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Abstract

One of the main features of cells is their incredible ability to control biochemical processes
in space and time. They do so by organizing their interior in sub-compartments called
organelles, each of them with a different biochemical environment that allows them to
perform specific tasks in the cell. It is sometimes believed that these compartments need
a membrane in order to have a stable biochemical environment and regulate their com-
positions. However, there are some organelles which lack a membrane and seem to form
and organize via liquid-liquid phase separation. Some of the components that form these
membraneless organelles have the ability to bind to RNA and form complexes, while some
others react to changes in the intracellular environment such as pH variations, which in
turn affects their protonation state. In order to study these processes from a theoretical
perspective, we develop a generic thermodynamic framework to study systems exhibiting
liquid-liquid phase separation at chemical equilibrium. This framework, based on the use
of conservation laws in chemical reactions, allow us to identify thermodynamic conjugate
variables at chemical equilibrium, which are given by a set of conserved quantities and the
corresponding conjugate chemical potentials.

Within the aforementioned framework, we introduce a minimal model to study the
effect of pH on liquid-liquid phase separation. Our model explains macromolecular phase
separation controlled by protonation and deprotonation reactions, which are tuned by the
pH of the system. We study the phase behavior of the system as a function of pH. Our
main findings are: Firstly, the broadest region of phase separation is typically found at
the isoelectric point. Secondly, the system exhibits reentrant behavior. Thirdly, that the
dominating interaction in the system determines the topology of the phase diagrams. Our
model is in agreement with experimental observations of in vitro protein phase separation
of pH-responsive intrinsically disordered proteins, as well as with observations of protein
phase separation exhibited by many cytosolic proteins when the intracellular pH in yeast
cells is brought close to the isoelectric point of such proteins.

Moreover, this work analyses the physical mechanism behind the positioning of liquid-
like organelles in the Caenorhabditis elegans organism known as P granules. In order to
study this phenomenon, we first present firm experimental evidence showing that PGL-3
protein, a key component of P granules, forms liquid-like drops whose assembly can be
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modulated by RNA. We then present data showing that the RNA-binding affinity differs
significantly between proteins relevant for the positioning of P granules, such as MEX-5
and the proteins forming the P granules, like the aforementioned PGL-3. This points to
a possible mechanism of RNA-binding competition between P granule constituents and
MEX-5 in order to spatially control the condensation and dissolution of P granules. Based
on the experimental evidence, we propose a minimal model in which we couple phase
separation of PGL-3 to a set of binding reactions involving the MEX-5 protein and RNA.
We find that in order to explain the experimental data, the tendency for phase separation
of the PGL-3 protein increases with the formation of complexes of PGL-3 bound to RNA.
This therefore supports the idea that MEX-5 inhibits this protein phase separation by
depleting the RNA available for PGL-3 to form such complexes. This simple mechanism
is at the core of how P granules localize to the posterior side of the Caenorhabditis elegans
embryo.



Zusammenfassung

Zellen sind in der Lage, gleichzeitig ganz unterschiedliche biochemische Prozesse zu be-
wältigen. Dies gelingt ihnen durch eine Einteilung ihres Inneren in Kompartiemente,
sogennante Organellen, die die jeweils geeignete biochemische Umgebung für die unter-
schiedlichen Aufgaben schaffen. Bei membranumschlossenen Kompartimenten ist leicht
vorstellbar, dass sie eine andere biochemische Zusammensetzung als ihre Umgebung haben
können. Jedoch existieren auch Organelle ohne Membran die durch eine flüssig-flüssig
Phasenseparation entstehen. Manche dieser Kompartiemente haben die Fähigkeit, RNA
zu binden und Proteinkomplexe auszubilden, während andere auf die Veränderungen inner-
halb der Zelle, wie z.B. die Veränderung des pH-Werts und der damit Verbunden Änderung
ihres Protonierungszustands, reagieren können. Um diese Prozesse theoretisch analysieren
zu können, entwickeln wir zunächst ein allgemeingültiges, thermodynamisches Gerüst, um
Systeme zu untersuchen, die im chemischen Gleichgewicht flüssig-flüssig phasensepariert
vorliegen können. Dies erlaubt, basierend auf den Erhaltungsgrößen, im chemischen Gle-
ichgewicht thermodynamisch konjungierten Variablen zu identifizieren, welche aus den er-
haltenen Komponenten und den zugehörigen chemischen Potentialen bestehen.

Mithilfe des obig erwähnten Gerüsts können wir den Einfluss des pH-Wertes auf die
flüssig-flüssig Phasenseparation in einem minimalen Modell untersuchen. Dies beschreibt
die makromolekulare Phasenseparation, kontrolliert durch Protonierungs- und Deprotonierun-
greaktionen, welche wiederum vom pH-Wert abhängig sind. Unsere Untersuchung der pH-
Abhängigkeit der Phasenseparation kommt zu folgenden Ergebnissen: Erstens liegt die
größte Region von Phasenseparation im Phasendiagramm typischerweise im Bereich des
isoelektrischen Punkts. Zweitens zeigt das Modell eine Fähigkeit der erneuten Mischung
auf. Drittens ist die Topologie des Phasendiagrams von der dominantesten Interaktion
bestimmt. Unser Modell stimmt mit experimentellen Beobachtungen zur Phasensepara-
tion von intrinsisch ungeordneten, Proteinen, deren Struktur sich pH abhängig verändern,
überein. Das Modell ist außerdem konsistent mit Beobachtungen von Phasenseparation
von Proteinen im Zytosol von Hefezellen, die entsteht, wenn der intrazellulare pH-Wert in
die Nähe des isoelektrischen Punkt dieser Proteine gebracht wird.

Des Weiteren geht diese Arbeit auf den physikalischen Mechanismus ein, mit dem
flüssigkeitsähnliche Organellen, sog. P granules, im Organismus Caenorhabditis elegans
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positioniert werden. Um dieses Phänomen zu analysieren, stellen wir zunächst experi-
mentelle Beobachtungen vor, die zeigen, dass PGL-3, eine Hauptkomponente der P gran-
ules, flüssigkeitsähnliche Tropfen bildet, deren Zusammensetzung von RNA moduliert wer-
den kann. Darüber hinaus zeigen wir Daten, die großen Unterschiede zwischen der RNA-
Bindungsaffinität von Proteinen wie Mex-5, die für die Positionierung der P granules rel-
evant sind, und solchen, die P granules bilden, wie PGL-3, zeigen. Dies deutet darauf
hin, dass eine Konkurrenz zwischen den Bestandteilen der P Granula und MEX-5 um
die zur Bindung zur Verfügung stehende RNA besteht, die die Kondensation und Auflö-
sung von P Granula räumlich kontrollieren könnte. Auf diesen experimentellen Befunden
aufbauend führen wir ein minimalles Modell ein, in dem wir die Phasenseparation von
PGL-3 an Bindungsreaktionen der MEX-5 Proteine und RNA koppeln. Um die experi-
mentellen Beobachtungen beschreiben zu können, muss die Neigung des PGL-3 Proteins
zur Phasenseparation zunehmen, wenn es Komplexe mit RNA bildet. Dies unterstützt die
Idee, dass MEX-5 diese Phasenseparation unterdrückt, indem es die Anzahl an möglichen
RNA-Bindungspartner für PGL-3 herabsetzt und damit die weitere Entstehung derartiger
Protein-RNA-Komplexe erschwert. Dieser einfache Mechanismus scheint die Hauptursache
dafür zu sein, dass P granules auf der posterioren Seite des Caenorhabditis elegans Embryos
zu finden sind
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Chapter 1

Introduction

The question of how a cell organizes its interior in time and space is a fascinating one.
In order to properly function, a cell has to orderly and stringently control a variety of
both chemical and physical process in its interior. The cell organizes these processes by
sub-compartmentalizing its interior in a number of organelles, some of which are delimited
by well-defined membranes that provide them with distinct biochemical environments to
perform diverse tasks.. However, there is a growing body of evidence showing that there
are liquid-like organelles which lack a membrane. These membraneless organelles can
dynamically exchange material and just as in the case of membrane-bound organelles,
provide distinct environments where specific biochemical reactions can take place. In
order to know more about how liquid-like organelles form and how their compositions are
controlled inside a living cell, we develop a generic thermodynamic framework to study
how liquid-liquid phase separation can be controlled by different types of reactions. Based
on experimental observations we construct minimal models which can account for some of
the protein phase separation behavior observed in living cells.

We organize this introduction as follows: In order to motivate our study, we first
provide a general picture of the role played by liquid-liquid phase separation in the cell.
We continue by showing evidence that phase separation can be regarded as an organizing
principle in the cell and discuss relevant experiments for the development of this work.
After introducing all the relevant biological phenomena, we present a thorough discussion
of the thermodynamics of phase separation in multicomponent mixtures, in which we also
include the interplay between chemical reactions and phase separation. We conclude by
giving an overview of this thesis.

1.1 Spatial organization of cells

The cell is the building block of all living organisms, it organizes its interior in sub-
compartments known as organelles. These organelles are in charge of performing different
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2 Introduction

Figure 1.1: Organizational structure of an animal cell. The majority of the structures shown in
the sketch are membrane-bound organelles. Image from [4]

tasks inside the cell, and in some cases, they are bound by membranes that separate them
from the intracellular fluid known as cytosol. The basic structure of a cell, schematically
shown in Fig. 1.1, has long been considered to be mostly defined by compartmentaliza-
tion via membrane-bound organelles. Using their membrane, these organelles are capable
of: Selectively choose which proteins can enter or leave via translocation processes [1],
control their pH [2], and protect its interior from alterations in the biochemistry of the
cytosol. It thus seems reasonable to think that membranes are needed in order to control
the internal biochemistry of organelles, however, this idea has been challenged in the past
decade. There is growing evidence showing that many organelles without a membrane
(hereafter membraneless organelles) exist and that they also provide distinct biochemical
environments that are able to perform specific tasks inside the cell [3]. As a result, liquid-
liquid phase separation, the process in which a homogeneous mixture splits into different
liquid phases, has gained an enormous amount of attention in the context of intracellular
organization [3, 5–7]. Although the idea of liquid-liquid phase separation as an organiz-
ing principle for the interior of the cell had been hypothesized before [8] and maybe even
observed [9–11], it was not until Brangwynne et al. [12] carefully showed that the germ
granules of the Caenorhabditis elegans1 (C. elegans) behave like liquid-like droplets. Germ
granules in general are organelles composed of various RNA and protein molecules that
are present in all germ cells [14], and they pass the genetic material to the next generation
of the organism. In the particular case of C. elegans, the germ granules are known as P
granules, which were the focus of the study of Brangwynne et al where they showed that

1C. elegans is a nematode (roundworm) which is an ideal model organism for experimentation due to
its very regular process of development [1] and due to its transparency that makes the animal ideal for
fluorescent microscopy [13].
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Figure 1.2: Biomolecular condensates in eukaryotic cells (cells with a nucleus). Examples
of biomolecular condensates in the cytoplasm, nucleoplasm and in the cell membranes. Image
adapted from [3]

P granules fuse, wet, exchange material with their surroundings, and drip the nucleus of
the cell just as if they were liquid drops. They further showed that P granules condense
and dissolve in a spatially regulated way, leading to the positioning of P granules to one
side of the C. elegans embryo before the first cell division. This work thus provided strong
evidence for liquid-liquid phase separation as an organizing principle in the cell.

After P granules were shown to behave like liquid drops, many new studies have charac-
terized a rich variety of so-called membraneless organelles which are also termed biomolecu-
lar condensates [3]. In this work we use the terms indistinguishably. The name biomolecular
condensates might be preferred sometimes since it reflects their true nature given that they
are distinct biochemical environments that condense together specific proteins and RNA.
One possible function of these condensates is that they may serve as distinct biochemical
environments inside the cell. Such biomolecular condensates emerge in many contexts,
with some of them forming as a response to changes in the intracellular environment such
as temperature increase or a drop in the cytosolic pH [15, 16], whereas others exist in nor-
mal intracellular conditions [12, 17, 18]. The picture of intracellular organization shown in
Fig. 1.1 should then be complemented with one that includes the growing body of mem-
braneless organelles or biomolecular condensates (that are being currently studied). An
important remark is that not all of the known biomolecular condensates behave like liquids
but still many of them do seem to form via phase separation, and at least on early stages
after their formation they behave like liquid drops. A sketch showing some biomolecular
condensates in the cell is shown in Fig. 1.2.
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Fig. 1. P granule localization is not due to cytoplas-
mic flow. (A) Fluorescent images of GFP::PGL-1 (green)
superimposed on differential interference contrast
(DIC) (red). Time relative to pronuclear meeting (pnm).
A, anterior; P, posterior. (B and C) The movement of P
granules is similar to the movement of yolk granules.
(B) Cytoplasmic flow field from PIV analysis of a single
embryo (blue DIC image) during symmetry breaking.
Yellow arrows indicate flow direction and magnitude.
(C) Maximum-intensity projection of confocal stacks of
GFP::PGL-1 P granules in the one-cell embryo during
symmetry breaking; first frame, –8 min, 7 s pnm; last
frame, –3 min, 30 s pnm; P granules in center of em-
bryo move posteriorly (red arrow), and P granules near
cortex move anteriorly (green arrows). (D) Overlay of P
granule trajectories (white) from five GFP::PGL-1 em-
bryos. Trajectories crossing into the posterior are shown
in red, and those crossing into the anterior are in green.
(E) Probability distribution of the location perpendicular
to the AP axis of P granules crossing the midpoint
[yellow line in (D)] into anterior (green) versus posterior
(red). (F) The average flux per embryo (mean T SEM,
n = 5) indicates negligible net flux.

Fig. 2. Spatiotemporal
changes in P granule size.
(A) P granules through-
out the one-cell embryo
are initially dissolving;
blue and red traces are
intensities of individual
GFP::PGL-1–labeled P
granules in the anterior
and posterior, respective-
ly. Trajectories in themid-
dle (black) are omitted
for clarity. (B)mex-5(RNAi)
(n = 5 embryos, blue
curve) abrogates the an-
terior dissolution seen in
WT GFP::PGL-1 embryos
(n = 8, red curve),
whereas par-1(RNAi)
(n = 6, green curve)
gives rise to dissolution
throughout the embryo,
as with spd-5(RNAi) em-
bryos before symmetry
breaking (n = 8, black curve). Data are shown as the mean T SEM. (C) Example
anterior (A) and posterior (P) GFP::PGL-1–labeled P granule (each recentered),
showing anterior dissolution, and posterior dissolution followed by condensation.
(D) Time sequence of GFP::PGL-1 embryo treated with spd-5(RNAi) for >24 hours
to delay symmetry breaking. P granules completely dissolve, but then re-form

upon symmetry breaking. (E) Fluorescence intensity in anterior (A) versus posterior
(P) regions of a confocal slice through the middle of the embryo, after complete
P granule dissolution in spd-5(RNAi) GFP::PGL-1 embryos. Regions of measure-
ments indicated (mean T SEM, n = 8). (F) The growth rate of P granules in the
embryo posterior (arrow).
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P granules

Nucleolus

Figure 1.3: Liquid-like organelles in the cell. (a) Nucleoluls in Xenopus laevis exhibits a mul-
tilayer structure, the colors reflect the fluorescence of proteins that localize in different layers of
the nucleolus. Scale bar, 20µm. Image adapted from [18]. (b) P granules in the C. elegans em-
bryo. Image adapted from [12].

1.2 Liquid phase separation as an organizing principle in the
cell

Since the ground breaking work of Brangwynne et al. [12], there have been myriads of
studies focused on studying the role played by liquid-liquid phase separation in the com-
partmentalization of the cell [15, 17–31]. Some of these studies showed that previously
known membraneless compartments actually have liquid-like properties and that they are
likely formed via liquid-liquid phase separation. In addition to P granules (Fig. 1.3(b)),
some of these compartments are nucleoli [19] (Fig. 1.3(a)), stress granules [15, 32] and
Cajal bodies [17].

Biomolecular condensates that form via liquid phase separation have a natural degree
of selectivity without the need of a membrane. This is a natural consequence of phase
separation, if the demixing process is driven by attractive inter-molecular interactions, then
one expects that proteins which phase separate will attract some of their binding partners.
Because biomolecular condensates are enriched in specific proteins, it has been proposed
that they may also act as suitable environments for specific biochemical reactions with
increased reaction rates as compared to those in the cytosol [3]. Another very interesting
aspect of these liquid-like organelles is that they can assemble and disassemble in short
time scales, providing a response mechanism to drastic changes in the environment [15, 33].
A prominent example in this regard are stress granules, that are rapidly formed after the
cell is exposed to stress conditions such as heat shocks or acidification of the cytosol. Many
different proteins are recruited into these granules as a protective measure [30, 34] and the
granules persist until the environmental conditions are brought back to normal. Another
interesting example of biomolecular condensates is the nucleolus, an organelle located inside
the nucleus [18, 19, 22] which is in charge of producing the necessary elements for ribosome
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assembly [35]. It has been shown [18], that the nucleolus is a liquid phase that has an
inner multilayered structure. This structure is reminiscent of liquid multi-phase behavior
in which two of the liquid phases have different surface tensions relative to the solvent,
leading to one of them being engulfed by the other in order to reduce the energetic cost
of forming an interface with the solvent. A picture of a nucleolus taken with fluorescent
microscopy is shown in Fig. 1.3(a) [18], where one can appreciate different layers, that
were shown to behave as distinct liquid phases. The colors in the image show fluorescently
labeled proteins that are known to localize in different layers inside the nucleolus. The
multilayered structure is thought to facilitate the processing of rRNA (ribosomal RNA) by
different enzymes at different layers before the rRNA ultimately exits the nucleolus and is
transported to the cytoplasm to assemble ribosomes [18]. Interestingly, one can see that
a complex but flexible degree of organization can be achieved by liquid phase separation
without the need of a membrane. It is worth saying that RNA plays a prominent role
in the assembly of biomolecular condensates [18, 22, 23, 25, 27–29, 36–38], this is related
to the fact that many constituent proteins of biomolecular condensates are RNA-binding
proteins. We address the RNA effect on phase separation in one chapter of this thesis where
we study an RNA-binding competition mechanism underlying P granule segregation.

In this section we did not intend to provide an exhaustive list of biomolecular conden-
sates and their functions. Instead, by discussing some of their features and their ubiquity
in the cell, we wanted to motivate a reason for studying the process of liquid-liquid phase
separation in the context of a cell. In the following, we discuss two examples of biological
phenomena that motivated the physical models presented in this thesis. The first one is
the P granule segregation to the posterior side of the C. elegans embryo prior to the first
cell division [12, 28, 39] and the second one is the widespread macromolecular assembly in
yeast cells occurring as a response to stress conditions such as starvation [16].

1.3 P granule segregation in the C. elegans embryo

P granules were the first organelles which were thoroughly characterized as liquids in the
seminal work of Brangwynne et al. [12]. Where they used a fluorescently labeled protein
known to localize in P granules, namely PGL-1, to observe how P granules localize on
one side of the worm (C. elegans). The process of P granule segregation to the posterior
happens as follows (Fig. 1.4): First, P granules are homogeneously distributed across the
embryo. Then, there is a symmetry breaking in the embryo and an anterior-posterior axis is
established. After the symmetry breaking in the embryo, a MEX-5 gradient is established
along the anterior-posterior axis (not shown in the figure); MEX-5 is an RNA-binding
protein implicated in the degradation of P granule components [12]. The gradient is estab-
lished as a consequence of a diffusivity gradient related to different phosphorylation rates
of MEX-5 along the anterior-posterior axis [40], with the establishment of the gradient
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Fig. 1. P granule localization is not due to cytoplas-
mic flow. (A) Fluorescent images of GFP::PGL-1 (green)
superimposed on differential interference contrast
(DIC) (red). Time relative to pronuclear meeting (pnm).
A, anterior; P, posterior. (B and C) The movement of P
granules is similar to the movement of yolk granules.
(B) Cytoplasmic flow field from PIV analysis of a single
embryo (blue DIC image) during symmetry breaking.
Yellow arrows indicate flow direction and magnitude.
(C) Maximum-intensity projection of confocal stacks of
GFP::PGL-1 P granules in the one-cell embryo during
symmetry breaking; first frame, –8 min, 7 s pnm; last
frame, –3 min, 30 s pnm; P granules in center of em-
bryo move posteriorly (red arrow), and P granules near
cortex move anteriorly (green arrows). (D) Overlay of P
granule trajectories (white) from five GFP::PGL-1 em-
bryos. Trajectories crossing into the posterior are shown
in red, and those crossing into the anterior are in green.
(E) Probability distribution of the location perpendicular
to the AP axis of P granules crossing the midpoint
[yellow line in (D)] into anterior (green) versus posterior
(red). (F) The average flux per embryo (mean T SEM,
n = 5) indicates negligible net flux.

Fig. 2. Spatiotemporal
changes in P granule size.
(A) P granules through-
out the one-cell embryo
are initially dissolving;
blue and red traces are
intensities of individual
GFP::PGL-1–labeled P
granules in the anterior
and posterior, respective-
ly. Trajectories in themid-
dle (black) are omitted
for clarity. (B)mex-5(RNAi)
(n = 5 embryos, blue
curve) abrogates the an-
terior dissolution seen in
WT GFP::PGL-1 embryos
(n = 8, red curve),
whereas par-1(RNAi)
(n = 6, green curve)
gives rise to dissolution
throughout the embryo,
as with spd-5(RNAi) em-
bryos before symmetry
breaking (n = 8, black curve). Data are shown as the mean T SEM. (C) Example
anterior (A) and posterior (P) GFP::PGL-1–labeled P granule (each recentered),
showing anterior dissolution, and posterior dissolution followed by condensation.
(D) Time sequence of GFP::PGL-1 embryo treated with spd-5(RNAi) for >24 hours
to delay symmetry breaking. P granules completely dissolve, but then re-form

upon symmetry breaking. (E) Fluorescence intensity in anterior (A) versus posterior
(P) regions of a confocal slice through the middle of the embryo, after complete
P granule dissolution in spd-5(RNAi) GFP::PGL-1 embryos. Regions of measure-
ments indicated (mean T SEM, n = 8). (F) The growth rate of P granules in the
embryo posterior (arrow).
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Figure 1.4: P granule segregation in the C. elegans embryo. Time lapse showing the localiza-
tion of P granules from an originally homogeneous distribution across the embryo to the poste-
rior side. The protein PGL-1, which localizes in P granules, is tagged with a green fluorescent
protein. In the upper left panel, A represents the anterior side of the embryo and P the poste-
rior. The time is measured relative to the time when the two pronuclei (hollow circles) meet,
panel with legend pnm = 0 min. Panels are adapted from [12]

there is a concomitant positioning of P granules to the posterior side of the embryo. Fi-
nally, at the stage prior to cell division, P granules are fully localized on the posterior side.
The cell which contains the P granules after the first cell division gives rise to the sexual
progenitors of the organism. A hint at the underlying mechanism of P granule positioning
is given by the fact that the MEX-5 gradient anti-correlates with the positioning of the P
granules.

Let us briefly review the experimental observations that led to conclude that P gran-
ules are liquid-like drops whose dissolution and condensation is spatially controlled. We
first discuss the evidence showing that P granules behave like liquids. P granules were
observed to fuse with one another, the fluorescence of tagged proteins was shown to re-
cover after photobleaching (disabling the fluorescent label) by exchanging material with
their surroundings. They further seemed spherical just as one expects from a liquid due to
surface tension, and finally, they were shown to flow when they were under pressure. All
these facts together led the authors to recognize P granules as liquid-like drops. Regard-
ing the spatial control of dissolution and condensation, it was reported that P granules
do not segregate to the posterior side by a net current flow, but instead they dissolve at
the anterior side where MEX-5 has a higher concentration and condense at the posterior
side where the concentration of MEX-5 is lower. This was corroborated by studying a ge-
netically modified roundworm (C. elegans) which did not express MEX-5, and as a result
there was no concentration gradient established. This led formation of to worms with a
homogeneous distribution of P granules that did not dissolve with time. Brangwynne et
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al. concluded the work by hypothesizing that the localization of P granules is due to a
demixing transition where the saturation concentration for phase separation depends on
the properties set by the concentration gradient along the anterior-posterior axis.

The aforementioned work set the basis for understanding liquid phase separation as an
organizational mechanism in the cell by showing how the spatially controlled dissolution
and condensation of P granules lead to their localization. Although the mechanism of a
controlled saturation concentration was proposed, the underlying physics of this control
remained elusive. The question on how the condensation and dissolution of P granules are
set by the gradient of MEX-5 was addressed in a collaboration [28]. In this work we found
that an mRNA-binding competition between P granule components and MEX-5 might be
the mechanism underlying this segregation. We present these results in Chapter 5.

1.4 Macromolecular assembly as a response to stress

Cells under stress conditions often transition from a normal growth state to a stalled
condition where growth is inhibited [33, 41]. One of their responses to a wide range of
stresses such as starvation and heat shocks, is to form so-called stress granules, which are
assemblies of many different cytosolic proteins and RNA [34, 42]. This assemblage seems
to be a protective measure. For instance, when stress granules form as a response to heat
shocks, they sequester the mRNA2 encoding for most of the proteins of the cell except for
those who encode for heat shock proteins which are needed to diminish the damage caused
by the heat stress [43].

Here, we particularly discuss the budding yeast (hereafter yeast)3 response to changes in
its intracellular acidity, quantified by a drop of the cytosolic pH after the cells are exposed
to periods of starvation. This response was studied in the work of Munder et al. [16], in
which they showed that a drop in the cytosolic pH leads to a liquid-solid transition of
the cytosol. They assessed this behavior by tracking the mobility of tracer particles via
fluorescent labeling. Munder et al. showed that the dormant stage attained when the cells
are exposed to starvation periods, is associated to a decrease in the mobility of the particle
tracers. They then quantified the cytosolic pH in starvation conditions. At normal growth
conditions for yeast cells, the cytosolic pH is close to neutrality pH ' 7.3. In contrast,
when the cells experienced starvation, their cytosolic pH drops to pH ' 5.8. Interestingly,
since it is well known that pH has a strong effect on the solubility of different proteins [45–
47], they analyzed the isoelectric point4 distribution of the yeast proteome5 and found

2mRNA is the sequence of base pairs translated by ribosomes in order to produce specific proteins
encoded in the mRNA sequence.

3Budding yeast (Saccharomyces Cerevisiae) has been used as an experimental organism for more
than 50 years, it is easy to treat and plenty of its genes are found in many other eukaryotic cells [44].

4The isoelectric point of a macromolecule is defined as the pH value for which the macromolecule
does not carry a net charge on average.

5The proteome is the entire set of all different proteins of an organism
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Figure 1.5: Macromolecular assembly dependence on pH. (a) Isoelectric point distribution for
the yeast proteome shown as a function of the protein molecular weight. The green line repre-
sents the pH at optimal growth for yeast cells and the pink line shows the cytosolic pH upon
energy depletion. (b) Macromolecular assembly upon acidification of the cytosol. Top row: flu-
orescently labeled proteins which form assemblies at pH = 5.5 . Bottom row: Proteins are well-
mixed for normal conditions of pH. for different. Both panels are adapted from [16]

that the distribution has two peaks, one that is close to values of pH ' 5.5 and other close
to pH ' 9, which is in agreement with previous work [48]. The bimodal distribution is
shown in Fig. 1.5(a). Remarkably, what they found was that the pH of the cytosol under
starvation conditions (pink line in Fig. 1.5(a)), was relatively close to the isoelectric point
of many cytosolic proteins. With this in mind, using fluorescent microscopy they probed
a large set of proteins and observed what happened if the cytosol was brought to a pH
value of 5.5 by equilibration with a buffer. Results for some proteins tagged with a green
fluorophore are shown in Fig. 1.5(b), where it can clearly be seen that at pH = 7.4 the
proteins are well-mixed in the cytosol. In stark contrast, they found that these proteins
formed different types of assemblies for acidic pH. Then, they probed the relevance of these
pH-dependent protein assemblies in the cell under starvation conditions but keeping the
cytosolic pH close to pH ' 7 to prevent macromolecular assembly. What was found is that
the macromolecular assemblies were needed for survival of the cells and thus concluded
that these assemblies play a protective role under stress conditions [16].

Although the work that we have just discussed was concerned with the transition from
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fluid to solid of the cytosol, it emphasized the importance of pH control in the cell, and
not only that, it clearly showed a close connection between protein assembly in the cell
and the isoelectric point distribution of the cell proteome. An interesting question that
arises is the following: Can we explain the process of phase separation as a function of
pH? We address this question in Chapter 4, where we propose a minimal model to study
pH-dependent liquid-liquid phase separation.

In this section we have only discussed the pH-dependence of macromolecular assembly
in living organisms, that is, we discussed what is known as in vivo experiments. Never-
theless, important insights into the mechanisms of protein liquid-liquid phase separation
(hereafter protein phase separation) can also be obtained via experiments in a test tube (in
vitro). For example, there is in vitro evidence showing that a constituent protein of stress
granules exhibits reversible pH-dependent phase separation [30]. Given the usefulness of
in vitro experiments to unravel the driving mechanisms of protein phase separation, in
the next section, we briefly discuss experiments where it was found that many constituent
proteins of different biomolecular condensates phase separate in vitro.

1.5 Protein phase separation in vitro

Interesting insights of the mechanisms driving protein phase separation can be drawn from
experiments in test tubes. The great advantage of performing in vitro experiments is
the possibility of having a high level of control as compared to experiments performed
on living organisms which undergo all kind of processes that cannot be controlled by the
experimenter.

Since the work by Brangwynne et al., experimental studies on protein phase separation
in vitro have sharply increased [18, 22, 23, 26–28, 30, 31, 34, 38, 39, 49, 50]. One important
observation that has been repeatedly made is that many constituent proteins of biomolec-
ular condensates undergo liquid-liquid phase separation in buffer solutions6 at remarkably
low concentrations of the order of µM [23, 28, 30, 38, 39, 51]. It has also been shown that
purified proteins which are found in the nucleolus show a similar multilayered structure
in vitro as the one observed in vivo [18]. Suggesting that the properties of biomolecular
condensates might be defined by only a few key components. Another interesting aspect
of studying protein phase separation in vitro, is the possibility of assessing the interactions
among components of the same biomolecular condensate. Given that RNA is found in
many if not all of the biomolecular condensates, it is of particular interest to study the ef-
fect of RNA in protein solutions. This has been addressed experimentally in many different
studies [3, 18, 22, 23, 25, 27–29, 37, 38, 52], where the studies were done with biomolecular
condensates constituents that can bind to RNA. The results of the influence of RNA on

6buffers are mixtures of ions and water which mimic the physiological conditions of salt and pH,
among other properties)
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protein phase separation are various. It has been reported that small amounts can promote
protein phase separation [28] but it was also shown that it may act as an inhibitor of the
demixing of other proteins [34]7. One study [38] showed that low ratios of RNA to protein
promote phase separation, whereas high ratios may be used to inhibit it. The authors of
this study suggested that this may explain why some proteins are soluble in the nucleus
(which has a high content of RNA) in comparison to their irreversible association in the
cytoplasm that might start by protein phase separation. Thus protein-RNA associations
seem to play an important role in the regulation of biomolecular condensates assembly.
Lastly, the fact that some proteins undergo pH-dependent phase separation indicates that
protonation and deprotonation reactions might also play an important role in order to de-
termine the phase behavior of some proteins. We devote Chapter 4 to theoretically study
this scenario.

Thus far we have reviewed the ubiquity of protein condensates in living organisms, some
prominent examples of liquid phase separation in the cell, and experimental evidence of
protein phase separation in vitro. In addition, we discussed that biomolecular condensates
are enriched in proteins and RNA, however, we have not yet described the nature of the
proteins that take part in these processes. These proteins have the special attribute of
belonging to a class of proteins which are called intrinsically disordered. In the next
section we discuss what an intrinsically disordered protein is and introduce their relevant
properties.

1.6 Intrinsically disordered proteins

Proteins are complex macromolecules defined by a unique sequence of amino acids. For a
long time it was believed that each sequence of amino acids corresponded to a protein with
a well defined three dimensional structure that was directly linked with their biological
function [53]. However, in the past two decades there has been growing evidence relating
what is called structural disorder, i.e., the lack of a fixed three dimensional structure,
with protein function[53, 54]. Remarkably it has been consistently shown that constituent
proteins of biomolecular condensates often belong to the class of intrinsically disordered
proteins. We now discuss their properties in comparison to those of globular proteins,
trying to understand why are they found in protein condensates.

There are important differences between proteins which have a well defined three di-
mensional structure (globular proteins) and proteins with intrinsically disordered regions
(intrinsically disordered proteins) that do not fold in a three dimensional structure but
have an ensemble of configurations. For example, intrinsically disordered proteins are
flexible [53], resembling polymer chains. In contrast, globular proteins tend to be rigid

7This work concerns the Pab1 protein, which seems to form irreversible aggregates after phase sepa-
ration, thus RNA may be acting here as an aggregation inhibitor
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structures, which might be better described as colloids [55]. Another difference is the
ability of globular proteins to form crystals, whereas intrinsically disordered proteins can-
not [56]. Interestingly both types of proteins undergo liquid-liquid phase separation but
with different features; globular proteins undergo liquid phase separation with a condensed
liquid phase that is considered to be a metastable state for protein solutions undergoing
slow crystallization [57, 58]. It is metastable because the condensed phase will slowly turn
into a crystal as the final stable structure. Some intrinsically disordered proteins undergo
a stable liquid-liquid phase separation, meaning that having a phase with low protein con-
centration coexisting with a condensed protein phase will remain so for very long periods
of time, hence, in practice we consider this be stable8. A last point we would like to
mention is that intrinsically disordered proteins have the ability of interacting with many
simultaneous partners due to their flexibility and they are known to bind to RNA via spe-
cific motifs that are found along their sequences [55]. Curiously, even though there were
signals of the ubiquity of structural disorder in proteins for a long time, they were all but
ignored. It is now estimated that between 15-45% of eukaryotic proteins are intrinsically
disordered [53]. This takes us back to protein phase separation in living organisms, which
is also ubiquitous and it was long overlooked. Most of the constituent proteins of biomolec-
ular condensates possess intrinsically disordered regions, characterized by their ability of
having multiple simultaneous interacting partners as a consequence of their structural dis-
order. Interestingly, intrinsically disordered proteins and protein phase separation in living
organisms seem to go hand in hand, thus, the fact that intrinsically disordered proteins are
polymer-like flexible structures, encourage us to use the models and techniques developed
for the study of liquid phase separation in polymer systems in our endeavor to understand
the underlying principles driving protein phase separation inside the cell.

In all of the previous sections, we have tried to motivate the interest in studying protein
phase separation in the context of living organisms as well as in in vitro experiments. We
have seen that protein phase separation is a versatile tool for organizing the interior of a
cell, and thus, we believe that developing a physical understanding of the processes that
give rise to this organization is in order. In the rest of the chapter, we define the basic
physical concepts needed to understand protein phase separation, and as a starting point
we introduce the Flory-Huggins model [59, 60], a well-known model used to describe the
thermodynamic behavior of polymer solutions.

8Think of a glass of water left on a table, for practical purposes the water is at equilibrium with
its vapor. Nevertheless, if we leave the glass of water for long enough sitting on the table, all the liquid
water would become vapor, which would mean that the liquid water was actually a metastable state.
Thus metastability is in practice a matter of time scales.
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1.7 The Flory-Huggins free energy

As we discussed in the previous section, intrinsically disordered proteins may be, to a
certain extent considered flexible polymers. Following this line of reasoning, in this work,
we describe protein solutions (mixtures) by means of the Flory-Huggins model, which
was developed by Huggins [59] and Flory [60] to explain the thermodynamic behavior
of polymer mixtures. This model successfully captures the effects of large differences in
the molecular volumes of the components of the system. This is a desirable quality in a
model given that proteins are much larger than their solvent counterparts. In addition, it
takes into account interactions per monomer, which seems reasonable if we want to consider
weak protein interactions via flexible segments of intrinsically disordered proteins. We now
introduce the Flory-Huggins model in its simplest version and provide a brief explanation
of the terms describing the thermodynamics of a binary polymer-solvent mixture.

Let us consider a system composed of two components: a polymer (a large macro-
molecule) and solvent (a small molecule like water). The polymers and solvent molecules
are placed on a regular lattice which has a fixed volume. Each cell of this lattice has a
volume v0 and the lattice has N cells, thus the total volume of the lattice is given by
V = v0N . The volume of a solvent molecule is equal to the volume of a lattice cell v0,
and polymers are composed of monomers with each of them having a volume v0. Hence a
polymer composed of ` monomers occupies ` lattice cells and has a volume vP = v0 `. In
this model we also consider that the total volume is the sum of the volumes occupied by
polymers and solvent molecules, given by V = vPNP + v0N0, where NP and N0 are the
particle numbers of polymers and solvent, respectively. If additionally to the previous con-
siderations, we also consider short-range interactions among the components, the system
can be described by the free energy of mixing Fmix, given by

Fmix = kBT [NP lnφP +N0 lnφ0 + χN0φP ] , (1.1)

where kB is the Boltzmann constant, T is the temperature, φP = vPNP /V is the polymer
volume fraction, φ0 is volume fraction of the solvent and χ is the Flory-Huggins parame-
ter defined by χ = z(2εP0 − εPP − ε00)/2kBT , where εPP denotes the monomer-monomer
interaction strength, ε00 the interaction between solvent components, εP0 the interaction
between monomers and solvent, and z is a value related to the number of neighbors in
each lattice site, for a cubic lattice z = 6. The logarithmic terms represent the mixing
entropy which favors the homogenization of the polymer-solvent mixture. In contrast,
the term which contains the χ parameter battles against mixing, this is due to attractive
interactions among components of the same kind, which is the most frequent case. The
basic mechanisms driving mixing and demixing are captured by these two terms. Be-
fore we discuss how a system undergoes liquid phase separation, we introduce a general
multicomponent mixture description based on the Flory-Huggins free energy.
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1.8 Thermodynamics of multicomponent mixtures

Our main interest in studying the thermodynamics of multicomponent mixtures lies in the
fact that the interior of a cell has a multicomponent nature. For example, the cytosol
is composed of many different macromolecules (e.g., proteins, RNA and lipids) and ions
immersed in water [61, 62]. Although the cytosol is a complex fluid where many of its
components are taking part in out-of-equilibrium processes, we consider a multicomponent
mixture with a well defined thermodynamic potential as a first step towards understanding
some of the processes taking place inside the cell.

For this purpose, let us discuss the thermodynamics of incompressible multicomponent
mixtures based on the well-known mean field Flory-Huggins free energy (1.1). The entropy
is modeled by the Flory-Huggins mixing entropy and the interactions are considered to be
short-ranged [59, 60, 63]. We begin our discussion by considering the multicomponent
mixture in the (T, P, {Ni}) ensemble, where the temperature is denoted by T , the pres-
sure by P , the particle number of molecules of type i by Ni and {Ni} is the set of all
particle numbers corresponding to the different types of molecules in the system. The cor-
responding thermodynamic potential is the Gibbs free energy G(T, P, {Ni}) and its deriva-
tives define the thermodynamic conjugate variables. The entropy is S = − ∂G/∂T |P,{Ni},
the chemical potential is µi = ∂G/∂Ni|T,P,{Nj 6=i} and the volume of the system is V =

∂G/∂P |T,{Ni} [64]. An incompressible system satisfies −(1/V )∂V/∂P |T,{Ni} = 0, which
states that the volume of the system is independent of pressure. The volume of an
incompressible mixture is thus given by V =

∑
i viNi, where the molecular volumes

vi = ∂V/∂Ni|T,{Nj 6=i} are constants. The Gibbs free energy describing a multicomponent
mixture composed of M + 1 components can be written as follows [63]

G(T, p, {Ni}) = kBT




M∑

i=0

Ni lnφi +
V

2

M∑

i,j=0

χij
v0
φiφj


+

M∑

i=0

wiNi + p V , (1.2)

where kB denotes the Boltzmann constant, φi = viNi/V is the volume fraction of compo-
nent i, χi,j stands for the interaction strength between components of type i and j, wi are
the free energies due to internal degrees of freedom of molecules of component i, and v0 de-
notes the molecular volume of the solvent. In its simplest form, the interaction parameters
χi,j can be expressed as the sum of two contributions χij = χSij + χHij /T , where χ

S
ij is an

entropic contribution and χHij is an enthalpic (energetic) contribution. These interaction
parameters can be related to the commonly used Flory-Huggins interaction parameter by a
simple transformation (see Appendix A). The chemical potentials of the system are given
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by

µi = kBT


lnφi + 1− vi

M∑

j=0

nj + vi

M∑

j=0

χij
v0
φj −

vi
2

M∑

j,l=0

χjl
v0
φjφl


+ wi + vi P , (1.3)

where we introduced ni = Ni/V as the concentration of molecules of type i.
We now define the corresponding free energy F = G + pV in the ensemble where the

volume is kept fixed. One subtlety arises from the fact that the system is incompress-
ible. Since the volume of the system is independent of pressure and it only depends on
the number of particles, we can arbitrarily eliminate one of the particle numbers when
performing the corresponding Legendre transform which changes the description from the
(T, P, {Ni}) ensemble to the (T, V, {Ni}) ensemble. A common choice and the one that
we also use throughout this work is to eliminate the solvent particle number N0 from the
description and express it as a function of the volume and the rest of the particle numbers
as N0 = (V −∑M

i=1 viNi)/v0. An immediate consequence of eliminating the solvent com-
ponent is the appearance of new thermodynamic conjugate variables in the ensemble of
fixed volume. To show that this is the case, let us first remember that the differential of the
Gibbs free energy is dG = −SdT + V dP +

∑M
i=0 µidNi [64]. Using this expression we can

calculate the differential dF = d(G+ pV ) by eliminating the solvent from the description
we obtain

dF (T, V, {Ni 6=0}, N0(V, {Ni 6=0})) = −SdT −
(
P − µ0

v0

)
dV

+

M∑

i=1

(
µi −

vi
v0
µ0

)
dNi , (1.4)

where on the left hand side we show the dependence of the solvent particle number on
the volume and the rest of the particle numbers as N0(V, {Ni 6=0}), and on the right hand
side we use the relation dN0 = (dV −∑i 6=0 viNi)/v0. From Eq. (1.4) we identify the new
thermodynamic conjugate variables of the volume and the particle numbers (the conjugate
variable to the temperature T does not change, i.e. it still is the entropy S). These
thermodynamic conjugate variables are

Π = P − µ0/v0 , (1.5)

µ̄i = µi − vi µ0/v0 , (1.6)

where we introduced the osmotic pressure Π [65] and the exchange chemical potential µ̄i
of molecules of type i with respect to the solvent. To clarify the meaning of the osmotic
pressure Π, let us think of a vessel divided into two compartments separated by a semi-
permeable membrane that only allows solvent to pass through. One of the compartments
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is filled with pure solvent, the other one with a mixture containing other molecules and
solvent. The osmotic pressure is then defined as the pressure that needs to be applied to
the mixture to stop the solvent from flowing through the membrane [66]. The exchange
chemical potential of component i, µ̄i, defines the free energy cost of exchanging one
molecule of component i for a number of solvent molecules occupying the same volume.
Using Eqs. (1.5)-(1.6) we then write the differential of the free energy at fixed volume,
Eq. (1.4), in a compact form as

dF (T, V, {Ni}) = −SdT −ΠdV +
∑

i

µ̄idNi , (1.7)

where the index i runs through all components except for the solvent. From now on, when
we discuss a system in the fixed volume ensemble, the indices in the sums will be taken to
run through all components except for the solvent, unless otherwise stated. We define the
free energy density at fixed volume f in the following equation

F (T, V, {Ni}) = V f(T, {ni}) , (1.8)

where we used the fact that the free energy F is a homogeneous function of the first order
(i.e. an extensive quantity) [64]. In our studies of phase separation we mainly focus on the
properties of the free energy density f , because its convexity defines the stability of the
system. We use Eq. (1.7) and Eq. (1.8) to express the osmotic pressure and the exchange
chemical potential in terms of the free energy density as

Π(T, {ni}) =
∑

i

ni
∂f

∂ni

∣∣∣∣
T,{nj 6=i}

− f , (1.9)

µ̄i(T, {ni}) =
∂f

∂ni

∣∣∣∣
T,{nj 6=i}

. (1.10)

We now explicitly write the free energy density f = G/V + P with G given by Eq. (1.2),
which reads

f(T, {ni}) = kBT


∑

i

ni lnφi +
1

2v0

∑

i,j

χijφiφj


+

∑

i

wiφi

+ kBT

(
(1−∑i φi)

v0
ln

(
1−

∑

i

φi

)
+
∑

i

χi0
v0
φi

(
1−

∑

i

φi

))

+ w0

(
1−∑i φi

v0

)
. (1.11)

The second and third lines show contributions where the solvent is involved, in such con-
tributions the volume fraction of the solvent has been expressed in terms of the rest of the
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components as φ0 = 1 −∑i φi to show explicitly that the solvent has been eliminated.
We would like to stress that in an incompressible system the volume fractions and concen-
trations can be used interchangeably to describe the system since they are connected via
φi = vini.

In this section we have introduced all the relevant thermodynamic concepts for studying
multicomponent mixtures. In the next section we use these concepts to discuss how liquid
phase separation emerges in a multicomponent description.

1.9 Liquid phase separation as a thermodynamic instability

The origin of liquid-liquid phase separation can be understood using a simple argument in
terms of the free energy F of the system. The system will separate into two different liquid
phases if the sum of the free energies of both phases is lower than that of a well mixed
homogeneous phase. The previous statement can be expressed in terms of the free energy
density as

V If
(
T, {nI

i}
)

+ V IIf
(
T, {nII

i }
)
< V f (T, {ni}) , (1.12)

where T is the temperature, V I and V II are the volumes of the two different phases which
add up to the total volume V = V I +V II and the number of particles of each component in
the two different phases N I

i = V InI
i and N

II
i = V IInII

i add up to the total particle number
Ni = V ni. We can interpret Eq. (1.12) as a violation of the convexity of the free energy,
which leads to a thermodynamic instability [64]. The local stability of the free energy in
concentration space can be discussed in terms of the second derivative matrix of the free
energy density

H =
∂2f

∂ni∂nj
, (1.13)

where H is the Hessian of the free energy density. A composition (a point in the con-
centration space) is considered locally stable if H evaluated at that composition has all
eigenvalues being positive. If one of the eigenvalues becomes zero for a given composition,
the system is locally unstable and exhibits a thermodynamic instability [67]. The loci of
points for which detH = 0, is called the spinodal and can be understood as the boundary
between locally stable and locally unstable points.

The convexity of the free energy defines which compositions are thermodynamically
stable and which ones are not, however, the convexity criterion alone is not enough for
finding the compositions that coexist with each other. In the following we find the condi-
tions defining the equilibrium between coexisting phases.
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1.10 Phase coexistence conditions

We now derive the conditions for phase coexistence in a multicomponent mixture. We
begin by specifying a functional F , which accounts for the free energy contributions from
the two different phases in addition to the conservation of particles and the conservation
of volume included as constraints enforced by two Lagrange multipliers. The functional to
be minimized reads

F = V If(T, {nI
i}) + V IIf(T, {nII

i })
+

∑

i

µ̄i(N − V InI
i − V IInII

i )−Π(V − V I − V II) , (1.14)

where the Lagrange multipliers µ̄i and Π enforce the constraints of conservation of particles
and conservation of volume, respectively. We specifically choose the symbols denoting
the exchange chemical potential and the osmotic pressure precisely because, as we show
below, the Lagrange multipliers enforcing the constraints are defined by the exchange
chemical potential and the osmotic pressure. In order to find the coexistence conditions
for a multicomponent mixture with fixed volume V and a fixed number of particles of
each component Ni, we must find the minimum of the functional F . The conditions for a
minimum of F are

1

V I

∂F
∂nI

i

=
∂f I

∂nI
i

− µ̄i = 0 , (1.15)

1

V II

∂F
∂nII

i

=
∂f II

∂nII
i

− µ̄i = 0 , (1.16)

∂F
∂V I

= f I −
∑

i

µ̄in
I
i + Π = 0 , (1.17)

∂F
∂V II

= f II −
∑

i

µ̄in
II
i + Π = 0 , (1.18)

where for brevity we used f I = f(T, {nI
i}) and f II = f(T, {nII

i }). We do not include
the derivatives with respect to the Lagrange multipliers since these derivatives are the
conservation laws. By solving for a minimum of F we find the following conditions

µ̄i =
∂f I

∂nI
i

=
∂f II

∂nII
i

, (1.19a)

Π =
∑

i

∂f I

∂nI
i

nI
i − f I =

∑

i

∂f II

∂nII
i

nII
i − f II . (1.19b)

These conditions have a simple interpretation. Eq. (1.19a) states that the exchange chem-
ical potential for every component must be the same in both phases and Eq. (1.19b) states
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that the osmotic pressure in both phases must be balanced. We could add one more inter-
pretation of the coexistence conditions. In order to do this, let us rewrite Eq. (1.19b) in
the following way

f II − f I −
∑

i

µ̄i(n
II
i − nI

i) = 0 , (1.20)

where we write µ̄i without any distinction between phases because it has the same value
in both of them. Interestingly, Eq. (1.20) can be interpreted geometrically as the equation
defining a common tangent hyper-plane in the concentration space. This shows that phases
which coexist live in a common tangent space of the free energy density f . For a system
with one independent component, Eq. (1.20) reduces to the well known common tangent
construction [68], which is the case that is usually presented in textbooks. Another relevant
concept is that of the binodal, which for a fixed set of intensive parameters (in this case
temperature) is defined as the set of all possible coexisting phases and it can be found by
solving for all the compositions fulfilling the coexistence conditions (1.19). Any composi-
tion lying inside of the region bounded by the binodal will undergo phase separation and
any composition outside of this region will remain homogeneously mixed. The particular
composition where the binodal and the spinodal meet, is called the critical point. The
critical point is the particular point in which phases that coexist become so similar that
they are completely indistinguishable from each other. In Appendix B we discuss general
local stability conditions and their connection to the criterion for finding the critical points
in multicomponent mixtures.

1.11 Phase diagram for a binary mixture

Let us now give a simple example to illustrate how the convexity of the free energy is
affected by changing the thermodynamic state (temperature or composition) of a binary
mixture. In this example we consider a binary mixture composed of a molecule with volume
fraction φ and of solvent (e.g. water) with volume fraction 1 − φ. For convenience, we
define the free energy per site fs = v0f (a common name coming from considering the
system in a lattice), where v0 is the molecular volume of the solvent and f is the free
energy density describing the binary mixture. The free energy density per site reads [65]

fs = kBT [εφ lnφ+ (1− φ) ln(1− φ) + χφ(1− φ)] , (1.21)

where χ is the Flory-Huggins interaction parameter and ε = v0/v is the ratio between the
molecular volume of the solvent and the molecular volume of the macromolecule v. For
simplicity, we discuss the case for ε = 1, which is called a regular solution. The system we
consider is one where there are only enthalpic interactions, i.e., χ = χH/T . For this system
high temperatures lead to mixing whereas low temperatures lead to phase separation. The



Phase diagram for a binary mixture 19

critical point can be found by solving the critical conditions, which for a one-component
system are given by: ∂2f/∂φ2 = 0 and ∂3f/∂φ3 = 0 (see Appendix B). Solving these
conditions one obtains a critical value for the temperature Tc and the volume fraction φc,
which for our simple case are given by Tc = χH/2, and φc = 1/2. The osmotic pressure
Π and the exchange chemical potential of the molecule µ̄, can be calculated by means of
Eqs. (1.9) and (1.10).

We now discuss the phase behavior of the system. We do so by analyzing µ̄ (Fig. 1.6(a)),
Π (Fig. 1.6(b)) and the free energy density per site (Fig. 1.6(c)) as a function of the
volume fraction φ for different temperature values. For T > Tc, the exchange chemical
potential and the osmotic pressure are monotonic increasing functions of φ (blue lines
in Fig. 1.6(a,b)). In this case, the free energy is convex for all values of φ (blue line in
Fig. 1.6(c)), thus the system is always homogeneously mixed. For T = Tc, the free energy
(black line in Fig. 1.6(c)) has zero curvature at the critical volume fraction φ = φc (black
point in Fig. 1.6(c)), which is reflected in inflection points in both µ̄ and Π (black points on
top of the black lines Fig. 1.6(a,b)). This is the signature of a thermodynamic instability.
For T < Tc, there is a non-monotonic behavior of µ̄ (orange line in Fig. 1.6(a)) and Π

(orange line in Fig. 1.6(b)) which means that there are regions where the free energy is
locally non-convex. In this case, we can perform a common tangent construction (green
line in Fig. 1.6(c)) on the free energy density (orange line in Fig. 1.6(c)) and find the
coexisting phases (green points in Fig. 1.6(c)). At this temperature, the system becomes
locally unstable for a volume fraction range where the curvature of the free energy is
negative, the boundary between the locally stable and unstable volume fractions gives
the spinodal points (stars in Fig. 1.6(c)). These points (stars in Fig. 1.6(a,b)) bound
the regions for which the slope of both µ̄ and Π, is negative. The coexisting phases
have equal values of exchange chemical potentials and osmotic pressures, which ensures
thermodynamic equilibrium between the phases.

The phase behavior of the system can be summarized in a phase diagram (Fig. 1.6(d)).
The curve defined by all the coexisting phases is called the binodal line (green solid line
in Fig. 1.6(d)), everything outside the binodal is a stable one-phase mixture, whereas
everything within the binodal undergoes a demixing transition. The coexisting phases
(green points in Fig. 1.6(d)) are connected by tie lines, which in this case are horizontal
lines (green dotted line Fig. 1.6(d)) since the temperature must be the same in both phases.
Any volume fraction lying on a tie line will split into the corresponding coexisting phases
from which the tie line is spanned. The volume occupied by each of the phases can be
calculated using the lever rule [65] which can be understood as follows: the fraction of the
system in each phase bears a relation to the distance of the initial homogeneous volume
fraction to the volume fraction of each phase. The largest fraction will be in the phase
whose volume fraction is closer to the initial volume fraction, thus if the binodal have just
been crossed, there will be an incipient phase (the one whose volume fraction is further
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Figure 1.6: Phase behavior of a binary mixture. (a) Exchange chemical potential. (b) Osmotic
pressure. (c) Free energy density per site. All three quantities are plotted as a function of the
volume fraction for three different temperatures: T < Tc (orange lines), T = Tc (black lines),
and T > Tc (blue lines). In (c) the common tangent (green line) connecting the coexisting phases
is shown. (d) Phase diagram for a binary mixture. The metastable region (light green shaded
region), the spinodal region (dark green shaded region), and the corresponding tie line for T <
Tc (green dotted line) connecting two coexisting phases are shown. In all panels, the black circles
correspond to a critical point, the black stars correspond to points located on the spinodal and
the green points represent coexisting phases.

away) and one that will almost occupy the whole volume. The critical point is located at
the meeting point of the binodal and the spinodal (dotted black line in Fig. 1.6(d)). It has
the unique property that if one approaches the binodal from below the critical temperature
for a system with critical volume fraction φc, the coexisting phases become more and more
similar until the critical point is reached and the two phases become indistinguishable.
This transition is called a continuous phase transition, or a second order phase transition.
If we were to do the same procedure with any other volume fraction located within the
region bounded by the binodal, going from low temperature to high temperature, what we
would find is a sudden change from having two coexisting phases, where one of the phases
will suddenly vanish and the other will occupy the whole volume in the system, this is
called a discontinuous transition or a first order transition.

For each pair of coexisting phases, the one with the smallest volume fraction is called
the dilute phase whereas the one with the largest volume fraction is called condensed phase.
Thus, in a simple binary mixture, the system separates in a molecule poor phase and a
molecule rich phase (in general terms, a macromolecule poor phase and a macromolecule
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rich phase)9. Furthermore, inside the binodal we can distinguish two different regions, the
spinodal region (dark green shaded region in Fig. 1.6(d)), bounded by the spinodal curve
(dotted black line in Fig. 1.6(d)) and the region between the binodal curve and the spinodal
curve, which is called metastable region (light green shaded region in Fig. 1.6(d)). In this
thesis the difference between these two regions is not relevant since we only study systems
that have reached thermodynamic equilibrium. The differences between these regions can
be observed in the dynamic relaxation towards equilibrium for a system that is initially set
in a volume fraction located within the binodal. The two regimes show very different growth
of the coexisting phases. In the metastable region, spherical droplets of the condensed
phase are nucleated and grow by both fusion and a process called Ostwald ripening where
big droplets grow at the expense of the smaller ones due to chemical potential differences.
In contrast, if the volume fraction is inside the spinodal region, the system undergoes
rapid changes in what is called spinodal decomposition until it reaches thermodynamic
equilibrium where there are two phases defined by the tie line which crosses the initial
composition.

We decided to present this lengthy discussion on how to read a phase diagram since they
will be heavily used throughout this work. Besides, by constructing the phase diagram of a
system one can predict its behavior for changes in compositions or other variables such as
temperature or pH. In Chapter 2 we discuss how to numerically construct phase diagrams.

To summarize the previous three sections, we have analyzed the thermodynamics of
multicomponent mixtures, presented the thermodynamic criterion for the occurrence of
a demixing transition and derived the coexistence condition. We believe that this ther-
modynamic framework can shed light on the mechanisms driving phase separation in the
cell, particularly, in this work we use equilibrium thermodynamics to study protein phase
separation on different scenarios where different reactions such as binding or protonation
and deprotonation of a protein are relevant. For this reason, we now briefly introduce the
standard knowledge of chemical reactions and chemical equilibrium.

1.12 Chemical equilibrium in multicomponent mixtures

Mixtures composed of many different components often undergo chemical reactions. We
define a set of chemical reactions by a stoichiometry matrix with elements νij . This con-
tains all the information about changes in compositions due to chemical reactions. More
precisely, the matrix element νij corresponds to the number of molecules of component j
that are transformed in the i-th chemical reaction. The convention we use is that νij is
negative if the component j is a reactant and negative if it is a product (the signs are just a
convention and can be reversed). For a system with s components, the chemical reactions

9This is not always the case for multicomponent systems, where the composition of the phases
strongly depend on the interactions in the system.
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can be expressed as
s∑

j=1

νijAj 
 0 , for i ∈ {1, . . . , r} , (1.22)

where Aj denotes the chemical symbol for component j, and r is the number of independent
chemical reactions in the system.

A system undergoing any type of reversible reactions attains chemical equilibrium when
the system reaches its free energy minimum, for which the net change in the number of
components is zero on average. The conditions defining the chemical equilibrium can be
found by different methods [64, 69]. In particular, in Chapter 3 we discuss the chemical
equilibrium conditions in terms of conservation laws associated to the stoichiometry matrix
for an arbitrary number of components and reactions. However, for the time being, we
just state the chemical equilibrium conditions, which are given by

s∑

j=1

νijµj = 0 , for i ∈ {1, . . . , r} , (1.23)

where µj10 is the chemical potential of component j. Considering the concentration depen-
dence of the chemical potentials (see Eq. (1.3)), it follows that the chemical equilibrium
conditions given in Eq. (1.23) provide r relations between the concentrations of the s
components of the system. The compositions that the system can attain at chemical equi-
librium define a surface (hyper-surface or manifold) in the s-dimensional concentration
space, which we refer to as the chemical equilibrium surface.

In the next section we show that in phase-separating systems which undergo chemical
reactions, not all the coexisting phases can be reached nor all the chemical equilibrium
states, the chemical equilibrium conditions and the chemical reactions must be simultane-
ously fulfilled in order for different phases to coexist.

1.13 Phase coexistence at chemical equilibrium

Many systems capable of exhibiting phase separation may also undergo different types
of reactions [70–73]. In particular we have seen in Sect. 1.2 and in Sect. 1.3 that inside
the cell, many biochemical processes are organized in biomolecular condensates which
seem to form via liquid-liquid phase separation [3]. In addition, it is known that the
interior of a cell is constantly undergoing chemical changes [74, 75], some of which are
clearly out-of-equilibrium processes that we cannot address using the techniques developed
in this work. However, there might be some processes that are mostly driven by local

10In the case of components with a well defined chemical symbol like H2O, the chemical potential will
be expressed as µH2O for clarity.
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equilibrium thermodynamics which can be then studied using a thermodynamic equilibrium
perspective.

In Sect. 1.10 we have derived the coexistence conditions, which essentially select those
compositions of the system fulfilling a balance between the exchange chemical potentials
and osmotic pressures of the two phases. Since chemical equilibrium imposes extra con-
straints to the system, the system will demix only if both the chemical equilibrium condi-
tions and the phase coexistence conditions are simultaneously fulfilled.

In order to show an example of a system that undergoes simultaneous chemical reactions
and phase separation, we consider a ternary mixture model with only one chemical reaction.
The system we consider is composed of a solvent and a molecule that exists into two
different states, one where the molecule does not have any tendency to phase separate and
another where the molecule can interact with molecules in the same state. We denote these
two states by A and A′, respectively. They transform obeying the following reaction

A
 A′ . (1.24)

This ternary system can be described using the following free energy density per site

fs = kBT
(
φA lnφA + φA′ lnφA′ + (1− φA − φA′) ln(1− φA − φA′) + χφ2

A′
)

+ wAφA + wA′φA′ + w0(1− φA − φA′) , (1.25)

where φA is the volume fraction of A, φ′A is the volume fraction of A′, χ is the interaction
strength between A′ molecules; wA, wA′ and w0 are the corresponding free energies due to
internal degrees of freedom of A, A′, and the solvent, respectively. The chemical equilibrium
condition for the reaction (1.24) is simply: µA = µA′ , which leads to11

φA = φA′ exp

(
wA′ − wA
kBT

+ χφA′

)
, (1.26)

where we can see that the interplay between the free energies due to internal degrees of
freedom and the interaction strength defines the compositions at chemical equilibrium.

For a fixed set of parameters, T , wA, w′A and χ, we first find the binodal by solving
the coexistence conditions given in Eq. (1.19) (green solid line in Fig. 1.7) as if there were
no chemical reactions. In the absence of chemical reactions, the system would undergo
phase separation for any composition located within the binodal (green shaded region in
Fig. 1.7)), whereas if the system can react via Eq. (1.24), the only phases that will coexist
are those found at the intersection between the chemical equilibrium curve (black dotted
line) and the binodal (green points in Fig. 1.7). We see then how chemical equilibrium

11For an incompressible system, the chemical equilibrium conditions can also be expressed by substi-
tuting µi for the exchange chemical potentials µ̄i without further change.
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Figure 1.7: Phase separation at chemical equilibrium. The binodal line (green solid line) and
chemical equilibrium curve (dotted black line) are shown. Their intersections define the coexist-
ing phases of the system at chemical equilibrium (green points). One tie line (green dotted line)
connecting the coexisting phases and the demixing region (green shaded area) for the system in
the absence of chemical reactions are shown. Parameters: w0 = 0, wA − w′

A = 7 kBT0, χS = 1.5,
χH = 4T0 and T/T0 = 4. With χ = χS + χH/T and T0 a reference temperature.

heavily restricts the compositions that the system can attain, nevertheless, as we have
shown here, we can find coexisting phases for a system undergoing chemical reactions.

The procedure to find coexisting phases for a system undergoing chemical reactions is as
follows: one first needs to construct the equilibrium surface and the binodal corresponding
to the free energy as if there were no chemical reactions. Then, one needs to find the
intersections between the binodal and the chemical equilibrium curve (surface) in order
to find the coexisting phases. Therefore, the first step becomes increasingly harder if the
system has a large number of components, because one has to deal with constructing a
phase diagram in a high dimensional space. In Chapter 3 we deal with this issue from a
different perspective. We base our description on the conserved components associated to
the stoichiometry matrix [69, 76, 77], using their corresponding particle numbers as natural
variables, the free energy can be analyzed in a lower dimensional space compared to the
original one, which is equal to the number of chemical components. To put it clearly, if
a system has s components and r independent chemical reactions, the construction of the
coexisting phases can be done in the reduced dimension c = s− r, where c is the number
of independent conserved components.
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1.14 Overview of the Thesis

In this thesis we study the effects of chemical and binding reactions on liquid-liquid phase
separation at chemical equilibrium. To do so, we develop a generic framework to study
liquid phase separation in systems undergoing different reactions. One may wonder, is
it relevant to study systems at thermodynamic equilibrium in order to understand what
happens inside of a living cell? We are tempted to give a positive answer. We back this
claim by showing that using minimal models we can account for diverse phenomena such
as the mechanism behind the localization of P granules explained in Sect. 1.3 and the
pH-dependent response of different proteins which undergo phase separation as suggested
in Sect. 1.4. We expect to convey this message in the rest of the thesis in the clearest
possible way.

This thesis is organized as follows: In Chapter 2 we describe the numerical methods
that we use to construct phase diagrams for multicomponent mixtures. We then discuss
what are the effects that different parameters such as molecular volumes and interac-
tion strength have in phase diagrams of binary and ternary mixtures. We conclude by
discussing two realistic scenarios that could be relevant in the context of protein conden-
sates. In Chapter 3, we study liquid-liquid phase separation at chemical equilibrium. In
particular, we discuss the conservation laws in chemical reacting systems and construct
independent conserved components starting from the stoichiometry matrix. Then, using
the particle numbers corresponding to these conserved components as independent vari-
ables, we show how new thermodynamic conjugate variables can be suitably defined at
chemical equilibrium. We conclude by discussing the construction of phase diagrams for
chemically reacting systems and giving a simple example. In Chapter 4, we study the
effect of pH on macromolecular phase separation. We do so by defining a model in which
the charge state of the macromolecules is controlled by means of protonation and depro-
tonation reactions, which in turn are set by the pH of the solution (mixture). Using this
scenario where macromolecules can be protonated and deprotonated, the phase-separating
tendency of the macromolecules is modulated by the composition of the mixture, which
is in turn controlled by the pH. Building on the concepts developed in Chapter 4, we de-
fine the corresponding free energy for a fixed pH ensemble and study phase diagrams as a
function of temperature and pH. We conclude this chapter by discussing a more realistic
scenario which seems to be in agreement with the observations of phase separation inside
yeast cells discussed in Sect. 1.4. In Chapter 5, we focus on studying the phase separation
behavior of PGL-3, an important component of P granules, as well as the effect of RNA
on its tendency to phase separate. In this chapter we show experimental evidence of the
liquid-like properties of PGL-3 drops and discuss the RNA-binding properties of PGL-3
and MEX-5. Guided by the experimental data, we construct a minimal model where we
couple a phase-separating system with RNA-binding reactions accounting for the abilities
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of PGL-3 and MEX-5 to bind to RNA. We then compare this model with the experimental
data and obtain the parameters that best describe the experimental observations. What
we find is that our minimal model has the necessary elements to explain the P granule
localization to the posterior side in the C. elegans embryo. In Chapter 6, we discuss the
findings of this work and discuss possible future directions of research that could take our
work as a starting point.



Chapter 2

Construction of Phase Diagrams

Phase diagrams are useful representations of the thermodynamic behavior of a system.
The construction of phase diagrams allow us to predict what would happen when some
thermodynamic variables of the system are changed. In the context of protein phase
separation, there have been studies of protein solutions in vitro were the authors have
measured phase diagrams of protein solutions [23, 28, 30, 34, 78] as a function of salt
concentration, mRNA and pH, among others. Thus, we are interested in describing how
to construct a phase diagram, not only by stating the conditions that must be fulfilled but
by describing the numerical method that we use in order to construct phase diagrams.

In this chapter we discuss numerical methods to find the coexisting phases based on
the convexity of the free energy and the coexistence conditions presented in Chapter 1.
We use these methods to discuss the properties of binary and ternary macromolecular
mixtures by showing a variety of phase diagrams and their dependence on the intrinsic
properties of macromolecules like their size or the interaction strength between them. We
then conclude this chapter by discussing possible phase diagrams for key proteins in the
formation of P granules, namely PGL-3 and PGL-1. We use previous results published
in [28] and predict possible binodal lines for a PGL-3 solution and for a mixture containing
PGL-3 and PGL-1.

2.1 Convex hull construction to find coexisting phases

A standard procedure to find coexisting phases is to use a root finder and solve for the
concentrations that fulfill the coexistence conditions given in Eqs. (1.19a) and (1.19b) [79,
80]. This approach needs an initial guess. For systems with many different components a
good initial guess is a requirement for convergence of the root solver. We instead find the
coexisting phases by means of a geometrical construction called the convex hull [81, 82].
The convex hull of a set of points is defined as the smallest convex set that contains all the
points of the set [83]. In our case, the convex hull of the free energy density determines

27
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the region where the homogeneous states, which are defined by the concentration of each
component, are thermodynamically stable. We call these states the mixed states. The part
of the free energy which is not part of the convex hull represents the states that undergo
a demixing transition and therefore we call them demixed states.

We now show how to construct coexisting phases by means of the convex hull for a
binary mixture described by Eq. (1.21). As a reminder, the free energy per site is defined
as fs = v0 f with f the free energy density and v0 the molecular volume of the solvent,
and it reads

fs = kBT [εφ lnφ+ (1− φ) ln(1− φ) + χφ(1− φ)] , (2.1)

where T is the temperature, φ is the volume fraction of the macromolecule (intrinsically
disordered protein), ε = v/v0 is the ratio of the molecular volumes of the macromolecule v,
and that of the solvent, and χ = χS + χH/T is a Flory-Huggins parameter with an entropic
contribution χS , and an enthalpic contribution χH . The free energy is shown in Fig. 2.1.
Choosing the temperature T > Tc, or in terms of the interaction parameter χ > χc, results
in a non-convex free energy, see Fig. 2.1(a). The states in the convex hull of the free energy
density are the states which remain mixed (blue line in Fig. 2.1(b)). In order to construct
the coexisting phases, drawing a line connecting the states at the interior boundaries of
the convex hull gives a natural construction of the common tangent for coexisting phases.
In one dimension, the construction of the convex hull and the identification of its internal
boundaries is sufficient to find the coexisting phases. The simplicity of this approach is
that no prior knowledge is needed besides the values of the free energy as a function of
the composition variable (in this case the volume fraction φ). This construction does not
require any derivatives or initial guesses in order to find a pair of coexisting phases. We
use the Quickhull algorithm routine implemented in Scipy to construct the convex hull. A
complete description of the algorithm can be found in [83] and a simple example is given
in Appendix C.

Constructing coexisting phases for a multicomponent mixture becomes increasingly
difficult because of the growing number of variables and equations that need to be solved.
For a ternary mixture one would need to solve three non-linear equations simultaneously,
in this case, a good initial guess becomes crucial. Using the convex hull can provide us
with a good initial guess to solve the coexistence conditions and a combination of a convex
hull construction and a root solver allows us to construct the full phase diagram. Let us
now examine how to use the convex hull to construct the coexisting phases in the case of
a ternary mixture described by:

fs/kBT = φ1 lnφ1 + φ2 lnφ2 + (1− φ1 − φ2) ln(1− φ1 − φ2) + χφ2(1− φ1 − φ2) , (2.2)

where φ1 and φ2 are the volume fractions of two different components, and where we
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Figure 2.1: Common tangent construction using the convex hull. (a) The dimensionless free
energy per site fs/kBT from Eq. (1.21) is shown for χ > χc. (b) Convex hull of the dimen-
sionless free energy per site (blue line), the rest of the states do not belong to the convex hull
(orange line). (c) The common tangent is constructed by connecting the points in the interior
boundary of the convex hull, the points that are connected by the common tangent line (green
line) are the coexisting phases (green circles). We choose the molecular volume ratio ε = 1/2.
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considered only one Flory-Huggins parameter describing the tendency of φ2 to phase-
separate from the solvent. In this case, the free energy density represents a surface which
depends on two composition variables (φ1 and φ2), see Fig. 2.2(a). We first construct the
convex hull of the free energy density, which is the set of states representing the convex
region of the free energy density, or equivalently the set of states which would remain
homogeneously mixed. These states correspond to the blue points in Fig. 2.2(a), the
orange points denote the set of states which will undergo a demixing transition. After
constructing the convex hull of the free energy, we project the mixing and demixing states
into the composition plane φ1−φ2, see Fig. 2.2(b). If we were only interested in finding the
region where the system will undergo a demixing transition but not necessarily in knowing
the composition of the phases that coexist, the convex hull alone provides this information.
We may go further and find the boundary between the mixing and demixing regions given
by the green line in Fig. 2.2(c). This green line corresponds to an approximated binodal.
So far, we have found an approximation for the binodal line but we do not know which
phases coexist with each other. The final step is to construct the tie lines connecting the
coexisting phases. We construct them by using the approximate binodal as initial guess
for a root solver method (implemented in Scipy). This allow us to solve the coexistence
conditions and obtain the coexisting phases. Using these solutions we then construct the
tie lines, some examples are drawn in Fig. 2.2(d) as green dotted lines connecting green
circles on the binodal. These steps are generic and can be used for any functional form of
the free energy density and can easily be extended to higher dimensions.

2.2 Characteristics of phase diagrams

Phase diagrams reflect the phase behavior of the system as a function of different thermo-
dynamic variables or molecular properties, e.g. temperature, composition, molecular size.
For instance, in protein solutions it might be relevant to understand how changing the
concentration of a binding partner of a phase separating protein can affect its tendency to
phase separate. It might also be important to study how sudden changes in temperature
affect the concentrations of the coexisting phases. All this information is encoded in the
phase diagram. Developing an understanding of the different shapes that phase diagrams
can take, may help us shed some light on the possible underlying mechanisms which gen-
erate the responses in protein solutions. In this section we discuss how certain molecular
features, such as the molecular volume or the interaction between the components, affect
the phase diagrams.

2.2.1 Binary mixtures

Phase diagrams for binary mixtures have been used for a long time to study the properties
of polymers in solution. In recent years, due to the discovery of the so called membraneless
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Figure 2.2: Constructing coexisting phases for a ternary mixture using a dimensionless free
energy per site. (a) Dimensionless free energy per site fs/kBT as a function of the volume frac-
tions φ1 and φ2. Blue points belong to the convex hull of fs/kBT whereas the orange points do
not. (b) Projection of the mixed states and demixed states obtained from (a) into the φ1 − φ2
plane. (c) The binodal line (green line) is constructed by finding the boundary between the
mixed states and demixed states of the system. (d) The tie lines (dotted green lines) connect-
ing coexisting phases (green circles) are constructed by solving the coexistence conditions. The
Flory-Huggins parameter used here is χ = 2.9
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organelles whose formation appears to be driven by liquid-liquid phase separation, under-
standing the properties of protein solutions has gained attention [23, 28, 84]. As explained
in Chapter 1, membraneless organelles are formed by RNA and many different proteins
which have intrinsically disordered regions. Some of these proteins have been shown to
exhibit phase separation in vitro [23, 28, 30, 84]. In the absence of any extra component
(like RNA) we consider these protein solutions to be simple binary mixtures. We now re-
visit some of the properties that could be observed in experiments performed with protein
solutions.

Let us consider a binary mixture described by Eq. (2.1). For this system, the critical
point is found to be by [65]:

φc =

√
ε

1 +
√
ε

, (2.3a)

Tc =
χH

1
2 (1 +

√
ε)

2 − χS
. (2.3b)

where φc is the critical volume fraction of the macromolecule (intrinsically disordered pro-
tein) and Tc is the critical temperature. Looking at the critical values (2.3), we see that the
critical volume fraction decreases with increasing size of the macromolecules (decreasing ε),
whereas the critical temperature increases with increasing size of the macromolecules. The
critical volume fraction in this minimal model is independent of the interaction strength
and provides the following qualitative picture for intrinsically disordered proteins: proteins
which have large intrinsically disordered regions should have a low critical concentration
(nc = εφc/v0), therefore, phase separation is expected to happen at very low concentrations
for large intrinsically disordered proteins.

We now study two different scenarios, one in which the Flory-Huggins interaction pa-
rameter χ is only of enthalpic nature (Fig. 2.3(a,b)) and one in which there is a significant
entropic contribution (Fig. 2.3(c,d)). Using Eq. (2.3b), where we chose χH and χS by fixing
the value of the critical temperature to be Tc = 372.5K for ε = 10−4 in both scenarios. We
construct binodals as a function of the volume fraction and temperature for different values
of the molecular volume ratio ε, the volume fractions which lie inside of the binodal are
those which demix into two different phases, those who lie outside remain homogeneously
mixed. In these phase diagrams, tie lines are horizontal lines connecting the phases which
coexist at a given temperature. A general feature of these phase diagrams is that for a
fixed value of χS and χH , the tendency to phase separate increases with the size of the
macromolecules (decreases with ε). The asymmetry of the binodal stems from the large dif-
ferences in molecular volumes, whereas for a regular mixture (ε = 1) the binodal is always
symmetric (green light in Fig. 2.3(a)). One interesting feature that emerges when there
is a large entropic contribution to the interaction parameter, is that for small ε there is a
significant temperature range where the phase diagram becomes narrow (dark green line



Characteristics of phase diagrams 33

in Fig. 2.3(c)) as compared to a system in which the only contribution to the interaction
parameter is enthalpic (dark green line in Fig. 2.3(a)). Since we want to stress the relation
between the phase diagrams of binary mixtures and those that could be experimentally
obtained in protein solutions, we show the same phase diagrams as a function of the molar
concentration in Fig 2.3(b,d). There is evidence that some phase separating proteins have
saturation concentrations between (0.5− 2)µM [28], so if we seek to reproduce this behav-
ior, we should study the regions of the binodal where the concentration of the low density
branch is of the order of 1µM. Let us define the partitioning coefficient P = φII/φI, where
φII and φI, are the volume fractions of the high and low density phases respectively. If
we now analyze the partitioning coefficient for a low density phase corresponding to 1µM

for the different values of ε, we observe that the partitioning coefficient increases for de-
creasing values of ε, ranging from P ≈ 108, for ε = 1, to P ≈ 5 × 102, for ε = 10−4 (see
Fig. 2.3(b,d)). The saturation concentration and the partitioning coefficient can then be
used to estimate the molecular volume ratio ε and the interaction parameter χ of a given
protein in solution. By studying the temperature response of protein phase separation, we
may be able to learn which type of processes drive phase separation, i.e. whether they are
mostly driven by direct attractive interactions between components or if the processes are
driven by entropic effects.

In this section we have seen that addressing the phase diagrams of protein solutions
as a binary mixture provides us with a qualitative picture of the phase behavior and
gives us some insight into the basic mechanisms driving phase separation. We could say
that if the coexisting phases do not vary drastically in response to temperature changes
one may guess that there might be an entropic contribution which plays the main role
in the system, whereas for strong variations in the corresponding coexisting phases for
temperature changes one would expect that direct interactions play a significant role.

2.2.2 Phase diagram topologies of ternary mixtures

Ternary mixtures have a rich phase behavior. For a fixed temperature one can find a
diversity of phase diagrams with different topologies even for molecules of the same size.
In this section, using the numerical tools discussed in Sect. 2.1, we construct phase diagrams
which include all the different topologies that can be found in a ternary mixture. The free
energy per site for a regular ternary mixture reads

fs
kBT

= φ1 lnφ1 + φ2 lnφ2 + (1− φ1 − φ2) ln(1− φ1 − φ2)

+ χ12φ1φ2 + χ10φ1(1− φ1 − φ2) + χ20φ2(1− φ1 − φ2) , (2.4)

where χij denotes the Flory-Huggins parameter interaction between i and j. We now ex-
plain the different topologies of the phase diagrams for this ternary mixture. One topology
is given by a two-phase region which emerges from one of the axis which is delimited by one
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Figure 2.3: Phase diagrams of a binary mixture for varying molecular volumes ratio ε. (a) Bin-
odals for a system with an interaction parameter which only has an enthalpic contribution. (b)
Same binodals as in (a) but drawn as a function of molar concentration. (c) Binodals for a sys-
tem with an interaction parameter which has a significant entropic. (d) Binodals from (c) plot-
ted as a function of molar concentrations. Critical points are shown as black circles and tie lines
are represented as dotted green lines connecting coexisting phases. Legends in (a) and (c) apply
to all plots in this figure.
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critical point (black point), see Fig. 2.4(a). This is obtained when only one of the interac-
tion parameters is above the critical value for binary phase separation and the other two
are below the critical threshold (for the ternary mixture described by Eq. (2.4) the critical
threshold is χcij = 2). If there are two interaction parameters which are above the critical
treshold, depending on the third interaction parameter, there are two possible topologies
(Fig. 2.4(b,c)). One topology is given by a two-phase region spanning from one volume
fraction axis to the other volume fraction axis with no critical points (Fig. 2.4(b)). The
second topology is given by two disconnected two-phase regions each one delimited by a
critical point (black points in Fig. 2.4(c)). For systems where also the third interaction pa-
rameter is above the critical threshold, that is, all three parameters are above their critical
values for binary phase separation, we may get three different topologies depending on the
strength of the interactions. One of the possible topologies is given by two disconnected
regions, one of them spanning from one axis to the other without any critical point and
the other region starting at one axis and ending at a critical point (Fig. 2.4(c)). Another
topology is given by three disconnected regions, all of them spanning from a volume frac-
tion axis and each one of them delimited by a critical point (Fig. 2.4(d)). The last of these
three topologies has no critical points, instead the two-phase regions which span from each
of the three axis merge in a three-phase coexistence region (Fig. 2.4(e)). The last topology
that we find is that of an isolated region of phase separation which ends at two critical
points and is not connected to any of the volume fraction axes (Fig. 2.4(f)). This topology
can be obtained for interaction parameters which are negative and below a certain thresh-
old. The critical value for the free energy given by Eq. (2.4) for negative Flory-Huggins
parameters is given by χcij = −8, which can be calculated using the conditions given in
Appendix B.

There is one feature that we would like to highlight regarding the construction of these
phase diagrams. In order to construct a global phase diagram, sometimes it is necessary to
know how many phases will there be in certain composition region (for example, where does
a three phase region exists), using the convex hull construction as a first approximation
to the binodal, this information is not needed. The approximated binodal obtained by
means of the convex hull drastically reduces the search space of possible initial conditions
for solving the coexistence conditions using any numerical root solver.

We gave this short exposition of possible topologies in ternary phase diagrams to illus-
trate how the complexity of diagrams grows with the number of components. Moreover,
according to the Gibbs phase rule [64], the possibility of a higher number of coexisting
phases also grows with the number of components. That is why in this ternary mixture
one may observe a three phase region whereas in a binary mixture there is no such region.
In order to connect this discussion with what is observed in a living cell, we need to re-
member that the cytosol is multicomponent in nature, giving rise to the possibility of the
simultaneous emergence of several distinct phases. Interestingly, this seems to be the case
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Figure 2.4: Phase diagrams showing generic topologies of the phase diagrams for ternary mix-
tures. Binodals (green solid lines), tie lines (green dotted lines) connecting coexisting phases
(green points) and critical points (black points) are shown.
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since there are different membraneless organelles present simultaneously in the cells [3] as
well as evidence of multiphase coexistence within a single biomolecular condensate [18],
this gives us a hint that a multicomponent description of the cytosol is strictly necessary
to understand its full complexity.

2.3 Protein condensates in vitro

In the previous sections we discussed generic phase diagrams for binary and ternary mix-
tures. We now present possible phase diagrams describing protein phase separation in
vitro. In particular we discuss what was observed regarding phase separation of the intrin-
sically disordered protein PGL-3, a key component of P granules. Experiments where done
to assess the phase separation of the PGL-3 protein, with PGL-3 tagged with a fluorescent
protein to keep track of its concentration [28]. It was shown by the authors that PGL-3
undergoes phase separation at a saturation concentration of np3 ≈ 2µM under physio-
logical conditions. The condensed phase was found to be approximately 50 times more
concentrated. This might be an underestimation due to the non-linearity relation between
the emitted fluorescence and the concentration of the fluorescent label in the concentrated
phase. Recent developments have shown that the partitioning coefficient might be of the
order of hundreds1, but for the time being we use parameters close to the ones found in [28].

We first analyze two possible phase diagrams for the binary mixture of PGL-3 and
solvent (in the experiments, the protein is immersed in a buffer). The free energy per site
is given by Eq. 1.21 with a molecular volume ratio between solvent and PGL-3, εp3 =

v0/vp3 = 1/15000, and the Flory-Huggins parameter capturing the interactions between
PGL-3 and the solvent is χp3 = 0.512 at T = 298K. These values were chosen to match
the experimental observations of the saturation concentration of PGL-3, np3 ≈ 2µM and
the partitioning coefficient of PGL-3, Pp3 ≈ 50 [28]. The phase diagrams are constructed
for two different cases with different functional forms of χp3 as a function of temperature.
The first is an interaction parameter which only has an enthalpic contribution. Using the
value of χp3 = 0.512 at T = 298K we estimate the enthalpic contribution to be χHp3

=

298 × (0.512)K. For the second case, to have a contrast in the phase diagrams between
the previous enthalpic dominated interaction and an entropic dominated interaction, we
fix χSp3

= 0.505 as the main contribution and use again the value of χp3 = 0.512 at T =

298K, we estimate the value of the enthalpic contribution as χHp3
= 298× (0.512− 0.505).

Using these two different choices of parameters, we construct the corresponding binodals
(Fig. 2.5 (a)). Even though the two binodals intersect at T = 298K by construction, we
observe a marked difference between the two cases. Let us focus on a temperature range
between 280K and 320K, which is a temperature range where we expect PGL-3 phase
separation to be relevant in the C. elegans. For the entropic case, we observe a very weak

1Private communication with Dr. Patrick M. McCall
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dependence of the composition of the coexisting phases on temperature changes (blue solid
line in the inset of Fig. 2.5 (a)). For the enthalpic case instead, we observe big changes in
the concentration of the diluted branch of the binodal as temperature varies (orange solid
line in Fig. 2.5 (a)). This might be relevant for protein condensates, as drastic changes
in concentration as a function of temperature may result in lack of robustness of their
assembly.

We are not aware of any conclusive data regarding the temperature dependence of the
concentrations of the coexisting phases in these protein solutions. However, the simple
approach presented here would allow us to discriminate between cases in which entropic
interactions dominate and cases in which enthalpic interactions dominate based only on the
temperature dependence of the concentrations in the coexisting phases of protein solutions.

Let us now study how the system behaves if we consider another key protein of P
granules, namely the PGL-1 protein. For this purpose, we analyze a ternary mixture
composed of PGL-3 with volume fraction φp3 , PGL-1 with volume fraction φp1 , and solvent
with volume fraction (1− φp3 − φp1). We describe the system with the following free energy
per site

fs
kBT

= εp3φp3 lnφp3 + εp1φp1 lnφp1 + (1− φp3 − φp1) ln(1− φp3 − φp1)

+ (χp3φp3 + χp1φp1)(1− φp3 − φp1) , (2.5)

where we introduced χp1 as the interaction between PGL-1 and solvent, and εp1 is the
molecular volume ratio between the solvent and PGL-1. In oder to construct a phase
diagram at fixed temperature T = 298K for this ternary mixture, we consider the experi-
mental observation that PGL-1 does not exhibit phase separation in the µM concentration
range in the absence of PGL-3 and choose χp1 in such a way that phase separation is not
found in the µM range. In addition, we choose a value for εp1 = 1/17000, based on the
fact that PGL-1 has a longer aminoacid sequence than PGL-3 (771 amino acids for PGL-1
compared to 693 for PGL-3). We then construct the phase diagram corresponding to this
choice of parameters (Fig. 2.5 (b)). We can appreciate from the phase diagram that once
the concentration of PLG-3 crosses the threshold for binary phase separation (np3 > 2µM),
adding PGL-1 does not change the concentration of PGL-3 in the coexisting phases if the
concentration of PGL-1 is np1 . 3µM. The condensed phase has a PGL-1 concentration
approximately 10 times larger than that of the concentration in the dilute phase.

In this section we have presented possible phase diagrams for the proteins PGL-3
and PGL-1 in vitro. This short presentation of phase diagrams is intended to give a
quantitative idea of the parameters describing the phase behavior of protein solutions.
The large asymmetry between molecular volumes of the proteins compared to the solvent
(water in this case), provides an intuitive idea of why some proteins already phase-separate
at very low concentrations.
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Figure 2.5: Possible phase diagrams for the phase separating protein PGL-3 in a binary mix-
ture (a) and for the ternary mixture of PGL-3, PGL-1 and solvent (b). (a) Comparison between
the binodals for systems with interactions which are dominantly enthalpic (blue line) or entropic
(orange line). Tie lines are shown as dotted lines connecting coexisting phases which are blue
and orange points for the entropic and enthalpic case respectively. The critical points are indi-
cated by black points. The inset in (a) shows a zoom in into a temperature range (y axis of the
inset) where PGL-3 phase separation is relevant in C. elegans. (b) Phase diagram of a ternary
solution made of PGL-3, PGL-1 and solvent. The green solid line is the binodal, characteristic
tie lines are shown as green dotted lines connecting two coexisting phases (green points). The
parameters used are described in the main text.

2.4 Summary

In this chapter we showed how the convex hull construction can be used to determine the
stable compositions of a multicomponent free energy. We presented a numerical method
to construct phase diagrams by means of the convex hull alone or in combination with a
numerical root solver to find coexisting phases. We then constructed examples of phase
diagrams of binary mixtures where we highlighted the marked differences between phase
diagrams where the interaction is either of entropic or enthalpic nature. For ternary mix-
tures we discussed all the possible phase diagram topologies. We concluded the chapter
by showing possible phase diagrams for real protein solutions, namely, a binary mixture
made of the protein PGL-3 and solvent, as well as a ternary mixture of proteins PGL-3 and
PGL-1 immersed in a solvent. The main goal of this chapter was to establish the numerical
methods that we use to study liquid phase separation in multicomponents systems and to
discuss minimal binary and ternary models for protein solutions.



Chapter 3

Generic Theory of Phase Separation
at Chemical Equilibrium

Multicomponent mixtures with chemical reactions exhibiting phase separation have been
studied in the past [70–72, 76, 85, 86], mostly focused on particular models. Here we
present a generic approach describing how to proceed in studying a system with many
components undergoing several chemical reactions and phase separation simultaneously.
Since there is a growing interest in having a deeper understanding on what are the ef-
fects of binding reactions in protein phase separation, developing such a thermodynamic
description may be useful. Many if not all key components of protein condensates, bind to
RNA, forming protein-RNA complexes which undergo phase separation [52]. It has also
been shown in vitro that the presence of RNA lowers the saturation concentration of the
PGL-3 protein [28]. Another example where studying phase separation in systems with
chemical reactions could be useful is that of macromolecules undergoing phase separation
depending on the pH of the solution where they are immersed. Since the charge state of
a macromolecule is controlled by the pH of the solution, in order to describe this phe-
nomenon, one could couple a model of a phase separating system together with chemical
reactions describing changes in the charge state of the macromolecule. We devote Chap-
ter 4 to address this question. In Chapter 1, we discussed a multicomponent mixture as a
minimal model for studying the cytosol, since the interior of a cell is constantly undergo-
ing chemical changes, we complement this approach by studying the influence of chemical
reactions in mixtures of interacting components. In this case, we do not only consider
short range interactions which can be captured by the Flory-Huggins parameter, but also
highly directional interactions which allow for the formation of new chemical components
or molecular complexes.

This chapter is organized as follows: we begin discussing the role of conservation laws
in systems with chemical reactions. We then derive the chemical equilibrium conditions

40
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based on these conservation laws. This then allow us to define the corresponding thermo-
dynamic potentials at chemical equilibrium, where the conserved quantities are chosen as
independent composition variables. Using these thermodynamic potentials we discuss the
Maxwell construction for systems at chemical equilibrium. We conclude the chapter by
giving a concrete example of an interacting system, and show that there might be more
than one solution to the chemical equilibrium conditions, this allows the system to have
coexisting phases which come from different branches of the equilibrium compositions.
This is drastically different from the case of an ideal mixture, where it has been shown
that there is a unique set of solutions for the chemical equilibrium conditions [87]. We
show how to construct a full phase diagram as a function of temperature using the convex
hull construction, which regardless of the shape of the free energy still gives the correct
criterion in selecting the compositions where the free energy is a convex function, hence
thermodynamically stable.

The thermodynamic framework developed here can be applied to any system for which
the free energy of the system is known. There are similarities in our approach to study
conservation laws in chemical reactions to previous work developed by R.A. Alberty [69]. In
this chapter, we give our own account on how to define the chemical potentials of conserved
components, how to derive the chemical equilibrium conditions as a consequence of the
conservation laws and we go a step further and show how to construct the corresponding
coexisting phases for systems which undergo simultaneous phase separation and chemical
reactions.

3.1 Conservation laws in chemical reactions

Conservation laws in chemical reactions specify the collection of atoms, elements and
charges that remain unchanged during chemical reaction events. Hereafter, we refer to
these collection of matter as conserved components. For instance, if we consider the self-
ionization of water given by

H3O+ + OH− 
 2 H2O , (3.1)

the hydrogen and the oxygen atoms are independent conserved components, while we refer
to the hydronium H3O+, the hydroxide OH− and the water molecule H2O as chemical
components.

In this section we show that if the stoichiometry matrix of the system is known, we
can systematically construct a full set of independent conserved components to describe
the system and importantly, also their corresponding particle numbers. For this purpose,
let us consider a set of r reactions in a system with s chemical components. As discussed
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in Chapter 1, these reactions are described in terms of the stoichiometry matrix ν by

s∑

j=1

νijAj 
 0 , for i ∈ {1, . . . , r} , (3.2)

where νij are matrix elements of ν giving the number of molecules of the j-th chemical
component that are transformed in the i-th reaction, while Aj denotes the chemical symbol
for the j-th chemical component. The stoichiometry matrix ν is thus an r×s matrix, where
the number of rows and columns are defined by the number of independent reactions and
the number of chemical components, respectively. Here, reactions 3.2 provide r constraints
that lead to a reduced number c = s − r of independent components in the system. We
now argue that if the stoichiometry matrix ν is known, the c independent components of
the system can be chosen as conserved components [69]. Let us define the conservation
laws by

s∑

j=1

νijC
(k)
j = 0 , for i ∈ {1, . . . , r} , (3.3)

where C(k)
j defines the corresponding amount of the k-th conserved component in the j-th

chemical component1. The vector ~C(k) = (C
(k)
1 , . . . , C

(k)
j . . . , C

(k)
s ) defines the composition

of the k-th conserved component in terms of the s original chemical components. By solving
Eqs. (3.3), it can be shown that there are precisely c linearly independent solutions given
by a set of vectors {~C(1), ~C(2), . . . , ~C(c)} [88]2. Placing the elements of this set as columns
of a matrix, defines what is known as the conservation matrix C [69]. The elements of this
matrix obey

s∑

j=1

νijCjl = 0 for i ∈ {1, . . . , r} and l ∈ {1, . . . , c} , (3.4)

which is basically a restatement of the conservation laws. The matrix form of the conser-
vation laws nicely conveys the message of having c independent conserved components in
each of the r reactions. So far, we have shown that given a stoichiometry matrix, one can
find c independent components which satisfy the conservation laws given by Eq. (3.3). Let
us now discuss the particle numbers associated to the independent conserved components,
if Ni denotes the particle number of the i-th chemical component and N c

j denotes the par-
ticle number of the j-th conserved component, which hereafter we call the j-th conserved

1For example, if Aj = H2O and the k-th conserved component refers to the hydrogen atoms,
~C
(k)
j = 2.

2A matrix with r rows and s columns denoted by A, with r < s, has a rank(A) = r. The null space
of A is defined as the set of vectors ~x, which satisfy A~x = 0. The rank of the null space is given by
c = s − r, which means that there are c linear independent vectors satisfying A~v = 0, and they span the
full null space [88]
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particle numbers. We can relate them by means of the conservation matrix as follows

s∑

i=1

NiCij = N c
j for i ∈ {1, . . . , r} , (3.5)

which states the global conservation laws in a chemically reacting system. Thus, we have
seen that the conservation matrix Cij encodes all the information needed to define a set of
independent conserved components and their corresponding particle numbers. For com-
pleteness and clarity, an example discussing the construction of the conserved components
and their corresponding particle numbers is given in Appendix D.

In this section we showed in general, that the c independent components in a system
composed of s different chemical components undergoing r chemical reactions can always
be chosen to be conserved components. The relevance of this result will become clearer in
the next sections.

3.2 Chemical equilibrium conditions

We discuss the chemical equilibrium conditions in the (T, P, {Ni}) ensemble, where T is
the temperature, P is the pressure and {Ni} is the set of all different chemical components
of the system. The corresponding thermodynamic potential for this ensemble is the Gibbs
free energy G(T, P, {Ni}). The differential dG is given by [64]

dG = −SdT + V dP +

s∑

i=1

µidNi . (3.6)

If the system undergoes r independent reactions and the total number of chemical com-
ponents is s, in the previous section we showed that we can construct c independent
conserved components. We name the c particle numbers associated to the independent
conserved components by, {N c

1 , N
c
2 , . . . , N

c
c }. We now express c particle numbers of the

chemical components as a function of the c conserved particle numbers and of the r = s−c
remaining particle numbers of the chemical components. Without any loss of generality,
we choose to eliminate the first c particle numbers of the chemical components 3, i.e. we
express the particle numbers Ni = Ni(N

c
1 , . . . , N

c
c , Nc+1, . . . , Ns), for i = {1, . . . , c}. We

then express the differential of the Gibbs free energy Eq. (3.6) in terms of the new variables
as

dG = −SdT + V dP +

c∑

j=1

(
c∑

i=1

µi
∂Ni

∂N c
j

)
dN c

j +
s∑

j=c+1

(
µj +

c∑

i=1

µi
∂Ni

∂Nj

)
dNj . (3.7)

3If one of the chemical species is a conserved component the variable transformation would lead to a
trivial renaming of its corresponding particle number
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Thermodynamic equilibrium demands dG = 0. Since T , P and the particle numbers of the
conserved components are fixed, the first three terms on the right hand side of Eq. (3.7)
vanish. This then leads to the following condition describing the chemical equilibrium
conditions,

µj +
c∑

i=1

µi
∂Ni

∂Nj
= 0 , for j = {c+ 1, . . . , s} , (3.8)

This is not just a different way of deriving the well known chemical equilibrium condi-
tions, it is one way to define new thermodynamic conjugate variables for a system that is
at chemical equilibrium[69, 76, 77]. We now define the differential of the Gibbs free energy
at chemical equilibrium as

dḠ = −SdT + V dP +
c∑

j=i

µcidN
c
i , (3.9)

where we introduced the Gibbs free energy at chemical equilibrium Ḡ and the chemical
potentials of the conserved components µcj = ∂Ḡ/∂N c

i

∣∣∣
T,P,{Nc

j 6=i}
, which are the thermody-

namic conjugate variables to the conserved particle numbers, defined by

µcj =
c∑

i=1

µi
∂Ni

∂N c
j

. (3.10)

In this section, we have showed that a system in the (T, P, {Ni}) ensemble at chemical
equilibrium is fully described, in addition to the temperature and pressure, by the c particle
numbers corresponding independent conserved components. Moreover, if we want to use
a different thermodynamic description with fixed values of a given chemical potential (or
a combination of them), we would need to use the newly defined chemical potentials in
Eq. (3.10) when performing a Legendre transform to exchange thermodynamic conjugate
variables. This allow us to define other thermodynamic potentials that also describe the
system at chemical equilibrium. We will make use of this when discussing the phase
behavior of a system in the ensemble where the pH is fixed in Chapter 4. A thorough
study of Legendre transforms in systems with chemical reactions can be found in the
literature [76].

3.3 Maxwell construction at chemical equilibrium

We are interested in studying the phase separation behavior of systems that undergo chem-
ical reactions. In order to do so, we have shown that the description of a system at chemical
equilibrium can be done by identifying a set of independent conserved components and us-
ing them as independent composition variables. We are now interested in describing what
are the conditions to find coexisting phases at chemical equilibrium. If we describe the
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system in the ensemble of fixed temperature and pressure with the corresponding thermo-
dynamic potential Ḡ, the coexistence conditions are simply given by

µci (T, P, {N c
i
I}) = µci (T, P, {N c

i
II}) (3.11)

where the superscripts I and II refer to two coexisting phases. Since the system is consid-
ered to be already at chemical equilibrium, the only chemical potentials that need to be
equilibrated for phases to coexist are those of the conserved components.

Let us now discuss the case for a system described in the fixed volume ensemble.
We must first remember that in an incompressible system the volume is given by V =∑s

i=1 viNi, where the molecular volumes vi are independent of composition and pressure.
The volume of incompressible systems does not change when undergoing chemical reactions
(this is just an approximation because volume is not conserved in general [89]). If the
volume is fixed, then we can express it as a linear combination of the conserved components,
V =

∑c
i=1 v

c
iN

c
i , where we introduced the molecular volumes of the conserved components

vci . Taking the differential of the volume dV gives

dV =
c∑

i=1

vcidN
c
i . (3.12)

We may now use Eq. (3.12) to eliminate one of the conserved components from the descrip-
tion. The corresponding free energy in the fixed volume ensemble is defined by F = G+PV ,
we follow the same convention at chemical equilibrium and define the corresponding free
energy at chemical equilibrium as: F̄ = Ḡ+PV . In order to define independent thermody-
namic variables, we calculate the differential of the free energy dF̄ . To do so, we eliminate
N c
k by using N c

k = (V −∑i 6=k v
c
iN

c
i )/vck. This leads to

dF̄ = −SdT +

(
P − µck

vck

)
dV +

∑

i 6=k

(
µci −

vci
vck
µck

)
dN c

i . (3.13)

We see that Eq. (3.13) is basically the same as Eq. (1.4). The only difference stems from
the fact that in Eq. (3.13), we eliminated an arbitrary conserved component that is not
necessarily the solvent. In systems where the solvent is a conserved component, we would
choose to eliminate the solvent and the thermodynamic conjugate variables would be the
osmotic pressure Π (Eq. (1.5)) and the exchange chemical potentials µ̄ (Eq. (1.6)) of each
conserved component.

Let us now define the free energy density at chemical equilibrium as f̄ = F̄ /V , where
f̄ = f̄(T, {nci 6=k}). The Maxwell construction for f̄ can be done in the same way as
described in Chapter 1, for this reason we restrict ourselves to showing the coexistence
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conditions explicitly for this case, which are given by

∂f̄ I

∂nci
I

=
∂f̄ II

∂nci
II

for i 6= k , (3.14)

f̄ I −
∑

i 6=k

∂f̄ I

∂nci
I

= f̄ II −
∑

i 6=k

∂f̄ II

∂nci
II

(3.15)

where f̄ I and f̄ II denote the free energy at chemical equilibrium in phases I and II respec-
tively, and nci

I and nci
II, the concentration of the conserved components in each of the two

phases.
In the following, we describe a minimal model consisting of three components and one

chemical reaction. We will explicitly show how using a conserved quantity one can analyze
the phase behavior of the system at chemical equilibrium using the same approach as
that for a mixture without chemical reactions. The only requirement is to first solve the
chemical equilibrium conditions, express the solutions in terms of the conserved component
and evaluate the free energy in these states.

3.4 Minimal model for heating induced phase separation

Here, we revisit the model introduced in Chapter 1 to discuss phase separation at chemical
equilibrium. However, we discuss it in light of what we have derived so far in this chapter.
Recapitulating, we propose a ternary model with only one chemical reaction. The system
is composed of a solvent with particle number N0 and a molecule that exists in two states,
one where the molecule does not have any tendency to phase separate and another where
the molecule can interact with the rest of the molecules in the same state. These two states
are denoted by A and A′, respectively. They transform obeying the following reaction

A
 A′ . (3.16)

In this system, it is easy to identify an independent set of conserved particle numbers. The
solvent is not involved in the chemical reaction, thus is conserved, as well as the sum of the
particle numbers in the state A and state A′, given by NAT = NA +NA′ , where NA stands
for the particle number of molecules in state A and NA′ denotes the particle number of
molecules in state A′. We describe this system at temperature T and pressure P using the
following Gibbs free energy

G = kBT

(
NA lnφA +NA′ lnφA′ +N0 lnφ0 +

χ

v0
vANA′φA′

)

+ wANA + wA′NA′ + w0N0 + P (vANA + vA′NA′) + v0N0) , (3.17)
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where χ is the interaction strength between molecules in state A′, wi is the free energy
contribution due to internal degrees of freedom of each of the chemical components, vi
denotes the molecular volume and φi the volume fraction. For simplicity, we only consider
interactions between molecules in the state A′. We further consider that the volume of the
molecules do not change during chemical reactions, thus vA = vA′ .

We now follow the steps described in the previous sections. We first eliminate one of
the particle numbers using NA = NAT −NA′ and substitute it in the differential of the free
energy dG, leading to

dG = −SdT + V dP + µAdNAT + (µA′ − µA)dNA′ , (3.18)

where we can readily identify µA as the conjugate chemical potential to the conserved par-
ticle number NAT . Thermodynamic equilibrium implies the chemical equilibrium condition
µA = µA′ , using Eq. (3.17) the chemical equilibrium condition reads

φA = φA′ exp

(
wA′ − wA
kBTεA

+
2χφA′

εA

)
, (3.19)

where we introduced the molecular volume ratio εA = v0/vA.
For an ideal system (χ = 0) the chemical equilibrium condition Eq. (3.19) has only one

possible chemical equilibrium. However, if interactions are present (χ 6= 0), there might
be more than one solution. We show a comparison of the chemical equilibrium condition
Eq. (3.19) for an ideal and a nonideal case in Fig. 3.1(a), the dotted line corresponds to
the ideal case and the solid line corresponds to the nonideal case, (the parameters used
for this example can be found in the caption). The multiple solutions to the chemical
equilibrium condition can be better observed by analyzing φA or φA′ as a function of the
total molecular volume fraction φAT . We clearly see in Fig. 3.1(b,c) that they are not
uniquely valued. The different chemical equilibrium branches are shown with different
colors in Fig. 3.1(a,b,c).

Let us now consider the Gibbs free energy at chemical equilibrium, Ḡ, which is obtained
by evaluating Eq. (3.17) as a function of the solutions obtained from Eq. (3.19). The free
energy Ḡ depends on NAT , N0, T and P . Expressing the volume of the system in terms of
the conserved components as V = vANAT +v0N0 and changing our description to the fixed
volume ensemble we can eliminate the solvent from the description. We discuss the phase
behavior in terms of the free energy per site at chemical equilibrium, f̄s = v0(Ḡ/V − P ),
which is given by

f̄s = kBT
(
εAφA lnφA + εAφA′ lnφA′ + (1− φA − φA′) ln(1− φA − φA′) + χφ2

A′
)

+ wAφA + wA′φA′ + w0(1− φA − φA′) , (3.20)
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where φA = φA(φAT , T ) and φA′ = φA′(φAT , T ) are obtained from the chemical equilibrium
condition Eq. (3.19). The free energy density per site f̄s is shown in Fig. 3.1(d), where
we see three distinct branches of the free energy coming from the three chemical branches.
Interestingly, the ternary system analysis reduces to that of a binary mixture whose free
energy has different branches. Nevertheless, the convex hull construction can be used to
identify the coexisting phases.

As an illustration, we construct a full phase diagram as a function of the total molecular
volume fraction φAT and a scaled temperature T̃ = T/T0, with T0 being an arbitrary
reference temperature with the rest of the parameters fixed, see caption in Fig. 3.2 for a
complete list of the parameters used. The solutions to the chemical equilibrium conditions
are shown as a function of T̃ in Fig. 3.2(a,b). We see that for low temperatures (dark
blue line), there are three different branches. Increasing the temperature leads to a unique
solution to the chemical equilibrium conditions as a function of the total molecular volume
fraction φAT . We then do the Maxwell construction for the free energy per site for different
temperatures, see Fig. 3.2(c). For high temperatures (dark red line), we see that there is
no phase separation because the free energy is convex for all values of φAT . Decreasing the
temperature leads to the appearance of a region of phase separation, where the coexisting
phases are denoted by green points, these points are joined by a common tangent and all
compositions within the region spanned by the common tangent will demix. Decreasing
further the temperature leads to the appearance of a small loop (see the line corresponding
to T̃ = 3.3). For this case, the coexisting phases belong to different chemical equilibrium
branches. The loops associated to the different branches of the free energy move further
to the right for decreasing temperatures, until the free energy branches stop crossing for
T̃ < 2 (not shown) and phase separation is no longer observed since the chemical branch
that remains is fully convex. This results from the parameters choice wA < wA′ , which
favors the state A of the molecule at low temperatures, whereas for higher temperatures
A′ is favored. The phase behavior corresponding to the free energy is shown in Fig. 3.2(d),
where tie lines are shown as dotted green lines connecting coexisting phases (green points)
and the binodal is drawn as a solid green line. This system has a region of phase separation
bounded by an upper temperature for which there is a critical point (black point) and a
lower temperature, where the binodal connects with the φAT = 1 in a first order transition
point where the values of φA and φA′ are discontinuous. One interesting feature of this
system that arises naturally in chemically reacting systems is reentrancy [71, 73, 85], that
is, a system that is mixed for low temperatures, demixes if the temperature is increased, and
then becomes mixed again if the temperature is raised even further. For example, hydrogen
bonding has been shown to lead to interesting phase-separating behavior of macromolecules
that are well solvated at low temperatures and then release all the hydrogen bonds if the
temperature is increased, leading to phase separation due to hydrophobic interactions, if
the temperature is raised even further the mixing entropy dominates the behavior of the
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Figure 3.1: Comparison between an ideal and a nonideal mixture at chemical equilibrium. (a)
Law of mass action given by Eq. (3.19) for an ideal system (dotted line) and for a nonideal sys-
tem (solid line colored in black, orange and blue). (b) Volume fraction of the molecule in state
A as a function of the total molecular volume fraction φAT

. The ideal case has a unique solution
(dotted line) whereas the nonideal case, has three different chemical equilibrium branches, these
are shown as black, orange and blue solid lines. (c) Volume fraction of the molecule in state A′

as a function of the total molecular volume fraction φAT
, with the same description as in (b).

(d) Free energy density at chemical equilibrium per site as a function of the total molecular vol-
ume fraction φAT

. Three distinct branches of the free energy density are shown, corresponding
to the three chemical equilibrium branches. We observe that for the ideal case, the free energy
remains convex (dotted line), in contrast, for the nonideal case, there is a region between two of
the chemical branches (black and blue solid lines) which is clearly non-convex. The interaction
parameter is given by χ = χS + χH/T . Parameters: εA = 0.5, χS = 1, χH = 6T0, T̃ = 4.6 and
wA′ − wA = 7kBT0. Legends apply to all plots.
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system leading again to a well-mixed system [73, 90].
This model is useful to illustrate the concepts discussed in this chapter, and shows

that describing the system in terms of its conserved components allow us to interpret and
predict the phase behavior of the system in a rather straightforward manner by using the
methods developed in Chapters 1 and 2.

3.5 Summary

In this chapter, we introduced a generic thermodynamic framework to study multicompo-
nent systems in which their components undergo chemical reactions. We first showed how
to construct a set of conserved components if the stoichiometry matrix of the system is
known. We continued by showing that this set of conserved components fully describes
the system at chemical equilibrium. Using the conserved particle numbers as independent
variables in the free energy at chemical equilibrium, we derived an expression for their
corresponding conjugate chemical potentials. We discussed the Maxwell construction in
systems at chemical equilibrium and showed that the only chemical potentials that are
left to equilibrate are those corresponding to the conserved components. In the case of
the ensemble of fixed volume, we saw that if we use the conserved particle numbers as
independent variables, the Maxwell construction holds for the corresponding free energy
density at chemical equilibrium in the same way as in the case without reactions. We
concluded the chapter by presenting a minimal model in which we showed explicitly how
to use a conservation law and chemical equilibrium to construct a full phase diagram as a
function of temperature. In brief, we showed that if one uses conserved particle numbers as
independent variables in a system at chemical equilibrium, the numerical techniques from
Chapter 2 can be applied directly to the system in question.

We would like to highlight that the standard procedure to construct coexisting phases
in systems with chemical reactions usually starts from constructing the phase diagrams
associated to the system in the absence of chemical reactions. Then what follows is to
solve the corresponding chemical equilibrium conditions for each reaction. Finally, in
order to find coexisting phases one needs to find the intersections between the coexistence
manifold and the chemical equilibrium manifold [70, 71, 85]. We instead, presented here a
different method, we first solve the corresponding chemical equilibrium condition for each
reaction and then evaluate the free energy on these solutions (using the conserved particle
numbers as independent variables). We then find the corresponding coexisting phases by
the means exposed in the Chapter 2. Although both methods result in the same phase
diagrams, there is a high complexity associated to the former. Finding the phase behavior
for the system without considering the chemical reactions may be difficult due to its high
dimension in composition space, which would be equivalent to the number of different
chemical components s. In contrast, in our approach, we only need to analyze the reduced
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Figure 3.2: Phase diagram construction for a chemically reacting system. (a),(b) Volume frac-
tions at chemical equilibrium for different temperatures as a function of φAT

, (a) φ′A and (b) φA.
Colored lines indicate the temperature values ranging from lower (dark blue) to higher (dark
red). (c) Dimensionless free energy f̄s/kBT0 for different temperatures (same color code as in (a)
and (b)). The common tangent (green lines) connecting coexisting phases (green points) are con-
structed by means of the convex hull. (d) Reentrant phase diagram showing the region of phase
separation delimited by the binodal (green solid line). The binodal connects to the φAT

= 1
line in a first order transition point (open circle). The tie lines are horizontal lines (dotted green
lines) which connect the coexisting phases (green points). The binodal ends in the upper part at
a critical point (black point). The interaction parameter is given by χ = χS+χH/T . Parameters:
εA = 1, wA′ − wA = 7kBT0, χS = 1.5 and χH = 4T0. Legends in panel (a) also apply to panels
(b) and (c)
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dimension space of the conserved components, which is given by the number of independent
conserved components c, which becomes smaller as the number of independent reactions r
grows larger.

To conclude, developing a generic thermodynamic framework at chemical equilibrium
opens up the possibility to assess the effect of chemical reactions on systems exhibiting
phase separation in a systematic manner. At the same time, making use of the conservation
laws allow us to understand which are the conjugate thermodynamic variables at chemical
equilibrium. This turns out to be crucial in order to perform Legendre transforms in
systems with chemical reactions.



Chapter 4

Liquid Phase Separation Controlled
by the Acidity of the Environment

The acidity, which is quantified by the pH, is an important determinant of the cells viability.
Because of this, cells stringently control its cytosolic pH by different mechanisms [2]. One of
the reasons of this control is the fact that cytosolic proteins perform various physiological
processes depending on their charge state, which is dictated by the cytosolic pH [91].
Additionally, the energetics of the cell are based on proton pumps which are tuned to
respond to pH gradients across the cell membrane [1, 92]. An interesting example where
pH changes have a strong effect, is the transition from a dynamic to an arrested state of
the cytoplasm of yeast cells during nutrient depletion [16] introduced in Chapter 1. This
transition is reversible and provides a protective mechanism that helps cells to survive
periods of nutrient depletion until conditions improve and nutrients become available again.
The biophysical mechanisms responsible for this transition have been linked to changes in
the cytosolic pH. The effects of pH on yeast cells can be described as follows. During
nutrient depletion, a yeast cell does not have sufficient resources to supply proton pumps
that are responsible for regulating the intracellular pH. As a result, in an acidic environment
the pH of the cytoplasm of cells drops and some proteins become insoluble. If the resulting
protein condensates occupy a large volume the mechanical properties of the cytoplasm can
transition from a fluid to an arrested state. This observation suggests that the reduction
of pH triggers phase separation of proteins from solution. Interestingly, in this case, phase
separation is triggered as the pH of the solutions moves closer to the isoelectric points of
many constituent proteins. This raises the question why pH changes, and in particular, pH
values in the vicinity of the isoelectric point promote phase separation. More generally we
want to understand how the formation of protein condensates can be regulated by changes
in pH.

To address this question we present a generic thermodynamic framework to study the

53



54 Liquid Phase Separation Controlled by the Acidity of the Environment

influence of pH on liquid-liquid phase separation. The key idea is to couple a system ca-
pable of undergoing phase separation with a set of chemical reactions corresponding to
the protonation/deprotonation of water components and macromolecules such as proteins.
We consider two types of interactions, namely attractive interactions between oppositely
charged macromolecules in the presence of counterions and salt, and attractive interactions
among neutral macromolecules that could be mediated for example by Van der Waals or hy-
drophobic interactions. Using conservation laws and chemical equilibrium conditions [76],
we construct an effective thermodynamic potential describing a system with pH as a ther-
modynamic variable. We then use this thermodynamic potential to determine the phase
behaviour of the system as a function of the molecular properties and pH. We find coexist-
ing phases of different compositions of charged and uncharged macromolecules. We show
that the compositions of the coexisting phases can be controlled by changing pH.

This chapter is organised as follows. We first introduce a set of chemical reactions in
which the charge state of a macromolecule is fixed by the pH of the system. We continue
by defining the pH and showing its relation to the previously introduced chemical reac-
tions. We then present the thermodynamics of multicomponent mixtures and discuss the
parameter choices for our study. Afterwards, we study the thermodynamic equilibrium for
a system with fixed pH, whereby using conservation laws, we identify the thermodynamic
conjugate variables of the system which we use to construct the corresponding thermo-
dynamic potential for fixed pH. In order to discuss chemical and phase equilibrium in
our model, we introduce new composition variables and thermodynamic fields. We then
analyze the phase behaviour of the system, first at the isoelectric point and then as pH
deviates from it. We briefly discuss the consequences of considering electrical neutrality
in the system and show that this leads to a natural difference of pH and electric potential
across coexisting phases. Finally, we conclude with a discussion of our results. The content
of this chapter is closely related to our preprint [93].

4.1 Chemical reactions and pH in macromolecular systems

We study a multicomponent mixture of macromolecules which can exist in three different
charge states. Macromolecules with a maximal positive net charge +m are denoted by
M+, those with maximal negative net charge −m by M− and neutral macromolecules are
denoted by M. We also consider water molecules H2O, hydronium ions H3O+ and hydrox-
ide ions OH−. We describe both protonation and deprotonation of the macromolecules as
well as the self-ionization of water with the following chemical reactions

M− +mH3O+ 
 M +mH2O , (4.1a)

M +mH3O+ 
 M+ +mH2O , (4.1b)

H3O+ + OH− 
 2 H2O . (4.1c)
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The average charge state of the macromolecules determined from the reactions defined in
Eqs. (4.1) is controlled by the pH of the mixture. The pH is defined as [94]

pH = − log10 aH+ , (4.2)

with the relative activity of the proton aH+ given by

aH+ = exp

(
µH+ − µ0

H+

kBT

)
, (4.3)

where kB is the Boltzmann constant, µH+ is the chemical potential of protons in the system
and µ0

H+ denotes the chemical potential of protons in a reference state [95]. The definition
of pH in Eq. (4.2) refers to the proton activity. Protons in water are typically hydrated [96,
97]. At chemical equilibrium, the proton hydration reaction H+ + H2O 
 H3O+, implies
the relation µH+ = µH3O+−µH2O, where µH3O+ is the chemical potential of the hydronium
ions and µH2O is the chemical potential of water. Therefore, the proton activity Eq. (4.3)
can be written as

aH+ = exp

(
µH3O+ − µH2O

)
−
(
µ0

H3O+ − µ0
H2O

)

kBT
, (4.4)

where the reference chemical potentials, µ0
H3O+ and µ0

H2O define the pH scale. A standard
choice for the reference chemical potentials are the chemical potential of the hydronium
ions µ0

H3O+ at strong dilution evaluated at a standard concentration (n0
H3O+ = 1 M) and

the chemical potential of pure water µ0
H2O [95]. In the strong dilution limit, the proton

activity is aH+ ' nH3O+/n0
H3O+ , leading to pH ' − log10 nH3O+ , where nH3O+ denotes the

concentration of the H3O+ ions (see Appendix). In this paper we use Eqs. (4.2) and (4.4)
to define the pH. Next, we describe a thermodynamic framework to quantify the effect of
pH on phase separation behaviour in this macromolecular system.

4.2 Thermodynamics of macromolecular systems

For the sake of clarity, we briefly re-introduce the thermodynamics of an incompress-
ible multicomponent mixture. We consider an incompressible multicomponent mixture
in the (T, P,Ni) ensemble with temperature T , pressure P and Ni denoting the number
of particles of component i in the mixture. The corresponding thermodynamic poten-
tial is the Gibbs free energy G(T, P,Ni). The chemical potential is defined by µi =

∂G/∂Ni|T,P,Nj 6=i , the entropy is S = − ∂G/∂T |P,Ni and the volume of the system is
V = ∂G/∂P |T,Ni . By incompressibility we mean that the molecular volumes of each
component, vi = ∂V/∂Ni|T,P,Nj 6=i are independent of pressure and composition. The vol-
ume density of the Gibbs free energy is given by g(T, P, ni) = G(T, P,Ni)/V (Ni), where
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we have introduced the concentrations ni = Ni/V and the volume V (Ni) =
∑

i viNi. The
chemical potentials can then be calculated from the Gibbs free energy density by

µi = vi

(
g −

∑

k

∂g

∂nk
nk

)
+

∂g

∂ni
. (4.5)

We study the multicomponent mixture using a Flory-Huggins mean field free energy model
where the Gibbs free energy density reads [59, 60]:

g = kBT
∑

k

nk ln(nkvk) +
∑

k

wknk +
∑

kl

Λkl
2
nknl + P . (4.6)

The logarithmic terms stem from the mixing entropy, wk denote internal free energies
of molecules of type k and the interaction parameters Λkl describe the contribution to
the free energy due to molecular interactions. Molecular interactions can outcompete the
mixing entropy and cause the emergence of coexisting phases. Using the free energy density
Eq. (4.6), the chemical potentials are

µi = vi(P − Σ) + wi + kBT (ln(nivi) + 1) +
∑

k

Λiknk , (4.7)

where Σ is defined by

Σ =
∑

kl

Λkl
2
nknl + kBT

∑

k

nk . (4.8)

In the multicomponent mixture we consider that the indices i, k and l run over the
six components of the system, which are the three charge states of the macromolecules
M,M+,M− as well as the three charge states of water H2O,H3O+and OH−. We further
consider the molecular volumes of the macromolecules to be all equal, v = vM = vM+ =

vM− , where we have introduced the macromolecular volume v. We also consider the molec-
ular volumes of water and water ions to be the same, v0 = vH2O = vH3O+ = vOH− , and
denote them by v0. In order to have a minimal number of components, the presence
of salt and counterions which neutralize our solution are taken into account implicitly.
The presence of salt and counterions screen the electrostatic interactions, thus providing a
characteristic length scale of the interaction potentials between charged species, while the
counterions mediate the interactions between oppositely charged macromolecules, hence
giving an effective interaction between them. The effective interactions in our system are
captured by the interaction matrix Λij . We consider all effective interactions Λij = 0 except
for those between positively and negatively charged macromolecules which we choose as
ΛM−M+ = ΛM+M− = vχe/ε and the effective interaction between neutral macromolecules
given by ΛMM = 2vχn/ε. Here we have introduced the molecular volumes ratio ε = v0/v as
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well as χe and χn which are interaction parameters characterizing the strength of charge-
charge and neutral-neutral interactions respectively, with this choice, the interaction pa-
rameters describe the interaction scale corresponding to a water molecule. Attractive
interactions are described by negative values of these interaction parameters, which we
will vary in our study of phase behaviour. For these interaction parameters, we obtain the
following chemical potentials

µM = kBT (ln(v nM) + 1) + 2
v

ε
χnnM + wM + v(P − Σ) , (4.9a)

µM+ = kBT (ln(v nM+) + 1) +
v

ε
χenM− + wM+ + v(P − Σ) , (4.9b)

µM− = kBT (ln(v nM−) + 1) +
v

ε
χenM+ + wM− + v(P − Σ) , (4.9c)

µH3O+ = kBT
(
ln
(
v0nH3O+

)
+ 1
)

+ wH3O+ + v0(P − Σ) , (4.9d)

µOH− = kBT (ln (v0nOH−) + 1) + wOH− + v0(P − Σ) , (4.9e)

µH2O = kBT (ln (v0nH2O) + 1) + wH2O + v0(P − Σ) . (4.9f)

In the following, we study the system at chemical equilibrium for a fixed pH.

4.3 Chemical equilibrium at fixed pH

We start by stating the conservation laws for a system undergoing the reactions given in
Eqs. (4.1) and choose the conserved quantities as independent composition variables at
chemical equilibrium. We then use these independent composition variables to identify the
thermodynamic conjugated variables at chemical equilibrium. We finalize the section by
constructing a thermodynamic potential which describes the system at a fixed pH value.

4.3.1 Chemical conservation laws

We consider a system with s different molecular species. If there are r different chemical
reactions taking place, there exist c = s − r independent composition variables. Here
s = 6, the number of independent reactions is r = 3, therefore the number of independent
composition variables is c = 3. These independent composition variables can be chosen as
conserved quantities during chemical reaction events. Although the number of independent
composition variables is fixed, there is not a unique choice of conserved variables [76]. From
the reaction scheme (4.1) we readily identify three conserved components in every chemical
reaction, their associated particle numbers are

N = NM+ +NM− +NM , (4.10)

NH = 3NH3O+ +m(2NM+ +NM) +NOH− + 2NH2O , (4.11)

Ns = NH3O+ +NOH− +NH2O . (4.12)
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The three conserved particle numbers are: N the total number of macromolecules, NH

the number of hydrogen atoms (more precisely, protons) and Ns is the number of oxygen
atoms. We can combine these equations to show that the partial charge involved in the
chemical reactions Nq = NH − 2Ns −mN is also a constant given by

Nq = NH3O+ +m(NM+ −NM−)−NOH− . (4.13)

In the next section it will become clear why do we use the net charge involved in the
chemical reactions Nq instead of NH . Please note that we consider the net charge to
be neutralized by counterions that are not explicitly considered in the simplified model,
considering explicitly the electrical neutrality condition leads to interesting conclusions
which will be discussed in the next chapter of this Thesis.

4.3.2 Conjugate thermodynamic variables at chemical equilibrium

Here, we obtain conditions for chemical equilibrium in terms of the conserved variables
defined in Eqs. (4.10), (4.12) and (4.13). To do so, we use the variable transformation
(NM, NH3O+ , NH2O)→ (N,Ns, Nq) to eliminate NM, NH3O+ and NH2O. The differential of
the Gibbs free energy is given by dG = −SdT +V dP +

∑
i µidNi, which after this variable

transformation becomes:

dG = −S dT + V dP + µM dN + µH2O dNs + (µH3O+ − µH2O)dNq

+(µM− +mµH3O+ − µM −mµH2O) dNM− + (µM+ (4.14)

+mµH2O − µM −mµH3O+) dNM+

+(µH3O+ + µOH− − 2µH2O) dNOH− .

If the system has reached chemical equilibrium, the variations dG with respect to changes
in the non-conserved composition variables NM+ , NM− and NOH− must vanish. This then
leads to the following chemical equilibrium conditions [64]:

µM− +mµH3O+ = µM +mµH2O , (4.15a)

µM +mµH3O+ = µM+ +mµH2O , (4.15b)

µH3O+ + µOH− = 2µH2O . (4.15c)

Using the chemical equilibrium conditions, the differential of the Gibbs free energy at
chemical equilibrium is given by

dG = −S dT + V dP + µM dN + µH2O dNs + (µH3O+ − µH2O)dNq , (4.16)
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which explicitly shows that the Gibbs free energy at chemical equilibrium has the depen-
dence G(T, P,N,Ns, Nq). This allows us to identify pairs of conjugate thermodynamic
variables. From Eq. (4.16) we identify the conjugate thermodynamic variables to the com-
position variables (N,Ns, Nq) as (µM, µH2O, µH3O+ − µH2O) respectively. These conjugate
variables have to be used to obtain Legendre transforms of the thermodynamic potentials
at chemical equilibrium [76].

4.3.3 Thermodynamic ensemble for fixed pH

In order to describe the system in an ensemble with pH as a variable, we perform a Legendre
transform to construct a thermodynamic potential which depends on µH3O+−µH2O

1. This
thermodynamic potential is given by the following Legendre transform

Ḡ(T, P,N,Ns, µH3O+ − µH2O) = G− (µH3O+ − µH2O)Nq . (4.17)

The differential of Ḡ reads

dḠ = −SdT + V dP + µM dN + µH2O dNs

−Nq d(µH3O+ − µH2O) . (4.18)

We now clarify why fixing this chemical potential difference and the temperature sets the
pH value of the system. Using Eq. (4.2) and Eq. (4.4), we can express the pH as

pH =

(
µH3O+ − µH2O

)
−
(
µ0

H3O+ − µ0
H2O

)

kBT
log10 e , (4.19)

where it is explicitly shown that the pH of the system is set by the relative chemical
potential of hydronium ions with respect to water, µH3O+ − µH2O, and the temperature T
of the system. We can also define the corresponding free energy in the isochoric ensemble
as

F̄ = G− (µH3O+ − µH2O)Nq − PV , (4.20)

which has the following differential form

dF̄ = −SdT − PdV + µM dN + µH2O dNs

−Nq d(µH3O+ − µH2O) . (4.21)

In our system, the volume V can be expressed in terms of the conserved quantities as
V = vN + v0Ns, leading to dNs = dV/v0 − vdN/v0. We can then reduce the number of

1A free energy for fixed pH has been proposed before [69, 76, 77] but instead of using a definition of
pH which considers the chemical potential of protons as we do here, the pH was considered only in the
dilute limit for which a definition based on the concentration of hydronium ions is considered.
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independent variables and rewrite the differential form of F̄ as

dF̄ = −S dT −Π dV + µ̄M dN −Nq dµ̄H3O+ , (4.22)

where we have introduced the exchange chemical potentials µ̄M of neutral macromolecules
and µ̄H3O+ of hydronium ions as well as the osmotic pressure Π, which are defined by

µ̄i = µi −
vi
v0
µH2O , (4.23)

Π = P − µH2O

v0
, (4.24)

where i = M or H3O+. The free energy F̄ (T, V,N, µ̄H3O+) depends only on the temper-
ature T , the volume V , the total macromolecule particle number N and the exchange
chemical potential of the hydrogen ions µ̄H3O+ . In addition to introducing the correspond-
ing thermodynamic potential F̄ which describes an incompressible system with a fixed
pH value, we have reduced our multicomponent system description from six components
undergoing three independent chemical reactions to an effective binary mixture with the
total macromolecule density n = N/V as the only relevant composition variable. We can
now ask how the pH affects phase separation.

4.4 Control of phase separation by pH

In the following, we discuss how the pH controls both, chemical and phase equilibrium
in our system. We start by discussing the chemical equilibrium conditions Eqs. (4.15) in
terms of newly defined composition variables and thermodynamic field. After discussing
the chemical equilibrium conditions in terms of the pH and the newly defined fields, we
provide the conditions for phase equilibrium for a system described by the correspond-
ing thermodynamic potential defined by Eq. (4.20). We end the section by showing a
construction of the coexisting phases for a given choice of parameters.

4.4.1 Thermodynamic fields controlling chemical equilibrium

We are now interested in discussing how the pH and other parameters influence the chemical
equilibrium described by Eqs. (4.15). In order to do so, we introduce thermodynamic fields
and composition variables which allow us to interpret the chemical equilibrium conditions
intuitively. Let us first introduce the following composition variables

n = nM+ + nM− + nM , (4.25)

φ =
nM+ + nM−

2n
, (4.26)

ψ =
nM+ − nM−

2n
. (4.27)
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These composition variables express the total concentration of macromolecules n, the frac-
tion of charged macromolecules φ and the difference between concentrations of oppositely
charged macromolecules relative to the total number of macromolecules ψ.

It is convenient to make a rearrangement of the chemical equilibrium conditions Eqs. (4.15)
as follows

µM+ + µM− = 2µM , (4.28a)

µM+ − µM− = 2m (µH3O+ − µH2O) , (4.28b)

µH2O − µOH− = µH3O+ − µH2O , (4.28c)

where we see that the right hand sides of Eqs. (4.28b) and (4.28c) are determined by the pH.
We now write the conditions Eqs. (4.28a) and (4.28b) in terms of the composition variables
using the expressions of the chemical potentials (Eqs. (4.9) given in the Appendix) leading
to

kBT ln
φ2 − ψ2

(1− 2φ)2
+

2vχenφ

ε
− 4vχnn(1− 2φ)

ε
= hφ , (4.29)

kBT ln
φ+ ψ

φ− ψ −
2vχenψ

ε
= hψ , (4.30)

where we have defined

hφ = 2wM − wM+ − wM− , (4.31)

hψ = 2m (µH3O+ − µH2O)− wM+ + wM− . (4.32)

These quantities play the role of fields controlling the chemical equilibrium and phase
separation behaviour of the system. The molecular field hφ characterizes which of the
macromolecular charge states is energetically favoured due to their internal free energies wi,
while the field hψ expresses deviations of the pH from its value at the isoelectric point (pI)
of the macromolecules. Remember that the isoelectric point is the value of the pH for
which macromolecules are on average neutral. Thus, in our system, the isoelectric point is
defined as the value pI of the pH at which the charged macromolecules obey, nM+ = nM− ,
or equivalently ψ = 0, which implies hψ = 0 via Eq. (4.30). Using Eq. (4.19), we find an
expression for the pI value:

pI =

(
wM+ − wM−

2mkBT
−
µ0

H3O+ − µ0
H2O

kBT

)
log10 e . (4.33)

We can therefore express the field hψ in terms of the pH and the pI as follows

hψ
kBT

=
2m

log10 e
(pI− pH) , (4.34)
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which explicitly shows how hψ characterizes deviations of the system from its isoelectric
point. For given hφ and hψ, the composition variables φ and ψ can be determined from
Eqs. (4.29) and (4.30) as a function of the total macromolecule density n, the temperature
T and the pH. One symmetry can be identified in Eqs. (4.28a) and (4.28b), namely that
the system behaves identically under the transformation ψ → −ψ and hψ → −hψ, which
will be reflected in the phase diagrams as a function of deviations from the isoelectric
point. This symmetry stems from both, considering that positively and negatively charged
macromolecules have the same interaction with the rest of the components as well as from
choosing their molecular volumes to be the same. Changing any of the two previously
mentioned conditions would break this symmetry. We must note that in a more realistic
scenario there would be differences in solvation of the two different charged states of the
macromolecule [98]. Using Eqs. (4.9d)-(4.9f), we introduce two more fields controlling the
relative concentrations of hydronium and hydroxide ions with respect to water molecules,
these fields obey

log

(
nH3O+

nH2O

)
=

hH

kBT
+
hψ
2m

, (4.35)

log

(
nOH−

nH2O

)
=

hO

kBT
− hψ

2m
, (4.36)

where the fields hH and hO are defined by

hH =
wM+ − wM−

2m
− wH3O+ + wH2O , (4.37)

hO =
wM− − wM+

2m
− wOH− + wH2O . (4.38)

We can go further and use the condition v0ns + vn = 1 and Eqs. (4.35) and (4.36) to
express the concentrations of hydronium ions, hydroxide ions and water molecules as a
function of the total macromolecule density n, temperature T and pH (or hψ), given by

nH2O =
1− vn

v0

(
1 + ehH/kBT+hψ/2m + ehO/kBT−hψ/2m

) , (4.39)

nH3O+ =
(1− vn) ehH/kBT+hψ/2m

v0

(
1 + ehH/kBT+hψ/2m + ehO/kBT−hψ/2m

) , (4.40)

nOH− =
(1− vn) ehO/kBT−hψ/2m

v0

(
1 + ehH/kBT+hψ/2m + ehO/kBT−hψ/2m

) . (4.41)

We have shown that chemical equilibrium can be fully accounted for by the internal free
energies of all species wi which we take to be constant, the temperature T , the pH (or
equivalently the chemical potential difference µH3O+ −µH2O) and the total macromolecule
concentration n.
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4.4.2 Phase coexistence in the pH ensemble

We are interested in describing the phase behaviour of the system in the pH ensemble. To
this end we make use of the composition variables n, φ and ψ and the fields hφ, hψ, hH
and hO defined in the previous section. Using Eq. (4.20) we define the free energy density
f̄(T, n, µ̄H3O+) = F̄ (T, V,N, µ̄H3O+)/V which reads

f̄(T, n, µ̄H3O+) = kBT

[
n(φ+ ψ) ln(vn(φ+ ψ)) + n(φ− ψ) ln(vn(φ− ψ))

+n(1− 2φ) ln(vn(1− 2φ))

+
1

v0
(1− vn) ln

(
1− vn

1 + ehH/kBT+hψ/2mkBT + ehO/kBT−hψ/2mkBT

)]

+
v

ε
χen

2(φ2 − ψ2) +
v

ε
χnn

2(1− 2φ)2 − hφnφ− hψnψ

+wMn+
wH2O

v0

(
1− vn

)
, (4.42)

where the functions φ(T, n, µ̄H3O+) and ψ(T, n, µ̄H3O+) are defined implicitly in Eqs. (4.29)
and (4.30) in terms of the temperature T , the exchange chemical potential of hydronium
ions µ̄H3O+ and the total macromolecule density n.

We now discuss the phase coexistence conditions for this incompressible system at fixed
temperature T and at a fixed pH value, which can be obtained by a Maxwell construc-
tion. It follows from Eq. (4.22) that the exchange chemical potential of neutral macro-
molecules is given by µ̄M = ∂f̄/∂n

∣∣
T,µ̄H3O

+
and that the osmotic pressure is given by

Π = f̄ −n ∂f̄/∂n
∣∣
T,µ̄H3O

+
. Using the free energy density f̄ , we write the phase equilibrium

conditions describing equal exchange chemical potentials of the neutral macromolecules
and equal osmotic pressures in both phases [68]:

µ̄M(nI) = µ̄M(nII) , (4.43a)

µ̄M(nI) =
f̄(nII)− f̄(nI)

nII − nI , (4.43b)

where the superscripts I, II denote the two coexisting phases. We did not write the explicit
dependence of the relative chemical potential µ̄M and of the free energy density f̄ on the
temperature T and on the relative chemical potential µ̄H3O+ . These conditions correspond
to the common tangent construction [68]. We can find the coexisting phases by first
calculating the values of φ and ψ using Eqs. (4.29) and (4.30) (see Fig. 4.1(a,b)), and then
by doing a common tangent construction for the free energy density Eq. (4.42) evaluated
as a function of the total macromolecule volume fraction n̄ = vn (Fig. 4.1(c)). The
phase diagrams can then be readily constructed by repeating the steps described above for
different parameter values.
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Figure 4.1: Chemical equilibrium conditions and free energy density at chemical equilibrium.
Multiple solutions are found for φ (a) and ψ (b) as a function of the total macromolecule volume
fraction n̄, enabling the system to exhibit phase separation between different branches of the
chemical equilibrium. The blue solid lines correspond to equilibrium concentrations where the
system remains homogeneous, the orange solid lines represent solutions to the chemical equilib-
rium relations which are metastable states and the dotted red line shows the unstable states. (c)
Maxwell construction for the dimensionless free energy density vf̄/kBT as a function of the to-
tal macromolecule volume fraction, the green line describes the region of macromolecule volume
fraction where the system split into two phases with different compositions given by the green
circles. Parameters χe/kBT = −3, χn = 0, pI − pH = 0.2, hφ/kBT = −10 and ε = 0.1, apply to
all panels.
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4.5 Phase diagrams at the isoelectric point

In this section, we investigate different phase diagrams which can be obtained by varying
the temperature and the total number of macromolecules, keeping the system at its iso-
electric point. In order to discuss the effects of temperature we use a weighted sum of the
interaction parameters χ = χe + 4χn, the ratio of interaction parameters λ = 2χn

χe+4χn
, the

molecular field hφ and rewrite Eqs. (4.29) and (4.42) in the following compact way:

hφ = 2kBT ln
φ

(1− 2φ)
+

2χn̄(φ− λ)

ε
, (4.44)

vf̄(T, n, µ̄H3O+) = kBT

[
2n̄φ ln(n̄φ) + n̄(1− 2φ) ln(n̄(1− 2φ))

+
1

ε
(1− n̄) ln

(
1− n̄

1 + ehH/kBT + ehO/kBT

)]

+χε−1n̄2(φ2 − 2λφ+ λ/2)− hφn̄φ
+
(
wM −

wH2O

ε

)
n̄+

wH2O

ε
. (4.45)

We further consider attractive interactions χ < 0 and λ > 0. In order to construct phase
diagrams as a function of temperature we rescale all the variables which have energy units
with kBT0, where T0 is a reference temperature. Free energy minimization at constant
hφ, χ, λ, ε, hH, hO and T together with a common tangent construction, lead to different
possible topologies of phase diagrams which are summarized in Fig. 4.2 and Fig. 4.3.

For 2χ(1/2− λ) > εhφ, or ε hφ > −2χλ, the diagram has the same topology as that of
a simple two component mixture [65], see Fig. 4.2(a,d,e,h). At low temperature the system
demixes in a low density and a high density phase. For εhφ � 2χ(1/2−λ), the proportion
of charged molecules is exponentially small and the system behaves like a neutral polymer
solution. In this case the system separates into a low density phase and a high density
phase composed essentially of neutral macromolecules φ ' 0. The coexistence curve is bell
shaped and by construction the tie lines are parallel to the n̄ axis. The point at which the
tangent is parallel to this axis is a critical point (Fig. 4.2(a,e)). It belongs to the same
universality class as a liquid-vapor critical point. For εhφ � −2χλ, the concentration of
neutral molecules is exponentially small and the system demixes between a low density
phase and a high density phase composed essentially of charged molecules φ ' 1/2. Again
the coexistence curve is "bell shaped" and one observes the existence of an isolated critical
point (Fig. 4.2(d,h)).

In both limits, the mean-field calculation of the critical coordinates can be done an-
alytically. The details are given in the Appendix. In these limits, the critical values are
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given by:

n̄bc =

√
ε

1 +
√
ε

, for φ = 0 and φ =
1

2
, (4.46a)

kT bc = − 2χn

(1 +
√
ε)

2 , for φ = 0 , (4.46b)

kT bc = − χe

2 (1 +
√
ε)

2 , for φ =
1

2
, (4.46c)

where we have used the condition for critical points, ∂2f̄/∂n2 = 0 and ∂3f̄/∂n3 = 0. We
refer hereafter to these coexistence regions as quasi-binary regions.

For intermediate values of the molecular field, 2χ(1/2−λ) . ε hφ . −2χλ the possible
topologies of phase diagrams are more complex. Increasing the value of hφ, from very large
negative values towards positive values, leads to the emergence of a second coexistence
region (Fig. 4.2(b,f)). This coexistence region, disconnected from the quasi-binary region,
is bounded by a critical point and it is connected to the n̄ = 1 axis at a single point, where
the tie line span vanishes. The transition point corresponds to a first order transition on
the n̄ line, where φ undergoes a discontinuity. A second coexistence region emerges via a
critical point(Fig. 4.3(a,d)), whose values are given by:

φc =
1

4
, (4.47a)

kTc = − χ
8ε

, (4.47b)

hφ,c =
χ(2 + ln(2)− 8λ)

4ε
. (4.47c)

The two phase region collapses to one point on the n̄ = 1 line, both in the first order and
in the second order scenarios, this results from the existence of only one singularity in φ
on the n̄ = 1 line. Note that hφ,c can be either positive or negative, so that one can have
a critical point on the n̄ = 1 line both in the neutral and in the charged regimes, see the
Supporting Material.

For some values of hφ, with hφ > hφ,c, the two coexistence regions merge (Fig. 4.2(c,g)).
Depending on λ, there may be two different generic scenarios. We first explain what hap-
pens for λ < 1/4. In this case, the two regions merge, giving rise to two triple points
(Fig. 4.3(f)). The two triple points have a low density phase enriched in neutral macro-
molecules coexisting with both, an intermediate phase with a large macromolecule concen-
tration, which is also rich in neutral macromolecules and with a macromolecule dense phase
of essentially charged macromolecules. For ε hφ > 2χ(1/4 − λ), one triple point and the
first order transition point vanish. This bound for hφ is found by solving the coexistence
conditions at n̄ = 1, for T = 0. For increasing values of hφ, the remaining triple point
moves towards and eventually merges with the critical point of the quasi-binary region,
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leading to a coexistence region which has only one critical point (Fig. 4.2(c)). Finally, for
larger values of hφ, the system behaves as a binary mixture of charged macromolecules
and solvent (Fig. 4.2(d)). In contrast, for λ > 1/4 and hφ > hφ,c, when the two regions
merge, there is only one triple point, where two phases which are essentially enriched
in charged macromolecules, coexist with a high concentration phase enriched in neutral
macromolecules (Fig. 4.2(g)). For larger values of hφ, the triple point vanishes together
with the first order transition point at T = 0 and ε hφ = 2χ(1/4−λ). This vanishing leads
again to the quasi-binary mixture of charged macromolecules and solvent (Fig. 4.2(h)).

The existence of a transition point on the n̄ = 1 line leads to the different topologies
of the phase diagrams (Fig. 4.3). To understand the behaviour of this point, we analyze
the derivative of the free energy density with respect to φ at n̄ = 1, in particular for
λ = 0.2 (Fig. 4.3(a-c)). At the critical temperature, Eq. (4.47b), there is an inflection point
(Fig. 4.3(a)), which translates into a critical point for hφ = hφ,c at T = Tc (Fig. 4.3(d)). For
lower values of the temperature, T < Tc one finds a first order transition point at hφ > hφ,c,
in which two phases coexist at n̄ = 1 (Fig. 4.3(b,e)). For lower temperatures, the region
which extends from the first order transition point merges with the rest of the phase
diagram (Fig. 4.3(f)) and the derivative of the free energy density becomes increasingly
dominated by a linear term in φ, given by 2χ(φ− λ)/ε (Fig. 4.3(c)). For T = 0, there is a
corresponding value of the molecular field, ε hφ = 2χ(1/4−λ), for which we find a solution
to the coexistence conditions. For values εhφ > 2χ(1/4− λ) there is no longer a transition
point at n̄ = 1. We only focus on λ = 0.2 because the behaviour of the transition point at
n̄ = 1 is similar for λ > 0.25. Now that we developed a detailed understanding of phase
diagrams at the isoelectric point, we can use the developed framework to study the effects
of varying pH.

4.6 Phase separation for varying pH

Here we study how deviations in pH with respect to the isoelectric point affect the phase
behaviour of the system while keeping the temperature constant. To this end, we study
phase diagrams as a function of pI−pH (Eq. (4.34)) and the total macromolecular volume
fraction n̄. We construct phase diagrams for different values of the molecular field hφ, the
interaction strength among charged macromolecules χe and the interaction strength among
neutral macromolecules χn. Varying the pH in our model leads to very characteristic
features in the phase diagrams which allow us to distinguish the dominant interaction
driving phase separation.

Let us first consider the case where neutral molecules are energetically favoured over
charged molecules (hφ = −8, Fig. 4.4(a-c)). In this case, a system with only charge-charge
interactions (Fig. 4.4(a), χn = 0) exhibits reentrant behaviour when changing the pH
where the corresponding domain in the phase diagram is enclosed by two critical points.
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Figure 4.2: Topologies of the phase diagrams for varying values of the normalized molecular
field h̃φ = hφ/kBT0 defined in Eq. (4.31) where T0 is a reference temperature. (a-d) phase dia-
grams for a system in which charge-charge interactions are slightly stronger than neutral-neutral
interactions. (e-h) Phase diagrams for a system in which neutral-neutral interactions are slightly
stronger than charge-charge interactions. The binodals are given by the colored points which de-
note coexisting phases. Tie lines (grey solid lines) connect coexisting phases and are horizontal.
The regions within the binodals undergo a demixing transition, whereas the regions outside the
binodal lines remain well mixed. The critical points where phases become indistinguishable are
denoted by black circles, first order transition points where there is a discontinuity in the value
of φ are denoted by white circles and triple points are denoted by black diamonds. A thorough
explanation of the phase diagrams is given in the main text. Parameters χ = −8.5 and ε = 0.1,
apply to all panels. The colorbar indicates the value of the charged fraction of macromolecules
2φ.
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Figure 4.3: Critical behaviour on the n̄ = 1 line. (a-c) Derivative of the free energy with re-
spect to φ for different temperature values . (a) Inflection point corresponding to the critical
point defined in Eq. (4.47) shown as a filled black circle. The black dotted line shows the value
of h̃φ = h̃cφ ' −23.23. (b) Emergence of a maximum and a minimum for T < Tc, coexist-
ing phases are shown as two colored circles (the color encodes their value of φ). (c) Derivative
of the free energy density for T/T0 = 0.2, implying T/Tc � 1. (d-f) Phase diagrams for fixed
h̃φ = hφ/kBT0 in the vicinity of the transition point at n̄ = 1.(d) The filled black circle is the
isolated critical point defined in Eq. (4.47) corresponding to (a). (e) The phase coexistence lines
shown in blue and red end on the n̄ = 1 line at the first order transition point (open circle)
defined in (b). (f) The coexistence region connected to the n̄ = 1 axis, merges with the quasi-
binary region, leading to the appearance of two triple points (black diamonds in (f)). Parame-
ters χ = −8.5, λ = 0.2 and ε = 0.1, apply to all panels. T0 is a reference temperature with
Tc/T0 ' 10.6.
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Figure 4.4: Phase behaviour as a function of pH for fixed interaction strength between charges
χe/kBT = −3.5 and varying values of the interaction strength χ̄n = χn/kBT between neu-
tral macromolecules. (a-c) Phase diagrams with neutral macromolecules energetically favoured
(hφ/kBT = −8). (a) In the absence of neutral-neutral interactions there is a small region in the
diagram where there is reentrant phase separation behaviour. (b) Small values of neutral-neutral
interactions lead to a reduction of the demixing region. (c) Increasing the neutral-neutral attrac-
tion even further, the two critical points merge and two first order transition points appear at
n̄ = 1, these points have a discontinuity in φ and ψ. (d-f) Phase diagrams with charged macro-
molecules energetically favoured (hφ/kBT = 0): (d) An effective binary mixture at the pI shows
a simple mixing behaviour while deviating from the isoelectric point. (e) For large enough inter-
actions between neutral macromolecules, a second disconnected region appears, such region ends
in two first order transition points at n̄ = 1. (f) Increasing the neutral-neutral interactions fur-
ther, the two regions merge giving rise to a broadening of the demixing region while the critical
points vanish and the coexistence region connects to the n̄ = 1 line with two first order transi-
tion points in which φ and ψ have a discontinuity. Parameters: ε = 0.1 and m = 1, apply to all
panels. The colorbar indicates the value of the charged fraction of macromolecules 2φ.
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Beyond these points, phase separation is not possible for any value of the macromolecular
volume fraction n̄ while between the critical points, there is a range in n̄ where phase
separation can occur. The degree of such phase separation is maximal at the isoelectric
point pH=pI, which is characterized by the largest difference between coexisting phases
in their macromolecular volume fraction, as well as in their charged fraction between co-
existing phases. Deviating from the isoelectric point corresponds to lowering the amount
of one of the charged components (ψ 6= 0, Eq. (4.27)). This change in the relative com-
position between charged macromolecules decreases the interaction term among charged
components (proportional to n+n−) and thereby lowers their propensity to phase separate.
There is a small range in macromolecular volume fractions where phase separation is ab-
sent at the isoelectric point but can be triggered by changing the pH value away from pI.
This range strongly increases for stronger interactions among neutral macromolecules (χn

more negative, Fig. 4.4(b)). Such behaviour for phase separation is unexpected because
phase separation occurs despite of an asymmetric ratio of the charged macromolecules. It
emerges as a consequence of a reduction in the mixing entropy of the macromolecules by
moving away from the isoelectric point which in turn allows the system to phase separate
at lower values of charged fraction of macromolecules φ. Even though the system shows
phase separation at lower macromolecular volume fraction, the region of phase separation
decreases for increasing deviations from the isoelectric point. Increasing the attraction
among neutral macromolecules even further leads to coexisting phases which are approx-
imately composed of neutral macromolecules and solvent in a range of pH close to the
isoelectric point (Fig. 4.4(c)). Moreover, two discontinuous phase transition points emerge
while the two critical points merge and vanish. In contrast to the previous two cases (a,b)
the broadest range in n̄ where phase separation occurs is not located at the isoelectric
point (c). We must recognize that having such symmetric phase diagrams for pH devia-
tions below and above the pI is a consequence of our choice of parameters, i.e. the charged
macromolecules M+ and M− have equal molecular volumes and no interactions with the
remaining components. Note that the internal free energies wM+ and wM− only affect the
value of the pI but not the symmetry of the phase diagrams around the pI.

We now discuss the effects of pH variations for a system in which charged macro-
molecules are energetically favoured over neutral ones. We start considering a mixture
without neutral-neutral interactions (Fig. 4.4(d)) that exhibits a behaviour at the pI re-
sembling a binary mixture of charged macromolecules and solvent (Fig. 4.2(d,h)). For
values of pH away from the isoelectric point, we observe a monotonic decrease of the
macromolecular order parameter, as well as a fairly constant charged fraction composi-
tion in both phases until they meet at two symmetric critical points. After switching
on an attractive interaction among neutral macromolecules a second phase separation re-
gion appears at larger values of the total macromolecular volume fraction n̄ (Fig. 4.4(e)).
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This region is characterized by a high density phase mostly composed of neutral macro-
molecules coexisting with a phase rich in charged macromolecules. These two phases meet
at two first order transition points (open symbol, Fig. 4.4(e)). The appearance of this re-
gion is a consequence of having an attraction among neutral macromolecules and charged
macromolecules, respectively, favoring phase separation dominantly between both while
the solvent is of rather similar concentration in the coexisting phases. Interestingly, the
two regions behave independently from each other when increasing the attraction between
macromolecules because each region is associated to a different solution of chemical equilib-
rium (Fig. 4.1). While increasing the attraction further, the two regions merge (Fig. 4.4(f)).
This merging leads to a broad region of phase separation corresponding to a large difference
in the fraction of charged macromolecules and solvent as well as the vanishing of the two
critical points. The high density phase is made of neutral macromolecules which coexist
with a low density phase composed of solvent and charged macromolecules. We show the
behaviour of ψ along the binodal lines in the same phase diagrams as in Fig. 4.4 in the
Appendix.

One typical feature of most phase diagrams (Fig. 4.4(a,b,d-f)) is that the broader
region of phase separation exists in the vicinity of the isoelectric point. The region of
phase separation shrinks when deviating from the pI due to a decrease in interaction
energy among charged macromolecules (Fig. 4.4(a,d)) or in the interaction energy among
both charged macromolecules and neutral molecules (Fig. 4.4(b,e,f)). There is only clear
exception among these phase diagrams (Fig. 4.4(c)), where the phase separation region
slightly increases for pH values away from the isoelectric point. The increase is due to the
emergence of another stable chemical branch which lowers the free energy by an increase in
the mixing entropy in the low density phase and increasing the interaction among neutral
macromolecules in the high density phase. One interesting feature of the phase diagrams,
is that when the neutral-neutral interactions become dominant, i.e., the phase behaviour
at the isoelectric point is mainly driven by the interaction among neutral macromolecules,
we observe the vanishing of the critical points, giving rise to phase diagrams which only
have first order transitions. The dominant interaction thus defines the topology of the
phase diagram as a function of pH.

Finally, we study a more realistic scenario where the maximal net charge of the macro-
molecules m is chosen to be m = 50, which is close to the net maximal charge of some
proteins that respond to pH changes and that are found in the so called stress gran-
ules [30, 34]2. For simplicity we only consider interactions between oppositely charged
macromolecules, which in this case are given by χe/ε = −αzkBT , where z is the total
number of charges of the macromolecule and α is a factor describing the contribution of
each fixed charge of the macromolecules to the interaction (we use the value α = 7.5 as

2The proteins Sup35 and Pab1, which respond to pH changes have net charges within this range and
the total number of charges is approximately as high as 184 for Sup35.
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Figure 4.5: Binodal lines for different choices of the total number of charges on the macro-
molecules z with interactions χe/kBT = −αzε. The shaded region within the binodals is the
region where macromolecules undergo a demixing transition, whereas the region outside is where
the system remains homogeneously mixed. (a) Phase diagram as a function of the total macro-
molecule volume fraction n̄ and deviations from the isoelectric point pH− pI. (b) Same dia-
gram as in (a) but as a function of the total macromolecule molar concentration n. Parameters
ε = 0.002, hφ/kBT = 10 and α = 7.5, apply to both panels.

reported in [99]). We study the system for three different values of the total number of
charges in the macromolecule z and choosing ε = 0.002 (Fig. 4.5) motivated by a volume
ratio of water molecules and a typical protein. For all values of z considered, there exists
a broad region of phase separation at the isoelectric point (Fig. 4.5). The coexistence
becomes broader for increasing values of z due to an increase in the interaction strength.
Our minimal model predicts that at the isoelectric point, a mixture of macromolecules
with a large total number of charges, will phase separate over a large concentration range.
Finally, we also show that reducing z can lead to a drastic reduction of the concentration
range in which the system undergoes phase separation (Fig. 4.5(b)). So far we have fo-
cused on systems where one can impose the value of the pH, which remains unchanged for
if the system undergoes phase separation. In the following, we briefly discuss the conse-
quences of explicitly considering electrically neutrality in the system on the pH values in
the coexisting phases.

4.7 Electric potential and pH differences across phases

In the previous sections we discussed the effect of pH on phase separation. In particular,
we studied systems in which the pH is externally imposed and does not change for a
system undergoing phase separation. These conditions would be in agreement with the idea
that biomolecular condensates inside of the cell are not able to maintain a pH gradient
across their interface due to the lack of a membrane [3]. In this section however, we
show in very general terms that a natural consequence of considering systems that are
electrically neutral, is the emergence of an electric potential difference across the interfaces
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of liquid coexisting phases [100, 101]. This electric potential difference is concomitant with
a difference of pH across phases (the chemical potential of the proton differs in different
phases). It is well known that different membrane-bound compartments like mitochondria,
Golgi-network, nucleus and lysosome among others [2, 102–104], have very different pH
values which correlate with their functions. In contrast, this has not been studied nor
suggested in protein condensates, we therefore believe that developing an understanding of
possible electric potential and pH differences between protein condensates and the cytosol
might help unraveling their function.

A system at thermodynamic equilibrium is considered to be electrically neutral, oth-
erwise, there would be a current caused by the net charge in the system. The condition
of zero net charge in the system is called the charge neutrality condition [105, 106]. In
this section, we answer show how charge neutrality modifies the coexistence conditions.
In order to so, let us consider a system at fixed temperature T and pressure P , composed
of M different components with particle numbers {N1, . . . , NM}. Each of these compo-
nents carry a charge zi (zi = 0 is included), hence, the charge neutrality condition can be
expressed as

M∑

i=1

ziNi = 0 . (4.48)

We now proceed in a similar way as in Chapter 1 and 3 to derive the coexistence conditions.
If the system splits in two phases, we need to find the conditions for a minimum of the
Gibbs free energy G(T, P, {Ni}) subject to the constraints of charge neutrality in each of
the phases and the conservation of the particle number of each of the different components.
This can be done by minimizing the following functional

G = GI +GII +

M∑

i=1

µel
i

(
Ni −N I

i −N II
i

)
+ ΦI

M∑

i=1

ziN
I
i + ΦII

M∑

i=1

ziN
II
i , (4.49)

where GI and GII are the Gibbs free energies contributions from the two different phases, Ni

is the total number of particles of each component, N I
i and N

II
i are the particle numbers in

each phase, the electric potentials ΦI and ΦII are Lagrange multipliers enforcing the charge
neutrality condition in each of the phases3, and µel

i is the electrochemical potential [95,
107] which enforces the particle number conservation. In order to find the minimum, we
derive the functional 4.49 with respect to the particle numbers in each of the phases and

3The electric potential Φ in each of the different phases is known as Donnan potential [101, 106]
and is usually introduced when discussing the equilibrium conditions for charge carriers (mobile ions)
for a system divided in two parts by a semi-permeable membrane which stops large components moving
from one side to the other. Equilibrium is achieved when the chemical potential of the mobile charge
carriers is equal in both sides, the different partitioning of these mobile ions causes the electric potential
difference and the equilibrium conditions are known as Donnan equilibrium



Electric potential and pH differences across phases 75

equate to zero, leading to

∂G
∂N I

i

= µI
i − µel

i + ziΦ
I = 0 , for i ∈ {1, . . . ,M} , (4.50)

∂G
∂N II

i

= µII
i − µel

i + ziΦ
II = 0 , for i ∈ {1, . . . ,M} , (4.51)

∂G
∂ΦI

=
M∑

i=1

ziN
I
i = 0 , (4.52)

∂G
∂ΦII

=
M∑

i=1

ziN
II
i = 0 , (4.53)

where we used ∂GI/∂N I
i = µI

i and ∂G
II/∂N II

i = µII
i . We did not include the derivatives

with respect to the electrochemical potential since it only states the conservation of each
particle number. From Eq. (4.50) and Eq. (4.51), we obtain the condition

µel
i = µI

i + ziΦ
I = µII

i + ziΦ
II , for i ∈ {1, . . . ,M} , (4.54)

where we see that the conditions for a minimum of G amount to the equality of electro-
chemical potentials in both phases apart from the charge neutrality conditions given in
Eqs. (4.52) and (4.53). Furthermore, each phase has to obey charge neutrality as shown in
Eqs. (4.52) and (4.53), this means that we can arbitrarily choose one component in each
phase and express its particle number as a function of the rest of the particle numbers
corresponding to components carrying a charge. This choice is arbitrary so let us choose
the k-th component, with zk 6= 0, in each of the phases and express it as

N I
k = −

∑

i 6=k

ziN
I
i

zk
, (4.55)

N II
k = −

∑

i 6=k

ziN
II
i

zk
, (4.56)

which explicitly shows that there are only M − 1 independent particle numbers in each of
the phases. If we now use the k-th condition for the equality of electrochemical potentials
and express the electric potential difference across coexisting phases ∆Φ = ΦII − ΦI by

∆Φ =
µI
k − µII

k

zk
, (4.57)

we can rewrite the electrochemical potential conditions given in Eq. (4.54) for the rest of
the components, which read

µI
i −

zi
zk
µI
k = µII

i −
zi
zk
µII
k , for i ∈ {1, . . . ,M} and i 6= k . (4.58)
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This condition defines the equality of some type of relative chemical potential enforcing
the charge neutrality condition when there are exchanges of particles from one phase to
the other. Please note that we eliminated the electric potential difference from the de-
scription by using Eq. (4.57) and that we also eliminated the particle number Nk from the
description, thus there are now M − 1 coexistence conditions defined by Eq. (4.58) which
can be solved to find the compositions in both phases. After solving these conditions and
finding the equilibrium compositions given by the particle numbers N I

i and N
II
i with i 6= k,

these particle numbers can be substituted in the charge neutrality conditions to find the
particle number Nk in both phases and also to compute the electric potential difference
using Eq. (4.57). These steps show that finding the explicit value of the electric potential
is not needed in order to find the compositions of the coexisting phases, nevertheless, it
is worth knowing how to compute its value since it might be a relevant quantity deter-
mining the partitioning of ions and other charged molecules partition into the different
phases [100]. Besides the existence of the electric potential difference, one very interesting
result that has come naturally from our derivation, is that for charged components, there
is a chemical potential difference between the two phases, which as we show below, for the
case of hydrogen ions, amounts to a difference in pH across the phases.

Let us consider the same multicomponent system as in Eq. (4.49), with one of the
components being hydronium ions, denoted by H3O+. The coexistence conditions for
H3O+ would be given by

µII
H3O+ − µI

H3O+ = −e∆Φ , (4.59)

where e denotes the elementary charge. Considering equilibrium of water across the two
phases, using the pH definition given in Eq. (4.19) and making slight modifications of the
equation, we can reformulate Eq. (4.59) as

pHII − pHI = −∆Φ log10 e

kBT
, (4.60)

where we see that there is a direct connection between the difference in pH across the
interface and the electric potential difference.

We decided to present the full derivation in order to show how by consistently adding the
constraints in the system reflect macroscopic properties of the coexisting phases that might
be of relevance. If we think on protein condensates, what we discussed in this section clearly
shows that by means of phase separation, the chemical and physical environment of protein
condensates could be regulated by charges. Moreover, that biomolecular condensates might
have well defined pH values that allows to perform specific tasks, but this remains to be
further studied and be backed by experiments. To conclude, more consequences of electric
potential and pH differences across interfaces remain to be explored in the future.
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4.8 Summary

In this chapter, we have established a thermodynamic framework to study liquid-liquid
phase separation in a system where the pH is controlled. We started by introducing chemi-
cal reactions controlling the charge states of macromolecules which are in turn determined
by the pH value of the mixture. Using conservation laws for a system undergoing chem-
ical reactions, we identified the effective thermodynamic conjugate variables at chemical
equilibrium. We then found the relevant thermodynamic variables controlling the pH of
the system, namely the chemical potential difference, µH3O+ − µH2O, and the temperature
T . That allowed us to construct the corresponding thermodynamic potential for a system
with a fixed pH value by means of a Legendre transform which makes, µH3O+ − µH2O, a
natural variable of the corresponding free energy. Based on this thermodynamic potential
we showed how the chemical and phase equilibrium are controlled by the pH of the system
and calculated the corresponding phase diagrams.

We found that phase separation typically occurs around pH values corresponding to
the isoelectric point pI. This finding could be relevant to processes in living cells since
many cytosolic proteins have a similar isoelectric point. For example in yeast cells, many
proteins exhibit isoelectric points around pH ' 5.3 and pH ' 9 [16]. Thus, our finding
of phase separation around the pI is consistent with observations in yeast cells [16], where
many proteins separate from the cytosol once the pH is lowered to pH ' 5. Using typical
parameters for cellular proteins (Fig. 4.5), we find that phase separation occurs from con-
centrations ranging from µM corresponding to a typical saturation concentration of phase
separating cellular proteins [28, 30] to mM. Our model is also in agreement with phase
separation for a concentration of the order of 1 mM, which is an estimation of the total
concentration of proteins in yeast [108]. Note that phase separation is lost, both at low
and high concentrations, which can be understood from the analogy with the quasi-binary
mixture shown in Fig. (4.2)(a,e). We further predict that upon decreasing pH even more,
reentrant behaviour leading to a mixed state will be observed. However, this behaviour
may not always be observable in living systems due to several reasons. One of them is
that upon decreasing the pH below the isoelectric point, proteins might denature and ag-
gregate irreversibly before reaching conditions for phase separation that we describe in
this manuscript. Our approach considers phase separation controlled by pH at thermody-
namic equilibrium. Neglecting the effect on phase separation related to the consumption
of ATP is reasonable since the reported starvation induced phase separation occurs upon
ATP depletion conditions [16]. We concluded by exploring the consequences of considering
the charge neutrality condition in the system, and showed that there may exist a pH and
electric potential difference across interfaces of different phases. This could be relevant
in the context of biomolecular condensates that form via a demixing transition in which
charged macromolecules are involved.



Chapter 5

Protein Phase Separation Regulated
by RNA Concentration in vitro and
in vivo

Many different membraneless organelles, such as P granules [12], nucleoli [19], Cajal bod-
ies [109] and stress granules [21], are mainly composed of RNA-binding proteins and RNA.
It has been shown that RNA plays a prominent role in protein phase separation in vitro and
in vivo [3, 18, 22, 23, 25, 27–29, 36–38, 52], thus having an understanding of the influence
of RNA in protein phase separation is highly relevant for understanding the formation of
biomolecular condensates. In this chapter, we are concerned with RNA as a regulator of
protein phase separation, in particular, we study the role of RNA on the positioning of P
granules in the C. elegans embryo. For presentation purposes, let us briefly describe again
the pioneering work of Brangwynne et al. [12]. In that work, it was shown that P granules
are liquid-like droplets that localize to the posterior of the C. elegans embryo by means of
a dissolution/condensation mechanism. It was further shown that a MEX-5 protein (here-
after MEX-5) gradient is established prior to the first cell division and that this gradient
anti-correlates with the positioning of P granules, i.e. higher concentrations of MEX-5
at the anterior side of the embryo are connected to dissolution of P granules, whereas P
granules condense at the posterior side which has lower concentrations of MEX-5 [110,
111]. Although this anti-correlation was known, the mechanism driving the positioning
remained elusive. One step towards describing a possible mechanism for P granule segre-
gation [112] was based on a minimal reaction diffusion model for two components. There,
the authors described effective components which are divided in P granule constituents
and non-constituents. In their model, components can diffuse and have spatially depen-
dent production and degradation rates. They showed that there is an accumulation of
the constituent material of droplets at the posterior side but they did not discuss the un-
derlying thermodynamic mechanism in charge of regulating the locally dependent phase
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separation.
In previous work [28], we and our experimental collaborators proposed a mechanism

that can account for the positioning of P granules on a thermodynamic basis. This mech-
anism is based on an mRNA-binding competition between constituent proteins of P gran-
ules and the MEX-5 protein. The hypothesis was that a MEX-5 gradient can regulate
the amount of RNA available for binding across the C. elegans embryo, which in turn
tunes the phase separation tendency of P granule constituents. To test this hypothesis,
our collaborators purified PGL-3 protein, a key component of P granules, and studied its
ability to form liquid-like drops. In addition, they also performed experiments to study the
effect of RNA on PGL-3 phase separation as well as the effect of having both MEX-5 and
RNA simultaneously present in a PGL-3 solution. We then used a model to explain the
experimental observations and showed that a positioning mechanism based on an mRNA
binding competition between MEX-5 and PGL-3 is a feasible explanation for P granule
positioning.

The content of this chapter is largely based in our publication [28] and is organized as
follows: we first present the experimental evidence showing that the PGL-3 protein forms
liquid-like drops. We then show experimental results from our collaborators regarding the
RNA-binding affinities of both, PGL-3 and MEX-5. We close this part by showing that
mRNA regulates the saturation concentration of PGL-3 and that MEX-5 can decrease the
tendency to phase separate of PGL-3 in the presence of mRNA. In order to explain the
experimental observations, we propose a model describing PGL-3 phase separation in ad-
dition to including mRNA and MEX-5 in the description as regulating components. Using
this model we then fit the experiments performed by our collaborators and show that a
minimal mean field model can account for the observed phase separation in the in vitro ex-
periments. We end by showing solutions to the dynamical equations for the concentrations
of all components corresponding to the free energy of the full thermodynamic model, and
showed that indeed, the mRNA binding competition between MEX-5 and PGL-3 accounts
for the positioning of liquid phase-separated drops in vivo.

5.1 P granule constituent protein forms liquid droplets in

vitro

It had previously been reported that two key components of P granules undergo phase sep-
aration in vitro [36], namely PGL-1 and PGL-3. Our collaborators, purified the proteins
PGL-3 and PGL-1, tagged with a green fluorescent protein (mEGFP) from insect cells and
studied solutions of PGL-3 or PGL-1 immersed in buffer (a mixture that resembles the
physiological conditions of the cytosol). They showed that PGL-1 did not undergo phase
separation for physiological salt conditions in the buffer, whereas PGL-3 forms liquid-like
drops, see Fig. 5.1. Liquid phase separation was assessed by fluorescence microscopy of
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(a) (b)

(c)

Figure 5.1: PGL-3 forms liquid-like drops. (a) Maximum intensity projection of the PGL-3-
mEGFP solution. PGL-3 forms spherical droplets with a higher concentration than in solution.
(b) Fusion event of two spherical droplets showing the fluid behavior of the phase-separated
drops. (c) Fluorescence recovery is observed after photo-bleaching a small region in the interior
of the drop, which is evidence of dynamic rearrangement of particles in the interior of the drops.
PGL-3-mEGFP refers to the tagged PGL-3 protein with the green fluorescent protein mEGFP.
All panels are adapted from [28].

GFP:tagged PGL-3, collecting the fluorescence obtained from the mEGFP tag to PGL-3
proteins. The evidence showing that PGL-3 forms liquid-like drops is the following: first,
the condensed phase is constituted by spherical droplets shown in Fig. 5.1(a), second, the
spherical drops undergo fusion on a short time scale shown in the sequence of images
in Fig. 5.1(b) and third, fluorescence recovers after photo-bleaching a small area in the
center of the PGL-3 liquid drops, indicating a constant exchange of matter with the sur-
roundings, shown in Fig. 5.1(c). Showing that PGL-3 forms liquid-drops in vitro, similar
to P granules in vivo, serves as the first step towards understanding the mechanism of P
granule positioning in the C. elegans embryo.

5.2 Quantification of Protein-RNA binding

Protein binding to RNA plays a prominent role in phase separation processes in the cell,
here we discuss how RNA interacts with two key players in P granule positioning, PGL-3
and MEX-5. In order to do so, we discuss the experimental results of the RNA-binding
assays of PGL-3 and MEX-5, shown in Fig. 5.2. Experimental measurements show that
PGL-3 binds weakly to RNA, characterized by a dissociation constant KPR ' 230 nM, see
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(a) (b)

Figure 5.2: RNA-binding assays of PGL-3 and MEX-5. (a) RNA-binding curves showing that
PGL-3 binds to RNA. For the wild-type PGL-3, the blue line shows a weak binding affinity,
which is mediated via six RGG repeats in the amino-acid sequence of PGL-3. The green line
shows an extremely reduced binding affinity for a PGL-3 mutant that lacks the six RGG repeats.
(b) The MEX-5 binding curve shows a strong binding affinity between MEX-5 and RNA which
is mediated by two zinc Fingers. The dissociation constants in each panel are denoted by Kd.
Both panels are adapted from [28].

blue line in Fig. 5.2(a). This binding is mediated by the six RGG 1 repeats of PGL-3 [28].
This is concluded after observing that a mutant of PGL-3 lacking the RGG repeats, shows
an extremely reduced binding affinity to RNA, see green line in Fig. 5.2(a). Interestingly,
experimental measurements show that MEX-5 binds 20 times stronger to RNA than PGL-
3, characterized by a dissociation constant KMR ' 12 nM. The binding occurs via two zinc
finger domains in the MEX-5 protein2. In what follows, we discuss experiments assessing
the regulatory effect of MEX-5 and RNA in PGL-3 phase separation.

5.3 Regulation of protein phase separation in vitro

In this section we discuss experimental results showing the regulating effect of RNA and
MEX-5 on PGL-3 phase separation. In [28] it was shown RNA promotes phase separation,
in particular, that mRNA promotes phase separation, whereas rRNA, due to its structured
nature does not (data not shown). Hereafter we only consider mRNA in our discussion.

The experiments we discuss were done in vitro using fluorescence microscopy, the images
shown in Fig. 5.3(a,b,c) are taken after some time of equilibration. They show maximum

1The RGG repeat is characterized by the combination arginine-glycine-glycine in the amino acid
sequence of a protein. This repeat is known to be important in mediating binding interactions between
proteins and RNA. For detailed information about the RGG repeat we refer the reader to [113].

2In fact, the full form of MEX-5 could not be purified and instead a shorter sequence which contains
two zinc fingers was used. These zinc fingers are known to strongly interact with RNA and DNA [114]
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intensity projections of the different image stacks in the z direction (considering the image-
plane to be x− y), white circles show a high density of PGL-3. In the absence of mRNA,
the saturation concentration of PGL-3 is approximately 2µM, shown in the third panel in
Fig. 5.3(a). At concentrations larger than 2µM the protein condensed phase (white circles)
grow, as expected from a simple picture of phase separation in binary mixtures. For PGL-3
solutions in the presence of mRNA at a concentration of 100 nM (shown in Fig. 5.3(b)),
we observe a significant formation of tiny drops for concentrations of PGL-3 of 100 nM.
This then shows that mRNA regulates PGL-3 phase separation by increasing its tendency
to phase separate. Similar experiments to assess the effect of MEX-5 on PGL-3 phase
separation were done. A solution with a PGL-3 concentration of 0.6µM was analyzed
in four different conditions, see Fig. 5.3(c). The PGL-3 solution was analyzed with and
without MEX-5, showing no sign of PGL-3 phase separation, shown in the two upper panels
in Fig. 5.3(c). In contrast, when mRNA is added to the PGL-3 solution, shown in the two
lower panels in Fig. 5.3(c), MEX-5 is shown to inhibit the phase separation promoted by
mRNA, this is seen by comparing the lower left panel (no MEX-5) with the lower right
panel (with MEX-5). To further study the effects of mRNA and MEX-5 on PGL-3 phase
separation, the total GFP fluorescence in drops was measured for different conditions, see
Fig. 5.3(d). It is shown that a PGL-3 concentration of 0.6µM remains well mixed with
buffer when MEX-5 is added (first triangle from left to right). In contrast, if MEX-5 is
absent and mRNA is added to the PGL-3 solution, 25% of the fluorescence is concentrated
in the PGL-3 condensed phase (second triangle from left to right). If both mRNA and
MEX-5 are present in the PGL-3 solution (last three triangles from left to right), the total
fluorescence in the PGL-3 condensed phase increases for increasing amounts of mRNA.

In summary, the presence of mRNA increases the tendency of PGL-3 to phase-separate
whereas MEX-5 does not seem to have a direct effect on PGL-3 phase behavior in the
absence of mRNA. Interestingly, when both MEX-5 and mRNA are present in a PGL-3
solution, MEX-5 reduces the effect of mRNA on promoting PGL-3 phase separation. This
is in agreement with MEX-5 having a stronger binding affinity to mRNA than PGL-3. All
the previously explained experimental observations set the basis to formulate an mRNA
binding competition mechanism as a plausible explanation for P granule positioning in the
C. elegans embryo. In what follows, we back this hypothesis by building up a model to
explain PGL-3 phase separation and its regulation by mRNA and MEX-5 based on the
experimental evidence.

5.4 Theory of regulation of protein phase separation

In this section, we introduce a model to describe the ability of PGL-3 to phase separate
and discuss the role played by mRNA and MEX-5 in regulating this behavior. We begin
our discussion by describing the system using a Flory-Huggins free energy, where the
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(a)

(b)

(c) (d)

Figure 5.3: PGL-3 phase separation regulated by mRNA and MEX-5. (a,b) Maximum inten-
sity projections of confocal images in the z direction of PGL-3 solutions. (a) Different concen-
trations of PGL-3 tagged with green fluorescent protein exhibiting phase separation. (b) Dif-
ferent concentrations of PGL-3 tagged with green fluorescent protein in the presence of 100 nM
mRNA exhibiting phase separation at low PGL-3 concentrations. (c) Assessment of MEX-5 and
mRNA effects on a solution with PGL-3 concentration of 0.6µM. In the left upper panel, PGL-3
is well-mixed. In the right upper panel, MEX-5 is added and there is no effect on PGL-3 phase
separation. In the lower left panel mRNA is added and shown to promote phase separation. In
the lower right panel, MEX-5 is shown to reduce the effect of mRNA promoting PGL-3 phase
separation in buffer. (d) Total fluorescence inside of the condensed phase of a 0.6µM PGL-3
solution with different concentrations of MEX-5 and mRNA. The +/- symbols indicate the pres-
ence/absence of specific components in the mixture. The last three symbols from left to right,
show the interplay between MEX-5 and mRNA on regulating PGL-3 phase separation. The
MEX-5 concentration is kept constant at 150 nM with varying mRNA concentrations (from left
to right) 50, 100, or 150 ng/µl. These three points show an increase in the fluorescence in the
condensed phase for increasing values of mRNA. All panels are adapted from [28].
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components are given by: the phase-separating components which are PGL-3, denoted by
P , and the complex PGL-3:mRNA, denoted by PR. The regulating components, MEX-5,
denoted by M , and mRNA, denoted by R. Finally, the solvent is given by W and the
complex formed by MEX-5 and mRNA is denoted by MR. The free energy density reads

f =
kBT

vW

[∑

i

εiφi (lnφi + wi/kBT ) + χP,WφPφW + χPR,WφPRφW

]
, (5.1)

where φi stands for the volume fraction, εi = vW /vi is the molar3 volume ratio between the
solvent W and the component i, wi is the free energy per particle due to internal degrees
of freedom and the Flory-Huggins parameters χP,W and χPR,W describe the tendency
to phase separate of PGL-3 and PGL-3:mRNA, respectively and the index i runs over all
components, including the solventW . Our choice of Flory-Huggins parameters is consistent
with the fact that MEX-5 and mRNA do not show any tendency to phase separate. For
compactness, we used φW to denote the solvent component in Eq. (5.1) instead of the
explicit form φW = 1 −∑j 6=W φj , in terms of the rest of the components. The volume
fractions are connected to the concentrations via, φi = vini, where ni is the concentration.

We have presented experimental evidence showing that PGL-3 and MEX-5 bind to
mRNA. We now propose a set of binding reactions to account for the observed regulation
of the phase behavior of the PGL-3 protein. We express these mRNA-binding reactions of
PGL-3 and MEX-5 as

P +R 
 PR , (5.2a)

M +R 
 MR . (5.2b)

These reactions describe how PGL-3:mRNA is formed by a PGL-3 protein binding to an
mRNA molecule and how the complex MEX-5:mRNA forms when a MEX-5 protein binds
to an mRNA molecule.

In order to simplify our discussion of binding equilibrium, we consider that binding is
mainly driven by differences in the internal free energies of the molecules and neglect the
effect of molecular interactions on the binding constants. More precisely, we only consider
this approximation in the case of the binding reaction of PGL-3 to mRNA, because, as we
show in Appendix H, the binding equilibrium of MEX-5 and mRNA remains unchanged
because they do not have a tendency to phase separate. We then express the binding

3We use molar volume since the concentrations are given in molar units M = mol/l. One can trans-
form from molar to molecular volume using Avogadro constant.



Comparison of theory to experiments 85

equilibrium as

nP nR
nPR

' KPR , (5.3)

nM nR
nMR

' KMR , (5.4)

where KPR is the dissociation constant of the complex PGL-3:mRNA and KMR is the
dissociation constant of MEX-5:mRNA. A thorough discussion of the binding equilibrium
conditions is presented in Appendix H.

Since we are interested in studying how PGL-3 and the complex PGL-3:mRNA un-
dergo phase separation, we now use Eqs. (5.3) and (5.4) to find a relation between their
concentrations, nP and nPR. This relation is given by

nPR(nP ) '

√[
KPRn

T
M+

(
1+

KPR
nP

)
KMRnP−KPRnTR

]2
+4KMRKPRn

T
RnP

(
1+

KPR
nP

)
2
(

1+
KPR
nP

)
KPR

+
KPRn

T
R−KPRn

T
M−

(
1+

KPR
nP

)
KMRnP

2
(

1+
KPR
nP

)
KPR

, (5.5)

where nT
R = nR + nPR + nMR is the total mRNA concentration and nT

M = nM + nMR is
the total concentration of MEX-5. For fixed values of the total amounts of PGL-3, MEX-5
and mRNA, the binding reactions constrain the possible values of nPR and nP , thus we
will refer to Eq. (5.5) as the constrained path.

Please note that in the absence of mRNA, there is no relation connecting all the compo-
nents. Furthermore, since we are interested in explaining some experiments where MEX-5
is absent, we also calculate the constrained path for a system where only PGL-3 and mRNA
are considered, for which Eq. 5.5 simplifies to

nPR(nP ) ' nT
R

1 + KPR
nP

. (5.6)

In Fig. 5.4, we show the constrained path given in Eq. (5.6) for the values KPR = 250 nM

and nT
R = 100 nM. We see that in this case for a total concentration of PGL-3, nT

P ' 1µM,
most of the mRNA is already bound and nPR has reached its maximum concentration.

Having discussed the model and the binding equilibrium of the system, we are now in
a position to fit the theory to the experimental data.

5.5 Comparison of theory to experiments

In this section we use the free energy density given in Eq. (5.1) to fit the experimental
data for two different scenarios. The first scenario is a PGL-3 solution in the absence
of mRNA and MEX-5, this scenario corresponds to the experimental situation shown in
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Figure 5.4: Constrained path (yellow line) showing the concentration of the complex PGL-
3:mRNA, nPR as a function of the free PGL-3 concentration, nP . The total mRNA concentra-
tion (green line) is nTR = 100 nM and the dissociation constant is KPR = 230 nM.

Fig. 5.3(a). The second one, is the solution for which mRNA is added at concentration
nR = 100 nM, corresponding to the experimental data acquired from Fig. 5.3(b). From the
fits, we extract the molecular volume ratios, 1/εP = vP /vW and 1/εPR = vPR/vW , and
the Flory-Huggins parameters χP,W and χPR,W .

We begin by studying the case of PGL-3 phase-separating from the solvent in the
absence of mRNA. In this case, the system is described as a binary mixture with compo-
nents P and W . From the experimental data (see Fig. 5.3(a)) we obtain the fluorescence
density in the different phases, we connect these measurements to PGL-3 concentrations
by considering a linear relation between fluorescence and concentration. We transform
the fluorescence density inside and outside of the drops to concentration values using the
following relations:

Iin = I0n
in
P , (5.7)

Iout = I0n
out
P . (5.8)

where I0 is a constant relating fluorescence and PGL-3 concentration, nin
P and nout

P are total
PGL-3 concentrations in the condensed phase (inside the drops) and in the dilute phase
(outside the drops), respectively, and the fluorescence concentrations in the condensed and
in the dilute phase are given by Iin and Iout, respectively. For this case, nPR = 0, therefore
the total PGL-3 concentration is given by nT

P = nP .
The quantities that we fit are the saturation concentration of PGL-3 and the ratio

between the fluorescence densities in the drops and outside of the drops. The satura-
tion concentration value obtained from the experiments is given by ns

P ' 2µM and the
fluorescence ratio is Iin/Iout ' 50. We obtain this fluorescence ratio by averaging over
the fluorescence values corresponding to the last five PGL-3 fluorescence concentrations
obtained experimentally (see the blue squares in Fig. 5.5(b)). We only considered these
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points since the concentrations close to the saturation concentration did not seem to have
equilibrated yet at the time of measurement. Moreover, we do not need to consider the
temperature dependence of the Flory-Huggins parameters since the temperature of the
experiments is kept fixed at room temperature.

A sketch of the phase diagram obtained for the fitting procedure is shown in Fig. 5.5(a).
The PGL-3 concentrations used in the experimental setup lie on the blue dotted line, which
is shown at a fixed value of χP,W because the temperature is fixed, thus χP,W remains the
same for all experiments in this system. The fitting routine works as follows we vary
the values of εP and χP,W and construct the corresponding coexisting phases. We then
compare the concentration of the low density phase with the saturation concentration
obtained from the experiments and the ratio between the concentrations in both phases
with the fluorescence ratio measured experimentally, setting a tolerance of less than one
percent. We repeat the procedure until the solution is within this tolerance. From the fit
we extract 1/εP = 1.48× 104 and χP,W = 0.512. This very large value of 1/εP is obtained
because at very low PGL-3 concentrations the system readily phase separates. The value
of the Flory-Huggins parameter χP,W is relatively close to the critical value, which for large
macromolecules is close to 1/2. In Fig. 5.5(b) we show the fitted curve (blue line) to the
experimental data (blue squares). Since we model the system as a binary mixture, it can
only exhibit a step-like behavior which fits reasonably well to the last experimental data
points.

Let us now discuss the case in which mRNA is also present in the PGL-3 solution, see
Fig. 5.3(b). In this case, the free energy density given in Eq. (5.1) would also include the
mixing entropy terms of the complex PGL-3:mRNA and of the free mRNA, in addition to
the term proportional to the Flory-Huggins parameter χPR,W , but in order to simplify our
discussion we neglect the mixing entropy of the mRNA. The reasons behind this choice are
that mRNA has a very low concentration, a big fraction of it will be bound to PGL-3 and
mRNA is a rather large macromolecule so its contribution to the mixing entropy is rather
low. Therefore, the main role played by mRNA in our model is to change the effective
properties of PGL-3 when creating a complex PGL-3:mRNA.

We now use the parameters χP,W and εP obtained from the previous fit, to discuss the
effect of mRNA on PGL-3 phase separation. In order to do so, let us remember that due
to the binding reaction between PGL-3 and mRNA, the possible concentrations of PGL-3,
nP , and that of the complex PGL-3:mRNA, nPR, are constrained to the path shown in
Fig. 5.4. If we now consider that the total PGL-3 concentration is nT

P = nP + nPR, then
∆I = Iin − Iout, is given by

∆I = I0(nin
P + nin

PR − nout
P − nout

PR) . (5.9)
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Figure 5.5: Binary mixture fit to the experimental data. (a) Sketch of the phase diagram of
a binary mixture. The blue line represents the line where the experiments are performed (fixed
χP,W and varying PGL-3 concentrations), the point where the binodal (black line) and the ex-
perimental line meet for the first time is the saturation concentration of PGL-3, this crossing de-
fines the PGL-3 concentration of the dilute phase, the second crossing defines the concentration
of the condensed phase. (b) Fitting curve (blue line) to the experimentally measured differences
in fluorescence density (blue squares) between the two phases. The normalized ∆I is normalized
by the average fluorescence density difference between the condensed and dilute phases (taken
over the last five experimental points). The saturation concentration is indicated by an arrow in
the blue solid line. Panel (b) is adapted from [28].
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Because in the experiments PGL-3 is labeled independently of its binding to mRNA, we
also considered the contributions to the fluorescence density by PGL-3:mRNA.

From the experimental data shown in Fig. 5.6(b), we see that the saturation concen-
tration of total PGL-3 lies between 100 nM and 250 nM. In order to fit the data, we vary
the parameters χPR,W and εPR, and construct binodals for which the first crossing point
between the constrained path and the binodal lies within the previously mentioned concen-
tration range. For the set of parameters that obey the previous condition, we calculate the
concentration difference between the phases and compare with the experimental data. This
is done by finding the tie line, connecting the condensed and dilute phases, which intersects
the constrained path at the prescribed PGL-3 total concentration in the experiments, see
Fig. 5.6(a).

From the fitting procedure we obtain 1/εPR = 1.56 × 104, and χPR,W = 0.518, which
show that PGL-3:mRNA must have a larger tendency for phase separation than PGL-3
alone and also that the complex PGL-3:mRNA has a larger effective volume than PGL-3.
One might wonder, why is the effective volume of the PGL-3:mRNA so close to the one
of PGL-3 alone, this is because this volume corresponds to an effective interaction volume
of the complex with the solvent, which we expect to be close to the one of PGL-3 alone
since mRNA seems not to have a tendency for phase separation4. The results from the
fitting procedure are shown in Fig. 5.6. In Fig. 5.6(a) we use the parameters obtained from
fitting the experiments of both scenarios (the PGL-3 solution with and without mRNA)
to construct the corresponding phase diagram. The first crossing between the binodal line
(purple line) and the constrained path (yellow line) defines the saturation concentration of
the total amount of PGL-3, nT

P ' 200 nM. We see that for compositions in the constrained
path that lie near the binodal, the corresponding condensed phase is mostly composed of
the complex PGL-3:mRNA, nin

PR > nin
P , whereas for increasing values of nT

P , i.e. moving
from left to right in the constrained path, the corresponding condensed phases start being
mostly formed by free PGL-3 alone. We see in Fig. 5.6(b) that the fitted curve (orange
line) correctly reproduces the decrease in the fluorescence density difference between phases
obtained experimentally (orange circles), this results from a decreasing concentration of
total PGL-3 in the condensed phase while moving from left to right along the constrained
path.

In this section we have shown that our minimal model correctly accounts for the ex-
perimental observations regarding PGL-3 phase separation. Interestingly, we found that in
order to reproduce the experimental data, the complex PGL-3:mRNA must have a stronger
tendency to phase separate than PGL-3 and that its effective interaction volume must also
be larger than that of PGL-3. Thus, we see that mRNA regulates phase separation by

4In fact, for large macromolecules the mixing entropy term is very small and many times negligible,
thus the relevant volume to be considered, is an effective volume that takes into account the regions
of the complex PGL-3:mRNA driving phase separation. This might the reason behind having such a
similar value of εPR and εP .
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Figure 5.6: Fit for PGL-3 phase separation regulated by mRNA. (a) Phase diagram in the
nP − nPR composition plane, obtained using the parameters obtained from fitting the ex-
perimental results. The yellow line shows the constrained path given in Eq. (5.6), the purple
line is the binodal and tie lines are shown as green lines. The first crossing point from left to
right of the constrained path and the binodal defines the total PGL-3 saturation concentration,
nPT ' 200 nM. (b) Fit of the theory to the experimental data. The data from the experi-
ments is shown as orange circles and the orange line is the curve calculated from the model. The
green shaded region shows for which of the concentrations of total PGL-3 there will be phase
separation. The parameters used are: χP,W = 0.512, χPR,W = 0.518, 1/εP = 1.48 × 104,
1/εPR = 1.56× 104, KPR = 230 nM and nTR = 100 nM. Panels adapted from [28].
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binding and increasing the effective interaction of PGL-3 in the complex. In the following,
using the parameters obtained from the fits discussed in this section, we study how does
MEX-5 interferes with this mechanism.

5.6 An mRNA-Binding competition regulates protein phase
separation in vitro

Here, we briefly discuss the effect of MEX-5 in the regulation of phase separation. We
do so, by using the parameters obtained from the fit of the theory to the experimental
data. We include MEX-5 in our description in an effective way, since we do not consider
its mixing entropy or that of the complex MEX-5:mRNA. We do this since MEX-5 does
not exhibit phase separation and its volume fraction is rather small, thus it has a negligible
mixing entropy.

The presence of MEX-5 modifies the binding equilibrium of the system. In particular, it
modifies the constrained path that relates the concentrations of PGL-3 and PGL-3:mRNA
is given by Eq. (5.5). In order to assess the effect of MEX-5 on PGL-3 phase separation,
we study the different scenarios discussed in Fig. 5.3(d) by fixing the total concentration
of PGL-3 protein to be nT

P = 0.6µM and varying the values of the total concentrations of
MEX-5 and mRNA (see the legend of Fig. 5.7). We show the different constrained paths
in Fig. 5.7(a), where we see how the interplay between MEX-5 and mRNA affects phase
separation. The only case in which the composition lies in the mixing region (green circle),
is the one in which the concentration of MEX-5 exceeds that of mRNA. The presence
of MEX-5 inhibits phase separation by binding to most of the available mRNA, thus
decreasing the ability of PGL-3 to form PGL-3:mRNA complexes which have a higher
tendency to phase separate. The rest of the compositions lie within the binodal, which is
in agreement with the experimental observations shown in Fig. 5.3(d). In Fig. 5.7(b) we
show the fraction of the total fluorescence within the condensed phase, I, defined by

I =
Ī− Iout

Iin − Iout
=
nT
P − nout

P

nin
P − nout

P

, (5.10)

where Ī is the total fluorescence density, given by Ī = I0n
T
P . The predictions from our

model are in qualitative agreement with the experimental observation of larger fractions of
total fluorescence within the drops corresponding to larger concentrations of total mRNA.

We have shown that PGL-3 phase separation can be mediated by an mRNA-binding
competition. If we now remember that in the C. elegans embryo, there is a MEX-5 gradient
established from anterior to posterior, we may then propose that the mechanism driving
P granule positioning is the depletion of free mRNA at the anterior of the embryo. This
depletion would lead to dissolution of P granules, whereas at the posterior side the amount
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Figure 5.7: Regulation of PGL-3 phase separation by MEX-5 and mRNA. (a) Phase dia-
gram using the parameters extracted from the fits to the experimental data. Constrained paths
corresponding to different compositions are shown as colored lines (the compositions are indi-
cated in the legend). All symbols refer to a total concentration of PGL-3, nTP = 0.6µM in
the different corresponding constrained paths. The binodal is shown as a green line and the
red lines correspond to different tie lines. (b) Fraction of the total fluorescence within the con-
densed phase as predicted by our model. Each symbol denotes a different composition given
by: square (nTR = 0 nM, nTM = 150 nM), triangle (nTR = 100 nM, nTM = 150 nM), cir-
cle (nTR = 200 nM, nTM = 150 nM), square (nTR = 300 nM, nTM = 150 nM). Parameters:
χP,W = 0.512, χPR,W = 0.518, 1/εP = 1.48 × 104, 1/εPR = 1.56 × 104, KPR = 230 nM.
Figures adapted from [28].

of free mRNA will be higher and PGL-3 and other P granule components such as PGL-1
will be able to bind to it, enabling the condensation of P granules, thus effectively leading
to a positioning of the P granules to the posterior of the embryo.

5.7 Positioning of protein droplets in the cell

Here, we assess the possibility of the mRNA-binding competition mechanism to explain
the P granule positioning observed in the C. elegans embryo. In [28], we also presented
solutions to a set of dynamical equations derived from our thermodynamic model. There,
we considered dynamic equations based on conservation laws and linear irreversible ther-
modynamics [115]. Since the dynamical equations describe an inhomogeneous system, a
further dependence on gradients of the concentration of phase-separating components is
added to the free energy density in the spirit of the Cahn-Hilliard free energy [116]. The
derivation and the numerical solutions to the dynamic equations was developed by Dr.
Christoph A. Weber and for this reason, we refer the reader to the paper for a full discus-
sion of the equations [28]. Here, for the sake of completeness we only present the numerical
results. In Fig. 5.8 we see the process of droplet positioning due to the mRNA-binding
competition mechanism. The starting point is a homogeneous distribution of droplets (left
upper panel) as well as a homogeneous distribution of MEX-5 and mRNA (right upper
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panel). When the MEX-5 gradient starts building up (right middle panel), PGL-3 droplets
start dissolving on the left region of the domain (left middle panel). Finally, when the
gradient of MEX-5 is fully established (right lower panel), the droplets are positioned to
the right side of the domain (lower left panel). What this shows is that the positioning of
liquid drops (red circles on the left panels) happens concomitantly with the establishment
of a MEX-5 gradient along the x-axis (red line shown in the panels on the right). Thus,
the numerical solutions to the dynamic equations support the hypothesis of P granule
positioning being driven driven by an mRNA-binding competition mechanism.
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Figure 5.8: Positioning of liquid droplets. Left panels show the time evolution of total PGL-3
in solution with mRNA and MEX-5. Going from top to bottom the time increases. The system
starts with homogeneous nucleation of drops in the entire domain. Establishment of a MEX-5
gradient leads to dissolution of liquid drops on the left and to condensation on the right. The
bottom panel shows localized drops on the right. Right panels show the time evolution of the
total concentration of MEX-5 and mRNA averaged over the y-axis. Figure adapted from [28].

5.8 Summary

In this chapter we combined experimental data and theory to explain how an mRNA-
binding mechanism regulates PGL-3 phase separation and could account for the positioning
of P granules to the posterior side of the C. elegans. We first presented experimental data
showing that PGL-3 undergoes liquid phase separation and forms liquid-like drops in vitro.
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We then showed that this behavior is regulated by mRNA, which acts as a promoter of
PGL-3 phase separation. The increase in the tendency for phase separation seems to be
associated with the ability of PGL-3 to bind mRNA and form complexes, PGL-3:mRNA.
We further presented experimental data revealing that MEX-5, the protein whose gradient
from posterior to anterior side in the embryo anticorrelates with P granule positioning, also
binds to mRNA and it does with a much stronger binding affinity than PGL-3. Further
experimental evidence shows that MEX-5 reduces the effect of mRNA on promoting PGL-3
phase separation. All these observations suggested that a subtle interplay between the
tendency of PGL-3 to form drops regulated by mRNA-binding and a competition between
MEX-5 and PGL-3 to bind the existing mRNA lead to spatial control of dissolution and
condensation of PGL-3 drops.

In order to explain the experimental observations, we constructed a minimal model
for PGL-3 phase separation. The model is based on a Flory-Huggins type of free energy
complemented by a set of binding reactions based on experimental evidence. We discussed
the binding equilibrium for a simplified version of our model and showed that the binding
reactions constrain the possible concentrations of PGL-3 and the complex PGL-3:mRNA
to lie within what we called the constrained path. The constrained path is fully determined
by: the total concentration of mRNA, the total concentration of MEX-5 and the dissocia-
tion constants of the complexes PGL-3:mRNA and MEX-5:mRNA, for which we used the
experimentally measured values. We then fitted first the model of a binary mixture to the
PGL-3 solution in the absence of mRNA and MEX-5. From this fit we extracted the molec-
ular volume ratio between PGL-3 and the solvent (buffer), εP , which shows that PGL-3
has a volume 104 larger than the solvent. We also found the value of the Flory-Huggins
parameter χP,W = 0.512, which is relatively close to the critical value, showing that due
to the large interacting volume of PGL-3, the interaction needed for phase separation is a
rather weak one. We then used these values to fit the experimental data corresponding to
the scenario where the presence of mRNA promotes PGL-3 phase separation. For this fit,
we used the constrained path (in the absence of MEX-5) and showed that to account for
the experimental data, the tendency for phase separation of the complex PGL-3:mRNA
must be higher than that of PGL-3 alone, χPR,W > χP,W with χPR,W = 0.518. In order
to further test our model, we included MEX-5 in the description and studied its effect on
PGL-3 phase separation. We showed that our model can also account for the inhibition ef-
fect associated with the presence of MEX-5, which only occurs when mRNA is also present
in the solution, thus highlighting the mRNA-binding competition effect between PGL-3
and MEX-5. We concluded by showing numerical solutions to a set of dynamic equations
based on conservation laws describing changes in time of the concentrations of each compo-
nent in the system. The numerical solutions showed that an mRNA-binding competition
mechanism can fully account for the positioning of liquid droplets to a particular side.
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This study set the basis for explaining different phenomena related to protein conden-
sation and its spatial localization. Surprisingly, we showed that a relatively simple model
sheds light on a mechanism that is highly relevant for the proper development of an adult
C. elegans. We believe that this work may encourage further research on in vitro protein
solutions. These studies will help in characterizing the different protein phase separation
properties and how different binding partners of these proteins such as mRNA, may in-
fluence protein phase separation. To conclude, the mechanism presented here is generic,
meaning that other proteins capable of forming liquid-like drops and having similar mRNA-
binding properties as those of PGL-3, would show a similar regulation mechanism.



Chapter 6

Conclusions and Outlook

In this work, we have established a consistent thermodynamic framework to study phase
separation at chemical equilibrium and highlighted the importance of considering the con-
servation laws associated to the chemical reactions in the system. Using this thermo-
dynamic framework, we showed that minimal models of multicomponent mixtures can
account for liquid phase separation processes observed in experiments of protein solutions
in vitro as well as in living organisms. Remarkably, the minimal models presented here,
provide a physical interpretation of biological phenomena occurring inside the utterly com-
plex environment of the cell, in particular, we addressed the underlying mechanism leading
to P granules position inside the C. elegans embryo and the pH-dependent macromolecu-
lar assembly observed in yeast cells, which were discussed in Chapter 1. One important
factor that enabled us to perform our studies was the development of numerical tools to
construct phase diagrams for multicomponent systems. They were based on the idea of
the convexity of the free energy (density) as a function of its composition variables, and
importantly, the construction of coexisting phases in systems with chemical reactions was
performed in a thermodynamic space with a reduced dimension defined by the number of
conserved components and not by the total number of components involved in the chemical
reactions. We now recapitulate our developments and findings.

In Chapter 2, we described the numerical methods used to construct phase diagrams.
Since the convex hull selects the convex region of the free energy density, it allow us to
discriminate between stable and unstable regions in the composition space. Using the
convex hull we discussed how to construct the phase diagrams in relatively simple sys-
tems, namely binary and ternary mixtures. We gave a brief analysis of the dependence of
phase diagrams in different choices of the parameters, where we argued that by studying
simple binary mixtures composed of proteins and buffer as a function of temperature, we
could differentiate the mechanisms behind phase-separating system. We also discussed the
already rich behavior of a ternary system, where with the convex hull construction, the de-
termination of the binodals becomes a relatively simple problem without having any prior
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knowledge of the phase behavior of the system. We concluded this chapter by showing
possible quantitative phase diagrams of proteins that are intrinsically disordered. The goal
of this chapter was mainly to show how to use the convex hull in the construction of phase
diagrams and discuss different properties arising from large asymmetries in the molecular
volumes as well as from the different interaction among components.

In Chapter 3, we developed a generic thermodynamic framework to discuss phase sep-
aration in systems undergoing chemical reactions. We showed how starting from the stoi-
chiometry matrix of the system, one can construct a complete set of conserved components.
Interestingly, the set of the particle numbers corresponding to the conserved components
can be chosen as the set of independent composition variables describing the system at
chemical equilibrium. By doing a variable transformation from the initial set of compo-
nents to one that includes the conserved ones, the chemical equilibrium conditions can be
derived together with the thermodynamic conjugate chemical potentials of these conserved
components. These conjugate variables are the ones needed to perform correct Legendre
transforms in systems with chemical reactions [76]. We also showed that if one wants to
find coexisting phases in systems with chemical reactions, by using the conserved particle
numbers as natural variables, the methods developed in Chapter 2 can be applied without
any further change, of course granted that we evaluate the free energy in compositions
satisfying the chemical equilibrium conditions. We concluded by illustrating the methods
developed in this chapter applied to a system in which a molecule can transition from a
state which does not have a tendency to phase-separate to a state in which it does. We
selected the parameters of the system in such a way that the transition from the non-
phase-separating state to the phase-separating of the molecule was promoted by heating.
We then constructed a full phase diagram in the composition-temperature space showing
that this simple system exhibits reentrant behavior as a function of temperature.

In Chapter 4, we presented a minimal model to study the effect of pH on liquid-
liquid phase separation. The model considered was a multicomponent mixture composed
of water, hydronium ions, hydroxide ions, and macromolecules which could exist in three
different charge states. In order to assess the effect of pH on macromolecular phase sep-
aration, we coupled a phase-separating system with a set of chemical reactions controlled
by pH. This set of chemical reactions described the protonation and deprotonation of the
macromolecule as well as the self-ionization of water. Using the conserved particle num-
bers under chemical changes as independent composition variables, we constructed their
thermodynamic conjugate chemical potentials at chemical equilibrium. This then allowed
us to perform the correct Legendre transform to fix the pH of the system without using any
approximation of infinite dilution in the concentration of hydronium ions. Furthermore,
using the chemical equilibrium conditions and the particle numbers corresponding to the
conserved components, we reduced the effective dimension of the thermodynamic space to
one composition, namely the total macromolecule concentration. We constructed phase
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diagrams by means of the convex hull as a function of temperature, pH and total macro-
molecular volume fractions. The main features that we found were: Broad regions of phase
separation at the isoelectric point of the macromolecules, different topologies depending
on whether the dominant interaction driving phase separation is an attraction between
oppositely charged macromolecules or an attraction between neutral macromolecules, and
reentrant behavior as a function of pH. Additionally, we discussed a more realistic scenario
where we constructed a phase diagram using values for the total amount of fixed charges
and maximal charge close to those that are found in intrinsically disordered proteins which
have a pH-responsive behavior, such as Pab1 [34] and Sup35 [30]. This phase diagram,
showed that phase separation for macromolecules with these parameter choices will happen
for a very wide range of concentrations, going from µM concentrations, in agreement with
protein phase separation in vitro [30], to concentrations of mM, close to an estimation of
the total protein concentration in yeast cells [108]. Finally, we showed that differences
in both electric potential and pH across coexisting phases naturally emerge if the charge
neutrality condition is considered in an explicit manner.

In Chapter 5, we proposed a physical mechanism to explain the phenomenon of P gran-
ule positioning in the C. elegans embryo [12]. This mechanisms consists of a a competition
between PGL-3 and MEX-5 to bind to mRNA, spatially modulated by the MEX-5 gradient
across the embryo. In order to reach this conclusion, we presented results of our work [28],
which combined in vitro reconstitution of protein liquid droplets, a careful study of protein
binding to RNA, and physical modeling. In our study we focused on two of them, PGL-
3, a key component of P granules and MEX-5. After presenting the experimental data
showing that: PGL-3 form liquid-like drops in vitro, PGL-3 and MEX-5 have an RNA-
binding affinity, with MEX-5 binding approximately twenty-fold times stronger to RNA
than PGL-3, and the presence of mRNA and MEX-5 can regulate the phase separation
tendency of PGL-3. We then presented a model at thermodynamic equilibrium describing
phase separation regulated via binding reactions. We first considered a multicomponent
Flory-Huggins free energy composed of PGL-3, mRNA, the complexes formed by PGL-3
binding to RNA, PGL-3:mRNA, and solvent (buffer). Using this model we fitted two dif-
ferent sets of experiments, one where PGL-3 formed drops in the absence of mRNA and
the second one where mRNA is added and shown to enhance the tendency to phase sepa-
rate of PGL-3. To fit the first set of experiments we used a simple binary mixture model,
from which the Flory-Huggins interaction parameter between PGL-3 and the solvent can
be extracted. Using this value, we showed that in order to reproduce the experimental
results, the tendency to phase separate of the complex PGL-3:mRNA had to be larger
than that of PGL-3 alone. We then included MEX-5 in the description by considering its
binding reaction to mRNA, this led to a reduced tendency of PGL-3 to phase separate in
the presence of mRNA, due to the fact that MEX-5 has a higher binding affinity to RNA
than PGL-3. Finally, in order to make sure that the binding competition was enough to
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segregate protein droplets to a specific side, we presented the solutions of the dynamical
equations for the concentrations of all components corresponding to the free energy of
the full thermodynamic model, and showed that indeed, the mRNA binding competition
between MEX-5 and PGL-3 can for the positioning of liquid phase separated drops. This
mechanism is generic in the sense that any other protein with similar binding properties
as PGL-3 such as MEG-3 [39] could also be positioned via the mRNA-binding competition
mechanism.

Regarding future work, maybe the most interesting aspect that could be further ex-
plored is whether or not protein condensates develop a difference in pH and electric po-
tential across their interfaces. An electric potential difference could serve as a selective
mechanism to enrich these condensates specifically in certain charged molecules and a pH
difference could play a relevant role for changes in the reaction rates inside these conden-
sates. Exploring the equilibrium thermodynamics could set bounds on the pH difference
that could be achieved via passive phase separation. Further extensions of the theory to
out-of-equilibrium systems could explore whether or not pH differences across the inter-
faces of biomolecular condensates can be actively controlled. Another relevant aspect that
was not addressed in this thesis is the multicomponent nature of biomolecular condensates.
For example, P granules alone colocalize over thirty different proteins [117], one question
that arises is, what is the precise selection mechanism that allows a particular group of pro-
teins to phase separate together and form these protein condensates, this question could
be explored by trying to establish what defines such groups of proteins in terms of the
interactions among them, one could try to address this question using the mean field free
energy models discussed in this thesis. If we consider the fact that although there is a
huge number of different macromolecules in the cell, there is a rather limited number of
simultaneous coexisting phases, the question of how does the cell resolves this conundrum
might be worth studying. A first step to address this question could be to combine a
multicomponent theory and study how does a system of chemical reactions constrain the
thermodynamic space that can be visited by such system in order to select specific regions
in which only a low number of simultaneous coexisting phases may exist. We mention this
only as a first step since the active nature of the cell could be the one responsible of limiting
the number of coexisting phases, however, this remains to be explored. Finally, we believe
that our work can simply be taken as a starting point in exploring phase diagrams of in-
trinsically disordered proteins which undergo different reactions that affect their tendency
to phase-separate.

Let us conclude by posing the same question that was asked in Chapter 1 but in a
different tense: Was it relevant to study systems at thermodynamic equilibrium in order
to understand what happens inside of a living cell? The answer seems to be yes and this
work tried to give a small glimpse of what can be done by considering equilibrium systems
to understand recurrent behaviors in cells.



Appendix A

Flory-Huggins Parameters

Here we show how to describe the free energy given in Eq. (1.2) in terms of suitably
defined effective Flory-Huggins (FH) interaction parameters. In order to find the relation
between these interaction parameters we will use the condition

∑
i φi = 1. Using the free

energy (1.2) we define the interaction term as

Uint = G− kBT

M∑

i=0

Ni lnφi −
M∑

i=0

wiNi − p V =
V kBT

2v0

M∑

i,j=0
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We add and subtract V kBT
2v0
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where the sum
∑

k 6=l, considers that k and l take all possible values from 0 to M in which
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Uint =
V kBT

2v0

M∑

k=0

χkkφk


φk +

∑

l 6=k
φl − 1


+

V kBT

2v0

∑

k 6=l
(χkl − χkk)φkφl

− V kBT

2v0

M∑

k=0

χkkφk . (A.2)

Because
∑M

i=0 φi = 1, the first term in Eq. (A.2) vanishes. It is simple now to relate the
Flory-Huggins parameter to the interaction parameters by

χFH
kl =

2χkl − χkk − χll
2

. (A.3)
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Using Eq. (A.3), Uint can then be expressed as

Uint =
V kBT

2v0

∑

k 6=l
χFHkl φkφl −

V kBT

2v0

∑

k

χkkφk , (A.4)

Defining ωk =
(
wk − 1

2vk
χkk

)
and using Eq. (A.4), we can rewrite the free energy given in

Eq. (1.2) as

G(T, p, {Ni}) = kBT




M∑

i=0

Ni lnφi +
V

2v0

∑

i 6=j
χFH
ij φiφj


+

∑

i

ωiNi + p V . (A.5)

We have showed here that we can also express the free energy Eq. (1.2) using the
Flory-Huggins parameter by redefining the linear term in the Gibbs free energy.



Appendix B

Stability Conditions for
Multicomponent Mixtures

Here we present the general stability conditions for an incompressible multicomponent
mixture composed of M different chemical components and described by a free energy
density f(T, {ni}). The free energy density is locally stable if the free energy density f
obeys the following relations [118]:

∂2f

∂n2
i

≥ 0 for all i , (B.1)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f

∂n2
1

∂2f

∂n1∂n2
. . .

∂2f

∂n1∂nM
∂2f

∂n2∂n1

∂2f

∂n2
2

. . .
...

...
...

. . .
...

∂2f

∂nM∂n1
. . . . . .

∂2f

∂n2
M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0 . (B.2)

These local stability conditions are weaker conditions than the global convexity of the
free energy but can be used to find the boundary between stable and unstable states. The
locus of points defining the boundary between stable and unstable regions of the free energy
density in composition space is called the spinodal [63, 118]. The spinodal is defined by
compositions in which the left hand side of Eq. B.2 is equal to zero

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f

∂n2
1

∂2f

∂n1∂n2
. . .

∂2f

∂n1∂nM
∂2f

∂n2∂n1

∂2f

∂n2
2

. . .
...

...
...

. . .
...

∂2f

∂nM∂n1
. . . . . .

∂2f

∂n2
M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 . (B.3)
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The critical points of the system are precisely located on the spinodal and can be found
by substituting any of the horizontal lines in the determinant in Eq. (B.3) for

∂

∂n1

(
∂2f

∂n1∂nk

)
,
∂

∂n2

(
∂2f

∂n2∂nk

)
, . . . ,

∂

∂nM

(
∂2f

∂nM∂nk

)
, (B.4)

where we have arbitrarily chosen the k-th horizontal line in the determinant. If we choose
k = M , without any loss of generality, the second critical condition is then given by

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f

∂n2
1

∂2f

∂n1∂n2
. . .

∂2f

∂n1∂nM
∂2f

∂n2∂n1

∂2f

∂n2
2

. . .
...

...
...

. . .
...

∂3f

∂nM∂n2
1

∂3f

∂nM∂n2
2

. . .
∂3f

∂n3
M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 , (B.5)

Thus, the critical points are given by simultaneous solutions of Eqs. (B.3) and (B.5) and
they are characterized by a critical temperature Tc and critical concentrations nci . For a
binary mixture with only one independent concentration n, Eqs. (B.3) and (B.5) reduce
to the usual critical conditions presented in every thermodynamics textbook, given by

∂2f

∂n2

∣∣∣∣
Tc,nc

= 0 ,

∂3f

∂n3

∣∣∣∣
Tc,nc=0

.

where Tc and nc are the critical temperature and the critical concentration, respectively.



Appendix C

Convex Hull Construction

Here we give a brief and simple introduction to what is a convex hull and how does the
Quickhull algorithm works [83]. To this end, let us first imagine a set of points X in the
x−y plane with each of the points defined by a pair of coordinates, (xi, yi), see Fig. C.1(a).
The convex hull C is defined as the minimum set of points within X that encloses all of
the points in X (with the boundary included). The points of the set which are part of the
convex hull are called the vertices of the convex hull.

If we now ask ourselves, how do we construct the convex hull C, one intuitive and
relatively fast way of doing it is by means of the Quickhull algorithm. In what follows we
describe the steps of the construction for the set of points X .

1. Find the two extreme points in any direction (x or y) of the set and join them with
a line, in Fig. C.1(b) we show the two extreme points along the x-axis (1,2). These
points are at the extreme values of x so they are vertices of the convex hull (vertices
are shown as blue points).

2. We then find the point lying at maximum positive distance from the line joining the
two extreme points and connect it with a line, this point is also a vertex of the convex
hull. We consider the distance to a point positive if the point lies on the half-plane to
the right of the corresponding line. In Fig. C.1 we show the triangle that is formed
by joining the points 1-2-3.

3. We check if there are points inside of the triangle formed by the points from the
previous point. We see in Fig. C.1(c) that the points 4 and 5 lie within the area
enclosed by the triangle 1-2-3, thus they are not part of the convex hull (yellow
points).

4. We repeat the same procedure as in step 2 but now measuring the distance from the
segment given by the directed line from 2, which is point 6. We join these points to
form the triangle 1-2-6 shown in Fig. C.1(d) and repeat step 3.
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5. We repeat steps 2-3 from the new lines formed by joining the vertices 1-3, 3-2, 6-1
and 2-6.

6. We repeat the steps of joining furthest distance to each of the lines formed by the
new vertices of the convex hull until there are no further points lying outside of the
convex hull.
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Figure C.1: Steps describing the construction of the convex hull of a set of points using the
Quickhull algorithm.

The Quickhull algorithm is very simple to visualize in two dimensions but it can be gen-
eralized to any number of dimensions. Instead of lines, one has planes and one measures
distances from points to planes and check for points lying inside of the volumes instead of
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the area. Interestingly the convergence of the method improves with the number of points
lying inside the convex hull.

To conclude this Appendix, if we calculate the convex hull of a free energy density, we
obtain the set of compositions for which the free energy density is convex, note that this
is not a local convexity property but a global one. The convex hull rules out metastable
states that are locally stable under perturbations, thus selecting only the minimum convex
function, therefore the convex hull allows us to select between states that are globally
stable and those who are not.



Appendix D

Construction of a Set of Independent
Conserved Components and Their
Corresponding Particle Numbers

Here we show how to construct a set of independent conserved components for a specific
example. Let us consider a system with two reactions and five chemical components. One
of the reactions is the self-ionization of water (3.1), involving three of the five chemical
components, water H2O, hydronium H3O+ and hydroxide OH−. The other is a reaction
where one macromolecule, denoted by M, may become positively charged by absorbing one
proton and turn into an ionized macromolecule denoted by HM+. These two reactions can
be expressed as follows

2 H2O
 H3O+ + OH− , (D.1)

HM+ + H2O
 M + H3O+ . (D.2)

The stoichiometric matrix νij is given by

νij =

(
1 1 −2 0 0

1 0 −1 1 −1

)
, (D.3)

where each row represents a different chemical reaction and each column the number of
molecules of each of the components involved in the chemical reaction in the following
order: H3O+, OH−, H2O, M and HM+. In order to find the null space of νij , we need to
solve

s∑

j=0

νijCj = 0 ,
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for all i, i.e. for every reaction. The system of equations reads

C1 + C2 − 2C3 = 0 , (D.4)

C1 − C3 + C4 − C5 = 0 . (D.5)

Solving for C1 and C2 we obtain

C1 = C3 − C4 + C5 , (D.6)

C2 = C3 + C4 − C5 . (D.7)

This allow us to write the solution vector C̄ as

C̄ = C3




1

1

1

0

0




+ C4




−1

1

0

−1

0




+ C5




1

−1

0

0

1




, (D.8)

where C3, C4 and C5 are arbitrary numbers. The three vectors on the right hand side of
Eq. (D.8) form a basis of the null space of the stoichiometry matrix. We name this three
basis vectors as

C̄1 =




1

1

1

0

0




, C̄2 =




−1

1

0

1

0




, C̄3 =




1

−1

0

0

1




. (D.9)

The conservation matrix associated to this basis is

Cij =




1 −1 1

1 1 −1

1 0 0

0 −1 0

0 0 1




(D.10)

We can then proceed to construct a set of particle numbers for the independent conserved
components, we do this by means of Eq. (3.5) to obtain three independent particle numbers,
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which are given by

N c
1 = NH3O+ +NOH− +NH2O , (D.11a)

N c
2 = −NH3O+ +NOH− +NM , (D.11b)

N c
3 = NH3O+ −NOH− +NHM+ . (D.11c)

The first conserved particle number has a very clear meaning, it is the number of oxygen
atoms in the system, whereas the remaining two do not seem to have an intuitive meaning.
In order to give Eq. (D.11b) and Eq. (D.11c) a meaning, let us exploit the fact that we
have a rather simple system and guess three different conserved components. The first one
is the number of oxygen atoms NO, the second is the number of hydrogen atoms NH and
the third one is the total number of macromolecules, NMT

. The particle number of these
conserved components are defined as

NO = NH3O+ +NOH− +NH2O , (D.12a)

NH = 3NH3O+ +NOH− + 2NH2O +NHM+ , (D.12b)

NMT
= NM +NHM+ . (D.12c)

We now show that these two different sets of conserved quantities are related, we call them
quantities in order to be precise since Nc2 and Nc3 can be negative depending on the initial
state of the system. The set of conserved quantities defined in Eqs. (D.11) can be expressed
as a function of NO, NH and NMT

as follows

N c
1 = NO , (D.13a)

N c
2 = NMT

+ 2NO −NH , (D.13b)

N c
3 = NH − 2NO , (D.13c)

where we see that N c
2 and N c

3 , are a non-obvious combination of the more intuitive con-
served quantities.



Appendix E

pH in Diluted Systems

We now show that our definition of pH (eq. (4.19)) is equivalent to the most commonly used
definition pH = − log10(nH3O+/n0

H3O+) which only applies for ideal solutions of H3O+ and
OH− in water. In the absence of macromolecules and considering ideal solution conditions,
the chemical potentials of water µH2O and of hydronium ions µH3O+ can be expressed as

µH2O = v0P + wH2O , (E.1)

µH3O+ = kBT ln(v0nH3O+) + vH3O+P + wH3O+ , (E.2)

where we assumed that the contribution of the ions to the volume V is negligible, i.e.
taking the volume fraction of water v0nH2O = 1. The standard chemical potentials µ0

H2O

and µ0
H3O+ are given by the following expressions

µ0
H2O = v0P + wH2O , (E.3)

µ0
H3O+ = kBT ln(v0n

0
H3O+) + vH3O+P + wH3O+ . (E.4)

Substituting Eqs. (E.1)-(E.4) in the definition given in Eq. (4.19) we obtain

pH = − log10

(
nH3O+

n0
H3O+

)
. (E.5)
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Appendix F

Critical Points at the Isoelectric
Point

In this section we calculate some limiting critical values at the isoelectric point, where
ψ = 0 and hψ = 0.

F.1 Critical point at n̄ = 1

Here, we calculate the critical value which emerges at n̄ = 1 using the free energy density
(4.42), which at the isoelectric point is

vf̄ = kBT (2φ lnφ+ (1− 2φ) ln(1− 2φ)) + χ
(
φ2 − 2λφ+ λ/2

)
/ε− hφφ+ wM .(F.1)

We first differentiate f̄ with respect to φ which gives

v
∂f̄

∂φ
= kBT (2 lnφ− 2 ln(1− 2φ)) + 2χ (φ− λ) /ε− hφ . (F.2)

The conditions for finding a critical point in this case are ∂2f̄/∂φ2 = 0 and ∂3f̄/∂φ3 = 0,
these conditions read

kBTc

(
2

φc
+

4

1− 2φc

)
+ 2χ/ε = 0 , (F.3)

kBTc

(
− 2

φ2
c

+
8

(1− 2φc)2

)
= 0 . (F.4)
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Solving Eqs. (F.3) and (F.4) we find

φc =
1

4
, (F.5)

kBTc = − χ
8ε

, (F.6)

hφ,c = χ

(
ln 2 + 2− 8λ

4ε

)
. (F.7)

F.2 Effective binary critical point

In order to calculate the critical points describing the effective binary mixture, we first
discuss the limits of hφ for φ → 1/2 and φ → 0, which correspond to situations where
macromolecules are only charged or only neutral respectively.

If we consider the limit of hφ with φ→ 1/2,

lim
φ→ 1

2

hφ = lim
φ→ 1

2

[
2kBT ln

φ

1− 2φ
+ χn̄(φ− λ)/ε

]
,

lim
φ→ 1

2

hφ =− 2 ln 2− 2kBT lim
φ→ 1

2

ln(1− 2φ) +
χn̄

ε

(
1

2
− λ

)
,

lim
φ→ 1

2

hφ =∞ ,

this shows on one hand that large positive values of hφ are obtained for values of φ ap-
proaching 1/2, on the other hand, large negative values of hφ are obtained for φ approaching
0.

lim
φ→0

hφ = −∞ .

We can study both cases by direct substitution in the free energy density (4.42). We
illustrate the case for φ = 1/2, in this case the free energy density reads

vf̄ = kBT

(
n̄ ln

( n̄
2

)
+

(1− n̄)

ε
ln(1− n̄)

)
+
χen̄

2

4ε
+O(n̄) , (F.8)

the linear terms O(n̄) do not affect the stability of the system, therefore we are safe to
ignore them in our calculation. From the free energy evaluated at φ = 1/2 (F.8), we
calculate the chemical potential up to a constant

v
df̄

dn̄
= kBT

[
ln
( n̄

2

)
+ 1− ln(1− n̄) + 1

ε
+
χen̄

2ε

]
(F.9)



Effective binary critical point 113

using Eq. (F.9) and conditions d2f/dn̄2 = 0 and d3f/dn̄3 = 0 we find

n̄bc =

√
ε

1 +
√
ε

, (F.10)

kBTc = − χe

2(1 +
√
ε)2

. (F.11)

Following the same procedure for a system with φ = 0 gives

n̄bc =

√
ε

1 +
√
ε

, (F.12)

kBTc = −2
χn

(1 +
√
ε)2

. (F.13)



Appendix G

Phase Diagrams as a Function of pH

Here we show the phase diagrams which appear in Fig. 4.4 showing the dependence in ψ.
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Figure G.1: Phase behaviour as a function of pH, the colorbar indicates the value 2mψ =
(nM+ − nM−)/2n. Parameters ε = 0.1 and χe/kBT = −3.5, apply to all panels.
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Appendix H

Binding Equilibrium

Let us take the free energy density Eq. 5.1 as starting point and calculate the exchange
chemical potentials, µ̄i = µi − µW /εi, leading to

µP =
kBT

εP

(
εP (lnφP + 1)− lnφW − 1 + εPwP − wW

+χP,W (φW − φP )− χPR,WφPR
)

, (H.1)

µPR =
kBT

εPR

(
εPR(lnφPR + 1)− lnφW − 1 + εPRwPR − wW

+χPR,W (φW − φPR)− χP,WφP
)

, (H.2)

µR =
kBT

εR

(
εR(lnφR + 1)− lnφW − 1 + εRwR − wW

−χP,WφP − χPR,WφPR
)

, (H.3)

µM =
kBT

εM

(
εM (lnφM + 1)− lnφW − 1 + εMwM − wW

−χP,WφP − χPR,WφPR
)

, (H.4)

µMR =
kBT

εMR

(
εMR(lnφMR + 1)− lnφW − 1 + εMRwMR − wW

−χP,WφP − χPR,WφPR
)

, (H.5)

where we used φW = 1−∑i 6=W φW . These chemical potentials will be used to determine
the binding equilibrium conditions, which for reactions (5.2) are given by

µP + µR = µPR , (H.6)

µM + µR = µMR . (H.7)

(H.8)
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We now substitute the chemical potentials given in Eqs. (H.1)-(H.5) in the binding condi-
tions, leading to

nPnR
nPR

=
vPR
vP vR

[
wPR − wP − wR

kBT
+ φW

(
χPR
εPR

− χP
εP

)]
, (H.9)

nMnR
nMR

=
vMR

vMvR

[
wMR − wM − wR

kBT

]
. (H.10)

If we now define the dissociation constants KPR and KMR, as

KPR =
vPR
vP vR

(
wPR − wP − wR

kBT

)
, (H.11)

KMR =
vMR

vMvR

(
wMR − wM − wR

kBT

)
, (H.12)

and neglect the contributions coming from the interactions in Eq. (H.9) as stated in the
main text, we obtain

nPnR
nPR

' KPR , (H.13)

nMnR
nMR

= KMR , (H.14)

which are the corresponding equations presented in the main text.
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