
ϕI/II − ΦI/II

0

)
∓ cI/II , (6.5)

which we can solve, once we know the interface volume fractions. Identical to Sec-
tion 4.2, we assume the equilibrium of phase separation at the interface. These val-
ues differ from ΦI/II

0 due to the Laplace pressure contribution for a droplet of finite
size R, see FIG. 1.1. However, in a small surrounding of these values, we can ap-
proximate these effects by using

ϕI/II(R) = ΦI/II
0 + γβI/IIH(R) , (6.6)

where the mean curvature H(R) = 2/R in 3D, H(R) = 1/R in 2D, and H(R) = 0 in
1D. In the binary mixture with our choice of the free energy density, even the surface
tension becomes composition-independent and can be derived as γ = ∆ϕ2κb/6, in
the same way as done in App. B for multicomponent mixtures. The coefficients
βI/II are coming from the so-called Gibbs-Thomson relations, see [73]. In our given
system, they are identical in both phases, thus βI/II = β, and are given in our system
by β = 1/(b∆ϕ) in our system. The idea behind the underlying approximation is to
use two parabolas around ΦI/II

0 , instead of the entire function f(ϕ) for constructing
the tangents with identical slopes, see [73].
Thus, the stationary solution of Eq. 6.5 for a B-rich droplet of radius R is given by

ϕI(r) =

(
βγH(R) +

cI

kI

)(
ϱI(r/λI)

ϱI(R/λI)
− 1

)
+ΦI

0 + βγH(R) , (6.7)

ϕII(r) =

(
βγH(R)− cI

kII

)(
ϱII(r/λII)

ϱII(R/λII)
− 1

)
+ΦII

0 + βγH(R) , (6.8)

with the reaction-diffusion length scale λI/II =
√
D/kI/II. The spatial dependency is

captured by the functions ϱI/II(r). In 3D, these functions are given by the modified
spherical Bessel functions of the first and second kind and zeroth order, ϱI(r) =

sinh(r)/r and ϱII(r) = exp(−r)/r. In 2D, the modified Bessel functions of the first
and second kind and zeroth order ϱI(r) = I0(r) and ϱII(r) = K0(r) have to be used,
while in 1D, ϱI(r) = cosh(r) and ϱII(r) = exp(−r). The one-dimensional case is
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needed for studying the pinch-off instability. For the two- and three-dimensional
systems, we show exemplary volume fraction profiles in FIG. 6.2(a). At the interface,
the slightly higher Laplace pressure in 3D leads to higher volume fraction values.
The radial profiles in the phases differ too. Besides having the same value far away
from the droplet, in 2D, diffusion leads to weaker gradients in the outside area. Thus
less B-material is provided for identical parameters.
We can derive the fluxes jI/II(R) at the interface from these profiles. Even though
this system is equivalent to a phase-driven system, we can use Eq. 4.11, as used
in the open systems, for computing the interface velocity dR/dt. The interface can
move because, in a binary system, the only conserved quantity is trivially conserved.
FIG. 6.2(b) shows that, when the supersaturation is high enough, two stable radii
exist, similar to FIG. 4.3(b). The smaller one is the critical radius for nucleation, while
the larger corresponds to a chemically active droplet of fixed size. Interestingly, the
supersaturation level at which stable droplets can exist is almost identical between
the two- and three-dimensional systems. However, the values of these stationary
radii differ. Due to the smaller Laplace pressure, the critical nucleation radius is
smaller in 2D than in 3D. However, the stable droplet radius is also smaller in 2D
than in 3D due to the weaker diffusive fluxes. We show the dependencies of these
radii on the supersaturation for a specific value turnover in FIG. 6.2(c).

6.1.2 Elongation instability

The stability analysis of slightly deformed droplets in 3D shows that these droplets
can be shape unstable, see [20]. We perform the same stability analysis and compare
it to the two-dimensional elongation instability derived analogously. We perturb
radial symmetric spherical droplets with radius R equal to the stable radius R̂, as
described above, and study the relaxation rate of this perturbation. Therefore, we
write

ϕI/II(r, φ, ϑ, t) = ϕ̂I/II(r) + δϕI/II(r, φ, ϑ, t) ,

R(φ, ϑ, t) = R̂+ δR(φ, ϑ, t) , (6.9)

where the ϑ dependency vanishes for the two-dimensional case, and ϕ̂ is the station-
ary volume fraction profile. Similar to Section 4.3, the linear problem in Eq. 6.5 can
be solved, when using the separation ansatz

δϕI/II(r, φ, c, t) =
∑

n,l,m

ϵnlmA
I/II
nlmϱ

I/II
l (r/λI/II

nl )Yml(ϑ, φ)exp(τnlt) ,

δR(φ, ϑ, t) =
∑

n,l,m

ϵnlmYml(ϑ, φ)exp(τnlt) , (6.10)
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FIGURE 6.2: 2D vs. 3D - stable droplet radii and elongation instability: We show
radial profiles of the volume fraction ϕ in (a), in the sharp interface limit for spher-
ical droplets (3D) or circular droplets (2D). For different interface positions, the
droplet growths or shrinks, see (b), where we show dR/dt as a function of R. For
large enough supersaturations ϵ, the dR/dt-curve has two roots, forming one sta-
ble and one unstable stationary radius appears, see (c). However, chemically active
droplets with the stationary radius can still be shape unstable. We show the relax-
ation rate of the largest modes of form stated in Eq. 6.10 (3D) or Eq. 6.11 in (d). For

τ0l > 0, any perturbation of this form will exponentially grow. see App. C.

in 3D, when ϱI
l(r) = il(r) and ϱII

l (r) = kl(r) are the modified spherical Bessel function
of first and second kind of order l. In 2D, we use

δϕI/II(r, φ, t) =
∑

n,l

ϵnlA
I/II
nl ϱ

I/II
l (r/λI/II

nl ) cos(lφ)exp(τnlt) ,

δR(φ, t) =
∑

n,l

ϵnl cos(lφ)exp(τnlt) , (6.11)

when ϱI
l(r) = Il(r) and ϱII

l (r) = Kl(r) are the modified Bessel function of first and
second kind of order l. In both solutions, λI/II

n =
√
D/(kI/II + τnl) and ϵnlm is the

amplitude the mode corresponding to the indices n, l,m in 3D. In 2D the indexm has
to be dropped. The perturbation of the boundary conditions in Eq. 6.6 determine the
coefficients AI/II

nlm via

δϕI/II(R̂, φ, ϑ, t) =
(
βγδH − ∂rϕ̂(R̂)

)
δR(φ, ϑ, t) (6.12)

for each mode n, l,m. Here, the change of mean curvature is δH = (l2 + l − 2)/R̂2

in 3D and δH = (l2 − 1)/R̂2 in 2D. In the latter case, the the ϑ dependence vanishes
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again. Thus, finally, the relaxation rate τnl can be computed from the condition

τnl = −D∂
2
r ϕ̂

I(R̂) +Anlm∂rρ
I(r/λI

nl)− ∂2r ϕ̂
II(R̂)−Anlm∂rρ

II(r/λII
nl)

ϕ̂I(R̂)− ϕ̂II(R̂)
. (6.13)

In FIG. 6.2(d), we show the the slowest (n = 0) relaxation rates τnl for l = 0, l = 1,
and l = 2 for the two- and three-dimensional systems. Their shapes look qualita-
tively identical. The spherical symmetric perturbations with l = 0 are always stable
when perturbing the stationary stable droplet. Both systems are translational sym-
metric. Thus, the relaxation rate of the mode l = 1 is always 0. For high enough
supersaturations, the l = 2 modes become unstable. Thus, these chemically active
droplets elongate. However, higher supersaturation levels are needed to see this
elongation in the two-dimensional case.

6.1.3 Pinch-off instability

The pinch-off instability can be investigated when a cylinder in 3D or a rectangular
shape in 2D of height L is perturbed in the z direction. These shapes represent the
emerging neck when a chemically active droplet elongates. First, we solve for the
stable radius or the cylinder in 3D, identical to the stable droplet radius of a 2D
system2, and for the width of the rectangular shape at which it becomes stable. We
call the half of this width radius. Again, we search for the roots of the interface
velocities. Due to the absence of a Laplace pressure of the flat interface, there is no
critical nucleation radius, and a stable radius exits for supersaturations ϵ > 0. To
illustrate this, we show in FIG. 6.3(a) the interface velocity dR/dt as a function of
its position R for ϵ = 0.2 and in FIG. 6.3(b) the dependency of the roots of these
functions on the supersaturation ϵ.
We perturb these cylindrical or rectangular shapes with stable radius R̂ with

ϕI/II(r, φ, z, t) = ϕ̂I/II(r) + δϕI/II(r, φ, z, t) ,

R(φ, z, t) = R̂+ δR(φ, z, t) , (6.14)

where the φ dependency vanishes for the two-dimensional case, and ϕ̂ is the sta-
tionary volume fraction profile. The ansatz for the perturbation which solves the
differential equation reads for the cylindrical shape

δϕI/II(r, φ, z, t) = −
∑

n,l,m

ϵnlmA
I/II
nlmϱ

I/II
l (r/λnlm) cos (lφ) cos

(
2πmz

L

)
exp(τnlmt) ,

δR(φ, z, t) = −
∑

n,l,m

ϵnlm cos (lφ) cos

(
2πmz

L

)
exp(τnlmt) , (6.15)

2As seen already in FIG. 6.2(b), whenever a stable droplet radius exits in 3D, also in a two-
dimensional system, a stable droplet can exist. Therefore, it cannot happen that a droplet in 3D elon-
gates, and we cannot study the stability of the emerging neck.
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FIGURE 6.3: 2D vs. 3D - pinch-off stability: In (a), the interface velocity dR/dt
is shown as a function of R for cylindrical droplets in (3D) or rectangular droplets
in (2D) between two parallel plates, see sketch at the bottom of (c) or (d) (m = 0).
For cylindrical droplets, there exists a critical supersaturation ϵ below which no
stationary cylinders can be found. However, in 2D, for any finite supersaturation ϵ,
a stationary rectangular droplet can be formed, see (b). In (c) and (d), we show the
relaxation rate of shape perturbations of rectangular droplets in 2D or cylindrical
droplets in 3D of the stationary radius as a function of the distance of two plates
(no-flux boundary condition) of distance L/R̂, where R̂ is the stationary droplet
radius (see sketch at the bottom with m = 1). For large supersaturations, perturba-
tions to the cylindrical droplet can become shape unstable for L2.5. However, the
perturbations of a rectangular droplet in 2D always decay. For further parameters,

see App. C.

where ϱI
l(r) = Il(r) and ϱII

l (r) = Kl(r) are the modified Bessel function of first and
second kind of order l. For the rectangular shape, we use

δϕI/II(r, z, t) = −
∑

n,m

ϵnmA
I/II
nmϱ

I/II(r/λnm) cos

(
2πmz

L

)
exp(τnmt) ,

δR(z, t) = −
∑

n,m

ϵnm cos

(
2πmz

L

)
exp(τnmt) , (6.16)
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where ϱI(r) = cosh(r) and ϱII(r) = exp(−r). In both cases, the reaction-diffusion
length scale reads

λI/II
nlm =

√
D

kI/II + τnlm + 4π2m2

L2

, (6.17)

and ϵnlm is the amplitude this mode. The index l is dropped for the two-dimensional
case. The coefficients AI/II

nlm are determined again by the boundary condition of the
perturbation Eq. 6.12. Only the change of mean curvature differs for these perturba-
tions. For the perturbed cylinder, it reads δH = (l2−1)/R̂2+4π2m2/L2, while for the
perturbed rectangle, it reduces to δH = 4π2m2/L2. The remaining τnlm can be most
easily computed again via Eq. 6.13. The remaining τnlm can be most easily computed
via Eq. 6.13, when z = 0. Here, the normal flux at the interface is only in the radial
direction. Therefore, we can compute the relaxation rate of such perturbations for
any given height L of the cylinder or the rectangle.
We show the slowest (n = 0) relaxation rates as a function of L for two different su-
persaturation levels in a FIG. 6.3(c) for a 2D system and in FIG. 6.3(d) for a 3D system.
Here, the m = 0 modes are always stable and independent of L as expected from a
radial symmetric stable droplet. However, the m = 1 mode can become unstable
when the supersaturation is high enough in three-dimensional systems. Thus the
cylinder becomes unstable depending on its length L. We find that this instability
can occur approximately when L > 2R̂. Then, the relaxation rates have a maximum
around L ≈ 2.5R̂ and become stable for L ≫ R̂. However, here perturbations with
higher m’s become unstable again.
In two-dimension systems, however, the rectangular shape is always stable. The
main reason for this difference between 2D and 3D systems stems from the different
mean curvature changes. For simplicity, let us compare the mean curvature change
at z = 0, thus a minimum radius of the cylinder or rectangle R = R̂− ϵ, to positions
z = ±L/2, where the radius is maximal R = R̂ + ϵ. In 2D, the only axis of principle
curvature is in z direction, and the mean curvature has the same absolute value at
all three positions. However, in 3D, the radial direction (in the x − y plane) also
contributes to the mean curvature. Here, the position at z = 0 has a higher absolute
mean curvature due to its smaller radius.
Finally, we can draw the corresponding stability diagrams FIG. 6.4. For the two-
dimensional system (FIG. 6.4(a)), we find an area where radial symmetric droplets
can exist (blue) and an area in which the chemically active droplets always are unsta-
ble under small perturbations and elongate (orange). However, these droplets never
divide due to the stable neck. This behavior is similar to that of the Plateau-Rayleigh
instability, which leads to the formation of many small droplets when the radius of
a liquid jet becomes to small. A two-dimensional jet does not pinch-off either, see
[74]. In the three-dimensional case (FIG. 6.4(b)), the line of stable droplets (blue) is
almost identical to the 2D case. However, the elongation instability already occurs
for lower supersaturations (red).
Furthermore, we find a third area (green) at which the neck becomes unstable and
the droplets can pinch off. Therefore, we find a large area in the stability diagram
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FIGURE 6.4: Stability diagrams of chemically active droplets in 2D and 3D:
Given any turnover cI, no chemically active droplets can exist for too low super-
saturation values ϵ - white area in (a) (2D) or (b) (3D). When the supersaturation
is increased, stable chemically active droplets can exist in both cases (blue area). A
further increase of ϵ leads to an elongation instability of these droplets - orange area
in (a) or red area in (b). Perturbations of the neck become unstable for even higher
supersaturation values only in 3D systems - green area in (b). In 2D, no pinch-off

instability can be found. For further parameter values, see App. C.

where the described cycle of growth and division can occur. Also, this line of pinch-
off instability is presumably a lower bound in the area at which droplets can divide
due to the more complex shape of a neck in an elongated droplet, thus leading to a
bigger area of droplet division.

6.2 Pinch-off in 2D via curvature-dependent chemical reac-
tions

As discussed above, bulk driven chemically active droplets can spontaneously elon-
gate but do not divide in the introduced models in 2D. This section presents a mecha-
nism that can lead to such divisions. For this, we allow additional chemical reactions
at the interface of the droplets, depending on the mean curvature of the interface.
When chemical reactions take place where the interface is bent outwards, the neck
can be dissolved, leading to a division. To this end, we will first introduce a method
of how the mean curvature of the droplet interface can be determent from the con-
tinuous field of volume fraction. Second, we will show how chemical reactions at
the interface can be used to pinch off elongated droplets.

6.2.1 Determining the mean curvature of the droplet interface

In general, the mean curvature of a surface G(x1, x2, ...) = 0 can be denoted as

H(x1, x2, ...) = −∇ · ∇G
|∇G| , (6.18)
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FIGURE 6.5: Mean curvature of the droplet interface: Given the volume fraction
profile shown in (a), we identify the interface area where the term (∇ϕ)2 is large,
see (b). The term −(∇ϕ)2∇ · ∇ϕ/(|∇ϕ|) is positive where a sharp interface of a
similar shape has positive mean curvature and negative vice versa, see the density
plot in (c). Furthermore, we sketch the normalized gradient of ϕ and its divergence.

For details and the specific parameters, see App. C.

see [75]3. However, in our continuous system, we do not have a parameterization
of the interface but a concentration field with strong gradient terms at the interface.
Nevertheless, the divergence of the normalized gradient quantifies where the unit
vectors parallel to the gradient diverge from each other or converge, see the sketch
in FIG. 6.5(c). Due to the normalization, this quantity has finite values even for small
gradients. Thus, the gradients caused by the chemical reaction will be measured by
this term, too. To identify the interface, we multiply this term therefore by (∇ϕ)2.
The latter quantity is substantial directly at the interface, where strong gradients oc-
cur. To measure the mean curvature of the droplet by having its continuous volume
fraction profile, we use4

H ′ = −(∇ϕ)2∇ · ∇ϕ
|∇ϕ| . (6.19)

The volume fraction profile ϕ in FIG. 6.5(a) occurs in the elongation dynamics of a
slightly elongated droplet, identical to the example in FIG. 6.1. At this stage, two
droplets can be identified, still connected via a neck. The mean curvature of a sharp
interface would be positive at the two ends of the spherical droplets. However, in
the neck area, the interface bends outwards. Thus the mean curvature of a sharp
interface would be negative. To identify the interface area from continuous volume
fraction field ϕ, we use (∇ϕ)2, see FIG. 6.5(b). The effective mean curvature, de-
fined in Eq. 6.19, captures exactly the behavior of the mean curvature when a sharp
interface is considered, see FIG. 6.5(c).

6.2.2 Chemical reactions at the interface

Again, we use Eq. 6.3 together with the reaction rate Eq. 6.4 for the dynamics of the
volume fraction field in the bulk. The chemical reactions at the interface result in an

3Note, that in this reference, the mean curvature is defined with a factor 1/2. We follow the more
classical definition in physics such that the mean curvature of a sphere in 3D is 2/R.

4For numerical stability, we compute ∇ϕ/(|∇ϕ|+ ϵ), with ϵ = 0.0001 in all the shown cases.
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additional reaction sink or source term rint. We use

∂tϕ = γ∇2µ̄+ r + rint , (6.20)

where
rint = −cint sig

[
Htres −H ′(ϕ)

]
, (6.21)

with the degradation constant cint. We choose Htres < 0. Thus, the sigmoidal func-
tion5 sig [Htres −H ′(ϕ)] has non-vanishing contributions only in areas where H ′ is
comparable to Htres, or smaller. Outside the interface area, H ′ vanishes due to its
dependency on (∇ϕ)2. Thus, rint = 0 and no additional chemical reactions place
in the bulk when Htres < 0. At the interface, H ′ has large negative values at posi-
tions where the interface is bent inwards. Therefore, the neck between two droplets
after elongation becomes destabilized due to the chemical reactions. However, the
remaining dynamics, like the elongation of droplets or the stationarity of spherical
droplets, are not affected by these additional chemical reactions modeled by rint.
In FIG. 6.5, we show the dynamics for three different parameter settings of the degra-
dation constant cint. We start with one slightly elongated droplet in all three settings.
In the beginning, the mean curvature of the droplet interface is positive everywhere.
Thus, the initial dynamics are identical. However, when the droplet has elongated,
a neck is formed with negative mean curvature. The degradation constant cint now
controls how much material is lost at these positions.
We choose cint/(k

IϕI) = 0.1, for FIG. 6.5(a). For this setting, the degradation at
the interface is too weak to lead to a division. Long bands are formed similar to
cases without any additional chemical reactions at the interface. Only after t ≈ 600,
a single division takes place, and the structure separates once for this parameter
setting. In FIG. 6.5(b), we show the dynamics of a system with cint/(k

IϕI) = 0.3.
Here, the degradation at the interface is strong enough to pinch off formed necks.
However, the degradation is not strong enough to pinch off all necks robustly. Thus,
in the dynamics, some stripes are formed. Once these interfaces are straight, the
mean curvature is zero, and no degradation occurs. When the degradation constant
is cint/(k

IϕI) > 0.5, we show the case of cint/(k
IϕI) = 0.8 in FIG. 6.5(c), every formed

neck becomes unstable and chemically active droplets divide robustly in 2D. Only
for too large degradation rates cint/(k

IϕI) ≈ 50, the reaction at the interface is so large
during the pinch off, that some droplets dissolve during the pinch off (not shown).
Thus, for degradation constants in the range 0.5 < cint/(k

IϕI) < 50, our proposed
mechanism leads to a robust droplet division in 2D, and cycles of droplet growth
and droplet division can occur.

5We choose sig(x) = 1/(1 + exp(−x)).
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6.3 Discussion

In this chapter, we used the model from Zwicker et al. [20] of a phase-separating
binary mixture with chemical reactions. In 3D, chemically active droplets can di-
vide under these dynamics. At the beginning of this chapter, we showed why divi-
sion does not occur in two-dimensional systems. The chemically active droplets still
elongate, but no pinch-off occurs. This is because, in two-dimensional systems, the
interface of a formed neck between the two sides of an elongated droplet becomes
flat in the center. Thus, this interface has a vanishing mean curvature and, therefore,
no Laplace pressure exits. However, a cylinder forms the neck between the two sides
of an elongated droplet in three-dimensional systems. Still, the principal curvature
along the elongation vanishes. However, the principal curvature orthogonal to this
direction has a finite value, resulting in a Laplace pressure. This behavior is similar
to the Plateau-Rayleigh instability, which describes the break up of a fluid jet when
the jet radius becomes too small. In 2D, fluid jets also do not break up independent
of the jet radius due to the same absence of Laplace pressure in 2D [74].
In the second part of this chapter, we introduced a model with additional chem-
ical reactions at the interface. Dependent on the mean curvature of the interface,
the droplet forming material also degrades. These chemical reactions destabilize
the neck area after an active chemical droplet has elongated. For this mechanism,
we showed how the mean curvature of the droplet interface can be defined by just
knowing the continuous volume fraction field. The numerical complexity of these
additional terms is more costly than the initial dynamics. However, it is still much
more efficient than solving a qualitatively similar system in 3D. Therefore, we can
solve the dynamics of systems large enough to accommodate several hundreds of
droplets.
More complex models can be simulated with this numerical advantage, where dif-
ferent chemically active droplets interact. With this, simple models of ’ecosystems’
of chemically active droplets, with, for example, predator-prey dynamics of different
droplet types, will be investigated in the future.
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FIGURE 6.6: Pinch-off in 2D systems via reactions at the interface: Snapshots of
volume fraction fields in the dynamics of three systems with different degradation
constants cint at the interface and identical initial conditions. In (a), cint/(k

IϕI) = 0.1
and almost no division occurs. In (b), cint/(k

IϕI) = 0.3 and pinch-off occurs. For
some cases, however, still stripes are formed. In (c), cint/(k

IϕI) = 0.8 and droplet
division occurs robustly. For details and further parameter settings, see App. C.
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Chapter 7

Conclusion and Outlook

In this thesis, we studied the consequences of the spatial organization of chemical
reactions via phase separation. Therefore, we generalized the mass-action kinetics
for systems of homogeneous compartments at phase equilibrium. We derived dy-
namical equations in spatially continuous, multi-component systems that can lead to
the thermodynamic equilibrium, defined by the simultaneous equilibrium of phases
and chemical reactions. Furthermore, we discussed two ways of maintaining these
systems out of equilibrium: driving chemical reactions differently in phases or cou-
pling the system to reservoirs over its boundaries. The droplet dynamics found in
both scenarios is absent in equilibrium systems. We introduced an effective descrip-
tion of such multi-component chemically active droplets for a quantitative study
of this dynamics. Next, we used this description to study the energy and matter
supply in a protocell model of a chemically active droplet. Finally, we showed that
chemically active droplets with driven reactions do not divide spontaneously in 2D.
However, we introduced a simple model with mean-curvature-dependent chemical
reactions at the droplet interface, which can lead to a robust droplet division in 2D.
In the following, we highlight the main results of each chapter and point to possible
future work.

In Chapter 2, we introduced dynamical equations for the densities of components
and phase volumes in compartmentalized systems with chemical reactions. These
compartments are formed in phase-separating systems with fast diffusion where we
can consider homogeneous phases at phase equilibrium. In this framework, diffu-
sion gets reduced to an exchange between compartments that can grow and shrink.
Thus, ordinary differential equations are sufficient for describing systems with diffu-
sion and chemical reaction. Especially for small experimental systems where chem-
ical reactions are not diffusion limited, this framework can provide a simple de-
scription. Hopefully, the theoretical predictions of these dynamics will be tested in
experimental systems such as coacervates with enzymatic reactions [76, 77, 78, 79].
However, these equations reveal also why a pure enrichment of components inside
compartments does not necessarily lead to an increased reaction rate, as expected
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from mass-action laws in dilute systems. In other words, the increased local concen-
tration of a reactive component due to phase separation does not necessarily increase
the rates of reactions in which it participates. The reaction rate coefficients solely
determine the speed-up or slow-down of reactions in each compartment, which can
also decrease upon condensation. These insights might be relevant for explaining re-
cent observations in coacervate emulsions with enzymatic reactions [80, 81, 82, 83].
Furthermore, we show how non-equilibrium steady states can exist in these systems
when chemical reactions are driven differently between compartments. To depict
these non-equilibrium states in the phase diagram, we introduce the tie line selecting
curve, which translates between conserved quantities in the system and the chosen
phase equilibrium. Future work can be done by performing the dilute limit for all
reacting components, while the compartments are formed by the phase separation
of two non-dilute components. This would further reduce the complexity and cor-
responds to a setting often found in experiments.

Chapter 3 discusses spatially continuous systems. Here, non-linear fourth-order par-
tial differential equations govern the dynamics in phase-separating systems with
chemical reactions. These dynamics were derived by minimizing the free energy.
Thus, we can study the relaxation kinetics toward the simultaneous equilibrium of
phases and chemical reactions. We compare these relaxation kinetics to the temporal
evolution in homogeneous compartments and explore their differences in systems
with fast chemical reactions and spatial inhomogeneities.
Furthermore, we study active systems with driven chemical reactions by explicitly
breaking detailed balance of the rates. We show that droplets initialized in the
nucleation-and-growth regime can undergo shape instabilities and deform while
growing. Whereas in systems with many droplets, ripening can be suppressed. Both
processes were previously described in binary mixtures without conserved densities
[19, 20]. We explore how in multi-component mixtures, the dynamics of conserved
densities can differ from equilibrium situations, although detailed balance is only
broken within the dynamics of the reaction extents. Additionally, we introduce ac-
tive systems that are maintained away from equilibrium via concentration bound-
ary conditions. Here, detailed balance is satisfied everywhere within the system and
only broken at the system boundaries. In contrast to equilibrium settings, droplets
of stationary size can exist in open systems and can even elongate and divide for
strong enough driving.

To quantitatively study chemically active droplets in multi-component mixtures, we
introduce an effective description of droplets in a sharp interface limit in Chapter 4.
Here, linear reaction-diffusion equations are coupled via a moving interface. Only
here do non-linear equations have to be solved to determine the boundary values
at the interface. We assume the local equilibrium of phase separation. However,
this does not fix these boundary conditions fully in multi-component mixtures. The
continuity of fluxes selects the remaining constraints. In closed systems, also global
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conservation laws have to be taken into account. With this, we revisit systems previ-
ously studied only numerically in Chapter 3, and perform a linear stability analysis
to understand the shape instabilities. The here developed method is a generalization
of the effective description of chemically active droplets introduced by Zwicker et al.
[20] for multi-component mixtures, where multiple phase equilibria exist, and con-
servation laws have to be taken into account. Possible future work includes solving
these moving boundary problems numerically under non-linearized dynamics and
considering dynamical solutions of the volume fraction profiles outside the quasi-
static limit.

Chemically active droplets have been proposed as models for protocells [20], which
are prebiotic, cell-like objects that could have emerged at the origin of life [64, 63,
67, 84], and first experimental systems have been designed [85]. Following these
ideas, we introduce models of chemically active droplets, kept away from equilib-
rium by the supply of nutrients and the removal of waste, in Chapter 5. With this,
we obtain protocell models where we can understand the chemical reactions inside
the droplets as a simple form of their metabolism. For these models, we discuss two
cases of breaking detailed balance. First, in a boundary-driven case, droplets are cou-
pled to external reservoirs at the system boundary, supplying nutrient and removing
waste. Second, in the bulk-driven case, detailed balance of an additional chemical
reaction outside the droplets is broken, effectively regenerating waste into nutrient.
For both scenarios, we study the dynamics and find similar non-equilibrium droplet
dynamics in the form of shrinkage, non-equilibrium steady states, elongation, and
division, as previously discussed in Chapter 3 and Chapter 4. Thus, these protocell
models show similar behavior to living cells. They dissolve with too little nutrient
supply, can exist at a steady state, or even grow and divide when the nutrient supply
is increased.
Furthermore, we can study the simple form metabolism of these objects. Study-
ing metabolism is necessarily related to the study of fluxes of energy and matter.
Therefore, we discuss the energetics of chemically active droplets. We show that the
growth or shrinkage of a chemically active droplet is governed by fluxes of the con-
served quantities at the droplet surface and that the maintenance of non-equilibrium
steady states is enabled by fluxes of the non-conserved reaction extents. In biology,
metabolic processes are classified as anabolic or catabolic. Similarly, to conserved
and non-conserved densities, anabolism and catabolism can be related to growth
and maintenance, respectively. Additionally, we can study the balance of energy and
the related heat release. We show that protocells can be classified into four different
cases. Protocells can be based on endothermic or exothermic reactions and release
or absorb latent heat at the droplet interface. The latter shows that a measurement
of overall heat absorption by an organism does not necessarily imply endothermic
biochemistry. This is related to the measurements in bacteria [70, 71]. Possible fu-
ture work can be done by modeling biological metabolic processes within droplets.
The results of these models could be compared to recent experimental studies of the
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energetics in living objects [69]. Comparing the theoretical work with experimental
results could shine further light on the energetic costs and constraints of specific cel-
lular processes [86].

In the previous chapters, we have shown examples of chemically active droplets un-
dergoing shape instabilities, leading to droplet elongation and potentially division.
However, in closed two-dimensional systems with driven chemical reactions, chem-
ically active droplets can elongate but do not spontaneously divide. In Chapter 6,
we perform the linear stability analysis of a minimal binary model. We show the
similarities of the elongation instabilities but the differences in the pinch-off insta-
bilities between 2D and 3D systems. This linear stability analysis reveals that the
absence of Laplace pressure of a formed neck in 2D leads to the stable neck form.
This difference between dimensions is similar to the Plateau-Rayleigh instability,
which describes the break up of a fluid jet for small neck radii in 3D but does not
exist in 2D [74].
In the second part of the chapter, we show how chemical reactions that are localized
at the interface can lead to stable droplet division in 2D when these reactions have
reaction rates proportional to the mean curvature of the interface. We numerically
solve the corresponding equations and show that in the absence of conservation laws
in a binary mixture, cycles of droplet growth and division can lead to hundreds of
droplets in a closed box. The primary motivation of this chapter was to obtain a
minimal model of dividing chemically active droplets in 2D. While division occurs
naturally in 3D, the numerical cost of solving the underlying fourth-order partial
differential equations limits the system size and, thus, the total number of droplets.
We hope that this 2D system opens the door for future work on droplet systems with
several different droplet species competing and cooperating in a simple form of an
ecosystem and allowing models for evolution. Furthermore, we introduced a model
with chemical reactions at the droplet interface. However, the primary shape insta-
bility of droplet elongation is still caused by chemical reactions in the bulk. How-
ever, similar terms of mean curvature-dependent chemical reactions at the droplet
interface could potentially lead to shape instabilities themself, similar to the growth
of interfaces modeled mainly by the KPZ-equation [87]. Therefore, analyzing the
consequences of chemical reactions at the droplet interface on the shape stability of
droplets is a further possible research direction.
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Appendix A

Free energy considerations

Flory-Huggins free energy density

The exchange chemical potentials given in Eq. 1.2 are derived from the free energy

F =

∫
d3x

[
f(ϕ) +

M∑

i=1

κi
2νi

(∇ϕi)2
]

, (A.1)

with the Flory-Huggins type of free energy density

f =

M∑

i=0

kBT

νi
ϕi log(ϕi) +

∑

⟨i,j⟩

χijϕiϕj +

M∑

i=0

ω0
i ϕi , (A.2)

where ϕ0 = 1 −∑M
i=1 ϕi, and the sum over the pairs ⟨i, j⟩ include all possible com-

binations of different i and j, including the solvent. For simplicity, we have ne-
glected contribution related to gradient in solvent volume fraction. Moreover, χij is
a matrix describing the molecular interactions with χii = 0 and ω0

i are the internal
free energies. After replacing the solvent volume fraction and using the definition
µ̄i = νiδF/δϕi, we obtain

µ̄i = kBT log
(
ϕiϕ

−νi/ν0
0

)
+ 1− νi

ν0
− κi∇2ϕi

+νi

M∑

j=1

(χij − χi0 − χj0)ϕj + νiχi0 + νiω
0
i − νiω

0 . (A.3)

We can now identify the composition independent reference chemical potential

ωi = 1− νi
ν0

+ νiχi0 + νiω
0
i − νiω

0
0 , (A.4)

in Eq. 1.2 and the exchange activity coefficient as stated in Eq. 1.3.
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Surface tension in multi-component
mixtures

A interface between two phases comes with a cost in free energy. It is proportional
the dimension of the interface (area in 3D, line in 2D, point in 1D) and the so called
surface tension γ. Formally, γ is defined in the limit of infinite systems, therefore flat
surfaces and 1D systems effectively. For the separation of two phases we minimize

F (ϕ) =

∫ ∞

−∞
dx

(
f(ϕ) +

∑

i

κi
2
(∂xϕi)

2

)
, (B.1)

where f(ϕ) is the free energy density dependent on the whole set of volume fractions
ϕi, i = 1, ..., N . Thats consider an interface at position x = 0. Far away from the
interface, the bulk concentrations ϕi(±∞) = ϕI/II

i obey

f I − f II = µI/II
i (ϕI

i − ϕII
i ) , (B.2)

µI
i = µII

i , (B.3)

with µI/II
i = ∂f I/II/∂ϕi. However, these equations are invariant under changes up

to linear contributions in f(ϕ). Following the lines of de Gennes, we can therefore
define a linearly adjusted potential

W (ϕ) = f(ϕ)− f I − µI/II
i (ϕi − ϕI

i) , (B.4)

which is still minimal at equilibrium. Furthermore, W vanishes in the bulk. With
this, we can compute the cost of the interface

γ =

∫ ∞

−∞
dx

(
W (ϕ) +

∑

i

κi
2
(∂xϕi)

2

)
, (B.5)

which equals to the surface tension in 1D. Clearly, γ depends on the κi’s and the
ϕI/II
i ’s and can be numerically computed by solving the spacial problem and inte-

grating over x. However, this is costly and not always necessary. From the minimum
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of F , we find

κi∂
2
xϕi =

∂W

∂ϕi
. (B.6)

Multiplying Eq. B.6 with ∂xϕi, summing over i and integrating, we find

κi
2
(∂xϕi)

2 =W (ϕ) . (B.7)

Here, no integration constant appears because both sides vanishes for x→ ±∞. The
surface tension can therefore be written as an integral along the path C from one
phase to the other

γ =

∫

C
dϕiκi∂xϕi . (B.8)

The path C is defined by Eq. B.61. We can solve this integral for the case that all
but one κi = 0. Eq. B.6 for all these other components are defining then (algebraic)
equations how theseN−1 components vary along the path. Lets assume κ1 ̸= 0, and
κi = 0, for 2 ≤ i ≤ N . From Eq. B.7 we can follow ∂ϕ1/∂x =

√
2W/κ1. Therefore

Eq. B.8 reduces to

γ =

∫ ϕII
1

ϕI
1

dϕ1
√

2κ1W (ϕ1, ϕi(ϕ1)) . (B.9)

Example of two-phase coexistence in a ternary mixture

Consider a system with a droplet forming component B and an additional compo-
nent A dispersed in a solvent S. As usually, we use a Flory-Huggins type-off free
energy density. For a two-phase coexistence, we assume χBS has to be high enough,
such that theB phase separates from the solvent S. Consider a system with a droplet
forming component B and an additional component A dispersed in a solvent S. As
usual, we use a Flory-Huggins type-off free energy density. For a two-phase coexis-
tence, we assume χBS has to be high enough such that the B phase separates from
the solvent S. ComponentA only partitions unequally into the two phases. We show
an exemplary phase diagram in FIG. B.1(d).
In FIG. B.1(a), we show the spatial profile of this system in a one-dimensional sys-
tem, zoomed at the interface area, for average volume fractions corresponding to the
red tie line in FIG. B.1(d). While component B runs monotonically from ϕI

B towards
ϕII
B , A is locally enriched at the interface. This enrichment becomes obvious when
ϕA is plotted against ϕB , see FIG. B.1(b). Here, the blue line is the solution of the
algebraic Eq. B.6, for κA = 0, given a ϕB value between ϕI

B and ϕII
B . The red dots

correspond to the grid points on which the numerical solution shown FIG. B.1(a)
was computed. Having the functional form of ϕA in respect of ϕB allows expressing
the local energy cost

√
2W , thus, the integrand in Eq. B.9, as a function of ϕB , shown

in FIG. B.1(c).
1For all κ being identical, the problem can be understood as the motion of a particle in a potential.

The mass of the particle is given by κ. Eq. B.6 connects the acceleration to the derivative of a potential
−W . Eq. B.7 states the conservation of energy. The kinetic energy κ/2(∂xϕ)

2 equals the potential
energy −W , where its usually undefined offset is fixed to 0.
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Integrating over this quantity leads to the surface tension γ. We show the surface
tension as a function of the equilibrium volume fraction ϕII

A (along the left branch of
the binodal line from 0 to the critical point) in FIG. B.1(e,f). The surface tension is the
highest for the binary mixture of component B and the solvent and decays almost
exponentially to zero the closer the mixture comes to the critical point. Furthermore,
we compare it with numerical results obtained by solving the spatial profiles and us-
ing Eq. B.5. This comparison reveals that the numerical and analytical results agree
well even for non-vanishing κA contributions. However, a detailed analysis of which
interactions this is valid is still to come.
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FIGURE B.1: Surface tension in multi-component mixtures: We show the spatial
profiles of the volume fractions ϕA and ϕB of a ternary mixture in a 1D system in
(a). We highlight the equilibrium with the red tie line in the phase diagram of this
system, shown in (d). In (b), we plot these volume fractions against each other and
compare it with the solution of Eq. B.6. The integrand of Eq. B.9 as a function of
ϕB is shown in (c). Integrating over it leads to the surface tension shown in (e,f) as
a function of ϕII

A (linear and logarithmic), thus, running along the left branch of the
binodal line from the binary mixture of B with S towards the critical point.
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Figure details

All numerical solutions where obtained by a spectral implicit-explicit of Runge-
Kutta algorithm of third order, see [88].

FIGURE 1.1: "Common tangent" construction for a binary (M=1) mixture:
Binary mixture with free energy density following Eq. A.2, i = S,A and param-
eters χAS = 2.3, ω0

A = 0.03, ω0
S = 0, νA/νS = 1, kBT = 1, 2γ/R = 0.016 (for the

orange dots).

FIGURE 1.2: Nucleation-and-growth regime vs. spinodal decompositon:
Binary mixture with free energy density following Eq. A.2, i = S,A and param-
eters χAS = 2.3, ω0

A = 0.03, ω0
S = 0, νA/νS = 1, kBT = 1, κA = 1, κS = 0, Γ = 1,

and average composition as indicated. (b): 2D system (grid points N = 128,
system size L = 140) with no-flux boundary conditions. Initialization: homoge-
nous with small fluctuations. In the upper row spherical perturbation of R = 4

was added to nucleate.

FIGURE 1.3: Partial and thermodynamic equilibrium in a ternary mixtures:
Ternary mixture with free energy density following Eq. A.2, i = S,A,B and
parameters χAS = −1, χBS = 3, χAB = 0, ω0

A = 2, ω0
B = 0, ω0

S = 0, νi/νS = 1,
kBT = 1. For (d), we vary ω0

B according to the inset.

FIGURE 1.4: Thermodynamic equilibrium for quaternary mixtures:
Quaternary mixture with free energy density following Eq. A.2, i = S,A,B,C

and parameters χAS = 1.25, χBS = 0, χCS = 3.2, χAB = 0, χAC = −1.25,
χBC = 0, ω0

A = 3, ω0
B = 3, ω0

C = 0, ω0
S = 0, νiνS = 1, kBT = 1.

FIGURE 2.1: Unimolecular reaction kinetics:
Same parameters as in FIG. 1.3 were chosen. For (a,b), we use the rates kI/II = 1.
For (c,d), we adjust kII according to the inset.

FIGURE 2.2: Average reaction flux and acceleration:
Same parameters as in FIG. 2.1 were chosen.
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FIGURE 2.4: Tie line selecting curve:
Ternary mixture with free energy density following Eq. A.2, i = S,A,B and
parameters χAS = 1.85, χBS = 2.8, χAB = −0.5, ω0

S = 0, νi/νS = 1, kBT = 1,
kI/II = 1. The reference chemical potentials of A,B are composition dependent
with ω0

i = ω1
i + ω2

i sig
[
(ϕA + ϕB − ψcrit)/0.1

]
with sig(x) = (1 + tanh(x))/2. We

have chosen for (a,b) ω1
A = 2, ω2

A = −2, ω1
B = 0, ω2

B = 1.2. In (c), we keep ω1
i

identical to (a,b) but vary: ω2
i = 0 (first plot); ω2

A = −0.66, ω2
B = 0.4 (second

plot); ω2
A = −1.33, ω2

B = 0.8 (third plot); ω2
A = −2, ω2

B = 1.2 (fourth plot).

FIGURE 3.1: Relaxation dynamics with instantaneous phases equilibrium vs. spa-
tial systems with fast diffusion:

Same parameters as in FIG. 2.1 were chosen. Numerical solutions of the 2D
periodic systems (grid points N = 128, system size L = 100), with κi = 1, Γ =

1. The binning of two-dimensional composition space was done with δϕB =

0.0087, δϕA = 0.0039.

FIGURE 3.2: Relaxation dynamics - slow and intermediate diffusion:
Same parameters as in FIG. 2.1 were chosen. The numerical solutions where
obtained with an implicit-explicit of Runge-Kutta algorithm of third order, in a
1D system (grid points N = 256, system size L = 100) with no-flux boundary
conditions. We used κi = 2, Γ = 1. The time-scale is given in terms of kI = 1 for
λRD = 0.6, thus kI = 100 for λRD = 0.06.

FIGURE 3.3: Phase-specific driving and fast diffusion:
Same parameters as in FIG. 2.4 were chosen. Numerical solutions of a 2D sys-
tem (grid points N = 128, system size L = 100) with periodic boundary con-
ditions, with κi = 1, Γ = 1. The time-scale is given in terms of a constant rate
k = 1 · 10−5.

FIGURE 3.4: Non-equilibrium steady states for different kinetic coefficients:
Same parameters as in FIG. 2.4 were chosen. Numerical solutions in a 1D sys-
tem (grid points N = 256, system size L = 100) with no-flux boundary con-
ditions, with κi = 2, Γ = 1. Constant rates k were chosen according to the
reaction-diffusion length scales.

FIGURE 3.5: Ripening of chemically active droplets:
Ternary mixture with free energy density following Eq. A.2, i = S,A,B and
parameters χAS = 2.5, χBS = 2.5, χAB = 0, ω0

S = 0, νi/νS = 1, kBT = 1,
ωA = 2.4. The reference chemical potential of B is composition dependent with
ω0
B = 1.2 + 2.4sig

[
(ϕA + ϕB − 0.5)/0.1

]
with sig(x) = (1 + tanh(x))/2. (b):

Numerical solutions of 2D system (grid points N = 256, system size L = 200)
with periodic boundary conditions, with κi = 2, Γ = 1. The time-scale is given
in terms of a constant rate k = 5 · 10−3. Init.: ϕi = 0.4 (c-d): Numerical solutions
of 1D system (grid points N = 512, system size L = 90) with no-flux boundary
conditions, with κi = 0.5, Γ = 1,k = 5 · 10−3.
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FIGURE 3.6: Decoupled conserved and non-conserved variables:
Ternary mixture with free energy density following Eq. A.2, i = S,A,B and
parameters χAS = 0, χBS = 0, χAB = 3, ω0

S = 0, νi/νS = 1, kBT = 1, ωA = 0.
The reference chemical potential ofB is composition dependent with ω0

B = 0.5−
1.2ϕ2Asig

[
(ϕA + ϕB − 0.5)/0.4

]
with sig(x) = (1 + tanh(x))/2. (b): Numerical

solutions of 2D system (grid pointsN = 128, system size L = 100) with periodic
boundary conditions, with κi = 2, Γ = 1. The time-scale is given in terms of a
constant rate k = 4 · 10−4. Init.: ϕA = 0.8, ϕB = 0.1 with a pert. at the center
(nuc. regime), ϕi = 0.45 (spin. regime) (c-d): Numerical solutions of 2D system
(grid points N = 512, system size L = 90) with no-flux boundary conditions,
with κi = 0.5, Γ = 1, k = 3.5 · 10−4.

FIGURE 3.7: Coupled conserved and non-conserved variables:
Ternary mixture with free energy density following Eq. A.2, i = S,A,B and
parameters χAS = 2.1, χBS = 2.8, χAB = 0, ω0

S = 0, νi/νS = 1, kBT = 1,
ωA = 2.4. The reference chemical potential of B is composition dependent with
ω0
B = 1.2 + 2.4sig

[
(ϕA + ϕB − 0.5)/0.1

]
with sig(x) = (1 + tanh(x))/2. (b):

Numerical solutions of 1D system (grid points N = 512, system size L = 90)
with no-flux boundary conditions, with κi = 0.5, Γ = 1. The time-scale is given
in terms of a constant rate k = 5 · 10−3.

FIGURE 3.8: Dynamics of coupled conserved and non-conserved variables:
Same parameters as in FIG. 3.7 were chosen. Numerical solutions of 2D system
(grid points N = 256, system size L = 200) with no-flux boundary conditions,
with κi = 1, Γ = 1. The time-scale is given in terms of a constant rate k = 5·10−3.
Init.: (b) ϕA = 0.1, ϕB = 0.16 with a pert. at the center; (b) ϕA = 0.02, ϕB = 0.24;
(c) ϕA = 0.00001, ϕB = 0.26. The time-scale is given in terms of a constant rate
k = 5 · 10−3. Furthermore, the chem. reaction was not allowed in the early
dynamics in (b,c).

FIGURE 3.10: Droplet growth and shrinkage in open systems without reactions:
Ternary mixture with free energy density following Eq. A.2, i = S,A,B and
parameters χAS = 0, χBS = 2.8, χAB = −1, ω0

S = 0, νi/νS = 1, kBT = 1, ωA = 2,
ωB = 0. Numerical solutions of 1D system (grid points N = 512, system size
L = 90) with concentration boundary conditions (indicated in (a)), with Γ = 1,
κ = 1.5.

FIGURE 3.11: Stationary chemically boundary driven droplet in 1D:
Same parameters as in FIG. 3.10 where chosen, with additional reaction with
rate k(ϕB) = 2 · 10−5sig

[
(ϕB − 0.33)/0.1

]
with sig(x) = (1 + tanh(x))/2, Γ = 3,

κ = 1.5.

FIGURE 3.12: Stationary chemically boundary driven droplet in 2D:
Ternary mixture with free energy density following Eq. A.2, i = S,A,B and
parameters χAS = 0, χBS = 2.8, χAB = 1, ω0

S = 0, νi/νS = 1, kBT = 1,
ωA = 3, ωB = 2. Numerical solutions of 1D system (grid points N = 128,
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system size L = 150) with concentration boundary conditions (indicated in (a)),
with Γ = 1, κ = 1.5. Reaction rate k(ϕB) = 2 · 10−4sig

[
(ϕB − 0.33)/0.1

]
with

sig(x) = (1 + tanh(x))/2, Γ = 3, κ = 1.5. Init.: (b) droplet with R = 12 at the
center; (c) slightly elongated droplet with R = 12.

FIGURE 4.1: Comparison of continuous profiles and the effective description for
different kinetic coefficients:

Same parameters as in FIG. 3.4 were chosen.

FIGURE 4.2: Growth and shrinkage of a droplet in an open system without chemi-
cal reactions:

Same parameters as in FIG. 3.10 were chosen.

FIGURE 4.3: Stationary chemically active droplets in a boundary driven system:
Same parameters as in FIG. 3.12 were chosen.

FIGURE 4.4: Stationary chemically active droplets for different phase diagrams:
For (a,c,e), the same parameters as in FIG. 3.10 where chosen, except the ref-
erence chemical potentials ωA = 3.7, ωB = 2. In (b,d,f), ternary mixture with
free energy density following Eq. A.2, i = S,A,B and parameters χAS = 2.1,
χBS = 2.8, χAB = −1, ω0

S = 0, νi/νS = 1, kBT = 1, ωA = 2, ωB = 2.

FIGURE 4.5: Shape stability of chemically active droplets:
Same parameters as in FIG. 3.10 were chosen.

FIGURE 5.3: Numerical study of a boundary driven chemically active droplet:
Quaternary mixture with free energy density following Eq. A.2, i = S,D,N,W

and parameters χDS = 3, χNS = 1, χWS = 0, χDN = 0, χDW = 1, χNW = 0,
ω0
S = 0, ω0

D = 10, ω0
N = 20, ω0

W = 0, νi/νS = 1, kBT = 1, κD = 1. Composition-
dependency of the reactions via kα = Kαsig

[
(ϕD − 0.33)/0.01

]
with sig(x) =

(1 + tanh(x))/2, K1/exp(−ω0
N ) = 0.025, K2/exp(−ω0

D) = 0.001. Num. solution
of a 3D system with concentration boundary conditions: grid points N = 128

L = 120; Init.: slightly performed droplet at the center. Time scales are given in
units of K−1

2 .

FIGURE 5.4: Stationary protocells:
Quaternary mixture with free energy density following Eq. A.2, i = S,D,N,W

and common parameters for (a-d): χDS = 3, χNS = −0.5, χWS = 0.5, χDN = 0,
χDW = 0, χNW = 0, ω0

S = 0, ω0
D = 3, ω0

N = 8, ω0
W = 0, νi/νS = 1, kBT = 1, κD =

1. Composition-dependency of the reactions via kα = Kαsig
[
(ϕD − 0.33)/ϵ

]

with sig(x) = (1 + tanh(x))/2,ϵ = 0.01 (for α = 1, 2), ϵ = −0.01 (for α = 3)
K1/exp(−ω0

N ) = 0.3, K2/exp(−ω0
D) = 0.0088. For (a): ϕ∞D = 0.08, ϕ∞N = 0.15,

ϕ∞W = 0.001.For (b): ϕ∞W = 0.001. For (c): ∆µ̃ = 9, ψ̄ = 0.25, K3/exp(−∆µ̃) =

0.008.

FIGURE 5.5: Shape stability of protocells:
Same parameters as in FIG. 5.4 were chosen, except for all the parameters indi-
cated on the axes.
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FIGURE 5.6: Matter balance at the stationary state:
Same parameters as in FIG. 5.4 were chosen.

FIGURE 5.7: Heat flux in stationary protocells:
Quaternary mixture with free energy density following Eq. A.2, i = S,D,N,W

and common parameters for (a-d): χDS = 3, χNW = 0, ω0
S = 0, χDW = 0,

ϕ∞W = 0.0001 νi/νS = 1, kBT = 1, κD = 1, with identical reaction rates as
in FIG. 5.4. For (a): χNS = 1, χWS = 0, χDN = −1,ω0

D = −0.8, ω0
N = 4,

ω0
W = 1, ϕ∞D = 0.11, ϕ∞N = 0.08. For (b): χNS = −1, χWS = 0.5, χDN = 0,
ω0
D = −0.6, ω0

N = 3, ω0
W = 2.5, ϕ∞D = 0.1, ϕ∞N = 0.11. For (c): χNS = 1, χWS = 0,

χDN = −1,ω0
D = −0.8, ω0

N = 1, ω0
W = 1, ϕ∞D = 0.12, ϕ∞N = 0.16. For (d):

χNS = −1, χWS = 0.5, χDN = 0, ω0
D = −0.6, ω0

N = 2, ω0
W = 2.5, ϕ∞D = 0.12,

ϕ∞N = 0.18.

FIGURE 6.1: 3D vs. 2D - elongation and division:
Binary mixture with free energy density following Eq. 6.1, with b = 1, ΦI

0 = 1,
ΦII
0 = 0, κ = 1, γ = 1. Numerical sim. with N = 128 grid points of a 3D (a)

or 2D (b) system with size L = 130, and no-flux boundary conditions. Reaction
rates for (a): cII = 0.00050, cI = 0.00325, kI/II = 0.00250. Reaction rates for (b):
cII = 0.0005, cI = 0.00175, kI/II = 0.00250 (b), leading to the supersaturation
ϵ = 0.2 for both cases.

FIGURE 6.2: 2D vs. 3D - stable droplet radii and elongation instability:
Binary mixture with free energy density following Eq. 6.1, with b = 1, ΦI

0 = 1,
ΦII
0 = 0, κ = 1, cI = 0.002, kI/II = 0.0025, γ = 1. For (a): cII = 0.0005, leading to

ϵ = 0.2. For (b,c,d): varying cII for the corresponding supersaturation values.

FIGURE 6.3: 2D vs. 3D - pinch-off stability:
Same parameters as in FIG. 6.2 were chosen.

FIGURE 6.4: Stability diagrams of chemically active droplets in 2D and 3D:
All parameters as in FIG. 6.2, except cI/II. They are chosen to match the axes
labels.

FIGURE 6.5: Mean curvature of the droplet interface:
A time point in the dynamics of a 2D system shown in FIG. 6.1, with N = 256.

FIGURE 6.6: Pinch-off in 2D systems via reactions at the interface:
Binary mixture with free energy density following Eq. 6.1, with b = 1, ΦI

0 = 1,
ΦII
0 = 0, κ = 1, γ = 1. Numerical sim. with N = 512 grid points of a 3D (a) or

2D (b) system with size L = 640, and no-flux boundary condition. cII = 0.0014,
cI = 0.008, kI/II = 0.01, thus ϵ = 0.14. Interface reactions: cint = 0.001, cint =

0.003, cint = 0.008. Time scales are given in inverse units of kI/II.

FIGURE B.1: Surface tension in multi-component mixtures:
Ternary mixture with free energy density following Eq. A.2, i = S,A,B and
parameters χAS = 1, χBS = 3, χAB = 0, ω0

i = 0, νi/νS = 1, kBT = 1, Γ = 100.
Num. simulation: 1D system with N = 128 grid points and system sie L = 1.
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